
this print for content only—size & color not accurate spine = 1.25" 664 page count

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Beginning Ruby
Dear Reader,

Beginning Ruby is the only book you’ll need to take yourself from the point of
not knowing Ruby at all to the point of being proficient in the language. You’ll
be able to develop your own complete applications that can work online,
access databases, process files, and more.

Thanks to the popularity of the Ruby on Rails Web application framework,
Ruby is rapidly becoming one of the major programming languages of the
twenty-first century, and learning Ruby now will give you an enviable advan-
tage over other developers. I’ve written this book in a way that lets you learn
easily how to develop modern software and Internet-driven applications using
Ruby’s terminology, techniques, and culture. You’ll then be able to discover fur-
ther resources and tutorials online for the more advanced topics you’ll want to
learn once you become a Ruby professional.

My own Ruby learning experience is my motivation for writing this book. I
wanted to write a book that wouldn’t assume you’re already an object-orientation
or dynamic programming expert, and that would cover Ruby’s more oblique
areas in a style suitable for beginners and intermediate developers alike. I wrote
Beginning Ruby so that someone with no programming experience, through to
someone who is reasonably proficient in another programming language, can
quickly learn and appreciate the details of Ruby and the culture surrounding it.
Most of the topics necessary to become a professional Ruby developer are
explained in detail, and the chapters are structured in such a way that more
advanced developers can quickly skip sections not relevant to them.

From the start my ambition has been to design a book to educate and
encourage, rather than to deliver dry facts. This book not only shows you how
to program with Ruby, it also teaches you how the Ruby community works, where
the best places are to find help, and how to “walk the walk” and “talk the talk.”

Peter Cooper

US $39.99

Shelve in
Programming Languages

User level:
Beginner–Intermediate

Cooper
BeginningRuby

THE EXPERT’S VOICE® IN OPEN SOURCE

Peter Cooper
Foreword by why the lucky stiff

Beginning

Ruby
From Novice to Professional

CYAN
MAGENTA

YELLOW
BLACK
PANTONE 123 CV

ISBN-13: 978-1-59059-766-8
ISBN-10: 1-59059-766-4

9 781590 597668

53999

Companion
eBook Available

An instructional guide to the Ruby programming language.

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details
on $10 eBook version

THE APRESS ROADMAP

Beginning Ruby on
Rails E-Commerce

Rails Solutions:
Ruby on Rails Made Easy

Pro Ruby on Rails

Practical
Ruby GemsBeginning Ruby

Beginning
Ruby on Rails

Peter Cooper

Beginning Ruby
From Novice to Professional

7664 FM.qxd 2/28/07 10:47 AM Page i

Beginning Ruby: From Novice to Professional

Copyright © 2007 by Peter Cooper

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-766-8

ISBN-10 (pbk): 1-59059-766-4

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editors: Jonathan Gennick, Keir Thomas
Technical Reviewers: Tim Fletcher, Peter Marklund
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Jeff Pepper, Paul Sarknas,
Dominic Shakeshaft, Jim Sumser, Matt Wade

Project Manager: Beth Christmas
Copy Edit Manager: Nicole Flores
Copy Editor: Susannah Davidson Pfalzer
Assistant Production Director: Kari Brooks-Copony
Production Editor: Lori Bring
Compositor: Gina Rexrode
Proofreader: Nancy Sixsmith
Indexer: Julie Grady
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219,
Berkeley, CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/
Download section.

7664 FM.qxd 2/28/07 10:47 AM Page ii

For Laura

7664 FM.qxd 2/28/07 10:47 AM Page iii

7664 FM.qxd 2/28/07 10:47 AM Page iv

Contents at a Glance

Foreword . xix

About the Author . xxiii

About the Technical Reviewers . xxv

Acknowledgments. xxvii

Introduction . xxix

PART 1 ■ ■ ■ Foundations and Scaffolding
■CHAPTER 1 Let’s Get It Started: Installing Ruby . 3

■CHAPTER 2 Programming == Joy: A Whistle-Stop Tour of Ruby and
Object Orientation. 15

■CHAPTER 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control 35

■CHAPTER 4 Developing a Basic Ruby Application . 87

■CHAPTER 5 The Ruby Ecosystem . 113

PART 2 ■ ■ ■ The Core of Ruby
■CHAPTER 6 Classes, Objects, and Modules . 129

■CHAPTER 7 Projects and Libraries . 181

■CHAPTER 8 Documentation, Error Handling, Debugging, and Testing 201

■CHAPTER 9 Files and Databases. 229

■CHAPTER 10 Deploying Ruby Applications and Libraries . 279

■CHAPTER 11 Advanced Ruby Features . 309

■CHAPTER 12 Tying It Together: Developing a Larger Ruby Application 341

PART 3 ■ ■ ■ Ruby Online
■CHAPTER 13 Ruby on Rails: Ruby’s Killer App. 387

■CHAPTER 14 Ruby and the Internet . 433

■CHAPTER 15 Networking, Sockets, and Daemons . 467

■CHAPTER 16 Useful Ruby Libraries and Gems . 493

v

7664 FM.qxd 2/28/07 10:47 AM Page v

■APPENDIX A Ruby Primer and Review for Developers . 549

■APPENDIX B Ruby Reference . 581

■APPENDIX C Useful Resources . 601

■INDEX . 611

7664 FM.qxd 2/28/07 10:47 AM Page vi

Contents

Foreword . xix

About the Author . xxiii

About the Technical Reviewers . xxv

Acknowledgments. xxvii

Introduction . xxix

PART 1 ■ ■ ■ Foundations and Scaffolding

■CHAPTER 1 Let’s Get It Started: Installing Ruby . 3

Installing Ruby . 4

Windows . 4

Apple Mac OS X . 7

Linux . 10

Other Platforms . 12

Summary . 13

■CHAPTER 2 Programming == Joy: A Whistle-Stop Tour of
Ruby and Object Orientation . 15

Baby Steps . 16

irb: Interactive Ruby. 16

Ruby Is English for Computers . 17

Why Ruby Makes a Great Programming Language 17

Trails for the Mind . 18

Turning Ideas into Ruby Code . 20

How Ruby Understands Concepts with Objects and Classes 20

The Making of a Man. 21

Basic Variables . 23

From People to Pets. 24

Everything Is an Object . 27

Kernel Methods . 29

Passing Data to Methods . 29

Using the Methods of the String Class . 31

Using Ruby Without Object Orientation . 32

Summary . 33

vii

7664 FM.qxd 2/28/07 10:47 AM Page vii

■CHAPTER 3 Ruby’s Building Blocks: Data, Expressions, and
Flow Control . 35

Numbers and Expressions . 35

Basic Expressions . 35

Variables . 36

Comparison Operators and Expressions . 38

Looping Through Numbers with Blocks and Iterators 40

Floating Point Numbers . 42

Constants . 43

Text and Strings . 44

String Literals . 44

String Expressions . 46

Interpolation . 47

String Methods. 49

Regular Expressions and String Manipulation . 50

Arrays and Lists . 57

Basic Arrays . 58

Splitting Strings into Arrays . 60

Array Iteration. 61

Other Array Methods . 62

Hashes . 65

Basic Hash Methods . 66

Hashes Within Hashes . 67

Flow Control . 68

if and unless . 69

?:, The Ternary Operator . 70

elsif and case . 71

while and until . 72

Code Blocks . 74

Other Useful Building Blocks. 76

Dates and Times . 76

Large Numbers . 80

Ranges . 81

Symbols . 83

Converting Between Classes . 84

Summary . 85

■CHAPTER 4 Developing a Basic Ruby Application. 87

Working with Source Code Files. 87

Creating a Test File . 88

The Test Source Code File. 90

Running Your Source Code . 90

■CONTENTSviii

7664 FM.qxd 2/28/07 10:47 AM Page viii

Our Application: A Text Analyzer . 93

Required Basic Features . 94

Building the Basic Application . 94

Obtaining Some Dummy Text . 95

Loading Text Files and Counting Lines . 95

Counting Characters . 97

Counting Words . 98

Counting Sentences and Paragraphs. 100

Calculating Averages . 102

The Source Code So Far . 102

Adding Extra Features . 103

Percentage of “Useful” Words . 103

Summarizing by Finding “Interesting” Sentences 105

Analyzing Files Other Than text.txt. 107

The Completed Program . 108

Summary . 111

■CHAPTER 5 The Ruby Ecosystem . 113

Ruby’s History . 113

The Land of the Rising Sun. 114

Ruby’s Influences. 115

Go West. 115

Ruby on Rails . 117

Why Rails Came into Existence . 118

How the Web (2.0) Was Won. 119

The Open Source Culture . 119

What Is Open Source?. 120

Where and How to Get Help . 121

Mailing Lists . 121

Usenet Newsgroups. 121

Internet Relay Chat (IRC) . 122

Documentation. 123

Forums . 124

Joining the Community . 124

Give Help to Others . 124

Contribute Code . 125

Weblogs . 125

Summary . 126

■CONTENTS ix

7664 FM.qxd 2/28/07 10:47 AM Page ix

PART 2 ■ ■ ■ The Core of Ruby

■CHAPTER 6 Classes, Objects, and Modules . 129

Why Use Object Orientation? . 129

Object Orientation Basics . 133

Local, Global, Object, and Class Variables . 133

Class Methods vs. Object Methods . 138

Inheritance . 140

Overriding Existing Methods. 143

Reflection and Discovering an Object’s Methods . 145

Encapsulation. 146

Polymorphism. 151

Nested Classes. 153

The Scope of Constants . 154

Modules, Namespaces, and Mix-Ins . 156

Namespaces. 156

Mix-Ins . 159

Building a Dungeon Text Adventure with Objects . 168

Dungeon Concepts. 168

Creating the Initial Classes . 168

Structs: Quick and Easy Data Classes . 170

Creating Rooms . 173

Making the Dungeon Work . 173

Summary . 178

■CHAPTER 7 Projects and Libraries . 181

Projects and Using Code from Other Files . 181

Basic File Inclusion . 181

Inclusions from Other Directories. 184

Logic and Including Code . 185

Nested Inclusions. 185

Libraries . 186

The Standard Libraries . 187

RubyGems . 189

Summary . 198

■CHAPTER 8 Documentation, Error Handling, Debugging, and Testing . . 201

Documentation . 201

Generating Documentation with RDoc. 202

RDoc Techniques . 203

■CONTENTSx

7664 FM.qxd 2/28/07 10:47 AM Page x

Debugging and Errors . 208

Exceptions and Error Handling . 208

Catch and Throw . 212

The Ruby Debugger . 213

Testing. 216

The Philosophy of Test-Driven Development . 217

Unit Testing . 219

More Test::Unit Assertions. 221

Benchmarking and Profiling . 222

Simple Benchmarking . 223

Profiling. 225

Summary . 227

■CHAPTER 9 Files and Databases. 229

Input and Output . 229

Keyboard Input . 230

File I/O. 231

Basic Databases. 248

Text File Databases . 248

Storing Objects and Data Structures . 251

Relational Databases and SQL . 255

Relational Database Concepts . 256

The Big Four: MySQL, PostgreSQL, Oracle, and SQLite 257

Installing SQLite . 258

A Crash Course in Basic Database Actions and SQL 259

Using SQLite with Ruby. 264

Connecting to Other Database Systems . 269

ActiveRecord: A Sneak Peek . 274

Summary . 275

■CHAPTER 10 Deploying Ruby Applications and Libraries 279

Distributing Basic Ruby Programs . 279

The Shebang Line . 280

Associated File Types in Windows . 282

“Compiling” Ruby . 282

Detecting Ruby’s Runtime Environment . 284

Easy OS Detection with RUBY_PLATFORM . 285

Environment Variables. 285

Accessing Command Line Arguments . 287

■CONTENTS xi

7664 FM.qxd 2/28/07 10:47 AM Page xi

Distributing and Releasing Ruby Libraries As Gems . 288

Creating a Gem . 289

Distributing a Gem. 293

RubyForge. 294

Deploying Ruby Applications As Remote Services . 295

CGI Scripts . 295

Generic HTTP Servers . 298

Remote Procedure Calls . 303

Summary . 308

■CHAPTER 11 Advanced Ruby Features . 309

Dynamic Code Execution . 309

Bindings . 310

Other Forms of eval . 311

Creating Your Own Version of attr_accessor . 314

Running Other Programs from Ruby . 315

Getting Results from Other Programs . 315

Transferring Execution to Another Program . 316

Running Two Programs at the Same Time . 316

Interacting with Another Program . 317

Safely Handling Data and Dangerous Methods . 318

Tainted Data and Objects . 319

Safe Levels . 321

Working with Microsoft Windows . 322

Using the Windows API . 323

Controlling Windows Programs . 325

Threads . 327

Basic Ruby Threads in Action . 328

Advanced Thread Operations . 329

RubyInline . 331

Why Use C As an Inline Language? . 332

Creating a Basic Method or Function. 332

Benchmarking C vs. Ruby . 334

Unicode and UTF-8 Support . 336

Summary . 339

■CHAPTER 12 Tying It Together: Developing a Larger Ruby Application . . 341

Let’s Build a Bot . 341

What Is a Bot? . 341

Why a Bot? . 343

How? . 343

■CONTENTSxii

7664 FM.qxd 2/28/07 10:47 AM Page xii

Creating a Text Processing Tools Library . 344

Building the WordPlay Library. 345

Testing the Library . 351

WordPlay’s Source Code . 354

Building the Bot’s Core . 357

The Program’s Life Cycle and Parts . 358

Bot Data . 360

Constructing the Bot Class and Data Loader . 363

The response_to Method . 365

Playing with the Bot. 371

Main Bot Code Listings . 374

bot.rb. 375

basic_client.rb . 378

Extending the Bot. 378

Using Text Files As a Source of Conversation . 379

Connecting the Bot to the Web . 379

Bot-to-Bot Conversations . 382

Summary . 384

PART 3 ■ ■ ■ Ruby Online

■CHAPTER 13 Ruby on Rails: Ruby’s Killer App . 387

First Steps. 387

What Is Rails and Why Use It? . 387

Installing Rails . 389

Database Considerations . 391

Building a Basic Rails Application . 391

Creating a Blank Rails Application . 391

Database Initialization . 396

Creating a Model and Migrations . 398

Scaffolding . 404

Controllers and Views . 408

Routing . 418

Model Relationships . 420

Sessions and Filters. 422

Other Features . 424

Layouts . 424

Testing. 426

Plugins . 428

References and Demo Applications . 429

Reference Sites and Tutorials . 429

Example Rails Applications . 430

Summary . 430

■CONTENTS xiii

7664 FM.qxd 2/28/07 10:48 AM Page xiii

■CHAPTER 14 Ruby and the Internet . 433

HTTP and the Web . 433

Downloading Web Pages. 433

Generating Web Pages and HTML . 443

Processing Web Content . 448

E-Mail . 454

Receiving Mail with POP3 . 454

Sending Mail with SMTP . 456

Sending Mail with ActionMailer . 457

File Transfers with FTP . 458

Connection and Basic FTP Actions. 459

Downloading Files . 461

Uploading Files. 462

Summary . 464

■CHAPTER 15 Networking, Sockets, and Daemons . 467

Networking Concepts . 467

TCP and UDP . 468

IP Addresses and DNS. 468

Basic Network Operations. 469

Checking Machine and Service Availability. 469

Performing DNS Queries . 471

Connecting to a TCP Server Directly . 474

Servers and Clients . 475

UDP Client and Server . 475

Building a Simple TCP Server . 478

Multi-Client TCP Servers . 480

GServer . 482

A GServer-Based Chat Server. 485

Web/HTTP Servers. 488

Daemon Processes . 488

Summary . 490

■CHAPTER 16 Useful Ruby Libraries and Gems . 493

abbrev . 494

Installation . 494

Examples . 494

Further Information . 495

base64 . 496

Installation . 496

Examples . 496

Further Information . 499

■CONTENTSxiv

7664 FM.qxd 2/28/07 10:48 AM Page xiv

BlueCloth. 500

Installation . 500

Examples . 500

Further Information . 501

cgi . 502

Installation . 502

Examples . 502

Further Information . 507

chronic . 508

Installation . 508

Examples . 508

Further Information . 509

Digest . 510

Installation . 510

Examples . 510

Further Information . 512

English. 513

Installation . 513

Examples . 513

Further Information . 514

ERB . 515

Installation . 515

Examples . 515

Further Information . 518

FasterCSV . 519

Installation . 519

Examples . 519

Further Information . 525

iconv . 526

Installation . 526

Examples . 526

Further Information . 527

logger . 528

Installation . 528

Examples . 528

Further Information . 530

pp . 531

Installation . 531

Examples . 531

Further Information . 532

RedCloth . 533

Installation . 533

Examples . 533

Further Information . 534

■CONTENTS xv

7664 FM.qxd 2/28/07 10:48 AM Page xv

StringScanner. 535

Installation . 535

Examples . 535

Further Information . 538

tempfile . 539

Installation . 539

Examples . 539

Further Information . 541

uri . 542

Installation . 542

Examples . 542

Further Information . 546

zlib . 547

Installation . 547

Examples . 547

Further Information . 548

■APPENDIX A Ruby Primer and Review for Developers . 549

The Basics . 549

Definition and Concepts . 549

The Ruby Interpreter and Running Ruby Code . 551

Interactive Ruby . 553

Expressions, Logic, and Flow Control . 553

Basic Expressions . 553

Class Mismatches . 554

Comparison Expressions. 555

Flow. 557

Object Orientation . 561

Objects . 562

Classes and Methods . 563

Reflection . 565

Reopening Classes . 567

Method Visibility . 568

Data . 569

Strings. 569

Regular Expressions . 569

Numbers . 572

Arrays . 574

Hashes (Associative Arrays) . 574

Complex Structures . 576

Input/Output . 576

Files . 577

Databases. 577

Web Access . 578

■CONTENTSxvi

7664 FM.qxd 2/28/07 10:48 AM Page xvi

Libraries . 579

File Organization . 579

Packaging . 580

■APPENDIX B Ruby Reference . 581

Useful Classes and Methods. 581

Array . 581

Bignum and Fixnum. 583

Enumerable . 584

Float . 585

Hash . 585

Integer. 586

Numeric . 586

Object . 587

String. 588

Regular Expression Syntax . 590

Regular Expression Options . 591

Special Characters and Formations . 591

Character and Sub-Expression Suffixes . 592

Exception Classes . 592

Special Variables . 596

Ruby License . 597

■APPENDIX C Useful Resources . 601

References . 601

Ruby . 601

Ruby on Rails . 602

Blogs . 603

Aggregators and Community Blogs . 603

Personal Blogs . 604

Forums and Newsgroups . 604

Mailing Lists . 605

Real-Time Chat . 606

Tutorials and Guides . 607

Installation . 607

Ruby and Techniques. 608

Ruby on Rails . 609

Other . 610

■INDEX . 611

■CONTENTS xvii

7664 FM.qxd 2/28/07 10:48 AM Page xvii

7664 FM.qxd 2/28/07 10:48 AM Page xviii

Foreword

xix

7664 FM.qxd 2/28/07 10:48 AM Page xix

■FOREWORDxx

7664 FM.qxd 2/28/07 10:48 AM Page xx

■FOREWORD xxi

why the lucky stiff

http://whytheluckystiff.net/

7664 FM.qxd 2/28/07 10:48 AM Page xxi

7664 FM.qxd 2/28/07 10:48 AM Page xxii

About the Author

■PETER COOPER is an experienced Ruby developer and trainer, and edi-
tor of Ruby Inside (http://www.rubyinside.com/), the most popular
Ruby news blog. Until 2007 he was primarily a Ruby trainer and
developer, but is now the full-time owner and developer of Feed
Digest (http://www.feeddigest.com/), a Ruby- and Rails-powered RSS
feed processing and redistribution service that serves more than 200

million requests per month and was recently profiled by Business 2.0 magazine.
Since 2004 Peter has developed many commercial Web sites using Ruby on Rails, the

Ruby-based Web framework. In addition, he created Code Snippets (http://www.bigbold.
com/snippets/), one of the Web’s largest public code repositories, and Congress, an online
chat client using Ajax and Ruby on Rails technologies.

In addition to development work, Peter has written professionally about various
development techniques and tools, with more than 100 bylines since 1998. He was co-
editor of WebDeveloper.com, and worked on iBoost.com and Webpedia.com during the
dot-com boom.

He lives in Lincolnshire, England, with his girlfriend. In his limited spare time he
enjoys hiking, camping, and exploring.

xxiii

7664 FM.qxd 2/28/07 10:48 AM Page xxiii

7664 FM.qxd 2/28/07 10:48 AM Page xxiv

About the
Technical Reviewers

■TIM FLETCHER is 22 years old and lives in Winchester, England, on a student placement
with IBM. He likes Ruby because it’s fun. He has no children or pets, but an admirable
younger sister called Sophie. When not writing code, he loves to read, eat, sleep, and ski
as much as possible.

■PETER MARKLUND has extensive experience with and expertise in
object orientation, Web development, relational databases, and test-
ing, and has been doing Web development with Java and Tcl since
2000. He was one of the core developers of the OpenACS open
source Web framework. In late 2004, he was introduced to Ruby on
Rails and has since helped develop an online community and a CRM

system with Rails. Peter is working as a Ruby on Rails freelancer and is also helping
organize events for the Ruby on Rails developer community in Stockholm. Peter has a
personal blog at http://marklunds.com, where he shares Rails tips with other developers.

xxv

7664 FM.qxd 2/28/07 10:48 AM Page xxv

7664 FM.qxd 2/28/07 10:48 AM Page xxvi

Acknowledgments

It is often said that writing is a lonely task, but it’s not until you write a book that you
realize the process has to be anything but lonely. Without the help and reassurance of the
large team of people backing this book, and backing me personally, this book could not
have been written.

My first thanks go to Keir Thomas, who approached me with the idea of writing a
Ruby book. He gave me great freedom over the scope and specification of the book and
was the most essential piece of the puzzle in getting the book approved and everything
sorted out in the early stages.

Beth Christmas of Apress deserves a special thanks for her superb project manage-
ment and constant reassurance during the writing of this book. Without her schedules
and assurance that everything was on track, I would have been a nervous wreck.

Jonathan Gennick, Tim Fletcher, and Peter Marklund deserve much praise for their
seemingly unending reading and rereading of this book’s chapters throughout the vari-
ous stages of their development. As a newcomer to Ruby, Jonathan provided some
especially interesting insights that have served to make the book even better for Ruby
newcomers to read.

I’d also like to praise Susannah Davidson Pfalzer for her diligent approach to copy
editing this book by fixing my pronouns, removing my overuse of words like “however”
and “therefore,” and generally making it possible to read the book without going insane.
As this is my first book for Apress, I have depended on Susannah’s deep knowledge of
Apress customs a great deal.

Naturally, thanks go to all of those I directly worked with on the book, whether
they’re from Apress or independent. In no particular order: Jonathan Gennick, Keir
Thomas, Beth Christmas, Tim Fletcher, Peter Marklund, Susannah Davidson Pfalzer,
Jason Gilmore, Lori Bring, Nancy Sixsmith, and why the lucky stiff.

Separately from the book itself, I have to give thanks to many in the Ruby community
for either working alongside me, producing tools I’ve used, or just making the Ruby lan-
guage more appealing in general. In no particular order: why the lucky stiff (for an
unforgettable foreword), Yukihiro “Matz” Matsumoto, Jamie van Dyke, Amy Hoy, Evan
Weaver, Geoffrey Grosenbach, Obie Fernandez, Damien Tanner, Chris Roos, Martin
Sadler, Zach Dennis, Pat Toner, Pat Eyler, Hendy Irawan, Ian Ozsvald, Nic Williams, Shane
Vitarana, Josh Catone, Alan Bradburne, Jonathan Conway, Alex MacCaw, Benjamin Cur-
tis, and David Heinemeier Hansson. I am anxious I’ve missed some names, so if you’re
missing from this list, I humbly apologize.

Those in my personal life have also supported me a great deal by putting up with my
weird work hours and annoying habits, and by asking questions about the book, feeding

xxvii

7664 FM.qxd 2/28/07 10:48 AM Page xxvii

me, or just being there to talk to. In this regard I’d like to thank—again in no particular
order—Laura Craggs, Clive Cooper, Ann Cooper, David Sculley, Ed Farrow, Michael Wong,
Bob Pardoe, Dave Hunt, Chris Ueland, Kelly Smith, Graham Craggs, Lorraine Craggs, and
Robert Smith. Laura Craggs deserves a special mention for having had to put up with me
nearly 24 hours a day during the writing of this book; she is amazing.

Last, it’s necessary to thank you, the reader, for choosing to buy this book, for if no
one bought this book, these acknowledgments and the efforts of many people during
the writing of this book would have been wasted. Thank you!

■ACKNOWLEDGMENTSxxviii

7664 FM.qxd 2/28/07 10:48 AM Page xxviii

Introduction

I wanted to minimize my frustration during programming, so I want to minimize
my effort in programming. That was my primary goal in designing Ruby. I want to
have fun in programming myself.

—Yukihiro Matsumoto (Matz), creator of Ruby

Ruby is a “best of breed” language that has been assembled from the best and most
powerful programming features found in its predecessors.

—Jim White

Ruby makes me smile.

—Amy Hoy (slash7.com)

Ruby is a fun toy. It’s also a serious programming language. Ruby is the jolly uncle who
keeps the kids entertained, but who puts in solid 12-hour days at the construction site
during the week. To hundreds of thousands of programmers, Ruby has become a good
friend, a trusted servant, and has revealed a new way of thinking about programming
and software development.

Like the guitar, it’s often claimed that Ruby is an easy language to learn and a hard
one to master. I’d agree, with some provisions. If you don’t know any programming
languages already, Ruby will be surprisingly easy to learn. If you already know some lan-
guages such as PHP, Perl, BASIC, C, or Pascal, some of the concepts in Ruby will already
be familiar to you, but the different perspective Ruby takes with problem solving will
probably throw you at first. Like the differences between spoken languages, Ruby differs
from most other programming languages not only by syntax, but by culture, grammar,
and customs. In fact, Ruby has more in common with more esoteric languages such as
LISP and Smalltalk than with better-known languages such as PHP and C++.

While Ruby’s roots might be different from other languages, it’s heavily used and
respected in many industries. Companies that use or support Ruby in one way or another
include such prestigious names as Sun Microsystems, Intel, Microsoft, Apple, and
Amazon.com. The Ruby on Rails Web framework is a system for developing Web applica-
tions that uses Ruby as its base language, and it powers hundreds of large Web sites.
Ruby is also used as a generic language from the command prompt, much like Perl. xxix

7664 FM.qxd 2/28/07 10:48 AM Page xxix

Grammarians, biochemists, database administrators, and thousands of other profes-
sionals and hobbyists use Ruby to make their work easier. Ruby is a truly international
language with almost unlimited application.

This book is designed to cater both to people new to programming and those with
programming experience in other languages. Ruby’s culture is different enough from
other languages that most of this book will be of use to both groups. Any large sections
that can be skipped by already proficient programmers are noted in the text. In any case,
I’d suggest that all programmers at least speed-read the sections that might seem obvious
to them, as there are some surprising ways in which Ruby is different from what you’ve
done before.

When reading this book be prepared for a little informality, some quirky examples,
and a heavy dose of pragmatism. Ruby is an extremely pragmatic language, less con-
cerned with formalities and more concerned with ease of development and valid results.
From time to time I’ll show you how you can do things the “wrong” way in Ruby, merely
for illustrative purposes, but mostly you’ll be working with code that does things “the
Ruby way.” When I started to learn Ruby I learned primarily by example, and with a lan-
guage as original and idiomatic as Ruby, it’s the easiest way to pick up good habits for the
future. However, there’s always “more than one way to do it,” so if you think some code in
this book could be rewritten in a different way that fits in more with your way of thinking,
try it out!

As you start this book, be prepared to think in new ways, and to feel motivated to
start coding for both fun and profit. Ruby has helped a lot of jaded developers become
productive once again, and whether you’re a beginner to programming or one of those
jaded programmers, it’s almost inevitable that you’ll see how Ruby can be both fun and
productive for you.

Last, if you’re coming from other modern scripting languages such as Perl, PHP, or
Python, you might want to jump to Appendix A before reading Chapter 1. It covers the
key differences between Ruby and other scripting languages, which might help you move
through the initial chapters of this book more easily.

Good luck, and I hope you enjoy this book. I’ll see you in Chapter 1.

■INTRODUCTIONxxx

7664 FM.qxd 2/28/07 10:48 AM Page xxx

Foundations and
Scaffolding

This section is where the foundations of your Ruby knowledge will be laid. By the end of

this section you’ll be able to develop a complete, though basic, Ruby program. You’ll learn

how to get Ruby working, what object orientation is, how to develop some basic programs,

and about the data types and control structures Ruby uses and can operate on. Finally, I’ll

walk you through creating a small program from start to finish.

P A R T 1

7664 CH01.qxd 1/10/07 7:51 PM Page 1

7664 CH01.qxd 1/10/07 7:51 PM Page 2

Let’s Get It Started: Installing
Ruby

Ruby is a popular programming language, but not many computers understand it by
default. This chapter takes you through the steps necessary to get Ruby working on your
computer.

As an open source language, Ruby has been converted (or “ported,” as is the techni-
cal term) to run on many different computer platforms and architectures. This means
that if you develop a Ruby program on one machine, it’s likely you’ll be able to run it
without any changes on a different machine. You can use Ruby, in one form or another,
on all the following operating systems and platforms:

• Microsoft Windows 95, 98, XP, and Vista (all varieties)

• Mac OS X (all varieties)

• Linux (all varieties)

• MS-DOS

• BSDs (including FreeBSD and OpenBSD)

• BeOS

• Acorn RISC OS

• OS/2

• Amiga

• Symbian Series 60 cell phones

• Any platform for which a Java Virtual Machine exists (using JRuby, rather than the
official Ruby interpreter)

3

C H A P T E R 1

7664 CH01.qxd 1/10/07 7:51 PM Page 3

■Caution Some specifics of Ruby vary between platforms, but much of the code in this book (particularly
in the earlier chapters) runs on all versions. When we begin to look at more complex code, such as external
libraries and interfacing between Ruby and other systems, you should be prepared to make changes in your
code or accept that you won’t have access to every feature. However, if you’re using Windows, Linux, or Mac
OS X on an x86 architecture, almost everything will work as described in this book.

Before you can start playing with Ruby, you need to get your computer to understand
the Ruby language by installing an implementation of Ruby on your system, which I’ll
cover first.

Installing Ruby
Typically, when you install Ruby onto your computer, you’ll get the “Ruby interpreter,”
the program that understands other programs written in the Ruby language, along with
a wealth of extensions and libraries to make your Ruby more fully featured. However,
some installers, such as the Windows installer covered in the following section, include
source code editors and more easily accessible documentation, whereas other imple-
mentations might not. Fortunately, any extras included by one distribution and not
another are always available separately to install later.

To satisfy the majority of readers without referring to external documentation, I’m
providing full instructions for installing and using Ruby on Windows, Mac OS X, and
Linux, along with links to Ruby implementations for other platforms. In each case, I pro-
vide instructions to check that the installation is successful before sending you on to the
programming fun in Chapter 2.

Windows

Ruby was initially designed for use under Unix and Unix-related operating systems such
as Linux, but Windows users have access to an excellent “one-click installer,” which
installs Ruby, a horde of extensions, a source code editor, and various documentation, in
“one click.” Ruby on Windows is as reliable and useful as it is on other operating systems,
and Windows makes a good environment for developing Ruby programs.

To get up and running as quickly as possible, follow these steps:

1. Open a Web browser and go to http://www.ruby-lang.org/en/downloads/.

2. Scroll down to “Ruby on Windows,” about halfway down the page.

CHAPTER 1 ■ LET’S GET IT STARTED: INSTALLING RUBY4

7664 CH01.qxd 1/10/07 7:51 PM Page 4

3. In the “Ruby on Windows” section, you’ll see a few links for different versions of
Ruby you can download for Windows. Ideally you want to download the file at the
link that’s highest in the list that’s referred to as a “One-Click Installer.” At the time
of writing, this is version 1.8.5.

4. Click the link you found in step 3 and save it to your desktop.

5. Once download has completed, look on your desktop for the Ruby EXE file you
just downloaded, and double-click it to load the installer.

6. If Windows gives you a “Security Error” box, click the “Run” button to give your
approval.

7. A typical installation program appears with some instructions. On the initial
screen, click “Next.”

8. Work your way through the installation screens. Leave the boxes checked to install
the text editors SciTE and FreeRIDE, and the Ruby package manager RubyGems
(more on that in Chapter 7). Unless you have a specific reason not to, let the
installation program install Ruby in its default location of c:\ruby and its default
program group.

9. Installation takes place when you see a stream of filenames flying up your screen.
Wait several minutes for the installation process to complete and enjoy the view.
There are a lot of files to install!

10. Installation is complete when the installation program says “Installation Com-
plete” and the “Next” button is clickable. Click the “Next” button, then click
“Finish” to exit the installation program.

If Ruby installed correctly, congratulations! Go to the “Start” menu and then the “Pro-
grams” or “All Programs” menu. There should be a Ruby program group that contains
icons for FreeRIDE, SciTE, an uninstaller, and other bits and pieces. To test that your
Ruby installation works correctly for Chapter 2, you need to load the program listed as
“fxri – Interactive Ruby Help & Console,” so click this entry and wait for the program to
load. If the program loads successfully, you’ll see a screen that looks somewhat like that
in Figure 1-1.

CHAPTER 1 ■ LET’S GET IT STARTED: INSTALLING RUBY 5

7664 CH01.qxd 1/10/07 7:51 PM Page 5

Figure 1-1. The fxri interactive Ruby program

If fxri started properly, then Ruby is installed correctly. Congratulations! Lastly, you
need to be familiar with running Ruby and its associated utilities from the command
prompt, so go to the “Start” menu, then “Run,” and type cmd into the box and click “OK”
(“Command Prompt” might also be in your “Programs” menu under “Accessories”). You
should be presented with a command prompt, like that in Figure 1-2.

Figure 1-2. The Microsoft Windows command prompt

CHAPTER 1 ■ LET’S GET IT STARTED: INSTALLING RUBY6

7664 CH01.qxd 1/10/07 7:51 PM Page 6

Throughout this book, commands that can be used at the command prompt will be
given. This is because using a command prompt such as this is a standard technique in
operating systems such as Linux and OS X. For example, in Chapter 7 we’ll look at
installing extra features (libraries) for Ruby, and the command prompt will be used for
this. Therefore, it’s necessary for you to know how to access it and run programs.

If you type irb at this prompt and press Enter, you should see something like the
following:

irb(main):001:0>

If you see the preceding line, everything is set up correctly, and you can type exit and
press Enter to be returned to the command prompt.

Now you can move on to Chapter 2 and start to play with the Ruby language itself.

Apple Mac OS X

Unlike Windows, most modern Apple machines running Mac OS X come with a version
of Ruby already installed, which means you can get started straight away. Mac OS X
Panther (10.3.x) comes with Ruby 1.8.2 by default, and OS X Tiger (10.4.x) comes with
Ruby 1.8.4.

■Note It’s likely that OS X Leopard, due to be released in 2007, will come with the latest version of Ruby,
so if you’re running that operating system, unavailable at the time of writing, you might already be set to go!

Most of the code in this book works fine with Ruby 1.8.2 or higher, so if you’re run-
ning Mac OS X Panther or Tiger, you don’t need to do anything special. To find out which
version of OS X you’re running, click the “Apple” menu at the top left of your screen and
select “About This Mac.” If the version of OS X is later than 10.3, you should have Ruby
installed already.

■Tip If you’re using OS X Tiger (10.4.x), use Apple’s Software Update to upgrade to the latest version of
OS X, as Apple improved Ruby distribution included in OS X from version 10.4.6 onward. Without this
upgrade, you might need to reinstall Ruby manually to get some extensions, such as Ruby on Rails, to
work correctly. Although this isn’t a concern for the first two sections of this book, it could cause you some
confusion later on.

CHAPTER 1 ■ LET’S GET IT STARTED: INSTALLING RUBY 7

7664 CH01.qxd 1/10/07 7:51 PM Page 7

Testing for a Preinstalled Version of Ruby

If you’re using OS X Panther or OS X Tiger, you can check whether Ruby is installed by
using the Terminal application. Double-click “Macintosh HD” (or whatever your hard
drive is called) and go to the Applications folder on your drive. Once in Applications, go
to the Utilities folder, where you’ll find an application called Terminal. Double-click its
icon to start it. If Terminal starts correctly, you’ll see a screen similar to that in Figure 1-3.

Once you’re in the Terminal, you’re at what’s called the command prompt or shell.
You’re talking directly with your computer, in a technical sense, when you type. The com-
puter will execute the commands that you type immediately once you press Enter.

Figure 1-3. The Mac OS X Terminal in OS X Tiger with a working Ruby installed and tested

To see if Ruby is installed, type the following at the command prompt from within
Terminal (be sure to press Enter afterward):

ruby –v

CHAPTER 1 ■ LET’S GET IT STARTED: INSTALLING RUBY8

7664 CH01.qxd 1/10/07 7:51 PM Page 8

If successful, you should see a result, as shown in Figure 1-3, that says what version
of Ruby you’re running (which should, ideally, be 1.8.2 or greater). If this works, try to run
the Ruby interactive interpreter called “irb” by typing the following at the command
prompt:

irb

If you get a result as shown in Figure 1-3, you’re ready to go and can move to Chapter 2.
If you need to install a newer version of Ruby on OS X, continue to the next section.

Installing Ruby on OS X

There are a few ways to install Ruby on OS X. You can install from a prepackaged installa-
tion, by using a package manager such as Fink or DarwinPorts, or by compiling the Ruby
source directly. If you already use Fink or DarwinPorts, then refer to their respective sites
for further information, but otherwise you’ll find it easier to use a prebuilt installation
package.

One of the most popular installation packages is called Locomotive, and is available
at http://locomotive.raaum.org/.

As a regular DMG OS X file, you can install it like any other OS X application (on both
PPC and x86 architectures). Unlike some installers, Locomotive includes Ruby on Rails
and LightTPD. These tools aren’t immediately useful, unless you’re planning to do some
Ruby on Rails development right away, but which you’ll be glad of by the end of this
book.

Installing Ruby from Source on Mac OS X

Installing Ruby directly from source code on OS X is similar to Linux, so continue on to
the later Linux section entitled “Installing Ruby From Source Code.” Please note that ver-
sus installing a package such as Locomotive, when you install Ruby by source, all you get
is Ruby. You need to install components such as Rails separately later.

■Note To compile the Ruby sources on OS X, you need to install the Xcode developer tools that come
with OS X.

CHAPTER 1 ■ LET’S GET IT STARTED: INSTALLING RUBY 9

7664 CH01.qxd 1/10/07 7:51 PM Page 9

Linux

As an open source programming language, Ruby is already installed with many Linux
distributions. It’s not universal though, but you can check if Ruby is installed by following
the instructions in the next section. If this fails, there are further instructions to help you
install it.

Checking If Ruby Is Installed on Linux

Try to run the Ruby interpreter from the command prompt (or terminal window), as
follows:

ruby –v

If Ruby is installed, it will give an output such as the following:

ruby 1.8.2 (2004-12-25) [i686-linux]

This means that Ruby 1.8.2 is installed on the machine. This book requires 1.8.2 as a
bare minimum, so if the version is less than 1.8.2 you’ll need to continue onward in this
chapter and install a more recent version of Ruby. However, if Ruby appears to be
installed and up to date, try to run the irb interactive Ruby interpreter, as follows:

irb

■Tip On some systems, irb might have a slightly different name. For example, on Ubuntu it can sometimes
be called irb1.8, and you’ll need to run it as such. To find it, you can use find / -name "irb" –maxdepth 4.

Once you’ve run irb, you should get the following output:

irb(main):001:0>

If running irb results in a similar output, you can move on to Chapter 2. (You might
wish to type exit and press Enter to get back to the command line!) Otherwise, read on to
install a new version of Ruby.

CHAPTER 1 ■ LET’S GET IT STARTED: INSTALLING RUBY10

7664 CH01.qxd 1/10/07 7:51 PM Page 10

Installing Ruby with a Package Manager

The installation procedure for Ruby on Linux varies between different Linux distribu-
tions. Some distributions, such as Gentoo, Debian, and Red Hat, provide “package
managers” to make installation of programs easy. Others require that you install directly
from source or install a package manager beforehand.

If you’re comfortable with using emerge, rpm, or apt-get, you can install Ruby quickly
with the following methods:

• RPM: Download Ruby RPMs and install with rpm –Uhv ruby-*.rpm

• Gentoo: Use emerge as follows: emerge ruby

• Debian: Use apt-get: sudo apt-get install ruby

• Ubuntu: Use apt-get as with Debian. You might also need to install irb explicitly.
In the case of Ruby 1.8, this line should work:

sudo apt-get install ruby ruby1.8 ruby1.8-dev rdoc ri irb

If one of these methods works for you, try to run Ruby and irb as shown in the pre-
ceding section, and progress to Chapter 2 if you’re ready. Alternatively, you can search
your distribution’s package repository for Ruby, as the name for the Ruby package in your
distribution might be nonstandard or changing over time. However, if all else fails, you
can install Ruby directly from its source code in the next section.

Installing Ruby from Source Code

Installing Ruby from its source code is a great option if you don’t mind getting your hands
dirty. The process is similar on all forms of Unix (not just Linux). Here are the basic steps:

1. Make sure that your Linux distribution is able to build applications from source by
searching for the “make” and “gcc” tools. From the terminal you can use which gcc
and which make to see if the development tools are installed. If not, you need to
install these development tools.

2. Open a Web browser and go to http://www.ruby-lang.org/.

3. Click the “Download Ruby” link on the right-hand side of the page. If the page’s
design has changed, look for a link to “downloading Ruby.”

4. On the download page, click the link to the stable version of the “Ruby Source
Code.” At the time of writing this is “ruby-1.8.5.” This downloads the tar.gz file
containing the source code for the latest stable version of Ruby.

CHAPTER 1 ■ LET’S GET IT STARTED: INSTALLING RUBY 11

7664 CH01.qxd 1/10/07 7:52 PM Page 11

5. Uncompress the tar.gz file. If you’re at a command prompt or terminal window,
go to the same directory as the ruby-1.x.x.tar.gz file and run tar xzvf
ruby-1.x.x.tar.gz (where ruby-1.x.x.tar.gz is the name of the file you just
downloaded).

6. Go into the Ruby folder that was created during decompression. If you’re not
using a command prompt at this stage, open a terminal window and go to the
directory.

7. Run ./configure to generate the Makefile and config.h files.

8. Run make to compile Ruby from source. This might take awhile.

9. Run make install to install Ruby to its correct location on the system. You need to
do this as a superuser (such as root), so you might need to run it as sudo make
install and type in the root password.

10. If there are errors by this stage, read the README file that accompanies the source
code files for pointers. Otherwise, try to see what version of Ruby is now installed
with ruby –v.

If the expected version of Ruby appears at this point, you’re ready to move to Chapter 2
and begin programming. If you get an error complaining that Ruby can’t be found, or the
wrong version of Ruby is installed, the place where Ruby was installed to might not be in
your path (the place your operating system looks for files to run). To fix this, scroll up and
find out exactly where Ruby was installed (usually /usr/local/bin or /usr/bin) and add
the relevant directory to your path. The process to do this varies by distribution and shell
type, so refer to your Linux documentation on changing your path.

Once you can check which version of Ruby is running and it’s 1.8.2 or over, and you
can run irb and get a Ruby interpreter prompt, your Ruby installation is complete (for
now!) and you can move on to Chapter 2.

Other Platforms

If you’re not using Windows, Mac OS X, or Linux, you can still use Ruby if your computer’s
platform and architecture are listed at the start of this chapter. If you’re a user of an
uncommon platform, I assume you have basic knowledge of how to install applications
on your system, so I simply provide the links to the following different installation
programs:

• MS-DOS: http://ftp.ruby-lang.org/pub/ruby/binaries/djgpp/.

• FreeBSD: Various versions of Ruby are available as standard ports.

CHAPTER 1 ■ LET’S GET IT STARTED: INSTALLING RUBY12

7664 CH01.qxd 1/10/07 7:52 PM Page 12

• OS/2: http://hobbes.nmsu.edu/pub/os2/dev/misc/ruby-181.zip.

• BeOS: Ruby is installable in the same manner as with Linux, as described earlier.

• Linspire or Lindows: As a Linux distribution, you can use the same instructions as
for Linux, earlier.

• Symbian Series 60: http://developer.symbian.com/main/tools/opensrc/
ruby/index.jsp.

• Java Virtual Machines (JVMs): http://jruby.codehaus.org/.

• Other Unix versions: Refer to “Installing Ruby from Source Code” in the preceding
Linux section for instructions that are reasonably distribution generic.

In many cases, the versions of Ruby for some operating systems might be out of date
or unsupported. If this is the case, and you’re confident about being able to compile your
own version of Ruby directly from the Ruby source code, the source code is available to
download from http://www.ruby-lang.org/en/20020102.html.

To test that Ruby is installed sufficiently to continue with this book, you want to
check which version of Ruby is installed by asking Ruby for its version, as follows:

ruby –v

You also need access to Ruby’s interactive prompt irb. You access this simply by run-
ning irb (if it’s in your path) as follows:

irb

If neither Ruby nor irb work without complaint, you need to seek assistance for your
specific platform. Appendix C provides a list of useful resources.

Summary
In this chapter we’ve focused on making sure Ruby is properly installed and that you can
run the irb tool that you’ll be using over the next several chapters.

Although Ruby is an easy language to learn and develop with, it’s easy to become
overwhelmed with the administration of Ruby itself, its installation, and its upgrades. As
Ruby is a language constantly in development, it’s likely that points covered in this chap-
ter will go out of date, or easier ways to install Ruby might come along for your platform.

An important part of being a Ruby developer is being able to use the resources the
Ruby community makes available, and being able to find help directly as time goes by.
The Ruby community can provide quick help in most cases, and a number of resources to
try are available in Chapter 5 and Appendix C.

CHAPTER 1 ■ LET’S GET IT STARTED: INSTALLING RUBY 13

7664 CH01.qxd 1/10/07 7:52 PM Page 13

7664 CH01.qxd 1/10/07 7:52 PM Page 14

Programming == Joy:
A Whistle-Stop Tour of Ruby
and Object Orientation

Programming is both a science and an art. Telling computers what to do with computer
programs requires being able to think as both a scientist and an artist. Being an artist
is essential for coming up with big ideas and being flexible enough to take unique
approaches. Being a scientist is essential to understanding how and why certain method-
ologies need to be taken into account, and to approach testing and debugging from a
logical perspective, rather than an emotional one.

Luckily, you don’t need to be an artist or a scientist already. As with training the body,
doing programming “exercises” and thinking about how to solve problems trains the
mind to make you a better programmer. Anyone can learn to program. The only things
that can stand in the way are a lack of commitment or confusing programming lan-
guages. Ruby is one of the easiest programming languages to learn, so that leaves
commitment. Programming should be fun, even joyful, and if you’re enjoying yourself,
commitment comes naturally.

By the time you reach the end of this chapter, I hope you can get a taste of the joy
that lies ahead with the knowledge of a powerful, yet deceptively simple programming
language, and begin to feel excited about a future of programming nirvana!

■Note This chapter does not follow an instructional format as the following chapters do. Instead I’ll just go
from concept to concept quickly to give you a feel for Ruby as a language before getting down to the details
later.

15

C H A P T E R 2

7664 CH02.qxd 3/1/07 4:37 AM Page 15

Baby Steps
In Chapter 1, you focused on installing Ruby so that your computer can understand the
language. At the end of the chapter, you loaded a program called irb. Microsoft Windows
users ran an application called fxri. fxri and irb provide similar functions, so when I refer
to irb, as it’s officially known, be aware that you can use fxri instead if you’re using
Microsoft Windows.

irb: Interactive Ruby

irb stands for “Interactive Ruby.” “Interactive” means that as soon as you type something,
your computer will immediately attempt to process it. So if you typed in the “print ‘Hello,
world!’ 10 times” source code from the previous chapter into irb and pressed Enter, you’d
immediately see the results. Sometimes this sort of environment is called an immediate
or interactive environment.

■Note If you cannot remember how to load irb or fxri, refer to the section of Chapter 1 dedicated to your
computer’s operating system.

Start irb (or fxri) and make sure a prompt appears, like so:

irb(main):001:0>

This prompt is not as complex as it looks. All it means is that you’re in the irb pro-
gram, you’re typing your first line (001), and you’re at a depth of 0. You don’t need to place
any importance on the depth element at this time.

Type this after the preceding prompt and press Enter:

1 + 1

The result should come back quickly: 2. The entire process looks like this:

irb(main):001:0> 1 + 1

=> 2

irb(main):002:0>

Ruby is now ready to accept another command from you.
As a new Ruby programmer, you’ll spend a lot of time in irb testing concepts and

building up insights into Ruby. It provides the perfect environment for tweaking and test-
ing the language, as you cannot do any real damage from within irb. If you explicitly ask

CHAPTER 2 ■ PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION16

7664 CH02.qxd 3/1/07 4:37 AM Page 16

Ruby to erase files on your drive, of course, that can happen, but you’re not susceptible to
crashing your computer or harming other programs.

irb’s interactive environment also gives you the benefit of immediate feedback—an
essential tool when learning. Rather than writing a program in a text editor, saving it, get-
ting the computer to run it, and then looking through the errors to see where you went
wrong, you can just type in small snippets of code, hit Enter, and immediately see what
happens.

If you want to experiment further, try other arithmetic such as 100 * 5, 57 + 99, or
10 – 50 (note that the division symbol/operator on a computer is the forward slash “/”).

Ruby Is English for Computers

Computers can understand languages, though in a rather different fashion to how most
people do. Being logical devices that cannot understand subtlety or ambiguity, languages
such as English and French aren’t appealing to computers. Computers require languages
with logical structures and a well-defined syntax so that there’s a logical clarity in what
you’re telling the computer to do.

Clarity is required because almost everything you relay to the computer while pro-
gramming is an instruction (or command). Instructions are the basic building blocks of
all programs, and for the computer to perform (or execute) them properly, the program-
mer’s intentions must be clear and precise. Many hundreds of these instructions are tied
together into programs that perform certain tasks, which means there’s little room for
error.

You also need to consider that other programmers might need to maintain computer
programs you’ve written. This won’t be the case if you’re just programming for fun, but it’s
important that your programs are easy to understand, so you can understand them when
you come back to them later on.

Why Ruby Makes a Great Programming Language

Although English would make a bad programming language, due to its ambiguity and
complexity, Ruby can feel surprisingly English-like at times. Ruby is just one of hundreds
of programming languages, but it’s special because it feels a lot like a natural language to
many programmers, while having the clarity required by computers. Consider this exam-
ple code:

10.times do print "Hello, world!" end

Read through this code aloud (it helps, really!). It doesn’t flow quite as well as English,
but the meaning should be immediately clear. It asks the computer to “10 times” “print”
“Hello, world!” to the screen. It works. If you’ve got irb running, type in the preceding
code and press Enter to see the results:

CHAPTER 2 ■ PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION 17

7664 CH02.qxd 3/1/07 4:37 AM Page 17

Hello, world!Hello, world!Hello, world!Hello, world!Hello, world!Hello, world!

Hello, world!Hello, world!Hello, world!Hello, world!

■Note Experienced programmers might wonder why there’s no semicolon at the end of the previous code
example. Unlike many other languages, such as Perl, PHP, C, or C++, a semicolon is not needed at the end of
lines in Ruby (although it won’t hurt if you do use one). This can take a little while to get used to at first, but
for new programmers it makes Ruby even easier to learn.

Here’s a much more complex example:

User.find_by_email('me@privacy.net').country = 'Belgium'

This code is nowhere near as obvious as the “Hello, world!” example, but you should
still be able to take a good guess at what it does. First, it tells the computer you want to
work with a concept called User. Next, it tries to find a user with a specified e-mail
address. Last, it takes the user’s country information and changes it to Belgium. Don’t
worry about how the data is stored for users at this point; that comes later.

This is a reasonably advanced example, but demonstrates a single concept from a
potentially complex application where you can deal with different concepts such as
“users.” By the end of this chapter you’ll see how you can create your own real-life con-
cepts in Ruby and operate upon them in a similar way to this example. Your code can be
as easy to read as English too.

Trails for the Mind

Learning can be a fun activity in its own right, but merely reading about something won’t
make you an expert at it. I’ve read a few cookbooks, but this doesn’t seem to improve my
cooking when I attempt it from time to time. The missing ingredient is experimentation
and testing, as without these your efforts are academic, at best.

With this in mind, it’s essential to get into the mood of experimenting and testing
from day one of using Ruby. Throughout the book I’ll ask you to try out different blocks
of code and to play with them to see if you get the results you want. You’ll occasionally
surprise yourself, sometimes chase your code into dead ends, and often want to pull out
your hair (if you have any, of course!). Whatever happens, all good programmers learn
from experimentation, and you can only master a language and programming concepts
by experimenting as you go along. Trust me, it’s fun!

This book will lead you through a forest of code and concepts, but without testing
and proving the code is correct to yourself, you can quickly become lost. Use irb and the

CHAPTER 2 ■ PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION18

7664 CH02.qxd 3/1/07 4:37 AM Page 18

other tools I’ll cover frequently and experiment with the code as much as possible so that
the knowledge will stick.

Type in the following code at your irb prompt and press Enter:

print "test"

The result is, simply:

test

=> nil

Logically, print "test" results in test being printed to the screen. However, the sec-
ond line is the result of your code as an expression (more about these in Chapter 3). This
is because almost everything in Ruby is an expression. However, print displays data to
the screen rather than return any value as an expression, so you get nil. More about this
in Chapter 3.

Let’s try something else:

print "2+2 is equal to" + 2 + 2

This command seems logical on the surface. If 2 + 2 is equal to 4 and you’re adding
that to the end of "2+2 is equal to", you should get "2+2 is equal to 4", right? Unfortu-
nately, you get this error instead:

TypeError: can't convert Fixnum into String

from (irb):45:in `+'

from (irb):45

from :0

Ruby complains when you make an error, and here it’s complaining that you can’t
convert a number into a string (where a “string” is a collection of text, such as this very
sentence). Numbers and strings can’t be mixed in this way. Deciphering the reason isn’t
important yet, but experiments such as this along the way will help you learn and
remember more about Ruby than reading this book alone. When an error like this occurs,
you can use the error message as a clue to the solution, whether you find it in this book,
on the Internet, or by asking another developer.

An interim solution to the preceding problem would be to do this:

print "2+2 is equal to "

print 2 + 2

CHAPTER 2 ■ PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION 19

7664 CH02.qxd 3/1/07 4:37 AM Page 19

Or this:

print "2+2 is equal to ", 2 + 2

Let’s try one more example. What about 10 divided by 3?

irb(main):002:0> 10 / 3

=> 3

Computers are supposed to be precise, but anyone with basic arithmetic skills will
know that 10 divided by 3 is 3.33 recurring, rather than 3!

The reason for the curious result is that, by default, Ruby assumes a number such as
10 or 3 to be an integer—a whole number. Arithmetic with integers in Ruby gives integer
results, so it’s necessary to provide Ruby with a floating point number (a number with
decimal places) to get a floating point answer such as 3.33. Here’s an example of how to
do that:

Irb(main):001:0> 10.0 / 3

=> 3.3333333333333

Unobvious outcomes such as these make testing not only a good learning tool, but
an essential process in larger programs.

That’s enough of the errors for now though. Let’s make something useful!

Turning Ideas into Ruby Code
Part of the artistry of programming is in being able to turn your ideas into computer pro-
grams. Once you become proficient with a programming language, you can turn your
ideas directly into code. However, before you can do this, you need to see how Ruby
understands real-world concepts itself, and how you can relay your ideas into a form that
Ruby appreciates.

How Ruby Understands Concepts with Objects and Classes

Ruby is an object-oriented programming language. In the simplest sense, this means that
your Ruby programs can define and operate upon concepts in a real-world fashion. Your
program can contain concepts such as “people,” “boxes,” “tickets,” “maps,” or any other
concept you want to work with. Object-oriented languages make it easy to implement
these concepts in a way that you can create objects based upon them. As an object-
oriented language, Ruby can then act upon and understand the relationships between
these concepts in any way you define.

CHAPTER 2 ■ PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION20

7664 CH02.qxd 3/1/07 4:37 AM Page 20

For example, you might want to create an application that can manage the booking
of tickets for sports events. The concepts involved include “events,” “people,” “tickets,”
“venues,” and so forth. Ruby lets you put these concepts directly into your programs,
create object instances of them (instances of an “event” might be the Super Bowl or the
final of the 2010 World Cup), and perform operations upon and define relationships
between them. With all these concepts in your program, you can quickly relate “events”
to “venues” and “tickets” to “people,” meaning that your code presents a logical system
from the outset.

If you haven’t programmed much before, the idea of taking real-life concepts and
using them directly in a computer program might seem like an obvious way to make soft-
ware development easier. However, object orientation is a reasonably new idea in
software development (the concept was developed in the 1960s, but it only became pop-
ular in mainstream programming in the 1990s). With non–object-oriented languages, the
programmer has less flexibility in handling concepts and the relationships between them
and will have a lot of overhead to deal with.

The Making of a Man

Let’s jump directly into some source code demonstrating a simple concept, a person:

class Person

attr_accessor :name, :age, :gender

end

Ruby seemed a lot like English before, but it doesn’t seem much like English when
defining concepts. Let’s go through it step by step:

class Person

This line is where you start to define the concept of a “person.” When we define con-
cepts in Ruby (or in most other object-oriented languages, for that matter) we call them
classes. A class is the definition of a single type of object. Class names in Ruby always start
with a capital letter, so your programs will end up with classes with names like User,
Person, Place, Topic, Message, and so forth.

attr_accessor :name, :age, :gender

The preceding line provides three attributes for the Person class. An individual person
has a name, an age, and a gender, and this line creates those attributes. attr stands for
“attribute,” and accessor roughly means “make these attributes accessible to be set and
changed.” This means that when you’re working with a Person object in your code, you
can change that person’s name, age, and gender (or, more accurately, its name, age, and
gender attributes).

end

CHAPTER 2 ■ PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION 21

7664 CH02.qxd 3/1/07 4:37 AM Page 21

The end line should be of obvious utility. It matches up with the class definition on
the first line and tells Ruby that you’re no longer defining the Person class.

To recap, a class defines a concept (such as a Person), and an object is a single thing
based on a class (such as a “Chris” or a “Mrs. Smith”).

So let’s experiment with our Person class. Go to your irb prompt and type in the
Person class found earlier. Your efforts should look like this:

irb(main):001:0> class Person

irb(main):002:1> attr_accessor :name, :age, :gender

irb(main):003:1> end

=> nil

irb(main):004:0>

You’ll notice that the digit at the end of each irb prompt line changed when you were
entering the class code. The reason for this is that when you pressed Enter for the class
Person line, Ruby knew that you were now within a class structure, defining a class, rather
than typing code to be processed immediately. The 1 represents that you’re at a depth of 1
of nested concepts. If this doesn’t make sense to you now, don’t worry, as I’ll be covering
this in more detail later.

Once you’ve finished your class definition and Ruby has processed it, nil is returned,
because defining a class results in no return value, and nil is Ruby’s way of representing
“nothing.” As there were no errors, your Person class now exists within Ruby, so let’s do
something with it:

person_instance = Person.new

=> #<Person:0x358ea8>

What the first line does is create a “new” instance of the Person class, so you’re creat-
ing a “new person,” and assigning it to person_instance—a placeholder representing the
new person, known as a variable. The second line is Ruby’s response to creating a new
person and isn’t important at this stage. The 0x358ea8 bit will be different from computer
to computer, and only represents an internal reference that Ruby has assigned to the new
person. You don’t have to take it into account at all.

Let’s immediately do something with person_instance:

person_instance.name = "Robert"

In this basic example you refer to person_instance’s name attribute and give it a value
of "Robert". You’ve just given your person a name. The Person class has two other attrib-
utes: age and gender. Let’s set those:

person_instance.age = 52

person_instance.gender = "male"

CHAPTER 2 ■ PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION22

7664 CH02.qxd 3/1/07 4:37 AM Page 22

Simple. You’ve given person_instance a basic identity. What about printing out the
person’s name back to the screen?

puts person_instance.name

Robert appears when you press Enter. Try the same with the age and the gender.

■Note In previous examples, you’ve used print to put things on the screen. In the preceding example you
used puts. The difference between print and puts is that puts automatically moves the output cursor to
the next line, whereas print continues printing text onto the same line as the previous time. Generally you’ll
want to use puts, but I used print to make the earlier examples more intuitive to read out loud.

Basic Variables

In the previous section you created a person and assigned that person to a variable (com-
puter terminology for a “placeholder”) called person_instance.

Variables are an important part of programming, and they’re easy to understand,
especially if you have the barest of knowledge of algebra. Consider this:

x = 10

This code assigns the value 10 to the variable x. x now equals 10, and you can do
things like this:

x * 2

20

Variables in Ruby can contain any concept that Ruby understands, such as numbers,
text, and other data structures I’ll cover throughout this book. In the previous section,
person_instance was a variable that referred to an object instance of the Person class,
much like x is a variable containing the number 10. More simply, consider person_
instance as a name that refers to a particular, unique Person object.

When you want to store something and use it over multiple lines within a program,
you’ll use variables as temporary storage places for the data you’re working with.

CHAPTER 2 ■ PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION 23

7664 CH02.qxd 3/1/07 4:37 AM Page 23

From People to Pets

Previously, you created a simple class (Person), created an object of that class, assigned it
as the person_instance variable, and gave it an identity (you called it “Robert”) that you
queried. If these concepts seem simple to you, well done—you understand the bare
basics of object orientation! If not, reread the previous section and make sure you follow
along on your computer, but also read this section, as I’m going to go into a little more
depth.

You started out with a Person class, but now you need something a bit more complex,
so let’s create some “pets” to live inside Ruby. You’ll create some cats, dogs, and snakes.
The first step is to define the classes. You could do something like this:

class Cat

attr_accessor :name, :age, :gender, :color

end

class Dog

attr_accessor :name, :age, :gender, :color

end

class Snake

attr_accessor :name, :age, :gender, :color

end

It’s just like creating the Person class, but multiplied for the three different animals.
You could continue on by creating animals with code such as lassie = Dog.new or sammy =
Snake.new, and setting the attributes for the pets with code such as lassie.age = 12 or
sammy.color = "Green". Type in the preceding code and give it a try if you like.

However, creating the classes in this way would miss out on one of the best features
of object-oriented programming: inheritance.

Inheritance allows different classes to relate to one another and group concepts by
their similarities. In this case, cats, dogs, and snakes are all pets. Inheritance allows you to
create a “parent” Pet class, and then let your Cat, Dog, and Snake classes inherit the fea-
tures that all pets have.

Almost everything in real life exists in a similar structure to your classes. Cats can be
pets, which are, in turn, animals; which are, in turn, living things; which are, in turn,
objects that exist in the universe. A hierarchy of classes exists everywhere, and object-
oriented languages let you define those relationships in code.

■Note Chapter 6 features a helpful diagram showing the concept of inheritance between different forms
of life such as Mammals, Plants, and so forth.

CHAPTER 2 ■ PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION24

7664 CH02.qxd 3/1/07 4:38 AM Page 24

Structuring Your Pets Logically

Now that we’ve come up with some ideas to improve our code, let’s retype it from scratch.
To totally cleanse out and reset what you’re working on, you can restart irb. irb doesn’t
remember information between the different times you use it. So restart irb (to exit irb,
type exit and press Enter) and rewrite the class definitions like so:

class Pet

attr_accessor :name, :age, :gender, :color

end

class Cat < Pet

end

class Dog < Pet

end

class Snake < Pet

end

■Note In the code listings in this chapter, any code that’s within classes is indented, as with the attr_
accessor line in the preceding Pet class. This is only a matter of style, and it makes the code easier to
read. When you type it into irb it’s not necessary to replicate the effect. You can simply type what you see.
Once you start using a text editor to write longer programs, you’ll want to indent your code to make it easier
to read too, but it’s not important yet.

First you create the Pet class and define the name, age, gender, and color attributes
available to Pet objects. Next, you define the Cat, Dog, and Snake classes that inherit from
the Pet class. This means that cat, dog, and snake objects will all have the name, age,
gender, and color attributes, but because the functionality of these attributes is inherited
from the Pet class, the functionality doesn’t have to be created specifically in each class.
This makes the code easier to maintain and update if you wanted to store more informa-
tion about the pets, or if you wanted to add another type of animal.

What about attributes that aren’t relevant to every animal? What if you wanted to
store the length of snakes, but didn’t want to store the length of dogs or cats? Luckily
inheritance gives you lots of benefits with no downside. You can still add class-specific
code wherever you want. Reenter the Snake class like so:

class Snake < Pet

attr_accessor :length

end

CHAPTER 2 ■ PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION 25

7664 CH02.qxd 3/1/07 4:38 AM Page 25

The Snake class now has a length attribute. However, this is added to the attributes
Snake has inherited from Pet, so Snake has name, age, gender, color, and length attributes,
whereas Cat and Dog only have the first four attributes. You can test this, like so (some out-
put lines removed for clarity):

irb(main):001:0> snake = Snake.new

irb(main):002:0> snake.name = "Sammy"

irb(main):003:0> snake.length = 500

irb(main):004:0> lassie = Dog.new

irb(main):005:0> lassie.name = "Lassie"

irb(main):006:0> lassie.age = 20

irb(main):007:0> lassie.length = 10

NoMethodError: undefined method `length=' for #<Dog:0x32fddc @age=20,

@name="Lassie">

Here you created two dogs and a snake. You gave the snake a length of 500, before try-
ing to give one of your dogs a length of 10 (the units aren’t important). Trying to give the
dog a length results in an error of undefined method 'length=' because you only gave the
Snake class the length attribute.

Try playing with the other attributes and creating other “pets.” Try using attributes
that don’t exist and see what the error messages are.

Controlling Your Pets

So far you’ve been creating classes and objects with various changeable attributes. Attrib-
utes are data related to individual objects. A snake can have a length, a dog can have a
name, and a cat can be of a certain color. What about the instructions I spoke of earlier?
How do you give your objects instructions to perform? You define methods for each class.

Methods are important in Ruby. They make objects do things. For example, you
might want to add a bark method to your Dog class, which, if called on a Dog object, prints
“Woof!” to the screen. You could write it like so:

class Dog < Pet

def bark

puts "Woof!"

end

end

CHAPTER 2 ■ PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION26

7664 CH02.qxd 3/1/07 4:38 AM Page 26

After entering this code, any dogs you create can now bark. Let’s try it out:

irb(main):0> a_dog = Dog.new

irb(main):0> a_dog.bark

Woof!

Eureka! You’ll notice that the way you make the dog bark is simply by referring to the
dog (a_dog, in this case) and putting a period (“.”) followed by the bark method’s name,
whereupon your dog “barks.” Let’s dissect exactly what happened.

First, you added a bark method to your Dog class. The way you did this was by defin-
ing the method. To define a method, you use the word def followed by the name of the
method you wish to define. This is what the def bark line means. It means “I’m defining
the bark method within this class until I say end.” The following line then simply puts the
word “Woof!” on the screen, and the last line of the method ends the definition of that
method. The last end ends the class definition (this is why indentation is useful, so you
can see which end lines up with which definition). The Dog class then contains a new
method called bark, as you used earlier.

Think about how you would create methods for the other Pet classes or the Pet class
itself. Are there any methods that are generic to all pets? If so, they’d go in the Pet class.
Are there methods specific to cats? They’d go in the Cat class.

Everything Is an Object
In this chapter we’ve looked at how Ruby can understand concepts in the form of classes
and objects. We created virtual cats and dogs, gave them names, and triggered their
methods (the bark method, for example). These basic concepts form the core of object-
oriented programming, and you’ll use them constantly throughout this book. Dogs and
cats are merely an example of the flexibility object orientation offers, but the concepts
we’ve used so far could apply to most concepts, whether we’re giving a “ticket” a com-
mand to change its price or a “user” a command to change his or her password. Begin to
think of the programs you want to develop in terms of their general concepts and how
you can turn them into classes you can manipulate with Ruby.

Among even object-oriented programming languages, Ruby is reasonably unique
in that almost everything in the language is an object, even the concepts relating to the
language itself. Consider the following line of code:

puts 1 + 10

CHAPTER 2 ■ PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION 27

7664 CH02.qxd 3/1/07 4:38 AM Page 27

If you typed this into irb and pressed Enter, you’d see the number 11 in response.
You’ve asked Ruby to print the result of 1 + 10 to the screen. It seems simple enough, but
believe it or not, this simple line uses two objects. 1 is an object, as is 10. They’re objects of
class Fixnum, and this built-in class has methods already defined to perform operations
upon numbers, such as addition and subtraction.

We’ve considered how concepts can be related to different classes. Our pets make a
good example. However, even defining the concepts that programmers use to write com-
puter programs as classes and objects makes sense. When you write a simple sum such
as 2 + 2, you expect the computer to add two numbers together to make 4. In its object-
oriented way, Ruby considers the two numbers in the sum (2 and 2) to be number
objects. 2 + 2 is merely shorthand for asking the first number object to add the second
number object to itself. In fact, the + sign is actually an addition method!

You can prove that everything in Ruby is an object by asking things of which class
they’re a member. In the pet example earlier, you could have made a_dog tell you what
class it’s a member of with the following code:

puts a_dog.class

Dog

class isn’t a method you created yourself, such as the bark method, but one that Ruby
supplies by default to all objects. This means that you can ask any object of which class
it’s a member by using its class method. So when you try puts a_dog.class, you get the
result Dog.

What about if you ask a number what its class is? Try it out:

puts 2.class

Fixnum

The number 2 is an object of the Fixnum class. This means that all Ruby has to do is
implement the logic and code for adding numbers together in the Fixnum class, much like
you created the bark method for your Dog class, and then Ruby will know how to add any
two numbers together! Better than that, though, is that you can then add your own meth-
ods to the Fixnum class and process numbers in any way you see fit.

CHAPTER 2 ■ PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION28

7664 CH02.qxd 3/1/07 4:38 AM Page 28

Kernel Methods

Kernel is a special class (actually, a module—but don’t worry about that till Chapter 6!)
whose methods are made available in every class and scope throughout Ruby. You’ve
used a key method provided by Kernel already.

Consider the puts method. You’ve been using the puts method to print data to the
screen, like so:

puts "Hello, world!"

However, unlike the methods on your own classes, puts isn’t prefixed by the name of
a class or object upon which to complete the method. It would seem logical that the full
command should be something like Screen.puts or Display.puts, as puts places text on
the screen. However, in reality, puts is a method made available from the Kernel mod-
ule—a special type of class packed full of standard, commonly used methods, making
your code easier to read and write.

■Note The Kernel module in Ruby has no relationship to kernels in operating systems or the Linux
kernel. As with a kernel and its operating system, the Kernel module is part of Ruby’s “core,” but there is
no connection beyond that.

When you type puts "Hello, world!", Ruby can tell that there’s no class or object
involved, so it looks through its default, predefined classes and modules for a method
called puts, finds it in the Kernel module, and does its thing. When you see lines of code
where there’s no obvious class or object involved, take time to consider where the
method call is going.

To guarantee that you’re using the Kernel puts method, you can refer to it explicitly,
although this is rarely done with puts:

Kernel.puts "Hello, world!"

Passing Data to Methods

Asking a dog to bark or asking an object its class is simple with Ruby. You simply refer to
a class or object and follow it with a period and the name of the method, such as
a_dog.bark, 2.class, or Dog.new. However, there are situations where you don’t want to

CHAPTER 2 ■ PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION 29

7664 CH02.qxd 3/1/07 4:38 AM Page 29

issue a simple command, but you want to associate some data with it too. The puts
method is one example. Let’s refer to it explicitly:

Kernel.puts "Hello, world!"

Hello, world!

With the puts method, you need to pass the data you want to print to the screen,
which is why "Hello, world!" is placed after the method name.

Although you can follow a method call directly with the data associated with that
method, this is only a shortcut, and becomes cumbersome when you want to tie a num-
ber of methods together (as you’ll do later in this chapter). To make the relationship
between the method and the data entirely clear, the usual practice is to surround the data
in brackets (parentheses) after the method call, like so:

Kernel.puts("Hello, world!")

This means exactly the same thing, and works in exactly the same way, as puts
"Hello, world!", which is only different because of two shortcuts:

1. puts is a method of the Kernel module that is included and searched by default,
so usually you won’t need to use Kernel.puts to refer to it.

2. puts takes only one argument (that is, a discrete item of data being passed to a
method—also often called a parameter) and is rarely followed by other methods
or logic, so parentheses are not strictly necessary. Often, however, parentheses
are required, as in many situations omitting them leaves the code vague and
imprecise.

Therefore, all these lines of code are functionally equivalent:

Kernel.puts("Hello, world!")

Kernel.puts "Hello, world!"

puts("Hello, world!")

puts "Hello, world!"

In each case, the data "Hello, world!" is being passed to Kernel.puts, but the style
used to do so is different. As you work through some of the examples in this chapter, try
experimenting with different ways of printing the data to the screen by using parentheses
and/or using the Kernel module directly.

CHAPTER 2 ■ PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION30

7664 CH02.qxd 3/1/07 4:38 AM Page 30

Using the Methods of the String Class

You’ve played with dogs and numbers, but lines of text (strings) can be interesting to play
with too:

puts "This is a test".length

14

You’ve asked the string "This is a test", which is an object of the String class (con-
firm this with "This is a test".class), to print its length onto the screen using the length
method. The length method is available on all strings, so you can replace "This is a
test" with any text you want and you’ll get a valid answer.

Asking a string for its length isn’t the only thing you can do. Consider this:

puts "This is a test".upcase

THIS IS A TEST

The String class has many methods, which I’ll cover in the next chapter, but experi-
ment with some of the following: capitalize, downcase, chop, hash, next, reverse, sum, or
swapcase. Table 2-1 demonstrates some of the methods available to strings.

Table 2-1. The Results of Using Different Methods on the String "Test"

Expression Output

"Test" + "Test" TestTest

"Test".capitalize Test

"Test".downcase test

"Test".chop Tes

"Test".hash -98625764

"Test".next Tesu

"Test".reverse tseT

"Test".sum 416

"Test".swapcase tEST

"Test".upcase TEST

"Test".upcase.reverse TSET

"Test".upcase.reverse.next TSEU

CHAPTER 2 ■ PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION 31

7664 CH02.qxd 3/1/07 4:38 AM Page 31

Some of the examples in Table 2-1 are obvious, such as changing the case of the text
or reversing it, but the last two examples are of particular interest. Rather than processing
one method against the text, you process two or three in succession. The reason you can
do this is that methods will return the original object after it’s been adjusted by the
method, so you have a fresh String object upon which to process another method.
"Test".upcase results in the string TEST being returned, upon which the reverse method is
called, resulting in TSET, upon which the next method is called, which “increments” the
last character, resulting in TSEU.

In the next chapter we’ll be looking at strings more deeply, but the concept of
chaining methods together to get quick results is an important one in Ruby. You can
read the preceding examples aloud and they make sense. Not many other programming
languages can give you that level of instant familiarity!

Using Ruby Without Object Orientation
So far in this chapter we’ve looked at several reasonably complex concepts. With some
programming languages, object orientation is almost an afterthought, and beginners’
books for these languages don’t cover object orientation until readers understand the
basics of the language (particularly with Perl and PHP, popular Web development lan-
guages). However, this doesn’t work for Ruby because Ruby is a pure object-oriented
language, and you can gain significant advantages over users of other languages by
understanding these concepts right away.

Ruby has its roots in other languages though. Ruby has been heavily influenced by
languages such as Perl and C, both usually considered procedural non–object-oriented
languages (although Perl has some object-oriented features). As such, even though
almost everything in Ruby is an object, you can use Ruby in the same way as a non–
object-oriented language if you like, even if it’s less than ideal.

A common demonstration program for a language such as Perl or C involves creating
a subroutine (essentially a sort of method that has no associated object or class) and call-
ing it, much like you called the bark method on your Dog objects. Here’s a similar program,
written in Ruby:

def dog_barking

puts "Woof!"

end

dog_barking

This looks a lot different from your previous experiments. Rather than defining a
method within a class, you’re defining it on its own. The method is very general and

CHAPTER 2 ■ PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION32

7664 CH02.qxd 3/1/07 4:38 AM Page 32

doesn’t appear to be tied to any particular class or object. Instead, it stands alone. In a
language such as Perl or C, this method would be called a procedure, function, or sub-
function, as method is a word generally used to refer to an action that can take place
upon an object.

After the method is defined—it’s still called a method, even though other languages
would consider it to be a subroutine or function—it becomes available to use immedi-
ately without using a class or object name, like how puts is available without referring
directly to the Kernel module. You call the method simply by using its name on its own, as
on the last line of the preceding example. Typing in the preceding code into irb results in
the dog_barking method being called, giving the following result:

Woof!

Like Kernel.puts, however, the dog_barking method does end up under a class. In
Ruby, almost everything’s an object, and that includes the magical space where classless
methods end up! Understanding exactly where isn’t important at this stage, but it’s
always useful to bear Ruby’s object-oriented ways in mind even when you’re trying not to
use object-oriented techniques!

■Note If you want to experiment, you’ll find dog_barking at Object.dog_barking.

Summary
In this chapter you’ve learned about several important concepts not only for program-
ming in Ruby, but for programming in general. If these concepts seem logical to you
already, you’re well on the way to being a solid Ruby developer. Let’s recap the main con-
cepts before moving on:

• Class: A class is a definition of a concept in an object-oriented language such as
Ruby. We created classes called Pet, Dog, Cat, Snake, and Person. Classes can inherit
features from other classes, but still have unique features of their own.

• Object: An object is a single instance of a class (or, as can be the case, an instance of
a class itself). An object of class Person is a single person. An object of class Dog is a
single dog. Think of objects as real-life objects. A class is the classification, whereas
an object is the actual object or “thing” itself.

CHAPTER 2 ■ PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION 33

7664 CH02.qxd 3/1/07 4:38 AM Page 33

• Object orientation: Object orientation is the approach of using classes and objects
to model real-world concepts in a programming language, such as Ruby.

• Variable: In Ruby, a variable is a placeholder for a single object, which may be a
number, string, list, or an instance of a class that you have defined, such as, in this
chapter, a Pet.

• Method: A method represents a set of code (containing multiple commands and
statements) within a class and/or an object. For example, our Dog class objects had
a bark method that printed “Woof!” to the screen. Methods can also be directly
linked to classes, as with fred = Person.new, where new is a method that creates a
new object based upon the Person class. Methods can also accept data—known as
arguments or parameters—included in parentheses after the method name, as
with puts("Test").

• Arguments/parameters: The data passed to methods in parentheses (or, as in some
cases, following the method name without parentheses, as in puts "Test").

• Kernel: Some methods don’t require a class name to be usable, such as puts. These
are usually built-in, common methods that don’t have an obvious connection to
any classes. Many of these methods are included in Ruby’s Kernel module, a mod-
ule that provides functions that work from anywhere within Ruby code without
being explicitly referred to.

• Experimentation: One of the most fulfilling things about programming is that you
can turn your dreams into reality. The amount of skill you need varies with your
dreams, but generally if you want to develop a certain type of application or serv-
ice, you can give it a try. Most software comes from necessity or a dream, so
keeping your eyes and ears open for things you might want to develop is impor-
tant. It’s even more important when you first get practical knowledge of a new
language, as you are while reading this book. If an idea crosses your mind, break it
down into the smallest components that you can represent as Ruby classes and see
if you can put together the building blocks with the Ruby you’ve learned so far.
Your programming skills can only improve with practice.

In the next few chapters we’re going to move through looking at the topics briefly
passed over in this chapter in more detail.

CHAPTER 2 ■ PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION34

7664 CH02.qxd 3/1/07 4:38 AM Page 34

Ruby’s Building Blocks: Data,
Expressions, and Flow Control

Computer programs spend nearly all their time manipulating data. We type in words,
phrases, and numbers; listen to music; and watch videos, while the computer performs
calculations, makes decisions, and relays information to us. To write computer programs,
it’s essential to understand the basics of data and how to manipulate it. Naturally, Ruby
keeps it simple.

This chapter looks at some of the basic forms of data that Ruby supports, along with
how to work with and manipulate them. The topics covered in this chapter will provide
the majority of the foundation of knowledge on which your future Ruby programs will
be developed.

Numbers and Expressions
At the lowest level, computers are entirely number-based, with everything represented by
streams of numbers. A language such as Ruby insulates you from the internal workings of
the computer, and numbers in Ruby are used for mostly the same things that you use num-
bers for in real life, such as counting, logical comparisons, arithmetic, and so on. Let’s look
at how you can use numbers in these ways in Ruby and how to do something with them.

Basic Expressions

When programming, an expression is a combination of numbers, operators (such as +
or -), and variables that, when understood by the computer, result in an answer of some
form. For example, these are all expressions:

5

1 + 2

"a" + "b" + "c"

100 - 5 * (2 - 1)

x + y 35

C H A P T E R 3

7664 CH03.qxd 2/19/07 1:01 AM Page 35

The top four expressions all work right away with irb (try them out now!) and get the
answers you’d expect from such basic operations (1 + 2 results in 3, "a" + "b" + "c"
results in abc, and so on). Brackets (parentheses) work the same way as with regular arith-
metic. Anything inside brackets is calculated first (or, more technically, given higher
precedence).

■Note You can work through all the topics in this chapter using irb, the immediate Ruby interpreter. If you
get stuck at any point, simply leave irb by typing exit at any time, and start irb again as demonstrated in
Chapter 1.

Expressions are used regularly throughout all computer programs, and not just with
numbers. However, an understanding of how expressions and operations work with
numbers immediately translates into a basic knowledge of how they work with text, lists,
and other items too.

Variables

In Chapter 2 we ran through a multitude of concepts, including variables. Variables are
placeholders or references for objects, including numbers, text, or any objects you’ve
chosen to create. For example:

x = 10

puts x

10

Here you assign the numeric value of 10 to a variable called x. You can name variables
however you like, with only a few limitations. Variable names must be a single unit (no
spaces!); must start with either a letter or an underscore; must contain only letters, num-
bers, or underscores; and are case sensitive. Table 3-1 demonstrates variable names that
are valid and invalid.

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL36

7664 CH03.qxd 2/19/07 1:01 AM Page 36

Table 3-1. Valid and Invalid Variable Names

Variable Name Valid Or Invalid?

x Valid

y2 Valid

_x Valid

7x Invalid (starts with a digit)

this_is_a_test Valid

this is a test Invalid (not a single word)

this'is@a'test! Invalid (contains invalid characters: ', @, and !)

this-is-a-test Invalid (looks like subtraction)

Variables are important because they allow you to write and use programs that work
upon varying data. For example, consider a small program that has the sole job of sub-
tracting two numbers:

x = 100

y = 10

puts x - y

90

If the code was written simply as puts 100 - 10, you’d get the same result, but it’s not
as flexible. Using variables, you can get the values for x and y from the user, a file, or some
other source. The only logic is the subtraction.

As variables are placeholders for values and data, they can also be assigned the
results of an expression (such as x = 2 - 1) and be used in expressions themselves (such
as x - y + 2). Here’s a more complex example:

x = 50

y = x * 100

x += y

puts x

5050

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL 37

7664 CH03.qxd 2/19/07 1:01 AM Page 37

Step through the example line by line. First you set x to equal 50. You then set y to the
value of x * 100 (50 * 100 or 5000). Next you add y to x before printing the result, 5050, to
the screen. It makes sense, but the third line isn’t obvious at first. Adding y to x looks more
logical if you say x = x + y rather than x += y. This is another Ruby shortcut. Because the
act of a variable performing an operation upon itself is so common in programming, you
can shorten x = x + y to x += y. The same works for other operations too, such as multi-
plication and division, with x *= y and x /= y being valid too. A common way to increase
a variable’s value by 1 is x += 1, which is shorthand for x = x + 1.

Comparison Operators and Expressions

A program without logic is merely a calculator. Computers don’t just perform single oper-
ations on data. They also use logic to determine the correct course of action. A basic form
of logic is to use comparison operators within expressions to make decisions.

Consider a system that demands the user be over a certain age:

age = 10

puts "You're too young to use this system" if age < 18

If you try this code, you’ll see “You’re too young to use this system” because you print
the text to the screen only when the value of age is under 18. Let’s make something more
complex:

age = 24

puts "You're a teenager" if age > 12 && age < 20

This code results in no response because someone aged 24 is not a teenager. How-
ever, if age were to be between 13 or 19, the message would appear. This is a case where
two small expressions (age > 12 and age < 20) are joined together with &&, meaning
“and.” Reading expressions such as this aloud is the best way to understand them. Print
the text if age is larger than 12 and age is smaller than 20.

To get the opposite effect you can use the word unless:

age = 24

puts "You're NOT a teenager" unless age > 12 && age < 20

This time you’d get the message that you’re not a teenager with your age of 24. This is
because unless means the opposite of if. You display the message unless the age is in the
teenage range.

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL38

7664 CH03.qxd 2/19/07 1:01 AM Page 38

■Note Another cute technique offered by Ruby is the between? method that returns true or false if the
object is between or equal to two supplied values. For example: age.between?(12, 20)

You can also test for equality:

age = 24

puts "You're 24!" if age == 24

Notice that the “equals” concept is represented in two different ways, given two dif-
ferent meanings. On the first line you’re saying that age equals 24, meaning you want age
to contain the number 24. However, on the second line, you’re asking if age “is equal to”
24. In the first case you’re demanding, and in the second case you’re asking. This differ-
ence results in different operators to prevent confusion. Therefore, the equality operator
is == and the assignment operator is just =. A full list of comparison operators for num-
bers is shown in Table 3-2.

Table 3-2. A Full List of Number Comparison Operators in Ruby

Comparison Meaning

x > y Greater than.

x < y Less than.

x == y Equal to.

x >= y Greater than or equal to.

x <= y Less than or equal to.

x <=> y Comparison. Returns 0 if x and y are equal, 1 if x is higher,
-1 if y is higher.

x != y Not equal to.

As you saw earlier, it’s possible to group multiple expressions into a single expres-
sion, as with the following:

puts "You're NOT a teenager" unless age > 12 && age < 20

&& is used to enforce that both age > 12 and age < 20 are true. However, you can also
check whether one or the other is true by using ||, as so:

puts "You're either very young or very old" if age > 80 || age < 10

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL 39

7664 CH03.qxd 2/19/07 1:01 AM Page 39

Chaining together multiple comparisons is also possible with a clever use of
parentheses:

puts "You're a working age man" if gender == "male" && (age >= 18 && age <= 65)

This example checks if gender is equal to "male" and if age is between 18 and 65.

Looping Through Numbers with Blocks and Iterators

Nearly all programs require certain operations to be repeated over and over again to
accomplish a result. It’d be extremely inefficient (and inflexible!) to write a program to
count through numbers like this:

x = 1

puts x

x += 1

puts x

x += 1

puts x

...

...

What you want to do in these situations is to implement a loop, a mechanism that
makes the program use the same code over and over. Here’s a basic way to implement
a loop:

5.times do puts "Test" end

Test

Test

Test

Test

Test

First, you take the number 5. Next, you call the times method, common to all num-
bers in Ruby. Rather than pass data to this method, you pass it more code: the code
between do and end. The times method then uses the code five times in succession,
producing the preceding five lines of output.

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL40

7664 CH03.qxd 2/19/07 1:01 AM Page 40

Another way to write this is with curly brackets instead of do and end. Although do and
end are encouraged for multiple-line code blocks, curly brackets make the code easier to
read on a single line. Therefore, this code works in exactly the same way:

5.times { puts "Test" }

You’ll be using this style for single lines of code from here on, but will be using do and
end for longer blocks of code. This is a good habit to pick up, as it’s the style nearly all pro-
fessional Ruby developers follow (although there are always exceptions to the rule).

In Ruby, one mechanism to create a loop is called an iterator. An iterator is some-
thing that progresses through a list of items one by one. In this case it loops, or iterates,
through five steps, resulting in five lines of “Test.” Other iterators are available for num-
bers, such as the following:

1.upto(5) { ...code to loop here... }

10.downto(5) { ...code to loop here... }

0.step(50, 5) { ...code to loop here... }

The first example counts from 1 “up to” 5. The second example counts from 10 “down
to” 5. The last example counts up from 0 to 50 in steps of 5, because you’re using the step
method on the number 0.

What isn’t obvious is how to get hold of the number being iterated upon at each step
of the way so that you can do something with it in the looped code. What if you wanted to
print out the current iteration number? How could you develop a counting program with
these iterators? Simply, you pass the state of the iteration to the looped code as a parame-
ter, like so:

1.upto(5) { |number| puts number }

1

2

3

4

5

The easiest way to understand it is that the code between do and end is the code being
looped upon. At the start of that code, the number from the “1 up to 5” count is sent
down a chute into a variable called number. You can visualize the “chute” with the bars sur-
rounding number. This is how parameters are passed into blocks of code that don’t have

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL 41

7664 CH03.qxd 2/19/07 1:01 AM Page 41

specific names (unlike methods on classes and objects, which have names). In the pre-
ceding line of code, you ask Ruby to count from 1 to 5. It starts with 1, which is passed
into the code block and displayed with puts. This is repeated for the numbers 2 through 5,
resulting in the output shown.

Note that Ruby (and irb) doesn’t (usually, there are exceptions!) care whether you
spread your code over multiple lines or not. For example, this code works in exactly the
same way as that in the previous example:

1.upto(5) do |number|

puts number

end

Floating Point Numbers

In Chapter 2 you ran a test where you divided 10 by 3, like so:

puts 10 / 3

3

The result is 3, although the actual answer should be 3.33 recurring. The reason for
this is that, by default, Ruby considers any numbers without a floating point (also known
as a decimal point) to be an integer—a whole number. When you say 10 / 3, you’re ask-
ing Ruby to divide two integers, and Ruby gives you an integer as a result. Let’s refine the
code slightly:

puts 10.0 / 3.0

3.33333333333

Now you get the desired result. Ruby is now working with number objects of the
Float class, and returns a Float, giving you the level of precision you’d expect.

There might be situations where you don’t have control over the incoming numbers,
but you still want to have them treated as floats. Consider a situation where a user enters
two numbers to be divided, and the numbers require a precise answer:

x = 10

y = 3

puts x / y

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL42

7664 CH03.qxd 2/19/07 1:01 AM Page 42

e18cd8d5fbe3ee1b9db965b32e1af6d9

3

Both input numbers are integers, so the result is an integer, as before. Luckily, inte-
gers have a special method that converts them to floats on the fly. You’d simply rewrite
the code like this:

x = 10

y = 3

puts x.to_f / y.to_f

3.33333333333

In this situation, when you reach the division, both x and y are converted to their
floating point number equivalents using the Integer class’s to_f method. Similarly, float-
ing point numbers can be converted back in the other direction, to integers, using to_i:

puts 5.7.to_i

5

We’ll look at this technique used in other ways in the section “Converting Between
Classes,” later in this chapter.

Constants

Earlier you looked at separating data and logic with variables, concluding that there’s
rarely a need for data to be a direct part of a computer program. This is true in most
cases, but consider some values that never change—the value of pi, for example. These
nonchanging values are called constants, and can also be represented in Ruby by a vari-
able name beginning with a capital letter:

Pi = 3.141592

If you enter the preceding line into irb and then try to change the value of Pi, it’ll let
you do it, but you’ll get a warning:

Pi = 3.141592

Pi = 500

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL 43

7664 CH03.qxd 2/19/07 1:01 AM Page 43

(irb): warning: already initialized constant Pi

Ruby gives you full control over the value of constants, but the warning message
gives out a clear message. In the future, Ruby might enforce tighter control over con-
stants, so respect this style of usage and try not to reassign constants mid-program.

The eagle-eyed reader might recall that in Chapter 2 you referred to classes by names
such as Dog and Cat, beginning with capital letters. This is because once a class is defined,
it’s a constant part of the program and therefore acts as a constant too.

Text and Strings
If numbers are the most basic type of data that a computer can process, text is the next
rung on the data ladder. Text is used everywhere, especially in communicating with users.
In this section you’ll find out how to manipulate text to your heart’s content.

String Literals

We’ve used strings already, in some of our earlier code examples, like so:

puts "Hello, world!"

A string is a collection of textual characters (including digits, letters, whitespace, and
symbols) of any length. All strings in Ruby are objects of the String class, as you can dis-
cover by calling a string’s class method and printing the result:

puts "Hello, world!".class

String

When a string is embedded directly into code, using quotation marks as earlier, the
construction is called a string literal. This differs from a string whose data comes from a
remote source, such as a user typing in text, a file, or the Internet. Any text that’s pre-
embedded within a program is a string literal.

Like numbers, strings can be included in operations, added to, and compared
against. You can also assign strings to variables:

x = "Test"

y = "String"

puts "Success!" if x + y == "TestString"

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL44

7664 CH03.qxd 2/19/07 1:01 AM Page 44

Success!

There are several other ways of including a string literal within a program. For exam-
ple, you might want to include multiple lines of text. Using quotation marks is only viable
for a single line, but if you want to span multiple lines, try this:

x = %q{This is a test

of the multi

line capabilities}

In this example, the quotation marks have been replaced with %q{ and }. You don’t
have to use curly brackets, though. You can use < and >, (and), or simply two other
delimiters of your choice, such as ! and !. This code works in exactly the same way:

x = %q!This is a test

of the multi

line capabilities!

However, the important thing to remember is that if you use exclamation marks as
your delimiter, then any exclamation marks in the text you’re quoting will cause this
technique to go awry. If delimiter characters are present in your string, your string literal
will end early and Ruby will consider your remaining text erroneous. Choose your delim-
iters wisely!

Another way to build up a long string literal is by using a here document, a concept
found in many other programming languages. It works in a similar way to the previous
example, except that the delimiter can be many characters long. Here’s an example:

x = <<END_MY_STRING_PLEASE

This is the string

And a second line

END_MY_STRING_PLEASE

In this case, << marks the start of the string literal and is followed by a delimiter
of your choice. The string literal then starts from the next new line and finishes when
the delimiter is repeated again on a line on its own. Using this method means that
you’re unlikely to run into any problems with choosing a bad delimiter, as long as you’re
creative!

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL 45

7664 CH03.qxd 2/19/07 1:01 AM Page 45

String Expressions

Using the + symbol concatenates (joins together) the two strings "Test" and "String" to
produce "TestString", meaning that the following comparison is true, which then writes
"Success!" to the screen:

puts "Success!" if "Test" + "String" == "TestString"

Likewise, you can multiply strings. For example, let’s say you want to replicate a
string five times, like so:

puts "abc" * 5

abcabcabcabcabc

You can also perform “greater than” and “less than” comparisons:

puts "x" > "y"

false

puts "y" > "x"

true

■Note "x" > "y" and "y" > "x" are expressions that, by using a comparison operator, result in true or
false outcomes.

In this situation, Ruby compares the numbers that represent the characters in the
string. As was mentioned previously, characters are stored as numbers inside your com-
puter’s memory. Every letter and symbol has a value, called an ASCII value. These values

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL46

7664 CH03.qxd 2/19/07 1:01 AM Page 46

aren’t particularly important, but they do mean you can do comparisons between letters,
and even longer strings, in this way. If you’re interested to learn what value a particular
character has, find out like so:

puts ?x

120

puts ?A

65

A question mark followed by a character returns an integer matching the position
of that character in the ASCII table, a standard for representing characters as values.

You can achieve the inverse by using the String class’s chr method. For example:

puts ?x

puts 120.chr

120

x

■Note Explaining more about the ASCII character set here is beyond the scope of this book, but there are
many resources on the Web if you wish to learn more. One excellent resource is http://en.wikipedia.
org/wiki/ASCII.

Interpolation

In previous examples, you’ve printed the results of your code to the screen with the puts

method. However, your results have had little explanation. If a random user came along

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL 47

7664 CH03.qxd 2/19/07 1:01 AM Page 47

and used your code, it wouldn’t be obvious what’s going on, as they won’t be interested in
reading your source code. Therefore, it’s essential to provide user-friendly output from
your programs. You’ll go back to using numbers for this example:

x = 10

y = 20

puts "#{x} + #{y} = #{x + y}"

10 + 20 = 30

It’s kindergarten-level math, but the result highlights an interesting capability. You
can embed expressions (and even logic) directly into strings. This process is called inter-
polation. In this situation, interpolation refers to the process of inserting the result of an
expression into a string literal. The way to interpolate within a string is to place the
expression within #{ and } symbols. An even more basic example demonstrates:

puts "100 * 5 = #{100 * 5}"

100 * 5 = 500

The #{100 * 5} section interpolates the result of 100 * 5 (500) into the string at that
position, resulting in the output shown. Examine this code:

puts "#{x} + #{y} = #{x + y}"

You first interpolate the value of x, then the value of y, and then the value of x added
to y. You surround each section with the relevant mathematical symbols, and hey presto,
you get a complete mathematical equation:

10 + 20 = 30

You can interpolate other strings too:

x = "cat"

puts "The #{x} in the hat"

The cat in the hat

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL48

7664 CH03.qxd 2/19/07 1:01 AM Page 48

Or if you want to get clever:

puts "It's a #{"bad " * 5}world"

It's a bad bad bad bad bad world

In this instance you interpolate a repetition of a string, "bad ", five times. It’s certainly
a lot quicker than typing it!

Interpolation also works within strings used in assignments:

my_string = "It's a #{"bad " * 5}world"

puts my_string

It's a bad bad bad bad bad world

It’s worth noting that you could achieve the same results as the preceding results by
placing the expressions outside the strings, without using interpolation. For example:

x = 10

y = 20

puts x.to_s + " + " + y.to_s + " = " + (x + y).to_s

puts "#{x} + #{y} = #{x + y}"

The two puts lines result in the same output. The first uses string concatenation (+) to
join several different strings together. The numbers in x and y are converted to strings
with their to_s method. However, the second puts line uses interpolation, which doesn’t
require the numbers to be converted to strings explicitly.

String Methods

We’ve looked at using strings in expressions, but you can do a lot more with strings than
adding them together or multiplying them. As you experimented in Chapter 2, you can
use a number of different methods on a string. Table 3-3 provides a recap of the string
methods you looked at in Chapter 2.

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL 49

7664 CH03.qxd 2/19/07 1:01 AM Page 49

Table 3-3. The Results of Using Different Methods on the String "Test"

Expression Output

"Test" + "Test" TestTest

"Test".capitalize Test

"Test".downcase test

"Test".chop Tes

"Test".hash -98625764

"Test".next Tesu

"Test".reverse tseT

"Test".sum 416

"Test".swapcase tEST

"Test".upcase TEST

"Test".upcase.reverse TSET

"Test".upcase.reverse.next TSEU

In each example in Table 3-3, you’re using a method that the string offers, whether it’s
concatenation, conversion to upper case, reversal, or merely incrementing the last letter.
You can chain methods together, as in the final example of the table. First, you create the
"Test" string literal, then you convert it to upper case, returning TEST, then you reverse
that, returning TSET, and then you increment the last letter of that, returning TSEU.

Another method you used in Chapter 2 was length, like so:

puts "This is a test".length

14

These methods are useful, but they don’t let you do anything particularly impressive
with your strings. Let’s move on to playing directly with the text itself.

Regular Expressions and String Manipulation

When working with strings at an advanced level, it becomes necessary to learn about
regular expressions. A regular expression is, essentially, a search query, and not to be con-
fused with the expressions we’ve discussed already in this chapter. If you type ruby into
your favorite search engine, you’d expect information about Ruby to appear. Likewise, if
your regular expression is ruby and you run that query against, say, a long string, you’d

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL50

7664 CH03.qxd 2/19/07 1:01 AM Page 50

expect any matches to be returned. A regular expression, therefore, is a string that
describes a pattern for matching elements in other strings.

■Note This section provides only a brief introduction to regular expressions. Regular expressions are a
major branch of computer science, and many books and Web sites are dedicated to their use. Ruby supports
the majority of standard regular expression syntax, so non–Ruby-specific knowledge about regular expres-
sions obtained from elsewhere can still prove useful in Ruby.

Substitutions

One thing you’ll often want to do is substitute something within a string for something
else. Take this example:

puts "foobar".sub('bar', 'foo')

foofoo

In this example you use a method on the string called sub, which substitutes the first
instance of the first parameter 'bar' with the second parameter 'foo', resulting in foofoo.
sub only does one substitution at a time, on the first instance of the text to match,
whereas gsub does multiple substitutions at once, as this example demonstrates:

puts "this is a test".gsub('i', '')

ths s a test

Here you’ve substituted all occurrences of the letter 'i' with an empty string. What
about more complex patterns? Simply matching the letter 'i' is not a true example of a
regular expression. For example, let’s say you want to replace the first two characters of
a string with 'Hello':

x = "This is a test"

puts x.sub(/^../, 'Hello')

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL 51

7664 CH03.qxd 2/19/07 1:01 AM Page 51

Hellois is a test

In this case, you make a single substitution with sub. The first parameter given to sub
isn’t a string but a regular expression—forward slashes are used to start and end a regular
expression. Within the regular expression is ^... The ^ is an anchor, meaning the regular
expression will match from the beginning of any lines within the string. The two periods
each represent “any character.” In all, /^../ means “any two characters immediately after
the start of a line.” Therefore, Th of "This is a test" gets replaced with Hello.

Likewise, if you want to change the last two letters, you can use a different anchor:

x = "This is a test"

puts x.sub(/..$/, 'Hello')

This is a teHello

This time the regular expression matches the two characters that are anchored to the
end of any lines within the string.

■Note If you want to anchor to the absolute start or end of a string, you can use \A and \Z respectively,
whereas ^ and $ anchor to the starts and ends of lines.

Iteration with a Regular Expression

Previously, you used iterators to move through sets of numbers, counting from 1 to 10 for
example. What if you want to iterate through a string and have access to each section of it
separately? scan is the iterator method you require:

"xyz".scan(/./) { |letter| puts letter }

x

y

z

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL52

7664 CH03.qxd 2/19/07 1:01 AM Page 52

scan lives up to its name. It scans through the string looking for anything that
matches the regular expression passed to it. In this case, you’ve supplied a regular expres-
sion that looks for a single character at a time. That’s why you get x, y, and z separately in
the output. Each letter is fed to the block, assigned to letter, and printed to the screen.
Try this more elaborate example:

"This is a test".scan(/../) { |x| puts x }

Th

is

i

s

a

te

st

This time you’re scanning for two characters at a time. Easy! Scanning for all charac-
ters results in some weird output, though, with all the spaces mixed in. Let’s adjust our
regular expression to match only letters and digits, like so:

"This is a test".scan(/\w\w/) { |x| puts x }

Th

is

is

te

st

Within regular expressions there are special characters that are denoted with a back-
slash, and they have special meanings. \w means “any alphanumeric character or an
underscore.” There are many others, as illustrated in Table 3-4.

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL 53

7664 CH03.qxd 2/19/07 1:01 AM Page 53

Table 3-4. Basic Special Characters and Symbols Within Regular Expressions

Character Meaning

^ Anchor for the beginning of a line

$ Anchor for the end of a line

\A Anchor for the start of a string

\Z Anchor for the end of a string

. Any character

\w Any letter, digit, or underscore

\W Anything that \w doesn’t match

\d Any digit

\D Anything that \D doesn’t match (non-digits)

\s Whitespace (spaces, tabs, newlines, and so on)

\S Non-whitespace (any visible character)

Using the knowledge from Table 3-4, you can easily extract numbers from a string:

"The car costs $1000 and the cat costs $10".scan(/\d+/) do |x|

puts x

end

1000

10

You’ve just gotten Ruby to extract meaning from some arbitrary English text! The scan
method was used as before, but you’ve given it a regular expression that uses \d to match
any digit, and the + that follows \d makes \d match as many digits in a row as possible.
This means it matches both 1000 and 10, rather than just each individual digit at a time.
To prove it, try this:

"The car costs $1000 and the cat costs $10".scan(/\d/) do |x|

puts x

end

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL54

7664 CH03.qxd 2/19/07 1:01 AM Page 54

1

0

0

0

1

0

So + after a character in a regular expression means match one or more of that type of
character. There are other types of modifiers, and these are shown in Table 3-5.

Table 3-5. Regular Expression Character and Sub-Expression Modifiers

Modifier Description

* Match zero or more occurrences of the preceding character, and match
as many as possible.

+ Match one or more occurrences of the preceding character, and match
as many as possible.

*? Match zero or more occurrences of the preceding character, and match
as few as possible.

+? Match one or more occurrences of the preceding character, and match
as few as possible.

? Match either one or none of the preceding character.

{x} Match x occurrences of the preceding character.

{x,y} Match at least x occurrences and at most y occurrences.

The last important aspect of regular expressions you need to understand at this stage
is character classes. These allow you to match against a specific set of characters. For
example, you can scan through all the vowels in a string:

"This is a test".scan(/[aeiou]/) { |x| puts x }

i

i

a

e

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL 55

7664 CH03.qxd 2/19/07 1:01 AM Page 55

[aeiou] means “match any of a, e, i, o, or u.” You can also specify ranges of characters
inside the square brackets, like so:

"This is a test".scan(/[a-m]/) { |x| puts x }

h

i

i

a

e

This scan matches all lowercase letters between a and m.
Regular expressions can be complex and confusing, and entire books larger than this

one have been dedicated to them. Most coders only need to understand the basics, as the
more-advanced techniques will become apparent with time, but they’re a powerful tool
when you experiment with, and master, them.

You’ll be using, and expanding upon, all the techniques covered in this section in
code examples throughout the rest of the book.

Matching

Making substitutions and extracting certain text from strings is useful, but sometimes
you merely want to check whether a certain string matches against the pattern of your
choice. You might want to establish quickly if a string contains any vowels:

puts "String has vowels" if "This is a test" =~ /[aeiou]/

In this example, =~ is another form of operator, a matching operator. If the string
matches the regular expression following the operator, then the expression is true. You
can, of course, do the opposite:

puts "String contains no digits" unless "This is a test" =~ /[0-9]/

This time you’re saying that unless the range of digits from 0 to 9 matches against the
test string, tell the user that there are no digits in the string.

It’s also possible to use a method called match, provided by the String class. Whereas
=~ returns true or false depending on whether the regular expression matches the string,
match provides a lot more power. Here’s a basic example:

puts "String has vowels" if "This is a test".match(/[aeiou]/)

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL56

7664 CH03.qxd 2/19/07 1:01 AM Page 56

It looks almost the same as the earlier example. However, because match doesn’t
require a regular expression as an argument, it converts any string supplied into a regular
expression, so this works in the same way:

puts "String has vowels" if "This is a test".match("[aeiou]")

This functionality is useful if the regular expression is supplied by a user, or loaded in
from a file or other external source rather than hard coded.

In regular expressions, if you surround a section of the expression with parentheses
(and), the data matched by that section of the regular expression is made available
separately from the rest. match lets you access this data:

x = "This is a test".match(/(\w+) (\w+)/)

puts x[0]

puts x[1]

puts x[2]

This is

This

is

match returns a MatchData object that can be accessed like an array. The first element
contains the data matched by the entire regular expression. However, each successive
element contains that which was matched by each referenced section of the regular
expression. In this example, the first (\w+) matched This and the second (\w+) matched
is.

■Note Matching can be more complex than this, but I’ll be covering more-advanced uses in the next
chapter when you put together your first full Ruby program.

Arrays and Lists
So far in this chapter, you’ve created single instances of number and string objects and
manipulated them. After a while, it becomes necessary to create collections of these
objects and to work with them as a list. In Ruby, you can represent ordered collections
of objects using arrays.

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL 57

7664 CH03.qxd 2/19/07 1:01 AM Page 57

Basic Arrays

Here’s a basic array:

x = [1, 2, 3, 4]

This array has four elements. Each element is an integer, and is separated by com-
mas from its neighboring elements. All the elements are contained within square
brackets.

Elements can be accessed by their index (their position within the array). To access
a particular element, an array, or a variable containing an array, is followed by the index
contained within square brackets. This is called an element reference. For example:

x = [1, 2, 3, 4]

puts x[2]

3

As with most programming languages, the indexing for Ruby’s arrays starts from 0, so
the first element of the array is element 0, and the second element of the array is element
1, and so on. In our example, this means x[2] is addressing what we’d call the third ele-
ment of the array, which in this case is an object representing the number 3. To change an
element, you can simply assign it a new value or manipulate it as you’ve manipulated
numbers and strings earlier in this chapter:

x[2] += 1

puts x[2]

4

Or:

x[2] = "Fish" * 3

puts x[2]

FishFishFish

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL58

7664 CH03.qxd 2/19/07 1:02 AM Page 58

Arrays don’t need to be set up with predefined entries or have elements allocated
manually. You can create an empty array like so:

x = []

The array is empty, and trying to address, say, x[5] results in nothing being returned.
You can add things to the end of the array by pushing data into it, like so:

x = []

x << "Word"

After this, the array contains a single element: a string saying "Word". With arrays,
<< is the operator for pushing an item onto the end of an array. You can also use the push
method, which is equivalent.

You can also remove entries from an array one by one. Traditionally, arrays act as a
“first in, first out” system where items can be pushed onto the end but also popped from
the end (popping is the process of retrieving items from the end of the array and remov-
ing them at the same time).

x = []

x << "Word"

x << "Play"

x << "Fun"

puts x.pop

puts x.pop

puts x.length

Fun

Play

1

You push "Word", "Play", and "Fun" into the array held in x, and then display the first
“popped” element on screen. Elements are popped from the end of the array, so Fun
comes out first. Next comes Play. For good measure, you then print out the length of the
array at that point, using the aptly named length method (size works too and gives
exactly the same result), which is 1 because "Word" is still present in the array.

Another useful feature is that if an array is full of strings, you can join all the elements
together into one big string by calling the join method on the array:

x = ["Word", "Play", "Fun"]

puts x.join

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL 59

7664 CH03.qxd 2/19/07 1:02 AM Page 59

WordPlayFun

The join method can take an optional parameter that’s placed between each element
in the resulting string:

x = ["Word", "Play", "Fun"]

puts x.join(', ')

Word, Play, Fun

This time you join the array elements together, but between each set of elements you
place a comma and a space. This results in cleaner output.

Splitting Strings into Arrays

In the section relating to strings, you used scan to iterate through the contents of the
string looking for characters that matched patterns you expressed as regular expressions.
With scan you used a block of code that accepted each set of characters and displayed
them on the screen. However, if you use scan without a block of code, it returns an array
of all the matching parts of the string, like so:

puts "This is a test".scan(/\w/).join(',')

T,h,i,s,i,s,a,t,e,s,t

First you define a string literal, then you scan over it for alphanumeric characters
(using /\w/), and finally you join the elements of the returned array together with com-
mas.

What if you don’t want to scan for particular characters, but instead want to split a
string into multiple pieces? You can use the split method, and tell it to split a string into
an array of strings on the periods, like so:

puts "Short sentence. Another. No more.".split(/\./).inspect

["Short sentence", " Another", " No more"]

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL60

7664 CH03.qxd 2/19/07 1:02 AM Page 60

There are a couple of important points here. First, if you’d used . in the regular
expression rather than \., you’d be splitting on every character rather than on full stops
because . represents “any character” in a regular expression. Therefore, you have to
escape it by prefixing it with a backslash (escaping is the process of specifically denoting
a character to make its meaning clear). Second, rather than joining and printing out the
sentences, you’re using the inspect method to get a tidier result.

The inspect method is common to almost all built-in classes in Ruby and it gives you
a textual representation of the object. For example, the preceding output shows the result
array in the same way that you might create an array yourself. inspect is incredibly useful
when experimenting and debugging!

split is also happy splitting on newlines, or multiple characters at once, to get a
cleaner result:

puts "Words with lots of spaces".split(/\s+/).inspect

["Words", "with", "lots", "of", "spaces"]

With Ruby and some regular expressions, you’re never far from solving any text-
processing problem!

Array Iteration

Iterating through arrays is simple and uses the each method. The each method goes
through each element of the array and passes it as a parameter to the code block you
supply. For example:

[1, "test", 2, 3, 4].each { |element| puts element.to_s + "X" }

1X

testX

2X

3X

4X

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL 61

7664 CH03.qxd 2/19/07 1:02 AM Page 61

Although each iterates through elements of an array, you can also convert an array on
the fly using the collect method:

[1, 2, 3, 4].collect { |element| element * 2 }

[2, 4, 6, 8]

collect iterates through an array element by element, and assigns to that element
the result of any expression within the code block. In this example you multiply the value
of the element by 2.

Programmers who have come from less dynamic and possibly non–object-oriented
languages might see these techniques as being quite modern. It’s possible to do things
“the old-fashioned way” with Ruby if required:

a = [1, "test", 2, 3, 4]

i = 0

while (i < a.length)

puts a[i].to_s + "X"

i += 1

end

This works in a similar way to the each example from earlier, but loops through the
array in a way more familiar to traditional programmers (from languages such as C or
BASIC). However, it should be immediately apparent to anyone why iterators, code
blocks, and methods such as each and collect are preferable with Ruby, as they make
the code significantly easier to read and understand.

Other Array Methods

Arrays have a lot of interesting methods, some of which I’ll cover in this section.

Array Addition and Concatenation

If you have two arrays, you can quickly combine their results into one:

x = [1, 2, 3]

y = ["a", "b", "c"]

z = x + y

puts z.inspect

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL62

7664 CH03.qxd 2/19/07 1:02 AM Page 62

[1, 2, 3, "a", "b", "c"]

Array Subtraction and Difference

You can also compare two arrays by subtracting one against the other. This technique
removes any elements from the main array that are in both arrays:

x = [1, 2, 3, 4, 5]

y = [1, 2, 3]

z = x - y

puts z.inspect

[4, 5]

Check for an Empty Array

If you’re about to iterate over an array, you might want to check if it has any items yet. You
could do this by checking if array.size or array.length is larger than 0, but a more popu-
lar shorthand is to use empty?:

x = []

puts "x is empty" if x.empty?

x is empty

Check an Array for a Certain Item

The include? method returns true if the supplied parameter is in the array, and false oth-
erwise:

x = [1, 2, 3]

puts x.include?("x")

puts x.include?(3)

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL 63

7664 CH03.qxd 2/19/07 1:02 AM Page 63

false

true

Access the First and Last Elements of the Array

Accessing the first and last elements of an array is easy with the first and last methods:

x = [1, 2, 3]

puts x.first

puts x.last

1

3

If you pass a numeric parameter to first or last, you’ll get that number of items
from the start or the end of the array:

x = [1, 2, 3]

puts x.first(2).join("-")

1-2

Reverse the Order of the Array’s Elements

Like a string, an array can be reversed:

x = [1, 2, 3]

puts x.reverse.inspect

[3, 2, 1]

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL64

7664 CH03.qxd 2/19/07 1:02 AM Page 64

Hashes
Arrays are collections of objects, and so are hashes. However, hashes have a different
storage format and way to define each object within the collection. Rather than having
an assigned position in a list, objects within a hash are given a key that points to them.
It’s more like a dictionary than a list, as there’s no guaranteed order, but just simple links
between keys and values. Here’s a basic hash with two entries:

dictionary = { 'cat' => 'feline animal', 'dog' => 'canine animal' }

The variable storing the hash is dictionary, and it contains two entries, as you can
prove:

puts dictionary.size

2

One entry has a key of cat and a value of feline animal, while the other has a key of
dog and a value of canine animal. Like arrays, you use square brackets to reference the
element you wish to retrieve. For example:

puts dictionary['cat']

feline animal

As you can see, a hash can be viewed as an array that has names for elements instead
of position numbers. You can even change values in the same way as an array:

dictionary['cat'] = "fluffy animal"

puts dictionary['cat']

fluffy animal

■Note It won’t be immediately useful to you, but it’s worth noting that both keys and values can be objects
of any type. Therefore, it’s possible to use an array (or even another hash) as a key. This might come in use-
ful when you’re dealing with more complex data structures in future.

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL 65

7664 CH03.qxd 2/19/07 1:02 AM Page 65

Basic Hash Methods

As with arrays, hashes have many useful methods that you’ll look at in this section.

Iterating Through Hash Elements

With arrays, you can use the each method to iterate through each element of the array.
You can do the same with hashes. However, as hashes use keys for each element, there’s
no guaranteed order of response:

x = { "a" => 1, "b" => 2 }

x.each { |key, value| puts "#{key} equals #{value}" }

a equals 1

b equals 2

The each iterator method for a hash passes two parameters into the code block: first,
a key, and second, the value associated with that key. In this example, you assign them to
variables called key and value and use string interpolation to display their contents on
screen.

Retrieving Keys

Sometimes you might not be interested in the values within a hash, but want to get a feel
for what the hash contains. A great way to do this is to look at the keys. Ruby gives you an
easy way to see the keys in any hash immediately, using the keys method:

x = { "a" => 1, "b" => 2, "c" => 3 }

puts x.keys.inspect

["a", "b", "c"]

keys returns an array of all the keys in the hash, and if you’re ever in the mood, values
will return an array of all the values in the hash too. Generally, however, you’ll look up
values based on a key.

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL66

7664 CH03.qxd 2/19/07 1:02 AM Page 66

Deleting Hash Elements

Deleting hash elements is easy with the delete method. All you do is pass in a key as a
parameter and the element is removed:

x = { "a" => 1, "b" => 2 }

x.delete("a")

puts x.inspect

{"b"=>2}

Deleting Hash Elements Conditionally

Let’s say you want to delete any hash elements whose value is below a certain figure:

x = { "a" => 100, "b" => 20 }

x.delete_if { |key, value| value < 25 }

puts x.inspect

{"a"=>100}

Hashes Within Hashes

It’s possible to have hashes (or, indeed, any sort of object) within hashes, and even arrays
within hashes, within hashes! Because everything is an object and hashes and arrays can
contain any other objects, there exists the ability to create giant tree structures with
hashes and arrays. Here’s a demonstration:

people = {

'fred' => {

'name' => 'Fred Elliott',

'age' => 63,

'gender' => 'male',

'favorite painters' => ['Monet', 'Constable', 'Da Vinci']

},

'janet' => {

'name' => 'Janet S Porter',

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL 67

7664 CH03.qxd 2/19/07 1:02 AM Page 67

'age' => 55,

'gender' => 'female'

}

}

puts people['fred']['age']

puts people['janet']['gender']

puts people['janet'].inspect

63

female

{"name"=>"Janet S Porter", "gender"=>"female", "age"=>55}

Although the structure of the hash looks a little confusing at first, it becomes reason-
ably easy when you break it down into sections. The 'fred' and 'janet' sections are
simple hashes of their own, but they’re wrapped up into another giant hash assigned to
people. In the code that queries the giant hash, you simply chain the lookups on top of
each other, as with puts people['fred']['age']. First it gets people['fred'], which returns
Fred’s hash, and then you request ['age'] from that, yielding the result of 63.

Even the array embedded within Fred’s hash is easy to access:

puts people['fred']['favorite painters'].length

puts people['fred']['favorite painters'].join(", ")

3

Monet, Constable, Da Vinci

These techniques are used more, and explained in more depth, in following chapters.

Flow Control
In this chapter you’ve used comparisons, together with if and unless, to perform differ-
ent operations based upon the circumstances. if and unless work well on single lines of
code, but when combined with large sections of code become even more powerful. In
this section you’ll be looking at how Ruby lets you control the flow of your programs with
these and other constructs.

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL68

7664 CH03.qxd 2/19/07 1:02 AM Page 68

if and unless

The first use of if within this chapter used this demonstration:

age = 10

puts "You're too young to use this system" if age < 18

If the value of age is under 18, the string is printed to the screen. The following code is
equivalent:

age = 10

if age < 18

puts "You're too young to use this system"

end

It looks similar, but the code to be executed if the expression is true is contained
between the if expression and end, instead of the if expression being added onto the end
of a single line of code. This construction makes it possible to put any number of lines of
code in between the if statement and the end line:

age = 10

if age < 18

puts "You're too young to use this system"

puts "So we're going to exit your program now"

exit

end

It’s worth noting that unless can work in exactly the same way because unless is just
the opposite of if:

age = 10

unless age >= 18

puts "You're too young to use this system"

puts "So we're going to exit your program now"

exit

end

It’s possible to nest logic too, as in this example:

age = 19

if age < 21

puts "You can't drink in most of the United States"

if age >= 18

puts "But you can in the United Kingdom!"

end

end

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL 69

7664 CH03.qxd 2/19/07 1:02 AM Page 69

if and unless also supply the else condition, used to delimit lines of code that you
want to be executed if the main expression is false:

age = 10

if age < 18

puts "You're too young to use this system"

else

puts "You can use this system"

end

?:, The Ternary Operator

The ternary operator makes it possible for an expression to contain a mini if/else state-
ment. It’s construction that’s entirely optional to use, and some developers are oblivious
to its existence. However, because it can be useful to produce more compact code, it’s
worth learning early. Let’s dive in with an example:

age = 10

type = age < 18 ? "child" : "adult"

puts "You are a " + type

The second line contains the ternary operator. It starts by assigning the result of an
expression to the variable, type. The expression is age < 18 ? "child" : "adult". The
structure is as follows:

<condition> ? <result if condition is true> : <result if condition is false>

In our example, age < 18 returns as true, so the first result, "child", is returned and
assigned to type. However, if age < 18 were to be false, "adult" would be returned.

Consider an alternative:

age = 10

type = 'child' if age < 18

type = 'adult' unless age < 18

puts "You are a " + type

The double comparison makes it harder to read. Another alternative is to use the
multiline if/else option:

age = 10

if age < 18

type = 'child'

else

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL70

7664 CH03.qxd 2/19/07 1:02 AM Page 70

type = 'adult'

end

puts "You are a " + type

The ternary operator shows its immediate benefit in its conciseness, and as it can
be used to build expressions on a single line, you can use it easily in calls to methods
or within other expressions where if statements would be invalid. Consider this even
simpler version of the first example from this section:

age = 10

puts "You are a " + (age < 18 ? "child" : "adult")

elsif and case

Sometimes it’s desirable to make several comparisons with the same variable at the same
time. You could do this with the if statement, as covered previously:

fruit = "orange"

color = "orange" if fruit == "orange"

color = "green" if fruit == "apple"

color = "yellow" if fruit == "banana"

If you want to use else to assign something different if fruit is not equal to either
orange, apple, or banana, it will quickly get messy, as you’d need to create an if block to
check for the presence of any of these words, and then perform the same comparisons
as earlier. An alternative is to use elsif, meaning “else if”:

fruit = "orange"

if fruit == "orange"

color = "orange"

elsif fruit == "apple"

color = "green"

elsif fruit == "banana"

color = "yellow"

else

color = "unknown"

end

elsif blocks act somewhat like else blocks, except that you can specify a whole new
comparison expression to be performed, and if none of those match, you can specify a
regular else block to be executed.

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL 71

7664 CH03.qxd 2/19/07 1:02 AM Page 71

A variant of this technique is to use a case block. Our preceding example, with a case
block, becomes the following:

fruit = "orange"

case fruit

when "orange"

color = "orange"

when "apple"

color = "green"

when "banana"

color = "yellow"

else

color = "unknown"

end

This code is similar to the if block, except that the syntax is a lot cleaner. A case block
works by processing an expression first, and then by finding a contained when block that
matches the result of that expression. If no matching when block is found, then the else
block within the case block is executed instead.

case has another trick up its sleeve. As all Ruby expressions return a result, you can
make the previous example even shorter:

fruit = "orange"

color = case fruit

when "orange"

"orange"

when "apple"

"green"

when "banana"

"yellow"

else

"unknown"

end

In this example, you use a case block, but you assign the result of whichever inner
block is executed directly to color.

while and until

In previous sections, you’ve performed loops using iterator methods, like so:

1.upto(5) { |number| puts number }

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL72

7664 CH03.qxd 2/19/07 1:02 AM Page 72

1

2

3

4

5

However, it’s possible to loop code in other ways. while and until allow you to loop
code based on the result of a comparison made on each loop:

x = 1

while x < 100

puts x

x = x * 2

end

1

2

4

8

16

32

64

In this example, you have a while block that denotes a section of code that is to be
repeated over and over while the expression x < 100 is satisfied. Therefore, x is doubled
loop after loop and printed to the screen. Once x is 100 or over, the loop ends.

until provides the opposite functionality, looping until a certain condition is met:

x = 1

until x > 99

puts x

x = x * 2

end

It’s also possible to use while and until in a single line setting, as with if and unless:

i = 1

i = i * 2 until i > 1000

puts i

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL 73

7664 CH03.qxd 2/19/07 1:02 AM Page 73

1024

The value of i is doubled over and over until the result is over 1,000, at which point
the loop ends.

Code Blocks

Code blocks have been used in several code examples in this chapter. For example:

x = [1, 2, 3]

x.each { |y| puts y }

1

2

3

The each method accepts a single code block as a parameter. The code block is
defined within the { and } symbols, or within do and end delimiters:

x = [1, 2, 3]

x.each do |y|

puts y

end

The code between { and } or do and end is a code block, essentially an anonymous,
nameless method or function. This code is passed to the each method that then runs the
code block for each element of the array.

You can write methods of your own to handle code blocks. For example:

def each_vowel(&code_block)

%w{a e i o u}.each { |vowel| code_block.call(vowel) }

end

each_vowel { |vowel| puts vowel }

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL74

7664 CH03.qxd 2/19/07 1:02 AM Page 74

a

e

i

o

u

each_vowel accepts a code block, as designated by the ampersand (&) before the vari-
able name code_block in the method definition. It then iterates over each vowel in the
literal array %w{a e i o u} and uses the call method on code_block to execute the code
block once for each vowel, passing in the vowel variable as a parameter each time.

■Note Code blocks passed in this way result in objects that have many methods of their own, such as
call. Remember, almost everything in Ruby is an object!

An alternate technique is to use the yield method, which automatically detects any
passed code block and passes control to it:

def each_vowel

%w{a e i o u}.each { |vowel| yield vowel }

end

each_vowel { |vowel| puts vowel }

This example is functionally equivalent to the last, although it’s less obvious what it
does because you see no code block being accepted in the function definition. Which
technique you choose to use is up to you.

■Note Only one code block can be passed at any one time. It’s not possible to accept two or more code
blocks as parameters to a method. However, code blocks may accept none, one, or more parameters
themselves.

It’s also possible to store code blocks within variables, using the lambda method:

print_parameter_to_screen = lambda { |x| puts x }

print_parameter_to_screen.call(100)

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL 75

7664 CH03.qxd 2/19/07 1:02 AM Page 75

100

As with accepting a code block into a method, you use the lambda object’s call
method to execute it, as well as to pass any parameters in.

■Note The term lambda is used due to its popularity elsewhere and in other programming languages. You
can certainly continue to call them code blocks, and they are sometimes referred to as Procs.

Other Useful Building Blocks
So far in this chapter, we’ve covered the primary built-in data classes of numbers, strings,
arrays, and hashes. These few types of objects can get you a long way and will be used in
all your programs. You’ll be looking at objects more in depth in Chapter 6, but before you
get that far there are a few other important points you need to look at first.

Dates and Times

A concept that’s useful to represent within many computer programs is time, in the form
of dates and times. Ruby provides a class called Time to handle these concepts.

Internally, Time stores times as a number of microseconds since the Unix time epoch:
January 1st, 1970 00:00:00 Greenwich Mean Time (GMT)/Coordinated Universal Time
(UTC). This makes it easy to compare times using the standard comparison operators,
such as < and >.

Let’s look at how to use the Time class:

puts Time.now

Tue Mar 27 00:00:00 +0100 2007

Time.now creates an instance of class Time that’s set to the current time. However,
because you’re trying to print it to the screen, it’s converted into the preceding string.

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL76

7664 CH03.qxd 2/19/07 1:02 AM Page 76

You can manipulate time objects by adding and subtracting numbers of seconds to
them. For example:

puts Time.now

puts Time.now - 10

puts Time.now + 86400

Tue Mar 27 00:00:00 +0100 2007

Tue Mar 26 23:59:50 +0100 2007

Tue Mar 28 00:00:00 +0100 2007

In the first example you print the current time, and then the current time minus
10 seconds, and then the current time with 86,400 seconds (exactly one day) added on.
Because times are so easy to manipulate, some developers extend the Fixnum class with
some helper methods to make manipulating dates easier:

class Fixnum

def seconds

self

end

def minutes

self * 60

end

def hours

self * 60 * 60

end

def days

self * 60 * 60 * 24

end

end

puts Time.now

puts Time.now + 10.minutes

puts Time.now + 16.hours

puts Time.now - 7.days

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL 77

7664 CH03.qxd 2/19/07 1:02 AM Page 77

Tue Mar 27 00:00:00 +0100 2007

Tue Mar 27 00:10:00 +0100 2007

Tue Mar 27 16:00:00 +0100 2007

Mon Mar 19 23:00:00 +0000 2007

Don’t worry if this code seems confusing and unfamiliar, as we’ll be covering this
type of technique more in the following chapters. Do note, however, the style used in the
final puts statements. It’s easy to manipulate dates with these helpers!

The Time class also allows you to create Time objects based on arbitrary dates:

Time.local(year, month, day, hour, min, sec, msec)

The preceding code creates a Time object based on the current (local) time zone. All
arguments from month onward are optional and take default values of 1 or 0. You can spec-
ify months numerically (between 1 and 12), or as three-letter abbreviations of their
English names.

Time.gm(year, month, day, hour, min, sec, msec)

The preceding code creates a Time object based on GMT/UTC. Argument require-
ments are the same as for Time.local.

Time.utc(year, month, day, hour, min, sec, msec)

The preceding code is identical to Time.gm, although some might prefer this method’s
name.

You can also convert Time objects to an integer representing the number of seconds
since the Unix time epoch:

Time.gm(2007, 05).to_i

1177977600

Likewise, you can convert epoch times back into Time objects. This technique can be
useful if you want to store times and dates in a file or a format where only a single integer
is needed rather than an entire Time object:

epoch_time = Time.gm(2007, 5).to_i

t = Time.at(epoch_time)

puts t.year, t.month, t.day

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL78

7664 CH03.qxd 2/19/07 1:02 AM Page 78

2007

5

1

As well as demonstrating the conversions of times between Time objects and epoch
times, this code shows that Time objects also have methods that can be used to retrieve
certain sections of a date/time. A list of these methods is shown in Table 3-6.

Table 3-6. Time Object Methods Used to Access Date/Time Attributes

Method What the Method Returns

hour A number representing the hour in 24-hour format (21 for 9 p.m., for
example).

min The number of minutes past the hour.

sec The number of seconds past the minute.

usec The number of microseconds past the second (there are 1,000,000
microseconds per second).

day The number of the day in the month.

mday Synonym for the day method, considered to be “month” day.

wday The number of the day in terms of the week (Sunday is 0, Saturday is 6).

yday The number of the day in terms of the year.

month The number of the month of the date (11 for November, for example).

year The year associated with the date.

zone Returns the name of the time zone associated with the time.

utc? Returns true or false depending on if the time/date is in the
UTC/GMT time zone or not.

gmt? Synonym for the utc? method for those who prefer to use the term
GMT.

Note that these methods are for retrieving attributes from a date or time, and cannot
be used to set them. If you want to change elements of a date or time, you’ll either need
to add or subtract seconds, or construct a new Time object using Time.gm or Time.local.

■Note In Chapter 16 you’ll look at a Ruby library called Chronic that lets you specify dates and times in a
natural, English language style and have them converted to valid Time objects.

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL 79

7664 CH03.qxd 2/19/07 1:02 AM Page 79

Large Numbers

A common story that’s told about the invention of the game of chess revolves around
large numbers. A powerful king demanded a game he could play in his spare time, and a
poor mathematician devised the game of chess for him. The king loved the game and
offered the mathematician anything he would like as a reward. The mathematician said
that he’d like rice, distributed on his chessboard. He wanted one grain on the first square,
two on the second square, four on the third square, and so on, double the amount from
square to square, until the board was full. The king thought the mathematician to be a
fool, as he saw how few grains it took to fill the first row of the board.

Let’s create a simulation of this situation with Ruby using an iterator and some inter-
polation:

rice_on_square = 1

64.times do |square|

puts "On square #{square + 1} are #{rice_on_square} grain(s)"

rice_on_square *= 2

end

You get the following results:

On square 1 are 1 grain(s)

On square 2 are 2 grain(s)

On square 3 are 4 grain(s)

On square 4 are 8 grain(s)

On square 5 are 16 grain(s)

On square 6 are 32 grain(s)

On square 7 are 64 grain(s)

On square 8 are 128 grain(s)

[Results for squares 9 through 61 trimmed for brevity..]

On square 62 are 2305843009213693952 grain(s)

On square 63 are 4611686018427387904 grain(s)

On square 64 are 9223372036854775808 grain(s)

By square 64, you’re up to placing many trillions of grains of rice on each square! The
story ends with the king realizing his position and unable to fulfill his promise. However,
it proves that Ruby is able to deal with extremely large numbers, and unlike many other
programming languages, there are no inconvenient limits.

Other languages often have limitations on the size of numbers that can be repre-
sented. Commonly this is 32 binary bits, resulting in a limit on values to roughly 4.2
billion in languages that enforce 32-bit integers. Most operating systems and computer
architectures also have similar limitations. Ruby, on the other hand, seamlessly converts

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL80

7664 CH03.qxd 2/19/07 1:02 AM Page 80

between numbers that the computer can handle natively (that is, with ease) and those
that require more work. It does this with different classes, one called Fixnum that repre-
sents easily managed smaller numbers, and another, aptly called Bignum, that represents
“big” numbers Ruby needs to manage internally. On most systems, the boundary is the
number 1,073,741,823—you can find it by experimenting in irb:

puts 1073741823.class

Fixnum

puts 1073741824.class

Bignum

If you don’t get exactly the same results, don’t worry. Ruby will handle Bignums and
Fixnums for you, and you can perform arithmetic and other operations without any prob-
lems. Results might vary depending on your system’s architecture, but as these changes
are handled entirely by Ruby, there’s no need to worry.

Ranges

Sometimes it’s useful to be able to store the concept of a list, instead of its actual con-
tents. For example, if you want to represent all the letters between A and Z, you could
begin to create an array, like so:

x = ['A', 'B', 'C', 'D', 'E' .. and so on..]

It’d be nice, though, merely to store the concept of “everything between A and Z.”
With a range, you can do that. A range is represented in this way:

('A'..'Z')

On its own, it’s not much use, but the Range class offers a simple way to convert a
range into an array with to_a. This one-line example demonstrates:

('A'..'Z').to_a.each { |letter| print letter }

It’s compact, but it does the job. It converts the range 'A' to 'Z' into an array with 26
elements, each one containing a letter of the alphabet. It then iterates over each element

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL 81

7664 CH03.qxd 2/19/07 1:02 AM Page 81

using each, which you first used in the previous section on arrays, and passes the value
into letter, which is then printed to the screen.

■Note As you’ve used print, rather than puts, the letters are printed one after another on the same line,
whereas puts starts a new line every time it’s used.

It might also be useful to test if something is included in the set of objects specified
by the range. For example, with your ('A'..'Z') range, you can check to see if R is within
the range, using the include method, like so:

print "R is within A to Z!" if ('A'..'Z').include?('R')

R is within A to Z!

Being a lowercase letter, however, “r” is not:

print "R is within A to Z!" if ('A'..'Z').include?('r')

=> nil

You can also use ranges as array indices to select multiple elements at the same time:

a = [2, 4, 6, 8, 10, 12]

puts a[1..3].inspect

[4, 6, 8]

Similarly, you can use them to set multiple elements at the same time:

a[1..3] = ["a", "b", "c"]

puts a.inspect

[2, "a", "b", "c", 10, 12]

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL82

7664 CH03.qxd 2/19/07 1:02 AM Page 82

You can use ranges with objects belonging to many different classes, including ones
you create yourself.

Symbols

Among mainstream languages, symbols are reasonably unique to Ruby (although LISP
and Erlang do have similar concepts). They’re powerful and are used by most profes-
sional Ruby developers, so they’re worth learning about, although they tend to confuse
most new users. Let’s jump straight into an illustrative example:

current_situation = :good

puts "Everything is fine" if current_situation == :good

puts "PANIC!" if current_situation == :bad

Everything is fine

In this example, :good and :bad are symbols. Symbols don’t contain values or objects,
like variables do. Instead, they’re used as a consistent name within code. For example, in
the preceding code you could easily replace the symbols with strings, like so:

current_situation = "good"

puts "Everything is fine" if current_situation == "good"

puts "PANIC!" if current_situation == "bad"

This gives the same result, but isn’t as efficient. In this example, every mention of
“good” and “bad” creates a new object stored separately in memory, whereas symbols are
single reference values that are only initialized once. In the first code example, only :good
and :bad exist, whereas in the second example you end up with the full strings of "good",
"good", and "bad" taking up memory.

Symbols also result in cleaner code in many situations. Often you’ll use symbols to
give method parameters a name. Having varying data as strings and fixed information as
symbols results in easier-to-read code.

You might want to consider symbols to be literal constants that have no value, but
whose name is the most important factor. If you assign the :good symbol to a variable,
and compare that variable with :good in future, you’ll get a match. This makes symbols
useful in situations where you don’t necessarily want to store an actual value, but a con-
cept or an option.

Symbols are particularly useful when creating hashes and you want to have a distinc-
tion between keys and values. For example:

s = { :key => 'value' }

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL 83

7664 CH03.qxd 2/19/07 1:02 AM Page 83

This technique can also be useful when there’s a specification or consistency in
which key names to use:

person1 = { :name => "Fred", :age => 20, :gender => :male }

person2 = { :name => "Laura", :age => 23, :gender => :female }

Many methods provided by Ruby classes use this style to pass information into that
method (and often for return values). You’ll see examples of this construction throughout
this book.

Converting Between Classes

Numbers, strings, symbols, and other types of data are just objects belonging to various
classes. Numbers belong to Fixnum, Bignum, Float, and/or Integer classes. Strings are
objects of the String class, symbols are objects of the Symbol class, and so on.

In most cases, you can convert objects between the different classes, so a number
can become a string and a string can become a number. Consider the following:

puts "12" + "10"

puts 12 + 10

1210

22

The first line joins two strings, which happen to contain representations of numbers,
together, resulting in 1210. The second line adds two numbers together, resulting in 22.

However, converting these objects to representations in different classes is possible:

puts "12".to_i + "10".to_i

puts 12.to_s + 10.to_s

22

1210

The tables have been turned with the to_ methods. The String class provides the to_i
and to_f methods to convert a string to an object of class Integer or Float respectively.
The String class also offers to_sym, which converts a string into a symbol. Symbols pro-
vide the inverse, with a to_s method to convert them into strings.

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL84

7664 CH03.qxd 2/19/07 1:02 AM Page 84

Likewise, the number classes support to_s to convert themselves into textual repre-
sentations, as well as to_i and to_f to convert to and between integers and floats.

Summary
In this chapter, you’ve looked at the key building blocks of all computer programs—data,
expressions, and logic—and discovered how to implement them with Ruby. The topics in
this chapter provide a critical foundation for every other chapter in this book, as almost
every future line of your Ruby code will contain an expression, an iterator, or some sort of
logic.

■Note It’s important to remember that due to the depth of Ruby, I haven’t tried to cover every single com-
bination of classes and methods here. There’s more than one way to do anything in Ruby, and we’ve looked
at the easiest routes first, before moving on to more advanced techniques later in the book.

You have not yet exhausted the different types of data within Ruby. Objects and
classes, as covered in Chapter 2, are actually types of data too, although they might
appear not to be. In Chapter 6 you’ll directly manipulate objects and classes in a similar
way to how you’ve manipulated the numbers and strings in this chapter, and the bigger
picture will become clear.

Before moving on to Chapter 4, where you’ll develop a full, but basic, Ruby program,
let’s reflect on what you’ve covered so far:

• Variables: We already covered these in Chapter 2, but extended our knowledge of
them in this chapter. They’re placeholders that can hold an object, from numbers,
to text, to arrays, to objects of your own creation.

• Operator: Something that’s used in an expression to manipulate objects such as +
(plus), - (minus), * (multiply), and / (divide). You can also use operators to do com-
parisons, such as with <, >, and &&.

• Integer: A whole number, such as 5 or 923737.

• Float: A number with a decimal portion, such as 1.0 or 3.141592.

• Character: A single letter, digit, unit of space, or typographic symbol.

• String: A collection of characters such as “Hello, world!” or “Ruby is cool.”

• Constant: A variable with a fixed value. Constant variable names begin with a
capital letter.

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL 85

7664 CH03.qxd 2/19/07 1:02 AM Page 85

• Iterator: A special method such as each, upto, or times that steps through a list ele-
ment by element. This process is called iteration, and each, upto, and times are
iterator methods.

• Interpolation: The mixing of expressions into strings.

• Array: A collection of objects or values with a defined, regular order.

• Hash: A collection of objects or values associated with keys. A key can be used to
find its respective value inside a hash, but items inside a hash have no specific
order. It’s a lookup table, much like the index of a book or a dictionary.

• Regular expression: A way to describe patterns in text that can be matched and
compared against.

• Flow control: The process of managing which sections of code to execute based
on certain conditions and states.

• Code block: A section of code, often used as an argument to an iterator method,
that has no discrete name and that is not a method itself, but that can be called
and handled by a method that receives it as an argument. Code blocks can also
be stored in variables as objects of the Proc class.

• Range: The representation for an entire range of values between a start and an
end point.

• Symbol: A Ruby symbol is a unique reference. Symbols don’t contain values, as
variables do, but can be used to maintain a consistent reference within code.
They can be considered constants without values.

Now it’s time to put together some of these basic elements and develop a fully
working program in Chapter 4.

CHAPTER 3 ■ RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL86

7664 CH03.qxd 2/19/07 1:02 AM Page 86

Developing a Basic Ruby
Application

Up to this point we’ve focused on covering the basics of the Ruby language and looking
at how it works at the ground level. In this chapter we’ll move into the world of real soft-
ware development and develop a full, though basic, Ruby application with a basic set of
features. Once we’ve developed and tested the basic application, we’ll look at different
ways to extend it to become more useful. On our way we’ll cover some new facets of
development that haven’t been mentioned so far in this book.

First, we’re going to look at the basics of source code organization before moving on
to actual programming.

Working with Source Code Files
So far in this book we’ve focused on using the irb immediate Ruby prompt to learn about
the language. However, for developing anything you wish to reuse over and over, it’s
essential to store the source code in a file that can be stored on disk (or sent over the
Internet, kept on CD, and so forth).

The mechanism by which you create and manipulate source code files on your sys-
tem varies by operating system and personal preference. On Windows, you might be
familiar with the included Notepad software for creating and editing text files. At a Linux
prompt, you might be using vi, Emacs, or pico/nano. Mac users have TextEdit at their dis-
posal. Whatever you use, you need to be able to create new files and save them as plain
text so that Ruby can use them properly. In the next few sections, you’re going to look at
some specific tools available on each platform that tie in well with Ruby development.

87

C H A P T E R 4

7664 CH04.qxd 2/13/07 1:08 PM Page 87

88 CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION

Creating a Test File

The first step to developing a Ruby application is to get familiar with your text editor.
Here’s some guidance for each major platform.

If you’re already familiar with text editors and how they relate to writing and saving
source code, skip down to the section entitled “The Test Source Code File.”

Windows

If you followed the instructions in Chapter 1 for downloading and installing Ruby, you’ll
have two text editors called SciTE and FreeRIDE in the Ruby program group in your
“Start” menu. SciTE is a generic source code editing tool, whereas FreeRIDE is a Ruby-
specific source code editor, written in Ruby itself. SciTE is a little faster, but FreeRIDE is
more than fast enough for general development work and has better integration with
Ruby.

Once you load an editor, you’re presented with a blank document where you can
begin to type Ruby source code (on FreeRIDE you need to use the “File” menu to create
a new document). By using the “File” menu, you can also save your source code to the
hard drive, as you’ll do in the next section. With FreeRIDE, it’s also possible to organize
multiple files into a single project.

Mac OS X

Mac OS X has a number of text editors available. TextMate by MacroMates (http://www.
macromates.com/), as shown in Figure 4-1, tends to be the most respected in the Ruby
community, but it’s not free and costs approximately $50. Xcode, included with the OS X
Development Tools, is also a viable alternative, but requires that you know how to install
and use the development tools (these come on your OS X installation disc). Xcode can
also feel quite slow, depending on the specification of your Mac.

Included with OS X for free, however, is TextEdit. You can load TextEdit by going to
your Applications folder and double-clicking the TextEdit icon. In its default mode,
TextEdit isn’t a plain text editor, but if you go to the “Format” menu and select “Make
Plain Text,” you’ll be taken to a plain text editing mode that’s suitable for editing Ruby
source code.

7664 CH04.qxd 2/13/07 1:08 PM Page 88

89CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION

Figure 4-1. Using TextMate

At this point you can simply type or paste Ruby code and use the “File” ➤ “Save”
menu option to save your text to a location on your drive. It would probably be good to
create a folder called ruby within your home folder (the folder on the left that has your
username in it) and save your initial Ruby source code there, as this is what the instruc-
tions assume in the next section.

Linux

Linux distributions often come with varying text editors, but there will be at least one
available. If you’re working entirely from the shell or terminal, you might be familiar with
vi, Emacs, pico, or nano, and all of these are suitable for editing Ruby source code. If
you’re using Linux with a graphical interface, you might have Kate (KDE Advanced Text
Editor) and/or gedit (GNOME Editor) available. All the preceding are great text and
source code editors.

You could also download and install FreeRIDE, a cross-platform source code editor
that’s specifically designed for Ruby developers. It allows you to run your code with a sin-
gle click directly from the editor (if you’re using the X graphical user interface), and colors
in your code in a way that reflects its syntax, which makes it easier to read. You can learn
more about FreeRIDE at http://freeride.rubyforge.org/.

At this stage it would be a good idea to create a folder in your home directory called
ruby, so that you can save your Ruby code there and have it in an easily remembered
place.

7664 CH04.qxd 2/13/07 1:08 PM Page 89

The Test Source Code File

Once you’ve got an environment where you can edit and save text files, enter the
following code:

x = 2

print "This application is running okay if 2 + 2 = #{x + x}"

■Note If this code looks like nonsense to you, you’ve skipped too many chapters. Head back to Chapter 3!
This chapter requires full knowledge of everything covered in Chapter 3.

Save the code with a filename of a.rb in a folder or directory of your choice. It’s
advisable that you create a folder called ruby located somewhere that’s easy to find. On
Windows this might be directly off of your C drive, and on OS X or Linux this could be a
folder located in your home directory.

■Note RB is the de facto standard file extension for Ruby files, much like PHP is standard for PHP, TXT is
common for text files, and JPG is standard for JPEG images.

Now you’re ready to run the code.

Running Your Source Code

Once you’ve created the basic Ruby source code file, a.rb, you need to get Ruby to exe-
cute it. As always, the process by which to do this varies by operating system. Read the
particular following section that matches your operating system. If your operating system
isn’t listed, the OS X and Linux instructions are most likely to match those for your plat-
form.

Whenever this book asks you to “run” your program, this is what you’ll be doing each
time.

■Note Even though you’re going to be developing an application in this chapter, there are still times when
you’ll want to use irb to follow along with the tests or basic theory work throughout the chapter. Use your
judgment to jump between these two methods of development. irb is extremely useful for testing small con-
cepts and short blocks of code without the overhead of jumping back and forth between a text editor and the
Ruby interpreter.

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION90

7664 CH04.qxd 2/13/07 1:08 PM Page 90

Windows

If you’re using the SciTE or FreeRIDE programs that came with the Ruby installer for Win-
dows, you can run Ruby programs directly from them (see Figure 4-2). In both programs
you can press the F5 function key to run your Ruby code. Alternatively you can use the
menus (“Tools” ➤ “Go” in SciTe, and “Run” ➤ “Run” in FreeRIDE). However, before you
do this, it’s important to make sure you have saved your Ruby code. If not, the results
might be unpredictable (running old code from a prior save, for example) or you’ll be
prompted to save your work.

If running the a.rb code gives a satisfactory output in the output view pane (to the
right on SciTE, and at the bottom on FreeRIDE), you’re ready to move on to the section,
“Our Application: A Text Analyzer.”

Figure 4-2. Running code in FreeRIDE on Microsoft Windows (notice the output in the
bottom pane)

Alternatively, you might prefer to run Ruby from the command prompt. To do this,
load up the command prompt (“Start” menu ➤ “Run” ➤ Type cmd and click “OK”), navi-
gate to the folder containing a.rb using the cd command, and then type ruby a.rb.

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION 91

7664 CH04.qxd 2/13/07 1:08 PM Page 91

However, this method is only advised if you understand how to navigate your hard drive
from the command prompt. Another option, if you’re comfortable with creating short-
cuts, is to create a shortcut to the Ruby executable file (ruby.exe) and drop your source
code file(s) onto it.

Mac OS X

The simplest method to run Ruby applications on Mac OS X is from the Terminal, much
in the same way as irb is run. The Terminal was explained in Chapter 1. If you followed
the preceding instructions, continue like so:

1. Launch the Terminal (found in Applications/Utilities).

2. Use cd to navigate to the folder where you placed a.rb like so: cd ~/ruby . This tells
the Terminal to take you to the ruby folder located off of your home user folder.

3. Type ruby a.rb and press Enter to execute the a.rb Ruby script.

4. If you get an error such as ruby: No such file or directory -- a.rb (LoadError),
you aren’t in the same folder as the a.rb source file and need to establish where
you have saved it.

If you get a satisfactory response from a.rb, you’re ready to move on to the section,
“Our Application: A Text Analyzer.”

Linux and Other Unix-Based Systems

In Linux or other Unix-based systems, you run your Ruby applications from the shell
(that is, within a terminal window) in the same way that you ran irb. The process to run
irb was explained in Chapter 1, so if you’ve forgotten how to get that far, you need to
recap yourself before continuing like so:

1. Launch your terminal emulator (xterm, for example) so you get a Linux
shell/command prompt.

2. Navigate to the directory where you placed a.rb using the cd command (for exam-
ple, cd ~/ruby takes you to the ruby directory located directly under your home
directory, usually /home/yourusernamehere/).

3. Type ruby a.rb and press Enter to make Ruby execute the a.rb script.

If you get a satisfactory response from a.rb, you’re ready to move on.

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION92

7664 CH04.qxd 2/13/07 1:08 PM Page 92

Our Application: A Text Analyzer
The application you’re going to develop in this chapter will be a text analyzer. Your Ruby
code will read in text supplied in a separate file, analyze it for various patterns and statis-
tics, and print out the results for the user. It’s not a 3D graphical adventure or a fancy Web
site, but text processing programs are the bread and butter of systems administration and
most application development. They can be vital for parsing log files and user-submitted
text on Web sites, and manipulating other textual data.

Ruby is well suited for text and document analysis with its regular expression fea-
tures, along with the ease of use of scan and split, and you’ll be using these heavily in
your application.

■Note With this application you’ll be focusing on implementing the features quickly, rather than develop-
ing an elaborate object-oriented structure, any documentation, or a testing methodology. I’ll be covering
object orientation and its usage in larger programs in depth in Chapter 6, and documentation and testing are
covered in Chapter 8.

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION 93

TEXT EDITORS VS. SOURCE CODE EDITORS

Previously I’ve stated that source code is basically the same as plain text. This is true, and although you
can write your code in a general text editor, some benefits can be obtained by using a specialist source
code editor (or a development IDE—Integrated Development Environment).

The FreeRIDE editor is an example of an editor specifically created for Ruby developers. It edits
text, as with any other text editor, but offers extended features such as source code highlighting and
the ability to run code directly from the editor.

Some developers find source code syntax highlighting an invaluable feature, as it makes their
code easier to read. Variable names, expressions, string literals, and other elements of your source
code are all given different colors, which makes it easy to pick them out.

Whether you choose a source code editor or a basic text editor depends on your own preference,
but it’s worth trying both. Many developers prefer the freedom of a regular text editor and then running
their Ruby programs from the command line, whereas others prefer to work entirely within a single
environment.

FreeRIDE is available from http://freeride.rubyforge.org/, and a competing source code
editor for Ruby and Rails, called RadRails, is available at http://www.radrails.org/. It’s certainly
worth investigating these other editors on your platform in case they fit in more with how you wish to
work.

7664 CH04.qxd 2/13/07 1:08 PM Page 93

Required Basic Features

Your text analyzer will provide the following basic statistics:

• Character count

• Character count (excluding spaces)

• Line count

• Word count

• Sentence count

• Paragraph count

• Average number of words per sentence

• Average number of sentences per paragraph

In the last two cases, the statistics are easily calculated from each other. That is, once
you have the total number of words and the total number of sentences, it becomes a mat-
ter of a simple division to work out the average number of words per sentence.

Building the Basic Application

When starting to develop a new program, it’s useful to think of the key steps involved. In
the past it was common to draw flow charts to show how the operation of a computer
program would flow, but it’s easy to experiment, to change things about, and to remain
agile with modern tools, such as Ruby. Let’s outline the basic steps as follows:

1. Load in a file containing the text or document you want to analyze.

2. As you load the file line by line, keep a count of how many lines there were (one
of your statistics taken care of).

3. Put the text into a string and measure its length to get your character count.

4. Temporarily remove all whitespace and measure the length of the resulting string
to get the character count excluding spaces.

5. Split out all the whitespace to find out how many words there are.

6. Split on full stops to find out how many sentences there are.

7. Split on double newlines to find out how many paragraphs there are.

8. Perform calculations to work out the averages.

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION94

7664 CH04.qxd 2/13/07 1:08 PM Page 94

Create a new, blank Ruby source file and save it as analyzer.rb in your Ruby folder. As
you work through the next few sections you’ll be able to fill it out.

Obtaining Some Dummy Text

Before you start to code, the first step is to get some test data that your analyzer can
process. The first chapter of Oliver Twist is an ideal piece of text to use, as it’s copyright
free and easy to obtain. It’s also of a reasonable length. You can find the text at
http://www.rubyinside.com/book/oliver.txt or http://www.dickens-literature.com/
Oliver_Twist/0.html for you to copy into a local text file. Save the file in the same folder
as where you saved a.rb and call it text.txt. Your application will read from text.txt by
default (although you’ll make it be more dynamic and able to accept other sources of
data later on).

■Tip If the preceding Web pages are unavailable at the time of reading, use your favorite search engine to
search for “twist workhouse rendered profound thingummy” and you’re guaranteed to find it. Alternatively,
use any large block of text you can obtain.

If you’re using the Oliver Twist text and want your results to match up roughly with
those given as examples throughout this chapter, make sure you only copy and paste the
text including and between these sections:

Among other public buildings in a certain town, which for many

reasons it will be prudent to refrain from mentioning

And:

Oliver cried lustily. If he could have known that he was an

orphan, left to the tender mercies of church-wardens and

overseers, perhaps he would have cried the louder.

Loading Text Files and Counting Lines

Now it’s time to get coding! The first step is to load the file. Ruby provides a comprehen-
sive set of file manipulation methods via the File class. Whereas other languages can
make you jump through hoops to work with files, Ruby keeps the interface simple. Here’s
some code that opens up your text.txt file:

File.open("text.txt").each { |line| puts line }

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION 95

7664 CH04.qxd 2/13/07 1:08 PM Page 95

Type this into analyzer.rb and run the code. If text.txt is in the current directory, the
result is that you’ll see the entire text file flying up the screen.

You’re asking the File class to open up text.txt, and then, much like with an array,
you can call the each method on the file directly, resulting in each line being passed to
the inner code block one by one, where puts sends the line as output to the screen.
(In Chapter 9 you’ll look at how file access and manipulation work in more detail, along
with better techniques than are used in this chapter!)

Edit the code to look like this instead:

line_count = 0

File.open("text.txt").each { |line| line_count += 1 }

puts line_count

You initialize line_count to store the line count, then open the file and iterate over
each line, while incrementing line_count by 1 each time. When you’re done, you print the
total to the screen (approximately 121 if you’re using the Oliver Twist chapter). You have
your first statistic!

You’ve counted the lines, but still don’t have access to the contents of the file to count
the words, paragraphs, sentences, and so forth. This is easy to fix. Let’s change the code a
little, and add a variable, text, to collect the lines together as one as we go:

text=''

line_count = 0

File.open("text.txt").each do |line|

line_count += 1

text << line

end

puts "#{line_count} lines"

■Note Remember that using { and } to surround blocks is the standard style for single line blocks, but
using do and end is preferable for multiline blocks. However, this is a convention rather than a requirement.

Compared to your previous attempt, this code introduces the text variable and adds
each line onto the end of it in turn. When the iteration over the file has finished—that is,
when you run out of lines—text contains the entire file in a single string ready for you to
use.

That’s a simple-looking way to get the file into a single string and count the lines, but
File also has other methods that can be used to read files more quickly. For example, you
can rewrite the preceding code like this:

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION96

7664 CH04.qxd 2/13/07 1:08 PM Page 96

lines = File.readlines("text.txt")

line_count = lines.size

text = lines.join

puts "#{line_count} lines"

Much simpler! File implements a readlines method that reads an entire file into an
array, line by line. You can use this both to count the lines and join them all into a single
string.

Counting Characters

The second easiest statistic to work out is the number of characters in the file. As you’ve
collected the entire file into the text variable, and text is a string, you can use the length
method that all strings supply to get the exact size of the file, and therefore the number
of characters.

To the end of the previous code in analyzer.rb, add the following:

total_characters = text.length

puts "#{total_characters} characters"

If you ran analyzer.rb now with the Oliver Twist text, you’d get output like this:

121 lines

6165 characters

The second statistic you wanted to get relating to characters was a character total
excluding whitespace. If you can remember back to Chapter 3, strings have a gsub
method that performs a global substitution (like a search and replace) upon the string.
For example:

"this is a test".gsub(/t/, 'X')

Xhis is a XesX

You can use gsub to eradicate the spaces from your text string in the same way, and
then use the length method to get the length of the newly “de-spacified” text. Add the
following code to analyzer.rb:

total_characters_nospaces = text.gsub(/\s+/, '').length

puts "#{total_characters_nospaces} characters excluding spaces"

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION 97

7664 CH04.qxd 2/13/07 1:08 PM Page 97

If you run analyzer.rb in its current state against the Oliver Twist text, the results
should be similar to the following:

121 lines

6165 characters

5055 characters (excluding spaces)

Counting Words

A common feature offered by word processing software is a “word counter.” All it does is
count the number of complete words in your document or a selected area of text. This
information is useful to work out how many pages the document will take up when
printed. Many assignments also have requirements for a certain number of words, so
knowing the number of words in a piece of text is certainly useful.

You can approach this feature in a couple of ways:

1. Count the number of groups of contiguous letters using scan.

2. Split the text on whitespace and count the resulting fragments using split and
size.

Let’s look at each method in turn to see what’s best. Recall from Chapter 3 that scan
works by iterating over a string of text and finding certain patterns over and over. For
example:

puts "this is a test".scan(/\w/).join

thisisatest

In this example, scan looked through the string for anything matching \w, a special
term representing all alphanumeric characters (and underscores), and placed them into
an array that you’ve joined together into a string and printed to the screen.

You can do the same with groups of alphanumeric characters. In Chapter 3 you
learned that to match multiple characters with a regular expression, you could follow
the character with +. So let’s try again:

puts "this is a test".scan(/\w+/).join('-')

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION98

7664 CH04.qxd 2/13/07 1:08 PM Page 98

this-is-a-test

This time, scan has looked for all groups of alphanumeric characters and placed them
into the array that you’ve then joined together into a string using - as the separation
character.

To get the number of words in the string, you can use the length or size array meth-
ods to count the number of elements rather than join them together:

puts "this is a test".scan(/\w+/).length

4

Excellent! So what about the split approach?
The split approach demonstrates a core tenet of Ruby (as well as some other lan-

guages, particularly Perl) that “There’s always more than one way to do it!” Analyzing
different methods to solve the same problem is a crucial part of becoming a good pro-
grammer, as different methods can vary in their efficacy.

Let’s split the string by spaces and get the length of the resulting array, like so:

puts "this is a test".split.length

4

As it happens, by default split will split by whitespace (single or multiple characters
of spaces, tabs, newlines, and so on), and that makes this code shorter and easier to read
than the scan alternative.

So what’s the difference between these two methods? Simply, one is looking for
words and returning them to you for you to count, and the other is splitting the string by
that which separates words—whitespace—and telling you how many parts the string was
broken into. Interestingly, these two approaches can yield different results:

text = "First-class decisions require clear-headed thinking."

puts "Scan method: #{text.scan(/\w+/).length}"

puts "Split method: #{text.split.length}"

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION 99

7664 CH04.qxd 2/13/07 1:08 PM Page 99

Scan method: 7

Split method: 5

Interesting! The scan method is looking through for all blocks of alphanumeric char-
acters, and, sure enough, there are seven in the sentence. However, if you split by spaces,
there are five words. The reason is the hyphenated words. Hyphens aren’t “alphanu-
meric,” so scan is seeing “first” and “class” as separate words.

Returning to analyzer.rb, let’s apply what we’ve learned here. Add the following:

word_count = text.split.length

puts "#{word_count} words"

Running the complete analyzer.rb gets these results:

122 lines

6166 characters

5055 characters (excluding spaces)

1093 words

Counting Sentences and Paragraphs

Once you understand the logic of counting words, counting the sentences and para-
graphs becomes easy. Rather than splitting on whitespace, sentences and paragraphs
have different splitting criteria.

Sentences end with full stops, question marks, and exclamation marks. They can
also be separated with dashes and other punctuation, but we won’t worry about these
rare cases here. The split is simple. Instead of asking Ruby to split the text on one type
of character, you simply ask it to split on any of three types of characters, like so:

sentence_count = text.split(/\.|\?|!/).length

The regular expression looks odd here, but the full stop, question mark, and exclama-
tion mark are clearly visible. Let’s look at the regular expression directly:

/\.|\?|!/

The forward slashes at the start and the end are the usual delimiters for a regular
expression, so those can be ignored. The first section is \. and this represents a full stop.

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION100

7664 CH04.qxd 2/13/07 1:08 PM Page 100

The reason why you can’t just use . without the backslash in front is because . represents
“any character” in a regular expression (as covered in Chapter 3), so it needs to be
escaped with the backslash to identify itself as a literal full stop. This also explains why the
question mark is escaped with a backslash, as a question mark in a regular expression
usually means “zero or one of the previous character”—also covered in Chapter 3. The ! is
not escaped, as it has no other meaning in terms of regular expressions.

The pipes (| characters) separate the three main characters, which means they’re
treated separately so that split can match one or another of them. This is what allows the
split to split on periods, question marks, and exclamation marks all at the same time. You
can test it like so:

puts "Test code! It works. Does it? Yes.".split(/\.|\?|!/).length

4

Paragraphs can also be split apart with regular expressions. Whereas paragraphs in a
printed book, such as this one, tend not to have any spacing between them, paragraphs
that are typed on a computer typically do, so you can split by a double newline (as repre-
sented by the special combination \n\n—simply, two newlines in succession) to get the
paragraphs separated. For example:

text = %q{

This is a test of

paragraph one.

This is a test of

paragraph two.

This is a test of

paragraph three.

}

puts text.split(/\n\n/).length

3

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION 101

7664 CH04.qxd 2/13/07 1:08 PM Page 101

Let’s add both these concepts to analyzer.rb:

paragraph_count = text.split(/\n\n/).length

puts "#{paragraph_count} paragraphs"

sentence_count = text.split(/\.|\?|!/).length

puts "#{sentence_count} sentences"

Calculating Averages

The final statistics required for your basic application are the average number of words
per sentence, and the average number of sentences per paragraph. You already have the
paragraph, sentence, and word counts available in the variables word_count,
paragraph_count, and sentence_count, so only basic arithmetic is required, like so:

puts "#{sentence_count / paragraph_count} sentences per paragraph (average)"

puts "#{word_count / sentence_count} words per sentence (average)"

The calculations are so simple that they can be interpolated directly into the output
commands rather than precalculated.

The Source Code So Far

You’ve been updating the source code as you’ve gone along, and in each case you’ve put
the logic next to the puts statement that shows the result to the user. However, for the
final version of your basic application, it’d be tidier to separate the logic from the presen-
tation a little and put the calculations in a separate block of code before everything is
printed to the screen.

There are no logic changes, but the finished source for analyzer.rb looks a little
cleaner this way:

lines = File.readlines("text.txt")

line_count = lines.size

text = lines.join

word_count = text.split.length

character_count = text.length

character_count_nospaces = text.gsub(/\s+/, '').length

paragraph_count = text.split(/\n\n/).length

sentence_count = text.split(/\.|\?|!/).length

puts "#{line_count} lines"

puts "#{character_count} characters"

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION102

7664 CH04.qxd 2/13/07 1:08 PM Page 102

puts "#{character_count_nospaces} characters excluding spaces"

puts "#{word_count} words"

puts "#{paragraph_count} paragraphs"

puts "#{sentence_count} sentences"

puts "#{sentence_count / paragraph_count} sentences per paragraph (average)"

puts "#{word_count / sentence_count} words per sentence (average)"

If you’ve made it this far and everything’s making sense, congratulations are due.
Let’s look at how to extend our application a little further with some more interesting
statistics.

Adding Extra Features
Your analyzer has a few basic functions, but it’s not particularly interesting. Line, para-
graph, and word counts are useful statistics, but with the power of Ruby you can extract
significantly more interesting data from the text. The only limit is your imagination, but
in this section you’ll look at a couple other features you can implement, and how to
do so.

■Note When developing software it’s always worth considering the likelihood of the software being
extended or tweaked in the future and planning ahead for the possibility. Many development bottlenecks
have occurred when systems were designed too rigidly to cope with changing circumstances!

Percentage of “Useful” Words

Most written material, including this very book, contains a high number of words that,
although providing context and structure, are not directly useful or interesting. In the last
sentence, the words “that,” “and,” “are,” and “or” are not of particular interest, even if the
sentence would make less sense without them.

These words are typically called “stop words,” and are often ignored by computer
systems whose job is to analyze and search through text, because they aren’t words most
people are likely to be searching for (as opposed to nouns, for example). Google is a per-
fect example of this, as it doesn’t want to have to store information that takes up space
and that’s generally irrelevant to searches.

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION 103

7664 CH04.qxd 2/13/07 1:08 PM Page 103

■Note For more information about stop words, including links to complete lists, visit http://en.wikipedia.
org/wiki/Stop_words.

It could be assumed that more “interesting” text, or text by a more proficient author,
might have a lower percentage of stop words and a higher percentage of useful or inter-
esting words. You can easily extend your application to work out the percentage of
non–stop words in the supplied text.

The first step is to build up a list of stop words. There are hundreds of possible stop
words, but you’ll start with just a handful. Let’s create an array to hold them:

stop_words = %w{the a by on for of are with just but and to the my I has some in}

This code results in an array of stop words being assigned to the stop_words variable.

■Tip In Chapter 3, you saw arrays being defined like so: x = ['a', 'b', 'c']. However, like many
languages, Ruby has a shortcut that builds arrays quickly with string-separated text. This segment can be
shorted to the equivalent x = %w{a b c}, as demonstrated in the preceding stop word code.

For demonstration purposes, let’s write a small, separate program to test the
concept:

text = %q{Los Angeles has some of the nicest weather in the country.}

stop_words = %w{the a by on for of are with just but and to the my I has some}

words = text.scan(/\w+/)

key_words = words.select { |word| !stop_words.include?(word) }

puts key_words.join(' ')

When you run this code, you get the following result:

Los Angeles nicest weather country

Cool, right? First you put some text into the program, then the list of stop words. Next
you get all the words from text into an array called words. Then you get to the magic:

key_words = words.select { |word| !stop_words.include?(word) }

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION104

7664 CH04.qxd 2/13/07 1:08 PM Page 104

This line first takes your array of words, words, and calls the select method with a
block of code to process for each word (like the iterators you played with in Chapter 3).
The select method is a method available to all arrays and hashes that returns the ele-
ments of that array or hash that match the expression in the code block.

In this case, the code in the code block takes each word via the variable word, and
asks the stop_words array whether it includes any elements equal to word. This is what
stop_words.include?(word) does.

The exclamation mark (!) before the expression negates the expression (an exclama-
tion mark negates any Ruby expression). The reason for this is you don’t want to select
words that are in the stop_words array. You want to select words that aren’t.

In closing, then, you select all elements of words that are not included in the
stop_words array and assign them to key_words. Don’t read on until that makes sense, as
this type of single-line construction is common in Ruby programming.

After that, working out the percentage of non–stop words to all words uses some
basic arithmetic:

((key_words.length.to_f / words.length.to_f) * 100).to_i

The reason for the .to_f’s is so that the lengths are treated as floating decimal point
numbers, and the percentage is worked out more accurately. When you work it up to the
real percentage (out of 100), you can convert back to an integer once again.

You’ll see how this all comes together in the final version at the end of this chapter.

Summarizing by Finding “Interesting” Sentences

Word processors such as Microsoft Word generally have summarization features that can
take a long piece of text and seemingly pick out the best sentences to produce an “at-a-
glance” summary. The mechanisms for producing summaries have become more
complex over the years, but one of the simplest ways to develop a summarizer of your
own is to scan for sentences with certain characteristics.

One technique is to look for sentences that are of about average length and that look
like they contain nouns. Tiny sentences are unlikely to contain anything useful, and long
sentences are likely to be simply too long for a summary. Finding nouns reliably would
require systems that are far beyond the scope of this book, so you could “cheat” by look-
ing for words that indicate the presence of useful nouns in the same sentence, such as
“is” and “are” (for example, “Noun is,” “Nouns are,” “There are x nouns”).

Let’s assume that you want to throw away two-thirds of the sentences—a third that
are the shortest sentences and a third that are the longest sentences—leaving you with an
ideal third of the original sentences that are ideally sized for your task.

For ease of development, let’s create a new program from scratch, and transfer your
logic over to the main application later. Create a new program called summarize.rb and
use this code:

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION 105

7664 CH04.qxd 2/13/07 1:08 PM Page 105

text = %q{

Ruby is a great programming language. It is object oriented

and has many groovy features. Some people don't like it, but that's

not our problem! It's easy to learn. It's great. To learn more about Ruby,

visit the official Ruby Web site today.

}

sentences = text.gsub(/\s+/, ' ').strip.split(/\.|\?|\!/)

sentences_sorted = sentences.sort_by { |sentence| sentence.length }

one_third = sentences_sorted.length / 3

ideal_sentences = sentences_sorted.slice(one_third, one_third + 1)

ideal_sentences = ideal_sentences.select { |sentence| sentence =~ /is|are/ }

puts ideal_sentences.join(". ")

And for good measure run it to see what happens:

Ruby is a great programming language. It is object oriented and has many groovy

features

Seems like a success! Let’s walk through the program.
First, you define the variable text to hold the long string of multiple sentences, much

like in analyzer.rb. Next you split text into an array of sentences like so:

sentences = text.gsub(/\s+/, ' ').strip.split(/\.|\?|!/)

This is slightly different from the method used in analyzer.rb. There is an extra gsub
in the chain, as well as strip. The gsub gets rid of all large areas of whitespace and
replaces them with a single space (\s+ meaning “one or more whitespace characters”).
This is simply for cosmetic reasons. The strip removes all extra whitespace from the start
and end of the string. The split is then the same as that used in the analyzer.

Next you sort the sentences by their lengths, as you want to ignore the shortest third
and the longest third:

sentences_sorted = sentences.sort_by { |sentence| sentence.length }

Arrays and hashes have the sort_by method that rearranges them into almost any
order you want. sort_by takes a code block as its argument, where the code block is an
expression that defines what to sort by. In this case, you’re sorting the sentences array. You
pass each sentence in as the sentence variable, and choose to sort them by their length,
using the length method upon the sentence. After this line, sentences_sorted contains an
array with the sentences in length order.

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION106

7664 CH04.qxd 2/13/07 1:08 PM Page 106

Next you need to get the middle third of the length-sorted sentences in
sentences_sorted, as these are the ones you’ve deemed to be probably the most interest-
ing. To do this you can divide the length of the array by 3, to get the number of elements
in a third, and then grab that number of elements from one third into the array (note
that you grab one extra element to compensate for rounding caused by integer division).
This is done like so:

one_third = sentences_sorted.length / 3

ideal_sentences = sentences_sorted.slice(one_third, one_third + 1)

The first line takes the length of the array and divides it by 3 to get the quantity that
is equal to “a third of the array.” The second line uses the slice method to “cut out” a
section of the array to assign to ideal_sentences. In this case, assume that the
sentences_sorted is 6 elements long. 6 divided by 3 is 2, so a third of the array is 2 ele-
ments long. The slice method then cuts from element 2 for 2 (plus 1) elements, so you
effectively carve out elements 2, 3, and 4 (remember that array elements start counting
from 0). This means you get the “inner third” of the ideal-lengthed sentences you wanted.

The penultimate line checks to see if the sentence includes the word “is” or “are,” and
only accepts each sentence if so:

ideal_sentences = ideal_sentences.select { |sentence| sentence =~ /is|are/ }

It uses the select method, as the “stop word” removal code in the previous section
did. The expression in the code block uses a regular expression that matches against
sentence, and only returns true if “is” or “are” are present within sentence. This means
ideal_sentences now only contains sentences that are in the middle third length-wise and
contain either “is” or “are.”

The final line simply joins the ideal_sentences together with a full stop and space
between them to make them readable:

puts ideal_sentences.join(". ")

Analyzing Files Other Than text.txt

So far your application has the filename text.txt hard-coded into it. This is acceptable,
but it’d be a lot nicer if you could specify, when you run the program, what file you want
the analyzer to process.

■Note This technique is only practical to demonstrate if you’re running analyzer.rb from a command
prompt or shell, as on Mac OS X or Linux (or Windows if you’re using the Windows command prompt). If
you’re using an IDE on Windows, this section will be read-only for you.

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION 107

7664 CH04.qxd 2/13/07 1:08 PM Page 107

Typically, if you’re starting a program from the command line, you can append
parameters onto the end of the command and the program processes them. You can do
the same with your Ruby application.

Ruby automatically places any parameters that are appended to the command line
when you launch your Ruby program into a special array called ARGV. To test it out, create
a new script called argv.rb and use this code:

puts ARGV.join('-')

From the command prompt, run the script like so:

ruby argv.rb

The result will be blank, but then try to run it like so:

ruby argv.rb test 123

test-123

This time the parameters are taken from ARGV, joined together with a hyphen, and
displayed on screen. You can use this to replace the reference to text.txt in analyzer.rb
by replacing "text.txt" with ARGV[0] or ARGV.first (which both mean exactly the same
thing—the first element of the ARGV array). The line that reads the file becomes the
following:

lines = File.readlines(ARGV[0])

To process text.txt now, you’d run it like so:

ruby analyzer.rb text.txt

You’ll learn more about deploying programs and making them friendly to other
users, along with ARGV, in Chapter 10.

The Completed Program
You’ve already got the source for the completed basic program, but it’s time to add all the
new, extended features from the previous few sections to analyzer.rb to create the final
version of your text analyzer.

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION108

7664 CH04.qxd 2/13/07 1:08 PM Page 108

■Note Remember that source code for this book is available in the Source Code/Download area at
http://www.apress.com, so it isn’t strictly necessary to type in code directly from the book.

Here we go:

analyzer.rb -- Text Analyzer

stop_words = %w{the a by on for of are with just but and to the my I has some in}

lines = File.readlines("text.txt")

line_count = lines.size

text = lines.join

Count the characters

character_count = text.length

character_count_nospaces = text.gsub(/\s+/, '').length

Count the words, sentences, and paragraphs

word_count = text.split.length

sentence_count = text.split(/\.|\?|!/).length

paragraph_count = text.split(/\n\n/).length

Make a list of words in the text that aren't stop words,

count them, and work out the percentage of non-stop words

against all words

all_words = text.scan(/\w+/)

good_words = all_words.select{ |word| !stop_words.include?(word) }

good_percentage = ((good_words.length.to_f / all_words.length.to_f) * 100).to_i

Summarize the text by cherry picking some choice sentences

sentences = text.gsub(/\s+/, ' ').strip.split(/\.|\?|\!/)

sentences_sorted = sentences.sort_by { |sentence| sentence.length }

one_third = sentences_sorted.length / 3

ideal_sentences = sentences_sorted.slice(one_third, one_third + 1)

ideal_sentences = ideal_sentences.select { |sentence| sentence =~ /is|are/ }

Give the analysis back to the user

puts "#{line_count} lines"

puts "#{character_count} characters"

puts "#{character_count_nospaces} characters (excluding spaces)"

puts "#{word_count} words"

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION 109

7664 CH04.qxd 2/13/07 1:08 PM Page 109

puts "#{sentence_count} sentences"

puts "#{paragraph_count} paragraphs"

puts "#{sentence_count / paragraph_count} sentences per paragraph (average)"

puts "#{word_count / sentence_count} words per sentence (average)"

puts "#{good_percentage}% of words are non-fluff words"

puts "Summary:\n\n" + ideal_sentences.join(". ")

puts "-- End of analysis"

■Note If you’re a Windows user, you might want to replace the ARGV[0] reference with an explicit refer-
ence to "text.txt" to make sure it works okay from FreeRIDE or SciTE. However, if you’re running the
program from the command prompt, it should operate correctly.

Running the completed analyzer.rb with the Oliver Twist text now results in an out-
put like so:

121 lines

6165 characters

5055 characters (excluding spaces)

1093 words

18 paragraphs

45 sentences

2 sentences per paragraph (average)

24 words per sentence (average)

76% of words are non-fluff words

Summary:

' The surgeon leaned over the body, and raised the left hand. Think what it is

to be a mother, there's a dear young lamb do. 'The old story,' he said, shaking

his head: 'no wedding-ring, I see. What an excellent example of the power of

dress, young Oliver Twist was. ' Apparently this consolatory perspective of a

mother's prospects failed in producing its due effect. ' The surgeon had been

sitting with his face turned towards the fire: giving the palms of his hands a

warm and a rub alternately. ' 'You needn't mind sending up to me, if the child

cries, nurse,' said the surgeon, putting on his gloves with great deliberation.

She had walked some distance, for her shoes were worn to pieces; but where

she came from, or where she was going to, nobody knows. ' He put on his hat,

and, pausing by the bed-side on his way to the door, added, 'She was a

good-looking girl, too; where did she come from

-- End of analysis

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION110

7664 CH04.qxd 2/13/07 1:08 PM Page 110

Try analyzer.rb with some other text of your choice (a Web page, perhaps) and see if
you can make improvements to its features. This application is ripe for improvement
with the concepts you’ll learn over the next several chapters, so keep it in mind if you’re
looking for some code to play with.

CODE COMMENTS

You might notice text in source code prefixed with # symbols. These are comments and are generally
used in programs for the benefit of the original developer(s), along with anyone else that might need
to read the source code. They’re particularly useful for making notes to remind you of why you took
a particular course of action that you’re likely to forget in future.

You can place comments in any Ruby source code file on their own lines, or even at the end of a
line of code. Here are some valid examples of commenting in Ruby:

puts "2+2 = #{2+2}" # Adds 2+2 to make 4

A comment on a line by itself

As long as a comment is on a line by itself, or is the last thing on a line, it’s fine. Comment
liberally, and your code will be easier to understand.

Summary
In this chapter you developed a complete, basic application that had a set of require-
ments and desired features. You then extended it with some nonessential, but useful,
elaborations. Ruby makes developing quick applications a snap.

The application you’ve developed in this chapter has demonstrated that if you have
a lot of text to process or a number of calculations to do, and you’re dreading doing the
work manually, Ruby can take the strain.

Chapter 4 marks the end of the practical programming exercises in the first part of
this book. Next, in Chapter 5, you’ll take a look at the history of Ruby; Ruby’s community
of developers; the historical reasons behind certain features in Ruby; and learn how to
get help from, and become part of, the Ruby community. Code makes up only half the
journey to becoming a great programmer!

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION 111

7664 CH04.qxd 2/13/07 1:08 PM Page 111

7664 CH04.qxd 2/13/07 1:08 PM Page 112

The Ruby Ecosystem

As with almost all other programming languages, Ruby has its own culture and “eco
system.” Ruby’s ecosystem is made up of many thousands of developers, maintainers,
documenters, bloggers, and those who help sponsor or fund the development and use
of the language.

Some programmers who are new to a language make the mistake that learning about
a language’s history and community is pointless, but the most successful developers
quickly learn about the ecosystem and get involved in it. The motivations behind a lan-
guage’s development and its users can provide significant clues about the best
approaches to take when solving problems, and understanding the vocabulary of other
developers of that language greatly helps when it comes to looking for help and advice.

This chapter takes a break from the code-focused tutorials to bring you up to speed
with how the Ruby world works, the motivations behind the language, as well as the best
ways to find help and get involved with the community. If you’re new to software devel-
opment, this chapter will also explain some of the many terms and phrases used by
developers relating to software development.

You’ll also take a quick look at Ruby’s history, Ruby’s creator, the processes and
terminology that Ruby developers use that make them reasonably unique, and the
technologies that have taken Ruby from being relatively unknown to being an important
first-class programming language.

Ruby’s History
Ruby is relatively young in the world of programming languages, having been first devel-
oped in 1993, making it roughly the same age as both Perl and Python. Among the most
popular programming languages still in use today, Fortran, for example, was developed
in 1953; C was developed in the early 1970s; and BASIC was developed in 1963. However,
Ruby’s modernness is an asset rather than a downfall. From day one it was designed with
object-oriented programming in mind, and its syntax has remained remarkably consis-
tent over time. However, the older languages have been forced to complicate their syntax
and change radically to address modern concepts such as object orientation, networks,
and graphical environments.

113

C H A P T E R 5

7664 CH05.qxd 2/13/07 1:13 PM Page 113

114 CHAPTER 5 ■ THE RUBY ECOSYSTEM

Unlike many languages that are formed out of pure necessity or research, Ruby’s
birth partly came from a sense of frustration with existing languages. Despite the pres-
ence of so many established programming languages, a plucky Japanese computer
scientist felt development was becoming ever more complex and tiresome, and decided
some fun had to be injected into the world of programming languages.

The Land of the Rising Sun

Ruby began life in Japan as the creation of Yukihiro Matsumoto, known more commonly
as “Matz.” Unlike that of most language developers, Matz’s motivation for Ruby was fun
and a principle of “least surprise,” in order to improve overall developer productivity. He
couldn’t find a language that resonated with his mindset, so he took his own outlook
about how programming should work and created Ruby (named after the gemstone, but
a convenient homage to the Perl programming language).

A longtime object-oriented programming fan, Matz felt it was the best model to
adopt, but unlike other languages, such as Perl, object orientation wouldn’t be an after-
thought, but act as the core foundation for the whole language. Everything would be an
object, and methods would fill the roles of the procedures and functions developers had
come to expect in older procedural languages. As Matz himself said in a 2001 interview:
“I wanted a language that was more powerful than Perl, and more object-oriented than
Python. That’s why I decided to design my own language.”

In December 1995, Matz released the first public alpha version of Ruby, and soon
thereafter a community began to form in Japan. However, although Ruby quickly became
relatively popular in Japan, it struggled to gain a foothold elsewhere.

■Note In software development, the terms alpha, beta, and gamma, among others, are used to denote
the development stage of a piece of software. An initial release that’s not for general use is often called an
alpha. A release that implements most of the required features, but might not be entirely tested or stable,
is often called a beta, although this term is becoming muddied by the plethora of Web applications now
permanently using the term “beta” on otherwise fully released products and services.

In 1996, the development of Ruby was opened up somewhat, and a small team of
core developers and other contributors began to form alongside the more general com-
munity of Ruby developers. Ruby 1.0 was released on December 25, 1996. These core
developers help Matz develop Ruby and submit their patches (adjustments to the code)
and ideas to him. Matz continues to act as a “benevolent dictator” who ultimately con-
trols the direction of the language, despite the ever-widening influence of other
developers.

7664 CH05.qxd 2/13/07 1:13 PM Page 114

■Note Although developing software privately is still common, many projects are now worked upon in a
public manner, allowing them to be extended and worked upon by any competent programmer. In many
cases this makes it possible for other developers to fork the project (taking the existing code and splitting
it into their own version), but in practice this is rare.

Ruby’s Influences

In developing Ruby, Matz was heavily influenced by the programming languages he was
already familiar with. Larry Wall, the developer of the popular Perl language, was a hero
of Matz’s, and Perl’s principle of “There’s More Than One Way To Do It” is present in Ruby.

Some languages, such as Python, prefer to provide more rigid structures and to pres-
ent a clean method for developers to have a small number of options to perform a certain
task. Ruby allows its developers to solve problems in any one of many ways. This allows
the language great flexibility, and combined with the object-oriented nature of the lan-
guage, Ruby is extremely customizable.

In terms of its object-oriented nature, Ruby has also been heavily influenced by
Smalltalk, a prolific object-oriented language developed in the 1970s. As in Smalltalk,
almost everything in Ruby is an object, and Ruby also gives programmers the ability to
change many details of the language’s operation within their own programs on the fly.
This feature is called reflection.

To a lesser extent, Python, LISP, Eiffel, ADA, and C++ have also influenced Ruby.
These influences demonstrate that Ruby isn’t a language that’s afraid to take on the best
ideas from other languages. This is one of many reasons why Ruby is such a powerful and
dynamic language. The implementation of many of these features has also made the
migration from other languages to Ruby significantly easier. Learning Ruby means, to a
great extent, learning the best features of other programming languages for free. (Refer
to Appendix A for a comparison between Ruby and other languages.)

Go West

As a language initially developed for Matz’s own use in Japan, the initial documentation
was entirely in Japanese, locking most non-Japanese users out. Although it’s customary
for programming languages to use English for their keywords (such as print, puts, if, and
so on) it wasn’t until 1997 that the initial English documentation began to be produced.

Matz first began to officially promote the Ruby language in English in late 1998 with
the creation of the ruby-talk mailing list, still one of the best places to discuss the Ruby
language, as well as a useful resource with more than 200,000 messages archived at the
list’s Web site (http://blade.nagaokaut.ac.jp/ruby/ruby-talk/index.shtml).

CHAPTER 5 ■ THE RUBY ECOSYSTEM 115

7664 CH05.qxd 2/13/07 1:13 PM Page 115

■Note You can subscribe to ruby-talk yourself by sending an e-mail containing “subscribe” followed by
your first name and then last name to ruby-talk-ctl@ruby-lang.org.

An official English language Web site soon followed in late 1999 with the creation of
ruby-lang.org (http://www.ruby-lang.org/), which is still Ruby’s official English language
Web site (see Figures 5-1 and 5-2 for a comparison of the official site between then and
now).

Ruby failed to catch on with all but a few ardent developers until 2000 and 2001 (with
the main Ruby Usenet newsgroup comp.lang.ruby being created in May 2000), and even
then the English-speaking Ruby community was tiny. Matz didn’t consider this to be
important though, and was even surprised that other people found his language useful,
having only created it to fit his own way of thinking.

Figure 5-1. The official English-language Ruby homepage in 2000

CHAPTER 5 ■ THE RUBY ECOSYSTEM116

7664 CH05.qxd 2/13/07 1:13 PM Page 116

Figure 5-2. The official Ruby homepage as of late 2006

However, the exposure of Ruby to the larger audience of software developers contin-
ued to be low. IBM published an article with a brief overview of Ruby and an interview
with Matz in 2000, and the much-revered Dr. Dobb’s Journal published an article by
Dave Thomas and Andy Hunt with a similar introduction in January 2001.

Despite Ruby’s obvious power, it appeared as if Python and PHP were going to win the
race to become “the next Perl” as general scripting and Web languages, respectively, up
until 2004 (although Ruby was more popular than Python even in 2000). But then every-
thing changed when a young Dane released a tool based upon Ruby that would quickly
change the perception of the language in the worldwide development community.

Ruby on Rails
Since 2005 it has become impossible to publish any book or article about Ruby without
mentioning Ruby on Rails. Ruby on Rails is a Web application framework that has

CHAPTER 5 ■ THE RUBY ECOSYSTEM 117

7664 CH05.qxd 2/13/07 1:13 PM Page 117

propelled the popularity of Ruby outside of Japan from a humble core of avid developers
to hundreds of thousands of developers all now interested in using the language. This
section examines Ruby on Rails, explains why it’s important, and discusses how its pres-
ence has changed the whole dynamic of the Ruby ecosystem.

■Note An application framework is a set of conventions, structures, and systems that provide an underly-
ing structure to make application development easier. Ruby on Rails is such a framework for Web application
development.

I’ll be covering Ruby on Rails development in Chapter 13, but let’s first look at the
motivation behind the framework and how it has changed the entire Ruby landscape.

Why Rails Came into Existence

37signals (http://www.37signals.com/), a successful Web software company, was founded
in 1999 initially as a Web design agency that promoted the use of clean, fast, and func-
tional designs over the gee-whiz Flash-based Web sites that were popular at the time.
With only two cofounders running the entire company, they quickly realized they needed
some tools to help them run their business efficiently. They tried some off-the-shelf soft-
ware but found nothing that matched their needs, and found most solutions to be
bloated and complex. They felt their attitude toward Web design should also be applied
to applications, and in mid-2003 decided to develop their own project management tool.

As designers, rather than coders, 37signals turned to the services of David Heinemeier
Hansson, a student in Copenhagen, Denmark, to develop their project management appli-
cation. Rather than use the then-common tools such as Perl or PHP, Hansson was con-
vinced that 37signals could develop the application far more quickly and completely by
using Ruby. Previously a PHP coder, Hansson was beginning to feel the pain of using PHP
for large Web application development and felt a new direction should be sought.

As development on the nascent application (entitled “Basecamp”) progressed, the
team members showed it to others in the industry and quickly realized from the
responses they heard that they should release the application to the public rather than
keep it for their own use.

With a successful public release of Basecamp in February 2004—only about four
months after beginning the project—the development methodology adopted by 37sig-
nals and Hansson was proven, and 37signals began a rapid transition into an application
development company, with Hansson eventually becoming a partner at the company.

Ruby proved to be the silver bullet that powered the rapid development of Basecamp.
Hansson used Ruby’s object orientation and reflection features to build a framework that
made developing database-driven Web applications easier than ever before. This
framework became known as Ruby on Rails, and was first released to the public in

CHAPTER 5 ■ THE RUBY ECOSYSTEM118

7664 CH05.qxd 2/13/07 1:13 PM Page 118

July 2004. 37signals continued to develop new products quickly using the power of the
new framework.

Like Ruby itself, the Ruby on Rails framework didn’t immediately experience an
explosion of popularity, but found a small number of ardent fans who began to realize its
power and, in many cases, wished to replicate 37signals’ success.

How the Web (2.0) Was Won

Ruby on Rails wasn’t a wallflower for long. 2005 was an epic year for Ruby on Rails, and
Ruby’s popularity exploded alongside it. The initial fans of Ruby on Rails had began blog-
ging feverishly about the technology and were winning over converts with an uninten-
tional, but surprisingly potent, grassroots viral marketing campaign.

In January 2005, Slashdot, the world’s most popular technology community Web site
at the time, published its first post mentioning Ruby on Rails, and since then has run
scores of stories on the technology, each encouraging existing PHP, Perl, and Python
developers to give Ruby and Ruby on Rails a try.

In March 2005, Hansson announced the development of the first commercial Rails
book, which came out in beta PDF form in May of that year. In September 2005, the print
version of the book went on sale and immediately topped the Amazon.com chart for pro-
gramming books.

In the space of a year, Rails books were under development and being released by a
multitude of publishers; tens of thousands of blog posts had been made about the technol-
ogy; hundreds of thousands of screencasts (watchable screenshot videos demonstrating
how to use Rails) had been watched online; and David Heinemeier Hansson had won
numerous awards, including Google and O’Reilly’s “Best Hacker of the Year 2005.” Tens of
thousands of developers were suddenly flocking to Ruby on Rails and, therefore, Ruby.

The Ruby ecosystem was rapidly thrust into the limelight, especially on the back of
the “Web 2.0” concept, a coined term that refers to a supposed second generation in
Internet-based services, and is often used to refer to the culture of blogs, social network-
ing, wikis, and other user-content–driven Web sites. As Ruby and Rails make these sites
easy to develop, many developers have used these tools to their advantage to get ahead
in the Web 2.0 field.

The Open Source Culture
When Ruby was initially developed, Matz didn’t have a specific development culture in
mind. He developed the language to be for his own use and to fit his own mindset. For
the first couple years he kept the language mostly to himself. Most of today’s culture
relating to how to develop software with Ruby has evolved in the last few years and is
partly shared with other programming languages.

CHAPTER 5 ■ THE RUBY ECOSYSTEM 119

7664 CH05.qxd 2/13/07 1:13 PM Page 119

A common element of the Ruby development culture that’s crucial to understand is
the open source movement.

■Tip Feel free to skip this section and move on to “Where and How to Get Help” if you’re already
familiar with the concepts surrounding open source.

What Is Open Source?

If you’ve used Linux or downloaded certain types of software, you might be familiar with
the term “open source.” Simply, open source means that the source code to an applica-
tion or library is made available publicly for other people to look at and use. There might
be restrictions on what people can do with the code (generally via a license), but it’s pub-
licly viewable. Much like Linux, Ruby, along with nearly all its libraries, is released under
an open source license—in contrast to, say, Microsoft Windows, whose source code isn’t
readily available.

The terms of Ruby’s license don’t require that any applications you produce with
Ruby also need to be made open source. You can develop proprietary “closed source”
applications with Ruby and never let anyone else see the code. Choosing whether to
release your code as open source or not can be a tough decision. (You can read the full
text of Ruby’s license in Appendix B.)

There are often shades of gray in the open source versus closed source decision.
When 37signals developed the first Ruby on Rails–powered application, Basecamp, they
didn’t release the source openly, but they did extract the Ruby on Rails framework and
release that as open source. The result is that their company has received a lot of public-
ity, and 37signals has hired some great coders who worked on Ruby on Rails for free,
benefiting everybody. Software products such as the popular Apache Web server and the
MySQL database system are also available under varying open source licenses and are
routinely improved by unpaid coders.

The open source community is one of sharing knowledge freely and collaborating to
improve the systems and services that most of us use. Although proprietary software will
always have its place, open source is rapidly becoming the de facto way to develop pro-
gramming languages, libraries, and other non-application types of software.

Understanding open source is an important key to understanding the Ruby commu-
nity. Although many developers don’t necessarily open source the code to their
applications, they’ll often release the tools and code tricks to the community so that they
can benefit from the peer review and popularity that results.

CHAPTER 5 ■ THE RUBY ECOSYSTEM120

7664 CH05.qxd 2/13/07 1:13 PM Page 120

Releasing your code as open source isn’t necessarily a bad business decision. It could
actually improve the quality of your code and tools, and make you much better known in
the industry.

Where and How to Get Help
This book will help you learn all the essentials about Ruby and more besides, but it’s
often useful to get more timely or domain-specific assistance while coding. In this
section, you’ll look at a few ways that you can get assistance from the large community
of Ruby developers. (There’s also a more succinct and complete list of resources in
Appendix C that you might prefer for future reference.)

Mailing Lists

Mailing lists have always been popular havens for discussion about programming lan-
guages. Favored by the more technical members of any programming language’s culture,
they’re a good place to ask questions about the internals or future of the language, along
with esoteric queries that only a true language uber-geek could answer. They are not,
however, suited for basic queries.

Ruby has three official mailing lists for English speakers to which you can subscribe
as follows:

• ruby-talk: Deals with general topics and questions about Ruby

• ruby-core: Discussion of core Ruby issues, specifically about the development of
the language

• ruby-doc: Discussion of the documentation standards and tools for Ruby (rarely
used)

Further information about these lists is available at http://www.ruby-lang.org/
en/20020104.html, and a Web forum-style view of the ruby-talk mailing list is available
at http://www.nabble.com/ruby-talk-f13890.html.

Lists are also available in Japanese, French, and Portuguese, and these are similarly
listed on the first page in the preceding paragraph. The Japanese mailing lists, being
comprised of some of the most experienced Ruby developers, are often read by English
speakers using translation software. Information about this is also available at the afore-
mentioned Web page.

Usenet Newsgroups

Until about 2002, the newsgroup system (Usenet) was a common way for large groups of
people with a common interest to share and discuss their knowledge.

CHAPTER 5 ■ THE RUBY ECOSYSTEM 121

7664 CH05.qxd 2/13/07 1:13 PM Page 121

The advent of Google Groups allows easy access to the newsgroups, and often you
can get good answers from the other people using them. The newsgroups are better
suited to asking minor questions than the mailing lists, but if your question is considered
to be a “frequently asked question,” prepare to be warned.

Ruby’s primary newsgroup is comp.lang.ruby, and if you have no newsgroup software
installed, you can read it on the Web at http://groups.google.com/group/comp.lang.ruby.
As of 2006, the group still gets about 20 new posts a day and is actively used by a large
group of Ruby developers.

Internet Relay Chat (IRC)

Internet Relay Chat is a real-time Internet chat system that allows potentially thousands
of people to congregate into “channels” to discuss various topics. The immediacy of real-
time chat makes IRC suitable for quick questions, although participants are often
surprisingly willing to help users with deeper problems (see Figure 5-3 for an example of
an IRC channel in operation). The only downside is that you might get no response at all
and be left reading a conversation already in progress.

IRC has proven popular with Ruby developers, and there are two particularly notable
channels where almost–24-hour support for Ruby and Ruby on Rails is available as follows:

• For Ruby language discussion: #ruby-lang on the irc.freenode.net server

• For Ruby on Rails discussion: #rubyonrails on the irc.freenode.net server

Figure 5-3. A sample conversation in the Ruby on Rails IRC channel

CHAPTER 5 ■ THE RUBY ECOSYSTEM122

7664 CH05.qxd 2/13/07 1:13 PM Page 122

To use IRC, it’s necessary to download and install an IRC “client” onto your computer
that allows you to get onto the real-time IRC channels. Although the installation of this
software is beyond the scope of this book, I’d recommend these clients for Windows,
Linux, and OS X:

• Windows: mIRC (http://www.mirc.com)

• Mac OS X: Colloquy (http://colloquy.info/)

• Linux/Unix: XChat (http://www.xchat.org/)

Be sure to respect that other users in the channel are not solely there to answer your
questions; otherwise you might be deemed a “help vampire” and be ignored! However,
with care, you can easily talk to some of the biggest names in the Ruby world on these
channels.

■Note To learn more about IRC see http://en.wikipedia.org/wiki/Internet_Relay_Chat.

Documentation

There’s a significant amount of documentation available on the Web for Ruby developers.
The best documentation is the official reference documentation at http://www.ruby doc.
org/ that provides full, though often basic, coverage of the standard Ruby classes and the
most popular Ruby libraries and add-ins.

The API documentation for the current stable release of Ruby is available at
http://www.ruby-doc.org/core/. Produced automatically from the Ruby source code with
Ruby’s in-built documentation tool rdoc, the structure of the documentation isn’t imme-
diately obvious. Usually you can choose between viewing documentation for certain files
that make up Ruby, documentation for each different base class, or documentation for
certain methods. You don’t get a logical order to follow and there are no deep tutorials.
This sort of documentation is for reference purposes only.

Most Ruby libraries and applications use a similar scheme for their documentation,
and the links to this are made available on their official sites. For example, Ruby on Rails’
API documentation is available at http://api.rubyonrails.com/.

CHAPTER 5 ■ THE RUBY ECOSYSTEM 123

7664 CH05.qxd 2/13/07 1:13 PM Page 123

Forums

Forums make up some of the most popular Web sites on the Internet. Unlike newsgroups
or mailing lists, which tend to be the domain of more technical people, forums provide
extremely easy access to a non–real-time discussion on the Web. Forums are a particu-
larly good place to ask more basic questions and to get general advice.

Several Ruby forums are available to try:

• Ruby-Forum.com (http://www.ruby-forum.com/): Ruby-Forum.com provides a
forum-style view onto some of the popular Ruby mailing lists. This means it isn’t
a true forum in the strictest sense, but people used to forums will appreciate the
structure.

• Ruby Forums (http://www.rubyforums.com/forumdisplay.php?f=1): Ruby Forums is a
set of about 15 smaller forums that cover Ruby topics, from general discussion and
installation queries through to editors and Ruby on Rails.

• SitePoint Ruby Forums (http://www.sitepoint.com/forums/forumdisplay.php?f=227):
SitePoint is a popular Web development site that provides forums on multiple top-
ics and that launched a Ruby forum in October 2005. The forum is well populated
and friendly.

• Rails Forum (http://railsforum.com/): Rails Forum is a forum focused on Ruby on
Rails that began in May 2006 but that’s proven consistently popular. It’s particularly
friendly to beginners.

Joining the Community
One of the reasons for programming communities is so that people can get help from
others who are experienced with the language, but also to share knowledge and to
develop useful tools and documentation together. Solely “taking” from the community is
natural at the start of a developer’s experience with a new language, but it’s essential to
give something back once you’ve developed some knowledge of your own. Ruby develop-
ers are proud that their community is one of the friendliest and easiest to get involved
with, and there are a number of ways to make a mark.

Give Help to Others

In the previous section we looked at the ways that you can get help from other Ruby
developers, but once you’ve gained a certain amount of Ruby knowledge you’ll be able to
start helping people yourself. You can participate on the IRC chatrooms, forums, and

CHAPTER 5 ■ THE RUBY ECOSYSTEM124

7664 CH05.qxd 2/13/07 1:13 PM Page 124

mailing lists, and begin to answer some of the questions for those with lesser knowledge
than yourself.

Helping others isn’t always the selfless, time-consuming act it might seem at first.
Often, questions are asked that relate to your knowledge but require you to work out
something new or to identify a new solution to a problem you’ve already solved. My per-
sonal experience with helping people in the IRC chatrooms has been that my mind has
been constantly stretched. Although sometimes I might have the best answer, other
times I might give an inaccurate or confusing answer that’s then corrected by someone
else, helping me to gain a new insight.

Don’t be afraid to dive in and try to help others. If you feel your answer is right, even
if it’s not, it’s likely that several people will try to help, and the Ruby community is gener-
ally forgiving of such errors. In the Ruby community, effort is often prized above prowess.

Contribute Code

Once you begin to develop your own Ruby applications, you might find features missing
in the applications or libraries you wish to use, and you’ll either develop your own or
work on upgrading those that already exist. If a project is open source, you should be able
to supply your changes and upgrades back to the project, meaning that you improve the
quality of the software for the entire community. Other than benefiting others, this also
means your code is likely to be extended and improved itself, and you’ll be able to reap
even more benefit than if you kept your code to yourself.

All open source Ruby libraries and applications have someone who is in charge of
maintaining them, and if no guidance is provided on the project’s Web site, simply con-
tact the maintainer and see whether you can contribute your code.

Alternatively, if you don’t feel confident enough to supply code, but see large gaps in
the documentation for a project—perhaps even in Ruby itself—maintainers are often
ecstatic if you’ll supply documentation. You can learn more about how to document
Ruby programs in Chapter 7. Many coders aren’t good at documentation or don’t have
the time to complete it, so if you have a skill for it, contributing documentation to a
project could make you very popular indeed!

Weblogs

In the last few years it has become common for developers to maintain weblogs (also
known as blogs), Web sites that act somewhat like informal online diaries full of observa-
tions. Originally the conserve of diarists and philosophers, developer weblogs are now
extremely popular, and have proven instrumental in Ruby’s success.

It isn’t uncommon for Ruby developers to post newly found knowledge or useful
code snippets to their weblogs, and by subscribing to these weblogs you could extend
your Ruby knowledge every day. Seeing how hundreds of other programmers code and

CHAPTER 5 ■ THE RUBY ECOSYSTEM 125

7664 CH05.qxd 2/13/07 1:13 PM Page 125

solve problems helps extend your mindset, and often the ideal code snippet or Ruby trick
will appear on someone’s weblog at just the right time.

Hundreds of weblogs are maintained by Ruby developers, but the following are some
of the most popular or Ruby specific:

• Ruby Inside (http://www.rubyinside.com/): The semi-official site for this book. Ruby
Inside is a blog posting daily links to interesting Ruby news, code, and tutorials
found all around the Web. Ideally suited for beginners and experts alike.

• RedHanded (http://redhanded.hobix.com/): A blog maintained by the charismatic
Ruby developer whytheluckystiff. The blog tends to focus on clever Ruby tricks and
cutting-edge Ruby news, and is a favorite among advanced Ruby developers.

• Yukihiro Matsumoto’s Blog (http://www.rubyist.net/~matz/): Because he’s the main
developer of Ruby, many users like to check out Matz’s blog. It’s in Japanese
though, but there are often interesting snippets of code or presentations to look at.

• Planet Ruby On Rails (http://www.planetrubyonrails.com/): If you don’t have time to
read many different blogs, Planet Ruby On Rails aggregates most of the best Ruby
blogs into a single page. Despite the name, its Ruby coverage is strong, although it
tries to focus on Rails.

By visiting these weblogs you’ll quickly learn about hundreds of other Ruby
resources, tricks, and sources of documentation. If you comment on these sites and
begin to update a weblog yourself with your experiences of Ruby, you’ll quickly become
established in the Ruby community.

Summary
In this chapter we’ve taken a break from coding to focus on the culture, community, and
“ecosystem” surrounding the Ruby language. Understanding the larger world around the
Ruby language is extremely useful, as it’s from this community that most developers will
get assistance, advice, code, and even paying work.

Being able to get help and give help in return benefits the community, helps the
cause of Ruby to progress, and ultimately helps with your own programming skills.

The Ruby community is important and friendly to new Ruby developers, making it
ideal to get involved as soon as possible when you begin to learn Ruby. Make sure you
use the resources the community provides to the fullest as you learn Ruby and begin to
develop applications. A single book cannot turn anyone into a Ruby expert, but a collec-
tion of valuable resources and participation in the community can.

Refer to Appendix C for a large collection of URLs and links to other Ruby resources
that are available online.

CHAPTER 5 ■ THE RUBY ECOSYSTEM126

7664 CH05.qxd 2/13/07 1:13 PM Page 126

The Core of Ruby

This part of the book walks you through the remaining essential elements of Ruby and

goes into more detail about some previously seen aspects of the language. By the end of

Part 2, you’ll be able to develop Ruby applications complete with complex class and object

arrangements of your own; know how to test, document, and deploy them; and use data-

bases and external data sources to feed your applications.

P A R T 2

7664 CH06.qxd 2/13/07 1:20 PM Page 127

7664 CH06.qxd 2/13/07 1:20 PM Page 128

Classes, Objects, and Modules

In Chapter 2 we dove straight into the principles of object orientation, the method of
representing concepts in Ruby by using classes and objects. Since then we’ve looked at
Ruby’s standard classes, such as String and Array; worked with them; and then branched
off to look at Ruby’s logic and other core features.

In this chapter the focus is back onto object orientation, but rather than looking at
the concepts from afar, we’ll be getting into the details. We’ll look at why classes and
objects behave the way they do, why object orientation is a viable development tool, how
you can implement classes to match your own requirements, and how to override and
extend the classes Ruby provides by default. Finally, you’ll implement a basic “dungeon”
in text adventure form to demonstrate how myriad real-life concepts can combine into
an easily maintainable set of interconnected classes.

Why Use Object Orientation?
Object orientation is not the only development style with which to develop software. The
procedural style of programming predates it, and continues to be used in languages such
as C. Whereas object orientation dictates that you define concepts and processes as
classes from which you can create objects, programming procedurally means you focus
on the steps required to complete a task instead, without paying particular attention to
how the data is managed.

Imagine two developers within a single software development company who are vying
to be respected as the most knowledgeable programmer in the company. Capitalizing on
the rivalry, their boss issues both of them the same tasks and uses the best code in each
case. There’s only one difference between the two programmers. One follows the principles
of object-oriented development, and the other is a procedural programmer coding without
using classes and objects.

For a forthcoming project, the boss demands some code that can work out the perime-
ter and area of various shapes. He says the shapes required are squares and triangles.

129

C H A P T E R 6

7664 CH06.qxd 2/13/07 1:20 PM Page 129

The procedural programmer rushes away and quickly comes up with four obvious
routines:

def perimeter_of_square(side_length)

side_length * 4

end

def area_of_square(side_length)

side_length * side_length

end

def perimeter_of_triangle(side1, side2, side3)

side1 + side2 + side3

end

def area_of_triangle(base_width, height)

base_width * height / 2

end

■Note Remember, it’s not necessary to use return to return values from methods in Ruby. The last
expression within the method is used as the return value by default.

Finishing first, the procedural programmer is sure his code will be chosen.
The object-oriented programmer takes longer. He recognizes that the specifications

might change in future, and that it would be useful to define a Shape class and then create
classes that would inherit from Shape. This would mean that if extra features needed to be
added to shapes in general, the code would be ready. He submits his initial solution:

class Shape

end

class Square < Shape

def initialize(side_length)

@side_length = side_length

end

def area

@side_length * @side_length

end

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES130

7664 CH06.qxd 2/13/07 1:20 PM Page 130

def perimeter

@side_length * 4

end

end

class Triangle < Shape

def initialize(base_width, height, side1, side2, side3)

@base_width = base_width

@height = height

@side1 = side1

@side2 = side2

@side3 = side3

end

def area

@base_width * @height / 2

end

def perimeter

@side1 + @side2 + @side3

end

end

■Note This code might seem complex and alien at this time, but we’ll be covering the techniques used
here later in this chapter. For now, simply recognize the structure of laying down classes and methods, as
covered in Chapter 2.

The procedural programmer scoffs at the object-oriented solution. “Why all the
pointless assignments of data?” he mocks. “That object-oriented code is 90% structure
and 10% logic!”

The boss is impressed by the shortness of the procedural code, but decides to try
them out for himself. He quickly spots a big difference:

puts area_of_triangle(6,6)

puts perimeter_of_square(5)

18

20

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES 131

7664 CH06.qxd 2/13/07 1:20 PM Page 131

my_square = Square.new(5)

my_triangle = Triangle.new(6, 6, 7.81, 7.81, 7.81)

puts my_square.area

puts my_square.perimeter

puts my_triangle.area

puts my_triangle.perimeter

25

20

18

23.43

The boss notices that with the object-oriented code, he can create as many shapes as
he wants in a logical way, whereas the procedural code expects him to have a mental note
of the shapes he wants to work with. He isn’t without his concerns, though.

“More lines of code means more time required,” he says. “Is it worth taking the
object-oriented route if it means more lines of code, more time, and more hassles?”

The object-oriented developer has heard this complaint before, and immediately
springs into action. “Try dealing with a large number of random shapes,” he says.

The boss isn’t entirely up to date with modern development trends, but when he dis-
covers that many new types of shapes can be produced easily by copying and pasting the
existing classes with some minor tweaks, he begins to be won over. He also realizes that if
a shape could be stored as an object referenced by a single variable, and that if each
shape class accepted the same methods, the type of shape presented wouldn’t matter. He
could call the perimeter or area method on any shape without worry. The procedural
code, on the other hand, is just a jumble of different routines, and the developer would
be forced to keep track of the different types of shapes to know which procedures to run.
The Shape class also provides a way to give general functionality to all the different types
of shapes if it’s necessary in future. The boss knows which code to choose!

“Object-oriented code requires a little more setup, but when it comes to scaling that
code to fit real-life requirements, there’s no contest!” he says.

The basic advantage with object-oriented programming is that even if there’s more
structure involved in setting up your code, it’s easy for a nonexpert to understand how
classes and objects relate, and it’s easier to maintain and update the code to deal with
real-life situations.

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES132

7664 CH06.qxd 2/13/07 1:20 PM Page 132

Object Orientation Basics
Let’s recap our basic knowledge of classes and objects that we learned over the past few
chapters:

A class is a blueprint for objects. You only have one class called Shape, but with it you
can create multiple instances of shapes (shape objects), all of which have the methods
and attributes defined by the Shape class.

An object is an instance of a class. If Shape is the class, then x = Shape.new creates a
new Shape instance and assigns the object to the variable x. You would then say x is a
Shape object, or an object of class Shape.

Local, Global, Object, and Class Variables

In Chapter 2 you created some classes and added methods to them. To recap, here’s a
simple demonstration of a class with two methods, and how to use it. First, here’s the
class itself:

class Square

def initialize(side_length)

@side_length = side_length

end

def area

@side_length * @side_length

end

end

Next, let’s create some square objects and use their area methods:

a = Square.new(10)

b = Square.new(5)

puts a.area

puts b.area

100

25

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES 133

7664 CH06.qxd 2/13/07 1:20 PM Page 133

The first method—and when I say “first,” I mean the first method in our example; the
actual order of methods in code is irrelevant—in the Square class is initialize. initialize
is a special method that’s called when a new object based on that class is created. When
you call Square.new(10), the Square class creates a new object instance of itself, and then
calls initialize upon that object.

In this case, initialize accepts side_length as an argument, as passed through from
Square.new(10), and assigns the number 10 to a variable called @side_length. The @ symbol
before the variable name is important in this case. But why? To understand why some
variables are prefixed with certain symbols requires understanding that there are multi-
ple types of variables, such as local, global, object, and class variables.

Local Variables

In previous examples you’ve created variables simply, like so:

x = 10

puts x

10

In Ruby, this sort of basic variable is called a local variable. It can only be used in the
same place as where it is defined. If you jump to using an object’s methods or a separate
method of your own, the variable x doesn’t come with you. It’s considered to be local in
scope. That is, it’s only present within the local area of code. Here’s an example that
demonstrates this:

def basic_method

puts x

end

x = 10

basic_method

This example defines x to equal 10, and then jumps to a local method called
basic_method. If you ran this code through irb, you would get an error like this:

NameError: undefined local variable or method `x' for main:Object

from (irb):2:in `basic_method'

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES134

7664 CH06.qxd 2/13/07 1:20 PM Page 134

What’s happening is that when you jump to basic_method, you’re no longer in the
same scope as the variable x that you created. Because x is a local variable, it only exists
where it was defined. To avoid this problem, it’s important to remember to use only local
variables where they’re being directly used, as this is what they’re really for.

Here’s an example where you have two local variables with the same name but in
different scopes:

def basic_method

x = 50

puts x

end

x = 10

basic_method

puts x

50

10

This demonstrates that local variables live entirely in their original scope. You set x to
10 in the main code, and set x to 50 inside the method, but x is still 10 when you return to
the original scope. The x variable inside basic_method is not the same x variable that’s out-
side of the method. They’re separate variables, distinct within their own scopes.

Global Variables

In direct opposition to local variables, Ruby can also use global variables. Much as their
name suggests, global variables are available from everywhere within an application,
including inside classes or objects.

Global variables can be useful, but aren’t commonly used in Ruby. They don’t mesh
well with the ideals of object-oriented programming, as once you start using global vari-
ables across an application, your code is likely to become dependent on them. Because the
ability to separate blocks of logic from one another is a useful aspect of object-oriented
programming, global variables are not favored. However, I’ll touch on global variables
again later in this book, so it’s useful to know how they’re constructed.

You define global variables by putting a dollar sign ($) in front of the variable name,
like so:

def basic_method

puts $x

end

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES 135

7664 CH06.qxd 2/13/07 1:20 PM Page 135

$x = 10

basic_method

10

$x is defined as a global variable, and you can use it anywhere in your application.

Instance Variables

Where local variables are specific to the local scope, and global variables have global
scope, object variables are so named because they have scope within, and are associated
to, the current object. A demonstration of this concept was shown at the start of this
section with the Square class:

class Square

def initialize(side_length)

@side_length = side_length

end

def area

@side_length * @side_length

end

end

Object variables are prefixed with an @ symbol. In the Square class, you assign the
side_length provided to the class to @side_length. @side_length, as an object variable, is
then accessible from any other method inside that object. That’s how the area method
can then use @side_length to calculate the area of the square represented by the object:

a = Square.new(10)

b = Square.new(5)

puts a.area

puts b.area

100

25

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES136

7664 CH06.qxd 2/13/07 1:20 PM Page 136

The results are different, even though the code to work out the area in both cases is
@side_length * @side_length. This is because @side_length is an object variable associated
only with the current object or instance.

■Tip If you didn’t fully understand the Shape/Square/Triangle example at the start of this chapter, now
would be a good time to look back at it, as it used several object variables to develop its functionality.

Class Variables

The last major type of variable is the class variable. The scope of a class variable is within
the current class, as opposed to within specific objects of that class. Class variables start
with two @ symbols (@@) as opposed to the single @ symbol of object variables.

Class variables are particularly useful for storing information relevant to all objects
of a certain class. For example, you could store the number of objects created so far in a
certain class using a class variable like so:

class Square

def initialize

if defined?(@@number_of_squares)

@@number_of_squares += 1

else

@@number_of_squares = 1

end

end

end

Because @@number_of_squares is a class variable, it’s already defined each time you
create a new object (except for the first time, but that’s why you check to see if it’s
defined, and if not, give it an initial value of 1).

■Note In Chapter 3 you learned about the ternary operator, and that can be used to simplify the above
method down to @@number_of_squares = defined?(@@number_of_squares) ?
@@number_of_squares + 1 : 1

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES 137

7664 CH06.qxd 2/13/07 1:20 PM Page 137

Class Methods vs. Object Methods

In your Square class you defined two methods: initialize and area. Both are object
methods, as they relate to, and operate directly upon, an object. Here’s the code again:

class Square

def initialize(side_length)

@side_length = side_length

end

def area

@side_length * @side_length

end

end

Once you’ve created a square with s = Square.new(10), you can use s.area to get back
the area of the square represented by s. The area method is made available in all objects
of class Square, so it’s considered to be an object method.

However, methods are not just useful to have available on object instances. It can be
useful to have methods that work directly upon the class itself. In the previous section
you used a class variable to keep a count of how many square objects had been created,
and it would be useful to access the @@number_of_squares class variable in some way other
than through Square objects.

Here’s a simple demonstration of a class method:

class Square

def self.test_method

puts "Hello from the Square class!"

end

def test_method

puts "Hello from an instance of class Square!"

end

end

Square.test_method

Square.new.test_method

Hello from the Square class!

Hello from an instance of class Square!

This class has two methods. The first is a class method, and the second is an instance
method, although both have the same name of test_method. The difference is that

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES138

7664 CH06.qxd 2/13/07 1:20 PM Page 138

the class method is denoted with self., where self represents the current class, so
def self.test_method defines the method as being specific to the class. However, with
no prefix, methods are automatically instance methods.

Alternatively, you could define the method like so:

class Square

def Square.test_method

puts "Hello from the Square class!"

end

end

The style you use (ClassName.method_name versus self.method_name) comes down to
personal preference. Using self.method_name (as in self.test_method) doesn’t require you
to restate the class name over and over, but ClassName.method_name (as in Square.test_
method) is a closer match to what you’ll be using to call that method later on.

■Note Throughout the rest of this book, I’ll use the ClassName.method_name style, but you can use
whichever style you like in your own code.

Class methods give you the mechanism to properly implement the “object counter”
hinted at earlier:

class Square

def initialize

if defined?(@@number_of_squares)

@@number_of_squares += 1

else

@@number_of_squares = 1

end

end

def Square.count

@@number_of_squares

end

end

Let’s give it a try:

a = Square.new

puts Square.count

b = Square.new

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES 139

7664 CH06.qxd 2/13/07 1:20 PM Page 139

puts Square.count

c = Square.new

puts Square.count

1

2

3

Notice you don’t refer to a, b, or c at all to get the count. You just use the Square.count
class method directly. Consider it as if you’re “asking the class” to do something that’s
relevant to the class as a whole, rather than asking the objects.

Inheritance

One of the most interesting object-oriented programming concepts is inheritance, as it
allows you to generate a taxonomy of classes and objects. If you consider all living things
as a class called LivingThing (see Figure 6-1), under that class you could have (and let’s
keep this simple, biologists!) Plant and Animal classes. Under Animal you’d have Mammal,
Fish, Amphibian, and so forth. Digging into Mammal, you could work through Primate and
Human. A Human is a living thing, a Human is an Animal, a Human is a Mammal, and so forth, but
each level down is more specific and targeted than that above it. This is class inheritance
in action! The same system applied to the Shape example where Triangle and Square
inherited directly from Shape.

Figure 6-1. An example of a hierarchy of “living things”

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES140

7664 CH06.qxd 2/13/07 1:20 PM Page 140

The benefit of inheritance is that classes lower down the hierarchy get the features of
those higher up, but can also add specific features of their own. The basic “all living
things” class is so generic that the only functionality you could give to it is a basic “living
or dead” method. However, at the animal level, you could add methods such as eat,
excrete, or breathe. At the human level you’d inherit all this functionality but be able to
add human methods and qualities such as sing, dance, and love.

Ruby’s inheritance features are similarly simple. Any class can inherit the features
and functionality of another class, but a class can only inherit from a single other class.
Some other languages support multiple inheritance, a feature that allows classes to
inherit features from multiple classes, but Ruby doesn’t support this. Multiple inheritance
can cause some confusing situations—for instance, classes could inherit from one
another in an endless loop—and the efficacy of multiple inheritance is debatable.

Let’s look at how inheritance works in code form:

class ParentClass

def method1

puts "Hello from method1 in the parent class"

end

def method2

puts "Hello from method2 in the parent class"

end

end

class ChildClass < ParentClass

def method2

puts "Hello from method2 in the child class"

end

end

my_object = ChildClass.new

my_object.method1

Hello from method1 in the parent class

my_object.method2

Hello from method2 in the child class

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES 141

7664 CH06.qxd 2/13/07 1:20 PM Page 141

First you create the ParentClass with two methods, method1 and method2. Then
you create ChildClass and make it inherit from ParentClass using the ChildClass
< ParentClass notation. Last, you create an object instance of ChildClass and call its
method1 and method2 methods.

The first result demonstrates inheritance perfectly. ChildClass has no method1 of its
own, but because it has inherited from ParentClass, and ParentClass has a method1, it
uses it.

However, in the second case, ChildClass already has a method2 method, so the method2
method supplied by the parent class is ignored. In many cases, this is ideal behavior, as it
allows your more specific classes to override behavior provided by more general classes.
However, in some situations you might want a child method to call an inherited method
and do something with the result.

Consider some basic classes that represent different types of people:

class Person

def initialize(name)

@name = name

end

def name

return @name

end

end

class Doctor < Person

def name

"Dr. " + super

end

end

In this case you have a Person class that implements the basic functionality of storing
and returning a person’s name. The Doctor class inherits from Person and overrides the
name method. Within the name method for doctors, it returns a string starting with Dr.,
appended with the name as usual. This occurs by using super, which looks up the inheri-
tance chain and calls the method of the same name on the next highest class. In this
example, you only have two tiers, so using super within the name method in Doctor then
uses the name method in Person.

The benefit of using inheritance in this way is that you can implement generic func-
tionality in generic classes, and then only implement the specific functionality that more
specific child classes require. This saves a lot of repetition and means that if you make
changes to the parent classes, child classes will inherit these changes too. A good exam-
ple of this might be if you changed Person to take two arguments, firstname and lastname.

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES142

7664 CH06.qxd 2/13/07 1:20 PM Page 142

The Doctor class wouldn’t need to be changed at all to support this change. With one child
class this doesn’t seem too important, but when you have hundreds of different classes in
an application, it pays to cut down on repetition!

■Note The concept of cutting down on repetition is commonly called DRY, meaning Don’t Repeat Yourself.
If you can code something once and reuse it from multiple places, that’s usually the best way to be DRY.

Overriding Existing Methods

Because it’s a dynamic language, one clever thing you can do with Ruby is override
existing classes and methods. For example, consider Ruby’s String class. As covered in
Chapter 3, if you create a string, you end up with an object of class String; for example:

x = "This is a test"

puts x.class

String

You can call a number of different methods upon the String object stored in x:

puts x.length

puts x.upcase

14

THIS IS A TEST

Let’s stir things up a bit by overriding the length method:

class String

def length

20

end

end

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES 143

7664 CH06.qxd 2/13/07 1:20 PM Page 143

Many newcomers to Ruby, even experienced developers, initially fail to believe this
will work, but the results are exactly as the code dictates:

puts "This is a test".length

puts "a".length

puts "A really long line of text".length

20

20

20

Some libraries and extensions (add-ons) to Ruby override the methods supplied by
the core classes to extend the functionality of Ruby in general. However, this demonstra-
tion shows why it’s always necessary to tread with caution and be aware of what’s going
on in your application. If you were relying on being able to measure the length of strings,
and the length method gets overridden, you’re going to have a hard time!

You should also note that you can override your own methods. In fact, you’ve proba-
bly been doing it a lot already by following these examples in irb:

class Dog

def talk

puts "Woof!"

end

end

my_dog = Dog.new

my_dog.talk

Woof!

class Dog

def talk

puts "Howl!"

end

end

my_dog.talk

Howl!

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES144

7664 CH06.qxd 2/13/07 1:20 PM Page 144

In this example, you created a basic class with a simple method, then reopened that
class and redefined a method on the fly. The results of the redefinition were made effec-
tive immediately, and my_dog began to howl as a result.

This ability to reopen classes and add and redefine methods is relatively unique
among object-oriented languages. Although it allows you to perform a number of inter-
esting tricks (some of which you’ll see in action later), it can also cause the same sections
of code to act in different ways depending on whether certain classes upon which you
depend were changed in the application, as demonstrated by your redefinition of String’s
length method previously.

■Note You might have noticed this class-reopening technique in action in some of our earlier examples
where you created methods in one example, only to add new methods in a later example. If running under
irb or within the same program, reopening a class lets you add new methods or change old ones without
losing anything.

Reflection and Discovering an Object’s Methods

Reflection is the name of the process by which a computer program can inspect, analyze,
and modify itself while it’s running and being used. Ruby takes reflection to an extreme,
and allows you to change the functionality of great swathes of the language itself while
running your own code.

It’s possible to query almost any object within Ruby for the methods that are defined
within it. This is another part of reflection.

a = "This is a test"

puts a.methods.join(' ')

methods instance_eval % rindex map << split any? dup sort strip size

instance_variables downcase min gsub! count include? succ! instance_of? extend

downcase! intern squeeze! eql? * next find_all each rstrip! each_line + id sub

slice! hash singleton_methods tr replace inject reverse taint unpack sort_by

lstrip frozen? instance_variable_get capitalize max chop! method kind_of?

capitalize! scan select to_a display each_byte type casecmp gsub protected_methods

empty? to_str partition tr_s tr! match grep rstrip to_sym instance_variable_set

next! swapcase chomp! is_a? swapcase! ljust respond_to? between? reject to_supto

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES 145

7664 CH06.qxd 2/13/07 1:20 PM Page 145

hex sum class object_id reverse! chop <=> insert < tainted? private_methods ==

delete dump === __id__ member? tr_s! > concat nil? untaint succ find strip!

each_with_index >= to_i rjust <= send index collect inspect slice oct all? clone

length entries chomp =~ public_methods upcase sub! squeeze __send__ upcase!crypt

delete! equal? freeze detect zip [] lstrip! center []= to_f

The methods method on any object (unless it has been overridden, of course!) returns
an array of methods made available by that object. Due to Ruby’s heavily object-oriented
structure, that’s usually a significantly larger number of methods than those you have
specifically defined yourself!

The results reveal some other reflective methods too. For example, protected_methods,
private_methods, and public_methods all reveal methods encapsulated in different ways
(more on this in the next section).

Another interesting method is instance_variables. It returns the names of any
instance variables associated with an instance (as opposed to class variables):

class Person

attr_accessor :name, :age

end

p = Person.new

p.name = "Fred"

p.age = 20

puts p.instance_variables.inspect

["@age", "@name"]

At this stage you might not see the value in these reflective methods, but as you
progress toward becoming a Ruby guru, they’ll become more important. This book
doesn’t go deeply into the arts of metaprogramming and advanced reflective techniques,
as although they’re interesting topics, they aren’t widely used until you reach a significant
level of competence, and are therefore beyond the scope of a beginner’s book.

Encapsulation

Encapsulation is the ability for an object to have certain methods and attributes available
for use publicly (from any section of code), but for others to be visible only within the
class itself or by other objects of the same class.

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES146

7664 CH06.qxd 2/13/07 1:20 PM Page 146

■Note At a more technical level, encapsulation refers to the ability of objects to hide their constituent data
behind an abstracted interface, and this ability is implicitly considered here.

The rationale for encapsulation is that you should make as few methods available
from your classes as possible, so that even if you choose to rewrite the internals of your
classes, you can maintain a few methods that interface between other elements of your
system and your classes and objects. Encapsulation helps you keep a lot of functionality
within your classes, but gives you the security of only having a few ways for the outside
world to manipulate your object’s data. This can allow you to extend and change your
classes without the worry that other elements of your application will break.

Here’s an example class that represents a person:

class Person

def initialize(name)

set_name(name)

end

def name

@first_name + ' ' + @last_name

end

def set_name(name)

first_name, last_name = name.split(/\s+/)

set_first_name(first_name)

set_last_name(last_name)

end

def set_first_name(name)

@first_name = name

end

def set_last_name(name)

@last_name = name

end

end

In previous examples, you would have written this with a single attr_accessor :name
and simply assigned the name to an object variable. Unfortunately, though, real-life
constraints often require a different approach.

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES 147

7664 CH06.qxd 2/13/07 1:20 PM Page 147

In this case, the first name and last name are stored separately within each Person
object, in object variables called @first_name and @last_name. When a Person object is
created, the name is split into two halves and each is assigned to the correct object vari-
able by set_first_name and set_last_name, respectively. One possible reason for such a
construction could be that although you want to work with complete names in your
application, the database design might demand you have first names and last names in
separate columns. Therefore, you need to hide this difference by handling it in the class
code, as in the preceding code.

■Note A side benefit of this approach is also that you can perform checks on the data before assigning it
to the object variables. For example, in the set_first_name and set_last_name methods, you could
check that the names contain enough characters to be considered valid names. If not, you can then raise an
error.

The code appears to work fine:

p = Person.new("Fred Bloggs")

puts p.name

Fred Bloggs

However, it appears you still have some problems:

p = Person.new("Fred Bloggs")

p.set_last_name("Smith")

puts p.name

Fred Smith

Uh-oh! You wanted to abstract the first name/last name requirement and only allow
full names to be set or retrieved. However, the set_first_name and set_last_name are still
public and you can use them directly from any code where you have Person objects. Luck-
ily, encapsulation lets you solve the problem:

class Person

def initialize(name)

set_name(name)

end

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES148

7664 CH06.qxd 2/13/07 1:20 PM Page 148

def name

@first_name + ' ' + @last_name

end

private

def set_name(name)

first_name, last_name = name.split(/\s+/)

set_first_name(first_name)

set_last_name(last_name)

end

def set_first_name(name)

@first_name = name

end

def set_last_name(name)

@last_name = name

end

end

The only difference to the Person class from the first time you created it is that the
keyword private has been added. What private does is tell Ruby that any methods
declared in this class from there on should be kept “private.” This means that only code
within the object’s methods can access those private methods, whereas code outside of
the class cannot. For example, this code no longer works:

p = Person.new("Fred Bloggs")

p.set_last_name("Smith")

NoMethodError: private method 'set_last_name' called for #<Person:0x337b68

@last_name="Bloggs", @first_name="Fred">

The opposite of the private keyword is public. You could put private before one
method, but then revert back to public methods again afterwards using public, like so:

class Person

def anyone_can_access_this

...

end

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES 149

7664 CH06.qxd 2/13/07 1:20 PM Page 149

private

def this_is_private

...

end

public

def another_public_method

...

end

end

You can also use private as a command by passing in symbols representing the
methods you want to keep private, like so:

class Person

def anyone_can_access_this; ...; end

def this_is_private; ...; end

def this_is_also_private; ...; end

def another_public_method; ...; end

private :this_is_private, :this_is_also_private

end

■Note Ruby supports ending lines with semicolons (;) and allows you to put multiple lines of code onto a
single line (for example, x = 10; x += 1; puts x). In this case, it’s been done to save on lines of code in
the example, although it’s not considered good style in production-quality Ruby code.

The command tells Ruby that this_is_private and this_is_also_private are to be
made into private methods. Whether you choose to use private as a directive before
methods, or as a command specifying the method names directly, is up to you, and is
another of many technically unimportant stylistic decisions you’ll make as a Ruby pro-
grammer. However, it’s important to note that in the preceding example the private
declaration has to come after the methods are defined.

Ruby supports a third form of encapsulation (other than public and private) called
protected that makes a method private, but within the scope of a class rather than within
a single object. For example, you were unable to directly call a private method outside the

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES150

7664 CH06.qxd 2/13/07 1:20 PM Page 150

scope of that object and its methods. However, you can call a protected method from the
scope of the methods of any object that’s a member of the same class:

class Person

def initialize(age)

@age = age

end

def age

@age

end

def age_difference_with(other_person)

(self.age - other_person.age).abs

end

protected :age

end

fred = Person.new(34)

chris = Person.new(25)

puts chris.age_difference_with(fred)

puts chris.age

9

:20: protected method `age' called for #<Person:0x1e5f28 @age=25>

(NoMethodError)

The preceding example uses a protected method so that the age method cannot be
used directly, except within any method belonging to an object of the Person class. How-
ever, if age were made private, the preceding example would fail because other_person.age
would be invalid. That’s because private makes methods accessible only by methods of a
specific object.

Note that when you use age directly, on the last line, Ruby throws an exception.

Polymorphism

Polymorphism is the concept of writing code that can work with objects of multiple types
and classes at once. For example, the + method works for adding numbers, joining

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES 151

7664 CH06.qxd 2/13/07 1:20 PM Page 151

strings, and adding arrays together. What + does depends entirely on what type of things
you’re adding together.

Here’s a Ruby interpretation of a common demonstration of polymorphism:

class Animal

attr_accessor :name

def initialize(name)

@name = name

end

end

class Cat < Animal

def talk

"Meaow!"

end

end

class Dog < Animal

def talk

"Woof!"

end

end

animals = [Cat.new("Flossie"), Dog.new("Fido"), Cat.new("Tinkle")]

animals.each do |animal|

puts animal.talk

end

Meaow!

Woof!

Meaow!

In this example, you define three classes: an Animal class, and Dog and Cat classes that
inherit from Animal. In the code at the bottom, you create an array of various animal
objects: two Cat objects and a Dog object (whose names are all processed by the generic
initialize method from the Animal class).

Next, you iterate over each of the animals, and on each loop you place the animal
object into the local variable, animal. Last, you run puts animal.talk for each animal in

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES152

7664 CH06.qxd 2/13/07 1:20 PM Page 152

turn. As the talk method is defined on both the Cat and Dog class, but with different
output, you get the correct output of two “Meaow!”s and two “Woof!”s.

This demonstration shows how you can loop over and work upon objects of different
classes, but get the expected results in each case if each class implements the same
methods.

If you were to create new classes under the Cat or Dog classes with inheritance (for
example, class Labrador < Dog), then Labrador.new.talk would still return “Woof!” thanks
to inheritance.

Some of Ruby’s built-in standard classes (such as Array, Hash, String, and so on) have
polymorphic methods of their own. For example, you can call the to_s method on many
built-in classes to return the contents of the object as a string:

puts 1000.to_s

puts [1,2,3].to_s

puts ({ :name => 'Fred', :age => 10 }).to_s

1000

123

age10nameFred

The output isn’t particularly useful in this case, but being able to rely on most objects
to return a string with to_s comes in particularly useful in many situations.

Nested Classes

In Ruby, it’s possible to place classes within other classes. These are called nested classes.
Nested classes are useful when a class depends on other classes, but those classes aren’t
necessarily useful anywhere else. They can also be useful when you want to separate
classes into groups of classes rather than keep them all distinct. Here’s an example:

class Drawing

class Line

end

class Circle

end

end

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES 153

7664 CH06.qxd 2/13/07 1:20 PM Page 153

Nested classes are defined in the same way as usual. However, they’re used differ-
ently.

From within Drawing, you can access the Line and Circle classes directly, but from
outside the Drawing class, you can only access Line and Circle as Drawing::Line and
Drawing::Circle. For example:

class Drawing
def Drawing.give_me_a_circle
Circle.new

end

class Line
end

class Circle
def what_am_i
"This is a circle"

end
end

end

a = Drawing.give_me_a_circle
puts a.what_am_i
a = Drawing::Circle.new
puts a.what_am_i
a = Circle.new
puts a.what_am_i

This is a circle

This is a circle

NameError: uninitialized constant Circle

a = Drawing.give_me_a_circle calls the give_me_a_circle class method, which returns
a new instance of Drawing::Circle. Next, a = Drawing::Circle.new gets a new instance of
Drawing::Circle directly, whereas it doesn’t succeed because Circle doesn’t exist. That’s
because as a nested class under Drawing, it’s known as Drawing::Circle instead.

You’re going to use nested classes in a project at the end of this chapter, where you’ll
see how they work in the scope of an entire program.

The Scope of Constants

In Chapter 3 you looked at constants: special variables whose value(s) are unchanging
and permanent throughout an application, such as Pi = 3.141592. Here’s an example:

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES154

7664 CH06.qxd 2/13/07 1:20 PM Page 154

def circumference_of_circle(radius)

2 * Pi * radius

end

Pi = 3.141592

puts circumference_of_circle(10)

31.41592

In this sense, a constant appears to work like a global variable, but it’s not.
Constants are defined within the scope of the current class and are made available to
all child classes, unless they’re overridden. For example:

Pi = 3.141592

class OtherPlanet

Pi = 4.5

def OtherPlanet.circumference_of_circle(radius)

radius * 2 * Pi

end

end

puts OtherPlanet.circumference_of_circle(10)

90.0

puts OtherPlanet::Pi

4.5

puts Pi

3.141592

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES 155

7664 CH06.qxd 2/13/07 1:20 PM Page 155

This example demonstrates that constants have scope within the context of classes.
The OtherPlanet class has its own definition of Pi. However, if you hadn’t redefined it
there, the original Pi would have been available to OtherPlanet, as the OtherPlanet class is
defined within the global scope.

The second section of the preceding example also demonstrates that you can inter-
rogate constants within other classes directly. OtherPlanet::Pi refers directly to the Pi
constant within OtherPlanet.

Modules, Namespaces, and Mix-Ins
Modules provide a structure to collect Ruby classes, methods, and constants into a single,
separately named and defined unit. This is useful so you can avoid clashes with existing
classes, methods, and constants, and also so that you can add (mix in) the functionality
of modules into your classes. First, we’ll look at how to use modules to create namespaces
to avoid name-related clashes.

Namespaces

One common feature used in Ruby is the ability to include code situated in other files
into the current program (this is covered in depth in the next chapter). When including
other files, you can quickly run into conflicts, particularly if files or libraries you’re
including then include multiple files of their own. You cannot guarantee that no file that’s
included (or one that’s included in a long chain of includes) will clash with code you’ve
already written or processed.

Take this example:

def random

rand(1000000)

end

puts random

The random method returns a random number between 0 and 999,999. This method
could be in a remote file where it’s easily forgotten, which would cause problems if you
had another file you included using require that implemented a method like so:

def random

(rand(26) + 65).chr

end

This random method returns a random capital letter.

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES156

7664 CH06.qxd 2/13/07 1:20 PM Page 156

■Note (rand(26) + 65).chr generates a random number between 0 and 25 and adds 65 to it, giving a
number in the range of 65 to 90. The chr method then converts a number into a character using the ASCII
standard where 65 is A, through to 90, which is Z. You can learn more about the ASCII character set at
http://en.wikipedia.org/wiki/ASCII, or refer to Chapter 3 where this topic was covered in more
detail.

Now you have two methods called random. If the first random method is in a file called
number_stuff.rb and the second random method is in a file called letter_stuff.rb, you’re
going to hit problems:

require 'number_stuff'

require 'letter_stuff'

puts random

Which version of the random method is called?

■Note require is the Ruby statement used to load in code contained within another file. This is covered
in detail in the next chapter.

As the last file loaded, it turns out to be the latter version of random, and a random let-
ter should appear onscreen. Unfortunately, however, it means your other random method
has been lost.

This situation is known as a name conflict, and it can happen in even more gruesome
situations than the simplistic example shown in the preceding code. For example, class
names can clash similarly, and you could end up with two classes mixed into one by acci-
dent. If a class called Song is defined in one external file, and then defined in a second
external file, the class Song available in your program will be a dirty mix of the two. Some-
times this might be the intended behavior, but in other cases this can cause significant
problems.

Modules help to solve these conflicts by providing namespaces that can contain any
number of classes, methods, and constants, and allow you to address them directly. For
example:

module NumberStuff

def NumberStuff.random

rand(1000000)

end

end

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES 157

7664 CH06.qxd 2/13/07 1:20 PM Page 157

module LetterStuff

def LetterStuff.random

(rand(26) + 65).chr

end

end

puts NumberStuff.random

puts LetterStuff.random

184783

X

■Note Due to the randomness introduced by using rand, the preceding results will vary every time you
run the program.

In this demonstration it’s clear which version of random you’re trying to use in the two
last lines. The modules defined in the preceding code look a little like classes, except
they’re defined with the word module instead of class. However, in reality, you cannot
define instances of a module, as they’re not actually classes, nor can they inherit from
anything. Modules simply provide ways to organize methods, classes, and constants into
separate namespaces.

A more complex example could involve demonstrating two classes with the same
name, but in different modules:

module ToolBox

class Ruler

attr_accessor :length

end

end

module Country

class Ruler

attr_accessor :name

end

end

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES158

7664 CH06.qxd 2/13/07 1:20 PM Page 158

a = ToolBox::Ruler.new

a.length = 50

b = Country::Ruler.new

b.name = "Ghengis Khan from Moskau"

Rather than having the Ruler classes fighting it out for supremacy, or ending up with
a mutant Ruler class with both name and length attributes (how many measuring rulers
have names?), the Ruler classes are kept separately in the ToolBox and Country name-
spaces.

You’ll be looking at why namespaces are even more useful than this later, but first
you have to look at the second reason why modules are so useful.

Mix-Ins

Earlier you studied inheritance: the feature of object orientation that allows classes (and
their instance objects) to inherit methods from other classes. You discovered that Ruby
doesn’t support multiple inheritance, the ability to inherit from multiple classes at the
same time. Instead, Ruby’s inheritance functionality only lets you create simple trees of
classes, avoiding the confusion inherent with multiple inheritance systems.

However, in some cases, it can be useful to share functionality between disparate
classes. In this sense, modules act like a sort of “super” class and can be included into
other classes, extending that class with the methods the module offers. For example:

module UsefulFeatures

def class_name

self.class.to_s

end

end

class Person

include UsefulFeatures

end

x = Person.new

puts x.class_name

Person

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES 159

7664 CH06.qxd 2/13/07 1:20 PM Page 159

In this code, UsefulFeatures looks almost like a class, and it almost is. However, mod-
ules are organizational tools rather than classes themselves. The class_name method exists
within the module, and is then included into the Person class. Here’s another example:

module AnotherModule

def do_stuff

puts "This is a test"

end

end

include AnotherModule

do_stuff

This is a test

As you can see, you can include module methods into the current scope, even if
you’re not directly within a class. Somewhat like a class, though, you can use the methods
directly:

AnotherModule.do_stuff

Therefore, include takes a module and includes its contents into the current scope.
Ruby comes with several modules by standard that you can use. For example, the

Kernel module contains all the “standard” commands you use in Ruby without getting
involved with objects or classes, such as load, require, exit, puts, and eval. None of those
methods are taking place directly in the scope of an object (as with the methods in your
own programs), but they’re special methods that get included into all classes (including
the main scope), by default, through the Kernel module.

However, of more interest to us are the modules Ruby provides that you can include
into your own classes to gain more functionality immediately. Two such modules are
Enumerable and Comparable.

Enumerable

In previous chapters you’ve performed the process of iteration, like so:

[1,2,3,4,5].each { |number| puts number }

In this case, you create a temporary array containing the numbers one through five
and use the each iterator to pass each value into the code block, assigning each value to
number that you then print to the screen with puts.

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES160

7664 CH06.qxd 2/13/07 1:20 PM Page 160

The each iterator gives you a lot of power, as it allows you to go through all the elements
of an array or a hash and use the data you retrieve to work out, for example, the mean aver-
age of an array of numbers, or the length of the longest string in an array, like so:

my_array = %w{this is a test of the longest word check}

longest_word = ''

my_array.each do |word|

longest_word = word if longest_word.length < word.length

end

puts longest_word

longest

In this case, you loop through my_array, and if the currently stored longest word is
shorter than the length of word, you assign it to longest_word. When the loop finishes, the
longest word is in longest_word.

The same code could be tweaked to find the largest (or smallest) number in a set of
numbers:

my_array = %w{10 56 92 3 49 588 18}

highest_number = 0

my_array.each do |number|

number = number.to_i

highest_number = number if number > highest_number

end

puts highest_number

588

However, the Array class (for one) has preincluded the methods provided by the
Enumerable module, a module that supplies about 20 useful counting- and iteration-
related methods, including collect, detect, find, find_all, include?, max, min, select, sort,
and to_a. All of these use Array’s each method to do their jobs, and if your class can imple-
ment an each method, you can include Enumerable, and get all those methods for free in
your own class!

■Note The main methods provided by Enumerable are referenced in Appendix B.

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES 161

7664 CH06.qxd 2/13/07 1:20 PM Page 161

First, some examples of the methods provided by Enumerable:

[1,2,3,4].collect { |i| i.to_s + "x" }

=> ["1x", "2x", "3x", "4x"]

[1,2,3,4].detect { |i| i.between?(2,3) }

=> 2

[1,2,3,4].select { |i| i.between?(2,3) }

=> [2,3]

[4,1,3,2].sort

=> [1,2,3,4]

[1,2,3,4].max

=> 4

[1,2,3,4].min

=> 1

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES162

7664 CH06.qxd 2/13/07 1:20 PM Page 162

You can make your own class, implement an each method, and get these methods for
“free”:

class AllVowels

@@vowels = %w{a e i o u}

def each

@@vowels.each { |v| yield v }

end

end

This is a class that, in reality, doesn’t need to provide multiple objects, as it only pro-
vides an enumeration of vowels. However, to keep the demonstration simple, it is ideal.
Here’s how it works:

x = AllVowels.new

x.each { |v| puts v }

a

e

i

o

u

Your AllVowels class contains a class array containing the vowels, and the instance-
level each method iterates through the class array @@vowels and yields to the code block
supplied to each, passing in each vowel, using yield v. Let’s get Enumerable involved:

class AllVowels

include Enumerable

@@vowels = %w{a e i o u}

def each

@@vowels.each { |v| yield v }

end

end

■Note yield and its relationship to code blocks was covered near the end of Chapter 3, if you need a
refresher.

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES 163

7664 CH06.qxd 2/13/07 1:20 PM Page 163

Now let’s try to use those methods provided by Enumerable again. First let’s get an
AllVowels object:

x = AllVowels.new

Now you can call the methods upon x:

x.collect { |i| i + "x" }

=> ["ax", "ex", "ix", "ox", "ux"]

x.detect { |i| i > "j" }

=> "o"

x.select { |i| i > "j" }

=> ["o", "u"]

x.sort

=> ["a", "e", "i", "o", "u"]

x.max

=> "u"

x.min

=> "a"

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES164

7664 CH06.qxd 2/13/07 1:20 PM Page 164

Comparable

The Comparable module provides methods that give other classes comparison operators
such as < (less than), <= (less than or equal to), == (is equal to), >= (greater than or equal
to), and > (greater than), as well as the between? method that returns true if the value is
between (inclusively) the two parameters supplied (for example, 4.between?(3,10) ==
true).

To provide these methods, the Comparable module uses the <=> operator on the class
that includes it. <=> returns -1 if the supplied parameter is higher than the object’s value,
0 if they are equal, or 1 if the object’s value is higher than the parameter. For example:

1 <=> 2

-1

1 <=> 1

0

2 <=> 1

1

With this simple method, the Comparable module can provide the other basic com-
parison operators and between?. Create your own class to try it out:

class Song

include Comparable

attr_accessor :length

def <=>(other)

@length <=> other.length

end

def initialize(song_name, length)

@song_name = song_name

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES 165

7664 CH06.qxd 2/13/07 1:20 PM Page 165

@length = length

end

end

a = Song.new('Rock around the clock', 143)

b = Song.new('Bohemian Rhapsody', 544)

c = Song.new('Minute Waltz', 60)

Here are the results of including the Comparable module:

a < b

=> true

b >= c

=> true

c > a

=> false

a.between?(b,c)

=> true

You can compare the songs as if you’re comparing numbers. Technically, you are. By
implementing the <=> method on the Song class, individual song objects can be compared
directly, and you use their lengths to do so. You could have implemented <=> to compare
by the length of the song title, or any other attribute, if you wished.

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES166

7664 CH06.qxd 2/13/07 1:20 PM Page 166

Modules give you the same ability to implement similar generic sets of functionality
that you can then apply to arbitrary classes. For example, you could create a module that
implements longest and shortest methods that could be included into Array, Hash, or
other classes, and returns the longest or shortest string in a list.

Using Mix-Ins with Namespaces and Classes

In a previous example, I demonstrated how you can use modules to define namespaces
using the following code:

module ToolBox

class Ruler

attr_accessor :length

end

end

module Country

class Ruler

attr_accessor :name

end

end

a = ToolBox::Ruler.new

a.length = 50

b = Country::Ruler.new

b.name = "Ghengis Khan of Moskau"

In this case, the Ruler classes were accessed by directly addressing them via their
respective modules (as ToolBox::Ruler and Country::Ruler).

However, what if you wanted to assume temporarily that Ruler (with no module
name prefixed) was Country::Ruler, and that if you wanted to access any other Ruler
class, you’d refer to it directly? include makes it possible.

In the previous sections, you’ve used include to include the methods of a module
into the current class and scope, but it also includes the classes present within a module
(if any) and makes them locally accessible too. Say, after the prior code, you did this:

include Country

c = Ruler.new

c.name = "King Henry VIII"

Success! The Country module’s contents (in this case, just the Ruler class) are brought
into the current scope, and you can use Ruler as if it’s a local class. If you want to use the
Ruler class located under ToolBox, you can still refer to it directly as ToolBox::Ruler.

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES 167

7664 CH06.qxd 2/13/07 1:20 PM Page 167

Building a Dungeon Text Adventure with Objects
So far in this chapter you’ve looked at object-oriented concepts in depth, mostly in a
technical sense. At this point, it would be useful to extend that knowledge by applying it
in a real-world scenario.

In this section, you’re going to implement a mini text adventure/virtual dungeon.
Text adventures were popular in the 1980s, but have fallen out of favor with modern
gamers seeking graphical thrills. They’re perfect playgrounds for experimenting with
classes and objects, though, as replicating the real world in a virtual form requires a com-
plete understanding of mapping real-world concepts into classes.

Dungeon Concepts

Before you can develop your classes, you have to figure out what you’re trying to model.
Your dungeon isn’t going to be complex at all, but you’ll design it to cope with at least the
following concepts:

• Dungeon: You need a general class that encapsulates the entire concept of the
dungeon game.

• Player: The player provides the link between the dungeon and you. All experience
of the dungeon comes through the player. The player can move between rooms in
the dungeon.

• Rooms: The rooms of the dungeon are the locations that the player can navigate
between. These will be linked together in multiple ways (doors to the north, west,
east, and south, for example) and have descriptions.

A complete adventure would also have concepts representing items, enemies, other
characters, waypoints, spells, and triggers for various puzzles and outcomes. You could
easily extend what you’ll develop into a more complete game later on if you wished to.

Creating the Initial Classes

Our first concept to develop is that of the dungeon and the game itself. Within this frame-
work come the other concepts, such as the player and rooms.

Using nested classes you can lay down the initial code like so:

class Dungeon

attr_accessor :player

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES168

7664 CH06.qxd 2/13/07 1:20 PM Page 168

def initialize(player_name)

@player = Player.new(player_name)

@rooms = []

end

class Player

attr_accessor :name, :location

def initialize(player_name)

@name = player_name

end

end

class Room

attr_accessor :reference, :name, :description, :connections

def initialize(reference, name, description, connections)

@reference = reference

@name = name

@description = description

@connections = connections

end

end

end

This code lays down the framework for your entire dungeon. As the central concept
that ties everything together, the Dungeon class wraps all the other classes, because the
Player and Room classes are useless, in this case, without a Dungeon to hold them. This is
not to say that any class that’s dependent on other classes should be nested, but simply
that in this situation, it makes sense to structure the classes in this way.

Your dungeon currently has instance variables to store the player and the list of
rooms (@rooms = [] creates an empty Array; it’s equivalent to @rooms = Array.new).

The Player class lets the player object keep track of his or her name and current loca-
tion. The Room class lets room objects store their name, description (for example, “Torture
Chamber” and “This is a dark, foreboding room.”), and connections to other rooms, as
well as a reference (to be used by other rooms for their connections).

When you create a dungeon with Dungeon.new, it expects to receive the name of the
player, whereupon it creates that player and assigns it to the dungeon’s instance variable
@player. This is because the player and the dungeon need to be linked together, so storing
the player object within the dungeon object makes sense. You can easily access the player

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES 169

7664 CH06.qxd 2/13/07 1:20 PM Page 169

because the player variable has been made into an accessor with attr_accessor. For
example:

my_dungeon = Dungeon.new("Fred Bloggs")

puts my_dungeon.player.name

Fred Bloggs

You can access the player functionality directly by going through the dungeon object.
As @player contains the player object, and as @player has been made publicly accessible
with attr_accessor :player, you get complete access.

Structs: Quick and Easy Data Classes

One thing should stand out about the main code listing so far. It’s repetitive. The Room and
Player classes are merely acting as basic placeholders for data rather than as true classes
with logic and functionality. There’s an easier way to create this sort of special data-holding
class in Ruby with a single line of a class called a Struct.

A struct is a special class whose only job is to have attributes and to hold data. Here’s
a demonstration:

Person = Struct.new(:name, :gender, :age)

fred = Person.new("Fred", "male", 50)

chris = Person.new("Chris", "male", 25)

puts fred.age + chris.age

75

Simply, the Struct class builds classes to store data. On the first line you create a new
class called Person that has built-in name, gender, and age attributes. On the second line
you create a new object instance of Person and set the attributes on the fly. The first line is
equivalent to this longhand method:

class Person

attr_accessible :name, :gender, :age

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES170

7664 CH06.qxd 2/13/07 1:20 PM Page 170

def initialize(name, gender, age)

@name = name

@gender = gender

@age = age

end

end

■Note In actuality, this code is not exactly equivalent to the struct code, because parameters are optional
when initializing a Struct class, whereas the preceding Person class code requires the three parameters
(name, gender, and age) be present.

This code creates a Person class the long way. If all you want to do is store some data,
then the struct technique is quicker to type and easier to read, although if you ultimately
want to add more functionality to the class, creating a class the long way is worth the
effort. However, the good thing is that you can start out with a struct and recode it into
a full class when you’re ready. This is what you’re going to do with your dungeon. Let’s
rewrite it from scratch:

class Dungeon

attr_accessor :player

def initialize(player_name)

@player = Player.new(player_name)

@rooms = []

end

Player = Struct.new(:name, :location)

Room = Struct.new(:reference, :name, :description, :connections)

end

It’s certainly shorter, and because parameters are optional when creating instances
of Struct classes, you can still use Player.new(player_name), and the location attribute is
merely set to nil. If you ever need to add methods to Player or Room, you can rewrite them
as classes and add the attributes back with attr_accessor.

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES 171

7664 CH06.qxd 2/13/07 1:20 PM Page 171

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES172

ATTR_ACCESSOR

Throughout the code in this chapter, as well as that in Chapter 2, you have used attr_accessor
within classes to provide attributes for your objects. attr_accessor allows you to do this:

class Person

attr_accessor :name, :age

end

x = Person.new

x.name = "Fred"

x.age = 10

puts x.name, x.age

However, in reality, attr_accessor isn’t doing anything magical. It’s simply writing some code
for you. This code is equivalent to the single attr_accessor :name, :age line in the preceding
Person class:

class Person

def name

@name

end

def name=(name)

@name = name

end

def age

@age

end

def age=(age)

@age = age

end

end

This code defines the name and age methods that return the current object variables for those
attributes, so that x.name and x.age (as in the prior code) work. It also defines two “setter” methods
that assign the values to the @name and @age object variables.

If you pay attention to the names of the setter methods, you’ll see they’re the same as the meth-
ods that return values but suffixed with an equal sign (=). This means they’re the methods that are run
for code such as x.name = "Fred" and x.age = 10. In Ruby, assignments are just calls to regular
methods! Indeed, x.name = "Fred" is merely shorthand for writing x.name=("Fred").

7664 CH06.qxd 2/13/07 1:20 PM Page 172

Creating Rooms

Your dungeon now has the basic classes in place, but there’s still no way to create rooms,
so let’s add a method to the Dungeon class:

class Dungeon

def add_room(reference, name, description, connections)

@rooms << Room.new(reference, name, description, connections)

end

end

You want to add rooms to the dungeon, so adding a method to dungeon objects
makes the most sense. Now you can create rooms like so (if my_dungeon is still defined, of
course):

my_dungeon.add_room(:largecave, "Large Cave", "a large cavernous cave", { ➥

:west => :smallcave })

my_dungeon.add_room(:smallcave, "Small Cave", "a small, claustrophobic cave", { ➥

:east => :largecave })

add_room accepts the reference, name, description, and connections arguments and
creates a new Room object with them before pushing that object onto the end of the @rooms
array.

The reference, name, and descriptions arguments should seem obvious, but the
connections argument is designed to accept a hash that represents the connections that
a particular room has with other rooms. For example, { :west => :smallcave } ties two
symbols (:west and :smallcave) together. Your dungeon logic uses this link to connect the
rooms. A connections hash of { :west => :smallcave, :south => :another_room } creates
two connections (one to the west, and one to the south).

Making the Dungeon Work

You have all the rooms loaded for your basic dungeon (and can add more whenever you
like with the add_room method), but you have no way of navigating the dungeon itself.

The first step is to create a method within Dungeon that “starts” everything off by
placing the user into the dungeon and giving you the description of the initial location:

class Dungeon

def start(location)

@player.location = location

show_current_description

end

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES 173

7664 CH06.qxd 2/13/07 1:20 PM Page 173

def show_current_description

puts find_room_in_dungeon(@player.location).full_description

end

def find_room_in_dungeon(reference)

@rooms.detect { |room| room.reference == reference }

end

class Room

def full_description

@name + "\n\nYou are in " + @description

end

end

end

You define a start method within the dungeon that sets the player’s location attrib-
ute. It then calls the dungeon’s show_current_description method, which finds the room
based on the player’s location, and then prints the full description of that location to the
screen. full_description does the work of taking the location’s name and description and
turning it into a full, useful description. find_room_in_dungeon, on the other hand, iterates
through the @rooms array and picks out the room whose reference matches that of the
current location.

However, the problem with the preceding code is that Room is a struct, rather than a
full class, so it becomes necessary to turn it into a full class once again (as hinted at ear-
lier). This change requires a few key changes, so to keep things simple, here’s the
complete code so far, along with the change of Room to a regular class and some additional
methods to aid navigation of the dungeon:

class Dungeon

attr_accessor :player

def initialize(player_name)

@player = Player.new(player_name)

@rooms = []

end

def add_room(reference, name, description, connections)

@rooms << Room.new(reference, name, description, connections)

end

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES174

7664 CH06.qxd 2/13/07 1:20 PM Page 174

def start(location)

@player. location = location

show_current_description

end

def show_current_description

puts find_room_in_dungeon(@player.location).full_description

end

def find_room_in_dungeon(reference)

@rooms.detect { |room| room.reference == reference }

end

def find_room_in_direction(direction)

find_room_in_dungeon(@player.location).connections[direction]

end

def go(direction)

puts "You go " + direction.to_s

@player.location = find_room_in_direction(direction)

show_current_description

end

class Player

attr_accessor :name, :location

def initialize(name)

@name = name

end

end

class Room

attr_accessor :reference, :name, :description, :connections

def initialize(reference, name, description, connections)

@reference = reference

@name = name

@description = description

@connections = connections

end

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES 175

7664 CH06.qxd 2/13/07 1:20 PM Page 175

def full_description

@name + "\n\nYou are in " + @description

end

end

end

Create the main dungeon object

my_dungeon = Dungeon.new("Fred Bloggs")

Add rooms to the dungeon

my_dungeon.add_room(:largecave, "Large Cave", "a large cavernous cave", { ➥

:west => :smallcave })

my_dungeon.add_room(:smallcave, "Small Cave", "a small, claustrophobic cave", { ➥

:east => :largecave })

Start the dungeon by placing the player in the large cave

my_dungeon.start(:largecave)

Large Cave

You are in a large cavernous cave

It’s a long piece of source code, but most of it should make sense. You’ve changed
Room and Player into true classes once more, and implemented the basics of the dungeon.

Two particularly interesting methods have been added to the Dungeon class:

def find_room_in_direction(direction)

find_room_in_dungeon(@player.location).connections[direction]

end

def go(direction)

puts "You go " + direction.to_s

@player.location = find_room_in_direction(direction)

show_current_description

end

The go method is what makes navigating the dungeon possible. It takes a single argu-
ment—the direction to travel in—and uses that to change the player’s location to the
room that’s in that direction. It does this by calling find_room_in_direction, a method that
takes the reference related to the relevant direction’s connection on the current room,

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES176

7664 CH06.qxd 2/13/07 1:20 PM Page 176

and returns the reference of the destination room. Remember that you define a room
like so:

my_dungeon.add_room(:largecave, "Large Cave", "a large cavernous cave", { ➥

:west => :smallcave })

If :largecave is the current room, then find_room_in_direction(:west) will use the
connections on that room to return :smallcave, and this is then assigned to @player.
location to define that as the new current location.

To test the navigation of the dungeon, you can simply type go commands if you’re
using irb, or if you’re working with a source file in an editor, you’ll need to add the go
commands to the end of your source code and re-run it. Here’s what happens:

my_dungeon.show_current_description

Large Cave

You are in a large cavernous cave

my_dungeon.go(:west)

You go west

Small Cave

You are in a small, claustrophobic cave

my_dungeon.go(:east)

You go east

Large Cave

You are in a large cavernous cave

The code has no error checking (try going to a nonexistent room with
my_dungeon.go(:south)), and lacks items, an inventory, and other basic text adventure

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES 177

7664 CH06.qxd 2/13/07 1:20 PM Page 177

features, but you now have an operational group of objects that represents a dungeon,
and that can be navigated in a basic fashion.

This code is ripe for extension and manipulation. With another class and several
more methods you could easily add support for items within the game that you can place
at different locations, pick up, and then drop at other locations.

In Chapter 9 you’ll look at how to interact with files and read data from the keyboard.
At that point, you could extend the dungeon game to be properly interactive and accept
input from the user, validate that it represents a valid direction, and then call the go
method if so. With these additions and the addition of several more rooms, you’re most
of the way to a viable text adventure!

Summary
In this chapter, we’ve covered the essentials of object orientation and the features Ruby
provides to make object-oriented code a reality. You’ve looked at the concepts that apply
to object orientation in most languages, such as inheritance, encapsulation, class meth-
ods, instance methods, and the various types of variables that you can use. Lastly, you
developed a basic set of classes to produce a simple dungeon.

Let’s reflect on some of the concepts we covered in this chapter:

• Classes: A class is a collection of methods and data that are used as a blueprint to
create multiple objects relating to that class.

• Objects: An object is a single instance of a class. An object of class Person is a single
person. An object of class Dog is a single dog. If you think of objects as real-life
objects, a class is the classification, whereas an object is the actual object or “thing”
itself.

• Local variable: A variable that can only be accessed and used from the current
scope.

• Instance/object variable: A variable that can be accessed and used from the scope
of a single object. An object’s methods can all access that object’s instance vari-
ables.

• Global variable: A variable that can be accessed and used from anywhere within
the current program.

• Class variable: A variable that can be accessed and used within the scope of a class
and all of its child objects.

• Encapsulation: The concept of allowing methods to have differing degrees of
visibility outside of their class or associated object.

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES178

7664 CH06.qxd 2/13/07 1:20 PM Page 178

• Polymorphism: The concept of methods being able to deal with different classes of
data and offering a more generic implementation (as with the area and perimeter
methods offered by your Square and Triangle classes).

• Module: An organizational element that collects together any number of classes,
methods, and constants into a single namespace.

• Namespace: A named element of organization that keeps classes, methods, and
constants from clashing.

• Mix-in: A module that can mix its methods in to a class to extend that class’s
functionality.

• Enumerable: A mix-in module provided as standard with Ruby that implements
iterators and list-related methods for other classes such as collect, map, min, and
max. Ruby uses this module by default with the Array and Hash classes.

• Comparable: A mix-in module provided as standard with Ruby that implements
comparison operators (such as <, >, and ==) on classes that implement the generic
comparison operator <=>.

Throughout the next several chapters, I’ll assume you have a knowledge of how
classes and objects work, and how the different scopes of variables (including local,
global, object, and class variables) work.

CHAPTER 6 ■ CLASSES, OBJECTS, AND MODULES 179

7664 CH06.qxd 2/13/07 1:20 PM Page 179

7664 CH06.qxd 2/13/07 1:20 PM Page 180

Projects and Libraries

In previous chapters we’ve looked at and worked with Ruby from a low-level perspective
by working directly with classes, objects, and functions. Each line of code we’ve used in
the small projects so far has been written specifically for that project from scratch. In this
chapter, we’ll look at how to build larger projects with Ruby, and how to reuse code writ-
ten previously. Finally, we’ll look at how to use code already written and prepared by
other developers within your own applications, so that you don’t need to reinvent the
wheel every time you create a new program.

This chapter is about the bigger picture: dealing with projects and libraries.

Projects and Using Code from Other Files
As you become more familiar with Ruby and find more uses for it, it’s likely that you’ll
want to move from writing single small programs (with fewer than 100 or so lines) to
more complex applications and systems made up of multiple parts. Larger applications
and systems therefore often become known as projects, and are managed in a different
way than simple one-file scripts.

The most common way to separate functionality in Ruby is to put different classes in
different files. This gives you the ability to write classes that could be used in multiple
projects simply by copying the file into your other project.

Basic File Inclusion

Consider this code:

puts "This is a test".vowels.join('-')

181

C H A P T E R 7

7664 CH07.qxd 2/13/07 1:34 PM Page 181

If you try to execute this code, you’ll get an error complaining that the vowels method
is not available for the "This is a test" object of class String. This is true because Ruby
doesn’t provide that method. Let’s write an extension to the String class to provide it:

class String

def vowels

self.scan(/[aeiou]/i)

end

end

If this definition were included in the same file as the prior puts code, the result
would be as follows:

i-i-a-e

In this case, you’ve extended String with a vowels method that uses scan to return
an array of all the vowels (the i option on the end makes the regular expression case-
insensitive).

However, you might want to write a number of methods to add to String that you’d
like to use in multiple programs. Rather than copy and paste the code each time, you can
copy it out to a separate file and use the require command to load the external file into
the current program. For example, put this code in a file called string_extensions.rb:

class String

def vowels

self.scan(/[aeiou]/i)

end

end

And put this code in a file called vowel_test.rb:

require 'string_extensions'

puts "This is a test".vowels.join('-')

If you run vowel_test.rb, the expected result would appear onscreen. The first line,
require 'string_extensions', simply loads in the string_extensions.rb file and processes
it as if the code were local. This means that, in this case, the vowels method is available,
all with a single line.

As well as require, you can also use load to load external source code files into your
program. For example, this code would seem identical to the preceding:

load 'string_extensions'

puts "This is a test".vowels.join('-')

CHAPTER 7 ■ PROJECTS AND L IBRARIES182

7664 CH07.qxd 2/13/07 1:34 PM Page 182

183CHAPTER 7 ■ PROJECTS AND L IBRARIES

It performs in the same way, but let’s try a different example. Put this in a.rb:

puts "Hello from a.rb"

And put this in a file called b.rb:

require 'a'

puts "Hello from b.rb"

require 'a'

puts "Hello again from b.rb"

Run with ruby b.rb to get the result:

Hello from a.rb

Hello from b.rb

Hello again from b.rb

In this example, the a.rb file is included only once. It’s included on line 1, and “Hello
from a.rb” gets printed to the screen, but then when it’s included again on line 3 of b.rb,
nothing occurs. In contrast:

load 'a'

puts "Hello from b.rb"

load 'a'

puts "Hello again from b.rb"

Hello from a.rb

Hello from b.rb

Hello from a.rb

Hello again from b.rb

With load, the code is loaded and reprocessed anew each time you use the load
method. require, on the other hand, only processes external code once.

■Note Ruby programmers generally use require rather than load. The effects of load are only useful
if the code in the external file has changed or if it contains active code that will be executed immediately.
However, a good programmer will avoid the latter situation, and external files will only contain classes
and modules that will, generally, rarely change.

7664 CH07.qxd 2/13/07 1:34 PM Page 183

Inclusions from Other Directories

Both load and require can take local or absolute filenames. For example, require 'a' first
looks for a.rb in the current directory, and then iterates through a multitude of other
directories on your hard drive looking for a.rb. By default, these other directories are the
various directories where Ruby stores its own files and libraries, although you can over-
ride this, if necessary.

Ruby stores the list of directories to search for included files in a special variable
called $:. You can see what $: contains by default, using irb:

$:.each { |d| puts d }

/usr/local/lib/ruby/site_ruby/1.8

/usr/local/lib/ruby/site_ruby/1.8/i686-darwin8.8.1

/usr/local/lib/ruby/site_ruby

/usr/local/lib/ruby/1.8

/usr/local/lib/ruby/1.8/i686-darwin8.8.1

.

■Note This result is what appears on my machine, running Mac OS X. The list of directories will probably
differ significantly on your machine, particularly if you’re using Windows, where the path layout will be
entirely different, with the drive letter at the start and backslashes instead of forward slashes.

If you want to add extra directories to this, it’s simple:

$:.push '/your/directory/here'

require 'yourfile'

$: is an array, so you can push extra items to it, or use unshift to add an element to
the start of the list (if you want your directory to be searched before the default Ruby
ones—useful if you want to override Ruby’s standard libraries).

■Note Ruby keeps track of the files include has processed by using the name used to access them.
If you have two paths pointing to the same file, and include the same file but by using two unique, full
filenames, Ruby will duly load the same file twice.

CHAPTER 7 ■ PROJECTS AND L IBRARIES184

7664 CH07.qxd 2/13/07 1:34 PM Page 184

Logic and Including Code

require and load both act like normal code in Ruby programs. You can put them at any
point in your Ruby code and they’ll behave as if they were processed at that point. For
example:

$debug_mode = 0

require $debug_mode == 0 ? "normal-classes" : "debug-classes"

It’s an obscure example, but what it does is check if the global variable $debug_mode is
set to 0. If it is, it requires normal-classes.rb, and if not, debug-classes.rb. This gives you
the power to include a different source file dependent on the value of a variable, ideal for
situations where your application has “regular” and “debug” modes. You could even write
an application that works perfectly, but then use a different require to include a whole
different set of files that have new or experimental functionality.

A commonly used shortcut uses arrays to quickly load a collection of libraries at
once. For example:

%w{file1 file2 file3 file4 file5}.each { |l| require l }

This loads five different external files or libraries with just two lines of code. However,
some coders are not keen on this style, as it can make the code harder to read, even if it’s
more efficient.

Nested Inclusions

Code from files that are included into others with require and load has the same freedom
as if the code were pasted directly into the original file. This means files that you include
can call load and require themselves. For example, assume a.rb contains the following:

require 'b'

And b.rb contains the following:

require 'c'

And c.rb contains the following:

def example

puts "Hello!"

end

CHAPTER 7 ■ PROJECTS AND L IBRARIES 185

7664 CH07.qxd 2/13/07 1:34 PM Page 185

And d.rb contains the following:

require 'a'

example

Hello!

d.rb includes a.rb with require, a.rb includes b.rb, and b.rb includes c.rb, meaning
the example method is available to d.rb.

This functionality makes it easy to put together large projects with interdependent
parts, as the structure can be as deep as you like.

Libraries
In computer programming, a library is a collection of routines that can be called by sepa-
rate programs, but that exist independently of those programs. For example, you could
create a library to load and process a data file, and then use the routines in that library
from any number of other programs.

Earlier in this chapter, we looked at using the require command to load external files
into your Ruby programs, and then we looked at how modules can be used to separate
elements of functionality into separate namespaces. You can use both of these concepts,
jointly, to make libraries in Ruby.

At the start of this chapter you developed an extremely simple library called
string_extensions.rb, like so:

class String

def vowels

self.scan(/[aeiou]/i)

end

end

And you used this library with the following code:

require 'string_extensions'

puts "This is a test".vowels.join('-')

i-i-a-e

CHAPTER 7 ■ PROJECTS AND L IBRARIES186

7664 CH07.qxd 2/13/07 1:34 PM Page 186

Nearly all libraries are more complex than this, but nonetheless, this is a basic
demonstration of how a library works.

Next we’re going to look at the libraries that come with Ruby as standard, and look
at a way to download and use libraries that other developers have made available on the
Internet.

The Standard Libraries

Ruby comes with more than 100 standard libraries, as standard. They provide Ruby with
a wide selection of functionality “out of the box,” from Web serving and networking tools
through to encryption, benchmarking, and testing routines.

■Note Collectively the “standard libraries” are often called “the Standard Library.” When you see this term
(it’s used particularly often in Chapter 16), it’s important to remember it most likely refers to the collection
rather than one library in particular.

In this section we’re going to look at how you can use just two random standard
libraries (net/http and OpenStruct), so that you’re prepared for using and working with
other libraries in later chapters, where you’ll be using many other standard libraries in
a similar way.

A list of all the standard libraries, including documentation, is available at http://
www.ruby-doc.org/stdlib/, although a sizable number of them are covered in more detail
in Chapter 16 of this book.

■Note Some users might discover that the number of standard libraries might have been trimmed
down, particularly if using a preinstalled version of Ruby. However, if you installed Ruby from source, all
the demonstrations in this section should work.

net/http

HTTP stands for HyperText Transfer Protocol, and it’s the main protocol that makes the
World Wide Web work, as it provides the mechanism by which Web pages, files, and other
media can be sent between Web servers and clients.

CHAPTER 7 ■ PROJECTS AND L IBRARIES 187

7664 CH07.qxd 2/13/07 1:34 PM Page 187

Ruby provides basic support for HTTP via the net/http library. For example, it’s trivial
to write a Ruby script that can download and print out the contents of a particular Web
page:

require 'net/http'

Net::HTTP.get_print('www.rubyinside.com', '/')

If you ran this code, after a few seconds many pages of HTML code should fly past
on your screen. The first line loads the net/http library into the current program, and the
second line calls a class method on the Net::HTTP class (where Net is a module defining
the Net namespace, and HTTP is a subclass) that gets and prints (hence get_print) the
Web page at http://www.rubyinside.com/.

It’s just as easy to put the contents of any Web page into a string, for further manipu-
lation by your program:

require 'net/http'

url = URI.parse('http://www.rubyinside.com/')

response = Net::HTTP.start(url.host, url.port) do |http|

http.get(url.path)

end

content = response.body

In this example, you use the URI library (another standard library, and one that’s
loaded automatically by net/http) to decipher a URL such as http://www.rubyinside.com/
into its constituent parts for the net/http library to use to make its request. Once the URL
has been parsed, an HTTP connection is “started,” and within the scope of that connec-
tion a GET request is made with the get method (if this doesn’t make sense, don’t worry;
it’s part of how the HTTP protocol works). Finally, you retrieve the content from
response.body, a string containing the contents of the Web page at http://www.
rubyinside.com/.

■Note The net/http library is only a basic library, and it requires its input to be sanitized in advance, as in
the preceding examples. The URI library is ideally suited to this task.

In Chapter 14, we’ll look at net/http and some of its sister libraries, such as net/
pop and net/smtp, in more detail.

CHAPTER 7 ■ PROJECTS AND L IBRARIES188

7664 CH07.qxd 2/13/07 1:34 PM Page 188

OpenStruct

In Chapter 6 you worked with a special type of data structure called Struct. Struct
allowed you to create small data-handling classes on the fly, like so:

Person = Struct.new(:name, :age)

me = Person.new("Fred Bloggs", 25)

me.age += 1

Struct gives you the luxury of being able to create simple classes without having to
define a class in the long-handed way.

The OpenStruct class provided by the ostruct library makes it even easier. It allows
you to create data objects without specifying the attributes, and allows you to create
attributes on the fly:

require 'ostruct'

person = OpenStruct.new

person.name = "Fred Bloggs"

person.age = 25

person is a variable pointing to an object of class OpenStruct, and OpenStruct allows
you to call attributes whatever you like, on the fly. It’s similar to how a hash works, but
using the object notation.

As the name implies, OpenStruct is more flexible than Struct, but this comes at the
cost of harder-to-read code. There’s nowhere to determine exactly, at a glance, which
attributes have been used. However, with traditional structs, you can see the attribute
names at the same place the struct is created.

As you can see, using libraries is pretty easy. In most cases you just use require to
load the relevant classes and methods, and then you can start using them right away.
However, for more complex scenarios, read on!

RubyGems

RubyGems is a packaging system for Ruby programs and libraries. It enables developers
to package their Ruby libraries in a form that’s easy for users to maintain and install.
RubyGems makes it easy to manage different versions of the same libraries on your
machine, and gives you the ability to install them with a single line at the command
prompt.

Each individually packaged Ruby library (or application) is known simply as a gem or
RubyGem. Gems have names, version numbers, and descriptions. You can manage your
computer’s local installations of gems using the gem command, available from the com-
mand line.

CHAPTER 7 ■ PROJECTS AND L IBRARIES 189

7664 CH07.qxd 2/13/07 1:34 PM Page 189

Installing RubyGems

Before you can use RubyGems, it’s necessary to install it (or make sure it’s already
installed), as it’s not part of Ruby, officially. However, it is the de facto packaging system
for Ruby libraries, and installation is easy.

Windows

If you installed Ruby using the “one-click installer” as described in Chapter 1, you’ll
already have RubyGems installed and can skip down to the “Finding Gems” section.

However, if you’re running a different version of Ruby on Windows that doesn’t have
RubyGems installed, refer to the following OS X and Linux instructions, as they’re quite
generic.

Mac OS X, Linux, and Other Unix

Developed in pure Ruby, RubyGems installs in a similar manner on all platforms. These
instructions are tailored toward OS X and Linux, but could be used on all platforms:

1. Go to the RubyGems project site at http://rubyforge.org/projects/rubygems/.

2. Find the “Download” link (presently at the right after “Latest File Releases”) and
go to the download page.

3. Download the latest .tar.gz or ZIP file available. The latest release should be
highlighted.

4. Uncompress the .tar.gz or ZIP file. On OS X or Linux this can be done with tar
xzvf rubygems-0.9.0.tgz, where the filename should be replaced with the filename
of the file you just downloaded.

5. Go to the folder created by uncompressing the RubyGems file with cd
rubygems-0.9.0 (or similar).

6. Run ruby setup.rb as a superuser (that is, root) or by using sudo: sudo ruby
setup.rb, and entering your password (on OS X) or the root password (on
other systems) at the prompt.

7. RubyGems installs itself and reports success (in case of error, refer to the messages
raised).

CHAPTER 7 ■ PROJECTS AND L IBRARIES190

7664 CH07.qxd 2/13/07 1:34 PM Page 190

■Note For Linux users: If you get errors during installation that say certain libraries are missing (such as
YAML or Zlib), you’re probably using a preinstalled version of Ruby that came with your Linux distribution. If
you don’t want to install a fresh version of Ruby from source (which is usually the best idea, and is covered
in Chapter 1), your distribution might let you install these missing libraries using its package management
system. For example, on Ubuntu or Debian, apt-get libyaml-ruby and apt-get libzlib-ruby can
commonly resolve the problem.

After installation, the main RubyGems application, gem, should be in a directory
that’s included in your path (such as /usr/bin/ or /usr/local/bin/), and so should run
immediately from the command line by typing gem and pressing Enter. If it does not, it
will be necessary to find where gem is installed and add its directory to your path. Alter-
nately, you could use gem in future by prefixing it with its full location (for example,
/usr/bin/gem).

■Note It’s possible to install RubyGems in a local, user directory if you don’t have permission to install
it system wide. To learn more about this, refer to the RubyGems documentation at http://docs.
rubygems.org/.

Finding Gems

One of the things it’s useful to do is to get a list of the gems that are installed on your
machine, as well as get a list of the gems available for download and installation. To do
this, you use gem’s list command. If you run gem list from your command line, you’ll
get a result similar to this:

*** LOCAL GEMS ***

sources (0.0.1)

This package provides download sources for remote gem installation

It’s not much, but it’s a start. This list shows that you have the “sources” gem installed
(version 0.0.1) and a basic description of the gem.

You can query the remote gem server (currently hosted by RubyForge) like so:

gem list --remote

CHAPTER 7 ■ PROJECTS AND L IBRARIES 191

7664 CH07.qxd 2/13/07 1:34 PM Page 191

*** REMOTE GEMS ***

abstract (1.0.0)

a library which enables you to define abstract method in Ruby

ackbar (0.1.1, 0.1.0)

ActiveRecord KirbyBase Adapter

action_profiler (1.0.0)

A profiler for Rails controllers

actionmailer (1.2.3, 1.2.2, 1.2.1, 1.2.0, 1.1.5, 1.1.4, 1.1.3, 1.1.2, 1.1.1, 1.0.1,

1.0.0, 0.9.1, 0.9.0, 0.8.1, 0.8.0, 0.7.1, 0.7.0, 0.6.1, 0.6.0, 0.5.0, 0.4.0,

0.3.0)

Service layer for easy email delivery and testing.

[..1,000s of lines about other gems removed for brevity..]

Within a minute or so, many hundreds of gems and descriptions should go flying
past (do allow a couple minutes though, as RubyForge can often be extremely busy).

Wading through such a list is impractical for most purposes, but generally you’ll
be aware of which gem you want to install before you get to this stage. People on the
Internet will recommend gems, or you’ll be asked to install a particular gem by this
book or another tutorial.

However, if you wish to “browse,” the best way to do so is to visit http://
rubyforge.org/, the home for the RubyGems repository. RubyForge features search tools
and more information about each gem in the repository.

Alternatively, you can use the search features offered by the gem program directly,
like so:

gem query --remote --name-matches class

*** REMOTE GEMS ***

calibre-classinherit (2.1.0)

Provides class-level inheritance for mixin modules.

calibre-classmethods (2.0.0, 1.0.0)

Provides class-level inheritance for included modules.

CHAPTER 7 ■ PROJECTS AND L IBRARIES192

7664 CH07.qxd 2/13/07 1:34 PM Page 192

calibre-nackclass (0.5.1)

Nack, which stands for Not-ACKnowledged, is a more efficient tool

for deferable errors.

calibre-nullclass (1.0.0)

Null is a alternate to Nil that's doesn't raise NoMethodError.

classifier (1.3.0, 1.2.0, 1.1.1, 1.1, 1.0)

A general classifier module to allow Bayesian and other types of

classifications.

classroom (0.0.2, 0.0.1)

ClassRoom is a 'class server' based on DRb

In this case, you asked the repository for all gems with names including the word
“class.”

■Note In Chapter 16, we’re going to look at a large collection of RubyGems and other libraries and see
how each works and can be used in your own projects.

Installing a Simple Gem

Once you’ve found the name of a gem you wish to install, you can install it with a single
command at the command line (where feedtools would be replaced with the name of the
gem you wish to install, although feedtools is a fine gem to test with):

gem install feedtools

■Caution On Unix-related platforms (including OS X and Linux), you’re likely to receive an error shortly
thereafter, complaining that you don’t have permission to install the gem. The reason for this is that Ruby is
usually installed as a system application, and your current user doesn’t have the privileges to install new
libraries at the system level. To resolve this, you can either switch to the root user and re-run the gem
install command, or use sudo: sudo gem install feedtools.

CHAPTER 7 ■ PROJECTS AND L IBRARIES 193

7664 CH07.qxd 2/13/07 1:34 PM Page 193

If all goes well, you’ll get output like this:

Attempting local installation of 'feedtools'

Local gem file not found: feedtools*.gem

Attempting remote installation of 'feedtools'

Updating Gem source index for: http://gems.rubyforge.org

Successfully installed feedtools-0.2.26

Installing RDoc documentation for feedtools-0.2.26...

First, RubyGems looks to see if the gem exists in the current directory (you can keep
your own store of gems locally, if you like), and if not, it heads off to RubyForge to down-
load the gem and install it from afar. Last, it builds the documentation for the library
using rdoc (covered in Chapter 8), and installation is complete. This process is the same
for nearly all gems.

■Note In many cases, installing one gem requires other gems to be installed too. That is, the gem you’re
trying to install might have other gems it needs to operate. If this is the case, gem will tell you, and will
install the required gems in each case if you agree.

If you run gem list again at this point, your local list of gems will include the newly
installed gem (in this case, feedtools).

Using Gems

As the RubyGems system isn’t an integrated part of Ruby, it’s necessary to tell your
programs that you want to use and load gems.

To demonstrate how gems can be used, you’ll install the redcloth gem, a library that
can convert specially formatted text into HTML, ready to be used on a Web page. Use
gem install redcloth (or sudo gem install redcloth, if you aren’t running as root or a
superuser), as demonstrated earlier, to install the gem.

Once the gem is installed, run irb or create a new Ruby source file, and use the
redcloth gem like so:

require 'rubygems'

require 'RedCloth'

r = RedCloth.new("this is a *test* of _using RedCloth_")

puts r.to_html

CHAPTER 7 ■ PROJECTS AND L IBRARIES194

7664 CH07.qxd 2/13/07 1:34 PM Page 194

<p>this is a test of using RedCloth</p>

In this example, you first load up the RubyGems library, and then load up the Red-
Cloth library with require. When RubyGems is loaded on the first line, the RubyGems
library overrides the require method and enables it to be used to load gems as if they
were normal, local libraries.

After that point, you can use the RedCloth library, create an object, and call a method
on that object. If you get the HTML as output, everything was a success. You’ve used your
first gem.

■Note The “one-click installer” used by Windows users to install Ruby and RubyGems makes it so that
RubyGems is loaded by default with all Ruby programs run on that machine, so require 'rubygems' isn’t
required, although it does no harm either way.

Installing a More Complex Gem

Let’s look at a second example of installing a gem to see the realities of installing more
complex gems.

Hpricot is an HTML/Web page processing library for Ruby that uses a parser written
in C for speed. This requires the C code to be compiled, and although C compilers are
commonly available on Unix/Linux and Mac OS X machines, they’re less common on
Windows machines. This demands that two versions of each release of the Hpricot gem
are made available: one for machines that can compile the C code, and one for Windows
machines with a precompiled version.

■Note You’ll use Hpricot in Chapter 14 to process Web page content, so installing Hpricot now is advised if
you’re working through this book in order.

You can start by installing the Hpricot gem in the usual fashion:

gem install hpricot

CHAPTER 7 ■ PROJECTS AND L IBRARIES 195

7664 CH07.qxd 2/13/07 1:34 PM Page 195

Attempting local installation of 'hpricot'

Local gem file not found: hpricot*.gem

Attempting remote installation of 'hpricot'

Updating Gem source index for: http://gems.rubyforge.org

Select which gem to install for your platform (i686-darwin8.8.1)

1. hpricot 0.4 (ruby)

2. hpricot 0.4 (mswin32)

3. Cancel installation

>

Rather than just going ahead and installing the gem, the gem client notifies you that
there are two different types of gems available of the Hpricot 0.4 gem. One version is
marked “ruby” and the other “mswin32.” The “ruby” gem is a generic gem that’s designed
to be installed on any machine that has a Unix-like environment and a C compiler avail-
able (this can include Cygwin, a Unix line environment for Windows). The “mswin32”
version is specifically designed for users using Ruby under a pure Windows environment,
and includes a precompiled binary version of the HTML parser for use on a 32-bit x86
Windows environment.

You select your choice by typing the number required and pressing Enter.
Once Hpricot is installed, it’s easy to check if everything went okay:

require 'rubygems'

require 'hpricot'

puts "Hpricot installed successfully" if Hpricot

If you want to try out some more-complex code examples with Hpricot, refer to
Chapter 14, where you use Hpricot to process Web page content.

As well as having generic and Windows builds of each version of the Hpricot gem,
Hpricot is also available in a special developers’ version that’s kept up to date with the
latest changes made by the developer. Although it’s still common practice to release
libraries in fixed versions from time to time, the advent of test-driven development has
made it practical and reasonably safe to use more up-to-date versions of libraries that the
developer is actively working on. Therefore, you can choose to install the finished, fixed
versions of the Hpricot gem from the default gem servers, or you can choose to install the
“up to the minute” source version from the developer’s own gem server.

Hpricot’s developers’ build is not stored on the default gem servers, but on a gem
server maintained by the Hpricot developer himself. To access it, you only need to adjust
the gem install command slightly:

gem install hpricot --source code.whytheluckystiff.net

CHAPTER 7 ■ PROJECTS AND L IBRARIES196

7664 CH07.qxd 2/13/07 1:34 PM Page 196

This command instructs gem to not look at the default gem servers but to use
code.whytheluckystiff.net specifically. Many projects have their own developer gem
servers, so if you want to install experimental, cutting-edge versions of gems and
libraries, refer to the project’s Web site for information on installing the
edge/source/experimental versions (all the prior terms can be used to describe the
cutting-edge versions).

Running the prior command gives you a lot more options than installing from the
default gem servers.

Select which gem to install for your platform (i686-darwin8.8.1):

1. hpricot 0.4.52 (ruby)

2. hpricot 0.4.52 (mswin32)

3. hpricot 0.4.47 (ruby)

4. hpricot 0.4.43 (mswin32)

5. hpricot 0.4.43 (ruby)

6. hpricot 0.4 (mswin32)

7. hpricot 0.4 (ruby)

8. hpricot 0.3.32 (mswin32)

9. hpricot 0.3.32 (ruby)

10. hpricot 0.3.0 (mswin32)

11. hpricot 0.3 (ruby)

12. hpricot 0.2 (ruby)

13. hpricot 0.1 (ruby)

14. Cancel installation

>

As gem version numbers are incremental, running in significance from left to right,
the best build available here is 0.4.52, options 1 and 2 for the generic and Windows builds
respectively.

■Note Ruby on Rails also makes an “edge” build available, as opposed to the fixed versions. Many devel-
opers choose to use the edge versions, as they offer significantly more features than the latest official
release. However, rather than use version numbers like Hpricot, the Rails team uses a single revision number
such as 5098 or 5200, where the higher the number, the more up-to-date the build. This is covered in more
detail in Chapter 13.

CHAPTER 7 ■ PROJECTS AND L IBRARIES 197

7664 CH07.qxd 2/13/07 1:34 PM Page 197

Upgrading and Uninstalling Gems

One of the main features of RubyGems is that gems can be updated easily. You can
update all of your currently installed gems with a single line:

gem update

This makes gem go to the remote gem repository, look for new versions of all the
gems you currently have installed, and if there are new versions, installs them. If you only
want to upgrade a specific gem, suffix the preceding command line with the name of the
gem in question.

Uninstalling gems is the simplest task of all. Use the uninstall command (where
feedtools is replaced by the name of the gem you wish to uninstall):

gem uninstall feedtools

If there are multiple versions of the same gem on the machine, gem will ask you
which version you want to uninstall first (or you can tell it to uninstall all versions at
once), as in this example:

$ gem uninstall rubyforge

Select RubyGem to uninstall:

1. rubyforge-0.3.0

2. rubyforge-0.3.1

3. All versions

Creating Your Own Gems

Naturally, it’s possible to create gems from your own libraries and applications. This
entire process is covered in Chapter 10, along with the other ways you can deploy your
applications to users (or the world!).

Summary
In this chapter we’ve looked at some of the methods Ruby provides to make it possible to
handle larger projects, as well as access the vast universe of prewritten code libraries to
make development easier.

CHAPTER 7 ■ PROJECTS AND L IBRARIES198

7664 CH07.qxd 2/13/07 1:34 PM Page 198

As well as being able to include code from other files, we’ve looked at using modules
(and their namespaces) to separate potentially clashing classes, methods, and constants
into distinct groups. Modules also provide a way to mix in functionality to other classes
without using inheritance.

Ruby provides a wealth of useful libraries within the main distribution, but using
tools such as RubyGems allows you to get access to code written by thousands of other
Ruby developers, allowing you to implement more-complex programs more quickly than
would otherwise be possible.

Let’s reflect on the main concepts covered in this chapter:

• Project: Any collection of multiple files and subdirectories that form a single
instance of a Ruby application or library.

• require: A method that loads and processes the Ruby code from a separate file,
including whatever classes, modules, methods, and constants are in that file into
the current scope. load is similar, but rather than performing the inclusion opera-
tion once, it reprocesses the code every time load is called.

• Library: A collection of routines, classes, methods, and/or modules that provides
a set of features that many other applications can use.

• RubyGems: Packaging system for Ruby libraries and/or applications that makes
them easier to install and maintain by developers.

• Edge/source/development builds: Special versions of libraries and applications that
aren’t official releases, but reflect the latest work performed by the developers of
the library or application. However, with the popularity of test-driven develop-
ment, many of these cutting-edge libraries are still reliable to use, though their
most recently added features might not be fully documented or tested.

• Gem: A single library (or application) packaged up using the RubyGems system.
Can also be called a “RubyGem.”

In many of the chapters from here on, we’ll be using the power of libraries, and com-
bining multiple libraries to make single applications. One such example is the Ruby on
Rails framework we’ll be covering in Chapter 13, which is, in essence, a giant library made
up of several libraries itself!

In Chapter 16, we’ll come back to RubyGems and look at some of the most useful
gems available, their functions, and how to use them.

CHAPTER 7 ■ PROJECTS AND L IBRARIES 199

7664 CH07.qxd 2/13/07 1:34 PM Page 199

7664 CH07.qxd 2/13/07 1:34 PM Page 200

Documentation, Error Handling,
Debugging, and Testing

In this chapter we’re going to look at the finer details of developing reliable programs:
documentation, error handling, debugging, and testing. These tasks aren’t what most
people think of as development, but are as important to the overall process as general
coding tasks. Without documenting, debugging, and testing your code, it’s unlikely that
anyone but you could work on the code with much success, and you run the risk of
releasing faulty scripts and applications.

This chapter demonstrates how to produce documentation, handle errors in your
programs, test the efficiency of your code, and make sure that your code is (mostly) bug
free, all using tools that come with Ruby.

Documentation
Even if you’re the only person to use and work on your Ruby code, it’s inevitable that over
time you’ll forget the nuances of how it was put together and how it works. To guard
against code amnesia, you should document your code as you develop it.

Traditionally, documentation would often be completed by a third party rather than
the developer, or would be written after the majority of the development had been com-
pleted. Although developers have always been expected to leave comments in their code,
true documentation of a quality such that other developers and users can understand it
without seeing the source code has had less importance.

Compared to the documentation features of other languages, Ruby makes it
extremely easy to document your code as you create it, using a utility called RDoc
(standing for “Ruby Documentation”).

201

C H A P T E R 8

7664 CH08.qxd 2/13/07 1:39 PM Page 201

Generating Documentation with RDoc

RDoc calls itself a “Document Generator for Ruby Source.” It’s a tool that reads through
your Ruby source code files and creates structured HTML documentation. It comes with
the standard Ruby distribution, so it’s easy to find and use. If for some reason RDoc does
not appear to come with your installation of Ruby, you can download it from the official
RDoc site at http://rdoc.sourceforge.net/.

RDoc understands a lot of Ruby syntax and can create documentation for classes,
methods, modules, and numerous other Ruby constructs without much prompting.

The way you document your code in a way that RDoc can use is to leave comments
prior to the definition of the class, method, or module you want to document. For example:

This class stores information about people.

class Person

attr_accessor :name, :age, :gender

Create the person object and store their name

def initialize(name)

@name = name

end

Print this person's name to the screen

def print_name

puts "Person called #{@name}"

end

end

This is a simple class that’s been documented using comments. It’s quite readable
already, but RDoc can turn it into a pretty set of HTML documentation in seconds.

To use RDoc, simply run it from the command line using rdoc <name of source
file>.rb, like so:

rdoc person.rb

■Note On Linux and OS X this should simply work (as long as the directory containing RDoc—usually
/usr/bin or /usr/local/bin—is in the path). On Windows it might be necessary to prefix rdoc with its
full location.

This command tells RDoc to process person.rb and produce the HTML documenta-
tion. By default, it does this by creating a directory called doc from the current directory

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING202

7664 CH08.qxd 2/13/07 1:39 PM Page 202

and placing its HTML and CSS files in there. Once RDoc has completed, you can open
index.html, located within doc, and you should see some basic documentation, as in
Figure 8-1.

Figure 8-1. Basic RDoc HTML output as seen from a Web browser

The HTML documentation is shown with three frames across the top containing
links to the documented files, classes, and methods, respectively, and a main frame at the
bottom containing the documentation being viewed at present. The top three frames let
you jump between the various classes and methods with a single click. In a large set of
documentation, this quickly becomes useful.

When viewing the documentation for the Person class, the documentation shows
what methods it contains, the documentation for those methods, along with the attrib-
utes the class provides for its objects. RDoc works this out entirely from the source code
and your comments directly.

RDoc Techniques

In the prior section, you got RDoc to generate documentation from a few simple com-
ments in your source file. However, RDoc is rarely useful on such a small example, and its

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING 203

7664 CH08.qxd 2/13/07 1:39 PM Page 203

real power comes into play when you’re working on larger projects and using its
advanced functions. This section will cover some of these functions so you can comment
the code on your larger projects correctly.

■Note The following sections only give a basic overview of some of RDoc’s features. To read the full
documentation for RDoc and learn about features that are beyond the scope of this book, visit the official
RDoc site at http://rdoc.sourceforge.net/doc/.

Producing Documentation for an Entire Project

Previously you used rdoc along with a filename to produce documentation for a single
file. However, in the case of a large project, you could have many hundreds of files that
you want processed. If you run rdoc with no filenames supplied, RDoc will process all the
Ruby files found in the current directory and all other directories under that. The full doc-
umentation is placed into the doc directory, as before, and the entire set of
documentation is available from index.html.

Basic Formatting

Formatting your documentation for RDoc is easy. RDoc automatically recognizes para-
graphs within your comments, and can even use spacing to recognize structure. Here’s an
example of some of the formatting RDoc recognizes:

#= RDoc Example

#== This is a heading

#

#* First item in an outer list

* First item in an inner list

* Second item in an inner list

#* Second item in an outer list

* Only item in this inner list

#

#== This is a second heading

#Visit www.rubyinside.com

#

#== Test of text formatting features

#

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING204

7664 CH08.qxd 2/13/07 1:39 PM Page 204

#Want to see *bold* or _italic_ text? You can even embed

#+text that looks like code+ by surrounding it with plus

#symbols. Indented code will be automatically formatted:

#

class MyClass

def method_name

puts "test"

end

end

If you process this with RDoc, you’ll get a result that looks like that in Figure 8-2. To
learn more about RDoc’s general formatting features, the best method is to look at exist-
ing code that is extensively prepared for RDoc, such as the source code to the Ruby on
Rails framework, or refer to the official RDoc documentation at http://rdoc.
sourceforge.net/doc/.

Figure 8-2. How RDoc renders the formatting feature test file

Modifiers and Options

RDoc can work without the developer knowing much about it, but to get the most from
RDoc it’s necessary to know how several of its features work and how they can be cus-
tomized. RDoc supports a number of modifiers within comments, along with a plethora
of command line options.

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING 205

7664 CH08.qxd 2/13/07 1:39 PM Page 205

:nodoc: Modifier

By default, RDoc will attempt to use anything it considers relevant to build up its docu-
mentation. Sometimes, however, you’d rather RDoc ignore certain modules, classes, or
methods, particularly if you haven’t documented them yet. To do this, simply follow the
module, class, or method definition with a comment of :nodoc:, like so:

This is a class that does nothing

class MyClass

This method is documented

def some_method

end

def secret_method #:nodoc:

end

end

In this instance, RDoc will ignore secret_method.
:nodoc: only operates directly upon the elements upon which it is placed. If you want

:nodoc: to apply to the current element and all those beneath it (all methods within a
class, for example), do this:

This is a class that does nothing

class MyClass #:nodoc: all

This method is documented (or is it?)

def some_method

end

def secret_method

end

end

Now none of MyClass is documented by RDoc.

Turning RDoc Processing on and off

You can stop RDoc from processing comments temporarily using #++ and #--, like so:

This section is documented and read by RDoc.

#--

This section is hidden from RDoc and could contain developer

notes, private messages between developers, etc.

#++

RDoc begins processing again here after the ++.

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING206

7664 CH08.qxd 2/13/07 1:39 PM Page 206

This feature is particularly ideal in sections where you want to leave comments to
yourself but that aren’t for general consumption.

■Note RDoc doesn’t process comments that are within methods, so your usual code comments are not
used in the documentation produced.

Command Line Options

Like most command line applications, including Ruby itself, you can give RDoc a number
of options as follows:

• --all: Usually RDoc only processes public methods, but --all forces RDoc to doc-
ument all methods within the source files.

• --fmt <format name>: Produce documentation in a certain format (default is html,
but xml, yaml, chm, and pdf are available under some configurations).

• --help: Get help with using RDoc’s command line options and find out which
output formatters are available.

• --inline-source: Usually, source code is shown using popups, but this option
forces code to be shown inline with the documentation.

• --main <name>: Set the class, module, or file that appears as the main index page for
the documentation to <name> (for example, rdoc --main MyClass).

• --one-file: Make RDoc place all the documentation into a single file.

• --op <directory name>: Set the output directory to <directory name> (default is doc).

After any command line options, rdoc is then suffixed with the filename(s) of the files
you want to have RDoc document. Alternatively, if you specify nothing, RDoc will tra-
verse the current directory and all subdirectories and generate documentation for your
entire project.

■Note RDoc supports many more command line options than these, and they are all covered in RDoc’s
official documentation. Alternatively, run RDoc with rdoc --help at the command line to get a list of its
options.

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING 207

7664 CH08.qxd 2/13/07 1:39 PM Page 207

Debugging and Errors
Errors happen. It’s unavoidable that programs you develop will contain bugs, and you
won’t immediately be able to see what the errors are. A misplaced character in a regular
expression, or a typo with a mathematical symbol, can make the difference between a
reliable program and one that constantly throws errors or generates undesirable output.

Exceptions and Error Handling

An exception is an event that occurs when an error arises within a program. An exception
can cause the program to quit immediately with an error message, or can be handled by
error handling routines within the program to recover from the error in a sensible way.

For example, a program might depend on a network connection (the Internet, for
example), and if the network connection is unavailable, an error will arise when the pro-
gram attempts to use the network. Rather than brusquely terminating with an obscure
error message, the code can handle the exception and print a human-friendly error mes-
sage to the screen first. Alternatively, the program might have a mechanism by which it
can work offline, and you can use the exception raised by trying to access an inaccessible
network or server to enter that mode of operation instead.

Raising Exceptions

In Ruby, exceptions are packaged into objects of class Exception or one of Exception’s
many subclasses. Ruby has about 30 main predefined exception classes that deal
with different types of errors, such as NoMemoryError, RuntimeError, SecurityError,
ZeroDivisionError, and NoMethodError. You might have already seen some of these in error
messages while working in irb. (A table of all of Ruby’s standard exception classes is pro-
vided in Appendix B.)

When an exception is raised (exceptions are said to be raised when they occur within
the execution of a program), Ruby immediately looks back up the tree of routines that
called the current one (known as the stack) and looks for a routine that can handle that
particular exception. If it can’t find any error handling routines, it quits the program with
the raw error message. For example:

irb(main):001:0> puts 10 / 0

ZeroDivisionError: divided by 0

from (irb):1:in `/'

from (irb):1

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING208

7664 CH08.qxd 2/13/07 1:39 PM Page 208

This error message shows that an exception of type ZeroDivisionError has been
raised, because you attempted to divide ten by zero.

Ruby can raise exceptions automatically when you perform incorrect functions, and
you can raise exceptions from your own code too. You do this with the raise method and
by using an existing exception class, or by creating one of your own that inherits from the
Exception class.

One of the standard exception classes is ArgumentError, which is used when the argu-
ments provided to a method are fatally flawed. You can use this class as an exception if
bad data is supplied to a method of your own:

class Person

def initialize(name)

raise ArgumentError, "No name present" if name.empty?

end

end

If you create a new object from Person and supply a blank name, an exception will be
raised:

fred = Person.new('')

ArgumentError: No name present

■Note You can call raise with no arguments at all, and a generic RuntimeError exception will be raised.
This is not good practice though, as the exception will have no message or meaning along with it. Always
provide a message and a class with raise, if possible.

However, you could create your own type of exception if you wanted to. For example:

class BadDataException < RuntimeError

end

class Person

def initialize(name)

raise BadDataException, "No name present" if name.empty?

end

end

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING 209

7664 CH08.qxd 2/13/07 1:39 PM Page 209

This time you’ve created a BadDataException class inheriting from Ruby’s standard
RuntimeError exception class.

At this point, it might seem meaningless as to why raising different types of excep-
tions is useful. The reason is so that you can handle different exceptions in different ways
with your error handling code, as you’ll do next.

Handling Exceptions

In the previous section we looked at how exceptions work. When raised, exceptions halt
the execution of the program and trace their way back up the stack to find some code
that can handle them. If no handler for the exception is found, the program ceases
execution and dies with an error message with information about the exception.

However, in most situations, stopping a program because of a single error isn’t
necessary. The error might only be minor, or there might be an alternative option to try.
Therefore, it’s possible to handle exceptions. In Ruby, the rescue clause is used, along
with begin and end, to define blocks of code to handle exceptions. For example:

begin

puts 10 / 0

rescue

puts "You caused an error!"

end

You caused an error!

In this case, begin and end define a section of code to be run, where if an exception
arises, it’s handled with the code inside the rescue block. First, you try to work out ten
divided by zero, which raises an exception of class ZeroDivisionError. However, being
inside a block containing a rescue section means that the exception is handled by the
code inside that rescue section. Rather than dying with a ZeroDivisionError, the text
“You caused an error!” is instead printed to the screen.

This can become important in programs that rely on external sources of data.
Consider this pseudo-code:

data = ""

begin

<.. code to retrieve the contents of a Web page..>

data = <..content of Web page..>

rescue

puts "The Web page could not be loaded! Using default data instead."

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING210

7664 CH08.qxd 2/13/07 1:39 PM Page 210

data = <..load data from local file..>

end

puts data

This code demonstrates why handling exceptions is extremely useful. If retrieving the
contents of a Web page fails (if you’re not connected to the Internet, for example), then
the error handling routine rescues the exception, alerts the user of an error, and then
loads up some data from a local file instead. Certainly better than exiting the program
immediately!

In the previous section we looked at how to create your own exception classes, and
the motivation for doing this is that it’s possible to rescue different types of exceptions
in a different way. For example, you might want to react differently if there’s a fatal flaw in
the code, versus a simple error such as a lack of network connectivity. There might also
be errors you want to ignore, and only specific exceptions you wish to handle.

rescue’s syntax makes handling different exceptions in different ways easy:

begin

... code here ...

rescue ZeroDivisionError

... code to rescue the zero division exception here ...

rescue YourOwnException

... code to rescue a different type of exception here ...

rescue

... code that rescues all other types of exception here ...

end

This code contains multiple rescue blocks, each of which is caused depending on
the type of exception raised. If a ZeroDivisionError is raised within the code between
begin and the rescue blocks, the rescue ZeroDivisionError code is executed to handle the
exception.

Handling Passed Exceptions

As well as handling different types of exceptions using different code blocks, it’s possible
to receive exceptions and use them. This is achieved with a little extra syntax on the
rescue block:

begin

puts 10 / 0

rescue => e

puts e.class

end

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING 211

7664 CH08.qxd 2/13/07 1:39 PM Page 211

ZeroDivisionError

Rather than merely performing some code when an exception is raised, the exception
object itself is assigned to the variable e, whereupon you can use that variable however you
wish. This is particularly useful if the exception class contains extra functionality or attrib-
utes that you want to access.

Catch and Throw

Although creating your own exceptions and exception handlers is useful for resolving
error situations, sometimes you want to be able to break out of a thread of execution
(say, a loop) during normal operation in a similar way to an exception, but without actu-
ally generating an error. Ruby provides two methods, catch and throw, for this purpose.

catch and throw work in a way a little reminiscent of raise and rescue, but catch and
throw work with symbols rather than exceptions. They’re designed to be used in situa-
tions where no error has occurred, but being able to escape quickly from a nested loop,
method call, or similar, is necessary.

catch(:finish) do

1000.times do

x = rand(1000)

throw :finish if x == 123

end

puts "Generated 1000 random numbers without generating 123!"

end

The preceding example creates a block using catch. The catch block with symbol
:finish as an argument will immediately terminate (and move on to any code after that
block) if throw is called with the :finish symbol.

Within the catch block you generate 1,000 random numbers, and if the random num-
ber is ever 123, you immediately escape out of the block using throw :finish. However, if
you manage to generate 1,000 random numbers without generating the number 123, the
loop and the block completes, and you see the message.

catch and throw don’t have to be directly in the same scope. throw works from
methods called from within a catch block:

def generate_random_number_except_123

x = rand(1000)

throw :finish if x == 123

end

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING212

7664 CH08.qxd 2/13/07 1:39 PM Page 212

catch(:finish) do

1000.times { generate_random_number_except_123 }

puts "Generated 1000 random numbers without generating 123!"

end

This code operates in an identical way to the first. When throw can’t find a code block
using :finish in its current scope, it jumps back up the stack until it can.

The Ruby Debugger

Debugging is the process of fixing the bugs in a piece of code. This process can be as sim-
ple as changing a small section of your program, running it, monitoring the output, and
then looping through this process again and again until the output is correct and the pro-
gram behaves as expected.

However, constantly editing and rerunning your program gives you no insight into
what’s actually happening deep within your code. Sometimes you want to know what
each variable contains at a certain point within your program’s execution, or you might
want to force a variable to contain a certain value. You can use puts to show what vari-
ables contain at certain points in your program, but you can soon make your code messy
by interspersing it with debugging tricks.

Ruby provides a debugging tool you can use to step through your code line by line
(if you wish), set breakpoints (places where execution will stop for you to check things
out), and debug your code. It’s a little like irb, except you don’t need to type out a whole
program. You can specify your program’s filename and you’ll be acting as if you are within
that program.

For example, create a basic Ruby script called debugtest.rb:

i = 1

j = 0

until i > 1000000

i *= 2

j += 1

end

puts "i = #{i}, j = #{j}"

If you run this code with ruby debugtest.rb, you’ll get the following result:

i = 1048576, j = 20

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING 213

7664 CH08.qxd 2/13/07 1:39 PM Page 213

But say you run it with the Ruby debugger like this:

ruby –r debug debugtest.rb

You’ll see something like this appear:

Debug.rb

Emacs support available

debugtest.rb:1:i = 1

(rdb:1)

This means the debugger has loaded. The third line shows you the current line of
code ready to be executed (the first line, in this case), and the fourth line is a prompt that
you can type on.

The function of the debugger is similar to irb, and you can type expressions and
statements directly onto the prompt here. However, its main strength is that you can use
special commands to run debugtest.rb line by line, or set breakpoints and “watches”
(breakpoints that rely on a certain condition becoming true—for example, to stop execu-
tion when x is larger than 10).

Here are the most useful commands to use at the debugger prompt:

• list: Lists the lines of the program currently being worked upon. You can follow
list by a range of line numbers to show. For example, list 2-4 shows code lines
2 through 4. Without any arguments, list shows a local portion of the program
to the current execution point.

• step: Runs the next line of the program. step literally steps through the program
line by line, executing a single line at a time. After each step, you can check vari-
ables, change values, and so on. This allows you to trace the exact point that bugs
occur. Follow step by the number of lines you wish to execute if it’s higher than 1,
such as step 2 to execute two lines.

• cont: Runs the program without stepping. Execution will continue until the pro-
gram ends, reaches a breakpoint, or a watch condition becomes true.

• break: Sets a breakpoint at a particular line number, such as with break 3 to set a
breakpoint at line 3. This means that if you continue execution with cont, execu-
tion will run until line 3 and then stop again. This is useful for stopping execution
at a place where you want to see what’s going on.

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING214

7664 CH08.qxd 2/13/07 1:39 PM Page 214

• watch: Sets a condition breakpoint. Rather than choosing a certain line upon which
to stop, you specify a condition that causes execution to stop. For example, if you
want the program to stop when x is larger than 10, use watch x > 10. This is perfect
for discovering the exact point where a bug occurs if it results in a certain condi-
tion becoming true.

• quit: Exits the debugger.

A simple debugging session with your debugtest.rb code might look like this:

ruby -r debug debugtest.rb

Debug.rb

Emacs support available.

debugtest.rb:1:i = 1

(rdb:1) list

[-4, 5] in debugtest.rb

=> 1 i = 1

2 j = 0

3 until i > 1000000

4 i *= 2

5 j += 1

(rdb:1) step

debugtest.rb:2:j = 0

(rdb:1) i

1

(rdb:1) i = 100

100

(rdb:1) step

debugtest.rb:3:until i > 1000000

(rdb:1) step

debugtest.rb:4: i *= 2

(rdb:1) step

debugtest.rb:5: j += 1

(rdb:1) i

200

(rdb:1) watch i > 10000

Set watchpoint 1:i > 10000

(rdb:1) cont

Watchpoint 1, toplevel at debugtest.rb:5

debugtest.rb:5: j += 1

(rdb:1) i

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING 215

7664 CH08.qxd 2/13/07 1:39 PM Page 215

12800

(rdb:1) j

6

(rdb:1) quit

Really quit? (y/n) y

This debugging session demonstrates stepping through the code, inspecting vari-
ables, changing variables in situ, and setting watch points. These are the tools you’ll use
99 percent of the time while debugging, and with practice the debugging environment
can become a powerful tool, much like irb.

However, many Ruby developers don’t use the debugger particularly often, as its style
of debugging and its workflow can seem a little out of date compared to modern tech-
niques such as test-driven development and unit testing, which we’ll look at next. If the
debugger seems like it could be useful, testing will make you drool.

Testing
Testing is an essential part of modern software development, and helps you resolve many
development snafus. Without a proper testing system in place, you can never be confi-
dent that your system is bug free. With a good testing system in place, you might only be
99 percent bug free, but it’s a significant improvement.

Previously, we’ve looked at how to handle explicit errors, but sometimes your pro-
grams might perform oddly in certain situations. For example, certain data might cause
an algorithm to return an incorrect result, or invalid data might be produced that,
although invalid, does not result in an explicit error.

One way to resolve these problems is to debug your code, as you’ve seen, but debug-
ging only solves one problem at a time. It’s possible to debug your code to solve one
problem, but create many others! Therefore, debugging alone has become viewed as a
poor method of resolving bugs, and testing the overall functionality of code has become
important.

In the past, users and developers might have performed testing manually by per-
forming certain actions and seeing what happens. If an error occurs, the bug in question
is fixed and testing continues. Indeed, there was a time when it was it commonplace
solely to use user feedback as a testing mechanism!

However, things have changed quickly with the rapidly growing popularity of test-
driven development (also often known as test-first development), a new philosophy that
turns software development practices on their head. Ruby developers have been at the
forefront of promoting and encouraging this technique.

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING216

7664 CH08.qxd 2/13/07 1:39 PM Page 216

The Philosophy of Test-Driven Development

Test-driven development is a technique where developers create a set of tests for a sys-
tem to pass before coding the system itself, and then rigidly use these tests to maintain
the integrity of the code. In a lighter form, however, it can also refer to the technique of
implementing tests for any code, even if you don’t necessarily create the tests before the
code you’re testing.

■Note This section provides only a basic overview of test-driven development. The topic is vast, and many
books and resources are available on the topic if you wish to learn more.

For example, you might add a simple method to String that’s designed to capitalize
text into titles:

class String

def titleize

self.capitalize

end

end

Your intention is to create a method that can turn “this is a test” into “This Is A Test”;
that is, a method that makes strings look as if they’re titles. titleize, therefore, “capital-
izes” the current string with the capitalize method. If you’re in a rush or not bothering
to test your code, disaster will soon strike when the code is released into the wild.
capitalize only capitalizes the first letter of a string, not the whole string!

puts "this is a test".titleize

"This is a test"

That’s not the intended behavior! However, with test-driven development, you could
have avoided the pain of releasing broken code by first writing some tests to demonstrate
the outcome you expect:

raise "Fail 1" unless "this is a test".titleize == "This Is A Test"

raise "Fail 2" unless "another test 1234".titleize == "Another Test 1234"

raise "Fail 3" unless "We're testing titleize".titleize == "We're Testing Titleize"

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING 217

7664 CH08.qxd 2/13/07 1:39 PM Page 217

These three lines of code raise exceptions unless the output of titleize is what you
expect it to be.

■Note These tests are also known as assertions, as they’re asserting that a certain condition is true.

If titleize passes these three tests, you can expect the functionality to be okay for
other examples.

■Note A set of tests or assertions that test a single component or a certain set of functionality is known as
a test case.

Your current code fails on the first test of this test case, so let’s write the code to make
it work:

class String

def titleize

self.gsub(/\b\w/) { |letter| letter.upcase }

end

end

This code takes the current string, finds all word boundaries (with \b), passes in the
first letter of each word (as obtained with \w), and converts it to upper case. Job done?
Run the three tests again.

RuntimeError: Failed test 3

Why does test 3 fail?

puts "We're testing titleize".titleize

We'Re Testing Titleize

\b isn’t smart enough to detect true word boundaries. It merely uses whitespace, or
“non-word” characters to discriminate words from non-words. Therefore, in “We’re,”
both the W and the R get capitalized. You need to tweak your code:

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING218

7664 CH08.qxd 2/13/07 1:39 PM Page 218

class String

def titleize

self.gsub(/\s\w/) { |letter| letter.upcase }

end

end

If you make sure the character before the letter to capitalize is whitespace, you’re
guaranteed to be in a true, new word.

Re-run the tests:

RuntimeError: Failed test 1

You’re back to square one.
One thing you failed to take into account is that looking for whitespace before a word

doesn’t allow the first word of each string to be capitalized, because those strings start
with a letter, and not whitespace. It sounds trivial, but it’s a great demonstration of how
complex simple functions can become, and why testing is so vital to eradicate bugs.
However, the ultimate solution is simple:

class String

def titleize

self.gsub(/(\A|\s)\w/){ |letter| letter.upcase }

end

end

If you run the tests again now, you’ll notice they pass straight through. Success!
This basic example provides a sharp demonstration of why testing is important.

Small changes can lead to significant changes in functionality, but with a set of trusted
tests in place, you can focus on solving problems rather than worrying if your existing
code has bugs.

Rather than writing code and waiting for bugs to appear, you can proactively deter-
mine what your code should do and then act as soon as the results don’t match up with
the expectations.

Unit Testing

In the previous section you created some basic tests using raise, unless, and ==, and
compared the results of a method call with the expected results. It’s possible to test a lot
in this way, but with more than a few tests, it soon becomes messy, as there’s no logical
place for the tests to go (and you certainly don’t want to include tests with your actual,
functional code).

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING 219

7664 CH08.qxd 2/13/07 1:39 PM Page 219

Luckily, Ruby comes with a library, Test::Unit, that makes testing easy and organizes
test cases into a clean structure. Unit testing is the primary component of test-driven
development, and means that you’re testing each individual unit of functionality within a
program or system. Test::Unit is Ruby’s official library for performing unit tests.

One of the benefits of Test::Unit is that it gives you a standardized framework for
writing and performing tests. Rather than writing assertions in an inconsistent number
of ways, Test::Unit gives you a core set of assertions to use.

Let’s take the titleize method from before to use as a demonstration of Test::Unit’s
features and create a new file called test_titleize.rb:

class String

def titleize

self.gsub(/\s(\w)/) { |letter| letter.upcase }.gsub(/^\w/) do |letter|

letter.upcase

end

end

end

require 'test/unit'

class TestTitleize < Test::Unit::TestCase

def test_basic

assert_equal("This Is A Test", "this is a test".titleize)

assert_equal("Another Test 1234", "another test 1234".titleize)

assert_equal("We're Testing", "We're testing".titleize)

end

end

First you include the titleize extension to String (this could be done using require
if it’s in a separate file). Next you load the Test::Unit class using require. Finally you cre-
ate a test case by inheriting from Test::Unit::TestCase. Within this class you have a single
method (though you can have as many as you like to separate your tests logically) that
contains three assertions, similar to the assertions made in the previous section.

If you run this script, you’ll see the tests in action:

Loaded suite test_titleize

Started

.

Finished in 0.000363 seconds.

1 tests, 3 assertions, 0 failures, 0 errors

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING220

7664 CH08.qxd 2/13/07 1:39 PM Page 220

This output shows that the tests are started, a single test method is run (test_basic,
in this case), and that a single test method with three assertions passed successfully.

Say you add an assertion to test_basic that’s certainly going to fail, like so:

assert_equal("Let's make a test fail!", "foo".titleize)

And re-run the tests:

Loaded suite test_titleize

Started

F

Finished in 0.239156 seconds.

1) Failure:

test_basic(TestTitleize) [blah.rb:14]:

<"Let's make a test fail!"> expected but was

<"Foo">.

1 tests, 4 assertions, 1 failures, 0 errors

You’ve added an assertion that was bound to fail, and it has. However, Test::Unit has
given you a full explanation of what happened. Using this information, you can go back
and either fix the assertion or fix the code that caused the test to fail. In this case, you
forced it to fail, but if your assertions are created normally, a failure such as this would
demonstrate a bug in your code.

More Test::Unit Assertions

In the previous section you used a single type of assertion, assert_equal. assert_equal
asserts that the first and second arguments are equal (whether they’re numbers, strings,
arrays, or objects of any other kind). The first argument is assumed to be the expected
outcome and the second argument is assumed to be the generated output, as with your
prior assertion:

assert_equal("This Is A Test", "this is a test".titleize)

■Note assert_equal can also accept an optional third argument as a message to be displayed if the
assertion fails. A message might, in some cases, prove more useful than the default assertion failure
message.

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING 221

7664 CH08.qxd 2/13/07 1:39 PM Page 221

You’re likely to find several other types of assertions useful as follows:

• assert(<boolean expression>): Only passes if the boolean expression isn’t false or
nil (for example, assert 2 == 1 will always fail).

• assert_equal(expected, actual): Only passes if the expected and actual values are
equal (as compared with the == operator). assert_equal('A', 'a'.upcase) will pass.

• assert_not_equal(expected, actual): The opposite of assert_equal. This test will fail
if the expected and actual values are equal.

• assert_raise(exception_type, ..) { <code block> }: Only passes if the code block
following the assertion raises an exception of the type(s) passed as arguments.
assert_raise (ZeroDivisionError) { 2 / 0 } will pass.

• assert_nothing_raised(exception_type, ..) { }: The opposite of assert_raise.
Only passes if none of the exceptions listed are raised.

• assert_instance_of(class_expected, object): Only passes if object is of class
class_expected.

• flunk: flunk is a special type of assertion in that it will always fail. It’s useful to use
if you haven’t quite finished writing your tests and you want to add a strong
reminder that your test case isn’t complete!

■Note All the preceding assertions, including flunk, can take an optional message argument as the last
argument, as with assert_equal.

You’ll use assertions and unit testing more in Chapter 12, where you’ll develop a set
of tests for a library you’ll build.

Benchmarking and Profiling
Once your code is bug free and working properly, it’s natural to think it’s ready for release.
In the real world, however, code can often be inefficient or run more slowly than it needs
to. As of version 1.8, the Ruby interpreter is not particularly fast, although Ruby 1.9 and
onward (including 2.0), with their entirely new implementation, are significantly faster.
However, it’s always important to benchmark your code to make sure it’s running as effi-
ciently as possible.

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING222

7664 CH08.qxd 2/13/07 1:39 PM Page 222

Benchmarking is the process in which you get your code or application to perform a
function (often many hundreds of times in succession to average out discrepancies), and
the time it takes to execute is measured. You can then refer to these times as you optimize
your code. If future benchmarks run faster than previous ones, you’re heading in the right
direction. Luckily, Ruby provides a number of tools to help you benchmark your code.

Simple Benchmarking

Ruby’s standard library includes a module called Benchmark. Benchmark provides several
methods that measure the speed it takes to complete the code you provide. For example:

require 'benchmark'

puts Benchmark.measure { 10000.times { print "." } }

This code measures how long it takes to print 10,000 periods to the screen. Ignoring
the periods produced, the output (on my machine; yours might vary) is as follows:

0.050000 0.040000 0.090000 (0.455168)

The columns, in order, represent the amount of user CPU time, system CPU time,
total CPU, and “real” time taken. In this case, although it took nine-hundredths of a sec-
ond of CPU time to send 10,000 periods to the screen or terminal, it took almost half a
second for them to finish being printed to the screen among all the other things the
computer was doing.

Because measure accepts code blocks, you can make it as elaborate as you wish:

require 'benchmark'

iterations = 1000000

b = Benchmark.measure do

for i in 1..iterations do

x = i

end

end

c = Benchmark.measure do

iterations.times do |i|

x = i

end

end

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING 223

7664 CH08.qxd 2/13/07 1:39 PM Page 223

puts b

puts c

In this example, you benchmark two different ways of counting from one to one mil-
lion. The results might look like this:

0.800000 0.010000 0.810000 (0.949338)

0.890000 0.010000 0.900000 (1.033589)

These results show little difference, except that slightly more user CPU time is used
when using the times method rather than using for. You can use this same technique to
test different ways of calculating the same answers in your code, and optimize your code
to use the fastest methods.

Benchmark also includes a way to make completing multiple tests more convenient.
You can rewrite the preceding benchmarking scenario like this:

require 'benchmark'

iterations = 1000000

Benchmark.bm do |bm|

bm.report("for:") do

for i in 1..iterations do

x = i

end

end

bm.report("times:") do

iterations.times do |i|

x = i

end

end

end

The primary difference with using the bm method is that it allows you to collect a
group of benchmark tests together and display the results in a prettier way. Example
output for the preceding code is as follows:

user system total real

for: 0.850000 0.000000 0.850000 (0.967980)

times: 0.970000 0.010000 0.980000 (1.301703)

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING224

7664 CH08.qxd 2/13/07 1:39 PM Page 224

bm makes the results even easier to read and provides headings for each column.
Another method, bmbm, repeats the benchmark set twice, using the first as a

“rehearsal” and the second for the true results, as in some situations CPU caching, mem-
ory caching, and other factors can taint the results. Therefore, repeating the test can lead
to more accurate figures. Replacing the bm method with bmbm in the preceding example
gives results like these:

Rehearsal --

for: 0.780000 0.000001 0.780001 (0.958378)

times: 0.100000 0.010000 0.110000 (1.342837)

------------------------------- total: 0.890001sec

user system total real

for: 0.850000 0.000000 0.850000 (0.967980)

times: 0.970000 0.010000 0.980000 (1.301703)

bmbm runs the tests twice and gives both sets of results, where the latter set should be
the most accurate.

Profiling

Where benchmarking is the process of measuring the total time it takes to achieve some-
thing and comparing those results between different versions of code, profiling tells you
what code is taking what amount of time. For example, you might have a single line in
your code that’s causing the program to run slowly, so by profiling your code you can
immediately see where you should focus your optimization efforts.

■Note Some people consider profiling to be the holy grail of optimization. Rather than thinking of efficient
ways to write your application ahead of time, some developers suggest writing your application, profiling it,
and then fixing the slowest areas. This is to prevent premature optimization. After all, you might prematurely
optimize something that didn’t actually warrant it, but miss out on an area of code that could do with signifi-
cant optimization.

Ruby comes with a code profiler built in, and all you have to do to have your code
profiled automatically is to add require "profile" to the start of your code, or run it with
ruby --r profile before your source file name.

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING 225

7664 CH08.qxd 2/13/07 1:39 PM Page 225

Here’s a basic example:

require 'profile'

class Calculator

def self.count_to_large_number

x = 0

100000.times { x += 1 }

end

def self.count_to_small_number

x = 0

1000.times { x += 1 }

end

end

Calculator.count_to_large_number

Calculator.count_to_small_number

% cumulative self self total

time seconds seconds calls ms/call ms/call name

70.76 7.38 7.38 2 3690.00 5215.00 Integer#times

29.24 10.43 3.05 101000 0.03 0.03 Fixnum#+

0.00 10.43 0.00 2 0.00 0.00

Kernel.singleton_method_added

0.00 10.43 0.00 1 0.00 110.00

Calculator#count_to_small_nu..

0.00 10.43 0.00 1 0.00 10320.00

Calculator#count_to_large_nu..

0.00 10.43 0.00 1 0.00 0.00 Class#inherited

0.00 10.43 0.00 1 0.00 10430.00 #toplevel

There’s a lot of information given, but it’s easy to read. The code itself is simple. Two
class methods are defined that both count up to different numbers. Calculator.count_
to_large_number contains a loop that repeats 100,000 times, and Calculator.count_to_
small_number contains a loop that repeats 1,000 times.

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING226

7664 CH08.qxd 2/13/07 1:39 PM Page 226

■Note The reason larger numbers, such as the 1,000,000 loops in the benchmarking tests, weren’t used
is because profiling adds a severe overhead to the operating speed of a program, unlike benchmarking.
Although the program will run slower, this slowness is consistent, so the accuracy of the profiling results is
ensured regardless.

The result contains a number of columns. The first is the percentage of time spent
within the method named in the far right column. In the preceding example, the profiler
shows that 70.76 percent of the total execution time was spent in the times method in the
Integer class. The second column shows the amount of time in seconds rather than as a
percentage.

The calls column specifies how many times that method was called. In our case,
times was only called twice. This is true, even though the code block passed to times was
run 101,000 times. This is reflected in the number of calls for Fixnum’s addition (+)
method, with 101,000 total calls shown there.

You can use the profiler’s results to discover the “sticky” points in your program and
help you work around using inefficient methods that suck up CPU time. It’s not worth
spending time optimizing routines that barely consume any time already, so use the pro-
file to find those routines using the lion’s share of the CPU and focus on optimizing those.

■Tip You can use a library called profiler (which profile actually uses to do its work) to profile a
specific section of your program rather than the entire thing. To do this, use require 'profiler' and the
commands Profiler__::start_profile, Profiler__::stop_profile, and
Profiler__::print_ profile($stdout) in the relevant locations.

Summary
In this chapter we’ve looked at the process behind, and the tools Ruby supplies for,
documentation, error handling, testing, benchmarking, and profiling.

The quality of the documentation, error handling, and tests associated with a pro-
gram or section of code demonstrates the professionalism of the developer and the
program. Small, quickly developed scripts might not require any of these elements, but
if you’re developing a system that’s designed to be used by other people or that’s mission
critical, it’s essential to understand the basics of error handling and testing to avoid the
embarrassment of your code causing problems and behaving erroneously.

CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING 227

7664 CH08.qxd 2/13/07 1:39 PM Page 227

228 CHAPTER 8 ■ DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

Furthermore, it’s important to benchmark and profile your code so that your code
has the ability to scale over time. You might only expect your code to perform a certain
small set of functions—for example, processing small files—but in the future you might
need to process significantly larger amounts of data with the same code and add extra,
unanticipated features. The small amount of time taken to benchmark, profile, and opti-
mize your code can pay dividends with reduced execution times later.

Let’s reflect on the main concepts covered in this chapter:

• RDoc: A tool that comes with Ruby that builds HTML documentation using the
structure and comments in your source code.

• Debugging: The process of resolving errors in source code, often by stepping
through and inspecting the state of a program in situ.

• Test-driven development/test-first development: The development process of first
writing tests that enforce certain expectations, then writing the code to produce
the correct results.

• Test case: A group of tests to test and check the functionality of a section of your
program (for example, a class or module).

• Assertion: A single test to see whether a certain condition or result is met, which
checks that a certain piece of code is working properly.

• Unit testing: The process of testing code by making assertions on all of its various
pieces of functionality to make sure the entire system operates as expected.

• Optimization: The process of improving the efficiency of your code by reworking
algorithms and finding new ways of solving problems.

• Benchmarking: A process involving testing the speed of your code to see how quick
it is under certain conditions, or using certain methods and algorithms. You can
use the benchmark results to compare different versions of code, or compare
coding techniques.

• Profiling: A process that shows you which methods and routines are taking up the
most execution time in your programs.

Most of these concepts are not used directly in the code samples in this book, as
they’re principally relevant to longer-term projects or code being prepared for release.
This doesn’t mean they’re unimportant concepts, but as in-depth parts of a longer devel-
opment process they aren’t within the scope of the code examples used in other chapters.

We’ll look briefly at testing methodologies again in Chapter 12 where we develop
some simple tests while developing a library.

7664 CH08.qxd 2/13/07 1:39 PM Page 228

Files and Databases

In this chapter we’re going to look at how to store, process, and interact with external
sources of data from our Ruby programs. In Chapter 4 we briefly looked at how to load
files to get data into an application, but this chapter will extend upon that greatly and
allow you to create files from scratch from your Ruby programs.

Later in this chapter we’ll look at databases—specialized organizations of data—and
how to interact with them, along with some notes on interacting with popular database
systems such as SQLite, MySQL, PostgreSQL, Oracle, and Microsoft SQL Server. You can
use databases for simple tasks such as storing information about a small set of items or
as an address book, but databases are also used in the world’s busiest data processing
environments. By the end of this chapter, you’ll be able to use databases the same way as,
or at least in a similar way to, those used by professional developers around the world.

Input and Output
Interaction, in computer terms, relates to the input and output of data, or I/O for short.
Most programming languages have built-in support for I/O, and Ruby’s is particularly
well designed.

I/O streams are the basis for all input and output in Ruby. An I/O stream is a conduit
or channel for input and output operations between one resource and another. Usually
this will be between your Ruby program and the keyboard, or between your Ruby pro-
gram and a file. Along this stream, input and output operations can take place. In some
cases, such as when using the keyboard, only input can be retrieved, as you can’t send
data to a keyboard, and data can only be sent to, and not from, the screen.

In this section we’re going to look at using the keyboard, using files, and other forms
of I/O in Ruby and how they can be used.

229

C H A P T E R 9

7664 CH09.qxd 2/19/07 1:03 AM Page 229

Keyboard Input

The simplest way to get external data into a program is to use the keyboard. For example:

a = gets

puts a

gets accepts a single line of data from the standard input—the keyboard in this
case—and assigns it to a. You then print it, using puts, to the standard output—the screen
in this case.

STANDARD INPUT AND OUTPUT

The standard input is a default stream supplied by many operating systems that relates to the standard
way to accept input from the user. In our case, the standard input is the keyboard, but if, for example,
you were to redirect data to a Ruby application from a Unix-like operating system, such as Linux or Mac
OS X, the standard input would be the data piped to it. For example:

ruby test.rb < somedata.txt

The output provided this time would be the first line of somedata.txt, as gets would retrieve a
single line from the standard input that, in this case, would be the contents of the file somedata.txt.

Conversely, standard output is usually referring to the screen or display, but if the results of your
Ruby script are being redirected to a file or another program, that destination file or program becomes
the target for the standard output.

Alternatively, you can read multiple lines in one go by using readlines:

lines = readlines

readlines accepts line after line of input until a terminator, most commonly known
as EOF (End Of File), is found. You can create EOF on most platforms by pressing Ctrl+D.
When the terminating line is found, all the lines of input given are put into an array that’s
assigned to lines. This is particularly ideal for programs that accept piped or redirected
input on standard input. For example, say you have a script called linecount.rb contain-
ing this single line:

puts readlines.length

And you pass in a text file containing ten lines:

ruby linecount.rb < textfile.txt

CHAPTER 9 ■ FILES AND DATABASES230

7664 CH09.qxd 2/19/07 1:03 AM Page 230

You get this result:

10

In reality, however, this mechanism is rarely used, unless writing shell scripts for use
at a Unix prompt. In most cases you’ll be writing to and from files directly, and you’ll
require only minimal keyboard input that you can get with gets.

File I/O

In Chapter 4 you used the File class to open a text file so you could read in the contents
for your program to process. The File class is used as an abstraction to access and handle
file objects that can be accessed from a Ruby program. The File class lets you write to
both plain text and binary files and offers a collection of methods to make handling files
easy.

Opening and Reading Files

The most common file-related procedure is reading a file’s data for use within a program.
As you saw in Chapter 4, this is easily done:

File.open("text.txt").each { |line| puts line }

The File class’s open method is used to open the text file, text.txt, and upon that File
object the each method returns each line one by one. You can also do it this way:

File.new("text.txt", "r").each { |line| puts line }

This method clarifies the process involved. By opening a file, you’re creating a new
File object that you can then use. The second parameter "r" defines that you’re opening
the file for reading. This is the default mode, but when using File.new it can help to clarify
what you want to do with the file. This becomes important later when you write to files or
create new ones from scratch.

For opening and reading files, File.new and File.open appear identical, but they have
different uses. File.open can accept a code block, and once the block is finished, the file
will be closed automatically. However, File.new only returns a File object referring to the
file. To close the file, you have to use its close method. Let’s compare the two methods.
First, look at File.open:

File.open("text.txt") do |f|

puts f.gets

end

CHAPTER 9 ■ FILES AND DATABASES 231

7664 CH09.qxd 2/19/07 1:03 AM Page 231

This code opens text.txt and then passes the file handle into the code block as f.
puts f.gets takes a line of data from the file and prints it to the screen. Now, have

a look at the File.new approach:

f = File.new("text.txt", "r")

puts f.gets

f.close

In this example, a file handle/object is assigned to f directly. You close the file handle
manually with the close method at the end.

Both the code block and file handle techniques have their uses. Using a code block
is a clean way to open a single file quickly and perform operations in a single location.
However, assigning the File object with File.new makes the file reference available
throughout the entire current scope without needing to contain file manipulation code
within a single block.

■Note You might need to specify the location of files directly, as text.txt might not appear to be in the
current directory. Simply replace f = File.new("text.txt", "r") with f = File.new("c:\full\
path\here\text.txt", "r"), including the full path as necessary. Alternatively, use the result of
Dir::pwd to see what the current working directory is and put text.txt there.

You could also choose to assign the file handle to a class or instance variable:

class MyFile

attr_reader :handle

def initialize(filename)

@handle = File.new(filename, "r")

end

def finished

@handle.close

end

end

f = MyFile.new("text.txt")

puts f.handle.gets

f.finished

This is only a proof of the concept, but it demonstrates how File.new can be more
useful in certain situations.

CHAPTER 9 ■ FILES AND DATABASES232

7664 CH09.qxd 2/19/07 1:03 AM Page 232

More File-Reading Techniques

In the previous section you used a File object’s each method to read each line one by one
within a code block. However, you can do a lot more than that. Let’s assume your
text.txt file contains this dummy data:

Fred Bloggs,Manager,Male,45

Laura Smith,Cook,Female,23

Debbie Watts,Professor,Female,38

Next we’ll look at some of the different techniques you can use to read the file, along
with their outputs. First, you can read an I/O stream line by line using each:

File.open("text.txt").each { |line| puts line }

Fred Bloggs,Manager,Male,45

Laura Smith,Cook,Female,23

Debbie Watts,Professor,Female,38

■Note each technically reads from the file delimiter by delimiter, where the standard delimiter is a
“newline” character. You can change this delimiter. See Appendix B’s “Special Variables” section for details.

You can read an I/O stream with each using a custom delimiter of your choosing:

File.open("text.txt").each(',') { |line| puts line }

Fred Bloggs,
Manager,
Male,
45
Laura Smith,
Cook,
Female,
23
Debbie Watts,
Professor,
Female,
38

CHAPTER 9 ■ FILES AND DATABASES 233

7664 CH09.qxd 2/19/07 1:03 AM Page 233

In this case, you passed an optional argument to each that specified a different delim-
iter from the default “newline” delimiter. Commas delimit the input.

■Tip You can override the default delimiter by setting the special variable $/ to any delimiter you choose.

You can read an I/O stream byte by byte with each_byte:

File.open("text.txt").each_byte { |byte| puts byte }

70

114

101

100

...many lines skipped for brevity...

51

56

10

■Note When reading byte by byte you get the single byte values of each character rather than the charac-
ters themselves, much like when you do something like puts "test"[0]. To convert into text characters,
you can use the chr method.

Here’s how to read an I/O stream line by line using gets:

File.open("text.txt") do |f|

2.times { puts f.gets }

end

Fred Bloggs,Manager,Male,45

Laura Smith,Cook,Female,23

CHAPTER 9 ■ FILES AND DATABASES234

7664 CH09.qxd 2/19/07 1:03 AM Page 234

gets isn’t an iterator like each or each_byte. Therefore, you have to call it multiple
times to get multiple lines. In this example it was used twice, and pulled out the first two
lines of the example file. Like each, however, gets can accept an optional delimiter:

File.open("text.txt") do |f|

2.times { puts f.gets(',') }

end

Fred Bloggs,

Manager,

There’s also a noniterative version of each_byte called getc:

File.open("text.txt") do |f|

2.times { puts f.getc }

end

70

114

You can also read an entire file into an array, split by lines, using readlines:

puts File.open("text.txt").readlines.join("--")

Fred Bloggs,Manager,Male,45

--Laura Smith,Cook,Female,23

--Debbie Watts,Professor,Female,38

Last but not least, you can choose to read an arbitrary number of bytes from a file
into a single variable using read:

File.open("text.txt") do |f|

puts f.read(6)

end

CHAPTER 9 ■ FILES AND DATABASES 235

7664 CH09.qxd 2/19/07 1:03 AM Page 235

Fred B

■Note You can use all these methods on any file, such as binary files (images, executables, and so on), not
just text files. However, on Windows, you might need to open the file in binary mode. This is covered in the
section “Writing to Files.”

The File class makes some convenience methods available so that you don’t need to
do things like File.open(filename).read to be able to read a file into a string. Instead, you
can do this:

data = File.read(filename)

This acts as a shorthand for opening the file, using the standard read method, and
then closing the file again.

You can also do this:

array_of_lines = File.readlines(filename)

Simple!
Generally, you should try to use these shortcut methods wherever possible, as they

result in shorter, easier-to-read code, and you don’t have to worry about closing the files.
Everything is taken care of for you in one step. Of course, if reading a file line by line is
necessary (perhaps if you’re working with extremely large files), then you can use the
techniques demonstrated earlier in this chapter for reading line by line.

Your Position Within a File

When reading a file, it can be useful to know where you are within that file. The pos
method gives you access to this information:

f = File.open("text.txt")

puts f.pos

puts f.gets

puts f.pos

0

Fred Bloggs,Manager,Male,45

28

CHAPTER 9 ■ FILES AND DATABASES236

7664 CH09.qxd 2/19/07 1:03 AM Page 236

Before you begin to read any text from the file, the position is shown as 0. Once
you’ve read a line of text, the position is shown as 28. This is because pos returns the posi-
tion of the file pointer (that is, the current location within the file that you’re reading
from) in the number of bytes from the start of the file.

However, pos can work both ways, as it has a sister method, pos=:

f = File.open("text.txt")

f.pos = 8

puts f.gets

puts f.pos

ggs,Manager,Male,45

28

In this instance the file pointer was placed 8 bytes into the file before reading any-
thing. This meant that “Fred Blo” was skipped, and only the rest of the line was retrieved.

Writing to Files

The ability to jump easily around files, read lines based on delimiters, and handle data
byte by byte makes Ruby ideal for manipulating data, but I haven’t yet covered how to
write new information to files or how to make changes to existing files.

Generally, you can mirror most of the techniques used to read files when writing to
files. For example:

File.open("text.txt", "w") do |f|

f.puts "This is a test"

end

This code creates a new file (or overwrites an existing file) called text.txt and puts a
single line of text within it. Previously you’ve used puts on its own to output data to the
screen, but when used with a File object it writes the data to the file instead. Simple!

The "w" passed as the second argument to File.open tells Ruby to open the file for
writing only, and to create a new file or overwrite what is already in the file. This is in
contrast with the "r" mode used earlier when opening a file for reading only.

However, you can use several different file modes, as covered in Table 9-1.

CHAPTER 9 ■ FILES AND DATABASES 237

7664 CH09.qxd 2/19/07 1:03 AM Page 237

Table 9-1. File Modes Usable with File.new

File Mode Properties of the I/O Stream

r Read-only. The file pointer is placed at the start of the file.

r+ Both reading and writing are allowed. The file pointer is placed at the
start of the file.

w Write-only. A new file is created (or an old one overwritten as if new).

w+ Both reading and writing are allowed, but File.new creates a new file
from scratch (or overwrites an old one as if new).

a Write (in append mode). The file pointer is placed at the end of the file
and writes will make the file longer.

a+ Both reading and writing are allowed (in append mode). The file
pointer is placed at the end of the file and writes will make the file
longer.

b Binary file mode (only required on Windows). You can use it in
conjunction with any of the other modes listed.

Using the append mode described in Table 9-1, it’s trivial to create a program that
appends a line of text to a file each time it’s run:

f = File.new("logfile.txt", "a")

f.puts Time.now

f.close

If you run this code multiple times, logfile.txt will contain several dates and times,
one after the other. Append mode is particularly ideal for log file situations where new
information has to be added at different times.

The read and write modes work in a simple manner. If you want to open a file in a
mode where it can be read from and written to at the same time, you can do just that:

f = File.open("text.txt", "r+")

puts f.gets

f.puts "This is a test"

puts f.gets

f.close

The second line of this code reads the first line of text from the file, meaning the file
pointer is waiting at the start of the second line of data. However, the following f.puts
statement then inserts a new line of text into the file at that position, pushing your
previous second line to the third line of the file. Next, you read the next line of text, which
is now the third line of text.

CHAPTER 9 ■ FILES AND DATABASES238

7664 CH09.qxd 2/19/07 1:03 AM Page 238

Whereas puts outputs lines of text, you can perform the writing equivalents of getc
and read with putc and write:

f = File.open("text.txt", "r+")

f.putc "X"

f.close

This example opens text.txt for reading and writing, and changes the first character
of the first line to X. Similarly:

f = File.open("text.txt", "r+")

f.write "123456"

f.close

This example overwrites the first six characters of the first line with 123456.

■Note It’s worth noticing that putc and write overwrite existing content in the file rather than inserting it,
as puts does.

Renaming and Deleting Files

If you want to change the name of a file, you could create a new file with the new name
and read into that file all the data from the original file. However, this isn’t necessary, and
you can simply use File.rename like so:

File.rename("file1.txt", "file2.txt")

Deleting a file is just as simple. You can delete either one file at a time or many at
once:

File.delete("file1.txt")

File.delete("file2.txt", "file3.txt", "file4.txt")

File.unlink("file1.txt")

■Note File.unlink does exactly the same thing as File.delete.

CHAPTER 9 ■ FILES AND DATABASES 239

7664 CH09.qxd 2/19/07 1:03 AM Page 239

File Operations

The File class offers you more than just the ability to read and write files. You can also
perform a number of checks and operations upon files.

Checking for Identical Files

Checking whether two files are identical is easy:

puts "They're identical!" if File.identical?("file1.txt", "file2.txt")

Creating Filenames Platform-Independently

Windows and Unix-related operating systems have different ways of denoting filenames.
Windows filenames look like c:\directory\filename.ext, whereas Unix-style filenames
look like /directory/filename.ext. If your Ruby scripts work with filenames and need to
operate under both systems, the File class provides the join method.

Under both systems, filenames (and complete paths) are built up from directory
names and local filenames. For example, in the preceding examples, the directory is
called directory, but on Windows backslashes are used as opposed to forward slashes.

■Note In recent versions of Ruby, it’s possible to use Unix-style pathnames using forward slashes as
directory separators, rather than having to format filenames in a Windows style with backslashes. However,
this section is included for completeness, or for instances where you need to work with libraries that don’t
respect Unix-style pathnames on other operating systems.

On Windows, you can use File.join to put together a filename using directory names
and a final filename:

File.join('full', 'path', 'here', 'filename.txt')

full\path\here\filename.txt

■Note Depending on how your system is set up, you might even see a forward-slash version of the pre-
ceding code on Windows, although that is technically a Unix-style path.

CHAPTER 9 ■ FILES AND DATABASES240

7664 CH09.qxd 2/19/07 1:03 AM Page 240

On Unix-related operating systems, such as Linux, the code is the same:

File.join('full', 'path', 'here', 'filename.txt')

full/path/here/filename.txt

The File.join method is simple to use, and it allows you to write the same code to
run on both systems rather than choosing between backslashes and forward slashes in
your code.

The separator itself is stored in a constant called File::SEPARATOR, so you can easily
turn a filename into an absolute filename (with an absolute path) by appending the
directory separator to the start, like so:

File.join(File::SEPARATOR , 'full', 'path', 'here', 'filename.txt')

/full/path/here/filename.txt

Similarly, you can use File.expand_path to turn basic filenames into complete paths.
For example:

File.expand_path("text.txt")

/Users/peter/text.txt

■Note The result of File.expand_path will vary according to the operating system the code is run
under. As text.txt is a relative filename, it converts it to an absolute filename and references the current
working directory.

Seeking

In a previous example you changed the position of the file pointer using pos=. However,
this only allows you to specify the exact position of the file pointer. If you want to move

CHAPTER 9 ■ FILES AND DATABASES 241

7664 CH09.qxd 2/19/07 1:03 AM Page 241

the pointer forward by a certain offset or move the pointer to a certain position back-
wards from the end of the file, you need to use seek.

seek has three modes of operation:

• IO::SEEK_CUR Seeks a certain number of bytes ahead of the current position.

• IO::SEEK_END Seeks to a position based on the end of the file. This means to
seek to a certain position from the end of the file you’ll probably
need to use a negative value.

• IO::SEEK_SET Seeks to an absolute position in the file. Identical to pos=.

Therefore, to position the file pointer 5 bytes from the end of the file and change the
character to an X, you would use seek as follows:

f = File.new("test.txt", "r+")

f.seek(-5, IO::SEEK_END)

f.putc "X"

f.close

■Note Notice that because you’re writing to the file, you use the r+ file mode to enable writing as well as
reading.

Or you could do this to print every fifth character in a file:

f = File.new("test.txt", "r")

while a = f.getc

puts a.chr

f.seek(5, IO::SEEK_CUR)

end

Finding Out When a File was Last Modified

To establish when a file was last modified, use File.mtime:

puts File.mtime("text.txt")

Fri Jan 11 18:25:42 2007

CHAPTER 9 ■ FILES AND DATABASES242

7664 CH09.qxd 2/19/07 1:03 AM Page 242

The time is returned as a Time object, so you can get more information directly:

t = File.mtime("text.txt")

puts t.hour

puts t.min

puts t.sec

18

25

42

■Note You can learn more about the Time class and its methods in Chapter 3.

Checking If a File Exists

It’s useful to check whether a file actually exists, particularly if your program relies on that
file or if a user supplied the filename. If the file doesn’t exist, you can raise a user-friendly
error or exception. Invoke the File.exist? method to check for the existence of a file:

puts "It exists!" if File.exist?("file1.txt")

File.exist? returns true if the named file exists. You could edit the MyFile class cre-
ated in a previous example to check for the existence of a file before opening it to avoid
a potential exception being thrown, like so:

class MyFile

attr_reader :handle

def initialize(filename)

if File.exist?(filename)

@handle = File.new(filename, "r")

else

return false

end

end

end

CHAPTER 9 ■ FILES AND DATABASES 243

7664 CH09.qxd 2/19/07 1:03 AM Page 243

Getting the Size of a File

File.size returns the size of a file in bytes. If the file doesn’t exist, an exception is thrown,
so it would make sense to check its existence with File.exist? first.

puts File.size("text.txt")

How to Know When You’re at the End of a File

In previous examples you’ve either used iterators to give you all the lines or bytes in a file,
or you’ve pulled only a few lines from a file here and there. However, it would be useful to
have a foolproof way to know when the file pointer is at, or has gone past, the end of the
file. The eof? method provides this feature:

f = File.new("test.txt", "r")

catch(:end_of_file) do

loop do

throw :end_of_file if f.eof?

puts f.gets

end

end

f.close

This example uses an “infinite” loop that you break out of by using catch and throw
(as covered in Chapter 8). throw is only called if the file pointer is at, or past, the end of the
file. This specific example is not particularly useful, as f.each could have performed a
similar task, but in situations where you might be moving the file pointer around manu-
ally, or making large jumps through a file, checking for an “end of file” situation is useful.

Directories

All files are contained within various directories, and Ruby has no problem handling
these too. Whereas the File class handles files, directories are handled with the Dir class.

Navigating Through Directories

To change directory within a Ruby program, use Dir.chdir:

Dir.chdir("/usr/bin")

This example changes the current directory to /usr/bin.

CHAPTER 9 ■ FILES AND DATABASES244

7664 CH09.qxd 2/19/07 1:03 AM Page 244

You can find out what the current directory is with Dir.pwd. For example, here’s the
result on my installation:

puts Dir.pwd

/Users/peter

Dir.chdir("/usr/bin")

puts Dir.pwd

/usr/bin

You can get a list of the files and directories within a specific directory using
Dir.entries:

puts Dir.entries("/usr/bin").join(' ')

. .. a2p aclocal aclocal-1.6 addftinfo afmtodit alias amlint ant appleping

appletviewer apply apropos apt ar arch as asa at at_cho_prn atlookup atos

atprint...items removed for brevity... zless zmore znew zprint

Dir.entries returns an array with all the entries within the specified directory.
Dir.foreach provides the same feature, but as an iterator:

Dir.foreach("/usr/bin") do |entry|

puts entry

end

An even more concise way of getting directory listings is by using Dir’s class array
method:

Dir["/usr/bin/*"]

CHAPTER 9 ■ FILES AND DATABASES 245

7664 CH09.qxd 2/19/07 1:03 AM Page 245

["/usr/bin/a2p", "/usr/bin/aclocal", "/usr/bin/aclocal-1.6",

"/usr/bin/addftinfo",

"/usr/bin/afmtodit", "/usr/bin/alias", "/usr/bin/amlint", "/usr/bin/ant",

...items

removed for brevity...]

In this case, each entry is returned as an absolute filename, making it easy to use the
File class’s methods to perform checks upon each entry if you wished.

You could take this process a step further and be a little more platform independent:

Dir[File.join(File::SEPARATOR, 'usr', 'bin', '*')]

■Note Of course, only Unix systems have /usr/bin directories, so this technique is moot in this instance,
but it might be useful in your own programs.

Creating a Directory

You use Dir.mkdir to create directories, like so:

Dir.mkdir("mynewdir")

Once the directory has been created you can navigate to it with Dir.chdir.
You can also specify absolute paths to create directories under other specific directo-

ries:

Dir.mkdir("/mynewdir")

Dir.mkdir("c:\test")

However, you cannot create directories under directories that don’t yet exist them-
selves. If you want to create an entire structure of directories you must create them one
by one from the top down.

■Note On Unix-related operating systems, Dir.mkdir accepts a second optional argument: an integer,
specifying the permissions for the directory. You can specify this in octal, as with 0666 or 0777, representing
modes 666 and 777 respectively.

CHAPTER 9 ■ FILES AND DATABASES246

7664 CH09.qxd 2/19/07 1:03 AM Page 246

Deleting a Directory

Deleting a directory is similar to deleting a file:

Dir.delete("testdir")

■Note Dir.unlink and Dir.rmdir perform exactly the same function and are provided for convenience.

As with Dir.mkdir, you can use absolute pathnames.
One thing you need to consider when deleting directories is whether they’re empty.

If a directory isn’t empty, you cannot delete it with a single call to Dir.delete. You need to
iterate through each of the subdirectories and files and remove them all first. You can do
that iteration with Dir.foreach, looping recursively through the file tree by pushing new
directories and files to remove onto an array.

Creating Files in the Temporary Directory

Most operating systems have the concept of a “temporary” directory where temporary
files can be stored. Temporary files are those that might be created briefly during a pro-
gram’s execution but aren’t a permanent store of information.

Dir.tmpdir provides the path to the temporary directory on the current system,
although the method is not available by default. To make Dir.tmpdir available it’s neces-
sary to use require 'tmpdir':

require 'tmpdir'

puts Dir.tmpdir

/tmp

You can use Dir.tmpdir with File.join to create a platform-independent way of creat-
ing a temporary file:

require 'tmpdir'

tempfilename = File.join(Dir.tmpdir, "myapp.dat")

tempfile = File.new(tempfilename, "w")

tempfile.puts "This is only temporary"

tempfile.close

File.delete(tempfilename)

CHAPTER 9 ■ FILES AND DATABASES 247

7664 CH09.qxd 2/19/07 1:03 AM Page 247

This code creates a temporary file, writes data to it, and deletes it.
Ruby’s standard library also includes a library called Tempfile that can create tempo-

rary files for you:

require 'tempfile'

f = Tempfile.new('myapp')

f.puts "Hello"

puts f.path

f.close

/tmp/myfile1842.0

Unlike creating and managing your own temporary files, Tempfile automatically
deletes the files it creates after they have been used. This is an important consideration
when choosing between the two techniques. (There’s more information about temporary
files and the tempfile library in Chapter 16.)

Basic Databases
Many applications need to store, access, or manipulate data. In some cases this is by
loading files, making changes to them, and outputting data to the screen or back to a file.
In many situations, however, a database is required.

A database is a system for organizing data on a computer in a systematic way. A data-
base can be as simple as a text file containing data that can be manipulated program-
matically by a computer program, or as complex as many gigabytes of data spread across
hundreds of dedicated database servers. You can use Ruby in these scenarios and for those
in between.

First, we’re going to look at how to use simple text files as a form of organized data.

Text File Databases

One simple type of database can be stored in a text file in a format commonly known as
CSV. CSV stands for Comma-Separated Values, and means that for each item of data
you’re storing, you can have multiple attributes separated with commas. The dummy
data in your text.txt file in the previous section used CSV data. To recap, text.txt
initially contained this code:

Fred Bloggs,Manager,Male,45

Laura Smith,Cook,Female,23

Debbie Watts,Professor,Female,38

CHAPTER 9 ■ FILES AND DATABASES248

7664 CH09.qxd 2/19/07 1:03 AM Page 248

Each line represents a different person, and commas separate the attributes relating
to each person. The commas allow you to access (and change) each attribute separately.

Ruby’s standard library includes a library called csv that allows you to use text files
containing CSV data as simple databases that are easy to read, create, and manipulate.

Reading and Searching CSV Data

The CSV class provided by csv manages the manipulation of the data for you:

require 'csv'

CSV.open('text.txt', 'r') do |person|

puts person.inspect

end

["Fred Bloggs", "Manager", "Male", "45"]

["Laura Smith", "Cook", "Female", "23"]

["Debbie Watts", "Professor", "Female", "38"]

You open the text.txt file by using CSV.open, and each line (that is, each individual
“person” in the file) is passed into the block one by one. The inspect method demon-
strates that each entry is now represented in array form. This makes it easier to read the
data than when it was in its plain text form.

You can also use CSV alongside the File class:

require 'csv'

people = CSV.parse(File.read('text.txt'))

puts people[0][0]

puts people[1][0]

puts people[2][0]

Fred Bloggs

Laura Smith

Debbie Watts

This example uses the File class to open and read in the contents of a file, and
CSV.parse immediately uses these to convert the data into an array of arrays. The ele-
ments in the main array represent each line in the file, and each element in those
elements represents a different attribute (or field) of that line. Therefore, by printing out
the first element of each entry, you get the people’s names only.

CHAPTER 9 ■ FILES AND DATABASES 249

7664 CH09.qxd 2/19/07 1:03 AM Page 249

An even more succinct way of loading the data from a CSV-formatted file into an
array is with CSV.read:

puts CSV.read('text.txt').inspect

[["Fred Bloggs", "Manager", "Male", "45"], ["Laura Smith", "Cook", "Female",

"23"],

["Debbie Watts", "Professor", "Female", "38"]]

The find and find_all methods provided by the Enumerable module to Array make it
easy for you to perform searches upon the data available in the array. For example, you’d
use this code if you wanted to pick out the first person in the data called Laura:

require 'csv'

people = CSV.read('text.txt')

laura = people.find { |person| person[0] =~ /Laura/ }

puts laura.inspect

["Laura Smith", "Cook", "Female", "23"]

Using the find method with a code block that looks for the first matching line where
the name contains “Laura” gives you back the data you were looking for.

Where find returns the first matching element of an array or hash, find_all returns
all valid matches. Let’s say you want to find the people in your database whose ages are
between 20 and 40:

young_people = people.find_all do |p|

p[3].to_i.between?(20, 40)

end

puts young_people.inspect

[["Laura Smith", "Cook", "Female", "23"], ["Debbie Watts", "Professor",

"Female", "38"]]

This operation provides you with the two matching people contained within an array
that you can iterate through.

CHAPTER 9 ■ FILES AND DATABASES250

7664 CH09.qxd 2/19/07 1:03 AM Page 250

Saving Data Back to the CSV File

Once you can read and query data, the next step is being able to change it, delete it, and
rewrite your CSV file with a new version of the data for future use. Luckily, this is as sim-
ple as reopening the file with write access and “pushing” the data back to the file. The
CSV module handles all of the conversion.

require 'csv'

people = CSV.read('text.txt')

laura = people.find { |person| person[0] =~ /Laura/ }

laura[0] = "Lauren Smith"

CSV.open('text.txt', 'w') do |csv|

people.each do |person|

csv << person

end

end

You load in the data, find a person to change, change her name, and then open up
the CSV file and rewrite the data back to it. Notice, however, that you have to write the
data person by person. Once complete, text.txt is updated with the name change. This
is how to write back CSV data to file. (There’s more information about CSV, along with
information about FasterCSV, a faster CSV implementation that’s available as a library,
in Chapter 16.)

Storing Objects and Data Structures

Working with CSV is easy, but it doesn’t feel very smooth. You’re always dealing with
arrays, so rather than getting nice names such as name, age, or job for the different attrib-
utes, you have to remember in which element and at which position each attribute is
located.

You’re also forced to store simple arrays for each separate entry. There’s no nesting,
no way to relate one thing to another, no relationship to object orientation, and the data
is flat. This is ideal for basic data, but what if you simply want to take data that already
exists in Ruby data structures such as arrays and hashes and save that data to disk for
later use?

PStore

PStore is a core Ruby library that allows you to use Ruby objects and data structures as
you normally would, and then store them in a file. Later on, you can reload the objects
back into memory from the disk file. This technique is known as object persistence, and

CHAPTER 9 ■ FILES AND DATABASES 251

7664 CH09.qxd 2/19/07 1:03 AM Page 251

relies on a technique called marshalling, where standard data structures are turned into
a form of flat data that can be stored to disk or transmitted over a network for later
reconstruction.

Let’s create a class to represent the structure of the data you were using in the CSV
examples:

class Person

attr_accessor :name, :job, :gender, :age

end

You can re-create your data like so:

fred = Person.new

fred.name = "Fred Bloggs"

fred.age = 45

laura = Person.new

laura.name = "Laura Smith"

laura.age = 23

■Note For brevity, you’ll only work with these two objects in this example.

Rather than have your data in arrays, you now have your data available in a fully
object-oriented fashion. You could create methods within the Person class to help you
manipulate your objects and so forth. This style of storing and manipulating data is true
to the Ruby way of things and is entirely object-oriented. However, until now, your
objects have only lasted until the end of a program, but with PStore it’s easy to write them
to a file:

require 'pstore'

store = PStore.new("storagefile")

store.transaction do

store[:people] ||= Array.new

store[:people] << fred

store[:people] << laura

end

In this example you create a new PStore in a file called storagefile. You then start a
transaction (data within a PStore file can only be read or updated while inside a “transac-
tion” to prevent data corruption), and within the transaction you make sure the :people

CHAPTER 9 ■ FILES AND DATABASES252

7664 CH09.qxd 2/19/07 1:03 AM Page 252

element of the store contains something or gets assigned to be an array. Next, you push
the fred and laura objects to the :people element of the store, and then end the transac-
tion.

The reason for the hash syntax is because a PStore is, effectively, a disk-based hash.
You can then store whatever objects you like within that hash. In this example, you’ve
created an array within store[:people] and pushed your two Person objects to it.

Later on, you can retrieve the data from the PStore database:

require 'pstore'

store = PStore.new("storagefile")

people = []

store.transaction do

people = store[:people]

end

At this point the Person objects inside people can be treated

as totally local objects.

people.each do |person|

puts person.name

end

Fred Bloggs

Laura Smith

With only a simple storage and retrieval process, PStore makes it easy to add storage
facilities to existing Ruby programs by allowing you to store existing objects into a PStore
database. Object persistence is not ideal for many types of data storage, but if your pro-
gram is heavily dependent on objects, and you want to store those objects to disk for later
use, PStore provides a simple method to use.

YAML

YAML (standing for YAML Ain’t Markup Language) is a special text-based markup lan-
guage that was designed as a data serialization format that’s readable by humans. You can
use it in a similar way to PStore to serialize data structures, but unlike PStore’s data,
humans can easily read YAML data, and even directly edit it with a text editor and a basic
knowledge of YAML syntax.

The YAML library comes as part of Ruby’s standard library, so it’s easy to use. Unlike
PStore, though, the YAML library converts data structures to and from YAML and doesn’t

CHAPTER 9 ■ FILES AND DATABASES 253

7664 CH09.qxd 2/19/07 1:03 AM Page 253

provide a hash to use, so the technique is a little different. This example writes an array of
objects to disk:

require 'yaml'

class Person

attr_accessor :name, :age

end

fred = Person.new

fred.name = "Fred Bloggs"

fred.age = 45

laura = Person.new

laura.name = "Laura Smith"

laura.age = 23

test_data = [fred, laura]

puts YAML::dump(test_data)

- !ruby/object:Person

age: 45

name: Fred Bloggs

- !ruby/object:Person

age: 23

name: Laura Smith

You use YAML::dump to convert your Person object array into YAML data, which, as you
should agree, is extremely readable! YAML::load performs the operation in the other direc-
tion, turning YAML code into working Ruby objects. For example, let’s modify the YAML
data a little and see if it translates back into working objects:

require 'yaml'

class Person

attr_accessor :name, :age

end

yaml_string = <<END_OF_DATA

CHAPTER 9 ■ FILES AND DATABASES254

7664 CH09.qxd 2/19/07 1:03 AM Page 254

- !ruby/object:Person

age: 45

name: Jimmy

- !ruby/object:Person

age: 23

name: Laura Smith

END_OF_DATA

test_data = YAML::load(yaml_string)

puts test_data[0].name

puts test_data[1].name

Jimmy

Laura Smith

Here YAML::load converts the YAML data back into the test_data array of Person
objects successfully.

You can use YAML to convert between most types of Ruby objects (including basic
types such as Array and Hash) and YAML and back. This makes it an ideal intermediary
format for storing data (such as configuration files) your applications need to access.

■Note When dealing with serialized objects, you must still have the classes used by those objects defined
within the program somewhere, otherwise they won’t be usable.

As plain text, you can safely transmit YAML via e-mail, store it in normal text files,
and move it around more easily than the binary data created by libraries such as PStore.

To learn more about YAML formatting, read its Wikipedia entry at http://en.
wikipedia.org/wiki/YAML, or refer to the official YAML Web site at http://www.yaml.org/.

Relational Databases and SQL
In the previous section you created some extremely simplistic databases using text files
and object persistence. Text files, of course, have their limitations. They’re not reliable if
many processes are using them at the same time. and they’re slow. Loading a CSV file into

CHAPTER 9 ■ FILES AND DATABASES 255

7664 CH09.qxd 2/19/07 1:03 AM Page 255

memory is fine when the dataset is small, but when it grows, the process of working
directly with files can soon become sluggish.

When developing more-robust systems, you pass database filing and management
off to a separate application or system, and applications simply connect to a database
system to pass data back and forth. In the previous section you were working with data-
base files and the data within them quite directly, and that’s unacceptable when
performance and reliability are necessary.

Relational Database Concepts

One major benefit of using a dedicated database system is getting support for relational
databases. A relational database is a database that’s comprised of data grouped into one
or more tables that can be linked together. A table stores information about one type of
thing. For example, an address book database might be made up of a people table, an
addresses table, and a phonenumbers table. Each table stores information about people,
addresses, and phone numbers, respectively.

The people table would likely have a number of attributes (known as columns, in
database land) such as name, age, and gender. Each row of the table—that is, an individual
person—would then have information in each column. Figure 9-1 shows an example.

Figure 9-1. A basic people table containing three rows

Figure 9-1’s example also includes a column called id. In relational databases it’s
standard procedure to have an id column on most tables to identify each row uniquely.
Although you could look up and retrieve data based on other columns, such as name,
numeric IDs are useful when you’re creating relationships between tables.

■Note In Figure 9-1, the table headings are written in a typical style, as you’d expect in a normal address
book or spreadsheet. However, when dealing with relational databases at a lower level, it’s reasonably com-
mon to use all lowercase names for column and table names. This explains why the text, and later code
examples, in this chapter, will refer to table and column names in lowercase only.

CHAPTER 9 ■ FILES AND DATABASES256

7664 CH09.qxd 2/19/07 1:03 AM Page 256

One benefit of relational databases is the way rows in different tables can be related
to one another. For example, your people table could have an address_id column that
stores the ID of the address associated with this user. If you want to find out the address
of a particular person, you can look up his or her address_id, and then look up the rele-
vant row of the addresses table.

The reason for this sort of relationship is that many people in your people database
might share the same address, and rather than store the address separately for each per-
son, it’s more efficient to store a reference instead. This also means that if you update the
address in the future, it updates for all the relevant users at the same time.

Relationships also make it possible to do many-to-many relationships. You could
create a separate table called related_people that has two columns, first_person_id and
second_person_id. This table could store pairs of ID numbers that signify two people are
related to each other. To work out to whom a person is related, you can simply look for
any rows mentioning his or her ID number and you’d get back the ID numbers of that
person’s related people. This sort of relationship is used in most databases and is what
makes relational databases so useful.

The Big Four: MySQL, PostgreSQL, Oracle, and SQLite

Four well-known relational database systems available today that work on both Windows
and Unix operating systems are MySQL, PostgreSQL, Oracle, and SQLite. Each has signifi-
cantly different features from the others, and therefore has different uses.

■Note Microsoft SQL Server is also popular, though on Microsoft platforms only.

Most Web developers will be familiar with MySQL, as it comes with most Web hosting
packages and servers. Therefore, MySQL is the most commonly used database engine on
the Internet. It’s also the default engine used by the Ruby on Rails framework (to be cov-
ered in Chapter 13), so it’s likely you’ll be using it at some point.

PostgreSQL and Oracle also have their own niches, with Oracle being a well-known
enterprise-level database that can cost quite a lot of money to license. However, it’s used
by a lot of larger companies.

For our purposes in the next few sections of this chapter, we’ll be using a system
called SQLite. Unlike MySQL, PostgreSQL, and Oracle, SQLite doesn’t run as a “server,” so
it doesn’t require any special resources. Whereas MySQL, PostgreSQL, and Oracle all run
as permanent server applications, SQLite is “on-demand” and works entirely on your
local machine. Despite this, it’s still fast and reliable, and is ideal for local database pur-
poses. You can easily carry much of the knowledge you learn with SQLite across to other
systems.

CHAPTER 9 ■ FILES AND DATABASES 257

7664 CH09.qxd 2/19/07 1:03 AM Page 257

Nonetheless, toward the end of this chapter we’ll look at how you can connect to
databases using these other architectures, so that you can get direct access to your exist-
ing databases from your Ruby applications.

Installing SQLite

The first step to getting a database system up and running quickly is to install SQLite3—
the latest version of SQLite. SQLite’s download page at http://www.sqlite.org/
download.html contains binary downloads of the SQLite3 libraries for Windows (DLL)
and Linux (shared library), as well as the source code for compilation on other systems.

Mac OS X DarwinPorts users can install SQLite3 by typing sudo port install sqlite3 at
the command prompt. Users of certain Linux distributions may be able to install SQLite3
using the respective package manager.

■Note For Windows users there’s a video screencast of the SQLite 3 installation process at http://
blip.tv/file/48664.

Once the SQLite3 libraries are installed, you can install the Ruby library that gives
Ruby access to SQLite3 databases as a gem. The gem is called sqlite-ruby and can be
installed on all systems with gem install sqlite3-ruby or sudo gem install sqlite3-ruby

on Unix-related operating systems if you aren’t running as a super-user. (For information
about installing Ruby gems, refer to Chapter 7.)

You can check that everything was installed okay with this code:

require 'rubygems'

require 'sqlite3'

puts "It's all okay!" if defined?(SQLite3::Database)

It's all okay!

If the installation didn’t progress smoothly, links to SQLite resources are available in
Appendix C.

CHAPTER 9 ■ FILES AND DATABASES258

7664 CH09.qxd 2/19/07 1:03 AM Page 258

A Crash Course in Basic Database Actions and SQL

To manage databases with any of the various database systems at a basic level, knowl-
edge of several SQL commands is required. In this section we’re going to look at how to
create tables, add data to them, retrieve data, delete data, and change data.

Throughout this section, think entirely in terms of databases separately from Ruby.
A demonstration of how Ruby can use SQL to manipulate a database is covered in detail
in the later section “Using SQLite with Ruby.”

■Note If you’re already familiar with SQL, you can skip the next few sections and jump straight to the
section “Using SQLite with Ruby” to see SQL in action alongside Ruby.

What Is SQL?

Structured Query Language (SQL) is a special language, often known as a query language,
used to interact with database systems. You can use SQL to create, retrieve, update, and
delete data, as well as create and manipulate structures that hold those data. Its basic
purpose is to support the interaction between a client and a database system. In this sec-
tion I’m going to give you a primer on SQL’s syntax and how you can use it from Ruby.

Be aware that this section is only a very basic introduction to SQL, as a full and deep
explanation of SQL is beyond the scope of this book. If you wish to learn SQL in more
depth, please refer to the resources mentioned in Appendix C.

Note that the way different database systems use and implement SQL can vary
wildly, which is why the following sections will only cover that which is reasonably stan-
dard and enables you to perform basic data operations.

CREATE TABLE

Before you can add data into a database, it’s necessary to create one or many tables to
hold it. To create a table, you need to know what you want to store in it, what you want to
call it, and what attributes you want to store.

For your table people, you want to have name, job, gender, and age columns, as well as
a unique id column for possible relationships with other tables. To create a table, you use
a syntax like so:

CREATE TABLE table_name (

column_name data_type options,

column_name data_type options,

...,

...

)

CHAPTER 9 ■ FILES AND DATABASES 259

7664 CH09.qxd 2/19/07 1:03 AM Page 259

■Note Some database systems require a semicolon at the end of each SQL statement. However, the
examples in this book do not include them.

Therefore, for your people table, you’d use this syntax:

CREATE TABLE people (

id integer primary key,

name varchar(50),

job varchar(50),

gender varchar(6),

age integer)

This SQL command creates a people table and gives it five columns. The data types
for the name, job, and gender columns are all VARCHARs, meaning they’re variable-length
character fields. In basic terms, it means they can contain strings. The number in brack-
ets refers to the maximum length of that string, so the name column can hold a maximum
of 50 characters.

■Note SQLite is a reasonably pragmatic database, and it ignores most conventions relating to data types
in SQL. Almost any form of data will fit into any type of column. SQLite ignores the maximum lengths for
these VARCHAR columns. This is one reason why SQLite is great for quick and easy development, but not so
great for crucial systems!

The id column has the words primary key as its options. This means that the id col-
umn is the primary reference to each row and that the id must be unique for each row. In
SQLite, this means SQLite will automatically assign a unique id to each row, so you don’t
need to specify one yourself each time you add a new row.

INSERT INTO

You use the INSERT command to add rows to tables:

INSERT INTO people (name, age, gender, job) VALUES ("Chris Scott", 25, "Male",➥

"Technician")

First, you specify the table you want to add a row to, then list the columns you wish
to fill out, before passing in the values with which to fill the row.

CHAPTER 9 ■ FILES AND DATABASES260

7664 CH09.qxd 2/19/07 1:03 AM Page 260

You can omit the list of columns if the data passed after VALUES is in the correct order:

INSERT INTO people VALUES ("Chris Scott", 25, "Male", "Technician")

■Caution This particular INSERT would cause an error on your people table! It’s missing the id column.

However, it’s safer and more convenient if you specify the columns beforehand, as in
the first example. The second example clearly demonstrates why this is the case, as it’s
hard to tell which item of data relates to which column.

Columns that don’t have any data specified for them will be filled in automatically
with the defaults specified in the CREATE TABLE statement for that table. In the case of the
people table, the id column will automatically receive a unique ID number for each row
added.

SELECT

You use the SELECT command to retrieve data from tables. You specify which columns you
want to retrieve (or use * as a wildcard to retrieve them all), the table you want to retrieve
data from, and optionally include a condition upon which to base the retrieval. For
example, you might only want to choose a particular row, or rows that match certain
criteria.

This SQL statement retrieves the data from all columns for all rows in the people
table:

SELECT * FROM people

This SQL retrieves all the values from just the name column of rows in the people table
(for example, “Fred Bloggs,” “Chris Scott,” “Laura Smith”):

SELECT name FROM people

This SQL retrieves rows with an id column equal to 2 from the people table (usually,
because id is a column containing unique values, only one row would be returned for
such a query):

SELECT * FROM people WHERE id = 2

This SQL retrieves any rows that have a name column equal to “Chris Scott”:

SELECT * FROM people WHERE name = "Chris Scott"

CHAPTER 9 ■ FILES AND DATABASES 261

7664 CH09.qxd 2/19/07 1:03 AM Page 261

This SQL retrieves all rows of people whose ages are between 20 and 40 inclusive:

SELECT * FROM people WHERE age >= 20 AND age <= 40

The conditions used in SQL are somewhat similar to those used in Ruby and other
programming languages, except that logical operators such as AND and OR are written as
plain English. Also, as in Ruby, you can use parentheses to group expressions and build
up more complex requests.

It’s also possible to have the results returned in a certain order by appending an ORDER
BY clause such as ORDER column_name to the SQL query. You can further append ASC to the
column name to sort in an ascending fashion, or DESC to sort in a descending fashion. For
example, this SQL returns all rows from the people table ordered by the name column in
descending order (so names starting with Z come before those beginning with A):

SELECT * FROM people ORDER BY name DESC

This SQL returns all rows of those people between the ages of 20 and 40 in order of
age, youngest first:

SELECT * FROM people WHERE age >= 20 AND age <= 40 ORDER BY age ASC

Another useful addition to a SELECT command is LIMIT. LIMIT allows you to place a
limit on the amount of rows returned on a single query:

SELECT * FROM people ORDER BY name DESC LIMIT 5

In conjunction with ORDER, you can use LIMIT to find extremes in the data. For exam-
ple, finding the oldest person is easy:

SELECT * FROM people ORDER BY age DESC LIMIT 1

This sorts the rows in descending order by age and returns the first result, the highest.
To get the youngest person, you could use ASC instead of DESC on the ordering.

■Note Database engines sort columns automatically by their data type. Strings of text are formatted
alphanumerically, whereas integer and other number columns are sorted by their value.

DELETE

The DELETE SQL command deletes rows from tables. You can delete rows based upon an
SQL condition. For example:

CHAPTER 9 ■ FILES AND DATABASES262

7664 CH09.qxd 2/19/07 1:03 AM Page 262

DELETE FROM people WHERE name="Chris"

DELETE FROM people WHERE age > 100

DELETE FROM people WHERE gender = "Male" AND age < 50

As with SELECT, you can place limits upon the number of deletions:

DELETE FROM people WHERE age > 100 LIMIT 10

In this case, only 10 rows with an age over 100 would be deleted.
Think of the DELETE command to be like SELECT, but instead of returning the rows, it

erases them. The format is otherwise reasonably similar.

UPDATE

UPDATE provides the ability to update and amend information within the database. As
with DELETE, the syntax for UPDATE is similar to that of SELECT. Consider this:

SELECT * FROM people WHERE name = "Chris"

UPDATE people SET name = "Christopher" WHERE name = "Chris"

UPDATE first accepts the name of a table whose row(s) might be updated, then accepts
the column(s) to be changed along with the new data, and finally an optional condition
for the change. Some examples follow.

This SQL changes the name column to “Christopher” on all rows where the name col-
umn is currently equal to “Chris”:

UPDATE people SET name = "Christopher" WHERE name = "Chris"

This SQL changes the name column to “Christopher” and the age column to 44 where
the name column is currently equal to “Chris”:

UPDATE people SET name = "Christopher", age = 44 WHERE name = "Chris"

This SQL changes the name column to “Christopher” where the name column is “Chris”
and the age column equals 25. Therefore, a row where the name is Chris and the age is 21
will not be updated by this example query:

UPDATE people SET name = "Christopher" WHERE name = "Chris" AND age = 25

This SQL changes the name column to “Christopher” on every row of the people table.
This demonstrates why it pays to be careful when building SQL queries, as short state-
ments can have big ramifications!

UPDATE people SET name = "Christopher"

CHAPTER 9 ■ FILES AND DATABASES 263

7664 CH09.qxd 2/19/07 1:03 AM Page 263

Using SQLite with Ruby

Now that you’ve installed SQLite and we’ve covered the basics of how SQL works, let’s put
together a basic demonstration of how it all works in conjunction with Ruby. To do this
you’re going to write a program that allows you to manipulate a database based on the
people table that we’ve talked about so far in this chapter.

The first step is to write the basic code that can load or create a database. The SQLite-
Ruby gem makes this simple with the SQLite3::Database.new method. For example:

require 'rubygems'

require 'sqlite3'

$db = SQLite3::Database.new("dbfile")

$db.results_as_hash = true

From this point you can use $db in a similar way to the file handles you used earlier in
this chapter. For example, $db.close will similarly close the database file, just as you
closed regular files.

The $db.results_as_hash = true line forces SQLite to return data in a hash format
rather than as an array of attributes (as with CSV). This makes the results easier to access.

■Note The database handle has been assigned to a global variable, $db, so that you can split your pro-
gram into multiple methods without creating a class. You can therefore access the database handle, $db,
from anywhere you wish.

To cope with the closing situation, you’ll create a method specifically for disconnect-
ing the database and ending the program:

def disconnect_and_quit

$db.close

puts "Bye!"

exit

end

■Note Remember that you must define methods before you use them, so put these separate methods at
the top of your source file.

CHAPTER 9 ■ FILES AND DATABASES264

7664 CH09.qxd 2/19/07 1:03 AM Page 264

Now let’s create a method that will use the CREATE TABLE SQL statement to create the
table where you’ll store your data:

def create_table

puts "Creating people table"

$db.execute %q{

CREATE TABLE people (

id integer primary key,

name varchar(50),

job varchar(50),

gender varchar(6),

age integer)

}

end

A database handle will allow you to execute arbitrary SQL with the execute method.
All you need to do is pass the SQL as an argument, and SQLite will execute the SQL upon
the database.

Next, let’s create a method that asks for input from the user to add a new person to
the database:

def add_person

puts "Enter name:"

name = gets.chomp

puts "Enter job:"

job = gets.chomp

puts "Enter gender:"

gender = gets.chomp

puts "Enter age:"

age = gets.chomp

$db.execute("INSERT INTO people (name, job, gender, age) VALUES (?, ?, ?, ?)",➥

name, job, gender, age)

end

■Note The chomp method added to gets removes the newline characters that appear at the end of key-
board output retrieved with gets.

CHAPTER 9 ■ FILES AND DATABASES 265

7664 CH09.qxd 2/19/07 1:03 AM Page 265

The start of the add_person method is mundane. You ask for each of the person’s
attributes in turn and assign them to variables. However, the $db.execute is more intrigu-
ing this time. In the previous section, the INSERT SQL was shown with the data in the main
statement, but in this method you’re using question marks (?) as placeholders for the
data.

Ruby performs an automatic substitution from the other parameters passed to
execute into the placeholders. This acts as a way of securing your database. The reason is
that if you interpolated the user’s input directly into the SQL, the user might type some
SQL that could break your query. However, when you use the placeholder method, the
SQLite-Ruby library will clean up the supplied data for you and make sure it’s safe to put
into the database.

Now you need a way to be able to access the data entered. Time for another method!
This code example shows how to retrieve person data for a given name and ID:

def find_person

puts "Enter name or ID of person to find:"

id = gets.chomp

person = $db.execute("SELECT * FROM people WHERE name = ? OR ➥

id = ?", id, id.to_i).first

unless person

puts "No result found"

return

end

puts %Q{Name: #{person['name']}

Job: #{person['job']}

Gender: #{person['gender']}

Age: #{person['age']}}

end

The find_person method asks the user to enter either the name or the ID of the per-
son he or she is looking for. The $db.execute line cleverly checks both the name and id
columns at the same time. Therefore, a match on either the id or name will work. If no
match is found, the user will be told, and the method will end early. If there’s a match, the
information for that user will be extracted and printed onscreen.

CHAPTER 9 ■ FILES AND DATABASES266

7664 CH09.qxd 2/19/07 1:03 AM Page 266

You can tie it up with a main routine that acts as a menu system for the four methods
described earlier. You already have the database connection code in place, so creating a
menu is simple:

loop do

puts %q{Please select an option:

1. Create people table

2. Add a person

3. Look for a person

4. Quit}

case gets.chomp

when '1'

create_table

when '2'

add_person

when '3'

find_person

when '4'

disconnect_and_quit

end

end

If the code is put together properly and then run, a typical first session could go like
this:

Please select an option:

1. Create people table

2. Add a person

3. Look for a person

4. Quit

1

Creating people table

Please select an option:

CHAPTER 9 ■ FILES AND DATABASES 267

7664 CH09.qxd 2/19/07 1:03 AM Page 267

1. Create people table

2. Add a person

3. Look for a person

4. Quit

2

Enter name:

Fred Bloggs

Enter job:

Manager

Enter gender:

Male

Enter age:

48

Please select an option:

1. Create people table

2. Add a person

3. Look for a person

4. Quit

3

Enter name or ID of person to find:

1

Name: Fred Bloggs

Job: Manager

Gender: Male

Age: 48

Please select an option:

1. Create people table

2. Add a person

3. Look for a person

4. Quit

3

Enter name or ID of person to find:

Jane Smith

No result

Your quick and basic application provides a way to add data and retrieve data from a
remote data source in only a handful of lines!

CHAPTER 9 ■ FILES AND DATABASES268

7664 CH09.qxd 2/19/07 1:03 AM Page 268

Connecting to Other Database Systems

In the previous section we looked at SQL and how to use it with the SQLite library, a
library that provides a basic database system on the local machine. More commonly,
however, you might want to connect to more mainstream database servers, such as those
running on MySQL, PostgreSQL, MS SQL Server, or Oracle. In this section we’ll look
quickly at how to connect to each of these types of databases.

■Note A library called DBI is available that provides a database-agnostic interface between Ruby and
database systems. In theory you can write a program that talks with any database, and easily switch
between different types of databases as long as you use DBI. In practice this isn’t always possible, but
learning how to use DBI can give you access to using MySQL, PostgreSQL, and Oracle in the future. Links
to a number of resources about DBI are supplied in Appendix C.

MySQL

MySQL is the most common database system available from Web hosting providers. This
is because MySQL comes in an open source variety that’s free to download and use.
MySQL also has a reputation as being simple to use, and a large ecosystem has built up
around it.

MySQL support is given to Ruby with the MySQL library that’s available as a
RubyGem in generic Unix and Windows varieties. To install, use this code:

gem install mysql

■Note On OS X, installing the mysql gem can be easier said than done. A number of problems can arise,
as covered at http://www.caboo.se/articles/2005/08/04/installing-ruby-mysql-bindings-
2-6-on-tiger-troubleshooting and http://bugs.mysql.com/bug.php?id=23201. If at first you
don’t succeed, look around the Web, as there’s always a solution!

The mysql gem provides a class and a number of methods to Ruby so that you can
connect to a preinstalled MySQL server. It does not include the MySQL server itself! If you
don’t have a MySQL server to connect to, you’ll need to ask for details from your Web
hosting provider or install a version of MySQL on your local machine.

CHAPTER 9 ■ FILES AND DATABASES 269

7664 CH09.qxd 2/19/07 1:03 AM Page 269

Once the mysql gem is installed, connecting to and using a MySQL server from Ruby
is almost as simple as using a SQLite database:

require 'rubygems'

require 'mysql'

Connect to a MySQL database 'test' on the local machine

using username of 'root' with no password.

db = Mysql.connect('localhost', 'root', '', 'test')

Perform an arbitrary SQL query

db.query("INSERT INTO people (name, age) VALUES('Chris', 25)")

Perform a query that returns data

begin

query = db.query('SELECT * FROM people')

puts "There were #{query.num_rows} rows returned"

query.each_hash do |h|

puts h.inspect

end

rescue

puts db.errno

puts db.error

end

Close the connection cleanly

db.close

This code demonstrates a basic, arbitrary SQL query, as well as a query that results in
data being returned (in a row-by-row hash format). It also features basic error reporting
by catching exceptions with a rescue block and using the error-retrieval methods pro-
vided by the MySQL library.

■Note You can also access MySQL databases using the database-agnostic DBI library, covered later in this
chapter.

CHAPTER 9 ■ FILES AND DATABASES270

7664 CH09.qxd 2/19/07 1:03 AM Page 270

PostgreSQL

Like MySQL, PostgreSQL (pronounced post-gres-Q-L) is a free relational database server
that’s available under an open source license, allowing you to download and use it for
free.

Although PostgreSQL offers many of the same features as MySQL, it’s quite different.
PostgreSQL users claim it’s faster and more stable and offers more features. It is also often
claimed that PostgreSQL follows SQL standards more correctly, whereas MySQL is more
pragmatic (in the sense that it’s more willing to break away from established standards)
and extends the SQL language for its own benefits.

As with MySQL, PostgreSQL access is achieved in Ruby with a library, also available
as a RubyGem. To install, use this code:

gem install postgres

On some setups it might be necessary to specify where PostgreSQL is installed,
like so:

gem install postgres -- --with-pgsql-dir=/var/pgsql

The interface for the Postgres library is totally different from that for MySQL or
SQLite, and it’s documented in full at http://ruby.scripting.ca/postgres/rdoc/. (You can
also access PostgreSQL databases using the database-agnostic DBI library, covered in the
later section “DBI: A Generic Database Connectivity Library.”)

Oracle

Oracle Corp. is a company that provides database tools, services, and software, and is
primarily known for the development of the Oracle RDBMS, a relational database man-
agement system. The Oracle database system is not open source and is not, in its full
version, available for free to use commercially. However, it’s reasonably popular in enter-
prise situations, so you might need to know how to connect to it.

■Note Oracle does offer versions of its database systems for free, but they are only to be used for
development purposes.

As with the other database systems, access to Oracle databases is provided through a
library, in this case called OCI8.

CHAPTER 9 ■ FILES AND DATABASES 271

7664 CH09.qxd 2/19/07 1:03 AM Page 271

Oracle has provided a great tutorial on its Web site that’s specific to getting Ruby con-
nected to Oracle databases, and that should be suitable for anyone familiar with Oracle
databases. For more information see http://www.oracle.com/technology/pub/articles/
haefel-oracle-ruby.html.

You can use the OCI8 library through the database-agnostic DBI system, as covered
in a following section.

MS SQL Server

Microsoft SQL Server (sometimes known as MS SQL Server) is Microsoft’s relational
database management system software, and is the primary database server used on
Microsoft platforms (although most of the other systems covered in the past few sections
work on Windows too).

The way you connect to a Microsoft SQL Server can vary depending on what operat-
ing system your script is running under. For example, at the time of writing, on Windows,
you can use ActiveX Data Objects (ADO) with WIN32OLE to connect directly to the
server. On OS X, you can use iODBC. On Linux and other Unix-related platforms, you can
use unixODBC. However, connecting to MS SQL Server from Ruby is an uncommon task,
and the drivers are changing on a regular basis, so the best references are tutorials and
blog posts found online. Use your favorite search engine to search for “ruby ms sql” or
“ruby microsoft sql server” and you’ll find several useful resources.

At the time of writing, these pages provide the best instructions for approaching MS
SQL Server from Ruby:

http://wiki.rubyonrails.org/rails/pages/

HowtoConnectToMicrosoftSQLServer

http://wiki.rubyonrails.org/rails/pages/

HowtoConnectToMicrosoftSQLServerFromRailsOnOSX

http://wiki.rubyonrails.org/rails/pages/

HowtoConnectToMicrosoftSQLServerFromRailsOnLinux

If you decide to take the DBI route, read the following section for information on how
to use Ruby’s DBI library.

DBI: A Generic Database Connectivity Library

The DataBase Interface (DBI) library is a database-agnostic library that uses database
drivers and provides a generic interface to them. This allows you to write your code

CHAPTER 9 ■ FILES AND DATABASES272

7664 CH09.qxd 2/19/07 1:03 AM Page 272

without a specific database in mind, and lets you use the same methods on nearly all
databases. This means you lose the ability to access some of the more-advanced features
offered by database drivers, but DBI can give you a little more simplicity and cross-
database operability.

Unfortunately, at the time of writing, the DBI library is not available as a RubyGem
(although this might change, so you might want to perform a quick search, as it’ll make
the installation a lot easier!). Therefore, to install, you need to refer to the instructions
and files available at http://ruby-dbi.rubyforge.org/. These instructions and files are
updated regularly, so I won’t repeat them here for fear of being out of date by the time
you’re reading this.

■Note If you’re a Perl programmer, DBI will be instantly familiar to you, as it follows many of the same
conventions as the Perl version.

Once you have Ruby DBI installed, along with any database drivers you require,
DBI makes it easy to use a database supported by your drivers, as demonstrated in this
example:

require 'dbi'

Connect to a database

db = DBI.connect('DBI:Mysql:db_name', 'username', 'password')

Perform raw SQL statements with 'do', supports interpolation

db.do("INSERT INTO people (name, age) VALUES (?, ?)", name, age)

Construct and execute a query that will return data in

the traditional way..

query = db.prepare('SELECT * FROM people')

query.execute

while row = query.fetch do

puts row.inspect

end

query.finish

CHAPTER 9 ■ FILES AND DATABASES 273

7664 CH09.qxd 2/19/07 1:03 AM Page 273

Pull data direct from the database in a single sweep

This technique is cleaner than the previous

db.select_all('SELECT * FROM people') do |row|

puts row.inspect

end

db.disconnect

In this example you connect to a MySQL database using the Mysql driver, but if you
had the Oracle driver installed for use by DBI, you could just as easily connect to an Ora-
cle database using a DSN such as DBI:OCI8:db_name. For more up-to-date information
about this functionality, and how to get other drivers, refer to http://ruby-dbi.
rubyforge.org/.

ActiveRecord: A Sneak Peek

So far in this chapter you’ve worked directly with databases using a whole new language:
SQL. Working with a database in this way is more efficient and reliable than putting data
into text files, as you did earlier, but ActiveRecord makes it easier still. ActiveRecord is a
product of the Ruby on Rails framework, which we’ll be covering in Chapter 13, but can
be used entirely independently of it. ActiveRecord will be covered in more depth in that
chapter, but deserves a brief summary here.

ActiveRecord abstracts away all the details of SQL and database design and makes it
possible to relate to items within databases in an object-oriented fashion, as you did with
PStore. ActiveRecord gives you objects that correspond to rows and classes that corre-
spond to tables, and you can work with the data using Ruby syntax, like so:

person = Person.find(:first, :conditions => ["name = ?", "Chris"])

person.age = 50

person.save

This code looks through the people table for a row whose name column matches
“Chris,” and puts an object relating to that row into person. ActiveRecord makes attributes
available for all that row’s columns, so changing the age column is as easy as assigning to
the object’s attribute. However, once the object’s value has been changed, you issue the
save method to save the changes back to the database.

■Note The pluralization from a Person class to a people table is an automatic part of ActiveRecord’s
functionality.

CHAPTER 9 ■ FILES AND DATABASES274

7664 CH09.qxd 2/19/07 1:03 AM Page 274

The previous code could replace SQL such as this:

SELECT * FROM people WHERE name = "Chris"

UPDATE people SET age = 50 WHERE name = "Chris"

Even SQL gurus familiar with Ruby tend to find Ruby’s syntax more natural, particu-
larly in the scope of a Ruby program. There’s no need to mix two different languages in
one program if both sets of features can be provided in Ruby alone.

ActiveRecord will be covered in detail in Chapter 13.

■Note ActiveRecord is not the only library to offer features that relate objects to database tables. Og and
Lafcadio (http://lafcadio.rubyforge.org/) are two alternatives, though they’re far less popular than
ActiveRecord.

Summary
In this chapter we’ve looked at how data can flow into and out of your Ruby programs.
Initially we looked at the low-level concept of I/O streams before quickly moving on to
the pragmatism of databases. Databases provide a way to work with data in a more
abstracted fashion without worrying about the underlying structure of the data on the
computer’s filesystem. Indeed, databases can be located within memory or on totally
different machines, and our code could remain the same.

Let’s reflect on the main concepts covered in this chapter:

• I/O: Input/Output. The concept of receiving input and sending output by various
means on a computer, often via I/O streams.

• I/O stream: A channel along which data can be sent and/or received.

• Standard input (stdin): A stream that relates to the default way of accepting data
into the application, usually the keyboard.

• Standard output (stdout): A stream that relates to the default way of outputting
data from the application, usually to the screen.

• File pointer: An abstract reference to the current “location” within a file.

• Database: An organized collection of data structured in a way that makes it easy to
be accessed programmatically.

CHAPTER 9 ■ FILES AND DATABASES 275

7664 CH09.qxd 2/19/07 1:03 AM Page 275

• CSV: Comma-Separated Values. A way of structuring data with attributes separated
with commas. CSV can be stored in plain text files.

• Marshalling: The process of converting a live data structure or object into a flat set
of data that can be stored on disk, sent across a network, and then can be used to
reconstruct the original data structure or object elsewhere or at some other time.

• Table: A collection of data organized into rows, with multiple columns, where each
column represents a different attribute of each row. There are usually multiple
tables within a database, containing different types of data.

• SQLite: An open source, public-domain relational database API and library that
works on a single-user basis on a local machine. It supports SQL as its querying
language.

• MySQL: An open source relational database system available in both community
and professional editions. It is maintained by MySQL AB. Web hosting companies
commonly offer MySQL database support.

• PostgreSQL: A free, open source relational database system licensed under the BSD
license, making it possible to repackage and sell within commercial products. Post-
greSQL is often considered to be of higher performance and have better
conformity to SQL standards than MySQL, although it’s less commonly used.

• Oracle: A commercial relational database system developed by Oracle Corp. It’s
generally used by large businesses for managing extremely large datasets.

• Primary key: A column (or multiple columns) on a table whose data uniquely iden-
tifies each row.

• DBI: DataBase Interface. A database-agnostic library that makes it easy to commu-
nicate between Ruby and database systems.

• SQL: Structured Query Language. A language specifically designed to create,
amend, retrieve, and otherwise manipulate data in relational database systems.

• ActiveRecord: A library that abstracts databases, rows, columns, and SQL into stan-
dard Ruby syntax using classes and objects. It’s a major part of the Ruby on Rails
framework, which is covered in detail in Chapter 13.

CHAPTER 9 ■ FILES AND DATABASES276

7664 CH09.qxd 2/19/07 1:03 AM Page 276

With the ability to load, manipulate, and store data, the amount of useful Ruby appli-
cations you can develop increases significantly. Few applications depend entirely on data
typed in every time, and having access to files and databases makes it easy to build pow-
erful systems that can be used over time to manage data.

Please note that this is not the last of this book’s coverage of Ruby’s database features.
In Chapter 12 we’re going to use more of these database features at a deeper level to cre-
ate a larger application.

Next, in Chapter 10, we’re going to look at how you can release your applications and
libraries to the world.

CHAPTER 9 ■ FILES AND DATABASES 277

7664 CH09.qxd 2/19/07 1:03 AM Page 277

7664 CH09.qxd 2/19/07 1:03 AM Page 278

Deploying Ruby Applications
and Libraries

In this chapter we’re going to look at how to deploy and distribute the programs you cre-
ate with Ruby.

Developing Ruby applications is so simple that you’ll soon want to release them to
the world. As covered in Chapter 5, Ruby has a proud history of community and sharing,
and nearly every Ruby developer will release code or completed applications at some
point. Indeed, as Ruby is an interpreted language, the source code has to be distributed
whenever you deploy your Ruby applications. If this isn’t desired, there are some
workarounds, and we’ll look at those in this chapter too.

In essence, this chapter will walk you through the considerations and processes of
deploying Ruby applications, libraries, and remotely accessible services (with HTTP
daemons and as CGI scripts).

Distributing Basic Ruby Programs
Ruby is an interpreted language, so to distribute Ruby programs you can simply distrib-
ute the source code files you’ve written. Anyone else who has Ruby installed can then run
the files in the same way that you do.

This process of distributing the actual source code for a program is typically how
most programs developed using a scripting language, such as Ruby, are shared, but more
traditionally software has been distributed without the source code included. Popular
desktop application development languages such as C and C++ are compiled languages
whose source code is converted directly into machine code that runs on a certain plat-
form. This software can be distributed by copying the resulting compiled machine code
files, rather than the source, from machine to machine. However, this technique is not
possible with Ruby, as there is currently no Ruby compiler available, so you have to dis-
tribute your source code in one sense or another for other people to be able to run your
programs.

279

C H A P T E R 1 0

7664 CH10.qxd 2/13/07 1:52 PM Page 279

280 CHAPTER 10 ■ DEPLOYING RUBY APPLICATIONS AND L IBRARIES

■Note Later in this chapter we’ll look at making the functionality of your Ruby programs available across
a network. This technique does not require you to make your source code available, although it does require
you to maintain a running copy of your program on a machine that’s network accessible.

To see how you can distribute Ruby source code, let’s take an example Ruby file and
call it test.rb:

puts "Your program works!"

If you copy test.rb to another computer that has the Ruby interpreter installed on it,
you can run the program directly with the Ruby interpreter as you would normally:

ruby test.rb

Your program works!

This technique works well if you’re passing programs between your own machines or
servers, or if you’re distributing your programs to other developers. As long as the other
users and machines have the same Ruby libraries or gems that your program uses, your
program should run fine. This is one benefit of interpreted languages over compiled lan-
guages. If the same version of the Ruby interpreter is available on a different platform, it
should run the same programs that your Ruby interpreter does. With compiled code
(code that is specifically compiled down to machine code for a specific platform), it is
not the case that it will run identically on all platforms; in fact, it usually won’t!

What if you want to distribute your Ruby program to people who aren’t au fait with
the Ruby interpreter? Depending on the target operating system (that is, the operating
system the user is running), there are several ways to make deploying Ruby applications
simpler.

The Shebang Line

On Unix-related operating systems (Linux, OS X, BSD, and so on) you can engineer your
program to run more simply by using a shebang line.

■Note In certain situations, such as when using the Apache HTTP server, shebang lines can work in
Windows. You can use shebang lines such as #!ruby and #!c:\ruby\bin\ruby.exe to make Ruby CGI
scripts work under Apache on Windows.

7664 CH10.qxd 2/13/07 1:52 PM Page 280

281CHAPTER 10 ■ DEPLOYING RUBY APPLICATIONS AND L IBRARIES

For example, say your script were to look like this:

#!/usr/bin/ruby

puts "Your program works!"

Unix-related operating systems support putting the name of the interpreter of a file
on the first line of the file with a shebang line, where the “shebang” is simply the pound
(#) sign and the exclamation mark (!).

■Note The shebang line only needs to be in the file that’s initially run. It doesn’t need to be in library or
support files used by the main program.

In this case, /usr/bin/ruby, the Ruby interpreter, is used to interpret the rest of the
file. One problem you might run into, though, is that your Ruby interpreter might be
located in /usr/bin/local/ruby or have a different name entirely. However, there’s a rea-
sonably portable way to work around this problem. Many Unix-related operating systems
(including most Linuxes and OS X) have a tool called env that stores the location of cer-
tain applications and settings. You can use this to load up Ruby without knowing its exact
location. For example:

#!/usr/bin/env ruby

puts "Your program works!"

You could copy this example to many different Linux or OS X machines, for example,
and it would work on the majority (env is not universal).

If this script were called test.rb and located in the current working directory, you
could simply run it from a command line, like so:

./test.rb

■Note On most Unix-like operating systems, as well as adding a shebang line, it’s necessary to make the
Ruby script “executable” by using chmod for the preceding example to work, as in chmod +x test.rb.

7664 CH10.qxd 2/13/07 1:52 PM Page 281

Naturally, if you copied the script elsewhere (/usr/bin, for example), you could access
it directly:

/usr/bin/test.rb

Or if the script’s location is in the path, it’s even easier:

test.rb

Associated File Types in Windows

Whereas shebang lines are used on Unix-like operating systems, Windows users are more
familiar with file extensions (such as DOC, EXE, JPG, MP3, or TXT) dictating how a file is
processed.

If you use My Computer or Windows Explorer to find a folder containing a Ruby file,
the file might or might not already be associated with the Ruby interpreter (depending on
which Ruby package you installed). Alternatively, Ruby files might be associated with
your text editor. In any case, if you want to be able to double-click Ruby files in Windows
and have them run directly as regular Ruby programs, you can do this by changing the
default action for files with an extension of RB (or any other arbitrary extension you wish
to use).

The easiest way to set an association is to right-click the icon representing a Ruby file
and choose the “Open With” (or “Open,” if it’s currently not associated with any program)
option from the menu. Associate the program with the ruby.exe Ruby interpreter on your
computer, and check the “Always use the selected program to open this kind of file”
option. This will cause Ruby files to be executed directly by the Ruby interpreter in future.

■Note Microsoft provides more information about this technique at http://support.microsoft.
com/kb/307859.

“Compiling” Ruby

The shebang line and associated file type options involve collecting all the Ruby source
code associated with an application and passing it on to a user, who then either has to
run it from a command line or create a file association.

CHAPTER 10 ■ DEPLOYING RUBY APPLICATIONS AND L IBRARIES282

7664 CH10.qxd 2/13/07 1:52 PM Page 282

For nontechnical users, these options can prove confusing, and compared to deploying
a typical application for Linux, OS X, or Windows they make Ruby look unprofessional. This
is the nature of deploying code written in an interpreted language, because Ruby cannot
be compiled down to a single, tidy executable file that can be used like any other
executable file.

However, some clever developers have come up with a couple different systems to
work around this problem and give the impression of creating a single, compiled exe-
cutable file. One trick is to embed a Ruby interpreter and the source code into a single
file and then use these components to make the application work transparently.

RubyScript2Exe

RubyScript2Exe is a program that can convert Ruby source code into executable files that
can be used primarily on Windows and Linux. It collects your source code, along with all
the files used to make your application work (including Ruby and its libraries), and pack-
ages them up into a single file that works like a typical application.

As of the time of writing, RubyScript2Exe has been tested on several Linux distribu-
tions with varying versions of Ruby, and on Windows 95, 98, 2000, and XP. There is also
experimental support for OS X (although for OS X users, another tool, Platypus, is cov-
ered next).

To download and learn about RubyScript2Exe, visit the official site at http://www.
erikveen.dds.nl/rubyscript2exe/. Once you’ve created a simple executable file for the
platform(s) of your choice, it becomes easy to deploy applications, as you no longer need
to worry whether your target users have Ruby preinstalled or not.

Platypus

Platypus is a generic development tool for Mac OS X that can create native, integrated
applications from Ruby scripts, as well as scripts written in other interpreted languages
(such as Perl, Python, and PHP).

It has more features than RubyScript2Exe, although it works in a slightly different
way that’s specific to Mac OS X. You can get Platypus to encrypt its output files so that
your source code isn’t directly visible (although no encryption is foolproof), and you can
get drag-and-drop features, embed non-Ruby files into your application (such as images,
SQLite database files, or sounds), and use OS X’s security framework to allow your script
to have unfettered access to the machine it’s running on.

Platypus is free (although donations are requested by the author) and can be
obtained at http://www.sveinbjorn.org/platypus. Platypus (shown in Figure 10-1) is an
excellent tool, and has been used by a multitude of interpreted programs that have
become regular applications.

CHAPTER 10 ■ DEPLOYING RUBY APPLICATIONS AND L IBRARIES 283

7664 CH10.qxd 2/13/07 1:52 PM Page 283

Figure 10-1. A view of the main Platypus screen, where an executable package is put
together.

Detecting Ruby’s Runtime Environment
Deploying Ruby programs can be made easier with the tools covered in the previous
section, but you can use a number of techniques directly within Ruby to make Ruby’s
interactions with its surrounding environment even better.

For example, it’s possible to detect information about the machine upon which a
Ruby script is running and then change the way the program operates on the fly. You can
also retrieve parameters passed to the program via the command line.

Detecting the runtime environment while the program is running can be useful to
restrict access to users on specific platforms if your program isn’t relevant to other users,
or to tailor internal settings in your program so that your program will work better on the
user’s operating system. It can also be a useful way to get system-specific information
(rather than operating-system–specific information) that’s relevant directly to the
machine the program is running on, as it could affect the operation of your program.

CHAPTER 10 ■ DEPLOYING RUBY APPLICATIONS AND L IBRARIES284

7664 CH10.qxd 2/13/07 1:52 PM Page 284

A common example of this is retrieving the current user’s path: a string of various direc-
tory names on the system that can be searched as default locations for files. There are
also environment variables dictating where to store temporary files, and so forth.

Easy OS Detection with RUBY_PLATFORM

Among the myriad special variables Ruby makes accessible, a variable called
RUBY_PLATFORM contains the name of the current environment (operating system) you’re
running under. You can easily query this variable to detect what operating system your
program is running under. This can be useful if you want to use a certain filesystem nota-
tion or features that are implemented differently under different operating systems.

On my Windows machine, RUBY_PLATFORM contains “i386-mswin32,” on my OS X
machine it contains “powerpc-darwin8.6.0,” and on my Linux machine it contains
“i686-linux.” This gives you the immediate power to segregate features and settings by
operating system.

if RUBY_PLATFORM =~ /win32/

puts "We're in Windows!"

elsif RUBY_PLATFORM =~ /linux/

puts "We're in Linux!"

elsif RUBY_PLATFORM =~ /darwin/

puts "We're in Mac OS X!"

elsif RUBY_PLATFORM =~ /freebsd/

puts "We're in FreeBSD!"

else

puts "We're running under an unknown operating system."

end

Environment Variables

Whenever a program is run on a computer, it’s contained with a certain environment,
whether that’s the command line or a GUI. The operating system sets a number of special
variables called environment variables that contain information about the environment.
They vary by operating system, but can be a good way of detecting things that could be
useful in your programs.

You can quickly and easily inspect the environment variables (as supplied by your
operating system) on your current machine with irb by using the special ENV hash:

irb(main):001:0> ENV.each {|e| puts e.join(': ') }

CHAPTER 10 ■ DEPLOYING RUBY APPLICATIONS AND L IBRARIES 285

7664 CH10.qxd 2/13/07 1:52 PM Page 285

TERM_PROGRAM: iTerm.app

TERM: vt100

SHELL: /bin/bash

USER: peter

PATH:

/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/opt/local/bin:/usr/local/sbin

PWD: /Users/peter

SHLVL: 1

HOME: /Users/peter

LOGNAME: peter

SECURITYSESSIONID: 51bbd0

_: /usr/bin/irb

LINES: 32

COLUMNS: 120

Specifically, these are the results from my machine, and yours will probably be quite
different. For example, when I try the same code on a Windows machine, I get results
such as these:

ALLUSERSPROFILE: F:\Documents and Settings\All Users

APPDATA: F:\Documents and Settings\Peter\Application Data

CLIENTNAME: Console

HOMEDRIVE: F:

HOMEPATH: \Documents and Settings\Peter

LOGONSERVER: \\PSHUTTLE

NUMBER_OF_PROCESSORS: 2

OS: Windows_NT

Path: F:\ruby\bin;F:\WINDOWS\system32;F:\WINDOWS

PATHEXT: .COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;.RB;.RBW

ProgramFiles: F:\Program Files

SystemDrive: F:

SystemRoot: F:\WINDOWS

TEMP: F:\DOCUME~1\Peter\LOCALS~1\Temp

TMP: F:\DOCUME~1\Peter\LOCALS~1\Temp

USERDOMAIN: PSHUTTLE

USERNAME: Peter

USERPROFILE: F:\Documents and Settings\Peter

windir: F:\WINDOWS

CHAPTER 10 ■ DEPLOYING RUBY APPLICATIONS AND L IBRARIES286

7664 CH10.qxd 2/13/07 1:52 PM Page 286

You can use these environment variables to decide where to store temporary files, or
to find out what sort of features your operating system offers, in real time, much as you
did with RUBY_PLATFORM:

tmp_dir = '/tmp'

if ENV['OS'] =~ /Windows_NT/

puts "This program is running under Windows NT/2000/XP!"

tmp_dir = ENV['TMP']

elsif ENV['PATH'] =~ /\/usr/

puts "This program has access to a UNIX-style file system!"

else

puts "I cannot figure out what environment I'm running in!"

exit

end

[.. do something here ..]

■Note You can also set environment variables with ENV['variable_name'] = value, but only do this
if you have a valid reason to use them. However, setting environment variables from within a program only
applies to the local process and any child processes, meaning that the variables’ application is extremely
limited.

Although ENV acts like a hash, it’s technically a special object, but you can convert it
to a true hash using its .to_hash method, as in ENV.to_hash.

Accessing Command Line Arguments

In Chapter 4 you used a special array called ARGV. ARGV is an array automatically created by
the Ruby interpreter that contains the parameters passed to the Ruby program (whether
on the command line or by other means). For example, say you created a script called
argvtest.rb:

puts ARGV.join('-')

You could run it like so:

ruby argvtest.rb these are command line parameters

these-are-command-line-parameters

CHAPTER 10 ■ DEPLOYING RUBY APPLICATIONS AND L IBRARIES 287

7664 CH10.qxd 2/13/07 1:52 PM Page 287

The parameters are passed into the program and become present in the ARGV array,
where they can be processed as you wish. Use of ARGV is ideal for command-line tools
where filenames and options are passed in this way.

Using ARGV also works if you call a script directly. On Unix operating systems, you
could adjust argvtest.rb to be like this:

#!/usr/bin/env ruby

puts ARGV.join('-')

And you could call it in this way:

./argvtest.rb these are command line parameters

these-are-command-line-parameters

You generally use command line arguments to pass options, settings, and data frag-
ments that might change between executions of a program. For example, a common
utility found on most operating systems is copy or cp, which is used to copy files. It’s used
like so:

cp /directory1/from_filename /directory2/destination_filename

This would copy a file from one place to another (and rename it along the way)
within the filesystem. The two filenames are both command line arguments, and a Ruby
script could receive data in the same way, like so:

#!/usr/bin/env ruby

from_filename = ARGV[0]

destination_filename = ARGV[1]

Distributing and Releasing Ruby Libraries As
Gems
Over time it’s likely you’ll develop your own libraries to solve various problems with Ruby
so that you don’t need to write the same code over and over in different programs, but
can call on the library for support.

Usually you’ll want to make these libraries available to use on other machines, on
servers upon which you deploy applications, or to other developers. You might even
open-source your libraries to get community input and a larger developer base.

CHAPTER 10 ■ DEPLOYING RUBY APPLICATIONS AND L IBRARIES288

7664 CH10.qxd 2/13/07 1:52 PM Page 288

If you’ve read Chapter 5, you’ll have a good feel for Ruby’s commitment to open
source and how open source is important to Ruby developers. This section looks at
how to release your code and libraries in such a way that other developers can find them
useful.

Luckily, deploying libraries is generally less problematic than deploying entire appli-
cations, as the target audience is made up of other developers who are usually familiar
with installing libraries.

In Chapter 7 we looked at RubyGems, a library installation and management system
for Ruby. We looked at how RubyGems makes it easy to install libraries, but RubyGems
also makes it easy to create “gems” of your own from your own code.

Creating a Gem

Let’s first create a simple library that extends the String class and puts it in a file called
string_extend.rb:

class String

def vowels

scan(/[aeiou]/i)

end

end

This code adds a vowels method to the String class, which returns an array of all the
vowels in a string:

"This is a test".vowels

["i", "i", "a", "e"]

As a local library within the scope of a larger application, it could be loaded with
require:

require 'string_extend'

However, you want to turn it into a gem that you can use anywhere. Building a gem
involves three steps. The first is to organize your code and other files into a structure that
can be turned into a gem. The second is to create a specification file that lists information
about the gem. The third is to use the gem program to build the gem from the source files
and the specification.

CHAPTER 10 ■ DEPLOYING RUBY APPLICATIONS AND L IBRARIES 289

7664 CH10.qxd 2/13/07 1:52 PM Page 289

■Note This section assumes that RubyGems is fully installed, as covered in Chapter 7.

Structuring Your Files

Before you can build a gem, it’s necessary to collect all the files you want to make up the
gem. This is usually done using a standard structure. So far you have your
string_extend.rb file, and this is the only file you want within your gem.

First, it’s necessary to create a folder to contain all the gem’s folders, so you create a
folder called string_extend. Under this folder you create several other folders as follows:

• lib: This directory will contain the Ruby code related to the library.

• pkg: This is a temporary directory where the gem will be generated.

• test: This directory will contain any unit tests or other testing scripts related to the
library.

• doc: This is an optional directory that could contain documentation about the
library, particularly documentation created with or by rdoc.

• bin: This is another optional directory that can contain system tools and command
line scripts that are related to the library. For example, RubyGems itself installs the
gem command line tool; such a tool would be placed into bin.

At a minimum, you should end up with string_extend/lib, string_extend/pkg, and
string_extend/test.

In this example, you should place string_extend.rb within the string_extend/lib
directory. If you have tests, documentation, or command line scripts, place them into the
respective directories.

■Note The preceding directory names are written in a Unix style, but on Windows would be represented
similarly to this: c:\gems\string_extend, c:\gems\string_extend\lib, and so on. Take this into
account throughout this entire section.

CHAPTER 10 ■ DEPLOYING RUBY APPLICATIONS AND L IBRARIES290

7664 CH10.qxd 2/13/07 1:52 PM Page 290

Creating a Specification File

Once your files are organized, it’s time to create a specification file that describes the gem
and provides RubyGems with enough information to create the final gem. Create a text
file called string_extend.gemspec (or a filename that matches your own project name) in
the main string_extend folder, and fill it out like so:

require 'rubygems'

spec = Gem::Specification.new do |s|

s.name = 'string_extend'

s.version = '0.0.1'

s.summary = "StringExtend adds useful features to the String class"

s.files = Dir.glob("**/**/**")

s.test_files = Dir.glob("test/*_test.rb")

s.autorequire = 'string_extend'

s.author = "Your Name"

s.email = "your-email-address@email.com"

s.has_rdoc = false

s.required_ruby_version = '>= 1.8.2'

end

This is a basic specification file. The specification file is effectively a simple Ruby
script that passes information through to Gem::Specification. The information it provides
is mostly simple, but let’s look at a few key areas.

First you define the name of the gem, setting it to 'string_extend':

s.name = 'string_extend'

Next, you define the version number. Typically, version numbers for Ruby projects
(and for Ruby itself) contain three parts in order of significance. Early versions of soft-
ware, before an official release, perhaps, often begin with 0, as in 0.0.1 here:

s.version = '0.0.1'

The summary line is displayed by gem list, and can be useful to people prior to
installing the gem. Simply put together a short description of your library/gem here:

s.summary = "StringExtend adds useful features to the String class"

The files attribute accepts an array of all the files to include within the gem. In this
case you use Dir.glob to get an array of all the files under the current directory:

s.files = Dir.glob("**/**/**")

CHAPTER 10 ■ DEPLOYING RUBY APPLICATIONS AND L IBRARIES 291

7664 CH10.qxd 2/13/07 1:52 PM Page 291

However, you could explicitly reference every file in an array in the preceding line.
The test_files attribute, like the files attribute, accepts an array of files, in this case

associated with tests. You can leave this line intact even if you have no test folder, as
Dir.glob will just return an empty array. For example:

s.test_files = Dir.glob("test/*_test.rb")

The autorequire parameter specifies a file to be loaded automatically with require
when the gem is loaded. This parameter isn’t particularly important, because users will
generally use require 'string_extend' in their code anyway, but if your gem contains
multiple Ruby files that need to be loaded, it could come in handy:

s.autorequire = 'string_extend'

Last, sometimes libraries rely on features in certain versions of Ruby. You can specify
the required version of Ruby with the require_ruby_version parameter. If there’s no
required version, you can simply omit this line:

s.required_ruby_version = '>= 1.8.2'

■Note A full list of the parameters you can use in a RubyGems specification file is available at
http://www.rubygems.org/read/chapter/20.

Building the Gem

Once the specifications file is complete, building the final .gem file is as simple as:

gem build <spec file>

In your case:

gem build string_extend.gemspec

This makes gem create the final gem file, string_extend-0.0.1.gem.

■Note In future, once you change and update your library, simply update the version numbers, rebuild, and
you have a new gem ready to go that can be installed to upgrade the existing installed gem.

CHAPTER 10 ■ DEPLOYING RUBY APPLICATIONS AND L IBRARIES292

7664 CH10.qxd 2/13/07 1:52 PM Page 292

Easier Gem Creation

At the time of writing, a new tool called newgem has been developed and released by
Dr. Nic Williams that makes it a one-step process to create the structure and default files
for generating a gem. Use the following code to install newgem:

gem install newgem

Once it’s installed, you can create gem directory structures and default files with a
single stroke:

newgem your_library_name

creating: your_library_name

creating: your_library_name/CHANGELOG

creating: your_library_name/README

creating: your_library_name/lib

creating: your_library_name/lib/your_library_name

creating: your_library_name/lib/your_library_name.rb

creating: your_library_name/lib/your_library_name/version.rb

creating: your_library_name/Rakefile

creating: your_library_name/test

creating: your_library_name/test/all_tests.rb

creating: your_library_name/test/test_helper.rb

creating: your_library_name/test/your_library_name_test.rb

creating: your_library_name/examples

creating: your_library_name/bin

newgem is likely to become more popular in future, as it radically simplifies the
process of creating gems. However, it’s important to understand the previous few sec-
tions so that you have an idea of what goes into a gem, even if you choose to automate
the process later on.

The official RubyForge site for newgem is at http://rubyforge.org/projects/newgem/,
and a useful blog post by the author about the tool is available at http://drnicwilliams.
com/2006/10/11/generating-new-gems/.

Distributing a Gem

Distributing a gem is easy. You can upload it to a Web site or transfer it in any way you
would normally transfer a file. You can then install the gem with gem install by referring
to the local file.

CHAPTER 10 ■ DEPLOYING RUBY APPLICATIONS AND L IBRARIES 293

7664 CH10.qxd 2/13/07 1:52 PM Page 293

However, distributing a gem in a fashion where the gem client can download it auto-
matically is a little harder. The RubyGems system comes with a script called gem_server
that runs a special server on your local machine (or any machine you choose to run it on)
that can serve gems. To install a gem from a specific server you can use the --source
option:

gem install gem_name --source http://server-name-here/

■Note In a similar fashion, you can also use a normal Web server or Web hosting package to host your
gems, and you can install them using --source. To do this, you have to create a folder on your Web site
called /gems and use RubyGems’ generate_yaml_index.rb script to generate the metafiles required to
make it work.

The best way to distribute gems, however, is in a form where they can be installed
over the Internet without specifying a source. For example:

gem install gem_name

This command installs the gem gem_name by looking for it on the Internet and down-
loading it to the local machine. But how does gem know where to download gems from?
By default, RubyGems searches a Ruby project repository called RubyForge for gems if no
source is specified. We’ll look at how to make gems available in the default database using
RubyForge next.

RubyForge

RubyForge (http://rubyforge.org/) is the largest community repository for Ruby projects
and libraries, and is maintained by Richard Kilmer and Tom Copeland. It contains thou-
sands of projects and acts as a centralized location for the hosting of Ruby projects.
Nearly all the major Ruby libraries are available from or hosted there, including Ruby on
Rails.

As well as basic hosting, RubyForge lets project maintainers create simple Web sites
hosted under subdomains of RubyForge (as with http://mongrel.rubyforge.org/), and it
provides source management servers (CVS and SVN) for those who require them.

Importantly, however, RubyForge acts as the default source for gems. When a user
runs gem install rails or gem install mongrel, gem looks for the gem files at RubyForge.
Therefore, if you want your gem to be installed easily by users, hosting it at RubyForge is
key. Hosting with RubyForge is also free, and with RubyForge’s status in the community,
hosting your project at RubyForge makes it look more legitimate.

CHAPTER 10 ■ DEPLOYING RUBY APPLICATIONS AND L IBRARIES294

7664 CH10.qxd 2/13/07 1:52 PM Page 294

To host a project with RubyForge, create a new account using the link from the front
page at http://rubyforge.org/, and once you’re set up, you can apply to create a new
project. You have to enter several pieces of information about your project, but within
a couple of days you should be approved and will be able to upload files. Gems associated
with any project hosted in RubyForge become available to install with RubyGems within
a few hours.

Deploying Ruby Applications As Remote Services
An alternative to giving people your source or packaging it up to be run locally on a user’s
machine is making a program’s functionality available as a remote service over a network.
This only works for a small subset of functionality, but providing functionality remotely
gives you more control over your code and how it is used.

Ruby’s networking and Web features will be covered in more depth in Chapters 14
and 15, but in this section we’ll look at how to put together basic services with Ruby that
allow users to access a program’s functionality over a network.

CGI Scripts

A common way to make scripts available online is to upload them to Web hosting
providers as CGI scripts. Common Gateway Interface (CGI) is a standard that allows Web
server software (such as Apache or Microsoft IIS) to launch programs and send data back
and forth between them and the Web client.

Many people associate the term CGI with the Perl language, as Perl has been the
most common language with which to write CGI scripts. However, CGI is language
agnostic, and you can just as easily write CGI scripts with Ruby (more easily, in fact!).

A Basic CGI Script

The most basic Ruby CGI script looks like this:

#!/usr/bin/ruby

puts "Content-type: text/html\n\n"

puts "<html><body>This is a test</body></html>"

If you called this script test.cgi and uploaded it to a Unix-based Web hosting
provider (the most common type) with the right permissions, you could use it as a CGI
script. For example, if you have the Web site http://www.example.com/ hosted with a Linux
Web hosting provider and you upload test.cgi to the main directory and give it execute

CHAPTER 10 ■ DEPLOYING RUBY APPLICATIONS AND L IBRARIES 295

7664 CH10.qxd 2/13/07 1:52 PM Page 295

permissions, then visiting http://www.example.com/test.cgi should return an HTML page
saying “This is a test.”

■Note Although /usr/bin/ruby is referenced in the previous example, for many users or Web
hosting providers Ruby might be located at /usr/local/bin/ruby. Make sure to check, or try using
usr/bin/env ruby.

When test.cgi is requested from a Web browser, the Web server looks for test.cgi on
the Web site, and then executes it using the Ruby interpreter (due to the shebang line—as
covered earlier in this chapter). The Ruby script returns a basic HTTP header (specifying
the content type as HTML) and then returns a basic HTML document.

■Note There’s more information about generating HTML documents in Chapter 14.

Ruby comes with a special library called cgi that enables more sophisticated interac-
tions than those with the preceding CGI script. Let’s create a basic CGI script that uses cgi:

#!/usr/bin/ruby

require 'cgi'

cgi = CGI.new

puts cgi.header

puts "<html><body>This is a test</body></html>"

In this example, you created a CGI object and used it to print the header line for you.
This is easier than remembering what header to output, and it can be tailored. However,
the real benefit of using the cgi library is so that you can do things such as accept data
coming from a Web browser (or an HTML form) and return more complex data to the
user.

Accepting CGI Variables

A benefit of CGI scripts is that they can process information passed to them from a form
on an HTML page or merely specified within the URL. For example, if you had a Web

CHAPTER 10 ■ DEPLOYING RUBY APPLICATIONS AND L IBRARIES296

7664 CH10.qxd 2/13/07 1:52 PM Page 296

form with an <input> element with a name of “text” that posted to test.cgi, you can
access the data passed to it like this:

#!/usr/bin/ruby

require 'cgi'

cgi = CGI.new

text = cgi['text']

puts cgi.header

puts "<html><body>#{text.reverse}</body></html>"

In this case, the user would see the text he or she entered on the form reversed. You
could also test this CGI script by passing the text directly within the URL, such as with
http://www.example.com/test.cgi?text=this+is+a+test.

Here’s a more complete example:

#!/usr/bin/ruby

require 'cgi'

cgi = CGI.new

from = cgi['from'].to_i

to = cgi['to'].to_i

number = rand(to-from+1) + from

puts cgi.header

puts "<html><body>#{number}</body></html>"

This CGI script responds with a random number that’s between the number supplied
in the from CGI variable and the to CGI variable. An associated, but basic, form that could
send the correct data would have HTML code like so:

<form method="POST" action="http://www.example.com/test.cgi">

For a number between <input type="text" name="from" value="" /> and

<input type="text" name="to" value="" /> <input type="submit"

value="Click here!" /></form>

In Chapter 16, the CGI library is covered in more depth, along with information
about using HTTP cookies and sessions, so if this mode of deployment is of interest to
you, please refer there for extended information and longer examples.

CHAPTER 10 ■ DEPLOYING RUBY APPLICATIONS AND L IBRARIES 297

7664 CH10.qxd 2/13/07 1:52 PM Page 297

In general, however, CGI execution is becoming unpopular due to its lack of speed
and the need for a Ruby interpreter to be executed on every request. This makes CGI
unsuitable for high-use or heavy load situations.

Generic HTTP Servers

HTTP is the communications protocol of the World Wide Web. Even though it’s com-
monly used to shuttle Web pages from one place to another, it can also be used on an
internal network or even to communicate between services on a single machine.

Creating an HTTP server from your Ruby program can provide a way for users (or
even other programs) to make requests to your Ruby program, meaning you don’t need
to distribute the source code, but can instead make your program’s functionality avail-
able over a network (such as the Internet).

This section won’t directly look at the applications of this functionality, as this is cov-
ered in Chapter 14, but will instead look at the practicalities of creating basic Web/HTTP
servers with Ruby.

WEBrick

WEBrick is a Ruby library that makes it easy to build an HTTP server with Ruby. It comes
with most installations of Ruby by default (it’s part of the standard library), so you can
usually create a basic Web/HTTP server with only several lines of code:

require 'webrick'

server = WEBrick::GenericServer.new(:Port => 1234)

trap("INT"){ server.shutdown }

server.start do |socket|

socket.puts Time.now

end

This code creates a generic WEBrick server on the local machine on port 1234,
shuts the server down if the process is interrupted (often done with Ctrl+C), and for
each new connection prints the current date and time. If you run this code, you could
try to view the results in your Web browser by visiting http://127.0.0.1:1234/ or
http://localhost:1234/.

CHAPTER 10 ■ DEPLOYING RUBY APPLICATIONS AND L IBRARIES298

7664 CH10.qxd 2/13/07 1:52 PM Page 298

■Caution Because your test program doesn’t output valid HTTP, it’s likely to fail with many Web
browsers, particularly on Windows. However, if you understand how to use the telnet program, you can use
telnet 127.0.0.1 1234 to see the result. Otherwise, continue to the next example, where valid HTTP is
returned for Web browsers to view.

However, a more powerful technique is when you create servlets that exist in their
own class and have more control over the requests and responses made to them:

require 'webrick'

class MyServlet < WEBrick::HTTPServlet::AbstractServlet

def do_GET(request, response)

response.status = 200

response.content_type = "text/plain"

response.body = "Hello, world!"

end

end

server = WEBrick::HTTPServer.new(:Port => 1234)

server.mount "/", MyServlet

trap("INT"){ server.shutdown }

server.start

This code is more elaborate, but you now have access to request and response objects
that represent both the incoming request and the outgoing response.

For example, you can now find out what URL the user tried to access in his or her
browser, with such a line:

response.body = "You are trying to load #{request.path}"

request.path contains the path within the URL (for example, /abcd from
http://127.0.0.1:1234/abcd), meaning you can interpret what the user was trying to
request, call a different method, and provide the correct output.

Here’s a more elaborate example:

require 'webrick'

class MyNormalClass

def MyNormalClass.add(a, b)

a.to_i + b.to_i

end

CHAPTER 10 ■ DEPLOYING RUBY APPLICATIONS AND L IBRARIES 299

7664 CH10.qxd 2/13/07 1:52 PM Page 299

def MyNormalClass.subtract(a,b)

a.to_i - b.to_i

end

end

class MyServlet < WEBrick::HTTPServlet::AbstractServlet

def do_GET(request, response)

if request.query['a'] && request.query['b']

a = request.query['a']

b = request.query['b']

response.status = 200

response.content_type = 'text/plain'

result = nil

case request.path

when '/add'

result = MyNormalClass.add(a,b)

when '/subtract'

result = MyNormalClass.subtract(a,b)

else

result = "No such method"

end

response.body = result.to_s + "\n"

else

response.status = 400

response.body = "You did not provide the correct parameters"

end

end

end

server = WEBrick::HTTPServer.new(:Port => 1234)

server.mount '/', MyServlet

trap('INT'){ server.shutdown }

server.start

In this example you have a regular, basic Ruby class called MyNormalClass that imple-
ments two basic arithmetic methods. The WEBrick servlet uses the request object to
retrieve parameters from the URL, as well as get the Ruby method requested from
request.path. If the parameters aren’t passed an HTTP error is returned.

CHAPTER 10 ■ DEPLOYING RUBY APPLICATIONS AND L IBRARIES300

7664 CH10.qxd 2/13/07 1:52 PM Page 300

To use the preceding script, you’d use URLs such as these:

http://127.0.0.1:1234/add?a=10&b=20

30

http://127.0.0.1:1234/subtract?a=100&b=10

90

http://127.0.0.1:1234/subtract

You did not provide the correct parameters.

http://127.0.0.1:1234/abcd?a=10&b=20

No such method.

■Note You can learn more about WEBrick from Gnome’s Guide to WEBrick at http://microjet.ath.cx/
WebWiki/WEBrick.html, or refer to Appendix C of this book.

Mongrel

Mongrel is a fast HTTP server and library for Ruby intended for hosting Ruby applica-
tions and services. It’s similar to WEBrick, but is significantly faster, although the
downside is that it doesn’t come with Ruby by default. Many high-profile Ruby on Rails
Web sites use Mongrel for their deployment because of its speed, stability, and reliability.

CHAPTER 10 ■ DEPLOYING RUBY APPLICATIONS AND L IBRARIES 301

7664 CH10.qxd 2/13/07 1:52 PM Page 301

You can install Mongrel with RubyGem:

gem install --include-dependencies mongrel

■Note As always, remember to prefix these commands with sudo, if your operating system requires it.

As with WEBrick, you can tie Mongrel into an existing Ruby application easily. By
associating a handler class with Mongrel, requests can be passed into and handled by
your own code. The code could call functions in your application and the results can be
passed back to the clients.

Here’s a basic example of a Mongrel server that will return a simple HTML page when
http://localhost:1234 is loaded:

require 'rubygems'

require 'mongrel'

class BasicServer < Mongrel::HttpHandler

def process(request, response)

response.start(200) do |headers, output|

headers["Content-Type"] = 'text/html'

output.write('<html><body><h1>Hello!</h1></body></html>')

end

end

end

s = Mongrel::HttpServer.new("0.0.0.0", "1234")

s.register("/", BasicServer.new)

s.run.join

Mongrel::HttpServer.new can also take an optional third argument that specifies the
number of threads to open to handle requests. For example:

s = Mongrel::HttpServer.new("0.0.0.0", "1234", 20)

The preceding line creates 20 processor threads that handle requests.
As you can see, Mongrel is reasonably similar to WEBrick, but with some extra

benefits. You can learn more about it at the official Mongrel site at http://mongrel.
rubyforge.org/.

CHAPTER 10 ■ DEPLOYING RUBY APPLICATIONS AND L IBRARIES302

7664 CH10.qxd 2/13/07 1:52 PM Page 302

Remote Procedure Calls

A common way to make program functionality available to remote programs is with
Remote Procedure Calls (RPCs). In contrast to allowing control via a Web browser, RPC is
designed for situations where one program gets to use the methods and procedures
made available by another. When used correctly, using the methods and procedures
made available by remotely located programs can feel almost as easy as using local
methods and procedures.

Ruby has built-in support for two of the most popular RPC protocols, XML-RPC
and SOAP, as well as a special system of its own called DRb.

XML-RPC

XML-RPC is a well-known RPC protocol that uses XML for its messaging and HTTP for its
transport. One of the benefits of RPC is that you can create multiple programs in different
languages, but still talk between them in a way that every language understands. It makes
it possible to write a system in, say, PHP or Python, but call the methods made available
by that program with Ruby.

■Note SOAP is another popular RPC protocol, but is more complex. However, it’s supported natively
by Ruby, although you’re only likely to use it if the systems you want to use support nothing else. Other
systems, particularly those that are a lot simpler—such as REST—are becoming more popular. However,
if you want to use SOAP, Ruby comes with a SOAP library as standard.

Calling an XML-RPC–Enabled Method

Calling a method made available over XML-RPC is incredibly simple:

require 'xmlrpc/client'

server = XMLRPC::Client.new2("http://xmlrpc-c.sourceforge.net/api/sample.php")

puts server.call("sample.sumAndDifference", 5, 3).inspect

{"difference"=>2, "sum"=>8}

CHAPTER 10 ■ DEPLOYING RUBY APPLICATIONS AND L IBRARIES 303

7664 CH10.qxd 2/13/07 1:52 PM Page 303

■Note This program requires your computer to have access to the Internet. Also, if the XML-RPC sample
server is unavailable, you might get an error message. Try a few times if you fail to get a result as this sam-
ple file is often under heavy use.

This example uses a remote application (written in PHP) that makes available a
method called sample.sumAndDifference. First you create a handle that refers to the
remote program using XMLRPC::Client.new2, then you call the method with two parame-
ters. The results (the sum and the difference of your two arguments) come back in a hash.

Because dealing with remote programs can lead to errors (bad connections, remote
service is unavailable, and so on), it makes sense to process errors that come back from
RPC calls. XML-RPC offers a call2 method that makes this easy:

require 'xmlrpc/client'

server = XMLRPC::Client.new2("http://xmlrpc-c.sourceforge.net/api/sample.php")

ok, results = server.call2("sample.sumAndDifference", 5, 3)

if ok

puts results.inspect

else

puts results.faultCode

puts results.faultString

end

call2 returns an array containing a “success” flag and the results. You can check to see
if the first element of the array (the “success” flag) is true, but if not, you can investigate
the error.

Making an XML-RPC–Enabled Program

Calling XML-RPC–enabled programs is easy, but so is XML-RPC–enabling your own:

require 'xmlrpc/server'

server = XMLRPC::Server.new(1234)

server.add_handler("sample.sumAndDifference") do |a,b|

{ "sum" => a.to_i + b.to_i,

"difference" => a.to_i - b.to_i }

end

CHAPTER 10 ■ DEPLOYING RUBY APPLICATIONS AND L IBRARIES304

7664 CH10.qxd 2/13/07 1:52 PM Page 304

trap("INT") { server.shutdown }

server.serve

This program runs an XML-RPC server (based on WEBrick) on your local machine on
port 1234, and operates in the same way as the sample.php used in the client in the previ-
ous section. The following client could use the sample.sumAndDifference method made
available by the preceding server:

require 'xmlrpc/client'

server = XMLRPC::Client.new2("http://127.0.0.1:1234/")

puts server.call("sample.sumAndDifference", 5, 3).inspect

On the server side, just add more add_handler blocks that process the requests. You
can use require to load classes associated with your program and then have a simple
XML-RPC server in place to make your program’s functionality available remotely. For
example:

require 'xmlrpc/server'

require 'string_extend'

server = XMLRPC::Server.new(1234)

server.add_handler("sample.vowel_count") do |string|

string.vowels

end

trap("INT") { server.shutdown }

server.serve

This XML-RPC server makes the functionality of your string_extend library available
remotely. You can use it like so:

require 'xmlrpc/client'

server = XMLRPC::Client.new2("http://127.0.0.1:1234/")

puts server.call("sample.vowel_count", "This is a test").inspect

["i", "i", "a", "e"]

CHAPTER 10 ■ DEPLOYING RUBY APPLICATIONS AND L IBRARIES 305

7664 CH10.qxd 2/13/07 1:52 PM Page 305

As with WEBrick and Mongrel, the XML-RPC server can also use other classes
directly, as with WEBrick’s servlets. For example:

class OurClass

def some_method

"Some test text"

end

end

require 'xmlrpc/server'

server = XMLRPC::Server.new(1234)

server.add_handler(XMLRPC::iPIMethods('sample'), OurClass.new)

trap("INT") { server.shutdown }

server.serve

With this server, the methods are associated automatically with the XML-RPC server.
A call to sample.some_method from an XML-RPC client would automatically be routed
through to the instance method some_method made available from OurClass.

DRb

DRb stands for “Distributed Ruby,” and is a Ruby-only RPC library. On the surface, DRb
doesn’t appear to be too different from XML-RPC, but if you only need to talk between
Ruby programs, it’s a lot more powerful. Unlike XML-RPC, DRb is object-oriented, and
connecting to a DRb server gives the client an instance of a class located on the DRb
server. You can then use the methods made available by that class as if they’re local
methods.

A DRb client can be as simple as this:

require 'drb'

remote_object = DRbObject.new nil, 'druby://:51755'

puts remote_object.some_method

Only one line is required to retrieve an instance of a class from a remote DRb server.
Whereas with XML-RPC you first create a handle to the server, with DRb you create a
handle to a class instance. After you use DRbObject.new, remote_object is a handle to the
object served by a specific DRb server (in this case, a local server).

CHAPTER 10 ■ DEPLOYING RUBY APPLICATIONS AND L IBRARIES306

7664 CH10.qxd 2/13/07 1:52 PM Page 306

Let’s look at the server associated with this client:

require 'drb'

class OurClass

def some_method

"Some test text"

end

end

DRb.start_service nil, OurClass.new

puts "DRb server running at #{DRb.uri}"

trap("INT") { DRb.stop_service }

DRb.thread.join

It couldn’t be simpler. DRb.start_service associates an instance of OurClass with the
DRb server, it prints the URL to the DRb server to the screen, and then starts the DRb
server and awaits client connections.

■Note You need to change the druby:// URL in the client example to match the URL given in output by
the server example.

With DRb, data structures work almost seamlessly across the connection. If your
remote classes want to return complex hashes, they can, and they’ll be represented per-
fectly on the client. To an extent, using an object over a DRb connection is transparent,
and the object will act as if it were local.

This is only a simple overview of the basics of DRb. However, in terms of DRb’s basic
RPC features, this simple server-and-client example demonstrates the core of DRb’s fea-
ture set, and you can extend it to almost any complexity. If your code is already written
using classes, you might be able to drop DRb in within minutes and immediately get your
functionality working from afar.

■Tip For another basic DRb tutorial, refer to http://www.chadfowler.com/ruby/drb.html or to the
most recent documentation at http://www.ruby-doc.org/stdlib/libdoc/drb/rdoc/index.html.

CHAPTER 10 ■ DEPLOYING RUBY APPLICATIONS AND L IBRARIES 307

7664 CH10.qxd 2/13/07 1:52 PM Page 307

Summary
In this chapter we’ve looked at how to deploy Ruby programs and libraries, as well as how
to make their functions available to Web browsers and to other applications over a net-
work. We’ve also interrogated the environment so we can pursue different techniques on
a per–operating-system basis if we choose.

Let’s reflect on the main concepts covered in this chapter:

• Shebang line: A special line at the start of a source code file that determines which
interpreter is used to process the file. Used primarily on Unix-based operating
systems, shebang lines can also work on Windows when used with the Apache
Web server.

• RUBY_PLATFORM: A special variable preset by Ruby that contains the name of the
current platform (environment).

• Environment variables: Special variables set by the operating system or other
processes that contain information relevant to the current execution environment
and information about the operating system.

• RubyForge: A centralized repository and Web site dedicated to hosting and distrib-
uting Ruby projects and libraries. You can find it at http://rubyforge.org/.

• CGI: Common Gateway Interface. A standard that enables Web servers to execute
scripts and provide an interface between Web users and scripts located on that server.

• WEBrick: A simple and easy HTTP server library for Ruby that comes with Ruby
as standard.

• Mongrel: A more powerful HTTP server library for Ruby by Zed Shaw that improves
significantly upon WEBrick’s speed, stability, and overall performance.

• RPC: Remote Procedure Call. A way to call methods in a different program using
a network (either local or the Internet), a transport protocol (such as HTTP), and a
messaging protocol (such as XML).

• XML-RPC: An RPC protocol that uses HTTP and XML for its transport and
messaging.

• SOAP: Simple Object Access Protocol. Another RPC protocol that uses HTTP and
XML for its transport and messaging.

• DRb: Distributed Ruby. A Ruby-only mechanism for implementing RPCs and
object handling between separate Ruby scripts.

In Chapter 15 we’re going to return to looking at network servers, albeit in a different
fashion, but first, in Chapter 11, we’re going to take a look at some more advanced Ruby
topics to flesh out the ideas we’ve covered so far.

CHAPTER 10 ■ DEPLOYING RUBY APPLICATIONS AND L IBRARIES308

7664 CH10.qxd 2/13/07 1:52 PM Page 308

Advanced Ruby Features

In this chapter we’re going to look at some advanced Ruby techniques that have not
been covered in prior chapters. This chapter is the last instructional chapter in the sec-
ond part of the book, and although we’ll be covering useful libraries, frameworks, and
Ruby-related technologies in Part 3, this chapter rounds off the mandatory knowledge
that any proficient Ruby programmer should have. This means that although this
chapter will jump between several different topics, each is essential to becoming a
professional Ruby developer.

The myriad topics covered in this chapter include how to create Ruby code dynami-
cally on the fly, methods to make your Ruby code safe, how to issue commands to the
operating system, how to integrate with Microsoft Windows, and how to create libraries
for Ruby using other programming languages. Essentially, this chapter is designed to
cover a range of discrete, important topics that you might find you need to use, but that
fall outside the immediate scope of other chapters.

Dynamic Code Execution
As a dynamic, interpreted language, Ruby is able to execute code created dynamically.
The way to do this is with the eval method. For example:

eval "puts 2 + 2"

4

Note that while 4 is displayed, 4 is not returned as the result of the whole eval
expression. puts always returns nil. To return 4 from eval, you can do this:

puts eval("2 + 2")

4

309

C H A P T E R 1 1

7664 CH11.qxd 2/19/07 1:05 AM Page 309

310 CHAPTER 11 ■ ADVANCED RUBY FEATURES

Here’s a more complex example that uses strings and interpolation:

my_number = 15

my_code = %Q{#{my_number} * 2}

puts eval(my_code)

30

The eval method simply executes (or evaluates) the code passed to it and returns the
result. The first example made eval execute puts 2 + 2, whereas the second used string
interpolation to build a expression of 15 * 2, which was then evaluated and printed to
the screen using puts.

Bindings

In Ruby, a binding is a reference to a context, scope, or state of execution. A binding
includes things such as the current value of variables and other details of the execution
environment.

It’s possible to pass a binding to eval and to have eval execute the supplied code
under that binding rather than the current one. In this way, you can keep things that
happen with eval separate from the main execution context of your code.

Here’s an example:

def binding_elsewhere

x = 20

return binding

end

remote_binding = binding_elsewhere

x = 10

eval("puts x")

eval("puts x", remote_binding)

10

20

7664 CH11.qxd 2/19/07 1:05 AM Page 310

311CHAPTER 11 ■ ADVANCED RUBY FEATURES

This code demonstrates that eval accepts an optional second parameter, a binding,
which in this case is returned from the binding_elsewhere method. The variable
remote_binding contains a reference to the execution context within the binding_elsewhere
method rather than in the main code. Therefore, when you print x, 20 is shown, as x is
defined as equal to 20 in binding_elsewhere!

■Note You can obtain the binding of the current scope at any point with the Kernel module’s binding
method.

The previous example is easily extended:

eval("x = 10")

eval("x = 50", remote_binding)

eval("puts x")

eval("puts x", remote_binding)

10

50

In this example, two bindings are in play: the default binding, and the remote_binding
(from the binding_elsewhere method).

Therefore, even though you set x first to 10, and then to 50, you’re not dealing with the
same x in each case. One x is a local variable in the current context, and the other x is a
variable in the context of binding_elsewhere.

Other Forms of eval

Although eval executes code within the current context (or the context supplied with a
binding), class_eval, module_eval, and instance_eval can evaluate code within the context
of classes, modules, and object instances, respectively.

class_eval is ideal for adding methods to a class dynamically:

class Person

end

7664 CH11.qxd 2/19/07 1:05 AM Page 311

def add_accessor_to_person(accessor_name)

Person.class_eval %Q{

attr_accessor :#{accessor_name}

}

end

person = Person.new

add_accessor_to_person :name

add_accessor_to_person :gender

person.name = "Peter Cooper"

person.gender = "male"

puts "#{person.name} is #{person.gender}"

Peter Cooper is male

In this example you use the add_accessor_to_person method to add accessors dynam-
ically to the Person class. Prior to using the add_accessor_to_person method, neither the
name nor gender accessors exist within Person.

Note that the key part of the code, the class_eval method, operates by using string
interpolation to create the desired code for Person:

Person.class_eval %Q{

attr_accessor :#{accessor_name}

}

String interpolation makes the eval methods powerful tools for generating different
features on the fly. This ability is a power unseen in the majority of programming lan-
guages, and is one that’s used to great effect in systems such as Ruby on Rails (covered in
Chapter 13).

It’s possible to take the previous example a lot further and add an add_accessor
method to every class by putting your class_eval cleverness in a new method, defined
within the Class class (from which all other classes descend):

class Class

def add_accessor(accessor_name)

self.class_eval %Q{

attr_accessor :#{accessor_name}

}

end

end

CHAPTER 11 ■ ADVANCED RUBY FEATURES312

7664 CH11.qxd 2/19/07 1:05 AM Page 312

class Person

end

person = Person.new

Person.add_accessor :name

Person.add_accessor :gender

person.name = "Peter Cooper"

person.gender = "male"

puts "#{person.name} is #{person.gender}"

In this example, you add the add_accessor method to the Class class, thereby adding
it to every other class defined within your program. This makes it possible to add acces-
sors to any class dynamically, by calling add_accessor. (If the logic of this approach isn’t
clear, make sure to try this code yourself, step through each process, and establish what
is occurring at each step of execution.)

The technique used in the previous example also lets you define classes like this:

class SomethingElse

add_accessor :whatever

end

Because add_accessor is being used within a class, the method call will work its way
up to the add_accessor method defined in class Class.

Moving back to simpler techniques, using instance_eval is somewhat like using regu-
lar eval, but within the context of an object (rather than a method). In this example you
use instance_eval to execute code within the scope of an object:

class MyClass

def initialize

@my_variable = 'Hello, world!'

end

end

obj = MyClass.new

obj.instance_eval { puts @my_variable }

Hello, world!

CHAPTER 11 ■ ADVANCED RUBY FEATURES 313

7664 CH11.qxd 2/19/07 1:05 AM Page 313

Creating Your Own Version of attr_accessor

So far you’ve used the attr_accessor method within your classes to generate accessor
functions for instance variables quickly. For example, in longhand you might have this
code:

class Person

def name

@name

end

def name=(name)

@name = name

end

end

This allows you to do things such as puts person.name and person.name = 'Fred'.
Alternatively, however, you can use attr_accessor:

class Person

attr_accessor :name

end

This version of the class is more concise and has exactly the same functionality as the
longhand version. Now it’s time to ask the question: how does attr_accessor work?

It turns out that attr_accessor isn’t as magical as it looks, and it’s extremely easy to
implement your own version using eval. Consider this code:

class Class

def add_accessor(accessor_name)

self.class_eval %Q{

def #{accessor_name}

@#{accessor_name}

end

def #{accessor_name}=(value)

@#{accessor_name} = value

end

}

end

end

CHAPTER 11 ■ ADVANCED RUBY FEATURES314

7664 CH11.qxd 2/19/07 1:05 AM Page 314

At first, this code looks complex, but it’s very similar to the add_accessor code you
created in the previous section. You use class_eval to define getter and setter methods
dynamically for the attribute within the current class.

If accessor_name is equal to “name,” then the code that class_eval is executing is
equivalent to this code:

def name

@name

end

def name=(value)

@name = value

end

Thus, you have duplicated the functionality of attr_accessor.
You can use this technique to create a multitude of different “code generators” and

methods that can act as a “macro” language to perform things in Ruby that are otherwise
lengthy to type out.

Running Other Programs from Ruby
Often it’s useful to be able to run other programs on the system from your own programs.
In this way you can reduce the amount of features your program needs to implement, as
you can pass off work to other programs that are already written. It can also be useful to
hook up several of your own programs so that functionality is spread among them.
Rather than using the Remote Procedure Call systems covered in the previous chapter,
you can simply run other programs from your own with one of a few different methods
made available by Ruby.

Getting Results from Other Programs

There are three simple ways to run another program from within Ruby: the system

method (defined in the Kernel module), backtick syntax (``), and delimited input literals
(%x{}).Using system is ideal when you want to run another program and aren’t concerned
with its output, whereas you should use backticks when you want the output of the
remote program returned.

These lines demonstrate two ways of running the system’s date program:

x = system("date")

x = `date`

CHAPTER 11 ■ ADVANCED RUBY FEATURES 315

7664 CH11.qxd 2/19/07 1:05 AM Page 315

For the first line, x equals true, whereas on the second line x contains the output of
the date command. Which method you use depends on what you’re trying to achieve. If
you don’t want the output of the other program to show on the same screen as that of
your Ruby script, then use backticks (or a literal, %x{}).

■Note %x{} is functionally equivalent to using backticks; for example, %x{date}.

Transferring Execution to Another Program

Sometimes it’s desirable to jump immediately to another program and cease execution of
the current program. This is useful if you have a multistep process and have written an
application for each. To end the current program and invoke another, simply use the exec
method in place of system. For example:

exec "ruby another_script.rb"

puts "This will never be displayed"

In this example, execution is transferred to a different program, and the current pro-
gram ceases immediately—the second line is never executed.

Running Two Programs at the Same Time

Forking is where an instance of a program (a process) duplicates itself, resulting in two
processes of that program running concurrently. You can run other programs from this
second process by using exec, and the first (parent) process will continue running the
original program.

fork is a method provided by the Kernel module that creates a fork of the current
process. It returns the child process’s process ID in the parent, but nil in the child
process—you can use this to determine which process a script is in. The following exam-
ple forks the current process into two processes, and only executes the exec command
within the child process (the process generated by the fork):

if fork.nil?

exec "ruby some_other_file.rb"

end

puts "This Ruby script now runs alongside some_other_file.rb"

CHAPTER 11 ■ ADVANCED RUBY FEATURES316

7664 CH11.qxd 2/19/07 1:05 AM Page 316

If the other program (being run by exec) is expected to finish at some point, and you
want to wait for it to finish executing before doing something in the parent program, you
can use Process.wait to wait for all child processes to finish before continuing. Here’s an
example:

child = fork do

sleep 3

puts "Child says 'hi'!"

end

puts "Waiting for the child process..."

Process.wait child

puts "All done!"

Waiting for the child process...

<3 second delay>

Child says 'hi'!

All done!

■Note Forking is not possible with the Windows version of Ruby, as POSIX-style forking is not natively
supported on that platform. However, threads, covered later in this chapter, provide a good alternative.

Interacting with Another Program

The previous methods are fine for simple situations where you just want to get basic
results from a remote program and don’t need to interact directly with it in any way while
it’s running. However, sometimes you might want to pass data back and forth between
two separate programs.

Ruby’s IO module has a popen method that allows you to run another program and
have an I/O stream between it and the current program. The I/O stream between pro-
grams works like the other types of I/O streams we looked at in Chapter 9, but instead of
reading and writing to a file, you’re reading and writing to another program. Obviously,
this technique only works successfully with programs that accept direct input and pro-
duce direct output at a command-prompt level (so not GUI applications).

CHAPTER 11 ■ ADVANCED RUBY FEATURES 317

7664 CH11.qxd 2/19/07 1:05 AM Page 317

Here’s a simple read-only example:

ls = IO.popen("ls", "r")

while line = ls.gets

puts line

end

ls.close

In this example, you open up an I/O stream with ls (the Unix command to list the
contents of the current directory—try it with dir if you’re using Microsoft Windows). You
read the lines one by one, as with other forms of I/O streams, and close the stream when
you’re done.

Similarly, you can also open a program with a read/write I/O stream and handle data
in both directions:

handle = IO.popen("other_program", "r+")

handle.puts "send input to other program"

handle.close_write

while line = handle.gets

puts line

end

■Note The reason for the handle.close_write is to close the I/O stream’s writing stream, thereby
sending any data waiting to be written out to the remote program. IO also has a flush method that can be
used if the write stream needs to remain open.

Safely Handling Data and Dangerous Methods
It’s common for Ruby applications to be used in situations where the operation of a pro-
gram relies on data from an outside source. This data cannot always be trusted, and it
can be useful to protect your machines and environments from unfortunate situations
caused by bad data or code. Ruby can be made safer both by considering external data to
be tainted and by setting a safe level under which the Ruby interpreter restricts what fea-
tures are made available to the code it executes.

CHAPTER 11 ■ ADVANCED RUBY FEATURES318

7664 CH11.qxd 2/19/07 1:05 AM Page 318

Tainted Data and Objects

In Ruby, data is generally considered to be tainted if it comes from an external source, or
if Ruby otherwise has no way of establishing whether it is safe. For example, data col-
lected from the command line could be unsafe, so it’s considered tainted. Data read from
external files or over a network connection is also tainted. However, data that is hard
coded into the program, such as string literals, is considered to be untainted.

Consider a simple program that illustrates why checking for tainted data can be
crucial:

while x = gets

puts "=> #{eval(x)}"

end

This code acts like a miniature version of irb. It accepts line after line of input from
the user and immediately executes it:

10+2

=> 12

"hello".length

=> 5

However, what would happen if someone wanted to cause trouble and typed in `rm -
rf /*`? It would run!

■Caution Do not type the preceding code into the program! On a Unix-related operating system under
the right circumstances, running rm -rf /* is an effective way to wipe clean much of your hard drive!

Clearly there are situations where you need to check whether data has, potentially,
been tainted by the outside world.

You can check if an object is considered tainted by using the tainted? method:

x = "Hello, world!"

puts x.tainted?

y = [x, x, x]

puts y.tainted?

CHAPTER 11 ■ ADVANCED RUBY FEATURES 319

7664 CH11.qxd 2/19/07 1:05 AM Page 319

z = 20 + 50

puts z.tainted?

a = File.open("somefile").readlines.first

puts a.tainted?

b = ENV["PATH"]

puts b.tainted?

c = [a, b]

puts c.tainted?

false

false

false

true

true

false

■Note One of the preceding examples depends on somefile being a file that actually exists in the local
directory.

The first three examples are all operating upon data that is already defined within the
program (literal data), so are not considered tainted. The last three examples all involve
data from external sources (a contains the first line of a file, and b contains information
from the operating system’s environment). So, why is the last example considered
untainted?

c is considered untainted because c is merely an array containing references to a and
b. Although a and b are both tainted, an array containing them is not. Therefore, it’s nec-
essary to check whether each piece of data you use is tainted, rather than checking an
overall data structure.

■Note An alternative to having to do any checks is to set the “safe level” of the Ruby interpreter, and any
potentially dangerous operations will be disabled for you. This is covered in the following section.

CHAPTER 11 ■ ADVANCED RUBY FEATURES320

7664 CH11.qxd 2/19/07 1:05 AM Page 320

It’s possible to force an object to be seen as untainted by calling the untaint method
on the object. For example, here’s an extremely safe version of your Ruby interpreter:

while x = gets

next if x.tainted?

puts "=> #{eval(x)}"

end

However, it’s incredibly useless, because all data accepted from the user is consid-
ered tainted, so nothing is ever run. Safety by inactivity! Let’s assume, however, that
you’ve come up with a method that can tell if a certain operation is safe:

def code_is_safe?(code)

code =~ /[`;*-]/ ? false : true

end

while x = gets

x.untaint if code_is_safe?(x)

next if x.tainted?

puts "=> #{eval(x)}"

end

■Caution code_is_safe? merely checks if the line of code contains a backtick, semicolon, asterisk, or
hyphen, and deems the code unsafe if it does. This is not a valid way to check for safe code, and is solely
provided as an illustration.

In this example you explicitly untaint the data if you deem it to be safe, so eval will
execute any “safe” code.

■Note Similarly, you can explicitly taint an object by calling its taint method.

Safe Levels

Although it’s possible to check whether data is tainted and perform preventative actions
to clean it up, a stronger form of protection comes with Ruby’s “safe levels.” Safe levels

CHAPTER 11 ■ ADVANCED RUBY FEATURES 321

7664 CH11.qxd 2/19/07 1:05 AM Page 321

allow you to specify what features Ruby makes available and how it should deal with
tainted data.

The current safe level is represented by the variable $SAFE. By default, $SAFE is set to 0,
providing the lowest level of safety and the highest level of freedom, but four other safe
modes are available, as shown in Table 11-1.

Table 11-1. Ruby’s Safe Levels, As Represented by $SAFE

Value of $SAFE Description

0 No restrictions. This is the default safe level.

1 Potentially unsafe methods can’t use tainted data. Also, the current directory is
not added to Ruby’s search path for loading libraries.

2 The restrictions of safe level 1, plus Ruby won’t load any external program files
from globally writable locations in the filesystem. This is to prevent attacks
where hackers upload malicious code and manipulate existing programs to
load them. Some potentially dangerous methods are also deactivated, such as
File#chmod, Kernel#fork, and Process::setpriority.

3 The restrictions of level 2, plus newly created objects within the program are
considered tainted automatically. You also cannot untaint objects.

4 The restrictions of level 3, plus nontainted objects created prior to the safe
level being set cannot be modified. You can use this to set up an execution
environment in a lower safe mode, and then provide a way to continue
execution while protecting the original objects and environment.

To change the safe level, simply set $SAFE to whichever safe level you want to use. Do
note, however, that once you set the safe level, you can only increase the safe level and
not decrease it. The reason for this is that allowing the safe level to be reduced would
make it possible for eval-ed code to merely turn down the safety level and cause havoc!

Working with Microsoft Windows
So far in this book the examples have been reasonably generic, with a little bias toward
Unix-based operating systems. Ruby is a relative latecomer to the world of Microsoft
Windows, but it now includes some libraries that make working directly with Windows’
APIs easy.

This section looks at the basics of using the Windows API and Windows’ OLE capabil-
ities from Ruby, although you’ll need in-depth knowledge of these topics if you wish to
put together more-advanced code.

CHAPTER 11 ■ ADVANCED RUBY FEATURES322

7664 CH11.qxd 2/19/07 1:05 AM Page 322

Using the Windows API

Microsoft Windows provides an Application Programming Interface (API) that acts as a
library of core Windows-related functions for access to the Windows kernel, graphics
interface, control library, networking services, and user interface. Ruby’s Win32API
library (included in the standard library) gives developers raw access to the Windows
API’s features.

■Note No code in this section will work under any operating system other than Microsoft Windows, and is
unlikely to work on any version of Windows prior to Windows 98.

It’s reasonably trivial to open a dialog box:

require 'Win32API'

title = "My Application"

text = "Hello, world!"

Win32API.new('user32', 'MessageBox', %w{L P P L}, 'I').call(0, text, title, 0)

First, you load the Win32API library into the program, and then you set up some vari-
ables with the desired title and contents of the dialog box. Next, you create a reference to
the MessageBox function provided by the Windows API, before calling it with your text and
title. The result is shown in Figure 11-1.

Figure 11-1. Your basic dialog box

The parameters to Win32API.new represent the following:

CHAPTER 11 ■ ADVANCED RUBY FEATURES 323

7664 CH11.qxd 2/19/07 1:05 AM Page 323

1. The name of the system DLL containing the function you want to access

2. The name of the function you wish to use

3. An array describing the format of each parameter to be passed to the function

4. A character representing the type of data to be returned by the function

In this case, you specify that you want to call the MessageBox function provided by
user32.dll, that you’ll be supplying four parameters (a number, two strings, and another
number—L represents numbers, P represents strings), and that you expect an integer to
be returned (I representing integer).

Once you have the reference to the function, you use the call method to invoke it with
the four parameters. In MessageBox’s case, the four parameters represent the following:

1. The reference to a parent window (none in this case)

2. The text to display within the message box

3. The title to use on the message box

4. The type of message box to show (0 being a basic OK button dialog box)

The call method returns an integer that you don’t use in this example, but that will
be set to a number representing which button on the dialog box was pressed.

You can, of course, create something more elaborate:

require 'Win32API'

title = "My Application"

text = "Hello, world!"

dialog = Win32API.new('user32', 'MessageBox', 'LPPL', 'I')

result = dialog.call(0, text, title, 1)

case result

when 1:

puts "Clicked OK"

when 2:

puts "Clicked Cancel"

else

puts "Clicked something else!"

end

CHAPTER 11 ■ ADVANCED RUBY FEATURES324

7664 CH11.qxd 2/19/07 1:05 AM Page 324

This example keeps the result from the MessageBox function, and uses it to work out
which button was pressed. In this case, you call the MessageBox function with a fourth
parameter of 1, representing a dialog box containing both an OK and a Cancel button.

Figure 11-2. The OK/Cancel dialog box

If the OK button is clicked, dialog.call returns 1, whereas if Cancel is clicked, 2 is
returned.

■Note You can create many different types of dialog boxes with the MessageBox function alone. To learn
more, refer to Microsoft’s documentation on the MessageBox function.

The Windows API provides many hundreds of functions that can do everything from
printing, to changing the desktop wallpaper, to creating elaborate windows. In theory,
you could even put together an entire Windows program using the raw Windows API
functions, although this would be a major undertaking. For more information about the
Windows API, a good place is to start is the Wikipedia entry for it at http://en.wikipedia.
org/wiki/Windows_API.

Controlling Windows Programs

Although the Windows API allows you to access low-level functions of the Microsoft Win-
dows operating system, it can also be useful to access functions made available by
programs available on the system. The technology that makes this possible is called
Windows Automation. Windows Automation provides a way for programs to trigger one
another’s features and to automate certain functions among themselves.

CHAPTER 11 ■ ADVANCED RUBY FEATURES 325

7664 CH11.qxd 2/19/07 1:05 AM Page 325

Access to Windows Automation is provided by Ruby’s WIN32OLE (also included in the
standard library). If you’re already familiar with Windows Automation, COM, or OLE
technologies, Ruby’s interface will feel instantly familiar. Even if you’re not, this code
should be immediately understood:

require 'win32ole'

web_browser = WIN32OLE.new('InternetExplorer.Application')

web_browser.visible = true

web_browser.navigate('http://www.rubyinside.com/')

This code loads the WIN32OLE library and creates a variable, web_browser, that refer-
ences an OLE automation server called 'InternetExplorer.Application'. This server is
provided by the Internet Explorer Web browser that comes with Windows, and the OLE
automation server allows you to control the browser’s functions remotely. In this exam-
ple, you make the Web browser visible before instructing it to load up a certain Web page.

WIN32OLE does not implement the visible and navigate methods itself. These dynamic
methods are handled on the fly by method_missing (a special method that is run within a
class whenever no predefined method is found) and passed to the OLE Automation
server. Therefore, you can use any methods made available by any OLE Automation
server directly from Ruby!

You can extend this example to take advantage of further methods made available
by Internet Explorer:

require 'win32ole'

web_browser = WIN32OLE.new('InternetExplorer.Application')

web_browser.visible = true

web_browser.navigate('http://www.rubyinside.com/')

while web_browser.ReadyState != 4

sleep 1

end

puts "Page is loaded"

This example uses the ReadyState property to determine when Internet Explorer has
successfully finished loading the page. If the page is not yet loaded, Ruby sleeps for a sec-
ond and checks again. This allows you to wait until a remote operation is complete before
continuing.

CHAPTER 11 ■ ADVANCED RUBY FEATURES326

7664 CH11.qxd 2/19/07 1:05 AM Page 326

Once the page loading is complete, Internet Explorer makes available the document
property that allows you to get full access to the Document Object Model (DOM) of the
Web page that it has loaded, much in the same fashion as from JavaScript. For example:

puts web_browser.document.getElementById('header').innerHtml.length

1056

■Note Many Windows applications implement OLE Automation and can be remotely controlled and used
from Ruby in this manner, but it’s beyond the scope of this book to provide an advanced guide to Windows
development. The Win32Utils project provides further Windows-related Ruby libraries at http://
rubyforge.org/projects/win32utils/.

This section was designed to demonstrate that although Ruby’s origins are in Unix-
related operating systems, Ruby’s Windows support is significant. You can access
Windows’ APIs, use OLE and OLE Automation, and access DLL files. Many Windows-
related features are advanced and beyond the scope of this book, but I hope this section
whetted your appetite to research further if this area of development interests you.

Threads
Thread is short for thread of execution. You use threads to split the execution of a program
into multiple parts that can be run concurrently. For example, a program designed to
e-mail thousands of people at once might split the task between 20 different threads that
all send e-mail at once. Such parallelism is faster than processing one item after another,
especially on systems with more than one CPU, because different threads of execution
can be run on different processors. It can also be faster, because rather than wasting time
waiting for a response from a remote machine, you can continue with other operations.

Ruby doesn’t currently support threads in the traditional sense. Typically, threading
capabilities are provided by the operating system and vary from one system to another.
However, the Ruby interpreter provides Ruby’s threading capabilities directly. This means
that they work well on every platform that Ruby works upon, but they also lack some of
the power of traditional system-level threads.

CHAPTER 11 ■ ADVANCED RUBY FEATURES 327

7664 CH11.qxd 2/19/07 1:05 AM Page 327

One of the major disadvantages of Ruby threads not being “true” operating
system–level threads is that if a thread needs to do something that calls the operating
system and waits for a response, the entire Ruby threading scheduler is paused. However,
for general operations Ruby’s threading system is fine.

■Note It’s likely that future versions of Ruby will implement system-level threads.

Basic Ruby Threads in Action

Here’s a basic demonstration of Ruby threading in action:

threads = []

10.times do

thread = Thread.new do

10.times { |i| print i; $stdout.flush; sleep rand(2) }

end

threads << thread

end

threads.each { |thread| thread.join }

You create an array to hold your Thread objects, so that you can easily keep track of
them. Then you create ten threads, sending the block of code to be executed in each
thread to Thread.new, and add each generated thread to the array.

■Note When you create a thread, it can access any variables that are within scope at that point. However,
any local variables that are then created within the thread are entirely local to that thread. This is similar to
the behavior of other types of code blocks.

Once you’ve created the threads, you wait for all of them to complete before the pro-
gram finishes. You wait by looping through all the thread objects in threads and calling
each thread’s join method. The join method makes the main program wait until a
thread’s execution is complete before continuing. In this way you make sure all the
threads are complete before exiting.

CHAPTER 11 ■ ADVANCED RUBY FEATURES328

7664 CH11.qxd 2/19/07 1:05 AM Page 328

The preceding program results in output similar to the following (the variation is due
to the randomness of the sleeping):

00101200010010101212312124232512323453234336634544365546744548776557886689756765

67979789878889899999

The example has created ten Ruby threads whose sole job is to count and sleep ran-
domly. This results in the preceding pseudo-random output.

Rather than sleeping, the threads could have been fetching Web pages, performing
math operations, or sending e-mails. In fact, Ruby threads are ideal for almost every situ-
ation where concurrency within a single Ruby program is desired.

■Note In Chapter 15 you’ll be using threads to create a server that creates new threads of execution for
each client that connects to it, so that you can develop a simple chat system.

Advanced Thread Operations

As you’ve seen, creating and running basic threads is fairly simple, but threads also offer
a number of advanced features. These are discussed in the following subsections.

Waiting for Threads to Finish Redux

When you waited for your threads to finish by using the join method, you could have
specified a timeout value (in seconds) for which to wait. If the thread doesn’t finish within
that time, join returns nil. Here’s an example where each thread is given only one second
to execute:

threads.each do |thread|

puts "Thread #{thread.object_id} didn't finish within 1s" unless thread.join(1)

end

Getting a List of All Threads

It’s possible to get a global list of all threads running within your program using
Thread.list. In fact, if you didn’t want to keep your own store of threads, you could

CHAPTER 11 ■ ADVANCED RUBY FEATURES 329

7664 CH11.qxd 2/19/07 1:05 AM Page 329

rewrite the earlier example from the section “Basic Ruby Threads in Action” down to
these two lines:

10.times { Thread.new { 10.times { |i| print i; $stdout.flush; sleep rand(2) } } }

Thread.list.each { |thread| thread.join }

However, keeping your own list of threads is essential if you’re likely to have more
than one group of threads working within an application, and you want to keep them
separate from one another when it comes to using join or other features.

The list of threads also includes the main thread representing the main program’s
thread of execution. You can check to see which thread is main by comparing the thread
object to Thread.main, like so:

Thread.list.each { |thread| thread.join unless thread == Thread.main }

Thread Operations from Within Threads Themselves

Threads aren’t just tiny, dumb fragments of code. They have the ability to talk with the
Ruby thread scheduler and provide updates on their status. For example, a thread can
stop itself:

Thread.new do

10.times do |i|

print i

$stdout.flush

Thread.stop

end

end

Every time the thread created in this example prints a number to the screen, it stops
itself. It can then only be restarted or resumed by the parent program calling the run
method on the thread, like so:

Thread.list.each { |thread| thread.run }

A thread can also tell the Ruby thread scheduler that it wants to pass execution over
to another thread. The technique of voluntarily ceding control to another thread is often
known as cooperative multitasking, because the thread or process itself is saying that it’s
okay to pass execution on to another thread or process. Used properly, cooperative

CHAPTER 11 ■ ADVANCED RUBY FEATURES330

7664 CH11.qxd 2/19/07 1:05 AM Page 330

multitasking can make threading even more efficient, as you can code in pass requests at
ideal locations. Here’s an example showing how to cede control from a thread:

2.times { Thread.new { 10.times { |i| print i; $stdout.flush; Thread.pass } } }

Thread.list.each { |thread| thread.join unless thread == Thread.main }

00112233445566778899

In this example, execution flip-flops between the two threads, causing the pattern
shown in the results.

RubyInline
As a dynamic, object-oriented programming language, Ruby wasn’t designed to be a
high-performance language in the traditional sense. This is not of particular concern
nowadays, as most tasks are not computationally intensive, but there are still situations
where raw performance is required for a subset of functionality.

In situations where extremely high performance is desirable, it can be a good idea to
write the computationally-intensive code in a more powerful but less expressive lan-
guage, and then call that code from Ruby. Luckily there’s a library for Ruby called
RubyInline, created by Ryan Davis and Eric Hodel, that makes it possible to write code
in other more powerful languages within your Ruby code. It’s most often used to write
high-performance code in the C or C++ languages, and we’ll focus on this in this section.

Installing RubyInline on Unix-related platforms (such as Linux and OS X) is easy
with RubyGems:

gem install RubyInline

If you don’t have gcc—a C compiler—installed, RubyInline’s C support will not work,
and RubyInline itself might not install. Refer to your operating system’s documentation
on how to install gcc.

■Note At the time of writing, RubyInline has been reported as working on Microsoft Windows, with some
significant adjustments needed (although it runs perfectly under the Cygwin environment). However, these
are only to be attempted by advanced users, although they might be incorporated in the library automatically
by the time of publishing. If you’re a Windows user who wishes to use RubyInline, either work under Cygwin,
or check the official Web site at http://www.zenspider.com/ZSS/Products/RubyInline/.

CHAPTER 11 ■ ADVANCED RUBY FEATURES 331

7664 CH11.qxd 2/19/07 1:05 AM Page 331

Why Use C As an Inline Language?

C is a general purpose, procedural, compiled programming language developed in the
1970s by Dennis Ritchie. It’s one of the most widely used programming languages in the
world, and is the foundation of nearly every major operating system currently available.
C (and its object-oriented sister language, C++) is still a popular language due to its raw
speed and flexibility. Although languages such as Ruby have been designed to be easy to
develop with, C offers a lot of low-level access to developers, along with blazing speed.
This makes C perfect for writing performance-intensive libraries and functions that can
be called from other programming languages, such as Ruby.

■Note This section is not a primer on the C language, as that would be an entire book in its own right,
but to learn more about the C programming language itself, visit http://en.wikipedia.org/wiki/
C_programming_language.

Creating a Basic Method or Function

An ideal demonstration of RubyInline and C’s power is to create a basic method (a
function in C) to compute factorials. The factorial of a number is the product of all
integers from itself down to 1. So, for example, the factorial of 8 is 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1,
or 40,320.

Calculating a factorial in Ruby is easy:

class Fixnum

def factorial

(1..self).inject { |a, b| a * b }

end

end

puts 8.factorial

40320

CHAPTER 11 ■ ADVANCED RUBY FEATURES332

7664 CH11.qxd 2/19/07 1:05 AM Page 332

You can use your knowledge of benchmarking (from Chapter 8) to test how fast this
method is:

require 'benchmark'

Benchmark.bm do |bm|

bm.report('ruby:') do

100000.times do

8.factorial

end

end

end

user system total real

ruby: 0.930000 0.010000 0.940000 (1.537101)

The results show that it takes about 1.5 seconds to run 100,000 iterations of your
routine to compute the factorial of 8—approximately 66,666 iterations per second.

Let’s write a factorial method in C using RubyInline:

class CFactorial

class << self

inline do |builder|

builder.c %q{

long factorial(int value) {

long result = 1, i = 1;

for (i = 1; i <= value; i++) {

result *= i;

}

return result;

}

}

end

end

end

First you create a CFactorial class to house your new method. Then inline do
|builder| starts the RubyInline environment, and builder.c is used to process the C code

CHAPTER 11 ■ ADVANCED RUBY FEATURES 333

7664 CH11.qxd 2/19/07 1:05 AM Page 333

within the multiline string between %q{ and }. The reason for this level of depth is that
RubyInline can work with multiple languages at the same time, so you need to enter the
RubyInline environment first and then explicitly specify code to be associated with a
particular language.

The actual C code in the preceding example begins following the builder.c line. Let’s
focus on it for a moment:

long factorial(int value) {

long result = 1, i = 1;

for (i = 1; i <= value; i++) {

result *= i;

}

return result;

}

This code defines a C function called factorial that accepts a single integer parame-
ter and returns a single integer value. The internal logic counts from 1 to the supplied
value, and multiplies each number to obtain the factorial.

Benchmarking C vs. Ruby

Now that you have your C-based factorial routine written, let’s benchmark it and com-
pare it to the Ruby-based solution. Here’s a complete program to benchmark the two
different routines (C and Ruby):

require 'rubygems'

require 'inline'

require 'benchmark'

class CFactorial

class << self

inline do |builder|

builder.c %q{

long factorial(int value) {

long result = 1, i = 1;

for (i = 1; i <= value; i++) {

result *= i;

}

return result;

}

}

CHAPTER 11 ■ ADVANCED RUBY FEATURES334

7664 CH11.qxd 2/19/07 1:05 AM Page 334

end

end

end

class Fixnum

def factorial

(1..self).inject { |a, b| a * b }

end

end

Benchmark.bm do |bm|

bm.report('ruby:') do

100000.times { 8.factorial }

end

bm.report('c:') do

100000.times { CFactorial.factorial(8) }

end

end

user system total real

ruby: 0.930000 0.010000 3.110000 (1.571207)

c: 0.020000 0.000000 0.120000 (0.044347)

The C factorial function is so much faster as to barely leave a whisper on the bench-
marking times! It’s at least 30 times faster. There are certainly ways both implementations
could be improved, but this benchmark demonstrates the radical difference between
the performance of compiled and interpreted code, as well as the effect of Ruby’s object-
oriented overhead on performance.

■Tip To learn more about RubyInline, refer to the official RubyInline Web site at http://www.
zenspider.com/ZSS/Products/RubyInline/.

CHAPTER 11 ■ ADVANCED RUBY FEATURES 335

7664 CH11.qxd 2/19/07 1:05 AM Page 335

Unicode and UTF-8 Support
A common complaint about Ruby is that it doesn’t support international character sets
very well. The world is multilingual, and there are times when your Ruby code will need
to reflect this.

Unicode is the industry-standard way of representing characters from every writing
system in the world. It’s the only viable way to be able to manage multiple different
alphabets and character sets in a reasonably standard context.

When people complain about Ruby’s international character support, they’re usually
complaining about its lack of Unicode support. In Ruby 1.8, this is certainly true,
although there are workarounds that I’ll cover in this section. However, in Ruby 1.9 and
2.0, the problems have been addressed and Ruby natively supports Unicode and multi-
byte characters, so you might not need to read this section.

■Note For a full rundown of Unicode and how it works and relates to software development, read
http://www.joelonsoftware.com/articles/Unicode.html. The official Unicode site at http://
unicode.org/ also has specifications and further details.

The main problem is that Ruby 1.8, by default, treats characters in a string as 8-bit
characters only. This works well with the Latin/English alphabet, as most texts can be
represented with only eight bits per character. However, with languages such as Chinese
or Japanese, the number of symbols is so large that characters may take up two, three, or
even four bytes. However, Ruby only sees each byte as a character, rather than the larger
group of bytes as each character. The problems this causes with Ruby 1.8 can be high-
lighted easily, as the following examples show.

■Note The following examples should work with Ruby 2.0 as well as Ruby 1.8, although it has not been
released at the time of writing. You can find more information about Ruby 2.0’s multibyte character
capabilities at http://redhanded.hobix.com/inspect/futurismUnicodeInRuby.html.

With English (or, more accurately, Latin alphabet characters), taking the first letter
from a string is easy:

"test"[0].chr

t

CHAPTER 11 ■ ADVANCED RUBY FEATURES336

7664 CH11.qxd 2/19/07 1:05 AM Page 336

With Japanese, however:

" "[0].chr

<..nothing or a junk result..>

Because the Japanese characters are represented by more than one byte each, Ruby
cannot work with them properly. Instead, it just picks off the first byte with [0] as
opposed to the first character and tries to convert that meaningless byte’s value back into
a character.

One workaround provided by Ruby 1.8 is called jcode. This mechanism comes with
Ruby and puts Ruby into a mode that has bare support for UTF-8 (or other character
encodings, mostly related to Japanese, but we won’t consider those here). UTF-8 is the
most commonly used system of representing Unicode characters. By default, UTF-8
characters only take up one byte (for English alphabet characters, say), but, where neces-
sary, will use more than one byte (for Japanese, Chinese, and so on).

Using jcode you can make regular expressions UTF-8 aware:

$KCODE = 'u'

require 'jcode'

" ".scan(/./) do |character|

puts character

end

This result ensues:

Setting the $KCODE global variable to 'u' (for UTF-8) and loading jcode gives regular
expressions awareness of UTF-8 characters, giving you each multibyte character correctly
in the scan loop. Unfortunately this awareness spreads only to regular expressions, mean-
ing that other Ruby methods such as length, first, last, and picking individual char-
acters from strings using [] don’t work properly on these strings.

There have been some noble projects to give strings methods that work in the same
way as the default ones, but on UTF-8 strings. Most of these use regular expressions to get
their results, and are therefore a lot slower than the built-in Ruby methods. For example:

$KCODE = 'u'

require 'jcode'

CHAPTER 11 ■ ADVANCED RUBY FEATURES 337

7664 CH11.qxd 2/19/07 1:05 AM Page 337

class String

def reverse

scan(/./).reverse.join

end

end

puts " ".reverse

Here’s the result:

In this example you override the reverse method in class String and implement your
own using scan. This yields the correct result when working with the UTF-8 encoding.

■Note Further information about this technique is available at http://redhanded.hobix.com/
inspect/closingInOnUnicodeWithJcode.html.

In mid-2006 a more permanent workaround was developed for Ruby 1.8 called
ActiveSupport::Multibyte, now a standard part of the Ruby on Rails framework. (You can
also download the library in a standalone form at https://fngtps.com/projects/
multibyte_for_rails) ActiveSupport::Multibyte provides a basic proxy method called
chars that gives access to the true characters within a string (rather than simply each
block of 8 bits). It allows you to write examples like these:

puts " ".chars.reverse

With this result:

Or:

puts " ".chars[1..2]

Here’s the result:

There is a more full discussion of ActiveSupport::Multibyte at http://www.
ruby-forum.com/topic/81976.

CHAPTER 11 ■ ADVANCED RUBY FEATURES338

7664 CH11.qxd 2/19/07 1:05 AM Page 338

■Note Conversion between different character encodings is provided by the iconv library, covered in
Chapter 16.

Summary
In this chapter we’ve looked at an array of advanced Ruby topics, from dynamic code
execution to writing high-performance functions in the C programming language. This
chapter is the last chapter that covers general Ruby-related knowledge that any interme-
diate Ruby programmer should be familiar with. In Chapter 12 we’ll be taking a different
approach and will develop an entire Ruby application, much as we did in Chapter 4.

Let’s reflect on the main concepts covered in this chapter:

• Binding: A binding is a representation of a scope (execution) context as an object.

• Forking: When an instance of a program duplicates itself into two processes, one as
a parent and one as a child, both continuing execution.

• Tainted data: Data whose source or origin cannot be entirely trusted or is
unknown.

• Safe levels: Different safe levels result in the Ruby interpreter having different
restrictions upon what code it will process and execute.

• Win32API: A Ruby library that gives you access to the Windows API: a set of
libraries offering functions that provide access to the Windows kernel, graphics
interface, control library, networking services, and user interface.

• Windows Automation (also known as OLE Automation): A system that allows
Windows applications to register servers for themselves that allow other applica-
tions to control them remotely. You can learn more at http://en.wikipedia.org/
wiki/OLE_Automation.

• Threads: Separate “strands” of execution that run concurrently to each other.
Ruby’s threads are implemented entirely by the Ruby interpreter, but in general
threads can also operate at the operating system level and are a commonly used
tool in application development.

• C: A compiled, high-performance language developed in the 1970s that’s used in
most of the world’s operating systems and low-level software. You can use C code
within Ruby using the RubyInline library.

CHAPTER 11 ■ ADVANCED RUBY FEATURES 339

7664 CH11.qxd 2/19/07 1:05 AM Page 339

340 CHAPTER 11 ■ ADVANCED RUBY FEATURES

• RubyInline: A Ruby library by Ryan Davis that makes it easy to write C code inline
with Ruby code, giving Ruby easy access to high-performance C functions.

• Character encoding: A system and code that pairs characters (whether they’re
Roman letters, Chinese symbols, Arabic letters, and so on) to a set of numbers that
a computer can use to represent those characters.

• UTF-8: Unicode Transformation Format-8. A character encoding that can support
any character in the Unicode standard. It supports variable-length characters, and
is designed to support ASCII coding natively, while also providing the ability to use
up to four bytes to represent characters from other character sets.

Now you can move on to Chapter 12, where we’ll develop an entire Ruby application
using the knowledge obtained in this book so far.

7664 CH11.qxd 2/19/07 1:05 AM Page 340

Tying It Together: Developing
a Larger Ruby Application

In this chapter we’re going to step back from focusing on individual facets of Ruby and
instead develop an entire program using the knowledge we’ve gained so far. We’re going
to focus on the structural concerns of application development and look at how a flexible
program structure can benefit you and other developers in the long run.

The important thing to remember while working through this chapter is that the
application itself is not as important as the concepts used while developing it. We’ll be
rapidly covering a number of areas relevant to most of application development, such as
flowcharting, testing, and basic refactoring. These techniques are relevant to creating any
application of a certain size.

Let’s Build a Bot
Before we get to any code, we’re going to look at what we’re going to build, why we’re
going to build it, and how we’re going to do it.

What Is a Bot?

In this chapter we’re going to build a robot. Not a sci-fi type of robot, such as that in Lost
In Space, but a computer program that can hold a conversation with us. These types of
programs are commonly known as bots or chatterbots. Bots are present in a lot of differ-
ent software and tools these days. AOL’s popular Instant Messenger software comes with
two bots added as default friends on your profile. You can ask them for gift ideas and
movie times. In short, it’s a little like talking to a customer service agent, except the agent
is entirely automated.

You might be familiar with bots on your own computer. Microsoft Office comes with
the “Clippy” bot turned on by default, and many Web sites have automated chat bots
(IKEA’s Web site provides an excellent example).

341

C H A P T E R 1 2

7664 CH12.qxd 2/13/07 2:47 PM Page 341

The history of bots goes back to the 1960s, when a computer scientist at MIT named
Joseph Weizenbaum developed a bot called ELIZA. It eventually became so popular that
most computer users throughout the 1980s and 1990s were exposed to it in one form or
another through the many “talk to your computer”–type programs that became popular.

The conversations you can have with ELIZA-type bots aren’t mind blowing, but can
prove entertaining, as shown in Figure 12-1. The general mechanism ELIZA bots use is to
take whatever you say and twist it around into a statement or question to you. For exam-
ple, if you were to say “I am bored,” ELIZA might respond, “How long have you been
bored?” or “Why are you bored?” This form of bouncing back the user’s input seems
crude when described in this way, but people are often fooled into believing they’re talk-
ing to something more intelligent simply because of its reflective nature (this is known as
the ELIZA effect).

Figure 12-1. A demonstration of a session with an online ELIZA bot

Our bot won’t be exactly like ELIZA—that is, it won’t be an ELIZA clone—but will
share some of the same features and use some similar techniques. We’ll also look at how
to extend our bot with other features.

■Note If you want to learn about or play with some Internet-hosted versions of ELIZA, visit http://
en.wikipedia.org/wiki/ELIZA.

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION342

7664 CH12.qxd 2/13/07 2:47 PM Page 342

343CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

Why a Bot?

The good thing about developing a bot is that it can be as simple or as complex as you
like. Toward the end of this chapter we’ll be looking at ways you can extend the bot, but
the initial construction is quite simple.

You’ll be using most of the techniques covered so far in this book to build your bot.
You’ll be doing a bit of testing and documentation, as well as using classes and complex
data structures. You’ll also be using files to store information the bot uses, and looking at
how to make your bot available to the general public using HTTP servers and CGI scripts.
This project also demands you use a lot of string and list-related functions, along with
comparison logic. These are all things you’re likely to use in a larger development project,
and as Ruby is a particularly good language for text processing, this project is perfect for
demonstrating Ruby’s strengths.

A bot also allows you to have some fun and experiment. Working on a contact infor-
mation management tool (for example) isn’t that much fun, even though such a system
would use similar techniques to your bot. You can still implement testing, documenta-
tion, classes, and storage systems, but end up with a fun result that can be extended and
improved indefinitely.

How?

The primary focus of this chapter is to keep each fragment of functionality in your bot
loosely coupled from the others. This is an important decision when developing certain
types of applications if you plan to extend them in future. The plan for this bot is to make
it as easy to extend, or change, as possible, allowing you to customize it, add features, and
make it your own.

In terms of the general operation of the chatterbot, your bot will exist within a class,
allowing you to replicate bots easily by creating new instances. When you create a bot, it
will be “blank,” except for the logic contained within the class, and you’ll pass in a special
data file to give it a set of knowledge and a set of responses it can use when conversing
with users. User input will be via the keyboard, but the input mechanism will be kept
flexible enough so that the bot could easily be used from a Web site or elsewhere.

Your bot will only have a few public methods to begin with. It needs to be able to load
its data file into memory and accept input given by the user, then return its responses.
Behind the scenes, the bot will need to parse what the users “say” and be able to build up
a coherent reply. Therefore, the first step is to begin processing language and recognizing
words.

7664 CH12.qxd 2/13/07 2:47 PM Page 343

Creating a Text Processing Tools Library
Several stages are required to accept input such as “I am bored” and turn it into a
response such as “Why are you bored?” The first is to perform some preprocessing—tasks
that make the text easier to parse—such as cleaning up the text, expanding terms such as
“I’m” into “I am” and “you’re” into “you are,” and so forth. Next, you’ll split up the input
into sentences and words, choose the best sentence to respond to, and finally look up
responses from your data files that match the input.

You can see these basic steps in the flowchart in Figure 12-2.

Figure 12-2. Rudimentary flowchart for the basic operations of your bot’s text processing
system

■Note A flowchart is a graphical representation of the steps involved in a system, such as within a com-
puter program. Producing flowcharts such as the one in Figure 12-2 can help to define the steps within a
process, making it easier to tie up your expectations for a program with the resulting code. You can learn
more about flowcharts, the symbols they use, and how they work at http://en.wikipedia.org/
wiki/Flowchart.

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION344

7664 CH12.qxd 2/13/07 2:47 PM Page 344

Some of these language tasks are generic enough that they could be useful in other
applications, so you’ll develop a basic library for them. This will make your bot code
simpler, and give you a library to use in other applications if you need. Logic and meth-
ods that are specific to bots can go in the bot’s source code, and generic methods that
perform operations on text can go into the library.

This section covers the development of a simple library, including testing and
documentation.

Building the WordPlay Library

You’re going to call your text manipulation and processing library WordPlay, so create a
file called wordplay.rb with a basic class:

class WordPlay

end

Now that you’ve got the library’s main file set up, you’ll move on to implementing
some of the text manipulation and processing features you know your bot will require,
but which are reasonably application agnostic. (I covered the construction of classes in
depth in Chapter 6.)

Splitting Text into Sentences

Your bot, like most others, is only interested in single-sentence inputs. Therefore, it’s
important to accept only the first sentence of each line of input. However, rather than
specifically tear out the first sentence, you’ll split the input into sentences and then
choose the first one. The reason for this approach is to have a generic sentence-splitting
method, rather than to create a unique solution for each case.

You’ll create a sentences method on Ruby’s String class to keep the resulting code
clean. You could create a class method within the WordPlay class, and use it like
WordPlay.sentences(our_input), but it wouldn’t feel as intuitive and as object-oriented as
our_input.sentences, where sentences is a method of the String class.

class String

def sentences

gsub(/\n|\r/, ' ').split(/\.\s*/)

end

end

You can test it easily:

%q{Hello. This is a test of

basic sentence splitting. It

even works over multiple lines.}.sentences

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION 345

7664 CH12.qxd 2/13/07 2:47 PM Page 345

["Hello", "This is a test of basic sentence splitting", "It even works over

multiple lines"]

Splitting Sentences into Words

You also need your library to be able to split sentences into words. As with the sentences
method, add a words method to the String class:

class String

def words

scan(/\w[\w\'\-]*/)

end

end

"This is a test of words' capabilities".words

["This", "is", "a", "test", "of", "words'", "capabilities"]

You can test words in conjunction with sentences:

%q{Hello. This is a test of

basic sentence splitting. It

even works over multiple lines}.sentences[1].words[3]

test

This test picks out the second sentence with sentences[1] and then the fourth word
with words[3]—remember, arrays are zero-based. (The splitting techniques covered in
this section were also explained in Chapter 3.)

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION346

7664 CH12.qxd 2/13/07 2:47 PM Page 346

Word Matching

You can use the new methods, along with existing array methods, to extract sentences
that match certain words, as in this example:

hot_words = %w{test ruby}

my_string = "This is a test. Dull sentence here. Ruby is great. So is cake."

my_string.sentences.find_all do |s|

s.downcase.words.any? { |word| hot_words.include?(word) }

end

In this example you define two “hot” words that you want to find within sentences,
and you look through the sentences in my_string for any that contain either of your hot
words. The way you do this is by seeing if, for any of the words in the sentence, it’s true
that the hot_words array also contains that word.

Experienced readers will wonder if regular expressions could be used in this situa-
tion. They could, but the focus here is on clean list logic that’s easy to extend and adjust.
You also get the benefit, if you wish, to use the difference in lengths between the word
array, and the word array with hot words removed, to rank sentences in the order of
which match the most hot words. This could be useful if you decided to tweak your bot
(or any other software using WordPlay) to pick out and process the most important
sentence, rather than just the first one. For example:

def self.best_sentence(sentences, desired_words)

ranked_sentences = sentences.sort_by do |s|

s.words.length – (s.downcase.words – desired_words).length

end

ranked_sentences.last

end

This class method accepts an array of sentences and an array of “desired words” as
arguments. Next it sorts the sentences by how many words difference each sentence has
with the desired words list. If the difference is high, then there must be many desired
words in that sentence. At the end of best_sentence, the sentence with the biggest num-
ber of matching words is returned.

Switching Subject and Object Pronouns

Switching pronouns is when you swap “you” and “I,” “I” and “you,” “my” and “your,” and
“your” and “my.” This simple change makes sentences easy to use as a response. Consider

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION 347

7664 CH12.qxd 2/13/07 2:47 PM Page 347

what happens if you simply reflect back whatever the user says by switching the pro-
nouns in his or her input. Some examples are shown in the following table:

Input Response

My cat is sick. Your cat is sick.

I hate my car. You hate your car.

You are an awful bot. I are an awful bot.

These aren’t elaborate conversations, but the first two responses are valid English
and are the sort of thing your bot can use. The third response highlights that you also
need to pay attention to conjugating “am” to “are” and vice versa when using “I” and
“you.”

You’ll add the basic pronoun-switching feature as a class method on the WordPlay
class. As this feature won’t be chained with other methods and doesn’t need to be partic-
ularly concise, you can put it into the WordPlay class rather than continue to add more
methods to the String class.

def self.switch_pronouns(text)

text.gsub(/\b(I am|You are|I|You|Your|My)\b/i) do |pronoun|

case pronoun.downcase

when "i"

"you"

when "you"

"I"

when "i am"

"you are"

when "you are"

"i am"

when "your"

"my"

when "my"

"your"

end

end

end

This method accepts any text supplied as a string, and performs a substitution on
each instance of “I am,” “you are,” “I,” “you,” “your,” or “my.” Next, a case construction is
used to substitute each pronoun with its opposing pronoun. (You first used the case/when
syntax in Chapter 3, where you can also find a deeper explanation of how it works.)

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION348

7664 CH12.qxd 2/13/07 2:47 PM Page 348

The reason for performing a substitution in this way is so that you only change each
pronoun once. If you’d used four gsubs to change all “I’s” to “you’s,” “you’s” to “I’s,” and so
on, changes made by the previous gsub would be overwritten by the next. Therefore, it’s
important to use one gsub that scans through the input pronoun by pronoun rather than
making several blanket substitutions in succession.

Let’s check the results:

WordPlay.switch_pronouns("Your cat is fighting with my cat")

my cat is fighting with your cat

WordPlay.switch_pronouns('You are my robot')

I am your robot

It’s easy to find an exception to these results though:

WordPlay.switch_pronouns("I gave you life")

you gave I life

When the “you” or “I” is the object of the sentence, rather than the subject, “you”
becomes “me” and “me” becomes “you,” whereas “I” becomes “you” and “you” becomes
“I” on the subject of the sentence.

Without descending into complex processing of sentences to establish which refer-
ence is the subject and which reference is the object, we’ll assume that every reference to
“you” that’s not at the start of a sentence is an object and should become “me,” and that
if “you” is at the beginning of a sentence, you should assume it’s the subject and use “I”
instead. This new rule makes your method change slightly:

def self.switch_pronouns(text)

text.gsub(/\b(I am|You are|I|You|Me|Your|My)\b/i) do |pronoun|

case pronoun.downcase

when "i"

"you"

when "you"

"me"

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION 349

7664 CH12.qxd 2/13/07 2:47 PM Page 349

when "me"

"you"

when "i am"

"you are"

when "you are"

"i am"

when "your"

"my"

when "my"

"your"

end

end.sub(/^me\b/i, 'i')

end

What you do in this case seems odd on the surface. You let switch_pronouns process
the pronouns and then correct it when it changes “you” to “me” at the start of a sentence
by changing the “me” to “I.” This is done with the chained sub at the end.

Let’s try it out:

WordPlay.switch_pronouns('Your cat is fighting with my cat')

my cat is fighting with your cat

WordPlay.switch_pronouns('My cat is fighting with you')

your cat is fighting with me

WordPlay.switch_pronouns('You are my robot')

i am your robot

WordPlay.switch_pronouns('I gave you hope')

you gave me hope

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION350

7664 CH12.qxd 2/13/07 2:47 PM Page 350

WordPlay.switch_pronouns('You gave me hope')

i gave you hope

Success!
If you were so cruelly inclined, you could create an extremely annoying bot with this

method alone. Consider this basic example:

while input = gets

puts '>> ' + WordPlay.switch_pronouns(input).chomp + '?'

end

I am ready to talk

>> you are ready to talk?

yes

>> yes?

You are a dumb computer

>> I am a dumb computer?

You clearly have work to do!

Testing the Library

When building a larger application, or libraries upon which other applications will
depend, it’s important to make sure everything is fully tested. In Chapter 8 we looked at
using Ruby’s unit testing features for simple testing. You can use the same methods here
to test WordPlay.

You’ll use the same process as in Chapter 8. Create a file called test_wordplay.rb in
the same directory as wordplay.rb and implement the following basic structure:

require 'test/unit'

require 'wordplay'

class TestWordPlay < Test::Unit::TestCase

end

Running this script gives you an error, as no tests are defined, so let’s write some.

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION 351

7664 CH12.qxd 2/13/07 2:47 PM Page 351

Testing Sentence Separation

To add groups of test assertions to test_wordplay.rb, you can simply create methods with
names starting with test_. Creating a simple test method for testing sentence separations
is easy:

def test_sentences

assert_equal(["a", "b", "c d", "e f g"], "a. b. c d. e f g.".sentences)

test_text = %q{Hello. This is a test

of sentence separation. This is the end

of the test.}

assert_equal("This is the end of the test", test_text.sentences[2])

end

The first assertion tests that the dummy sentence "a. b. c d. e f g." is successfully
separated into the constituent “sentences.” The second assertion uses a longer prede-
fined text string and makes sure that the third sentence is correctly identified.

■Note Ideally, you’d extend this basic set of assertions with several more to test more-complex cases,
such as sentences ending with multiple periods, commas, and other oddities. As these extra tests wouldn’t
demonstrate any further Ruby functionality, they’re not covered here, but feel free to try some out!

Testing Word Separation

Testing that the words method works properly is even easier than testing sentences:

def test_words

assert_equal(%w{this is a test}, "this is a test".words)

assert_equal(%w{these are mostly words}, "these are, mostly, words".words)

end

These assertions are simple. You split sentences into words and compare them with
predefined arrays of those words. The assertions pass.

This highlights one reason why test-first development can be a good idea. It’s easy
to see how you could develop these tests first and then use their passing or failure as an
indicator that you’ve implemented words correctly. This is an advanced programming
concept, but one worth keeping in mind if writing tests in this way “clicks” with you.

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION352

7664 CH12.qxd 2/13/07 2:47 PM Page 352

Testing Best Sentence Choice

You also need to test your WordPlay.best_sentence method, as your bot will use it to
choose the sentence with the most interesting keywords from the user’s input:

def test_sentence_choice

assert_equal('This is a great test',

WordPlay.best_sentence(['This is a test',

'This is another test',

'This is a great test'],

%w{test great this}))

assert_equal('This is a great test',

WordPlay.best_sentence(['This is a great test'],

%w{still the best}))

end

This test method performs a simple assertion that the correct sentence is chosen
from three options. Three sentences are provided to WordPlay.best_sentence, along with
the desired keywords of “test,” “great,” and “this.” Therefore, the third sentence should
be the best match. The second assertion makes sure that WordPlay.best_sentence returns
a sentence even if there are no matches, because in this case any sentence is a “best”
match.

Testing Pronoun Switches

When you developed the switch_pronouns method, you used some vague grammatical
rules, so testing is essential to make sure they stand up for at least basic sentences:

def test_basic_pronouns

assert_equal("i am a robot", WordPlay.switch_pronouns("you are a robot"))

assert_equal("you are a person", WordPlay.switch_pronouns("i am a person"))

assert_equal("i love you", WordPlay.switch_pronouns("you love me"))

end

These basic assertions prove that the “you are,” “I am,” “you,” and “me” phrases are
switched correctly.

You can also create a separate test method to perform some more-complex asser-
tions:

def test_mixed_pronouns

assert_equal("you gave me life", WordPlay.switch_pronouns("i gave you life"))

assert_equal("i am not what you are", WordPlay.switch_pronouns("you are not➥

what i am"))

assert_equal("i annoy your dog", WordPlay.switch_pronouns("you annoy my dog"))

end

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION 353

7664 CH12.qxd 2/13/07 2:47 PM Page 353

These examples are more complex but prove that switch_pronouns can handle a few
more complex situations with multiple pronouns.

You can construct tests that cause switch_pronouns to fail:

def test_complex_pronouns

assert_equal("yes, i rule", WordPlay.switch_pronouns("yes, you rule"))

assert_equal("why do i cry", WordPlay.switch_pronouns("why do you cry"))

end

These tests both fail, because they circumvent the trick you used to make sure that
“you” is translated to “me” and “I” in the right situations. In these situations, they should
become “I,” but because “I” isn’t at the start of the sentence, they become “me” instead.
It’s important to notice that basic statements tend to work okay, whereas questions or
more elaborate statements can fail. However, for your bot’s purposes, the basic substitu-
tions suffice.

If you were to focus solely on producing an accurate language processor, you could
use tests such as these to guide your development, and you’ll probably use this technique
when developing libraries to deal with edge cases such as these in your own projects.

WordPlay’s Source Code

Your nascent WordPlay library is complete, for now, and in a state that you can use its fea-
tures to make your bot’s source code simpler and easier to read. Next I’ll present the
source code for the library as is, as well as its associated unit test file. As an addition, the
code also includes comments prior to each class and method definition, so that you can
use RDoc to produce HTML documentation files, as covered in Chapter 8.

■Note Remember that source code for this book is available in the Source Code/Download area at
http://www.apress.com, so it isn’t necessary to type in code directly from the book.

wordplay.rb

Here’s the code for the WordPlay library:

class String

def sentences

self.gsub(/\n|\r/, ' ').split(/\.\s*/)

end

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION354

7664 CH12.qxd 2/13/07 2:47 PM Page 354

def words

self.scan(/\w[\w\'\-]*/)

end

end

class WordPlay

def self.switch_pronouns(text)

text.gsub(/\b(I am|You are|I|You|Me|Your|My)\b/i) do |pronoun|

case pronoun.downcase

when "i"

"you"

when "you"

"me"

when "me"

"you"

when "i am"

"you are"

when "you are"

"i am"

when "your"

"my"

when "my"

"your"

end

end.sub(/^me\b/i, 'i')

end

def self.best_sentence(sentences, desired_words)

ranked_sentences = sentences.sort_by do |s|

s.words.length - (s.downcase.words - desired_words).length

end

ranked_sentences.last

end

end

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION 355

7664 CH12.qxd 2/13/07 2:47 PM Page 355

test_wordplay.rb

Here’s the test suite associated with the WordPlay library:

require 'test/unit'

require 'wordplay'

Unit testing class for the WordPlay library

class TestWordPlay < Test::Unit::TestCase

Test that multiple sentence blocks are split up into individual

words correctly

def test_sentences

assert_equal(["a", "b", "c d", "e f g"], "a. b. c d. e f g.".sentences)

test_text = %q{Hello. This is a test

of sentence separation. This is the end

of the test.}

assert_equal("This is the end of the test", test_text.sentences[2])

end

Test that sentences of words are split up into distinct words correctly

def test_words

assert_equal(%w{this is a test}, "this is a test".words)

assert_equal(%w{these are mostly words}, "these are, mostly, words".words)

end

Test that the correct sentence is chosen, given the input

def test_sentence_choice

assert_equal('This is a great test',

WordPlay.best_sentence(['This is a test',

'This is another test',

'This is a great test'],

%w{test great this}))

assert_equal('This is a great test',

WordPlay.best_sentence(['This is a great test'],

%w{still the best}))

end

Test that basic pronouns are switched by switch_pronouns

def test_basic_pronouns

assert_equal("i am a robot", WordPlay.switch_pronouns("you are a robot"))

assert_equal("you are a person", WordPlay.switch_pronouns("i am a person"))

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION356

7664 CH12.qxd 2/13/07 2:47 PM Page 356

assert_equal("i love you", WordPlay.switch_pronouns("you love me"))

end

Test more complex sentence switches using switch_pronouns

def test_mixed_pronouns

assert_equal("you gave me life",

WordPlay.switch_pronouns("i gave you life"))

assert_equal("i am not what you are",

WordPlay.switch_pronouns("you are not what i am"))

end

end

Building the Bot’s Core
In the previous section you put together the WordPlay library to provide some features
you knew that your bot would need, such as basic sentence and word separation. Now
you can get on with the task of fleshing out the logic of the bot itself.

You’ll create the bot within a Bot class, allowing you to create multiple bot instances
and assign them different names and datasets, and work with them separately. This is the
cleanest structure, as it allows you to keep the bot’s logic separated from the logic of
interacting with the bot. For example, if your finished Bot class exists in bot.rb, writing a
Ruby program to allow a user to converse with the bot using the keyboard could be as
simple as this:

require 'bot'

bot = Bot.new(:name => "Botty", :data_file => "botty.bot")

puts bot.greeting

while input = gets and input.chomp != 'goodbye'

puts ">> " + bot.response_to(input)

end

puts bot.farewell

You’ll use this barebones client program as a yardstick while creating the Bot class. In
the previous example, you created a bot object and passed in some parameters, which
enables you to use the bot’s methods, along with keyboard input, to make the bot con-
verse with the user.

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION 357

7664 CH12.qxd 2/13/07 2:47 PM Page 357

In certain situations it’s useful to write an example of the higher-level, more-
abstracted code that you expect ultimately to write, and then write the lower-level code
to satisfy it. This isn’t the same as test-first development, although the principle is similar.
You write the easiest, most abstract code first, and then work your way down to the
details.

Next let’s look at how you expect the bot to operate throughout a normal session and
then begin to develop the required features one by one.

The Program’s Life Cycle and Parts

In Figure 12-2 we looked at what happens when a bot is asked to respond to some user
input. In Figure 12-3, however, we look at the more overall life cycle of a bot, and the
client accessing it, that we’ll develop.

Your entire application will be composed of four parts:

1. The Bot class, within bot.rb, containing all the bot’s logic and any subclasses.

2. The WordPlay library, within wordplay.rb, containing the WordPlay class and exten-
sions to String.

3. Basic “client” applications that create bots and allows users to interact with them.
You’ll first create a basic keyboard-entry client, but we’ll look at some alternatives
later in the chapter.

4. A helper program to generate the bot’s data files easily.

Figure 12-3 demonstrates the basic life cycle of a sample client application and its
associated bot object. The client program creates a bot instance, and then keeps request-
ing user input passing it to the bot. Responses are printed to the screen, and the loop
continues until the user decides to quit.

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION358

7664 CH12.qxd 2/13/07 2:47 PM Page 358

Figure 12-3. A basic flowchart showing a sample life cycle of the bot client and bot object

You’ll begin putting together the Bot class and then look at how the bot will find and
process its data.

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION 359

7664 CH12.qxd 2/13/07 2:47 PM Page 359

Bot Data

One of your first concerns is where the bot will get its data. The bot’s data includes infor-
mation about word substitutions to perform during preprocessing, as well as myriad
keywords and phrases that the bot can use in its responses.

The Data Structure

You’ll keep the bot’s data in a hash, somewhat like this:

bot_data = {

:presubs => [

["dont", "don't"],

["youre", "you're"],

["love", "like"]

],

:responses => {

:default => [

"I don't understand.",

"What?",

"Huh?"

],

:greeting => ["Hi. I'm [name]. Want to chat?"],

:farewell => ["Good bye!"],

'hello' => [

"How's it going?",

"How do you do?"

],

'i like *' => [

"Why do you like *?",

"Wow! I like * too!"

]

}

}

The main hash has two parent elements, :presubs and :responses. The :presubs ele-
ment references an array of arrays that contain substitutions to be made to the user’s
input before the bot forms a response. In this instance, the bot will expand some contrac-
tions, and also change any reference of “love” to “like.” The reason for this becomes clear
when you look at :responses.

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION360

7664 CH12.qxd 2/13/07 2:47 PM Page 360

■Note This data structure is deliberately lightly populated to save space for discussion of the practicali-
ties. By the end of this chapter you’ll have a more complete set of data to use with your bot. This style of
data structure was also covered in Chapter 3.

:responses references another hash: one that has elements with the names :default,
:greeting, :farewell, 'hello', and 'i like *'. This hash contains all the different phrases
the bot will use as responses, or templates used to create full phrases. The array assigned
to :default contains some phrases to use at random when the bot cannot figure out what
to say based on the input. Those associated with :greeting and :farewell contain generic
greeting and farewell phrases.

More interesting are the arrays associated with 'hello' and 'i like *'. These phrases
are used when the input matches the hash key for each array. For example, if a user says
“hello computer,” then a match with 'hello' is made, and a response is chosen from the
array at random. If a user says “i like computers,” then 'i like *' is matched and the
asterisk is used to substitute the remainder of the user’s input (after “i like”) into the bot’s
output phrase. This could result in output such as “Wow! I like computers too,” if the sec-
ond phrase were to be used.

Storing the Data Externally

Using a hash makes data access easy (rather than relying on, say, a database) and fast
when it comes to choosing sentences and performing matches. However, because your
bot class needs to be able to deal with multiple datasets, it’s necessary to store the hash of
data for each bot within a file that can be chosen when a bot is started.

In Chapter 9 you learned about the concept of object persistence, where Ruby data
structures can be “frozen” and stored. One library you used was called PStore, which
stores Ruby data structures in a non-human-readable binary format, and the other was
YAML, which is human-readable and represented as a specially formatted text file. For
this project you’ll use YAML, as you want to be able to make changes to the data files on
the fly, to change things your bot will say, and to test out new phrases without construct-
ing a whole new file each time.

It’s possible to create your data files by hand and then let the Bot class load them in,
but to make life easier, you’ll create a small program that can create the initial data file for
you, as you did in Chapter 9. An ideal name for it would be bot_data_to_yaml.rb:

require 'yaml'

bot_data = {

:presubs => [

["dont", "don't"],

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION 361

7664 CH12.qxd 2/13/07 2:47 PM Page 361

["youre", "you're"],

["love", "like"]

],

:responses => {

:default => [

"I don't understand.",

"What?",

"Huh?"

],

:greeting => ["Hi. I'm [name]. Want to chat?"],

:farewell => ["Good bye!"],

'hello' => [

"How's it going?",

"How do you do?"

],

'i like *' => [

"Why do you like *?",

"Wow! I like * too!"

]

}

}

Show the user the YAML data for the bot structure

puts bot_data.to_yaml

Write the YAML data to file

f = File.open(ARGV.first || 'bot_data', "w")

f.puts bot_data.to_yaml

f.close

This short program lets you define the bot data in the bot_data hash, and then shows
the YAML representation on the screen before writing it to file. The filename is specified
on the command line, or defaults to bot_data if none is supplied.

ruby bot_data_to_yaml.rb

:presubs:

- - dont

- don't

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION362

7664 CH12.qxd 2/13/07 2:47 PM Page 362

- - youre

- you're

- - love

- like

:responses:

i like *:

- Why do you like *?

- Wow! I like * too!

:default:

- I don't understand.

- What?

- Huh?

hello:

- How's it going?

- How do you do?

:greeting:

- Hi. I'm [name]. Want to chat?

:farewell:

- Good bye!

Note that as the YAML data is plain text, you can edit it directly in the file, or just
tweak the bot_data structure and re-run bot_data_to_yaml.rb. From here on out let’s
assume you’ve run this and generated the preceding YAML file as bot_data in the current
directory.

Now that you have a basic data file, you need to construct the Bot class and get its
initialize method to use it.

Constructing the Bot Class and Data Loader

Let’s create bot.rb and the start of the Bot class:

require 'yaml'

require 'wordplay'

class Bot

attr_reader :name

def initialize(options)

@name = options[:name] || "Unnamed Bot"

begin

@data = YAML.load(File.read(options[:data_file]))

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION 363

7664 CH12.qxd 2/13/07 2:47 PM Page 363

rescue

raise "Can't load bot data"

end

end

end

The initialize method sets up each newly created object and uses the options hash
to populate two class variables, @name and @data. External access to @name is provided
courtesy of attr_reader. File.open, along with the read method, opens the data file and
reads in the full contents to be processed by the YAML library. YAML.load converts the
YAML data into the original hash data structure and assigns it to the @data class variable.
If the data file opening or YAML processing fails, an exception is raised, as the bot cannot
function without data.

Now you can create the greeting and farewell methods that display a random greet-
ing and farewell message from the bot’s data set. These methods are used when people
first start to use the bot or just before the bot client exits.

def greeting

@data[:responses][:greeting][rand(@data[:responses][:greeting].length)]

end

def farewell

@data[:responses][:farewell][rand(@data[:responses][:farewell].length)]

end

Ouch! This isn’t nice at all. You have access to the greetings (and farewells) via
@data[:responses], but selecting a single random phrase gets ugly fast. This looks like an
excellent opportunity to create a private method that retrieves a random phrase from a
selected response group:

private

def random_response(key)

random_index = rand(@data[:responses][key].length)

@data[:responses][key][random_index].gsub(/\[name\]/, @name)

end

This method simplifies the routine of taking a random phrase from a particular
phrase set in @data. The second line of random_response performs a substitution so that
any responses that contain [name] have [name] substituted for the bot’s name. For exam-
ple, one of the demo greeting phrases is “Hi. I’m [name]. Want to chat?” However, if you
created the bot object and specified a name of “Fred,” the output would appear as “Hi.
I’m Fred. Want to chat?”

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION364

7664 CH12.qxd 2/13/07 2:47 PM Page 364

■Note Remember that a private method is a method that cannot be called from outside the class itself.
As random_response is only needed internally to the class, it’s a perfect candidate to be a private method.

Let’s update greeting and farewell to use random_response:

def greeting

random_response :greeting

end

def farewell

random_response :farewell

end

Isn’t separating common functionality into distinct methods great? These methods
now look a lot simpler and make immediate sense compared to the jumble they con-
tained previously.

■Note This technique is also useful in situations where you have “ugly” or complex-looking code and you
simply want to hide it inside a single method you can call from anywhere. Keep complex code in the back-
ground and make the rest of the code look as simple as possible.

The response_to Method

The core of the Bot class is the response_to method. It’s used to pass user input to the bot
and get the bot’s response in return. However, the method itself should be simple and
have one line per required operation to call private methods that perform each step.

respond_to must perform several actions:

1. Accept the user’s input.

2. Perform preprocessing substitutions, as described in the bot’s data file.

3. Split the input into sentences and choose the most keyword-rich sentence.

4. Search for matches against the response phrase set keys.

5. Perform pronoun switching against the user input.

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION 365

7664 CH12.qxd 2/13/07 2:47 PM Page 365

6. Pick a random phrase that matches (or a default phrase if there are no matches)
and perform any substitutions of the user input into the result.

7. Return the completed output phrase.

Let’s look at each action in turn.

Accepting Input and Performing Substitutions

First, you accept the input as a basic argument to the response_to method:

def response_to(input)

end

Then you move on to performing the preprocessing word and phrase substitutions
as dictated by the :presubs array in the bot data file. You’ll recall the :presubs array is an
array of arrays that specifies words and phrases that should be changed to another word
or phrase. The reason for this is so that you can deal with multiple terms with a single
phrase. For example, if you substitute all instances of “yeah” for “yes,” a relevant phrase
will be shown whether the user says “yeah” or “yes,” even though the phrase is only
matching on “yes.”

As you’re focusing on keeping response_to simple, you’ll use a single method call:

def response_to(input)

prepared_input = preprocess(input).downcase

end

Now you can implement preprocess as a private method:

private

def preprocess(input)

perform_substitutions input

end

Then you can implement the substitution method itself:

def perform_substitutions(input)

@data[:presubs].each { |s| input.gsub!(s[0], s[1]) }

input

end

This code loops through each substitution defined in the :presubs array and uses
gsub! on the input.

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION366

7664 CH12.qxd 2/13/07 2:47 PM Page 366

At this point it’s worth wondering why you have a string of methods just to get to the
perform_substitutions method. Why not just call it directly from response_to?

The rationale in this case is that you’re trying to keep logic separated from other logic
within this program as much as possible. This is how larger applications work, as it allows
you to extend them more easily. For example, if you wanted to perform more preprocess-
ing tasks in future, you could simply create methods for them and call them from
preprocess without having to make any changes to response_to. Although this looks
inefficient, it actually results in code that’s easy to extend and read in the long run. A little
verbosity is the price for a lot of flexibility. You’ll see a lot of similar techniques used in
other Ruby programs, which is why it’s demonstrated so forcefully here.

Choosing the Best Sentence

After you have the preprocessed input at your disposal, it’s time to split it up into
sentences and choose the best one. You can add another line to response_to:

def response_to(input)

prepared_input = preprocess(input.downcase)

sentence = best_sentence(prepared_input)

end

Then you can implement best_sentence as a private method:

def best_sentence(input)

hot_words = @data[:responses].keys.select do |k|

k.class == String && k =~ /^\w+$/

end

WordPlay.best_sentence(input.sentences, hot_words)

end

First, best_sentence collects an array of single words from the keys in the :responses
hash. It looks for all keys that are strings (you don’t want the :default, :greeting, or
:farewell symbols getting mixed in) and only a single word. You then use this list with
the WordPlay.best_sentence method you developed earlier in this chapter to choose the
sentence from the user input that matches the most “hot words” (if any).

You could rewrite this method in any style you wish. If you only ever wanted to
choose the first sentence in the user input, that’s easy to do:

def best_sentence(input)

input.sentences.first

end

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION 367

7664 CH12.qxd 2/13/07 2:47 PM Page 367

Or how about the longest sentence?

def best_sentence(input)

input.sentences.sort_by { |s| s.length }.last

end

Again, by having the tiny piece of logic of choosing the best sentence in a separate
method, you can change the way the program works without meddling with larger
methods.

Looking for Matching Phrases

Now you have the sentence you want to parse and the substitutions have been per-
formed. The next step is to find the phrases that are suitable as responses to the chosen
sentence and to pick one at random.

Let’s extend response_to again:

def response_to(input)

prepared_input = preprocess(input.downcase)

sentence = best_sentence(prepared_input)

responses = possible_responses(sentence)

end

And implement possible_responses:

def possible_responses(sentence)

responses = []

Find all patterns to try to match against

@data[:responses].keys.each do |pattern|

next unless pattern.is_a?(String)

For each pattern, see if the supplied sentence contains

a match. Remove substitution symbols (*) before checking.

Push all responses to the responses array.

if sentence.match('\b' + pattern.gsub(/*/, '') + '\b')

responses << @data[:responses][pattern]

end

end

If there were no matches, add the default ones

responses << @data[:responses][:default] if responses.empty?

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION368

7664 CH12.qxd 2/13/07 2:47 PM Page 368

Flatten the blocks of responses to a flat array

responses.flatten

end

possible_responses accepts a single sentence, then uses the string keys within the
:responses hash to check for matches. Whenever the sentence has a match with a key
from :responses, the various suitable responses are pushed onto the responses array.
This array is flattened so a single array is returned.

If no specifically matched responses are found, the default ones (found in :responses
with the :default key) are used.

Putting Together the Final Phrase

You now have all the pieces available in response_to to put together the final response.
Let’s choose a random phrase from responses to use:

def response_to(input)

prepared_input = preprocess(input.downcase)

sentence = best_sentence(prepared_input)

responses = possible_responses(sentence)

responses[rand(responses.length)]

end

If you weren’t doing any substitutions against the pronoun-switched sentence, this
version of response_to would be the final one. However, your bot has the capability to use
some of the user’s input in its responses. A section of your dummy bot data looked like
this:

'i like *' => [

"Why do you like *?",

"Wow! I like * too!"

]

This rule matches when the user says “I like.” The first possible response—“Why do
you like *?”—contains an asterisk symbol that you’ll use to substitute in part of the user’s
sentence in conjunction with the pronoun-switching method you developed in WordPlay
earlier.

For example, a user might say, “I like to talk to you.” If the pronouns were switched
you’d get “You like to talk to me.” If the segment following “You like” were substituted into
the first possible response, you’d end up with “Why do you like to talk to me?” This is a
great response that compels the user to continue typing and demonstrates the power of
the pronoun-switching technique.

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION 369

7664 CH12.qxd 2/13/07 2:47 PM Page 369

Therefore, if the chosen response contains an asterisk (the character you’re using
as a placeholder in response phrases), you’ll need to substitute in the relevant part of the
original sentence into the phrase and perform pronoun switching on that part.

Here’s the new version of possible_responses with the changes in bold:

def possible_responses(sentence)

responses = []

Find all patterns to try to match against

@data[:responses].keys.each do |pattern|

next unless pattern.is_a?(String)

For each pattern, see if the supplied sentence contains

a match. Remove substitution symbols (*) before checking.

Push all responses to the responses array.

if sentence.match('\b' + pattern.gsub(/*/, '') + '\b')

If the pattern contains substitution placeholders,

perform the substitutions

if pattern.include?('*')

responses << @data[:responses][pattern].collect do |phrase|

First, erase everything before the placeholder

leaving everything after it

matching_section = sentence.sub(/^.*#{pattern}\s+/, '')

Then substitute the text after the placeholder, with

the pronouns switched

phrase.sub('*', WordPlay.switch_pronouns(matching_section))

end

else

No placeholders? Just add the phrases to the array

responses << @data[:responses][pattern]

end

end

end

If there were no matches, add the default ones

responses << @data[:responses][:default] if responses.empty?

Flatten the blocks of responses to a flat array

responses.flatten

end

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION370

7664 CH12.qxd 2/13/07 2:47 PM Page 370

This new version of possible_responses checks to see if the pattern contains an aster-
isk, and if so, extracts the correct part of the source sentence to use into matching_section,
switches the pronouns on that section, and then substitutes that into each relevant
phrase.

Playing with the Bot

You have the basic methods implemented in the Bot class, so let’s play with it as-is before
looking at extending it any further. The first step is to prepare a better set of data for the
bot to use so that your conversations can be more engaging than those with the dummy
test data shown earlier in this chapter.

Fred: Your Bot’s Personality

In this section you’re going to tweak the bot_data_to_yaml.rb script you created earlier to
generate a YAML file for your first bot to use. Its name will be Fred and you’ll generate a
bot data file called fred.bot. Here’s bot_data_to_yaml.rb extended with a better set of
phrases and substitutions:

require 'yaml'

bot_data = {

:presubs => [

["dont", "do not"],

["don't", "do not"],

["youre", "you're"],

["love", "like"],

["apologize", "are sorry"],

["dislike", "hate"],

["despise", "hate"],

["yeah", "yes"],

["mom", "family"]

],

:responses => {

:default => [

"I don't understand.",

"What?",

"Huh?",

"Tell me about something else.",

"I'm tired of this. Change the subject."

],

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION 371

7664 CH12.qxd 2/13/07 2:47 PM Page 371

:greeting => [

"Hi. I'm [name]. Want to chat?",

"What's on your mind today?",

"Hi. What would you like to talk about?"

],

:farewell => ["Good bye!", "Au revoir!"],

'hello' => [

"How's it going?",

"How do you do?",

"Enough of the pleasantries!"

],

'sorry' => ["There's no need to apologize."],

'different' => [

"How is it different?",

"What has changed?"

],

'everyone *' => ["You think everyone *?"],

'do not know'=> ["Are you always so indecisive?"],

'yes' => [

"At least you're positive about something!",

"Great."

],

'family' => ["Tell me about your family"],

'you are *' => [

"What makes you think I am *?",

"Are you so sure I am *?"

],

'i am *' => [

"Is it normal for you to be *?",

"Do you like being *?"

],

'i do not *' => ["Why don't you *?"],

'what' => ["Why do you ask?", "Why?", "I don't know. Do you?"],

'no' => [

"Really?",

"Fair enough."

],

'why does *' => [

"I don't know why *",

"Do you already know the answer?"

],

'why can\'t i *' => ["Do you want to *?"],

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION372

7664 CH12.qxd 2/13/07 2:47 PM Page 372

'why can\'t you *' => ["Do you want me to *?"],

'hates *' => [

"Why do you think they hate *?"

],

'hate *' => [

"Why don't you like *?",

"Why the dislike of *?"

],

'i like *' => [

"Why do you like *?",

"Wow! I like * too!"

]

}

}

Show the user the YAML data for the bot structure

puts bot_data.to_yaml

Write the YAML data to file

f = File.open(ARGV.first || 'bot_data', "w")

f.puts bot_data.to_yaml

f.close

If you run this with ruby bot_data_to_yaml.rb fred.bot, you’ll end up with a bot data
file called fred.bot that contains the necessary data to converse with a basic bot.

The First Real Conversation

Here’s a basic program that can use the Bot class, which reads input from the keyboard
and prints the bot’s responses to the screen:

require 'bot'

bot = Bot.new(:name => 'Fred', :data_file => 'fred.bot')

puts bot.greeting

while input = gets and input.chomp != 'end'

puts '>> ' + bot.response_to(input)

end

puts bot.farewell

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION 373

7664 CH12.qxd 2/13/07 2:47 PM Page 373

It’s almost the same as the script we thought of before implementing the Bot class.
You used the method names dictated by that program and made it fit. (The completed
source for the Bot class is provided in the next section if you want to refer to it.)

Without further ado, give it a try and see if you can have a conversation. Here’s a
demonstration run:

Hi. What would you like to talk about?

I don't know

>> Are you always so indecisive?

Yes, usually

>> Great.

I'm sorry!

>> There's no need to apologize.

So why can't you talk to me properly?

>> Do you want me to talk to you properly?

Yes

>> At least you're positive about something!

I don't know about that

>> Are you always so indecisive?

Woe is me, why can't I make decisions?

>> Do you want to make decisions?

Everyone does

>> You think everyone does?

Your bot works! The conversation might be a little stilted and manipulated to use
some of the phrases and words covered by your data set, but with this basic mechanism,
and a data set extended even further, significantly more complex conversations would
be possible. Unfortunately, it’s outside the scope of this book to provide a large data set.

In the next section the final code for the basic bot is presented, and then you’ll see
how you can extend the bot’s functionality further.

Main Bot Code Listings
This section makes available the full source code to the Bot class, bot.rb, including extra
documentation that RDoc can use. Also included is the source to a basic bot client that
you can use to converse with a bot on a one-on-one basis using the keyboard from the
command line.

As this code is commented, as opposed to the examples so far in this chapter, I rec-
ommend you at least browse through the following code to get a feel for how the entire
program operates as a set of parts.

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION374

7664 CH12.qxd 2/13/07 2:47 PM Page 374

■Note You can also find these listings available to download in the Source Code/Download area of
http://www.apress.com/.

bot.rb

Here’s the source code for the main Bot class:

require 'yaml'

require 'wordplay'

A basic implementation of a chatterbot

class Bot

attr_reader :name

Initializes the bot object, loads in the external YAML data

file and sets the bot's name. Raises an exception if

the data loading process fails.

def initialize(options)

@name = options[:name] || "Unnamed Bot"

begin

@data = YAML.load(File.open(options[:data_file]).read)

rescue

raise "Can't load bot data"

end

end

Returns a random greeting as specified in the bot's data file

def greeting

random_response(:greeting)

end

Returns a random farewell message as specified in the bot's

data file

def farewell

random_response(:farewell)

end

Responds to input text as given by a user

def response_to(input)

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION 375

7664 CH12.qxd 2/13/07 2:47 PM Page 375

prepared_input = preprocess(input.downcase)

sentence = best_sentence(prepared_input)

reversed_sentence = WordPlay.switch_pronouns(sentence)

responses = possible_responses(sentence)

responses[rand(responses.length)]

end

private

Chooses a random response phrase from the :responses hash

and substitutes metadata into the phrase

def random_response(key)

random_index = rand(@data[:responses][key].length)

@data[:responses][key][random_index].gsub(/\[name\]/, @name)

end

Performs preprocessing tasks upon all input to the bot

def preprocess(input)

perform_substitutions(input)

end

Substitutes words and phrases on supplied input as dictated by

the bot's :presubs data

def perform_substitutions(input)

@data[:presubs].each { |s| input.gsub!(s[0], s[1]) }

input

end

Using the single word keys from :responses, we search for the

sentence that uses the most of them, as it's likely to be the

'best' sentence to parse

def best_sentence(input)

hot_words = @data[:responses].keys.select do |k|

k.class == String && k =~ /^\w+$/

end

WordPlay.best_sentence(input.sentences, hot_words)

end

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION376

7664 CH12.qxd 2/13/07 2:47 PM Page 376

Using a supplied sentence, go through the bot's :responses

data set and collect together all phrases that could be

used as responses

def possible_responses(sentence)

responses = []

Find all patterns to try to match against

@data[:responses].keys.each do |pattern|

next unless pattern.is_a?(String)

For each pattern, see if the supplied sentence contains

a match. Remove substitution symbols (*) before checking.

Push all responses to the responses array.

if sentence.match('\b' + pattern.gsub(/*/, '') + '\b')

If the pattern contains substitution placeholders,

perform the substitutions

if pattern.include?('*')

responses << @data[:responses][pattern].collect do |phrase|

First, erase everything before the placeholder

leaving everything after it

matching_section = sentence.sub(/^.*#{pattern}\s+/, '')

Then substitute the text after the placeholder, with

the pronouns switched

phrase.sub('*', WordPlay.switch_pronouns(matching_section))

end

else

No placeholders? Just add the phrases to the array

responses << @data[:responses][pattern]

end

end

end

If there were no matches, add the default ones

responses << @data[:responses][:default] if responses.empty?

Flatten the blocks of responses to a flat array

responses.flatten

end

end

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION 377

7664 CH12.qxd 2/13/07 2:47 PM Page 377

basic_client.rb

This basic client accepts input from the user via the keyboard and prints the bot’s
responses back to the screen. This is the simplest form of client possible.

require 'bot'

bot = Bot.new(:name => ARGV[0], :data_file => ARGV[1])

puts bot.greeting

while input = $stdin.gets and input.chomp != 'end'

puts '>> ' + bot.response_to(input)

end

puts bot.farewell

Use the client like so:

ruby basic_client.rb <bot name> <data file>

■Note You can find listings for basic Web, bot-to-bot, and text file clients in the next section of this
chapter, “Extending the Bot.”

Extending the Bot
One significant benefit of keeping all your bot’s functionality well separated within its
own class and with multiple interoperating methods is that you can tweak and add func-
tionality easily. In this section we’re going to look at some ways we can easily extend the
basic bot’s functionality to handle other input sources than just the keyboard.

When you began to create the core Bot class, you looked at a sample client applica-
tion that accepted input from the keyboard, passed it on to the bot, and printed the
response. This simple structure demonstrated how abstracting separate sections of an
application into loosely coupled classes makes applications easier to amend and extend.
You can use this loose coupling to create clients that work with other forms of input.

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION378

7664 CH12.qxd 2/13/07 2:47 PM Page 378

■Note When designing larger applications, it’s useful to keep in mind the usefulness of loosely coupling
the different sections so that if the specifications or requirements change over time, it doesn’t require a
major rewrite of any code to achieve the desired result.

Using Text Files As a Source of Conversation

You could create an entire one-sided conversation in a text file and pass it in to a bot
to test how different bots respond to the same conversation. Consider the following
example:

require 'bot'

bot = Bot.new(:name => ARGV[0], :data_file => ARGV[1])

user_lines = File.readlines(ARGV[2], 'r')

puts "#{bot.name} says: " + bot.greeting

user_lines.each do |line|

puts "You say: " + line

puts "#{bot.name} says:" + bot.response_to(line)

end

This program accepts the bot’s name, data filename, and conversation filename as
command line arguments, reads in the user-side conversation into an array, and loops
through the array, passing each line to the bot in turn.

Connecting the Bot to the Web

One common thing to do with many applications is to tie them up to the Web so that
anyone can use them. This is a reasonably trivial process using the WEBrick library
covered in Chapter 10.

require 'webrick'

require 'bot'

Class that responds to HTTP/Web requests and interacts with the bot

class BotServlet < WEBrick::HTTPServlet::AbstractServlet

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION 379

7664 CH12.qxd 2/13/07 2:47 PM Page 379

A basic HTML template consisting of a basic page with a form

and text entry box for the user to converse with our bot. It uses

some placeholder text (%RESPONSE%) so the bot's responses can be

substituted in easily later.

@@html = %q{

<html><body>

<form method="get">

<h1>Talk To A Bot</h1>

%RESPONSE%

<p>

You say: <input type="text" name="line" size="40" />

<input type="submit" />

</p>

</form>

</body></html>

}

def do_GET(request, response)

Mark the request as successful and set MIME type to support HTML

response.status = 200

response.content_type = "text/html"

If the user supplies some text, respond to it

if request.query['line'] && request.query['line'].length > 1

bot_text = $bot.response_to(request.query['line'].chomp)

else

bot_text = $bot.greeting

end

Format the text and substitute into the HTML template

bot_text = %Q{<p>I say: #{bot_text}</p>}

response.body = @@html.sub(/\%RESPONSE\%/, bot_text)

end

end

Create an HTTP server on port 1234 of the local machine

accessible via http://localhost:1234/ or http://127.0.0.1:1234/

server = WEBrick::HTTPServer.new(:Port => 1234)

$bot = Bot.new(:name => "Fred", :data_file => "fred.bot")

server.mount "/", BotServlet

trap("INT"){ server.shutdown }

server.start

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION380

7664 CH12.qxd 2/13/07 2:47 PM Page 380

Upon running this script, you can talk to the bot using your Web browser by visiting
http://127.0.0.1:1234/ or http://localhost:1234/. An example of what this should look
like is shown in Figure 12-4.

Figure 12-4. Accessing the bot Web client with a Web browser

Alternatively, you could create a CGI script (called bot.cgi, or similar) that could be
used with any Web hosting provider that provides Ruby as a supported language:

#!/usr/bin/env ruby

require 'bot'

require 'cgi'

A basic HTML template creating a basic page with a forum and text

entry box for the user to converse with our bot. It uses some

placeholder text (%RESPONSE%) so the bot's responses can be

substituted in easily later

html = %q{

<html><body>

<form method="get">

<h1>Talk To A Bot</h1>

%RESPONSE%

<p>

You say: <input type="text" name="line" size="40" />

<input type="submit" />

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION 381

7664 CH12.qxd 2/13/07 2:47 PM Page 381

</p>

</form>

</body></html>

}

Set up the CGI environment and make the parameters easy to access

cgi = CGI.new

params = cgi.params

line = params['line'] && params['line'].first

bot = Bot.new(:name => "Fred", :data_file => "fred.bot")

If the user supplies some text, respond to it

if line && line.length > 1

bot_text = bot.response_to(line.chomp)

else

bot_text = bot.greeting

end

Format the text and substitute into the HTML template

as well as sending the MIME header for HTML support

bot_text = %Q{<p>I say: #{bot_text}</p>}

puts "Content-type: text/html\n\n"

puts html.sub(/\%RESPONSE\%/, bot_text)

■Note You also need to make sure you upload the bot.rb, wordplay.rb, and bot data file(s).

Bot-to-Bot Conversations

As well as letting users interact with the bot, you can let bots interact with each other!
Because it only takes a single method on the bot instance to elicit a response, you can
pipe responses back and forth between two bots with just a few lines of code:

require 'bot'

fred = Bot.new(:name => 'Fred', :data_file => 'fred.bot')

chris = Bot.new(:name => 'Chris', :data_file => 'fred.bot')

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION382

7664 CH12.qxd 2/13/07 2:47 PM Page 382

r = fred.greeting

10.times do

puts "#{fred.name} said: " + r

r = chris.response_to(r)

puts "#{chris.name} said: " + r

r = fred.response_to(r)

end

This could result in the following conversation (it will vary due to the randomness
of some of the multiple responses available in the data files):

Fred said: Hi. What would you like to talk about?

Chris said: Why?

Fred said: What?

Chris said: I don't know. Do you?

Fred said: What?

Chris said: Why do you ask?

Fred said: I don't understand.

Chris said: Tell me about something else.

Fred said: Tell me about something else.

Chris said: Tell me about something else.

Fred said: I'm tired of this. Change the subject.

Chris said: What?

Fred said: Why?

Chris said: Tell me about something else.

Fred said: I don't understand.

Chris said: What?

Fred said: Why do you ask?

Chris said: What?

Fred said: Why?

Chris said: Huh?

It’s not the greatest conversation ever seen, but it’s certainly entertaining to see two
ersatz therapists getting along with each other. Of course, if you manage to develop two
bots that actually have an engrossing conversation, you’ll be on the path to artificial-
intelligence stardom!

The key problem with your bot’s data is that none of the default data contains any
keywords that can be picked up by other phrases, so both bots are locked in a loop of
throwing default phrases at each other. That’s why it’s important to extend the basic set
of data if you want to use the bot for anything that looks impressive!

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION 383

7664 CH12.qxd 2/13/07 2:47 PM Page 383

Summary
In this chapter we looked at developing a simple chatterbot, and developed a library
along the way, produced tests for the library, worked with storing our bot’s vocabulary in
an external file, and looked at a number of ways to extend our project with databases or
by hooking it up to a Web site.

This chapter marks the end of the second part of this book, and you should now have
enough Ruby knowledge to pass as a solid, intermediate Ruby developer. You should be
able to understand the majority of Ruby documentation available online and be able to
use Ruby productively either professionally or for fun.

Part 3 of this book digs a little deeper into Ruby’s libraries and frameworks, from
Ruby on Rails and the Web, to general networking and library use. Chapter 16, which
looks at a plethora of different Ruby libraries and how to use them, will be particularly
useful to refer to as you develop your own programs, so that you don’t reinvent the wheel
too often!

CHAPTER 12 ■ TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION384

7664 CH12.qxd 2/13/07 2:47 PM Page 384

Ruby Online

This part of the book looks at Ruby’s Internet and networking abilities. The knowledge

covered in this part of the book is not essential for developing general Ruby applications,

but as the Internet and the Web are becoming rapidly more important in the scope of mod-

ern software development, you’re sure to find these chapters useful. This part of the book

concludes with a reference-style chapter that covers a swathe of Ruby libraries and the

features they offer.

P A R T 3

7664 CH13.qxd 3/1/07 4:35 AM Page 385

7664 CH13.qxd 3/1/07 4:35 AM Page 386

Ruby on Rails: Ruby’s Killer App

In this chapter we’re going to look at the Ruby on Rails framework, a cutting-edge Web
application development framework. We’ll walk through developing a basic Rails applica-
tion and getting it running with a database, before looking at a few more-advanced Web
development topics.

Although this book is a Ruby book, rather than a Rails (as Ruby on Rails is known in
its shortened form) book, Rails has become such an important part of the Ruby world
that it demands attention even in a beginner’s guide such as this. However, Apress does
have a selection of books specifically about Ruby on Rails and Web development avail-
able, if you wish to progress further down this line of development.

First Steps
Before you can begin to develop Web applications using Rails, it’s essential first to know
what it is and why it’s used, as well as how to get it running, as its installation process is
more involved than that of other Ruby libraries.

What Is Rails and Why Use It?

Ruby on Rails is an open source Web application development framework. It makes the
development of Web applications simple. For some of the nontechnical history behind
Rails, including the motivation for its development, refer to Chapter 5.

The goal of Rails is to make it possible to develop Web applications in an easy,
straightforward manner, and with as few lines of code as necessary. By default, Rails
makes a lot of assumptions and has a default configuration that works for most Web
applications. Naturally, it’s easy to override any defaults, but they are designed to keep
initial application development simple.

387

C H A P T E R 1 3

7664 CH13.qxd 3/1/07 4:35 AM Page 387

Rails operates upon a Model-View-Controller (MVC) architectural pattern. This
means that Rails applications are primarily split into three sections: models, views, and
controllers. In Rails, these components have the following roles:

• Models: These are used to represent forms of data used by the application and con-
tain the logic to manipulate and retrieve that data. In Rails, a model is represented
as a class. You can think of models as abstracted, idealized interfaces between con-
troller code and data.

• Views: These are the templates and HTML code that users of the Web application
see. They turn data into a format that users can view. They can output data as
HTML for Web browsers, XML, RSS, and other formats.

• Controllers: Controllers form the logic binding together models, data, and views.
They process input and deliver data for output. Controllers call methods made
available by models and deliver it to the views. Controllers contain methods known
as actions that, generally, represent each action relevant to that controller, such as
“show,” “hide,” “view,” “delete,” and so forth.

The basic relationship between these components is shown in Figure 13-1.

■Note You can learn more about the MVC paradigm at http://en.wikipedia.org/wiki/
Model-view-controller.

The most common motivation to use Rails is that it removes a lot of the groundwork
necessary to develop Web applications using other technologies. Features such as data-
base access, dynamic page elements (using Ajax—Asynchronous JavaScript and XML),
templating, and data validation are either preconfigured or take only a few lines of code
to configure.

Rails also encourages good development practices. All Rails applications come with
support for unit testing (among other forms of testing), and Rails’ guiding principles are
“Don’t Repeat Yourself” (known as DRY) and “Convention Over Configuration.”

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP388

7664 CH13.qxd 3/1/07 4:35 AM Page 388

7664f1301scrap.pdf FPO

389CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP

Figure 13-1. The interactions between users, views, controllers, and models

Installing Rails

The Rails framework is made up of several different libraries, but it’s simple to install
because all the parts are distributed as RubyGems. For completeness, though, the
following is a list of Rails’ constituent libraries:

• Rails: The core library of the Ruby on Rails framework that ties the other libraries
together.

• ActionMailer: A library that makes it easy to send e-mail from Rails applications.
A basic overview of ActionMailer, including how to use it to send mail separately
from Rails, is given in Chapter 14.

7664 CH13.qxd 3/1/07 4:35 AM Page 389

• ActionPack: A library providing useful methods used in views and controllers to
generate HTML and dynamic page elements, such as Ajax and JavaScript, or man-
age data objects.

• ActionWebService: Provides methods to make it easy to offer functionality from
your Rails application as a Web service. This section of Rails is being removed as
of Rails 1.2 in favor of alternative techniques, but it’s mentioned here for complete-
ness.

• ActiveRecord: An object-relational mapper (ORM) that ties database tables to
classes. If you have an ActiveRecord object that references a row in a database
table, you can work with that object as you would any other Ruby object (by using
attributes and other methods), and changes will be stored in the relevant database
table. A basic overview of ActiveRecord was given in Chapter 9.

• ActiveSupport: A library that collects a number of support and utility classes used
by various Rails features. For example, ActiveSupport implements many useful
methods for manipulating times, numbers, arrays, and hashes.

Generally you won’t need to know or care about each of these elements as a discrete
library because you can install them all at once using RubyGems, like so:

gem install rails

gem asks you if you want to install each of the libraries one by one (you can skip this
by using gem install --include-dependencies rails instead), then gem installs each of
them along with their documentation.

If you are confident about installing Ruby libraries by this point, these instructions
might be enough for you to have a basic installation of the Rails framework in place.
However, there are easier alternatives that can simplify the process in Windows or on
Mac OS X.

Windows users can install Instant Rails (http://instantrails.rubyforge.org/), a
one-stop Rails installation solution that includes Ruby, Rails, Apache, and MySQL, all
preconfigured and ready to run “out of the box.” These elements are kept separate from
your usual installations, so you can begin developing Rails applications immediately.
This system is ideal to tide you over if you have problems installing Rails and/or MySQL
normally.

Mac users can install Locomotive (http://locomotive.raaum.org/), which provides the
same features as Instant Rails, but on OS X. Locomotive will get your Mac running with
Rails without breaking any existing configuration or tools you have installed.

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP390

7664 CH13.qxd 3/1/07 4:35 AM Page 390

Database Considerations

As Rails is used primarily to develop data-driven Web applications, it’s necessary to have
a database system available to use on your computer. Instant Rails and Locomotive users
have MySQL installed automatically, but if you don’t have a database system installed
you’ll need to obtain one.

Database engines are covered in Chapter 9, and you can use all those covered
(MySQL, SQLite, PostgreSQL, Oracle, and Microsoft SQL Server) with Ruby on Rails.
However, most developers use MySQL or PostgreSQL, as Rails supports these database
engines best. You often have to make “hacks” and tweaks to have your Rails application
work with other database engines, which are beyond the scope of this chapter.

This chapter assumes you have a MySQL server present on your local machine that
Rails applications can use. If you don’t, you can download and install the “community”
edition of MySQL for free by visiting http://dev.mysql.com/downloads/mysql/5.0.html.

Building a Basic Rails Application
As explained in the previous section, Rails is popular because it makes developing Web
applications easy. In this section I’ll demonstrate that by showing you how to generate a
basic Web application and looking through how it works.

Creating a Blank Rails Application

As you can use Rails to develop both small and large applications, different types of files
are organized into different directories to keep elements separated for tidiness on large
projects. A lot of pre-created files are also placed within a new, blank Rails project. The
quickest way to look at these files and the overall directory structure is to leap right in
and create a new Rails project.

Your project in this chapter will be to create a simplistic online diary system, similar
to a blog (or weblog). The resulting application will let you view your diary, and add,
delete, or edit specific entries. The basic features of being able to Create, Read, Update,
and Delete items are known as CRUD features, and most types of Web applications fea-
ture CRUD mechanisms at one level or another. For example, a photo gallery site allows
you to add, view, edit, and delete photos, which are all CRUD actions. Therefore, the
mechanics of developing a basic diary tool are easily transferable to developing most
other types of Web applications.

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP 391

7664 CH13.qxd 3/1/07 4:35 AM Page 391

The rails Command Line Tool

When you installed Rails, a script called rails was also installed. You use the rails script
to create new Rails projects, their default files, and their directory structure. To use it,
navigate to a place in your filesystem where you would like to store Rails projects (possi-
bly creating a rails directory in the process) and run rails, specifying an application
name as the sole argument:

rails mydiary

create

create app/controllers

create app/helpers

create app/models

create app/views/layouts

create config/environments

create components

create db

create doc

create lib

create lib/tasks

create log

create public/images

create public/javascripts

create public/stylesheets

create script/performance

create script/process

create test/fixtures

create test/functional

create test/integration

create test/mocks/development

create test/mocks/test

create test/unit

create vendor

create vendor/plugins

create tmp/sessions

create tmp/sockets

create tmp/cache

create Rakefile

create README

create app/controllers/application.rb

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP392

7664 CH13.qxd 3/1/07 4:35 AM Page 392

create app/helpers/application_helper.rb

create test/test_helper.rb

create config/database.yml

create config/routes.rb

create public/.htaccess

create config/boot.rb

create config/environment.rb

create config/environments/production.rb

create config/environments/development.rb

create config/environments/test.rb

create script/about

create script/breakpointer

create script/console

create script/destroy

create script/generate

create script/performance/benchmarker

create script/performance/profiler

create script/process/reaper

create script/process/spawner

create script/runner

create script/server

create script/plugin

create public/dispatch.rb

create public/dispatch.cgi

create public/dispatch.fcgi

create public/404.html

create public/500.html

create public/index.html

create public/favicon.ico

create public/robots.txt

create public/images/rails.png

create public/javascripts/prototype.js

create public/javascripts/effects.js

create public/javascripts/dragdrop.js

create public/javascripts/controls.js

create public/javascripts/application.js

create doc/README_FOR_APP

create log/server.log

create log/production.log

create log/development.log

create log/test.log

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP 393

7664 CH13.qxd 3/1/07 4:35 AM Page 393

A lot of files and directories are produced, but don’t feel overwhelmed! You won’t
even use many of them in this chapter, as they are for more advanced uses that aren’t
relevant to basic Web application development. In most cases, Rails provides sane
defaults anyway, so you don’t need to change a lot of files unless you’re doing something
special. However, you’ll explore what many of these directories are for in the following
section.

■Note The exact file and directory structure might vary on your system depending on what version of
Rails you’re running. The preceding structure was generated by Rails 1.1.6, the official production release
of Rails at the start of 2007.

Files and Directories Within a Rails Application

In this section we’re going to go through the directories and files created by rails and
look at what they’re for. Don’t become overwhelmed by this section. If there’s something
you don’t understand, keep going, as most of the new terms and concepts mentioned
here are explained as we use them throughout this chapter.

rails generates the following main folders:

• app: This folder contains most of the Ruby source code and output templates
directly associated with the application. It contains several other folders that I’ll
cover next.

• app/controllers: Contains the controller files. In an empty project, only
application.rb exists. application.rb is an application-wide controller where
you can define methods that all other controllers inherit.

• app/helpers: Contains helper files—Ruby source code files that provide methods
that you can use from views.

• app/models: Contains a file for each model in the application. In an empty project
no models are yet defined, so this directory is empty.

• app/views: Contains the output templates (views) for the application. Typically
each controller has its own folder under app/views, with templates located in those
folders. There’s also a layouts folder that Rails uses to store generic application-
wide templates.

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP394

7664 CH13.qxd 3/1/07 4:35 AM Page 394

• components: Contains discrete MVC “component” applications. This feature isn’t
commonly used any more and is mostly there for historical reasons (indeed, this
folder might not even be present in your Rails project depending on the version
of Rails you’re using). Plugins, covered at the end of this chapter, have largely
replaced components.

• config: An important folder that contains configuration files for the application.
database.yml is a YAML file with information about the database(s) that the appli-
cation will use. environment.rb and boot.rb are prebuilt files that you usually won’t
need to edit, unless you want to tweak fine details of how your application is
started. routes.rb is covered later in this chapter in the section “Routing.”

• db: A folder to be used for database dumps, backups, and migrations.

• doc: Contains any RDoc documentation generated for the application. In an empty
project it contains a basic text file called README_FOR_APP, which you can use as a
plain-text documentation file, perhaps to contain instructions for others on how
to install your app.

• lib: Contains third-party libraries and Rake tasks. You won’t need to use this direc-
tory at all for most Rails application development. Plugins have largely superseded
the features offered by libraries that were placed into lib.

• log: Contains log files relating to the operation of the application.

• public: Contains nondynamic files that are accessible under your application’s URL
scheme; for example, JavaScript libraries, images, and CSS stylesheets. This folder
also includes several “dispatch” files and an .htaccess file that make it possible to
set up your application to run under Web servers such as Apache and LightTPD.

• script: Contains scripts and command line tools that are used in constructing and
deploying Rails applications. console is an irb-like tool that preloads your Rails
application’s environment before giving you a prompt. generate is a script that can
generate certain types of Rails code for you from templates. server is used to run a
basic WEBrick or LightTPD server you can use to access your application from a
Web browser. The other scripts are not of any immediate use to you.

• test: Contains the test subsystems for a Rails application. This folder is covered in
more detail later in this chapter in the “Testing” section.

• tmp: Temporary storage area for data created and used by your Rails application.

• vendor: This folder is used for storing versions of the Rails framework that your
application is bound to, and for storing plugins (under the vendor/plugins
directory).

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP 395

7664 CH13.qxd 3/1/07 4:35 AM Page 395

I’ll briefly mention many of these folders again throughout the rest of the chapter as
you create files within them to get your basic application working.

Database Initialization

Earlier I said that Rails applications are generally database dependent. With this in mind,
it’s necessary to create a database for your application on your database server.

The technique you’ll use to create a database for your application will vary with data-
base type and how you have your database server installed. In this section I’ll assume you
have a MySQL server installed and have either downloaded a tool you can use to manage
MySQL databases or have access to the standard MySQL command line client.

■Note If you’re using a different type of database, you must refer to the documentation and programs
associated with your database system and look up how to create a database and a log in to that database on
your system.

From the command line MySQL client, it’s quick and easy to create a database. Here’s
an example session showing you how to create a database and associate it with a user-
name and password for future access:

~/rails/mydiary $ mysql -u root -p

Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 10 to server version: 5.0.27-standard

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> CREATE DATABASE mydiary;

Query OK, 1 row affected (0.08 sec)

mysql> GRANT ALL PRIVILEGES ON mydiary.* TO mydiary@localhost➥

IDENTIFIED BY 'mypassword';

Query OK, 0 rows affected (0.30 sec)

mysql> QUIT

Bye

In this session you create a database called mydiary and then grant all the privileges
to use that database to a user called mydiary with a password of mypassword. You can check

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP396

7664 CH13.qxd 3/1/07 4:35 AM Page 396

that the database and the user was created successfully by using the MySQL command
line client to access the mydiary database:

~/rails/mydiary $ mysql -u mydiary -p

Enter password: <type mypassword at this point>

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 12 to server version: 5.0.27-standard

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> QUIT

Bye

If MySQL gives no error, generally everything is okay. If you get an error saying that
the username is invalid, then the granting of privileges in the prior section wasn’t suc-
cessful, so refer to any error messages that appeared at that point.

If you’re using a GUI MySQL client or even a client for a totally different database
system, make sure that you’ve created a database called mydiary and made it accessible
to a user. Your client should allow you to test this easily.

Once the database has been created, you can tell your Rails application of its exis-
tence by editing the config/database.yml file. Here’s what it contains by default for your
empty application:

MySQL (default setup). Versions 4.1 and 5.0 are recommended.

#

Install the MySQL driver:

gem install mysql

On MacOS X:

gem install mysql -- --include=/usr/local/lib

On Windows:

There is no gem for Windows. Install mysql.so from RubyForApache.

http://rubyforge.org/projects/rubyforapache

#

And be sure to use new-style password hashing:

http://dev.mysql.com/doc/refman/5.0/en/old-client.html

development:

adapter: mysql

database: mydiary_development

username: root

password:

host: localhost

Warning: The database defined as 'test' will be erased and

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP 397

7664 CH13.qxd 3/1/07 4:35 AM Page 397

regenerated from your development database when you run 'rake'.

Do not set this db to the same as development or production.

test:

adapter: mysql

database: mydiary_test

username: root

password:

host: localhost

production:

adapter: mysql

database: mydiary_production

username: root

password:

host: localhost

Ignoring the comments, you’ll notice three main sections in database.yml called
“development,” “test,” and “production.” These represent the three different environ-
ments your application can run under. For example, while developing, you want your
application to return verbose error messages and automatically detect changes you make
to the code. In production (better thought of as being a “deployment” environment) you
want speed, caching, and nonverbose error messages. The test environment is provided
so that testing can occur on a different database away from your regular data.

The section you’re interested right now is the “development” section. You need to
edit the details in this section to reflect those necessary to connect to the database you
created previously. For example:

development:

adapter: mysql

database: mydiary

username: mydiary

password: mypassword

host: localhost

Make the changes and save the file without changing anything else.

Creating a Model and Migrations

The last critical step before you can work on your application properly is to generate
database tables to represent the models that your application will work upon. In this case
we’re going to keep it simple to start with and focus entirely on diary entries, so you’ll call
your database table entries.

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP398

7664 CH13.qxd 3/1/07 4:35 AM Page 398

In Rails, models and database tables generally have a direct relationship. If you have
a database table called entries, then this will be directly related to a model class in your
Rails application called Entry.

■Note By default, table names are pluralized and model names are singular. Rails works out the
conversion between singular and plural names automatically. However, it’s possible to enforce table names
manually to work under different situations (for example, using a table called diary_entries with a model
class called Entry), but this is beyond the scope of this chapter.

You can create an entries table in your mydiary database in two ways at this point.
The first option is to use SQL through the MySQL command line client (or whatever

alternative you’re using) and generate a table by hand, like so:

CREATE TABLE entries (

id int auto_increment,

title varchar(255),

content text,

created_at datetime,

PRIMARY KEY(id)

);

This SQL statement creates the entries table with four columns: an id column, a
title column to store the title of the diary entry, a content column, and a created_at
column that stores the date and time when the entry was created.

Creating tables with SQL or a GUI client works well, but a better alternative is to use
a system Rails provides called migrations. Migrations provide a programmatic way to
manage your database’s schema and data. Migrations allow you to manage the evolution
of your database’s schema over time and give you the functionality to “roll back” your
schema or create it all at once upon a new database.

■Note Full information about migrations is available from http://www.rubyonrails.org/
api/classes/ActiveRecord/Migration.html.

Let’s create a migration that builds your entries table by using the generate script
found in the script folder:

ruby script/generate migration AddEntriesTable

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP 399

7664 CH13.qxd 3/1/07 4:35 AM Page 399

create db/migrate

create db/migrate/001_add_entries_table.rb

■Note On OS X and Linux, you might be able to use a shorter format to use scripts in the script folder,
such as ./script/generate. However, the preceding format is designed to work across platforms by
referring to the Ruby interpreter explicitly.

generate has created the db/migrate folder for you (where all migrations are stored)
and then created a Ruby file called 001_add_entries_table.rb where you can define what
you want the database to do.

■Note Even though you used the name AddEntriesTable for this migration, it could, in effect, be almost
anything. This was simply used because it’s the common style for migration names.

Let’s look at 001_add_entries_table.rb:

class AddEntriesTable < ActiveRecord::Migration

def self.up

end

def self.down

end

end

This is an empty migration featuring two methods, up and down. You use up to create
things and perform operations necessary for the migration to work. You use down when
“rolling back” from the state where a migration is finished back to how things were before
the migration was run.

In the up method you’ll use some methods Rails provides to generate the entries
table, and in the down method you’ll use a method to remove that table. The final
001_add_entries_table.rb looks like this:

class AddEntriesTable < ActiveRecord::Migration

def self.up

create_table :entries do |table|

table.column :title, :string

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP400

7664 CH13.qxd 3/1/07 4:35 AM Page 400

table.column :content, :text

table.column :created_at, :datetime

end

end

def self.down

drop_table :entries

end

end

In the up class method you use the create_table method to create the entries table,
and within the code block you use the column method to create columns of varying types.

■Note You don’t have to create the id column explicitly; this is done for you automatically.

To perform the migration (and therefore actually create the entries table using
the migration), you use a Rake task (see the following “Rake Tasks” sidebar for more
information about these) called db:migrate:

rake db:migrate

(in /Users/peter/rails/mydiary)

== AddEntriesTable: migrating ===

-- create_table(:entries)

-> 0.3683s

== AddEntriesTable: migrated (0.3685s) ==

Each step of the migration is shown in the preceding results. The AddEntriesTable
migration is run and the entries table created. No error messages are shown, and the
mydiary database now contains an operational entries table.

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP 401

7664 CH13.qxd 3/1/07 4:35 AM Page 401

Migrations are generally preferred over performing SQL statements directly upon the
database because they’re mostly database independent (Rails outputs the correct SQL for
the methods used within migrations for the database engine being used), and the data-
base operations are stored in code rather than being ephemeral operations.

Migrations also make it easy to make changes to the database over time. For exam-
ple, if you wanted to add another column to the entries table, you could simply create a
new migration and use add_column and remove_column methods in the up and down methods
of that new migration. For example:

ruby script/generate migration AddUpdatedAtColumnToEntries

exists db/migrate

create db/migrate/002_add_updated_at_column_to_entries.rb

Then you could write 002_add_updated_at_column_to_entries.rb like so:

class AddUpdatedAtColumnToEntries < ActiveRecord::Migration

def self.up

add_column :entries, :updated_at, :datetime

end

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP402

RAKE TASKS

Rake tasks are administrative tasks associated with your application that are managed by the Rake
tool. Rake, meaning “Ruby Make,” is a tool that you can use to process and trigger actions to perform
upon Ruby projects and code, and it’s used commonly within Rails projects to do things such as start
unit tests and perform migrations.

To perform a Rake task, you simply run rake followed by the name of a task:

rake <task name>

You can also get a list of all the Rake tasks available:

rake --tasks

With Rails 1.1.6, there are 41 tasks by default. To save space they aren’t listed here, but it’s worth
looking through the list to get a feel for what tasks are available.

7664 CH13.qxd 3/1/07 4:35 AM Page 402

def self.down

remove_column :entries, :updated_at

end

end

Then put that migration into action:

rake db:migrate

(in /Users/peter/rails/mydiary)

== AddUpdatedAtColumnToEntries: migrating =====================================

-- add_column(:entries, :updated_at, :datetime)

-> 0.2381s

== AddUpdatedAtColumnToEntries: migrated (0.2383s) ============================

The new migration adds an updated_at DATETIME column to the entries table.
If you wanted to, you could “roll back” this migration and go back to the state after

the first migration by using this Rake task:

rake db:migrate VERSION=1

(in /Users/peter/rails/mydiary)

== AddUpdatedAtColumnToEntries: reverting =====================================

-- remove_column(:entries, :updated_at)

-> 0.0535s

== AddUpdatedAtColumnToEntries: reverted (0.0536s) ============================

■Note In some circumstances, migrations are created automatically and you simply need to fill them in.
For example, if you use Rails’ model generator, a migration is automatically created for creating the table
associated with the newly generated model. In this chapter, however, we’re working in the opposite direc-
tion. There’s always more than one way to do it!

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP 403

7664 CH13.qxd 3/1/07 4:35 AM Page 403

Scaffolding

In the last couple sections you’ve created a database and migrations to produce a work-
ing entries table. In this section you’ll create enough code to make a basic Web
application that can perform CRUD operations upon data in your entries table.

Rails provides a mechanism called scaffolding that generates default, generic code to
provide CRUD operations for any of your models. You can then build your own views and
controller methods off of this basic scaffolding. It’s designed to give you a jump start
without making you code everything from scratch (although you can code from scratch if
you want to, particularly if your ambitions differ wildly from what the scaffolding pro-
vides).

To generate scaffolding for your entries table, use the generate script again:

ruby script/generate scaffold Entry

exists app/controllers/

exists app/helpers/

create app/views/entries

exists test/functional/

dependency model

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/entry.rb

create test/unit/entry_test.rb

create test/fixtures/entries.yml

create app/views/entries/_form.rhtml

create app/views/entries/list.rhtml

create app/views/entries/show.rhtml

create app/views/entries/new.rhtml

create app/views/entries/edit.rhtml

create app/controllers/entries_controller.rb

create test/functional/entries_controller_test.rb

create app/helpers/entries_helper.rb

create app/views/layouts/entries.rhtml

create public/stylesheets/scaffold.css

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP404

7664 CH13.qxd 3/1/07 4:35 AM Page 404

When creating scaffolding, Rails looks at the database table associated with the
model you’re building scaffolding for (the entries table for the Entry model, in this case)
and generates a controller, views, and a model file reflecting the structure of the table.
The generated files are shown in the preceding results listing.

■Note Scaffolding depends on the structure of the database table, so you must always create and run the
table’s migration before creating any scaffolding.

The scaffolding generator also creates a layout file, several test-related files, and a
stylesheet used by the scaffolding layout. It also generates any missing directories
needed.

That’s all you have to do to get a working application! To try it out, you need to run
the server script that provides a basic WEBrick Web server through which to access the
application:

ruby script/server

=> Booting WEBrick...

=> Rails application started on http://0.0.0.0:3000

=> Ctrl-C to shutdown server; call with --help for options

[2007-03-19 19:37:48] INFO WEBrick 1.3.1

[2007-03-19 19:37:48] INFO ruby 1.8.5 (2006-08-32) [i686-darwin8.8.1]

[2007-03-19 19:37:48] INFO WEBrick::HTTPServer#start: pid=10999 port=3000

At this point the application sits there doing nothing. This is because it’s waiting for
requests from Web browsers.

■Note If you have the Mongrel library installed, you can use that to serve the Rails application. Just run
mongrel_rails start instead of ruby script/server.

Go to your Web browser of choice and access the application using the URL given
by the WEBrick output (http://0.0.0.0:3000/ in this case, but it might be http://
localhost:3000/ or http://127.0.0.1:3000/ on your machine). You should see a page
like the one in Figure 13-2.

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP 405

7664 CH13.qxd 3/1/07 4:35 AM Page 405

Figure 13-2. The default Rails application index.html page

The page you’re seeing is the index.html file from the public folder. This is because if
no action is found within a Rails application that associates with the URL you’re loading
from your Web browser, a Rails application should return a file from the public folder—if
any file matches—or an error message. Because the default page to load on a Web server
is usually index.html, public/index.html is returned.

When you generated the scaffolding for the Entry model, a controller called entries
was created. By default, you access controller methods in a Rails application using a URL
in the format of http://<hostname>/controller/action.

So, with your application, load http://localhost/entries (replace localhost with
whatever hostname is used on your local machine). No action name is specified, but by
default an action name of index is assumed, and the scaffolding has implemented this. If
you’re successful, you’ll see a basic list of entries, as shown in Figure 13-3.

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP406

7664 CH13.qxd 3/1/07 4:35 AM Page 406

Figure 13-3. The basic list or index view of the entries scaffolding

The list of entries in Figure 13-3 is noticeably bare. This is because your entries table
has no data contained within it. The column headings for your table are obvious, though
(Title, Content, and Created at), and a “New entry” link is available.

Clicking “New entry” takes you to http://localhost/entries/new—the new method
within the entries controller—and presents you with a page containing a form that
allows you to fill out the data for a single entry. This view is demonstrated in Figure 13-4.

Figure 13-4. The new method of the entries controller, used to create new entries

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP 407

7664 CH13.qxd 3/1/07 4:35 AM Page 407

From this point you can create new entries, return to the list, edit those entries (the
form looks similar to that in Figure 13-4) and delete entries. That covers all the CRUD
functions!

With scaffolding you get a basic, but complete, data-driven Web application with just
a single line typed at the command prompt. However, next you need to look at what the
scaffolding generator actually generated, and learn how to customize the models,
controllers, and views to create the application that you want.

Controllers and Views

In the last section you put together a basic Web application that allowed you to create,
edit, list, and delete diary entries. You used scaffolding, which let you put a whole, work-
ing application together with no coding effort required. In this section, you’re going to
look at what the scaffolding generated, how it works, and how you can extend the appli-
cation with your own methods and views.

Controller Actions

The first URL you accessed within your application was http://localhost/entries/list.
This URL takes you to the entries controller’s list method. Let’s look in app/controllers/
entries_controller.rb to find it:

class EntriesController < ApplicationController

def index

list

render :action => 'list'

end

GETs should be safe (see http://www.w3.org/2001/tag/doc/whenToUseGet.html)

verify :method => :post, :only => [:destroy, :create, :update],

:redirect_to => { :action => :list }

def list

@entry_pages, @entries = paginate :entries, :per_page => 10

end

def show

@entry = Entry.find(params[:id])

end

def new

@entry = Entry.new

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP408

7664 CH13.qxd 3/1/07 4:35 AM Page 408

end

def create

@entry = Entry.new(params[:entry])

if @entry.save

flash[:notice] = 'Entry was successfully created.'

redirect_to :action => 'list'

else

render :action => 'new'

end

end

def edit

@entry = Entry.find(params[:id])

end

def update

@entry = Entry.find(params[:id])

if @entry.update_attributes(params[:entry])

flash[:notice] = 'Entry was successfully updated.'

redirect_to :action => 'show', :id => @entry

else

render :action => 'edit'

end

end

def destroy

Entry.find(params[:id]).destroy

redirect_to :action => 'list'

end

end

This code shows that Ruby controllers are implemented as classes that inherit from
ApplicationController (which is found in app/controllers/application.rb and in turn
inherits from ActionController::Base), which in turn inherits from a core Rails class,
ActionController::Base.

When a user tries to access the list method of the entries controller, control is dele-
gated to the list method (or action) in the EntriesController class, shown on its own
here:

def list

@entry_pages, @entries = paginate :entries, :per_page => 10

end

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP 409

7664 CH13.qxd 3/1/07 4:35 AM Page 409

This code is simple for what it does. It relies on a method provided by Rails called
paginate that provides items from a particular model (in this case, entries) in groups of
ten (in this instance). The reason for pagination is because if your system contained 1,000
entries, showing them all on one page would be cumbersome. However, the paginate
method returns entries in groups of ten and recognizes a page variable passed from the
Web browser (via the URL) so that the correct group of ten entries is shown.

However, you could rewrite the list method to load all the entries like so:

def list

@entries = Entry.find(:all)

end

Entry is the model class, and models inherit from ActiveRecord::Base, which provides
methods suitable to navigate and find data in the associated table for that model. There-
fore, Entry.find(:all) returns all rows (as objects) from the entries table and places them
as an array into @entries.

Views and Embedded Ruby

Now let’s look at the equivalent view for the list controller action examined in the previ-
ous section. The view template is located in app/views/entries/list.rhtml:

<h1>Listing entries</h1>

<table>

<tr>

<% for column in Entry.content_columns %>

<th><%= column.human_name %></th>

<% end %>

</tr>

<% for entry in @entries %>

<tr>

<% for column in Entry.content_columns %>

<td><%=h entry.send(column.name) %></td>

<% end %>

<td><%= link_to 'Show', :action => 'show', :id => entry %></td>

<td><%= link_to 'Edit', :action => 'edit', :id => entry %></td>

<td><%= link_to 'Destroy', { :action => 'destroy', :id => entry },

:confirm => 'Are you sure?', :post => true %></td>

</tr>

<% end %>

</table>

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP410

7664 CH13.qxd 3/1/07 4:35 AM Page 410

<%= link_to 'Previous page', { :page => @entry_pages.current.previous }

if @entry_pages.current.previous %>

<%= link_to 'Next page', { :page => @entry_pages.current.next }

if @entry_pages.current.next %>

<%= link_to 'New entry', :action => 'new' %>

If you’re familiar with both Ruby and HTML, you’ll note that this view is, basically,
HTML with Ruby embedded in it (with the Ruby located between <% and %> tags).

■Note The file extension of HTML views that can have embedded Ruby is RHTML rather than HTML.

The first dynamic section of the preceding view looks like this:

<% for column in Entry.content_columns %>

<th><%= column.human_name %></th>

<% end %>

This code works like a normal Ruby loop. The for loop iterates through the results of
Entry.content_columns (an ActiveRecord method that returns each column as an object).

In your application’s case, the column names are Title, Content, and Created at
(humanized versions of the actual column names: title, content, and created_at), so the
preceding loop, which uses each column’s human_name method, results in the following
HTML being generated and returned to the visiting Web browser:

<th>Title</th>

<th>Content</th>

<th>Created at</th>

The core part of the list view contains this code:

<% for entry in @entries %>

<tr>

<% for column in Entry.content_columns %>

<td><%=h entry.send(column.name) %></td>

<% end %>

<td><%= link_to 'Show', :action => 'show', :id => entry %></td>

<td><%= link_to 'Edit', :action => 'edit', :id => entry %></td>

<td><%= link_to 'Destroy', { :action => 'destroy', :id => entry },

:confirm => 'Are you sure?', :post => true %></td>

</tr>

<% end %>

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP 411

7664 CH13.qxd 3/1/07 4:35 AM Page 411

This view code results in the primary part of the page being rendered: the actual list
of entries. I won’t go into this code line by line, but there a few key things to note. This
whole section is a loop over each element of @entries (where for entry in @entries is an
alternative way of saying @entries.each do |entry|). You should recall that your controller
code placed Entry objects from the database into the @entries array, so the view code iter-
ates over each element (or each entry). Next, within the main loop is another loop that
iterates through each of the columns associated with each of these entries.

After the data for the entry has been shown, you reach this:

<td><%= link_to 'Show', :action => 'show', :id => entry %></td>

<td><%= link_to 'Edit', :action => 'edit', :id => entry %></td>

<td><%= link_to 'Destroy', { :action => 'destroy', :id => entry },

:confirm => 'Are you sure?', :post => true %></td>

The important parts to look at are the calls to the link_to method. link_to is a special
method provided by Rails that generates an HTML link to another controller and/or
action within the application. Let’s look at the first line:

<td><%= link_to 'Show', :action => 'show', :id => entry %></td>

Whereas the general Ruby code in the view is located within <% and %> tags, Ruby
code that results in something to be rendered in the document (that is, shown on the
Web page) is included within <%= and %> tags. The link_to method accepts the text to use
for the link, and then it accepts parameters, formatted as a hash, that represent where
the eventual link is to point to. In this case, the link is created to point to the show method
of the current controller (you could specify a different controller with an option such as
:controller => 'controllername'), with an ID matching that of the current entry you’re
iterating over.

For example, let’s assume entry refers to an Entry object with attributes and data, as
such:

id: 3

title: Example Entry

content: This is an example entry.

At this point, entry.id is equal to 3, entry.title is equal to Example Entry, and
entry.content is equal to This is an example entry.

Let’s build up to the link_to example in a few steps showing some example view code
and what it would render in this example:

<%= entry.id %>

3

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP412

7664 CH13.qxd 3/1/07 4:35 AM Page 412

<%= entry.content %>

This is an example entry.

<%= link_to 'Show', :action => 'show' %>

Show

<%= link_to entry.title, :action => 'show', :id => entry.id %>

Example Entry

<%= link_to 'Show', :action => 'show', :id => entry %>

Show

It’s important to understand how these examples work, as many elements of views
rendered by Rails will contain patterns such as these, whether for generating links,
including images, or creating forms to post data back to your application.

■Note The last example uses :id => entry rather than :id => entry.id. This is allowable, as id is
considered to be the default column if no other is supplied in situations where links are being created.

Creating a New Action and View

Let’s use the basic knowledge you’ve gathered so far to create your own controller action
and view from scratch to show all your diary entries in full on a single page in a diary or
blog-style layout.

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP 413

7664 CH13.qxd 3/1/07 4:35 AM Page 413

Creating a new method is as easy as adding a method to the controller of your
choice. Add the following method to app/controllers/entries_controller.rb:

def view_all

@entries = Entry.find(:all, :order => 'created_at DESC')

end

This code defines a method (and therefore, a controller action) called view_all that
contains a single line that retrieves all the entries from your database, ordered in chrono-
logically descending order (like a blog). The order is defined by the optional :order
parameter. ActiveRecord methods, such as find, have many useful optional parameters
such as these to get the results you desire. You can learn all about them from the official
Ruby on Rails documentation, as there are too many to cover here.

Now you have an action that will respond when you visit http://localhost/
entries/view_all, but if you try to access that URL, you’ll get the
following error:

Template is missing

Missing template script/../config/../app/views/entries/view_all.rhtml

The error reminds you that even though you have an action, you don’t have a view
associated with that action. To create the associated view, you can just create a new file
in app/views/entries called view_all.rhtml. Within view_all.rhtml, place this code:

<% @entries.each do |entry| %>

<h1><%= entry.title %></h1>

<p><%= entry.content %></p>

<p>Posted at <%= entry.created_at %></p>

<% end %>

<%= link_to 'Add New entry', :controller => 'entries', :action => 'new' %>

Once this code is in place, you can access http://localhost/entries/view_all suc-
cessfully, resulting in a page as shown in Figure 13-5.

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP414

7664 CH13.qxd 3/1/07 4:35 AM Page 414

Figure 13-5. The view_all action showing some test items from your entries table

Let’s take a look at what the code in your new action and view does. When you
request http://localhost/entries/view_all, the view_all method in the entries controller
is run:

def view_all

@entries = Entry.find(:all, :order => 'created_at DESC')

end

All the items from the entries table are obtained through the Entry model as Entry
objects and placed into an array assigned to @entries, which is then passed through to
the associated view—app/views/entries/view_all.rhtml—which contains this code:

<% @entries.each do |entry| %>

<h1><%= link_to entry.title, :action => 'show', :id => entry.id %></h1>

<p><%= entry.content %></p>

<p>Posted at <%= entry.created_at %></p>

<% end %>

<%= link_to 'Add New entry', :controller => 'entries', :action => 'new' %>

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP 415

7664 CH13.qxd 3/1/07 4:35 AM Page 415

The first line starts by using the each method on the @entries array to iterate through
each element and place each constituent entry into the entry local variable. Within the
loop, you show the entry’s title (from entry.title) within an <h1> HTML heading, and
then the entry’s content and creation date. Once the loop is over, all the entries from the
database have been rendered, and finally you render a link to the new action of the
entries controller so that the user can post new entries to the system.

Parameters

In the last section you created an action and view to show all the diary entries in your
system on a single blog-like Web page. Within your view_all view was this line:

<h1><%= link_to entry.title, :action => 'show', :id => entry.id %></h1>

This line creates a heading that contains a link to the show action for that entry and
would render into final HTML like this:

This is a test

If you were to click the link, you would be redirected to the show action for the entries
controller, and an ID of 1 would be passed through. Let’s look at what the show action
does with this:

def show

@entry = Entry.find(params[:id])

end

The show action is simple, as all it does is retrieve a single entry from the database
(using, as always, the find method provided by the Entry model from ActiveRecord::Base).
You retrieve the ID from the URL through the params hash, a hash that is automatically
populated by any data passed to the Rails application via the URL.

If you use find with a single parameter containing an integer ID, then that row will be
retrieved from the relevant table for the associated model, and returned as a single
object. In this case, the entry retrieved is associated with @entry, then the view at
app/views/entries/show.rhtml renders the page you see.

Here are some examples of how some URLs relate to parameters that are found in the
params hash:

http://localhost/entries/show/1

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP416

7664 CH13.qxd 3/1/07 4:35 AM Page 416

params[:controller] == 'entries'

params[:action] == 'show'

params[:id] == '1'

http://localhost/entries/another_method/20?formfield1=test&formfield2=hello

params[:controller] == 'entries'

params[:action] == 'another_method'

params[:id] == '20'

params[:formfield1] == 'test'

params[:formfield2] == 'hello'

http://localhost/test/test2/?formfield1=test&formfield2=hello

params[:controller] == 'test'

params[:action] == 'test2'

params[:formfield1] == 'test'

params[:formfield2] == 'hello'

These examples demonstrate how you can pass data into methods within the URL
(or, in the case of POST requests—such as those that can be made from an HTML form—
within the HTTP request directly) and then access it by the controllers (or views) through
the params hash.

If you look at the code for the create action—an action used to create the new entries
as supplied by the form at http://localhost/entries/new—you’ll see how params is used to
create new entries:

def create

@entry = Entry.new(params[:entry])

if @entry.save

flash[:notice] = 'Entry was successfully created.'

redirect_to :action => 'list'

else

render :action => 'new'

end

end

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP 417

7664 CH13.qxd 3/1/07 4:35 AM Page 417

In this method, you create a new entry with Entry.new(params[:entry]). The new

method provided by ActiveRecord accepts the entire params hash and makes a new row of
data from it. On the next line you save that row to the database using @entry.save, which
returns true or false. If true (that is, the attempt is successful), the user will be redirected
to the list action (try changing this to view_all). If the save isn’t successful, the view
for the new action is rendered using render :action => 'new'. Note how you can use
redirect_to and render to perform operations that don’t necessarily fit in with the usual
controller ➤ action ➤ view life cycle, such as redirecting users elsewhere or rendering
views associated with other controller actions.

Concluding Thoughts

This section has covered only the basics of using controllers and views, but these are the
most essential parts to learn. Other features provided by views and controllers rely on the
concepts covered in this section. URLs are parsed into the desired controller and action,
any other supplied data is passed through the action via the params hash, and once the
action code has completed, a view is rendered.

In the next section you’ll take a look at how you can customize the URL parsing sys-
tem so that URLs of your own formatting can be converted into any controller and
method patterns that you wish. This technique is known as routing.

Routing

When you request a page from a Rails application that isn’t present within the public
folder, the Rails application tries to work out which controller and action you are trying
to use. In the previous sections, you’ve seen how a URL such as http://localhost/
entries/view_all means that the request is put through to the entries controller’s
view_all action.

You can use routing to override this default assumption that all URLs are of the form
controller_name/action_name/id.

Routing configurations for a Rails application are located in config/routes.rb. Let’s
look at what ours contains by default:

ActionController::Routing::Routes.draw do |map|

The priority is based upon order of creation: first created -> highest priority

Sample of regular route:

map.connect 'products/:id', :controller => 'catalog', :action => 'view'

Keep in mind you can assign values other than :controller and :action

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP418

7664 CH13.qxd 3/1/07 4:35 AM Page 418

Sample of named route:

map.purchase 'products/:id/purchase', :controller => 'catalog',

:action => 'purchase'

This route can be invoked with purchase_url(:id => product.id)

You can have the root of your site routed by hooking up ''

-- just remember to delete public/index.html.

map.connect '', :controller => "welcome"

Allow downloading Web Service WSDL as a file with an extension

instead of a file named 'wsdl'

map.connect ':controller/service.wsdl', :action => 'wsdl'

Install the default route as the lowest priority.

map.connect ':controller/:action/:id'

end

A lot of lines in this file are comments describing how to use routes. It’s worth read-
ing this documentation to gain an understanding of how routing works in the version of
Rails you’re running. However, we’ll look at a basic example here.

Note this line near the end of the file:

map.connect ':controller/:action/:id'

This is the default route that’s present within all new Rails applications. It simply
defines URLs as being of the format controller_name/action_name/id, as we looked at ear-
lier. Notice that symbols :controller, :action, and :id are used, and how these relate to
the data in the params hash. You can use this technique yourself when creating your own
routes so that different sections of the URL are passed to your controller through params
using certain element keys.

Let’s say that you want to create a route that means requests directly to http://
localhost/ will be passed through to your entries controller’s view_all method. You can
write it like so:

map.connect '', :controller => 'entries', :action => 'view_all'

This route defines that if there’s nothing in the URL (that is, nothing supplied after
the hostname, in the path of the URL), to apply the entries controller name and view_all
action name to the request automatically, thus passing it to the correct place.

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP 419

7664 CH13.qxd 3/1/07 4:35 AM Page 419

■Note Your new route must be located on a line above the default route of map.connect ':
controller/:action/:id' so that your new route takes precedence. Routes are processed in order of
precedence from the top of routes.rb downwards.

Make sure to delete the index.html file from public before trying to use your new
route. Otherwise, http://localhost/ results in public/index.html being rendered instead,
as files in public that match the requested URL have precedence over the Rails applica-
tion. However, once this file is gone, routing will do its job and pass a request to
http://localhost/ through to your view_all action.

Routing gets a lot more advanced than this, but the techniques used vary wildly
depending on what you want to do. There’s a lengthy guide to how routing works and how
to create your own advanced routes at http://manuals.rubyonrails.com/read/chapter/65.

Model Relationships

So far your application only has a single model, Entry, that relates to diary entries. How-
ever, one major benefit the ActiveRecord library provides is the ability to relate models
easily to one another. For example, you could create another model called User that
relates to different people who can post diary entries within your system.

The full depth of ActiveRecord and model relationships (also known as associations)
can, and does, take up entire books, so is beyond the scope of this introduction, but in
this section we’ll look at a basic example of how ActiveRecord models can relate to one
another.

In earlier sections of this chapter you saw how ActiveRecord objects work at a basic
level. For example:

entry = Entry.find(1)

entry.title = 'Title of the first entry'

entry.save

The way ActiveRecord relates data to objects is logical and straightforward. Columns
become attributes that you can get and set on the objects, and you can then save those
objects back to the database with the object’s save method.

However, let’s imagine that you have a User model that contains columns including a
user’s name, e-mail address, and other user-related information. Now let’s imagine that
you directly relate users and entries within your application. You might expect to be able
to do things like this:

entry = Entry.find(1)

entry.user.name = 'Name of whoever posted the entry'

entry.user.email = 'Their e-mail address'

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP420

7664 CH13.qxd 3/1/07 4:35 AM Page 420

This is, indeed, what one-to-many relationships with ActiveRecord enable. Setting
up such a relationship between models is easy. Consider the two models, located in
app/models/entry.rb and app/models/user.rb respectively:

class Entry < ActiveRecord::Base

belongs_to :user

end

You would use this code for the User model:

class User < ActiveRecord::Base

has_many :entries

end

ActiveRecord was designed to allow an almost natural language mechanism of
defining model relationships. In our Entry model we say that Entry objects “belong_to”
User objects. In the User model we say that User objects has_many associated Entry objects.

The only thing you need to set up, other than the relationship itself, is a column in
the entries table that enables the relationship to work. You need to store the id of the
associated user with each Entry object, so you need to add an integer column to entries
called user_id. You could do this by creating a new migration and using a directive such
as add_column :entries, :user_id, :integer or by adding the column manually with SQL
(or another client).

Once the model relationship has been defined and relationships between data have
been made—which is as easy as, say, entry.user = User.find(1) —you can then access
data across the relationship. For example, in a view showing an entry, you might have
some view code such as this:

<p>Posted by <%= entry.user.name %> at <%= entry.created_at %></p>

ActiveRecord also supports many-to-many relationships. For example, consider the
relationship between fictional Student and Class models. Students can be associated with
more than one class at a time, and each class can contain many students. With ActiveRe-
cord, you can define these relationships using a join table and a has_and_belongs_to_many
relationship, or through an intermediary model such as Enrollment, which defines the
links between Students and Classes.

■Note It’s worth pointing out that a model called Class wouldn’t be allowed in Rails, because there’s
already a class called Class built in to Ruby. Beware of reserved words and using names that are already
used elsewhere!

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP 421

7664 CH13.qxd 3/1/07 4:35 AM Page 421

The variety of relationships possible are documented in the official Ruby on Rails
documentation at http://www.rubyonrails.org/api/classes/ActiveRecord/
Associations/ClassMethods.html.

Sessions and Filters

A useful feature provided by Rails applications “out of the box” is support for sessions.
When a Web browser makes a request to your application, Rails silently sends back a
cookie containing a unique identifier for that browser. Whenever that browser makes fur-
ther requests, it sends back the cookie with the unique identifier, so the application
always knows when a certain previous visitor is making another request. You can use the
session’s ability to store information that’s specific to a particular visitor for use on future
requests.

Sessions are commonly used on Web sites for features such as shopping carts or
keeping track of what pages you’ve visited. For example, if you add an item to your cart at
an e-commerce site, the item chosen is stored in a data store associated with your ses-
sion’s ID. When you come to check out, your session ID is used to look up data specific to
your session in the session system’s data store and find out what you have in your cart.

To demonstrate basic session storage in your Rails application, you’ll count and show
a user how many times he or she has accessed actions within your application. To do this,
you need to have some way of performing this logic on each request made to the applica-
tion. You could add logic to every controller action, but an easier way is to use a filter
method called before_filter.

before_filter is a method you can use at the controller class level to define that a
method (or, indeed, many methods) should be executed before the method for the con-
troller action of the current request. Filters make it possible to perform generic activities
before every request (or before requests to certain groups of methods or to certain
controllers).

■Note A common use for filters within Rails is to make sure visitors are authenticated and authorized to
visit certain controllers and perform certain actions. If you have a controller class called AdminController,
you might want to add a before_filter that ensures a visitor is logged in to the site as an admin user
before you let him or her use the potentially dangerous actions within!

In this example, you’ll use before_filter to perform some logic before every request
to the application. To do this, you’ll add some code to app/controllers/application.rb, so
that every controller in your application (although there is only one in this case, entries)
will be subjected to the filter.

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP422

7664 CH13.qxd 3/1/07 4:35 AM Page 422

Here’s app/controllers/application.rb before the new code:

Filters added to this controller will be run for all controllers in the

application.

Likewise, all the methods added will be available for all controllers.

class ApplicationController < ActionController::Base

end

■Tip Pay attention to the comments left in default files as they are usually quite informative, as in
the preceding code.

Here’s the same file after implementing your request-counting code:

class ApplicationController < ActionController::Base

before_filter :count_requests_in_session

def count_requests_in_session

session[:requests] ||= 0

session[:requests] += 1

end

end

You use before_filter with a symbol as a parameter, where the symbol represents the
count_requests_in_session method.

Within the count_requests_in_session method, a hash provided by Rails called
session is used. Automatically, session is always a data store associated with the current
session, so anything you write to it or read from it is always associated with the current
session.

In this case, you initialize session[:requests] with 0 if it not already defined, and then
you increase the count on the next line. You can access this information from your views
now quite easily. Go to app/views/entries/view_all.rhtml and add this line to the top of
the file:

<%= session[:requests] %>

If you now load http://localhost/entries/view_all (or just http://localhost/ if you
followed the “Routing” section earlier), you’ll see “1” at the top of the page. Reload the
page, and the number increases for each reload. Sessions in action!

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP 423

7664 CH13.qxd 3/1/07 4:35 AM Page 423

If you totally shut down your Web browser, reload it, and do the same again, you’ll
notice the number has gone back to 1. This is because, by default, sessions are only
stored until the Web browser is closed. You can override this if you want to, though, with
some settings placed in config/environment.rb. You can learn more at http://errtheblog.
com/post/24. (There is further documentation on how sessions operate independently of
Rails, at a deeper level, in the “CGI” section of Chapter 16.)

Other Features
Although you’ve managed to create a basic, working Rails application so far, I’ve only
covered the basics. In this section I’ll go into a little more depth in a few key areas that
make Rails even more powerful.

Layouts

In the Rails application developed earlier in this chapter, you let scaffolding do the work
of creating views for you. You then looked through the views created to see how they
work. While doing this, you might have noticed the HTML code used was very basic. The
code used was only that specifically required to render that particular page or view. There
was no header or footer code, as you usually get with HTML. For example, most HTML
documents would start off something like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<title>Page Title Here</title>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<link rel="stylesheet" href="styles.css" type="text/css" media="screen" />

</head>

<body>

And, at the very least, a typical HTML document would end somewhat like this:

</body>

</html>

None of this code was included in any of the views you looked at. However, if you use
your browser’s “View Source” option while using the Rails application, you can clearly see
the header and footer code is present. This is because the views you’re using are being
rendered inside a layout.

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP424

7664 CH13.qxd 3/1/07 4:35 AM Page 424

In Rails, layouts are special, generic wrapper templates that multiple views can use.
Instead of repeating the HTML header and footer code within every view, you can simply
embed each view’s output into a layout instead. By default, if there’s a file with the same
name as the current controller in app/views/layouts with an RHTML extension, it’s used
as a layout.

Here are the contents of app/views/layouts/entries.rhtml from your earlier
application:

<html>

<head>

<title>Entries: <%= controller.action_name %></title>

<%= stylesheet_link_tag 'scaffold' %>

</head>

<body>

<p style="color: green"><%= flash[:notice] %></p>

<%= yield %>

</body>

</html>

This layout demonstrates the use of layouts perfectly. It includes the basic HTML
header and footer items, but also uses some special Rails code to include the name of
the current action, whatever it might be, into the title of the page. It also uses an
ActionPack-supplied helper method called stylesheet_link_tag to include a <link> tag
that loads the scaffold.css file from public/stylesheets/scaffold.css for use within
the page.

The <p style="color: green"><%= flash[:notice] %></p> code renders, if present, the
contents of flash[:notice], where flash is a special Rails-supplied data store (somewhat
like a session) that’s used for returning messages that arise during controller actions.
Placing this code into the layout rather than the view means that messages raised any-
where within your entries controller will display correctly on any page rendered by the
entries controller.

Last, the <%= yield %> code yields the rendering process to the view for the current
action, so the contents of the current view are rendered at that location.

The entries layout is automatically used because its filename is entries.rhtml, so
views resulting from an entries controller action automatically use it. However, you can
force a view to be displayed without a layout by adding a line at the point of render (that
is, in the relevant method or action) in the entries controller, like so:

render :layout => false

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP 425

7664 CH13.qxd 3/1/07 4:35 AM Page 425

For example, let’s create an action with a view that’s entirely independent of the
layout. Within the entries controller, you’d add this:

def special_method_without_layout

render :layout => false

end

In app/views/entries/special_method_without_layout.rhtml you could have this code:

<html>

<body>

<h1>This is a standalone page!</h1>

</body>

</html>

When the entries/special_method_without_layout action is rendered, only the code
within the view is used and the layout is ignored.

You can also specify a different layout to use in this way by supplying a layout name
to render instead:

render :layout => 'some_other_layout'

This would then use app/views/layouts/some_other_layout.rhtml for that action’s
view’s layout.

■Note You can learn more about layouts at http://api.rubyonrails.org/classes/
ActionController/Layout/ClassMethods.html.

Testing

In Chapter 8 you looked at Ruby’s unit testing abilities, and in Chapter 12 you used them
to test a library you developed. Tests allow you to specify expected outcomes and then to
have various elements of functionality (mostly results from methods) tested to see if the
actual outcomes match the expectations. If they match, you assume the code is perfect
(or as close as it can get!), but if you get errors, you can use the results to debug your
code.

Rails is particularly well known for its testing features, and a lot of this is due to
Ruby’s fine unit testing library that you looked at in Chapters 8 and 12. Test suites are run
using Rake commands from the root directory of the application, and tests take place

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP426

7664 CH13.qxd 3/1/07 4:35 AM Page 426

under the “test” environment, meaning that testing operations can take place upon a dif-
ferent database from live data.

At present, Rails supports three main types of testing as follows:

• Unit testing: You use unit testing within Rails to test your models. You supply the
Rails testing system with “fixtures” (that is, dummy data with which to populate
the test database) and a test suite for each model where you perform operations
against the data and then perform assertions against the results of these opera-
tions. These test suites are located in test/unit, and the fixtures are in YAML format
in test/fixtures.

• Functional testing: You use this to test your controllers. You have a test suite for
each controller, whereupon you make certain requests to controller actions (in
code) and then assert against the responses. You define functional tests in
test/functional.

• Integration testing: The highest level of testing, integration tests let you test your
entire application. You can make requests to controller actions, follow redirects,
assert against the responses, and then continue making more requests of different
types. Integration tests are often considered story level tests, as you can test an
entire branch of functionality from start to finish, in the same way a real user
would while interacting with the application with a Web browser. Integration tests
are defined in test/integration.

The use of the preceding testing techniques varies from developer to developer. It’s
common to download open source Rails applications to see no testing used at all. It can
be hard to develop the habit to test consistently, and harder still to learn to write the tests
before you write the code to produce the results. However, it’s still encouraged, because
once you perfect the technique, your code will shine, and you’ll be able to rest secure in
the knowledge that your code is easily testable and guaranteed.

■Note You can learn about the special types of assertions Rails adds to the standard Test::Unit assertions
at http://api.rubyonrails.org/classes/Test/Unit/Assertions.html.

In practice, it tends to be that more-advanced Rails developers write tests whereas
beginners tend not to. This is why testing isn’t covered in depth here, although a good
resource to learn about the ins and outs of testing Rails applications is “A Guide to Testing
The Rails,” available online at http://manuals.rubyonrails.com/read/book/5. The guide is a
little old, but covers all the basics. As integration tests were added at a later stage, they are
not covered at this time.

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP 427

7664 CH13.qxd 3/1/07 4:35 AM Page 427

However, it’s best to learn how to develop Rails applications in full first, produce a
few “throwaway” applications, and then retreat to look at testing once the framework is
entirely familiar to you.

Plugins

In Rails, plugins are special libraries that add functionality to the Rails framework within
the scope of the application they are installed under or the Rails application itself. The
Rails application can then use the functionality added by the plugin.

There are hundreds of Rails plugins, and the number is growing all the time as Rails
developers come up with new ideas. You can get plugins to make it easy to create graphs
from your application, to add tagging functionality to your code, and even to add large
chunks of functionality, such as an entire authentication system, to your app.

Installing a plugin is even easier than installing a gem. You use the script/plugin
script, like so:

ruby script/plugin install <url of plugin here>

■Note Like gem, the plugin script supports operations such as install, remove, and update to perform
the relevant action upon the plugin. You can learn all about the various supported operations by running
ruby script/plugin –h.

The URL for the plugins you want to install is provided by the author of that plugin
on his or her Web page, or wherever you learn about the plugin.

Here’s a demonstration of installing a plugin called acts_as_commentable:

ruby script/plugin install http://juixe.com/svn/acts_as_commentable/

+ ./acts_as_commentable/MIT-LICENSE

+ ./acts_as_commentable/README

+ ./acts_as_commentable/init.rb

+ ./acts_as_commentable/install.rb

+ ./acts_as_commentable/lib/acts_as_commentable.rb

+ ./acts_as_commentable/lib/comment.rb

+ ./acts_as_commentable/tasks/acts_as_commentable_tasks.rake

+ ./acts_as_commentable/test/acts_as_commentable_test.rb

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP428

7664 CH13.qxd 3/1/07 4:35 AM Page 428

The result from running script/plugin shows which files were added to the project.
Plugins are stored in the vendor/plugins folder, so this plugin is now found at vendor/
plugins/acts_as_commentable.

When your Rails application next starts, the acts_as_commentable plugin will be
loaded automatically (as all plugins located in vendor/plugins are), and you can use its
functionality within your application.

Plugin usage varies significantly from plugin to plugin, but good places to find plug-
ins to use are http://www.agilewebdevelopment.com/plugins and http://plugins.
radrails.org/.

■Note You can learn more about plugins at http://wiki.rubyonrails.org/rails/pages/Plugins.

References and Demo Applications
Rails has been in popular use since the end of 2004, and it has attracted the interest of
thousands of developers, many of whom blog about the framework or release the source
of their own Rails applications for free. You can also look to some large-scale Rails appli-
cations for inspiration.

The best way to learn Rails, beyond the basics, is to keep up with the new features
being added to the framework as it is being developed, to read the source code of other
people’s applications, and to experiment. Rails isn’t something that you can master
quickly.

This section provides links to several useful references and example applications you
can investigate.

Reference Sites and Tutorials

Following are some useful reference sites and tutorials to help you get started using Rails:

• Official Ruby on Rails API (http://api.rubyonrails.org/): The official documenta-
tion for the Ruby on Rails framework. Almost every class and method provided by
Rails is documented.

• Official Ruby on Rails Wiki (http://wiki.rubyonrails.org/rails): A useful set of visi-
tor-updateable documentation for Ruby on Rails. Features hundreds of articles
about various aspects of Rails.

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP 429

7664 CH13.qxd 3/1/07 4:35 AM Page 429

■Caution Because a wiki can be updated by any visitor, pages on the wiki might have been vandalized or
contain bad language. Be aware of this before visiting.

• Ruby on Rails screencasts (http://www.rubyonrails.org/screencasts): Videos
demonstrating how Rails applications can be put together. These are valuable
refreshers of the content covered in this chapter, and can even show different ways
of approaching the same problems.

• Rolling with Ruby on Rails (http://www.onlamp.com/pub/a/onlamp/2006/12/14/
revisiting-ruby-on-rails-revisited.html): A basic introduction to Ruby on Rails by
Bill Walton and Curt Hibbs that covers similar ground to that of the first few sec-
tions of this chapter. This might be useful for a refresher, however.

Example Rails Applications

Here are some applications you can download, play with, and edit to learn more about
Ruby on Rails:

• Tracks (http://www.rousette.org.uk/projects/): An open source time-management
system developed in Rails. A great early example to read through to learn more
about Rails.

• Typo (http://www.typosphere.org/): An open source blogging engine developed
with Ruby on Rails.

• Mephisto (http://mephistoblog.com/): Another open source Rails blogging engine.

• Instiki (http://www.instiki.org/): A wiki system developed in Ruby on Rails initially
by the creator of Rails, David Heinemeier Hansson.

• Ruby Asset Manager (http://www.locusfoc.us/ram/): An asset manager developed in
Ruby on Rails. Features examples of file upload, RSS, storage, and export features.

Summary
In this chapter we’ve looked at how to develop a basic Web application using the Ruby on
Rails framework. The Rails framework has given you a lot of power “out of the box” and
enabled you to develop a fully working Web application in a short period of time.

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP430

7664 CH13.qxd 3/1/07 4:35 AM Page 430

We’ve merely scratched the surface in this chapter, as Ruby on Rails is a large and
complex framework (though simple to use, it has many details that are complex for
advanced usage). Entire books larger than this one have been written about Rails, so this
chapter merely provides a taste. You can use the references in the previous section to
learn more about the framework, or you might like to investigate the selection of Apress
books available about Rails.

Rails can seem complex initially, but the complexity of the directory structure and
default files created by the rails tool are only there to make your job as a developer
easier. Once you’re familiar with the layout and the tools Rails makes available, develop-
ing Web applications is a simple, organized process.

Let’s reflect on the main concepts covered in this chapter:

• Ruby on Rails: A Ruby-based Web application development framework developed
by David Heinemeier Hansson. See Chapter 5 for the history behind Ruby on Rails.

• Framework: A set of libraries and tools that can be used as a foundation for
developing applications.

• Models: Classes that represent forms of data used by the application and that
contain the logic to manipulate and retrieve that data.

• Views: Templates and HTML code (more accurately, code that includes both HTML
and embedded Ruby code) that produce the pages that users of the Web applica-
tion will see. Views can output data as HTML for Web browsers, XML, RSS, and
other formats.

• Controllers: Classes that process user input and control what data is sent to the
views to output. Controllers contain the logic that binds together models, data,
and views.

• Actions: Methods contained within controllers.

• CRUD: Create, Read, Update, Delete. These are four basic actions you can perform
upon discrete items and that are common to most Web applications. In Rails 1.2
and later, these operations can correspond with the PUT, GET, POST, and DELETE
HTTP verbs.

• ActiveRecord: A library that abstracts databases, rows, columns, and SQL into stan-
dard Ruby syntax using classes and objects. It’s a major part of the Ruby on Rails
framework.

• Routing: The process of translating a URL into the desired controller and action by
using routing patterns.

CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP 431

7664 CH13.qxd 3/1/07 4:35 AM Page 431

432 CHAPTER 13 ■ RUBY ON RAILS: RUBY’S KILLER APP

• Session: A process where a unique ID is given to a new user to an application, and
this unique ID is given back and forth on each further request, thereby making it
possible to track that user.

• Plugins: Libraries for the Ruby on Rails framework that “plug in” to your applica-
tions. Plugins can override Rails’ default behaviors or extend the framework with
new features you can easily use from your application, such as authentication sys-
tems. Plugins are installed on a per-application basis rather than for the Rails
framework as a whole.

In this chapter we’ve looked at developing Web applications under an organized
framework, but in the next chapter we’ll look at using Internet protocols more directly.
You can combine the techniques covered in Chapter 14 with your Rails applications so
that they can communicate with other services available online, such as e-mail, FTP, and
data from other Web sites.

7664 CH13.qxd 3/1/07 4:35 AM Page 432

Ruby and the Internet

In this chapter we’re going to look at how to use Ruby with the Internet and with the var-
ious services available on the Internet, from the Web to e-mail and file transfers.

The Internet has recently become an inescapable part of software development, and
Ruby has a significant number of libraries available to deal with the plethora of Internet
services available. In this chapter we’ll focus on a few of the more popular services: the
Web, e-mail (POP3 and SMTP), and FTP, along with how to process the data we retrieve.

In Chapter 15, we’ll look at how to develop actual server or daemon code using Ruby
along with lower-level networking features, such as pinging, TCP/IP, and sockets. How-
ever, this chapter focuses on accessing and using data from the Internet, rather than on
the details of Ruby’s networking features.

HTTP and the Web
HyperText Transfer Protocol (HTTP) is an Internet protocol that defines how Web servers
and Web clients (such as Web browsers) communicate with each other. The basic princi-
ple of HTTP, and the Web in general, is that every resource (such as a Web page) available
on the Web has a distinct Uniform Resource Locator (URL), and that Web clients can use
HTTP “verbs” such as GET, POST, PUT, and DELETE to retrieve or otherwise manipulate those
resources. For example, when a Web browser retrieves a Web page, a GET request is made
to the correct Web server for that page, which then returns the contents of the Web page.

In Chapter 10 we looked briefly at HTTP and developed some simple Web server
applications to demonstrate how Ruby applications could make their features available
on the Internet. In this section we’re going to look at how to retrieve data from the Web,
parse it, and generate Web-compatible content.

Downloading Web Pages

One of the most basic actions you can perform on the Web is downloading a single Web
page or document. First we’ll look at how to use the most commonly used Ruby HTTP
library, net/http, before moving on to a few notable alternatives.

433

C H A P T E R 1 4

7664 CH14.qxd 2/19/07 1:12 AM Page 433

434 CHAPTER 14 ■ RUBY AND THE INTERNET

The net/http Library

The net/http library comes standard with Ruby and is the most commonly used library to
access Web sites. Here’s a basic example:

require 'net/http'

Net::HTTP.start('www.rubyinside.com') do |http|

req = Net::HTTP::Get.new('/test.txt')

puts http.request(req).body

end

Hello Beginning Ruby reader!

This example loads the net/http library, connects to the Web server www.
rubyinside.com (the semi-official blog associated with this book; take a look!), and
performs an HTTP GET request for /test.txt. This file’s contents are then returned and
displayed. The equivalent URL for this request is http://www.rubyinside.com/test.txt,
and if you load that URL in your Web browser, you’ll get the same response as Ruby.

■Note http://www.rubyinside.com/test.txt is a live document that you can use in all the HTTP
request tests safely, and has been created specifically for readers of this book.

As the example demonstrates, the net/http library is a little raw in its operation.
Rather than simply passing it a URL, you have to pass it the Web server to connect to and
then the local filename upon that Web server. You also have to specify the GET HTTP
request type and trigger the request using the request method. You can make your work
easier by using the URI library that comes with Ruby, which provides a number of meth-
ods to turn a URL into the various pieces needed by net/http. Here’s an example:

require 'net/http'

url = URI.parse('http://www.rubyinside.com/test.txt')

Net::HTTP.start(url.host, url.port) do |http|

req = Net::HTTP::Get.new(url.path)

puts http.request(req).body

end

7664 CH14.qxd 2/19/07 1:12 AM Page 434

In this example, you use the URI class (automatically loaded by net/http) to parse the
supplied URL. An object is returned whose methods host, port, and path supply different
parts of the URL for Net::HTTP to use. Note that in this example you provide two parame-
ters to the main Net::HTTP.start method: the URL’s hostname and the URL’s port
number. The port number is optional, but URI is clever enough to return the default
HTTP port number of 80.

It’s possible to produce an even simpler example:

require 'net/http'

url = URI.parse('http://www.rubyinside.com/test.txt')

response = Net::HTTP.get_response(url)

puts response.body

Instead of creating the HTTP connection and issuing the GET explicitly,
Net::HTTP.get_response allows you to perform the request in one stroke. There are situa-
tions where this can prove less flexible, but if you simply want to retrieve documents
from the Web, it’s an ideal method to use.

Checking for Errors and Redirects

Our examples so far have assumed that you’re using valid URLs and are accessing docu-
ments that actually exist. However, Net::HTTP will return different responses based on
whether the request is a success or not or if the client is being redirected to a different
URL, and you can check for these. In the following example, a method called
get_web_document is created that accepts a single URL as a parameter. It parses the URL,
attempts to get the required document, and then subjects the response to a case/when
block:

require 'net/http'

def get_web_document(url)

uri = URI.parse(url)

response = Net::HTTP.get_response(uri)

case response

when Net::HTTPSuccess:

return response.body

when Net::HTTPRedirection:

return get_web_document(response['Location'])

else

return nil

end

end

CHAPTER 14 ■ RUBY AND THE INTERNET 435

7664 CH14.qxd 2/19/07 1:12 AM Page 435

puts get_web_document('http://www.rubyinside.com/test.txt')

puts get_web_document('http://www.rubyinside.com/non-existent')

Hello Beginning Ruby reader!

nil

If the response is of the Net::HTTPSuccess class, the content of the response will be
returned; if the response is a redirection (represented by a Net::HTTPRedirection object
being returned) then get_web_document will be called again with the URL specified as the
target of the redirection by the remote server. If the response is neither a success nor a
redirection request, an error of some sort has occurred and nil will be returned.

If you wish, you can check for errors in a more granular way. For example, the error
404 means “File Not Found” and is specifically used when trying to request a file that
does not exist on the remote Web server. When this error occurs, Net::HTTP returns a
response of class Net::HTTPNotFound. However, when dealing with error 403, “Forbidden,”
Net::HTTP returns a response of class Net::HTTPForbidden.

■Note A list of HTTP errors and their associated Net::HTTP response classes is available at
http://www.ruby-doc.org/stdlib/libdoc/net/http/rdoc/classes/Net/HTTP.html.

Basic Authentication

As well as basic document retrieval, net/http supports the Basic Authentication scheme
used by many Web servers to protect their documents behind a password-protected area.
This demonstration shows how the flexibility of performing the entire request with
Net::HTTP.start can come in useful:

require 'net/http'

url = URI.parse('http://www.rubyinside.com/test.txt')

Net::HTTP.start(url.host, url.port) do |http|

req = Net::HTTP::Get.new(url.path)

req.basic_auth('username', 'password')

puts http.request(req).body

end

CHAPTER 14 ■ RUBY AND THE INTERNET436

7664 CH14.qxd 2/19/07 1:12 AM Page 436

This demonstration still works with the Ruby Inside URL, because authentication is
ignored on requests for unprotected URLs, but if you were trying to access a URL pro-
tected by Basic Authentication, basic_auth allowsyou to specify your credentials.

Posting Form Data

In our examples so far, we have only been retrieving data from the Web. Another form of
interaction is to send data to a Web server. The most common example of this is when
you fill out a form on a Web page. You can perform the same action from Ruby. For
example:

require 'net/http'

url = URI.parse('http://www.rubyinside.com/test.cgi')

response = Net::HTTP.post_form(url,{'name' => 'David', 'age' => '24'})

puts response.body

You say David is 24 years old.

In this example, you use Net::HTTP.post_form to perform a POST HTTP request to the
specified URL with the data in the hash parameter to be used as the form data.

■Note test.cgi is a special program that returns a string containing the values provided by the name
and age form fields, resulting in the preceding output. We looked at how to create CGI scripts in Chapter 10.

As with the basic document retrieval examples, there’s a more complex, low-level
way to achieve the same thing by taking control of each step of the form submission
process:

require 'net/http'

url = URI.parse('http://www.rubyinside.com/test.cgi')

Net::HTTP.start(url.host, url.port) do |http|

req = Net::HTTP::Post.new(url.path)

req.set_form_data({ 'name' => 'David', 'age' => '24' })

puts http.request(req).body

end

CHAPTER 14 ■ RUBY AND THE INTERNET 437

7664 CH14.qxd 2/19/07 1:12 AM Page 437

This technique allows you to use the basic_auth method if needed, too.

Using HTTP Proxies

Proxying is when HTTP requests do not go directly between the client and the HTTP
server, but through a third party en route. In some situations it might be necessary to use
an HTTP proxy for your HTTP requests. This is a common scenario in schools and offices
where Web access is regulated or filtered.

net/http supports proxying by creating an HTTP proxy class upon which you can
then use and perform the regular HTTP methods. To create the proxy class, use
Net::HTTP::Proxy. For example:

web_proxy = Net::HTTP::Proxy('your.proxy.hostname.or.ip', 8080)

This call to Net::HTTP::Proxy generates an HTTP proxy class that uses a proxy with a
particular hostname on port 8080. You would use such a proxy in this fashion:

require 'net/http'

web_proxy = Net::HTTP::Proxy('your.proxy.hostname.or.ip', 8080)

url = URI.parse('http://www.rubyinside.com/test.txt')

web_proxy.start(url.host, url.port) do |http|

req = Net::HTTP::Get.new(url.path)

puts http.request(req).body

end

In this example, web_proxy replaces the reference to Net::HTTP when using the start
method. You can use it with the simple get_response technique you used earlier, too:

require 'net/http'

web_proxy = Net::HTTP::Proxy('your.proxy.hostname.or.ip', 8080)

url = URI.parse('http://www.rubyinside.com/test.txt')

response = web_proxy.get_response(url)

puts response.body

CHAPTER 14 ■ RUBY AND THE INTERNET438

7664 CH14.qxd 2/19/07 1:12 AM Page 438

These examples demonstrate that if your programs are likely to need proxy support
for HTTP requests, it might be worth generating a proxy-like system even if a proxy isn’t
required in every case. For example:

require 'net/http'

http_class = ARGV.first ? Net::HTTP::Proxy(ARGV[0], ARGV[1]) : Net::HTTP

url = URI.parse('http://www.rubyinside.com/test.txt')

response = http_class.get_response(url)

puts response.body

If this program is run and an HTTP proxy hostname and port are supplied on the
command line as arguments for the program, an HTTP proxy class will be assigned to
http_class. If no proxy is specified, http_class will simply reference Net::HTTP. This
allows http_class to be used in place of Net::HTTP when requests are made, so that both
proxy and nonproxy situations work and are coded in exactly the same way.

Secure HTTP with HTTPS

HTTP is a plain text, unencrypted protocol, and this makes it unsuitable for transferring
sensitive data such as credit card information. HTTPS is the solution, as it’s the same as
HTTP but routed over Secure Socket Layer (SSL), which makes it unreadable to any third
parties.

Ruby’s net/https library makes it possible to access HTTPS URLs, and you can make
net/http use it semi-transparently by setting the use_ssl attribute on a Net::HTTP
instance to true, like so:

require 'net/http'

require 'net/https'

url = URI.parse('https://example.com/')

http = Net::HTTP.new(url.host, url.port)

http.use_ssl = true if url.scheme == 'https'

request = Net::HTTP::Get.new(url.path)

puts http.request(request).body

Note that you use the scheme method of url to detect if the remote URL is in fact one
that requires SSL to be activated.

CHAPTER 14 ■ RUBY AND THE INTERNET 439

7664 CH14.qxd 2/19/07 1:12 AM Page 439

It’s trivial to mix in the form-posting code to get a secure way of sending sensitive
information to the remote server:

require 'net/http'

require 'net/https'

url = URI.parse('https://example.com/')

http = Net::HTTP.new(url.host, url.port)

http.use_ssl = true if url.scheme == 'https'

request = Net::HTTP::Post.new(url.path)

request.set_form_data({ 'credit_card_number' => '1234123412341234' })

puts http.request(request).body

net/https also supports associating your own client certificate and certification
directory with your requests, as well as retrieving the server’s peer certificate. However,
these are advanced features only required in a small number of cases, and are beyond the
scope of this section. Refer to Appendix C for links to further information.

The open-uri Library

open-uri is a library that wraps up the functionality of net/http, net/https, and net/ftp
into a single package. Although it lacks some of the raw power of using the constituent
libraries directly, open-uri makes it a lot easier to perform all the main functions.

A key part of open-uri is the way it abstracts common Internet actions and allows
file I/O techniques to be used upon them. Retrieving a document from the Web becomes
much like opening a text file on the local machine:

require 'open-uri'

f = open('http://www.rubyinside.com/test.txt')

puts f.readlines.join

Hello Beginning Ruby reader!

As with File::open, open returns an I/O object (technically, a StringIO object), and
you can use methods such as each_line, readlines, and read, as you did in Chapter 9.

CHAPTER 14 ■ RUBY AND THE INTERNET440

7664 CH14.qxd 2/19/07 1:12 AM Page 440

require 'open-uri'

f = open('http://www.rubyinside.com/test.txt')

puts "The document is #{f.size} bytes in length"

f.each_line do |line|

puts line

end

The document is 29 bytes in length

Hello Beginning Ruby reader!

Also, in a similar fashion to the File class, you can use open in a block style:

require 'open-uri'

open('http://www.rubyinside.com/test.txt') do |f|

puts f.readlines.join

end

■Note HTTPS and FTP URLs are treated transparently. You can use any HTTP, HTTPS, or FTP URL with
open.

As well as providing the open method as a base method that can be used anywhere,
you can also use it directly upon URI objects:

require 'open-uri'

url = URI.parse('http://www.rubyinside.com/test.txt')

url.open { |f| puts f.read }

Or you could use this code if you were striving for the shortest open-uri code
possible:

require 'open-uri'

puts URI.parse('http://www.rubyinside.com/test.txt').open.read

CHAPTER 14 ■ RUBY AND THE INTERNET 441

7664 CH14.qxd 2/19/07 1:12 AM Page 441

■Note Ruby developers commonly use quick hacks, such as in the prior example, but to catch errors suc-
cessfully, it’s recommended to surround such one-liners with the begin/ensure/end structure to catch any
exceptions.

In addition to acting like an I/O object, open-uri enables you to use methods associ-
ated with the object it returns to find out particulars about the HTTP (or FTP) response
itself. For example:

require 'open-uri'

f = open('http://www.rubyinside.com/test.txt')

puts f.content_type

puts f.charset

puts f.last_modified

text/plain

iso-8859-1

Sun Oct 15 02:24:13 +0100 2006

Last, it’s possible to send extra header fields with an HTTP request by supplying an
optional hash parameter to open:

require 'open-uri'

f = open('http://www.rubyinside.com/test.txt',

{'User-Agent' => 'Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)'})

puts f.read

In this example, a “user agent” header is sent with the HTTP request that makes it
appear as if you’re using Internet Explorer to request the remote file. Sending a user agent
header can be a useful technique if you’re dealing with a Web site that returns different
information to different types of browsers. Ideally, however, you should use a User-Agent
header that reflects the name of your program.

CHAPTER 14 ■ RUBY AND THE INTERNET442

7664 CH14.qxd 2/19/07 1:12 AM Page 442

Generating Web Pages and HTML

Web pages are created using a variety of technologies; the most popular is HyperText
Markup Language (HTML). HTML is a language that can be represented in plain text and
is composed of numerous tags that indicate the meaning of each part of the document.
For example:

<html>

<head>

<title>This is the title</title>

</head>

<body>

<p>This is a paragraph</p>

</body>

</html>

A tag begins like so:

<tag>

And it ends like so:

</tag>

Anything between a start tag and an end tag belongs, semantically, to that tag. So, the
text in between the <p> and </p> tags is part of a single paragraph (where <p> is the HTML
tag for a paragraph). This explains why the entire document is surrounded by the <html>
and </html> tags, as the entire document is HTML.

Web applications, and other applications that need to output data to be shown on
the Web, usually need to produce HTML to render their output. Ruby provides a number
of libraries to make this easier than simply producing HTML in a raw fashion using
strings. In this section we’ll look at two such libraries, Markaby and RedCloth.

Markaby—Markup As Ruby

Markaby is a library developed by Tim Fletcher (http://tfletcher.com/) and “why the
lucky stiff” (http://whytheluckystiff.net/) that allows you to create HTML by using Ruby
methods and structures. Markaby is distributed as a gem, so it’s trivial to install using the
gem client, like so:

gem install markaby

CHAPTER 14 ■ RUBY AND THE INTERNET 443

7664 CH14.qxd 2/19/07 1:12 AM Page 443

Once Markaby is installed, the following example should demonstrate the basic prin-
ciples of generating HTML with it:

require 'rubygems'

require 'markaby'

m = Markaby::Builder.new

m.html do

head { title 'This is the title' }

body do

h1 'Hello world'

h2 'Sub-heading'

p %q{This is a pile of stuff showing off Markaby's features}

h2 'Another sub-heading'

p 'Markaby is good at:'

ul do

li 'Generating HTML from Ruby'

li 'Keeping HTML structured'

li 'Lots more..'

end

end

end

puts m

<html><head><meta content="text/html; charset=utf-8" http-equiv="Content-

Type"/><title>This is the title</title></head><body><h1>Hello world</h1><h2>Sub-

heading</h2><p>This is a pile of stuff showing off Markaby's features</p><h2>

Another sub-heading</h2><p>Markaby is good at:</p>Generating HTML from

RubyKeeping HTML structuredLots more..</body></html>

The output is basic HTML that could be viewed in any Web browser. Markaby works
by interpreting method calls as HTML tags, so that you can create HTML tags merely by
using method calls. If a method call is passed a code block (as with m.html and body in the
previous example), then the code within the code block will form the HTML that goes
within the start and stop tags of the parent.

CHAPTER 14 ■ RUBY AND THE INTERNET444

7664 CH14.qxd 2/19/07 1:12 AM Page 444

Because Markaby offers a pure Ruby way to generate HTML, it’s possible to integrate
Ruby logic and flow control into the HTML generation process:

require 'rubygems'

require 'markaby'

m = Markaby::Builder.new

items = ['Bread', 'Butter', 'Tea', 'Coffee']

m.html do

body do

h1 'My Shopping List'

ol do

items.each do |item|

li item

end

end

end

end

puts m

<html><body><h1>My Shopping

List</h1>BreadButterTea

Coffee</body></html>

If you viewed this output in a typical Web browser, it’d look somewhat like this:

My Shopping List

1. Bread

2. Butter

3. Tea

4. Coffee

A common feature of HTML that you might want to replicate is to give elements class
or ID names. To give an element a class name, you can use a method call attached to the

CHAPTER 14 ■ RUBY AND THE INTERNET 445

7664 CH14.qxd 2/19/07 1:12 AM Page 445

element method call. To give an element an ID, you can use a method call attached to
the element method call that ends with an exclamation mark (!). For example:

div.posts! do

div.entry do

p.date Time.now.to_s

p.content "Test entry 1"

end

div.entry do

p.date Time.now.to_s

p.content "Test entry 2"

end

end

<div id="posts"><div class="entry"><p class="date">Mon Oct 16 02:48:06 +0100

2006</p><p class="content">Test entry 1</p></div><div class="entry"><p

class="date">Mon Oct 16 02:48:06 +0100 2006</p><p class="content">Test entry

2</p></div></div>

In this case, a parent div element is created with the id of "posts". Child divs with the
class name of "entry" are created, containing paragraphs with the class names of "date"
and "content".

It’s important to note that the HTML generated by Markaby is not necessarily strictly
valid HTML. Using tags and structure correctly is your responsibility as a developer.

■Note To learn more about Markaby, refer to the official Markaby homepage and documentation at
http://markaby.rubyforge.org/.

RedCloth

RedCloth is a library that provides a Ruby implementation of the Textile markup lan-
guage. The Textile markup language is a special way of formatting plain text to be
converted into HTML.

CHAPTER 14 ■ RUBY AND THE INTERNET446

7664 CH14.qxd 2/19/07 1:12 AM Page 446

Here’s a demonstration of Textile, followed by the HTML that a Textile interpreter
would generate from it:

h1. This is a heading.

This is the first paragraph.

This is the second paragraph.

h1. Another heading

h2. A second level heading

Another paragraph

<h1>This is a heading.</h1>

<p>This is the first paragraph.</p>

<p>This is the second paragraph.</p>

<h1>Another heading</h1>

<h2>A second level heading</h2>

<p>Another paragraph</p>

Textile provides a more human-friendly language that can be converted easily to
HTML. RedCloth makes this functionality available in Ruby.

RedCloth is available as a RubyGem and can be installed in the usual way (such as
with gem install redcloth), or see Chapter 7 for more information. To use RedCloth, cre-
ate an instance of the RedCloth class and pass in the Textile code you want to use:

require 'rubygems'

require 'redcloth'

text = %q{h1. This is a heading.

This is the first paragraph.

This is the second paragraph.

h1. Another heading

h2. A second level heading

CHAPTER 14 ■ RUBY AND THE INTERNET 447

7664 CH14.qxd 2/19/07 1:12 AM Page 447

Another paragraph}

document = RedCloth.new(text)

puts document.to_html

The RedCloth class is a basic extension of the String class, so you can use regular
string methods with RedCloth objects, or you can use the to_html method to convert the
RedCloth/Textile document to HTML.

The Textile language is a powerful markup language, but its syntax is beyond the
scope of this chapter. It supports easy ways to convert plain text to complex HTML con-
taining tables, HTML entities, images, and structural elements. To learn more about
RedCloth and Textile, refer to the official RedCloth Web site at http://redcloth.
rubyforge.org/.

■Note BlueCloth is another markup library for Ruby that also exists as a gem. You can learn more
about its operation in Chapter 16 or at the official BlueCloth Web site at http://www.deveiate.org/
projects/BlueCloth.

Processing Web Content

As you saw earlier, retrieving data from the Web is a snap with Ruby. Once you’ve
retrieved the data, it’s likely you’ll want to do something with it. Parsing data from the
Web using regular expressions and the usual Ruby string methods is an option, but sev-
eral libraries exist that make it easier to deal with different forms of Web content
specifically. In this section we’ll look at some of the best ways to process HTML and XML
(including feed formats such as RSS and Atom).

Parsing HTML with Hpricot

In previous sections we used Markaby and RedCloth to generate HTML from Ruby code
and data. In this section, we’ll look at doing the reverse by taking HTML code and extract-
ing data from it in a structured fashion.

Hpricot is a Ruby library by “why the lucky stiff” designed to make HTML parsing
fast, easy, and fun. It’s available as a RubyGem via gem install hpricot. Though it relies
on a compiled extension written in C for its speed, a special Windows build is available
via RubyGems with a precompiled extension.

Once installed, Hpricot is easy to use. The following example loads the Hpricot
library, places some basic HTML in a string, creates a Hpricot object, and then searches

CHAPTER 14 ■ RUBY AND THE INTERNET448

7664 CH14.qxd 2/19/07 1:12 AM Page 448

for H1 tags (using search). It then retrieves the first (using first, as search returns an
array), and looks at the HTML within it (using inner_html):

require 'rubygems'

require 'hpricot'

html = <<END_OF_HTML

<html>

<head>

<title>This is the page title</title>

</head>

<body>

<h1>Big heading!</h1>

<p>A paragraph of text.</p>

Item 1 in a listItem 2<li class="highlighted">Item

3

</body>

</html>

END_OF_HTML

doc = Hpricot(html)

puts doc.search("h1").first.inner_html

Big heading!

Hpricot can work directly with open-uri to load HTML from remote files, as in the
following example:

require 'rubygems'

require 'hpricot'

require 'open-uri'

doc = Hpricot(open('http://www.rubyinside.com/test.html'))

puts doc.search("h1").first.inner_html

■Note http://www.rubyinside.com/test.html contains the same HTML code as used in the prior
example.

CHAPTER 14 ■ RUBY AND THE INTERNET 449

7664 CH14.qxd 2/19/07 1:12 AM Page 449

Using a combination of search methods, you can search for the list within the HTML
(defined by the tags, where the tags denote each item in the list) and then
extract each item from the list:

list = doc.search("ul").first

list.search("li").each do |item|

puts item.inner_html

end

Item 1 in a list

Item 2

Item 3

As well as searching for elements and returning an array, Hpricot can also search for
the first instance of an element only, using at:

list = doc.at("ul")

However, Hpricot can search for more than element or tag names. It also supports
XPath and CSS expressions. These querying styles are beyond the scope of this chapter,
but here’s a demonstration of using CSS classes to find certain elements:

list = doc.at("ul")

highlighted_item = list.at("/.highlighted")

puts highlighted_item.inner_html

Item 3

This example finds the first list in the HTML file, then looks for a child element that
has a class name of highlighted. The rule .highlighted looks for a class name of high-
lighted, whereas a rule of #highlighted would search for an element with the ID of
highlighted.

■Note You should prefix CSS expressions with a forward slash (/).

You can learn more about Hpricot and the syntaxes and styles it supports at the
official site at http://code.whytheluckystiff.net/hpricot/. Hpricot is a work in progress,
and its feature set is likely to have grown since the publishing of this book.

CHAPTER 14 ■ RUBY AND THE INTERNET450

7664 CH14.qxd 2/19/07 1:12 AM Page 450

Parsing XML with REXML

Extensible Markup Language (XML) is a simple, flexible, plain-text data format that can
represent many different structures of data. An XML document, at its simplest, looks a lit-
tle like HTML:

<people>

<person>

<name>Peter Cooper</name>

<gender>Male</gender>

</person>

<person>

<name>Fred Bloggs</name>

<gender>Male</gender>

</person>

</people>

This extremely simplistic XML document defines a set of people containing two indi-
vidual persons, each of whom has a name and gender. In previous chapters we’ve used
YAML in a similar way to how XML is used here, but although YAML is simpler and easier
to use with Ruby, XML is more popular outside the Ruby world.

XML is prevalent when it comes to sharing data on the Internet in a form that’s easy
for machines to parse, and is especially popular when using APIs and machine-accessible
services provided online, such as Yahoo!’s search APIs and other programming interfaces
to online services. Due to XML’s popularity, it’s worthwhile to see how to parse it with
Ruby.

Ruby’s primary XML library is called REXML and comes with Ruby by default as part
of the standard library.

REXML supports two different ways of processing XML files: tree parsing and stream
parsing. Tree parsing is where a file is turned into a single data structure that can then be
searched, traversed, and otherwise manipulated. Stream parsing is when a file is
processed and parsed on the fly by calling special callback functions whenever some-
thing in the file is found. Stream parsing is less powerful in most cases than tree parsing,
although it’s slightly faster. In this section we’ll focus on tree parsing, as it makes more
sense for most situations.

Here’s a basic demonstration of parsing an XML file looking for certain elements:

require 'rexml/document'

xml = <<END_XML

<people>

<person>

<name>Peter Cooper</name>

CHAPTER 14 ■ RUBY AND THE INTERNET 451

7664 CH14.qxd 2/19/07 1:12 AM Page 451

<gender>Male</gender>

</person>

<person>

<name>Fred Bloggs</name>

<gender>Male</gender>

</person>

</people>

END_XML

tree = REXML::Document.new(xml)

tree.elements.each("people/person") do |person|

puts person.get_elements("name").first

end

<name>Peter Cooper</name>

<name>Fred Bloggs</name>

You built the tree of XML elements by creating a new REXML::Document object. Using
the elements method of tree returns an array of every element in the XML file. each
accepts an XPath query (a form of XML search query), and passes matching elements
into the associated code block. In this example you look for each <person> element within
the <people> element.

Once you have each <person> element in person, you use get_elements to retrieve any
<name> elements into an array, and then pull out the first one. Because there’s only one
name per person in your XML data, the correct name is extracted for each person in the
data.

REXML has support for most of the basic XPath specification, so if you become
familiar with XPath, you can search for anything within any XML file that you need.

■Note You can learn more about XPath and its syntax at http://en.wikipedia.org/wiki/XPath.
REXML also has support for XQuery, which you can learn more about at http://en.wikipedia.
org/wiki/XQuery.

Further resources relating to processing XML and using REXML and XPath within
Ruby are provided in Appendix C.

CHAPTER 14 ■ RUBY AND THE INTERNET452

7664 CH14.qxd 2/19/07 1:12 AM Page 452

Parsing Web Feeds with FeedTools

Web feeds (sometimes known as news feeds, and more commonly as just “feeds”) are
special XML files designed to contain multiple items of content (such as news). They’re
commonly used by blogs and news sites as a way for users to subscribe to them. A feed
reader reads RSS and Atom feeds (the two most popular feed formats) from the sites the
user is subscribed to, and whenever a new item appears within a feed, the user is notified
by his or her feed client, which monitors the feed regularly. Most feeds allow users to read
a synopsis of the item and to click a link to visit the site that has updated.

■Note Another common use for feeds has been in delivering podcasts, a popular method of distributing
audio content online in a radio subscription–type format.

Processing RSS and Atom feeds has become a popular task in languages such as
Ruby. As feeds are formatted in a machine-friendly format, they’re easier for programs
to process and use than scanning through inconsistent HTML.

FeedTools (http://sporkmonger.com/projects/feedtools/) is a Ruby library for han-
dling RSS and Atom feeds. It’s available as a RubyGem with gem install feedtools. It’s a
liberal feed parser, which means it tends to excuse as many faults and formatting prob-
lems in the feeds it reads as possible. This makes it an ideal choice for processing feeds,
rather than creating your own parser manually with REXML or another XML library.

For the examples in this section you’ll use the RSS feed provided by RubyInside.com,
a popular Ruby weblog. Let’s look at how to process a feed rapidly by retrieving it from
the Web and printing out various details about it and its constituent items:

require 'rubygems'

require 'feed_tools'

feed = FeedTools::Feed.open('http://www.rubyinside.com/feed/')

puts "This feed's title is #{feed.title}"

puts "This feed's Web site is at #{feed.link}"

feed.items.each do |item|

puts item.title + "\n---\n" + item.description + "\n\n"

end

Parsing feeds is even easier than downloading Web pages, because FeedTools han-
dles all the technical aspects for you. It handles the download of the feed and even caches
the contents of the feed for a short time so you’re not making a large number of requests
to the feed provider.

CHAPTER 14 ■ RUBY AND THE INTERNET 453

7664 CH14.qxd 2/19/07 1:12 AM Page 453

In the preceding example you opened a feed, printed out the title of the feed, printed
out the URL of the site associated with the feed, and then used the array of items in
feed.items to print the title and description of each item in the feed.

As well as description and title, feed items (objects of class FeedTools::FeedItem)
also offer methods such as author, categories, comments, copyright, enclosures, id, images,
itunes_author, itunes_duration, itunes_image_link, itunes_summary, link, published, rights,
source, summary, tags, time, and updated.

A full rundown of feed terminology is beyond the scope of this book, but if you want
to learn more, refer to the Web feed section on Wikipedia at http://en.wikipedia.org/
wiki/Web_feed. You can find feeds for most major Web sites nowadays, so processing
news with your Ruby scripts can be an easy reality.

E-Mail
E-mail predates the invention of the Internet, and is still one of the most important and
popular technologies used online. In this section you’ll look at how to retrieve and man-
age e-mail located on POP3 servers, as well as how to send e-mail using an SMTP server.

Receiving Mail with POP3

Post Office Protocol 3 (POP3) is the most popular protocol used to retrieve e-mail from a
mail server. If you’re using an e-mail program that’s installed on your computer (as
opposed to webmail, such as HotMail or Yahoo! Mail) it probably uses the POP3 protocol
to communicate with the mail server that receives your mail from the outside world.

With Ruby it’s possible to use the net/pop library to do the same things that your
e-mail client can, such as preview, retrieve, or delete mail. If you were feeling creative,
you could even use net/pop to develop your own anti-spam tools.

■Note In this section our examples won’t run without adjustments, as they need to operate on a real mail
account. If you wish to run them, you would need to replace the server name, username, and passwords
with those of a POP3/mail account that you have access to. Ideally, you’ll be able to create a test e-mail
account if you want to play with the examples here, or have a backup of your mail first, in case of unfore-
seen errors. That’s because although you cannot delete mail directly from your local e-mail program, you
might delete any new mail waiting on your mail server. Once you’re confident of your code and what you
want to achieve, then you change your settings to work upon a live account.

The basic operations you can perform with a POP3 server are to connect to it, receive
information about the mail an account contains, view that mail, delete the mail, and

CHAPTER 14 ■ RUBY AND THE INTERNET454

7664 CH14.qxd 2/19/07 1:12 AM Page 454

disconnect. First, you’ll connect to a POP3 server to see if there are any messages avail-
able for download, and if so, how many:

require 'net/pop'

mail_server = Net::POP3.new('mail.mailservernamehere.com')

begin

mail_server.start('username','password')

if mail_server.mails.empty?

puts "No mails"

else

puts "#{mail_server.mails.length} mails waiting"

end

rescue

puts "Mail error"

end

This code first creates an object referring to the server and then uses the start
method to connect. The entire section of the program that connects to and works with
the mail server is wrapped within a begin/ensure/end block so that connection errors are
picked up without the program crashing out with an obscure error.

Once start has connected to the POP3 server, mail_server.mails contains an array of
Net::POPMail objects that refer to each message waiting on the server. You use Array’s
empty? method to see if any mail is available, and if so, the size of the array is used to tell
how many mails are waiting.

You can use the Net::POPMail objects’ methods to manipulate and collect the server-
based mails. Downloading all the mails is as simple as using the pop method for each
Net::POPMail object:

mail_server.mails.each do |m|

mail = m.pop

puts mail

end

As each mail is retrieved (or popped, if you will) from the server, the entire contents
of the mail, with headers and body text, are placed into the mail variable, before being
displayed onscreen.

To delete a mail, you can use the delete method, although mails are only marked for
deletion later, once the session has ended:

mail_server.mails.each do |m|

m.delete if m.pop =~ /\bthis is a spam e-mail\b/i

end

CHAPTER 14 ■ RUBY AND THE INTERNET 455

7664 CH14.qxd 2/19/07 1:12 AM Page 455

This code goes through every message in the account and marks it for deletion if it
contains the string this is a spam e-mail.

You can also retrieve just the headers. This is useful if you’re looking for a mail with a
particular subject or a mail from a particular e-mail address. Whereas pop returns the
entire mail (which could be up to many megabytes in size), header only returns the mail’s
header from the server. The following example deletes messages if their subject contains
the word “medicines”:

mail_server.mails.each do |m|

m.delete if m.header =~ /Subject:.+?medicines\b/i

end

To build a rudimentary anti-spam filter, you could use a combination of the mail
retrieval and deletion techniques to connect to your mail account and delete unwanted
mails before your usual mail client ever sees them. Consider what you could achieve by
downloading mail, passing it through several regular expressions, and then choosing to
delete depending on what you match.

Sending Mail with SMTP

Where POP3 handles the client-side operations of retrieving, deleting, and previewing
e-mail, Simple Mail Transfer Protocol (SMTP) handles sending e-mail and routing e-mail
between mail servers. In this section you won’t be looking at this latter use, but will use
SMTP simply to send mails to an e-mail address.

The net/smtp library allows you to communicate with SMTP servers directly. On
many Unix machines, especially servers on the Internet, you can send mail to the SMTP
server running on the local machine and it will be delivered across the Internet. In these
situations, sending e-mail is as easy as this:

require 'net/smtp'

message = <<MESSAGE_END

From: Private Person <me@privacy.net>

To: Author of Beginning Ruby <test@rubyinside.com>

Subject: SMTP e-mail test

This is a test e-mail message.

MESSAGE_END

Net::SMTP.start('localhost') do |smtp|

smtp.send_message message, 'me@privacy.net', 'test@rubyinside.com'

end

CHAPTER 14 ■ RUBY AND THE INTERNET456

7664 CH14.qxd 2/19/07 1:12 AM Page 456

You place a basic e-mail in message, using a here document, taking care to format the
headers correctly (e-mails require a From, To, and Subject header, separated from the
body of the e-mail with a blank line, as in the preceding code). To send the mail you use
Net::SMTP to connect to the SMTP server on the local machine and then use the
send_message method along with the message, the from address, and the destination
address as parameters (even though the from and to addresses are within the e-mail
itself, these aren’t always used to route mail).

If you’re not running an SMTP server on your machine, you can use Net::SMTP to
communicate with a remote SMTP server. Unless you’re using a webmail service (such as
Hotmail or Yahoo! Mail), your e-mail provider will have provided you with outgoing mail
server details that you can supply to Net::SMTP, as follows:

Net::SMTP.start('mail.your-domain.com')

This line of code connects to the SMTP server on port 25 of mail.your-domain.com
without using any username or password. If you need to, though, you can specify port
number and other details. For example:

Net::SMTP.start('mail.your-domain.com', 25, 'localhost', 'username', 'password',➥

:plain)

This example connects to the SMTP server at mail.your-domain.com using a username
and password in plain text format. It identifies the client’s hostname as localhost.

■Note Net::SMTP also supports LOGIN and CRAM-MD5 authentication schemes. To use these, use :login
or :cram_md5 as the sixth parameter passed into start.

Sending Mail with ActionMailer

ActionMailer (http://wiki.rubyonrails.org/rails/pages/ActionMailer) makes sending
e-mail more high-level than using the SMTP protocol (or net/smtp) directly. Instead of
talking directly with an SMTP server, you create a descendent of ActionMailer::Base,
implement a method that sets your mail’s subject, recipients, and other details, and then
you call that method to send e-mail.

ActionMailer is a part of the Ruby on Rails framework (as covered in Chapter 13), but
can be used independently of it. If you don’t have Ruby on Rails installed on your com-
puter yet, you can install the ActionMailer gem with gem install actionmailer.

CHAPTER 14 ■ RUBY AND THE INTERNET 457

7664 CH14.qxd 2/19/07 1:12 AM Page 457

Here’s a basic example of using ActionMailer:

require 'rubygems'

require 'action_mailer'

class Emailer < ActionMailer::Base

def test_email(email_address, email_body)

recipients(email_address)

from "me@privacy.net"

subject "This is a test e-mail"

body email_body

end

end

Emailer.deliver_test_email('me@privacy.net', 'This is a test e-mail!')

A class, Emailer, is defined and descends from ActionMailer::Base. The test_email
method uses ActionMailer’s helper methods to set the recipient, from address, subject,
and body of the e-mail, but you never call this method directly. To send the mail, you call
a dynamic class method on the Emailer class called deliver_test_email (or deliver_
followed by whatever you called the method in the class).

In the preceding example, ActionMailer uses the default settings for mail output, and
that is to try to connect to an SMTP server on the local machine. If you don’t have one
installed and running, you can instruct ActionMailer to look for an SMTP server else-
where, like so:

ActionMailer::Base.server_settings = {

:address => "mail.your-domain.com",

:port => 25,

:authentication => :login,

:user_name => "username",

:password => "password",

}

These settings are similar to those you used to set up Net::SMTP and can be changed
to match your configuration.

File Transfers with FTP
File Transfer Protocol (FTP) is a basic networking protocol for transferring files on any
TCP/IP network. Although files can be sent back and forth on the Web, FTP is still com-
monly used for large files, or for access to large file repositories that have no particular

CHAPTER 14 ■ RUBY AND THE INTERNET458

7664 CH14.qxd 2/19/07 1:12 AM Page 458

relevance to the Web. One of the benefits of FTP is that authentication and access control
is built in.

The core part of the FTP system is an FTP server, a program that runs on a file server
that allows FTP clients to download and/or upload files to that machine.

In a previous section of this chapter, “The open-uri Library,” we looked at using the
open-uri library to retrieve files easily from the Internet.The open-uri supports HTTP,
HTTPS, and FTP URLs, and is an ideal library to use if you want to download files from
FTP servers with as little code as possible. Here’s an example:

require 'open-uri'

output = File.new('1.8.2-patch1.gz', 'w')

open('ftp://ftp.ruby-lang.org/pub/ruby/1.8/1.8.2-patch1.gz') do |f|

output.print f.read

end

output.close

This example downloads a file from an FTP server and saves its contents into a local
file.

■Note The example might fail for you, as your network connection might not support active FTP and might
require a passive FTP connection. This is covered later in this section.

However, for more complex operations, the net/ftp library is ideal, as it gives you
lower-level access to FTP connections, as net/http does to HTTP requests.

Connection and Basic FTP Actions

Connecting to an FTP server with net/ftp using an FTP URL is a simple operation:

require 'net/ftp'

require 'uri'

uri = URI.parse('ftp://ftp.ruby-lang.org/')

Net::FTP.open(uri.host) do |ftp|

ftp.login 'anonymous', 'me@privacy.net'

ftp.passive = true

ftp.list(uri.path) { |path| puts path }

end

CHAPTER 14 ■ RUBY AND THE INTERNET 459

7664 CH14.qxd 2/19/07 1:12 AM Page 459

drwxrwxr-x 2 0 103 6 Sep 10 2005 basecamp

drwxrwxr-x 3 0 103 41 Oct 13 04:53 pub

You use URI.parse to parse a basic FTP URL, and connect to the FTP server with
Net::FTP.open. Once the connection is open, you have to specify login credentials (much
like the authentication credentials when using Net::HTTP) with the ftp object’s login
method. Then you set the connection type to be passive (this is an FTP option that makes
an FTP connection more likely to succeed when made from behind a firewall—the tech-
nical details are beyond the scope of this book), and then ask the FTP server to return a
list of the files in the directory referenced in your URL (the root directory of the FTP
server in this case).

Net::FTP provides a login method that you can use against a Net::FTP object, like so:

require 'net/ftp'

ftp = Net::FTP.new('ftp.ruby-lang.org')

ftp.passive = true

ftp.login

ftp.list('*') { |file| puts file }

ftp.close

■Note If you know you’re going to be connecting to an anonymous FTP server (one that is public and
requires only generic credentials to log in), you don’t need to specify any credentials with the login method.
This is what happens in the preceding example.

This example demonstrates a totally different way of using Net::FTP to connect to an
FTP server. As with Net::HTTP and File classes, it’s possible to use Net::FTP within a
structural block or by manually opening and closing the connection by using the refer-
ence object (ftp in this case).

As no username and password are supplied, the login method performs an anony-
mous login to ftp.ruby-lang.org. Note that in this example you connect to an FTP server
by its hostname rather than with a URL. However, if a username and password are
required, use this code:

ftp.login(username, password)

Once connected, you use the list method on the ftp object to get a list of all files in
the current directory. Because you haven’t specified a directory to change to, the current

CHAPTER 14 ■ RUBY AND THE INTERNET460

7664 CH14.qxd 2/19/07 1:12 AM Page 460

directory is the one that the FTP server puts you in by default. However, to change direc-
tories, you can use the chdir method:

ftp.chdir('pub')

It’s also possible to change to any directory in the remote filesystem:

ftp.chdir('/pub/ruby')

If you have permission to do so (this depends on your account with the FTP server)
you might also be able to create directories. This is done with mkdir:

ftp.mkdir('test')

Performing this operation on an FTP server where you don’t have the correct permis-
sions causes an exception, so it’s worth wrapping such volatile actions within blocks to
trap any exceptions that arise.

Likewise, you can delete and rename files:

ftp.rename(filename, new_name)

ftp.delete(filename)

These operations will only work if you have the correct permissions.

Downloading Files

Downloading files from an FTP server is easy if you know the filename and what type of
file you’re trying to download. Net::FTP provides two useful methods to download files,
getbinaryfile and gettextfile. Plain text files and binary files (such as images, sounds,
or applications) are sent in a different way, so it’s essential you use the correct method.
In most situations you’ll be aware ahead of time which technique is required. Here’s an
example showing how to download a binary file from the official Ruby FTP server:

require 'net/ftp'

ftp = Net::FTP.new('ftp.ruby-lang.org')

ftp.passive = true

ftp.login

ftp.chdir('/pub/ruby/1.8')

ftp.getbinaryfile('1.8.2-patch1.gz')

ftp.close

getbinaryfile accepts several parameters, only one of which is mandatory. The first
parameter is the name of the remote file (1.8.2-patch1.gz in this case), an optional

CHAPTER 14 ■ RUBY AND THE INTERNET 461

7664 CH14.qxd 2/19/07 1:12 AM Page 461

second parameter is the name of the local file to write to, and the third optional parameter
is a block size that specifies in what size chunks (in bytes) the file is downloaded. If you
omit the second parameter, the downloaded file will be written to the same filename in
the local directory, but if you want to write the remote file to a particular local location,
you can specify this.

One problem with using getbinaryfile in this way is that it locks up your program
until the download is complete. However, if you supply getbinaryfile with a code block,
the downloaded data will be supplied into the code block as well as saved to the file:

ftp.getbinaryfile('stable-snapshot.tar.gz', 'local-filename', 102400) do |blk|

puts "A 100KB block of the file has been downloaded"

end

This code prints a string to the screen whenever another 100 kilobytes of the file have
been downloaded. You can use this technique to provide updates to the user, rather than
make him or her wonder whether the file is being downloaded or not.

You could also download the file in blocks such as this and process them on the fly in
the code block, like so:

ftp.getbinaryfile('stable-snapshot.tar.gz', 'local-filename', 102400) do |blk|

.. do something with blk here ..

end

Each 100KB chunk of the file that’s downloaded is passed into the code block. Unfor-
tunately, the file is still saved to a local file, but if this isn’t desired, you could use Tempfile
(as covered in Chapter 9) to use a temporary file that’s then immediately deleted.

Downloading text or ASCII-based files uses the same technique as in the preceding
code, but demands using gettextfile instead. The only difference is that gettextfile
doesn’t accept the third block size parameter, and instead returns data to the code block
line by line.

Uploading Files

Uploading files to an FTP server is only possible if you have write permissions on the
server in the directory to which you want to upload. Therefore, none of the examples in
this section will work unedited, as you can’t provide an FTP server with write access (for
obvious reasons!).

Uploading is the exact opposite of downloading, and net/ftp provides putbinaryfile
and puttextfile methods that accept the same parameters as getbinaryfile and get-
textfile. The first parameter is the name of the local file you want to upload, the optional
second parameter is the name to give the file on the remote server (defaults to the

CHAPTER 14 ■ RUBY AND THE INTERNET462

7664 CH14.qxd 2/19/07 1:12 AM Page 462

same as the uploaded file’s name if omitted), and the optional third parameter for
putbinaryfile is the block size to use for the upload. Here’s an upload example:

require 'net/ftp'

ftp = Net::FTP.new('ftp.domain.com')

ftp.passive = true

ftp.login

ftp.chdir('/your/folder/name/here')

ftp.putbinaryfile('local_file')

ftp.close

As with getbinaryfile and gettextfile, if you supply a code block, the uploaded
chunks of the file are passed into it, allowing you to keep the user informed of the
progress of the upload.

require 'net/ftp'

ftp = Net::FTP.new('ftp.domain.com')

ftp.passive = true

ftp.login

ftp.chdir('/your/folder/name/here')

count = 0

ftp.putbinaryfile('local_file', 'local_file', 100000) do |block|

count += 100000

puts "#{count} bytes uploaded"

end

ftp.close

If you need to upload data that’s just been generated by your Ruby script and isn’t
within a file, you need to create a temporary file with Tempfile and upload from that.
For example:

require 'net/ftp'

require 'tempfile'

tempfile = Tempfile.new('test')

my_data = "This is some text data I want to upload via FTP."

tempfile.puts my_data

CHAPTER 14 ■ RUBY AND THE INTERNET 463

7664 CH14.qxd 2/19/07 1:12 AM Page 463

ftp = Net::FTP.new('ftp.domain.com')

ftp.passive = true

ftp.login

ftp.chdir('/your/folder/name/here')

ftp.puttextfile(tempfile.path, 'my_data')

ftp.close

tempfile.close

Summary
In this chapter we’ve looked at Ruby’s support for using various Internet systems and
protocols, how Ruby can work with the Web, and how to process and manipulate data
retrieved from the Internet.

Let’s reflect on the main concepts covered in this chapter:

• HTTP: HyperText Transfer Protocol. A protocol that defines the way Web browsers
(clients) and Web servers talk to each other across a network such as the Internet.

• HTTPS: A secure version of HTTP that ensures data being transferred in either
direction is only readable at each end. Anyone intercepting an HTTPS stream can-
not decipher it. It’s commonly used for e-commerce and for transmitting financial
data on the Web.

• HTML: HyperText Markup Language. A text formatting and layout language used
to represent Web pages.

• WEBrick: An HTTP server toolkit that comes as standard with Ruby. WEBrick
makes it quick and easy to put together basic Web servers.

• Mongrel: Another HTTP server library, developed by Zed Shaw, that’s available as a
gem and is faster and more scalable in operation than WEBrick.

• Markaby: A Ruby library that makes it possible to produce HTML directly from
Ruby methods and logic.

• RedCloth: A Ruby implementation of the Textile markup language that makes it
easy to produce HTML documents from specially formatted plain text.

* Hpricot: A self-proclaimed “fast and delightful” HTML parser developed to make it
easy to process and parse HTML with Ruby. It is noted for its speed, with intensive
sections written in C.

CHAPTER 14 ■ RUBY AND THE INTERNET464

7664 CH14.qxd 2/19/07 1:12 AM Page 464

* POP3: Post Office Protocol 3. A mail server protocol commonly used when
retrieving e-mail.

* SMTP: Simple Mail Transfer Protocol. A mail server protocol commonly used to
transfer mail to a mail server or between mail servers. SMTP is used for sending
mail, rather than receiving it.

* FTP: File Transfer Protocol. An Internet protocol for providing access to files
located on a server and allowing users to download and upload to it.

In this chapter we’ve covered a variety of Internet-related functions, but in
Chapter 15 we’re going to look more deeply at networking, servers, and network services.
Most of what is covered in Chapter 15 is also applicable to the Internet, but is at a much
lower level than FTP or using the Web.

CHAPTER 14 ■ RUBY AND THE INTERNET 465

7664 CH14.qxd 2/19/07 1:12 AM Page 465

7664 CH14.qxd 2/19/07 1:12 AM Page 466

Networking, Sockets, and
Daemons

In this chapter we’re going to look at how to use Ruby to perform network-related opera-
tions, how to create servers and network services, and how to create persistent processes
that can respond to queries over a network.

Chapter 14 examined Ruby’s Internet capabilities from a high level, such as dealing
with making requests to Web sites, processing HTML, working with XML, and managing
files over FTP. In contrast, this chapter looks at networking and network services at a
lower level, and works through to creating your own basic protocols and permanently
running service processes.

Let’s start with a look at the basic networking concepts we’ll be using in this chapter.

Networking Concepts
A network is a group of computers connected in some fashion. If you have several
computers at home all sharing a wired or wireless router, this is called your local area
network (LAN). Your computers are probably also connected to the Internet, another
form of network. Networking is the overall concept of communications between two or
more computers or devices, and this chapter looks at how you can use Ruby to perform
operations relating to a network, whether a local or global one.

■Note If you are experienced with networks and TCP, UDP, and IP protocols, you might wish to skip this
section.

467

C H A P T E R 1 5

7664 CH15.qxd 2/19/07 1:07 AM Page 467

468 CHAPTER 15 ■ NETWORKING, SOCKETS, AND DAEMONS

TCP and UDP

There are many types of networks, but the type of network we’re most interested in is one
that uses TCP/IP. TCP/IP is the collective name for two protocols: Transmission Control
Protocol (TCP) and Internet Protocol (IP). TCP defines the concept of computers con-
necting to one another, and it makes sure packets of data are transmitted and successfully
received by machines, in the correct order. IP, on the other hand, is the protocol that’s
concerned with actually routing the data from one machine to another. IP is the base of
most local networks and the Internet, but TCP is a protocol that sits on top and makes
the connections reliable.

User Datagram Protocol (UDP) is another protocol like TCP, but unlike TCP it isn’t
considered reliable and it doesn’t ensure that a remote machine receives the data you
sent. When you send data using UDP, you simply have to hope it reached its destination,
as you’ll receive no acknowledgment of failure. Despite this, UDP is still used for various
non-mission-critical tasks, as it’s fast and has a low overhead.

Commonly, operations that require a permanent connection (whether over a long
period of time or not) between two machines use TCP and TCP-based protocols. For
example, almost all services that require authentication to work, such as e-mail access,
use TCP-based protocols so that the authentication information can be sent only once—
at the start of the connection—and then both ends of the connection are satisfied that
connection has been authenticated.

Quick operations where a connection is unimportant or easily repeatable, such as
converting domain names and hostnames into IP addresses, and vice versa, can run on
UDP. If an answer to a query isn’t received in sufficient time, another query can simply
be issued. UDP is sometimes also used for streaming video and audio due to its low
overhead and latency.

IP Addresses and DNS

A machine on an IP-based network has one or many unique IP addresses. When data is
sent across the network to a particular IP address, the machine with that address will
receive the data.

When you use the Web and access a Web site such as http://www.apress.com, your
computer first asks a Domain Name Service (DNS) server for the IP address associated
with the hostname www.apress.com. Once it gets the raw address in response (in this case
65.19.150.101), your Web browser makes a connection to that machine on port 80.
Machines can make and receive connections on different TCP (or UDP) ports (from a
range of 65,536), and different ports are assigned to different types of services. For exam-
ple, port 80 is the default port used for Web servers.

Next in this chapter we’re going to look at how to perform operations over an
IP-based network, such as checking the availability of machines on the network, and
we’ll create basic TCP and UDP clients and servers.

7664 CH15.qxd 2/19/07 1:07 AM Page 468

Basic Network Operations
Network programming is usually a difficult process. At the lowest levels it involves a lot
of arcane terminology and interfacing with antique libraries. However, Ruby is not usual,
and Ruby’s libraries take away most of the complexities usually associated with network
programming.

In this section we’re going to look at how to achieve a few basic networking opera-
tions, such as checking whether a server is present on a network, looking at how data is
routed across the network between two points, and how to connect directly to a service
offered on a remote machine.

Checking Machine and Service Availability

One of the most basic network operations you can perform is a ping, a simple check that
another machine is available on the network or that a service it offers is available.
Ruby’s standard library includes ping, a basic library for checking a machine’s network
availability:

require 'ping'

puts "Pong!" if Ping.pingecho('localhost', 5)

Pong!

The ping library is very rudimentary, offering a single class, Ping, with a single class
method, pingecho. The first argument is the hostname, domain name, or IP address of
the machine you want to check, and the second argument is the maximum number of
seconds to wait for a response. Because pings could take up to a few seconds to respond,
you might consider using Ruby’s thread support to run multiple pings at once if you have
many to do.

On many systems, the previous program will respond with “Pong!” as pingecho will be
able to ping the local machine. On some systems you might need to change 'localhost'
to '127.0.0.1', a default IP address that always resolves to the local machine you’re using.
However, you might find that you get no response. Let’s look at one other example before
we investigate why.

Let’s use the ping library to check servers that are online:

require 'ping'

puts "Pong!" if Ping.pingecho('www.google.com', 5)

CHAPTER 15 ■ NETWORKING, SOCKETS, AND DAEMONS 469

7664 CH15.qxd 2/19/07 1:07 AM Page 469

At the time of writing, this ping receives no response, and after five seconds the
program exits silently. Yet, if you ping www.google.com with a command line tool, there
is a response.

The reason is that the ping library only performs a TCP echo ping rather than an
ICMP (Internet Control Message Protocol) echo. TCP echoes are less used and are
blocked by many machines (or by some networks as a whole), particularly those on the
Internet. Although TCP echoes might work on your local network, they are less likely to
be supported online. Therefore, you need to find other techniques.

Another ping library available is net-ping, which is available as a gem with gem
install net-ping. net-ping supports TCP echoes too, but can also interface with your
operating system’s ping command to get a response with a more reliable technique. It
can also connect directly to services offered by a remote machine to gauge whether it’s
responding to requests or not.

require 'rubygems'

require 'net/ping'

if Net::PingExternal.new('www.google.com').ping

puts "Pong!"

else

puts "No response"

end

Pong!

However, if you want to check whether a particular service is available, rather than a
machine in general, you can use net-ping to connect to a specific port using TCP or UDP:

require 'rubygems'

require 'net/ping'

if Net::PingTCP.new('www.google.com', 80).ping

puts "Pong!"

else

puts "No response"

end

In this instance you connect directly to www.google.com’s HTTP port as if you were a
Web browser, but once you get a connection you immediately disconnect again. This
allows you to verify that www.google.com is accepting HTTP connections.

CHAPTER 15 ■ NETWORKING, SOCKETS, AND DAEMONS470

7664 CH15.qxd 2/19/07 1:07 AM Page 470

Performing DNS Queries

Most Ruby networking libraries allow you to specify domain names and hostnames when
you want to interact with a remote server, and automatically resolve these names into IP
addresses. However, this adds a small overhead, so in some situations you might prefer to
resolve IP addresses ahead of time yourself.

You might also use DNS queries to check for the existence of different hostnames
and to check whether a domain is active or not, even if it’s not pointing to a Web server.

resolv is a library in the Ruby standard library, and it offers several methods that are
useful for converting between hostnames and IP addresses:

require 'resolv'

puts Resolv.getaddress("www.google.com")

66.102.9.104

This code returns an IP address of 66.102.9.104 for the main Google Web site. However,
if you run the same code several times you might get several different responses. The rea-
son for this is that large Web sites such as Google spread their requests over multiple Web
servers to increase speed. If you want to get all the addresses associated with a hostname,
you can use the each_address method instead:

require 'resolv'

Resolv.each_address("www.google.com") do |ip|

puts ip

end

66.102.9.104

66.102.9.99

66.102.9.147

You can also turn IP addresses into hostnames using the getname method:

require 'resolv'

ip = "192.0.34.166"

CHAPTER 15 ■ NETWORKING, SOCKETS, AND DAEMONS 471

7664 CH15.qxd 2/19/07 1:07 AM Page 471

begin

puts Resolv.getname(ip)

rescue

puts "No hostname associated with #{ip}"

end

www.example.com

It’s important to note that not all IP addresses resolve back into hostnames, as this is
an optional requirement of the DNS system.

As well as converting between IP addresses and hostnames, resolv can also retrieve
other information from DNS servers, such as the mail server(s) associated with a particu-
lar host or domain name. Whereas the record of which IP addresses are associated with
which hostnames are called A records, the records of which mail servers are associated
with a hostname are called MX records.

In the previous examples you’ve used special helper methods directly made available
by the Resolv class, but to search for MX records you have to use the Resolv::DNS class
directly so you can pass in the extra options needed to search for different types of
records:

require 'resolv'

Resolv::DNS.open do |dns|

mail_servers = dns.getresources("google.com", Resolv::DNS::Resource::IN::MX)

mail_servers.each do |server|

puts "#{server.exchange.to_s} - #{server.preference}"

end

end

smtp2.google.com - 10

smtp3.google.com - 10

smtp4.google.com - 10

smtp1.google.com - 10

In this example you’ve performed a DNS request in a more detailed way using
Resolv::DNS directly, rather than the convenient Resolv.getname and Resolv.getaddress
helpers, so that you could specify the MX request using the
Resolv::DNS::Resource::IN::MX option.

CHAPTER 15 ■ NETWORKING, SOCKETS, AND DAEMONS472

7664 CH15.qxd 2/19/07 1:07 AM Page 472

■Note Readers who are savvy with DNS terminology might like to try using CNAME, A, SOA, PTR, NS, and
TXT variations of the preceding option, as these are all supported.

MX records are useful if you want to send e-mail to people but you have no SMTP
server you can send mail through, as you can use Net::SMTP (as shown in Chapter 14)
directly against the mail servers for the domain name of the e-mail address you want to
send to. For example, if you wanted to e-mail someone whose e-mail address ended with
@google.com, you could use Net::SMTP to connect directly to smtp2.google.com (or any of
the other choices) and send the mail directly to that user:

require 'resolv'

require 'net/smtp'

from = "your-email@example.com"

to = "another-email@example.com"

message = <<MESSAGE_END

From: #{from}

To: #{to}

Subject: Direct e-mail test

This is a test e-mail message.

MESSAGE_END

to_domain = to.match(/\@(.+)/)[1]

Resolv::DNS.open do |dns|

mail_servers = dns.getresources(to_domain, Resolv::DNS::Resource::IN::MX)

mail_server = mail_servers[rand(mail_servers.size)].exchange.to_s

Net::SMTP.start(mail_server) do |smtp|

smtp.send_message message, from, to

end

end

■Note You can learn more about DNS at http://en.wikipedia.org/wiki/Domain_Name_System.

CHAPTER 15 ■ NETWORKING, SOCKETS, AND DAEMONS 473

7664 CH15.qxd 2/19/07 1:07 AM Page 473

Connecting to a TCP Server Directly

One of the most important networking operations is connecting to a service offered by
another machine (or in some cases, even your local machine!) and interacting with it in
some way. In Chapter 14 we looked at some high-level ways to do this, such as using the
Web or FTP through Ruby libraries that made the operation of these tools easier.

However, it’s possible to connect directly to remote services at the TCP level and talk
to them in their raw format. This can be useful to investigate how different protocols
work (as you’ll need to use and understand the protocol’s raw data) or to create simple
protocols of your own.

To connect to a TCP port directly you can use a tool called Telnet. Telnet is a protocol
to provide a general, bi-directional, 8-bit, byte-oriented communications facility. Its
name comes from “telecommunication network”. You’re only concerned with its ability to
let you easily connect to raw TCP ports. As you’d expect, Ruby comes with a Telnet library
in the standard library, net/telnet.

Let’s use net/telnet to connect to a Web site and retrieve a Web page using the HTTP
protocol directly:

require 'net/telnet'

server = Net::Telnet::new('Host' => 'www.rubyinside.com',

'Port' => 80,

'Telnetmode' => false)

server.cmd("GET / HTTP/1.1\nHost: www.rubyinside.com\n") do |response|

puts response

end

HTTP/1.1 200 OK

Date: Wed, 01 Nov 2006 03:46:11 GMT

Server: Apache

X-Powered-By: PHP/4.3.11

X-Pingback: http://www.rubyinside.com/xmlrpc.php

Status: 200 OK

Transfer-Encoding: chunked

Content-Type: text/html; charset=UTF-8

.. hundreds of lines of HTML source code for the page removed ..

CHAPTER 15 ■ NETWORKING, SOCKETS, AND DAEMONS474

7664 CH15.qxd 2/19/07 1:07 AM Page 474

■Note After several seconds, there will be a timeout error. This is because you don’t know when the
data has been fully received from the Web server. Usually, if no more data is forthcoming, you would close
the connection at the timeout. This is one good reason to use a proper HTTP library that handles all of this
for you!

Net::Telnet connects to www.rubyinside.com on port 80 (the standard HTTP port) and
issues these commands:

GET / HTTP/1.1

Host: www.rubyinside.com

These commands are part of the HTTP protocol and tell the remote Web server to
return you the home page for www.rubyinside.com. The response is then printed to the
screen where the first eight or so lines are HTTP headers, another part of the HTTP
protocol.

All these technicalities are shielded from you when you use the open-uri and
Net::HTTP libraries, as you did in Chapter 14, as those libraries create the correct HTTP
commands and process the HTTP responses for you. However, if you need to create a
library to deal with a new or currently unsupported protocol in Ruby, you’ll probably
need to use Net::Telnet or a similar library to get access to the raw TCP data.

Servers and Clients
Clients and servers are the two major types of software that use networks. Clients connect
to servers, and servers process information and manage connections and data being
received from and sent to the clients. In this section you’re going to create some servers
that you can connect to using net/telnet and other client libraries covered in both this
chapter and Chapter 14.

UDP Client and Server

In the previous section we looked at creating a basic TCP client using net/telnet. However,
to demonstrate a basic client/server system, UDP is an ideal place to start. Unlike with TCP,
UDP has no concept of connections, so it works on a simple system where messages are
passed from place to another with no guarantee of them arriving. Whereas TCP is like mak-
ing a phone call, UDP is like sending a postcard in the mail.

CHAPTER 15 ■ NETWORKING, SOCKETS, AND DAEMONS 475

7664 CH15.qxd 2/19/07 1:07 AM Page 475

Creating a UDP server is easy. Let’s create a script named udpserver.rb:

require 'socket'

s = UDPSocket.new

s.bind(nil, 1234)

5.times do

text, sender = s.recvfrom(16)

puts text

end

This code uses Ruby’s socket library, a library that provides the lowest-level access to
your operating system’s networking capabilities. socket is well suited for UDP, and in this
example you create a new UDP socket and bind it to port 1234 on the local machine. You
loop five times, accepting data in 16-byte chunks from the socket and printing it to the
screen.

■Note The reason for looping just five times is so that the script can end gracefully after it receives five
short messages. Later, however, we’ll look at ways to keep servers running permanently.

Now that you have a server, you need a client to send data to it. Let’s create
udpclient.rb:

require 'socket'

s = UDPSocket.new

s.send("hello", 0, 'localhost', 1234)

This code creates a UDP socket, but instead of listening for data, it sends the string
"hello" to the UDP server on localhost at port 1234. If you run udpserver.rb at the same
time as udpclient.rb, “hello” should appear on the screen where udpserver.rb is running.
You have successfully sent data across a network (albeit on the same machine) from a
client to a server using UDP.

It’s possible, of course, to run the client and server on different machines, and if you
have multiple machines at your disposal, all you need to do is change 'localhost'
on the send method to the hostname or IP address of the machine where udpserver.rb is
running.

As you’ve seen, UDP is simple, but it’s possible to layer more-advanced features on
top of it. For example, because there is no connection involved, you can alternate
between client and server modes with a single program, accomplishing a two-way effect.

CHAPTER 15 ■ NETWORKING, SOCKETS, AND DAEMONS476

7664 CH15.qxd 2/19/07 1:07 AM Page 476

You can demonstrate this easily by making a single program send and receive UDP data
to and from itself:

require 'socket'

host = 'localhost'

port = 1234

s = UDPSocket.new

s.bind(nil, port)

s.send("1", 0, host, port)

5.times do

text, sender = s.recvfrom(16)

remote_host = sender[3]

puts "#{remote_host} sent #{text}"

response = (text.to_i * 2).to_s

puts "We will respond with #{response}"

s.send(response, 0, host, port)

end

127.0.0.1 sent 1

We will respond with 2

127.0.0.1 sent 2

We will respond with 4

127.0.0.1 sent 4

We will respond with 8

127.0.0.1 sent 8

We will respond with 16

127.0.0.1 sent 16

We will respond with 32

■Note In a real-world situation you would typically have two scripts, each on a different machine and
communicating between each other, but this example demonstrates the logic necessary to achieve that
result on a single machine for ease of testing.

CHAPTER 15 ■ NETWORKING, SOCKETS, AND DAEMONS 477

7664 CH15.qxd 2/19/07 1:07 AM Page 477

UDP has some benefits in speed and the amount of resources needed, but because it
lacks a state of connection and reliability in data transfer, TCP is more commonly used.
Next we’ll look at how to create some simple TCP servers to which you can connect with
net/telnet and other applications.

Building a Simple TCP Server

TCP servers are the foundation of most Internet services. Although lightweight time
servers and DNS servers can survive with UDP, when sending Web pages and e-mails
around it’s necessary to build up a connection with a remote server to make the requests
and send and receive data. In this section you’re going to build a basic TCP server that
can respond to requests via Telnet before moving on to creating something more com-
plex.

Let’s look at a basic server that operates on port 1234, accepts connections, prints
any text sent to it from a client, and sends back an acknowledgment:

require 'socket'

server = TCPServer.new(1234)

while connection = server.accept

while line = connection.gets

break if line =~ /quit/

puts line

connection.puts "Received!"

end

connection.puts "Closing the connection. Bye!"

connection.close

end

As well as being used to create UDP servers and clients, socket can also create TCP
servers and clients. In this example you create a TCPServer object on port 1234 of the local
machine and then enter a loop that processes whenever a new connection is accepted
using the accept method on the TCPServer object. Once a connection has been made, the
server accepts line after line of input, only closing the connection if any line contains the
word quit.

To test this client, you can use your operating system’s telnet client (built in to OS X,
Linux, and Windows, and accessible from the command line as telnet) as follows:

telnet 127.0.0.1 1234

CHAPTER 15 ■ NETWORKING, SOCKETS, AND DAEMONS478

7664 CH15.qxd 2/19/07 1:07 AM Page 478

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

Hello!

Received!

quit

Connection closed by foreign host.

Alternatively, you can create your own basic client using net/telnet:

require 'net/telnet'

server = Net::Telnet::new('Host' => '127.0.0.1',

'Port' => 1234,

'Telnetmode' => false)

lines_to_send = ['Hello!', 'This is a test', 'quit']

lines_to_send.each do |line|

server.puts(line)

server.waitfor(/./) do |data|

puts data

end

end

As with the UDP client and server example, the client and server applications can
(and usually would) be placed on different machines. These test applications would work
in exactly the same way if the server were located on the other side of the world and the
client were running from your local machine, as long as both machines were connected
to the Internet.

However, one downside to your TCP server is that it can only accept one connection
at a time. If you telnet to it once and begin typing, but then another connection is
attempted, it might begin to connect, but no responses will be forthcoming for anything
sent. The reason for this is that your TCP server can work with only one connection at a
time in its current state. In the next section we’re going to look at how to create a more
advanced server that can deal with multiple clients at the same time.

CHAPTER 15 ■ NETWORKING, SOCKETS, AND DAEMONS 479

7664 CH15.qxd 2/19/07 1:07 AM Page 479

Multi-Client TCP Servers

Most servers on the Internet are designed to deal with large numbers of clients at any one
time. A Web server that can only serve one file at once would quickly result in the world’s
slowest Web site as users began to stack up waiting to be served! The TCP server in the
previous section operated in this way, and would be commonly known as a “single
threaded” or “sequential” server.

Ruby’s Thread class makes it easy to create a multithreaded server—one that accepts
requests and immediately creates a new thread of execution to process the connection
while allowing the main program to await more connections:

require 'socket'

server = TCPServer.new(1234)

loop do

Thread.start(server.accept) do |connection|

while line = connection.gets

break if line =~ /quit/

puts line

connection.puts "Received!"

end

connection.puts "Closing the connection. Bye!"

connection.close

end

end

In this example you have a permanent loop, and when server.accept responds, a new
thread is created and started immediately to handle the connection that has just been
accepted, using the connection object passed into the thread. However, the main program
immediately loops back and awaits new connections.

Using Ruby threads in this way means the code is portable and will run in the same
way on Linux, OS X, and Windows. However, threading is not without its disadvantages.
Ruby threads aren’t true operating-system–level threads and can seize up in situations
where the program is waiting on the system for data. There’s also an overhead on each
connection to create the new thread and pass execution to it.

On POSIX-compliant operating systems (such as OS X and Linux, but not Windows—
though Windows users should still read this section) it’s possible to fork a program so that
a separate process is created, as opposed to a separate thread. However, rather than fork

CHAPTER 15 ■ NETWORKING, SOCKETS, AND DAEMONS480

7664 CH15.qxd 2/19/07 1:07 AM Page 480

at the time of receiving a connection, you can fork a number of listening processes in
advance to increase the maximum number of connections you can handle at once:

require 'socket'

server = TCPServer.new(1234)

5.times do

fork do

while connection = server.accept

while line = connection.gets

break if line =~ /quit/

puts line

connection.puts "Received!"

end

connection.puts "Closing the connection. Bye!"

connection.close

end

end

end

■Note This code won’t run on operating systems that don’t support POSIX-style forking, such as Windows.
However, servers that use Ruby threads will operate on all operating systems that Ruby supports.

This example forks off five separate processes that can each accept connections in
sequence, allowing five clients to connect to the server at the same time. Each of these
processes runs separately from the main process, so even though the main process ends
immediately after performing the forks, the client processes continue to run.

■Note Because the forked processes are continuing to run, to shut them down you need to kill them, such
as with killall ruby (on Linux and OS X).

Although you get the ability to run multiple, identical servers in parallel using forking,
managing the child processes is clumsy. You have to kill them manually, and if any of

CHAPTER 15 ■ NETWORKING, SOCKETS, AND DAEMONS 481

7664 CH15.qxd 2/19/07 1:07 AM Page 481

them die or run into errors, they won’t be replaced with new servers. This means that if all
the child processes die for whatever reason, you’re left with a nonoperational service!

It’s possible to code all the logic and housekeeping necessary to maintain child
processes yourself, but Ruby comes with a library called GServer that makes life a lot
easier and works across all platforms.

GServer

GServer is a Ruby library that comes in the standard library and implements a “generic
server” system. It features thread pool management, logging, and tools to manage multi-
ple servers at the same time. GServer is offered as a class, and you produce server classes
that inherit from it.

Other than simple management, GServer also allows you to run multiple servers at
once on different ports, allowing you to put together an entire suite of services in just a
few lines of code. Threading is entirely handled by GServer, although you can get
involved with the process if you like. GServer also implements logging features, although
again, you can provide your own code for these functions if you wish.

Let’s look at the simplest TCP server possible with GServer:

require 'gserver'

class HelloServer < GServer

def serve(io)

io.puts("Hello!")

end

end

server = HelloServer.new(1234)

server.start

server.join

This code implements a basic server that simply outputs the word “Hello!” to any
client connecting to port 1234. If you telnet to connect to port 1234 (or even a Web
browser, using http://127.0.0.1:1234/) you’ll see the string “Hello!” returned to you
before the connection is closed.

In this example, you create a server class called HelloServer that descends from
GServer. GServer implements all the thread and connection management, leaving you
with only a handful of technicalities to worry about. In this simple example you only
create a single server process, tell it to use port 1234, and start it immediately.

However, even this simple example will work with multiple clients, and if you telnet
to it multiple times in parallel you’ll find that all requests are processed successfully.

CHAPTER 15 ■ NETWORKING, SOCKETS, AND DAEMONS482

7664 CH15.qxd 2/19/07 1:07 AM Page 482

However, it’s possible to set a maximum number of allowed connections by supplying
more parameters to new:

require 'gserver'

class HelloServer < GServer

def serve(io)

io.puts("Say something to me:")

line = io.gets

io.puts("You said '#{line.chomp}'")

end

end

server = HelloServer.new(1234, '127.0.0.1', 1)

server.start

server.join

The new method for GServer accepts several parameters. In order, they are the port
number to run the server(s) on, the name of the host or interface to run the server(s) on,
the maximum number of connections to allow at once (set to 1 in this example), a file
handle of where to send logging messages, and a true or false flag to turn logging on
or off.

As mentioned earlier, you can create multiple servers at once:

require 'gserver'

class HelloServer < GServer

def serve(io)

io.puts("Say something to me:")

line = io.gets

io.puts("You said '#{line.chomp}'")

end

end

server = HelloServer.new(1234, '127.0.0.1', 1)

server.start

server2 = HelloServer.new(1235, '127.0.0.1', 1)

server2.start

sleep 10

Creating multiple servers is as easy as creating a new instance of HelloServer (or any
GServer descendent class), assigning it to a variable, and calling its start method.

CHAPTER 15 ■ NETWORKING, SOCKETS, AND DAEMONS 483

7664 CH15.qxd 2/19/07 1:07 AM Page 483

Another difference between this example and the last is that at the end you don’t call
server.join. With GServer objects, join works in the same way as with Thread objects,
where calling join waits for that thread to complete before continuing execution. In the
first GServer examples, your programs would wait forever until you exited them manually
(using Ctrl+C, for example). However, in the preceding example, you didn’t call any join
methods and only slept for 10 seconds using sleep 10. This means the servers you cre-
ated are only available on ports 1234 and 1235 for 10 seconds after running the program,
at which point the program and its child threads all exit at once.

Because GServer allows multiple servers to run at the same time without impeding
the execution of the main program, you can manage the currently running servers by
using several methods GServer makes available to start, stop, and check servers:

require 'gserver'

class HelloServer < GServer

def serve(io)

io.puts("To stop this server, type 'shutdown'")

self.stop if io.gets =~ /shutdown/

end

end

server = HelloServer.new(1234)

server.start

loop do

break if server.stopped?

end

puts "Server has been terminated"

This time you put the main program into a loop waiting for the server to be stopped.
The server is stopped if someone connects and types shutdown, which triggers that
server’s stop method, leading to the whole server program ending.

You can also check whether a GServer is running on a port without having the object
reference to hand by using the in_service? class method:

if GServer.in_service?(1234)

puts "Can't create new server. Already running!"

else

server = HelloServer.new(1234)

end

CHAPTER 15 ■ NETWORKING, SOCKETS, AND DAEMONS484

7664 CH15.qxd 2/19/07 1:07 AM Page 484

A GServer-Based Chat Server

With the knowledge picked up in the previous section, only a small jump in complexity is
required to build a practical application using GServer. You’ll build a simple chat server
that allows a number of clients to connect and chat amongst each other.

The first step is to subclass GServer into a new class, ChatServer, and override the new
method with your own so that you can set up class variables to store client IDs and the
chat log for all the clients to share:

class ChatServer < GServer

def initialize(*args)

super(*args)

Keep an overall record of the client IDs allocated

and the lines of chat

@@client_id = 0

@@chat = []

end

end

The main part of your program can be like your other GServer-based apps, with a
basic initialization and a loop until the chat server shuts itself down:

server = ChatServer.new(1234)

server.start

loop do

break if server.stopped?

end

■Note Remember that you can specify the hostname to serve from as the second parameter to
ChatServer.new. If you want to use this chat server over the Internet, you might need to specify your
remotely accessible IP address as this second parameter, otherwise your server might only be available
to machines on your local network.

Now that you have the basics in order, you need to create a serve method that assigns
the connection the next available client ID (by using the class variable @@client_id),
welcomes the user, accepts lines of text from the user, and shows him or her the latest
lines of text entered by other users from time to time.

CHAPTER 15 ■ NETWORKING, SOCKETS, AND DAEMONS 485

7664 CH15.qxd 2/19/07 1:07 AM Page 485

As the serve method is particularly long in this case, the complete source code of the
chat server is shown here, including comments:

require 'gserver'

class ChatServer < GServer

def initialize(*args)

super(*args)

Keep an overall record of the client IDs allocated

and the lines of chat

@@client_id = 0

@@chat = []

end

def serve(io)

Increment the client ID so each client gets a unique ID

@@client_id += 1

my_client_id = @@client_id

my_position = @@chat.size

io.puts("Welcome to the chat, client #{@@client_id}!")

Leave a message on the chat queue to signify this client

has joined the chat

@@chat << [my_client_id, "<joins the chat>"]

loop do

Every 5 seconds check to see if we are receiving any data

if IO.select([io], nil, nil, 2)

If so, retrieve the data and process it...

line = io.gets

If the user says 'quit', disconnect them

if line =~ /quit/

@@chat << [my_client_id, "<leaves the chat>"]

break

end

CHAPTER 15 ■ NETWORKING, SOCKETS, AND DAEMONS486

7664 CH15.qxd 2/19/07 1:07 AM Page 486

Shut down the server if we hear 'shutdown'

self.stop if line =~ /shutdown/

Add the client's text to the chat array along with the

client's ID

@@chat << [my_client_id, line]

else

No data, so print any new lines from the chat stream

@@chat[my_position..(@@chat.size - 1)].each_with_index do |line, index|

io.puts("#{line[0]} says: #{line[1]}")

end

Move the position to one past the end of the array

my_position = @@chat.size

end

end

end

end

server = ChatServer.new(1234)

server.start

loop do

break if server.stopped?

end

The chat server operates primarily within a simple loop that constantly checks
whether any data is waiting to be received with the following line:

if IO.select([io], nil, nil, 2)

IO.select is a special function that can check to see if an I/O stream has any data in
its various buffers (receive, send, and exceptions/errors, in that order). IO.select([io],
nil, nil, 2) returns a value if the connection with the client has any data received that
you haven’t processed, but you ignore whether there is any data to send or any errors.
The final parameter, 2, specifies that you have a timeout of two seconds, so you wait for
two seconds before either succeeding or failing. This means that every two seconds the
else block is executed, and any new messages in the chat log are sent to the client.

CHAPTER 15 ■ NETWORKING, SOCKETS, AND DAEMONS 487

7664 CH15.qxd 2/19/07 1:07 AM Page 487

If you use telnet to connect to this chat server, a session would look somewhat like
this:

$ telnet 127.0.0.1 1234

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

Welcome to the chat, client 1!

1 says: <joins the chat>

2 says: <joins the chat>

Hello 2!

1 says: Hello 2!

2 says: Hello 1!

2 says: I'm going now.. bye!

2 says: <leaves the chat>

quit

Connection closed by foreign host.

With the basic GServer principles covered in this and the previous sections, you can
create servers that operate to protocols of your own design, or even create server pro-
grams that can respond to preexisting protocols. All it requires is being able to receive
data, process it, and send back the data required by the client. Using these techniques, it’s
possible to create a mail server, Web server, or any other type of server necessary online.

Web/HTTP Servers

As hinted at in the previous section, Web servers are also TCP servers, and use many of
the same techniques covered in the last few sections, such as forking and threading. A
Web server is a normal TCP server that talks HTTP.

However, you’re not going to look at HTTP servers directly here, as I covered them
previously in Chapter 10, so if you want to recap how to construct a basic Web server in
Ruby using WEBrick or Mongrel, refer to the latter sections of that chapter.

Daemon Processes

In our previous examples, our servers have all run as normal applications at the com-
mand line. They can print to the screen, and if you use Ctrl+C you can close them.
However, servers typically run as daemon processes that operate independently of any
shell or terminal.

CHAPTER 15 ■ NETWORKING, SOCKETS, AND DAEMONS488

7664 CH15.qxd 2/19/07 1:07 AM Page 488

■Note This section is not relevant to Windows users, as Windows has the concept of services rather than
daemons. Information about creating a Windows service is available at http://www.tacktech.com/
display.cfm?ttid=304.

A daemon process is one that runs continually and silently in the background on a
machine and is not run directly by a user. Daemon processes are often used to run
servers, as they run consistently without any interaction requirements on the local
machine.

In the “Multi-Client TCP Servers” section of this chapter you created a basic server
that forked five separate processes to listen for and process client connections. It resulted
in processes running in the background, but they weren’t truly separate. The processes
still output their error messages to the current screen, and they were still attached to the
parent process, even though it had died.

To make a program truly run as a background daemonized process, it’s necessary to
perform a few operations:

1. Fork the process to allow the initial process to exit.

2. Call the operating system’s setsid function to create a new session separate from
any terminal or shell.

3. Fork the process again to ensure the new daemon process is an orphan process,
totally in control of itself.

4. Change the working directory to the root directory so that the daemon process
isn’t blocking erase access to the original present working directory.

5. Ensure that standard output, standard input, and standard error file handles
(STDIN, STDOUT, and STDERR) aren’t connected to any streams.

6. Set up a signal handler to catch any TERM signals so that the daemon will end when
requested.

Let’s look at how this is done in Ruby:

def daemonize

fork do

Process.setsid

exit if fork

Dir.chdir('/')

STDIN.reopen('/dev/null')

STDOUT.reopen('/dev/null', 'a')

CHAPTER 15 ■ NETWORKING, SOCKETS, AND DAEMONS 489

7664 CH15.qxd 2/19/07 1:07 AM Page 489

STDERR.reopen('/dev/null', 'a')

trap("TERM") { exit }

yield

end

end

daemonize do

You can do whatever you like in here and it will run in the background

entirely separated from the parent process.

end

puts "The daemon process has been launched!"

The daemonize method performs all the operations covered in the preceding list and
then yields to a supplied code block. This means the code inside the code block following
the daemonize call makes up the activity of the daemonized process. In here you could
create GServer servers, create threads, and do anything in Ruby that you like, independ-
ent of the shell or terminal with which you launched the initial program.

Summary
In this chapter we’ve looked at Ruby’s support for building lower-level networking tools
and servers, as well as using Ruby to develop daemons and other persistently running
processes.

Let’s reflect on the main concepts covered in this chapter:

• Network: A collection of computers connected in such a way that they can send
and receive data between one another.

• TCP: Transmission Control Protocol. A protocol that handles connections between
two machines over an IP-based network, and ensures packets are transmitted and
received successfully and in the correct order.

• UDP: User Datagram Protocol. A protocol that allows two computers to send and
receive messages between each other where no “connection” is made and no
assurances are made whether the data is received by the remote party.

• IP: Internet Protocol. A packet-based protocol for delivering data across networks.
IP also makes provisions for each machine connected to the network to have one
or many IP addresses.

CHAPTER 15 ■ NETWORKING, SOCKETS, AND DAEMONS490

7664 CH15.qxd 2/19/07 1:07 AM Page 490

• DNS: Domain Name Service. A system of referencing host or machine names
against different IP addresses and converting between the two. For example, a DNS
server will convert apress.com into the IP address 65.19.150.101.

• Ping: The process of verifying whether a machine with a particular IP is valid and
accepting requests by sending it a small packet of data and waiting for a response.

• Server: A process that runs on a machine and responds to clients connecting to it
from other machines, such as a Web server.

• Client: A process that connects to a server, transmits and receives data, and then
disconnects once a task is completed. A Web browser is a basic example of a client.

• GServer: A Ruby library that makes developing network servers and services easy.
It handles the thread and connection management and allows servers to be cre-
ated by simply subclassing the GServer class.

• Daemon: A process that runs continually and silently in the background on a
machine and isn’t run directly by a user. Daemon processes are often used to run
servers, as they run consistently without any interaction requirements on the
local machine. A process that is then turned into a daemon is often said to be
daemonized.

This marks the last chapter of narrated, instructional content, with Chapter 16 being
a reference-style guide to a large collection of Ruby libraries (both in the standard library
and those available as gems). With this in mind, all of us involved in the production of
this book would like to thank you for reading so far and hope you find the following refer-
ence chapters and appendixes useful.

I wish you the best on your continuing journey into the world of Ruby! Be sure to
look at the following reference chapter and appendixes to flesh out your Ruby knowledge
further.

CHAPTER 15 ■ NETWORKING, SOCKETS, AND DAEMONS 491

7664 CH15.qxd 2/19/07 1:07 AM Page 491

7664 CH15.qxd 2/19/07 1:07 AM Page 492

Useful Ruby Libraries and Gems

This chapter is a basic reference to a collection of useful Ruby libraries and RubyGems
that you might want to use in your programs. We’re going to look at libraries covering a
vast array of functionality, from networking and Internet access to file parsing and com-
pression. The libraries in this chapter are in alphabetical order, and each library starts on
a new page with the name as the page header for easy browsing. Below each library’s title,
several subsections follow:

• Overview: A description of what the library does, its basic functionality, and why
you would want to use it. The overview has no header, but is directly beneath the
library name.

• Installation: Information on where the library is found, how to install it, and how
to get it running on most systems.

• Examples: One or more examples of how to use the library that demonstrate its
various elements of functionality. Example results are included too. This section
can be split into multiple subsections, each containing a single example of how to
use a particular branch of functionality.

• Further Information: Links and pointers to further information about the library,
including online references and tutorials.

Unlike the other main chapters in this book, this is a reference chapter, one that you
might not necessarily need right away, but that will become useful over time when you want
to find out how to perform a certain function. In any case, make sure at least to scan through
the list of libraries to get a feel for the variety of Ruby libraries available so that you don’t
unnecessarily reinvent the wheel when you want to do something a library already does!

■Note I’ve tried my best to ensure that references made to the Web are to sites that are likely to be
running for many years yet, but it is possible that some of the references might have moved or been taken
offline. In this case, the best solution is to use a search engine, such as Google, to search for “ruby” and the
library’s name.

493

C H A P T E R 1 6

7664 CH16.qxd 2/21/07 10:56 PM Page 493

494 CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS

abbrev
The abbrev library offers just a single method that calculates a set of unique abbrevia-
tions for each of a supplied group of strings.

Installation

abbrev is in the standard library, so it comes with Ruby by default. To use it, you only
need to place this line near the start of your program:

require 'abbrev'

Examples

abbrev provides a single method that’s accessible in two ways: either directly through
Abbrev::abbrev, or as an added method to the Array class. Let’s look at the most basic
example first:

require 'abbrev'

require 'pp'

pp Abbrev::abbrev(%w{Peter Patricia Petal Petunia})

{"Patrici"=>"Patricia",

"Patric"=>"Patricia",

"Petal"=>"Petal",

"Pat"=>"Patricia",

"Petu"=>"Petunia",

"Patri"=>"Patricia",

"Patricia"=>"Patricia",

"Peter"=>"Peter",

"Petun"=>"Petunia",

"Petuni"=>"Petunia",

"Peta"=>"Petal",

"Pa"=>"Patricia",

"Patr"=>"Patricia",

"Petunia"=>"Petunia",

"Pete"=>"Peter"}

7664 CH16.qxd 2/21/07 10:56 PM Page 494

abbrev can be useful if you have an input requirement with a number of guessable
answers, as you can detect partially entered or erroneous entries more easily. For example:

require 'abbrev'

abbrevs = %w{Peter Paul Patricia Petal Pauline}.abbrev

puts "Please enter your name:"

name = gets.chomp

if a = abbrevs.find { |a, n| a.downcase == name.downcase }

puts "Did you mean #{a.join(' or ')}?"

name = gets.chomp

end

Please enter your name:

paulin

Did you mean Paulin or Pauline?

pauline

Because the results given by abbrev are the longest unique abbreviations possible, it’s
viable to rely on them more if the entry data set is smaller.

Further Information

• Official documentation for abbrev: http://www.ruby-doc.org/stdlib/
libdoc/abbrev/rdoc/index.html

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS 495

7664 CH16.qxd 2/21/07 10:56 PM Page 495

base64
Base64 is a way to encode 8-bit binary data into a format that can be represented in
7 bits. It does this by using only the characters A–Z, a–z, 0–9, +, and / to represent data
(= is also used to pad data). Typically, three 8-bit bytes are converted into four 7-bit bytes
using this encoding, resulting in data that’s 33 percent longer in length. The main benefit
of the Base64 technique is that it allows binary data to be represented in a way that looks
and acts like plain text, so it can more reliably be sent in e-mails, stored in databases, or
used in text-based formats such as YAML and XML.

■Note The Base64 standard is technically specified in RFC 2045 at http://www.faqs.org/rfcs/
rfc2045.html.

Installation

The base64 library is a part of the standard library, so it comes with Ruby by default.
To use it, you only need to place this line near the start of your program:

require 'base64'

Examples

The following two examples show how to convert binary data to Base64 notation and
back again. Then we’ll look at a third example showing how to make your use of Base64
notation more efficient through compression.

Converting Binary Data to Base64

The base64 library makes a single module, Base64, available, which provides encode64
and decode64 methods. To convert data into Base64 format, use encode64:

require 'base64'

puts Base64.encode64('testing')

dGVzdGluZw==

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS496

7664 CH16.qxd 2/21/07 10:56 PM Page 496

In this example you only encode data that’s already printable data (though it’s still,
technically, 8-bit data internally), but this is acceptable. However, generally you’d encode
binary data from files or that generated elsewhere:

require 'base64'

puts Base64.encode64(File.read('/bin/bash'))

yv66vgAAAAIAAAAHAAAAAwAAEAAAB4xQAAAADAAAABIAAAAAAAegAAAIrywA

AAAMAA

AA

<hundreds of lines skipped for brevity>

■Note This example works on OS X and Linux operating systems. On a Windows machine, you could try
replacing /bin/bash with c:\windows\system\cmd.exe to get a similar result.

Convert Base64 Data to Binary Data

To convert Base64-encoded data back to the original data, use decode64:

require 'base64'

puts Base64.decode64(Base64.encode64('testing'))

testing

Note that if you attempt to decode data that isn’t Base64 format, you’ll receive no
error in response. Instead, you’ll just end up with no legitimate data coming back from
decode64.

Using Compression to Make Base64 Efficient

Even though Base64 adds 33 percent to the length of a piece of data, it’s possible to over-
come this by compressing the data before converting it to Base64, and then uncom-
pressing it when you want to convert it back to binary data.

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS 497

7664 CH16.qxd 2/21/07 10:56 PM Page 497

■Note Not all binary data compresses well, although in most cases you’ll achieve a reduction of at least
5 percent, usually more.

To compress and uncompress, you can use the zlib library, which is covered later in
this chapter, like so:

require 'base64'

require 'zlib'

module Base64

def Base64.new_encode64(data)

encode64(Zlib::Deflate.deflate(data))

end

def Base64.new_decode64(data)

Zlib::Inflate.inflate(decode64(data))

end

end

test_data = 'this is a test' * 100

data = Base64.encode64(test_data)

puts "The uncompressed data is #{data.length} bytes long in Base64"

data = Base64.new_encode64(test_data)

puts "The compressed data is #{data.length} bytes long in Base64"

The uncompressed data is 1900 bytes long in Base64

The compressed data is 45 bytes long in Base64

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS498

7664 CH16.qxd 2/21/07 10:56 PM Page 498

In this example, two new methods have been added to the Base64 module that use
zlib to compress the data before converting it to Base64, and then to uncompress the
data after converting it back from Base64. In this way you’ve received significant space
savings.

Read the “zlib” section in this chapter for more information about zlib’s operation.

Further Information

The following are some links to good information on the base64 library, and on Base64 in
general:

• Standard library documentation for base64: http://www.ruby-doc.org/stdlib/
libdoc/base64/rdoc/index.html

• General information about the Base64 standard: http://en.wikipedia.
org/wiki/Base64

• A practical look at how Base64 works: http://email.about.com/cs/standards/a/
base64_encoding.htm

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS 499

7664 CH16.qxd 2/21/07 10:56 PM Page 499

BlueCloth
BlueCloth is a library that converts specially formatted text documents (in a formatting
known as Markdown) into valid HTML. The reasoning behind languages such as Mark-
down is that most users prefer to write their documents in a clean format, rather than be
forced to use HTML tags everywhere and create documents that don’t read well as plain
text. Markdown allows you to format text in a way that makes documents look good as
plain text, but that also allows the text to be converted quickly to HTML for use on the
Web. This makes languages such as Markdown popular for use with posting and com-
menting systems online, and many blog authors even first write their posts in languages
such as Markdown before converting them for publication.

Installation

BlueCloth isn’t part of the Ruby standard library, and is available as a RubyGem. To install
it, use the typical gem installation process (as covered in Chapter 7), like so:

gem install BlueCloth

or

sudo gem install BlueCloth

Examples

An example Markdown document might look like this:

This is a title

===============

Here is some _text_ that's formatted according to [Markdown][1]

specifications. And how about a quote?

[1]: http://daringfireball.net/projects/markdown/

> This section is a quote.. a block quote

> more accurately..

Lists are also possible:

* Item 1

* Item 2

* Item 3

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS500

7664 CH16.qxd 2/21/07 10:56 PM Page 500

In the following example, we’ll assume this document is already assigned to the
variable markdown_text to save space on the page.

BlueCloth works by subclassing String and then adding a to_html method that
converts from Markdown markup to HTML. This allows you to use the standard String
methods on the BlueCloth object.

Here’s how to convert Markdown syntax to HTML:

require 'rubygems'

require 'bluecloth'

bluecloth_obj = BlueCloth.new(markdown_text)

puts bluecloth_obj.to_html

<h1>This is a title</h1>

<p>Here is some text that's formatted according to Markdown
specifications. And how about a quote?</p>

<blockquote>
<p>This section is a quote.. a block quote
more accurately..</p>

</blockquote>

<p>Lists are also possible:</p>

Item 1
Item 2
Item 3

The output HTML correctly resembles the Markdown syntax when viewed with a
Web browser.

To learn more about the Markdown format and its syntax, visit the official Markdown
home page, as linked in the following section.

Further Information

• Official BlueCloth home page: http://www.deveiate.org/projects/BlueCloth

• Official Markdown format home page: http://daringfireball.net/projects/
markdown/

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS 501

7664 CH16.qxd 2/21/07 10:56 PM Page 501

cgi
CGI stands for Common Gateway Interface (although it is rarely called such), and is a
system for running scripts from a Web server that allows data to be passed to and from
a script to produce a response for people accessing the script via a Web browser.

Less commonly used than it once was, CGI is still used in situations where a small
script is desired to perform a simple task, and the overhead of loading Ruby for each
request isn’t a significant issue.

The Ruby CGI library not only offers page header and CGI data-management meth-
ods, but also tools to make managing cookies and sessions easy.

Installation

The cgi library is a part of the standard library, so it comes with Ruby by default. To use it,
you only need to place this line near the start of your program:

require 'cgi'

Examples

In this section you’ll look at several distinct things the cgi library can do. You’ll create a
few simple CGI scripts that demonstrate how you can use the cgi library to produce Ruby
scripts that can respond to Web-based input and perform dynamic operations within the
scope of a Web page. (CGI execution is also covered in Chapter 10.)

A Basic CGI Script

Let’s create a basic CGI script that could be uploaded to a Web space provided by a Linux-
based Web hosting provider (as most are). Here’s an example of a CGI script that
generates a trivial Web page:

#!/usr/bin/ruby

require 'cgi'

cgi = CGI.new

puts cgi.header

puts "<html><body>This is a test</body></html>"

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS502

7664 CH16.qxd 2/21/07 10:56 PM Page 502

If this Ruby script were named test.cgi, uploaded to the aforementioned Web host,
and made executable, it would be possible to access http://www.your-website.com/
test.cgi and see “This is a test” in response.

■Note The preceding script uses a shebang line that assumes the Ruby interpreter is located at
/usr/bin/ruby. If it isn’t, the script will fail. If this happens, change the pathname to the correct one,
and/or refer to the documentation in Chapter 10 for how to work around it.

The way the prior example works is that the Web server provided by the Web host
recognizes requests for CGI files and executes them. The first line tells the Web server
to run the file as a Ruby script. You then load the cgi library and use it to print out the
header to return to the Web server, before you send some HTML of your own creation.

You can also use the cgi library in a more direct way by feeding in a string of the data
you want to return to the Web browser and then letting the cgi library handle the output
of the headers and any other data relevant to the request. Here’s an example:

#!/usr/bin/ruby

require 'cgi'

cgi = CGI.new

cgi.out do

"<html><body>This is a test</body></html>"

end

A major benefit of using cgi.out to return data to a visiting Web browser is that out
handles the output of headers without you having to remember to do it. You’ll use this
technique more in the “Cookies” section, where out will also automatically send other
forms of data back through the request.

■Note Learn more about out and what features it supports at http://www.ruby-doc.org/stdlib/
libdoc/cgi/rdoc/classes/CGI.html#M000078.

Accepting CGI Variables

A benefit of CGI scripts is that they can process information passed to them from a form
on an HTML page or merely specified within the URL. For example, if you had a Web

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS 503

7664 CH16.qxd 2/21/07 10:56 PM Page 503

form with an <input> element with a name of “text” that posted to test.cgi, you could
access the data passed to it like this:

#!/usr/bin/ruby

require 'cgi'

cgi = CGI.new

text = cgi['text']

puts cgi.header

puts "<html><body>#{text.reverse}</body></html>"

In this case, the user would see the text he or she entered on the form reversed. You
could also test this CGI script by passing the text directly within the URL, such as with
http://www.mywebsite.com/test.cgi?text=this+is+a+test.

Here’s a more complete example:

#!/usr/bin/ruby

require 'cgi'

cgi = CGI.new

from = cgi['from'].to_i

to = cgi['to'].to_i

number = rand(to - from + 1) + from

puts cgi.header

puts "<html><body>#{number}</body></html>"

This CGI script responds with a random number that’s between the number supplied
in the from CGI variable and the to CGI variable. An associated, but basic, form that could
send the correct data would have HTML code like so:

<form method="POST" action="http://www.mywebsite.com/test.cgi">

For a number between <input type="text" name="from" value="" /> and

<input type="text" name="to" value="" /> <input type="submit"

value="Click here!" /></form>

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS504

7664 CH16.qxd 2/21/07 10:56 PM Page 504

Cookies

Cookies are small fragments of data that can be sent to and received from Web browsers.
If you send a cookie from your program to a Web browser, the cookie will (usually—some
people disable their cookie functions) be stored in the user’s Web browser and sent back
on any subsequent requests.

For example, cookies make it possible to store a number on a user’s computer, which
is then sent back on every future request the user makes to the same page (or the same
site, in most situations). You could increment this number by one for each request to
show how many times the user has accessed a certain page.

Creating and manipulating cookies with the cgi library is simple. In this example you
set a cookie on the user’s computer and then retrieve that cookie if it’s present on future
requests:

#!/usr/bin/ruby

require 'cgi'

cgi = CGI.new

cookie = cgi.cookies['count']

If there is no cookie, create a new one

if cookie.empty?

count = 1

cookie = CGI::Cookie.new('count', count.to_s)

else

If there is a cookie, retrieve its value (note that cookie.value results

in an Array)

count = cookie.value.first

Now send back an increased amount for the cookie to store

cookie.value = (count.to_i + 1).to_s

end

cgi.out("cookie" => [cookie]) do

"<html><body>You have loaded this page #{count} times</body></html>"

end

On the first request to this example script, you’d see:

You have loaded this page 1 times

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS 505

7664 CH16.qxd 2/21/07 10:56 PM Page 505

On subsequent requests, the one would increase to two, and so on for each further
request. This is because if the script detects a cookie called count, the script will retrieve it
and adjust its value, and then the cookie will be sent back out with each request using the
parameter to cgi.out.

Cookies are used for many things beyond simple examples such as this. They’re often
used to store things such as usernames, locations, and other pieces of information that
could dictate what is displayed on a given Web page. They’re commonly used to track
“sessions,” which we’ll look at next.

Sessions

Cookies act like dumb fragments of data going to and from the client and Web server on
every request. However, sessions provide a better-managed and more abstracted rela-
tionship between a Web browser and Web server. Instead of sending actual data back and
forth, the client only needs to send a session ID, and any data associated with that user or
session is stored on the Web server and managed by the CGI script itself. Sessions, in
effect, make it possible to “maintain state” between requests, where a state can be a large
collection of data rather than the tiny amount a cookie can contain.

The cgi library makes it easy to add session functionality to your CGI scripts.
Rather than use the cookie features and implement sessions manually with files or a
database (though that’s still an option, if you need that level of control), you can use
the CGI::Session class to handle it all for you.

Here’s an example of using CGI::Session to assign a data store for each unique visitor
to the page:

#!/usr/bin/ruby

require 'cgi'

require 'cgi/session'

require 'cgi/session/pstore'

cgi = CGI.new

session = CGI::Session.new(cgi,

:session_key => 'count_app',

:database_manager => CGI::Session::PStore,

:prefix => 'session_id'

)

if session['count'] && session['count'].to_i > 0

session['count'] = (session['count'].to_i + 1).to_s

else

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS506

7664 CH16.qxd 2/21/07 10:56 PM Page 506

session['count'] = 1

end

cgi.out do

"<html><body>You have loaded this page #{session['count']} times</body></html>"

end

session.close

In this example, you perform the same counting operation as with the cookie code,
although you could, effectively, store many kilobytes of data alongside each session, such
as shopping cart information, binary data, or other forms of metadata such as YAML and
XML documents.

Notice that the prior code is similar to that used in Ruby on Rails to work with ses-
sions. The session variable acts like a special hash that’s created and saved for each
unique user. However, unlike in Rails, you use the close method after you’ve finished
using the session so that any new data is written to disk safely.

■Note You can test the prior example’s effectiveness by loading different Web browsers (for example,
Firefox and Internet Explorer, not different windows of the same browser).

You can learn more about CGI::Session at http://www.ruby-doc.org/core/classes/
CGI/Session.html, including how to make CGI::Session store session data in different ways
(such as in memory or in a plain text format).

Further Information

• Standard library documentation for cgi: http://www.ruby-doc.org/stdlib/libdoc/
cgi/rdoc/index.html

• Further information about CGI: http://www.w3.org/CGI/

• Further information about HTTP cookies: http://en.wikipedia.org/wiki/
HTTP_cookie

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS 507

7664 CH16.qxd 2/21/07 10:56 PM Page 507

chronic
The chronic library makes it easy to convert dates and times written in almost any format
into dates and times that Ruby recognizes correctly internally. It accepts strings such as
'tomorrow' and 'last tuesday 5pm' and turns them into valid Time objects.

Installation

The chronic library isn’t part of the Ruby standard library and is available as a RubyGem.
To install it, use the typical gem installation process (as covered in Chapter 7), like so:

gem install chronic

or

sudo gem install chronic

Examples

chronic is designed to accept dates and times written in a natural language format and to
return valid Time objects. Here are some basic examples:

puts Chronic.parse('last tuesday 5am')

Tue Nov 07 05:00:00 +0000 2006

puts Chronic.parse('last tuesday 5:33')

Tue Nov 07 17:33:00 +0000 2006

puts Chronic.parse('last tuesday 05:33')

Tue Nov 07 05:33:00 +0000 2006

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS508

7664 CH16.qxd 2/21/07 10:56 PM Page 508

puts Chronic.parse('last tuesday lunchtime')

Tue Nov 07 17:33:00 +0000 2006

puts Chronic.parse('june 29th at 1am')

Fri Jun 29 01:00:00 +0100 2007

puts Chronic.parse('in 3 years')

Thu Nov 12 03:50:00 +0000 2009

puts Chronic.parse('sep 23 2033')

Fri Sep 23 12:00:00 +0100 2033

puts Chronic.parse('2003-11-10 01:02')

Mon Nov 10 01:02:00 +0000 2003

Chronic.parse will return nil if a date or time isn’t recognized.

■Note An extension to the Time class provided by the standard library can also parse times, though at a
more preformatted level. See http://stdlib.rubyonrails.org/libdoc/time/rdoc/index.html for
information. There’s also a library in the standard library called ParseDate that provides a method that con-
verts textually formatted dates into an array of values representing different aspects of the supplied date.
You can learn more about ParseDate at http://www.ruby-doc.org/stdlib/libdoc/parsedate/
rdoc/index.html.

Further Information

• Documentation for chronic: http://chronic.rubyforge.org/

• Further chronic examples: http://www.yup.com/articles/2006/09/10/
a-natural-language-date-time-parser-for-ruby-chronic

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS 509

7664 CH16.qxd 2/21/07 10:56 PM Page 509

Digest
A digest (more commonly known as a hash—though not the same type of hash as you’ve
used to store data structures in Ruby)—is a number or string of data that’s generated
from another collection of data. Digests are significantly shorter than the original data
and act as a form of checksum against the data. Digests are generated in such a way that
it’s unlikely some other valid data would produce the same value, and that it’s difficult, if
not “impossible,” to create valid data that would result in the same hash value.

A common use for hashes or digests is to store passwords in a database securely.
Rather than store passwords in plain text where they could potentially be seen, you can
create a digest of the password that you then compare against when you need to validate
that the password is correct. You’ll look at an example of this in the “Examples” section.

Installation

The libraries to produce digests in Ruby are called digest/sha1 and digest/md5. Both are a
part of the standard library, so they come with Ruby by default. To use them, you only
need to place this line near the start of your program:

require 'digest/sha1'

or

require 'digest/md5'

Examples

Let’s look at what a digest of some data can look like:

require 'digest/sha1'

puts Digest::SHA1.hexdigest('password')

5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8

You can use hexdigest (on both Digest::SHA1 and Digest::MD5—more about this later
in this section) to produce a digest of any data. The digest is a string of 20 hexadecimal
8-bit numbers. In this case, the digest is significantly longer than the input data. In real-
world use, the input data is generally longer than the resulting digest. Whatever the case,
any digest generated via Digest::SHA1 is exactly the same length. For example, here’s a
digest of a 4,000-character input string:

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS510

7664 CH16.qxd 2/21/07 10:56 PM Page 510

require 'digest/sha1'

puts Digest::SHA1.hexdigest('test' * 1000)

52fcb8acabb0a5ad7865350249e52bb70666751d

Digest::SHA1 operates using the SHA-1 hashing algorithm, currently known and used
as a reasonably secure hashing operation. It results in a 160-bit output (as with the 20
hexadecimal numbers from hexdigest), meaning there are some 1,461,501,637,330,
902,918,203,684,832,716,283,019,655,932,542,976 possible hash values. This almost guar-
antees there will be no clashing hash values for legitimate data within a single domain.

Another hashing mechanism provided by Ruby is based on the MD5 hashing algo-
rithm. MD5 produces a 128-bit hash value, giving 340,282,366,920,938,463,463,374,607,
431,768,211,456 combinations. MD5 is considered to be less secure than SHA-1, as it’s
possible to generate “hash collisions,” where two sets of valid data can be engineered to
get the same hash value. Hash collisions can be used
to break into authentication systems that rely on MD5 hashing. However, MD5 is still a
popular hashing mechanism, so the Ruby support is useful. You can use Digest::MD5 in
exactly the same way as SHA-1:

require 'digest/md5'

puts Digest::MD5.hexdigest('test' * 1000)

b38968b763b8b56c4b703f93f510be5a

Using digests in place of passwords is easily done:

require 'digest/sha1'

puts "Enter the password to use this program:"

password = gets

if Digest::SHA1.hexdigest(password) == ➥

'24b63c0840ec7e58e5ab50d0d4ca243d1729eb65'

puts "You've passed!"

else

puts "Wrong!"

exit

end

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS 511

7664 CH16.qxd 2/21/07 10:56 PM Page 511

In this case, the password is stored as an SHA-1 hex digest, and you hash any incom-
ing passwords to establish if they’re equal. Yet without knowing what the password is,
there’s no way you could succeed with the preceding program even by looking at the
source code!

■Note A prize of $50 awaits the first (and only the first!) person to contact me via http://
www.rubyinside.com/ with the unhashed version of the password used in the previous example!

You can also generate the raw digest without it being rendered into a string of
hexadecimal characters by using the digest method, like so:

Digest::SHA1.digest('test' * 1000)

As the result is 20 bytes of 8-bit data, it’s unlikely you would be satisfied with the out-
put if you printed it to the screen as characters, but you can prove the values are there:

Digest::SHA1.digest('test' * 1000).each_byte do |byte|

print byte, "-"

end

82-252-184-172-171-176-165-173-120-101-53-2-73-229-43-183-6-102-117-29-

It’s worth noting that if you want to store digests in text format, but want something
that takes up less space than the 40 hexadecimal characters, the base64 library can help:

require 'base64'

require 'digest/sha1'

puts Digest::SHA1.hexdigest('test')

puts Base64.encode64(Digest::SHA1.digest('test'))

a94a8fe5ccb19ba61c4c0873d391e987982fbbd3

qUqP5cyxm6YcTAhz05Hph5gvu9M=

Further Information

• Further information about SHA-1: http://en.wikipedia.org/wiki/SHA-1

• Further information about MD5: http://en.wikipedia.org/wiki/MD5

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS512

7664 CH16.qxd 2/21/07 10:56 PM Page 512

English
Throughout this book you’ve often used special variables provided by Ruby for various
purposes. For example, $! contains a string of the last error message raised in the pro-
gram, $$ returns the process ID of the current program, and $/ lets you adjust the default
line or record separator as used by the gets method. The English library allows you to
access Ruby’s special variables using names expressed in English, rather than symbols.
This makes the variables easier to remember.

Installation

The English library is a part of the standard library, so it comes with Ruby by default.
To use it, you only need to place this line near the start of your program:

require 'English'

Examples

Using require 'English' (note the capitalization of the first letter, as opposed to the
standard, all-lowercase names adopted by the filenames of other libraries) creates
English-language aliases to Ruby’s special variables, some of which are covered in the
following list:

• $DEFAULT_OUTPUT (alias for $>) is an alias for the destination of output sent by com-
mands such as print and puts. By default it points to $stdout, the standard output,
typically the screen or current terminal (see the sidebar “Standard Input and Out-
put” in Chapter 9 for more information).

• $DEFAULT_INPUT (alias for $<) is an object that acts somewhat like a File object for
data being sent to the script at the command line, or if the data is missing, the
standard input (usually the keyboard or current terminal). It is read-only.

• $ERROR_INFO (alias for $!) refers to the exception object passed to raise or, more
pragmatically, can contain the most recent error message. In the initial form, it can
be useful when used within a rescue block.

• $ERROR_POSITION (alias for $@) returns a stack trace as generated by the previous
exception. This is in the same format as the trace provided by Kernel.caller.

• $OFS and $OUTPUT_FIELD_SEPARATOR (aliases for $,) can be set or read, and contain the
default separator as used in output from the print method and Array’s join
method. The default value is nil, as can be confirmed with %w{a b c}.join, which
results in “abc.”

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS 513

7664 CH16.qxd 2/21/07 10:56 PM Page 513

• ORS and $OUTPUT_RECORD_SEPARATOR (aliases for $\) can be set or read, and contain the
default separator as used when sending output with methods such as print and
IO.write. The default value is nil, as typically you use puts instead when you want
to append a newline to data being sent.

• $FS and $FIELD_SEPARATOR (aliases for $;) can be set or read, and contain the default
separator as used by String’s split method. Changing this and then calling split
on a string without a split regex or character can give different results than
expected.

• $RS and $INPUT_RECORD_SEPARATOR (aliases for $/) can be set or read, and contain the
default separator as used for input, such as from gets. The default value is a new-
line (\n) and results in gets receiving one line at a time. If this value is set to nil,
then gets would read an entire file or data stream in one go.

• $PID and $PROCESS_ID (alias for $$) return the process ID of the current program.
This ID is unique for every program or instance of a program running on a com-
puter, which is why tempfile uses it when constructing names for temporary files.
It is read-only.

• $LAST_MATCH_INFO (alias for $~) returns a MatchData object that contains the results
of the last successful pattern match.

• $IGNORECASE (alias for $=) is a flag that you can set or read from that determines
whether regular expressions and pattern matches performed in the program will
be case insensitive by default. This special variable is deprecated and might be
removed in Ruby 2. Typically, if you required this feature you’d use the /i flag on
the end of a regular expression instead.

• $MATCH (alias for $&) contains the entire string matched by the last successful regular
expression match in the current scope. If there has been no match, its value is nil.

• $PREMATCH (alias for $`) contains the string preceding the match discovered by the
last successful regular expression match in the current scope. If there has been no
match, its value is nil.

• $POSTMATCH (alias for $') contains the string succeeding the match discovered by the
last successful regular expression match in the current scope. If there has been no
match, its value is nil.

Further Information

• Standard library documentation for English: http://www.ruby-doc.org/stdlib/
libdoc/English/rdoc/index.html

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS514

7664 CH16.qxd 2/21/07 10:56 PM Page 514

ERB
ERB is a templating library for Ruby that allows you to mix content and Ruby code. ERB is
used as the main template system in Ruby on Rails when rendering RHTML views (see
Chapter 13 for more information). Mixing Ruby code with other content results in a
powerful templating system that’s a little reminiscent of PHP.

Installation

The ERB library is a part of the standard library, so it comes with Ruby by default. To use
it, you only need to place this line near the start of your program:

require 'erb'

Examples

ERB works by accepting data written in ERB’s template language, converting it to Ruby
code that can produce the desired output, and then executing that code.

Basic Templates and Rendering

A basic ERB script might look like this:

<% 1.upto(5) do |i| %>

<p>This is iteration <%= i %></p>

<% end %>

In this template, Ruby and HTML code are mixed. Ruby code that’s meant to be exe-
cuted is placed within <% and %> tags. Ruby code that’s to be evaluated and “printed” is
placed within <%= and %> tags, and normal content is left as is.

Running the preceding template through ERB would result in this output:

<p>This is iteration 1</p>

<p>This is iteration 2</p>

<p>This is iteration 3</p>

<p>This is iteration 4</p>

<p>This is iteration 5</p>

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS 515

7664 CH16.qxd 2/21/07 10:56 PM Page 515

■Note Due to the spacing in the template, the spacing in the output can look odd. Usually added white-
space isn’t an issue with HTML or XHTML, but if you’re using ERB to output other forms of data, you might
need to develop your templates with whitespace in mind.

You use the ERB library to render ERB code from Ruby:

require 'erb'

template = <<EOF

<% 1.upto(5) do |i| %>

<p>This is iteration <%= i %></p>

<% end %>

EOF

puts ERB.new(template).result

The result method doesn’t print the data directly, but returns the rendered template
to the caller, so you then print it to the screen with puts. If you’d rather have ERB print the
output directly to the screen, you can use the run method:

ERB.new(template).run

Accessing Outside Variables

ERB templates can also access variables in the current scope. For example:

require 'erb'

array_of_stuff = %w{this is a test}

template = <<EOF

<% array_of_stuff.each_with_index do |item, index| %>

<p>Item <%= index %>: <%= item %></p>

<% end %>

EOF

puts ERB.new(template).result

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS516

7664 CH16.qxd 2/21/07 10:56 PM Page 516

<p>Item 0: this</p>

<p>Item 1: is</p>

<p>Item 2: a</p>

<p>Item 3: test</p>

■Note The result and run methods also accept a binding as an optional parameter if you want ERB to
have access to variables that are defined in a different scope, or if you want to “sandbox” the variables to
which templates have access. If you allow them access to your main binding, as is default, remember that
code within templates could change the value of the current variables if the author of the template so
wished.

Safe Levels

Due to ERB allowing Ruby code to be executed among other content, it’s not wise to allow
users you cannot trust to be able to create or edit ERB templates on systems under your
control. That’s because they could execute arbitrary code that could access the file sys-
tem, delete data, or otherwise damage your system (remember that Ruby can use
backticks to run any program on the system accessible to the current user).

In Chapter 11 you looked at the concept of “safe levels” provided by Ruby, which
allow you to restrain the capabilities of code, particularly in relation to running arbitrary
programs or using tainted data with “dangerous” commands such as eval.

ERB.new accepts a safe level as an optional second parameter, which goes a long way
toward making your template rendering a safer process:

require 'erb'

template = <<EOF

Let's try to do something crazy like access the filesystem..

<%= `ls` %>

EOF

puts ERB.new(template, 4).result # Using safe level 4!

/usr/local/lib/ruby/1.8/erb.rb:739:in `eval': Insecure: can't modify

trusted binding (SecurityError)

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS 517

7664 CH16.qxd 2/21/07 10:56 PM Page 517

The safe level applies only to the code executed to run the code for the ERB template,
whereas when you’ve previously used safe levels, you’ve been unable to lower them. The
way this works is that when a safe mode is used with ERB, ERB creates a new thread for
the processing of the ERB code, which allows a separate safe level to be set from that of
the main code.

Refer to Chapter 11 or Appendix B for a refresher on what capabilities each safe level
provides.

Further Information

• Standard library documentation for ERB: http://www.ruby-doc.org/stdlib/libdoc/
erb/rdoc/index.html

• Merb—a lightweight app server using ERB: http://merb.rubyforge.org/

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS518

7664 CH16.qxd 2/21/07 10:56 PM Page 518

FasterCSV
In Chapter 9 you looked at Comma-Separated Value databases. An extremely crude way
of storing data, CSV delimits fields of data with commas and separates records by new-
lines. For example:

Clive,53,male,UK

Ann,55,female,France

Eugene,29,male,California

You looked at the csv library provided with Ruby and used it to work with this form of
data. The FasterCSV library, created by James Edward Gray II, performs similar functions
to the csv library and is intended as a faster replacement. It has a slightly different inter-
face from the standard csv library, though it can mimic it if necessary.

Installation

FasterCSV isn’t part of the Ruby standard library (although this is likely to change in
future) and is available as a RubyGem. To install it, use the typical gem installation
process (as covered in Chapter 7), like so:

gem install fastercsv

or

sudo gem install fastercsv

Examples

In these examples we’ll assume this CSV data is present in a file called data.csv:

Clive,53,male,UK

Ann,55,female,France

Eugene,29,male,California

Parsing a String Line by Line

If you want to iterate over CSV data line by line and parse the data as you go, it’s easy to
do so from a regular string:

require 'rubygems'

require 'fastercsv'

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS 519

7664 CH16.qxd 2/21/07 10:56 PM Page 519

FasterCSV.parse(File.read("data.csv")) do |person|

puts person.inspect

end

Parsing a String to an Array of Arrays

In the prior example you processed CSV data in “real time,” but it’s also possible for
FasterCSV to convert CSV data into another data structure—an array of arrays—making it
easy to compare and process datasets in one go:

require 'rubygems'

require 'fastercsv'

array_of_arrays = FasterCSV.parse(File.read("data.csv"))

array_of_arrays.each do |person|

puts person.inspect

end

Parsing CSV Data from a File Line by Line

In a previous example you iterated over CSV data in a string line by line, but FasterCSV
can also operate directly upon a file:

require 'rubygems'

require 'fastercsv'

FasterCSV.foreach("data.csv") do |person|

puts person.inspect

end

Parsing a Whole CSV File to an Array of Arrays

One technique that FasterCSV makes extremely easy is the ability to read in an entire CSV
file and convert it into an array of arrays with a single method call:

require 'rubygems'

require 'fastercsv'

array_of_arrays = FasterCSV.read("data.csv")

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS520

7664 CH16.qxd 2/21/07 10:56 PM Page 520

Generating CSV Data

As well as being able to read data, FasterCSV lets you create data in CSV format. To do
this, you must have the data you want to write in an array in the correct order. This exam-
ple demonstrates how you can convert an array of hashes into CSV-formatted output:

require 'rubygems'

require 'fastercsv'

people = [

{:name => "Fred", :age => 10, :gender => :male},

{:name => "Graham", :age => 34, :gender => :male},

{:name => "Lorraine", :age => 29, :gender => :female}

]

csv_data = FasterCSV.generate do |csv|

people.each do |person|

csv << [person[:name], person[:age], person[:gender]]

end

end

puts csv_data

Fred,10,male

Graham,34,male

Lorraine,29,female

The FasterCSV class also provides an open method that lets you write direct to file as
you go:

FasterCSV.open("data.csv", "w") do |csv|

people.each do |person|

csv << [person[:name], person[:age], person[:gender]]

end

end

■Note If you open the file with mode "a" instead of "w", then any data would be appended to the end of
the existing data. With mode "w", the data is entirely replaced.

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS 521

7664 CH16.qxd 2/21/07 10:56 PM Page 521

FasterCSV also provides convenience methods on String and Array so you can con-
vert single lines to and from CSV easily:

puts ["Fred", 10, "male"].to_csv

Fred,10,male

puts "Fred,10,male".parse_csv.inspect

["Fred", 10, "male"]

FasterCSV Tables

FasterCSV also supports table data structures. It can use the first row of the CSV file as a
list of column names so that you can use those column names to get easier access to the
rest of the data in the table. To make FasterCSV read data in as a table with the first line as
the header, set the :headers option to true on any of the FasterCSV class’s reader methods.

To make the following example work, assume data.csv contains these lines:

Name,Age,Gender,Location

Clive,53,male,UK

Ann,55,female,France

Eugene,29,male,California

Now, use this code to read in data.csv as a table:

require 'rubygems'

require 'fastercsv'

require 'pp'

csv = FasterCSV.read("data.csv", :headers => true)

pp csv

#<FasterCSV::Table:0x5b7ed0

@mode=:col_or_row,

@table=

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS522

7664 CH16.qxd 2/21/07 10:56 PM Page 522

[#<FasterCSV::Row:0x5b72f0

@header_row=false,

@row=

[["Name", "Clive"],

["Age", "53"],

["Gender", "male"],

["Location", "UK"]]>,

#<FasterCSV::Row:0x5b6c60

@header_row=false,

@row=

[["Name", "Ann"],

["Age", "55"],

["Gender", "female"],

["Location", "France"]]>,

#<FasterCSV::Row:0x5b651c

@header_row=false,

@row=

[["Name", "Eugene"],

["Age", "29"],

["Gender", "male"],

["Location", "California"]]>]>

■Note In the preceding example you used pp to display the table structure more nicely than puts
csv.inspect would, although other than the spacing, the output is roughly the same. The pp library is
covered later in this chapter.

Rather than importing an array of arrays, when you use headers it creates a
FasterCSV::Table object containing a FasterCSV::Row object for each row. You can also see
that each column name is associated with the correct piece of data on each row.

FasterCSV::Table provides a number of useful methods (these examples assume csv
contains a FasterCSV::Table object, as in the previous example) as follows:

• csv.to_s returns a string containing the entire table in CSV format. You can use
this to rewrite the data back to file.

• csv.to_a returns the table as an array of arrays, as FasterCSV.read would if you
hadn’t used the :headers option.

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS 523

7664 CH16.qxd 2/21/07 10:56 PM Page 523

• csv << can be used to push a new row onto the end of the table (for example, csv <<
['Chris', 26, 'male', 'Los Angeles']).

• csv.headers returns an array of the header row.

• csv.delete('Name') removes the Name column from every row.

• csv.delete(n) deletes the nth row.

• csv[n] returns the nth row.

• csv.each iterates through each row using a code block.

The rows within the table (FasterCSV::Row objects) also have their own methods to
access their data, as this example demonstrates:

csv.each do |row|

puts row['Name']

end

Clive

Ann

Eugene

As a FasterCSV::Row, rather than an array, it’s possible to use the column header name
to retrieve the information you want on each row. Likewise, it’s also possible to set
columns to equal something else:

csv.each do |row|

row['Location'] = "Nowhere"

end

puts csv.to_csv

Name,Age,Gender,Location

Clive,53,male,Nowhere

Ann,55,female,Nowhere

Eugene,29,male,Nowhere

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS524

7664 CH16.qxd 2/21/07 10:56 PM Page 524

■Note You can find other lesser-used methods in the official FasterCSV documentation, linked in the “Fur-
ther Information” section.

Further Information

• Official documentation for FasterCSV: http://fastercsv.rubyforge.org/

• More information about CSV formats: http://en.wikipedia.org/wiki/
Comma-separated_values

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS 525

7664 CH16.qxd 2/21/07 10:56 PM Page 525

iconv
iconv is an interface between Ruby and the Unix iconv utility that can translate strings
between character encodings. In Chapter 11 you looked at character encodings and how
you can use them from within Ruby, and iconv provides the functionality for converting
strings between encodings within Ruby.

■Note The iconv utility and library (the operating system library, not the Ruby library) is provided as stan-
dard with all distributions of Linux (and often on BSDs, such as Mac OS X), but is not provided with Windows.
Although iconv comes with the Cygwin environment on Windows, this library isn’t likely to work otherwise,
due to limitations of the standard Windows environment.

Installation

The iconv library is a part of the standard library, so it comes with Ruby by default. To use
it, you only need to place this line near the start of your program:

require 'iconv'

Examples

There are three main ways to use iconv to convert strings from one character encoding
to another. You can use it in a handle form, in an immediate form, or in a block form. For
example, you can convert from the UTF-8 encoding to the ISO-8859-1 encoding using
the handle form like this:

require 'iconv'

converter = Iconv.new('utf-8', 'iso-8859-1')

utf8_string = "This is a test"

iso_string = converter.iconv(utf8_string)

■Note The source encoding is provided as the first argument to Iconv.new, and the destination encoding
is provided as the second argument.

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS526

7664 CH16.qxd 2/21/07 10:56 PM Page 526

Using iconv in a block form works in a similar way to using a File object in block
form, as demonstrated here:

require 'iconv'

Iconv.open('utf-8', 'iso-8859-1') do |converter|

utf8_string = "This is a test"

iso_string = converter.iconv(utf8_string)

end

You can also use iconv in an immediate form to convert strings on a single line:

require 'iconv'

Iconv.iconv("utf-8", "iso-8859-1", "This is a test").to_s

Further Information

• Standard library documentation for iconv: http://www.ruby-doc.org/stdlib/
libdoc/iconv/rdoc/index.html

• Wikipedia article with more general information about iconv:
http://en.wikipedia.org/wiki/Iconv

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS 527

7664 CH16.qxd 2/21/07 10:56 PM Page 527

logger
logger is a library developed by Hiroshi Nakamura and Gavin Sinclair that provides
sophisticated logging features to Ruby applications. It supports automatic log rotation
and multiple urgency levels, and can output to file, to standard output, or to standard
error handles. Ruby on Rails uses logger as its main logging system, but you can use it
from any Ruby application.

Installation

The logger library is a part of the standard library, so it comes with Ruby by default.
To use it, you only need to place this line near the start of your program:

require 'logger'

Examples

To use logger, you create Logger objects and then use the methods provided by the
objects to report events that occur while your program is running. The first step is to
get a Logger object.

Setting up a Logger

Loggers can write to standard output, standard error, or to a file. Just specify a file handle
or filename to Logger.new. For example, here’s how to write log messages directly to the
screen or terminal:

require 'logger'

logger = Logger.new(STDOUT)

Use this code to write log messages to file:

logger = Logger.new('mylogfile.log')

logger = Logger.new('/tmp/some_log_file.log')

You can also specify that a log file ages daily, weekly, or monthly (old log files are
suffixed with date indicators):

logger = Logger.new('mylogfile.log', 'daily')

logger = Logger.new('mylogfile.log', 'weekly')

logger = Logger.new('mylogfile.log', 'monthly')

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS528

7664 CH16.qxd 2/21/07 10:56 PM Page 528

Last, it’s possible to create a logger that only creates a log file up to a certain size.
Once the log file hits that size, logger copies the existing log file to another filename, then
starts a new log file. This is known as log rotation:

logger = Logger.new('mylogfile.log', 10, 100000)

This logger logs files to mylogfile.log until it reaches 100,000 bytes in length, where-
upon the logger renames the log file (by suffixing it with a number) and creates a new
mylogfile.log. It keeps the ten most recent, but unused, log files available.

Logging Levels

There are five different logging levels that are ranked in order of severity as follows:

• DEBUG: The lowest severity, used for debugging information for the developer.

• INFO: General information about the operation of the program, library, or system.

• WARN: A nonfatal warning about the state of the program.

• ERROR: An error that can be handled (as with a rescued exception).

• FATAL: An error that is unrecoverable and that forces an immediate end to the
program.

Whenever you start a logger, you can specify the level of messages it should track. If a
message is of that level or above, it will be logged. If it’s below that level, it will be ignored.
This is useful so that during development you can log every debug message, whereas
when your program is being used for real, you only log the important messages.

To set the severity level of a logger, use the logger’s sev_threshold method. This level
ensures only FATAL messages are logged:

logger.sev_threshold = Logger::FATAL

This level ensures every message of all levels is logged:

logger.sev_threshold = Logger::DEBUG

Logging Messages

Each Logger object provides several methods to allow you to send a message to the log.
The most commonly used way is to use the debug, info, warn, error, and fatal methods,
which all create log messages of their respective severity:

require 'logger'

logger = Logger.new(STDOUT)

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS 529

7664 CH16.qxd 2/21/07 10:56 PM Page 529

logger.debug "test"

logger.info "test"

logger.fatal "test"

D, [2007-03-12T11:06:06.805072 #9289] DEBUG -- : test

I, [2007-03-12T11:06:06.825144 #9289] INFO -- : test

F, [2007-03-12T11:06:06.825288 #9289] FATAL -- : test

Log messages are notated by their severity as a single letter, the date and time of their
creation, the process ID of which process created them, their severity label, followed by
the actual message. Optionally, the program name might be present, if it was specified in
the logging method, with the normal message coming from a block, like so:

logger.info("myprog") { "test" }

I, [2007-03-12T11:09:32.284956 #9289] INFO -- myprog: test

You can also assign a severity to a log message dynamically, like so:

logger.add(Logger::FATAL) { "message here" }

F, [2007-03-12T11:13:06.880818 #9289] FATAL -- : message here

To use different severities, just pass the severity’s class (Logger::FATAL, Logger::DEBUG,
Logger::INFO, and so on) as the argument to add.

Closing a Logger

You close a logger as you would a file or any other I/O structure:

logger.close

Further Information

• Standard library documentation for logger: http://www.ruby-doc.org/stdlib/
libdoc/logger/rdoc/index.html

• Log4r—another, more complex, Ruby logging library: http://log4r.
sourceforge.net/

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS530

7664 CH16.qxd 2/21/07 10:56 PM Page 530

pp
pp is a “pretty printer” that provides nicer output than a simple puts something.inspect.
It gives you a nice, clean look at data structures that are properly tabulated and spaced,
unlike inspect’s output.

Installation

The pp library is a part of the standard library, so it comes with Ruby by default. To use it,
you only need to place this line near the start of your program:

require 'pp'

Examples

To use pp, simply use the pp method, followed by the object whose structure you wish to
display. Here’s a basic comparison of inspect and pp:

person1 = { :name => "Peter", :gender => :male }

person2 = { :name => "Laura", :gender => :female }

people = [person1, person2, person1, person1, person1]

puts people.inspect

[{:name=>"Peter", :gender=>:male}, {:name=>"Laura", :gender=>:female},
{:name=>"Peter", :gender=>:male}, {:name=>"Peter", :gender=>:male},
{:name=>"Peter", :gender=>:male}]

pp people

[{:name=>"Peter", :gender=>:male},
{:name=>"Laura", :gender=>:female},
{:name=>"Peter", :gender=>:male},
{:name=>"Peter", :gender=>:male},
{:name=>"Peter", :gender=>:male}]

As demonstrated, pp is mostly useful when dealing with complex objects whose data
cannot fit on a single line. Here’s a more contrived example:

require 'pp'

class TestClass

def initialize(count)

@@a = defined?(@@a) ? @@a + 1 : 0

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS 531

7664 CH16.qxd 2/21/07 10:56 PM Page 531

@c = @@a

@d = [:a => {:b => count }, :c => :d] * count

end

end

pp TestClass.new(2), STDOUT, 60

pp TestClass.new(3), $>, 60

pp TestClass.new(4), $>, 60

#<TestClass:0x357000

@c=0,

@d=[{:a=>{:b=>2}, :c=>:d}, {:a=>{:b=>2}, :c=>:d}]>

#<TestClass:0x354364

@c=1,

@d=

[{:a=>{:b=>3}, :c=>:d},

{:a=>{:b=>3}, :c=>:d},

{:a=>{:b=>3}, :c=>:d}]>

#<TestClass:0x3503f4

@c=2,

@d=

[{:a=>{:b=>4}, :c=>:d},

{:a=>{:b=>4}, :c=>:d},

{:a=>{:b=>4}, :c=>:d},

{:a=>{:b=>4}, :c=>:d}]>

Where it’s practical, pp fits data onto a single line, but when more data is to be shown
than could fit on a single line, pp formats and spaces that data accordingly.

Note that in the preceding example the pp calls are in this format:

pp TestClass.new(4), $>, 60

With no parameters, pp assumes a display width of 79 characters. However, pp sup-
ports two optional parameters that set the destination for its output, and the width of the
output field. In this case you output to the standard output and assume a wrapping width
of 60 characters.

Further Information

• Standard library documentation for pp: http://www.ruby-doc.org/stdlib/
libdoc/pp/rdoc/index.html

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS532

7664 CH16.qxd 2/21/07 10:56 PM Page 532

RedCloth
RedCloth is a library that converts specially formatted text documents (in a formatting
known as Textile) into valid HTML. In many ways it’s similar to the BlueCloth library
featured earlier in this chapter.

The reasoning behind languages such as Textile is that most users prefer to write
their documents in a clean format, rather than be forced to use HTML tags everywhere
and create documents that don’t read well as plain text. Textile allows you to format text
in a way that makes documents look good as plain text, but that also allows the text to be
converted quickly to HTML for use on the Web.

Compared to the Markdown markup language used by BlueCloth, Textile gives you a
little more control over the HTML output and provides easy access to certain advanced
features. However, in my opinion it’s more technical and doesn’t flow quite as well as
Markdown, although it certainly has its uses.

RedCloth was developed by “why the lucky stiff” and Textile by Dean Allen.

Installation

RedCloth isn’t part of the Ruby standard library and is available as a RubyGem. To install
it, use the typical gem installation process (as covered in Chapter 7), like so:

gem install RedCloth

or

sudo gem install RedCloth

Examples

RedCloth works in an almost identical way to BlueCloth, as covered previously in this
chapter. It makes a RedCloth class available that directly inherits from String, so you can
use all the usual String methods on a RedCloth object.

The basic example for RedCloth is similar to that for BlueCloth:

require 'rubygems'

require 'redcloth'

redcloth_text = <<EOF

h1. This is a title

Here is some _text_ that's formatted according to

"Textile":http://hobix.com/textile/ *specifications*.

And how about a quote?

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS 533

7664 CH16.qxd 2/21/07 10:56 PM Page 533

bq. This section is a quote.. a block quote

more accurately..

Lists are also possible:

* Item 1

* Item 2

* Item 3

EOF

redcloth_obj = RedCloth.new redcloth_text

puts redcloth_obj.to_html

<h1>This is a title</h1>
<p>Here is some text that’s formatted according to

Textile specifications.
And how about a quote?</p>

<blockquote>
<p>This section is a quote.. a block quote

more accurately..</p>
</blockquote>

<p>Lists are also possible:</p>

Item 1

Item 2
Item 3

■Note Some line spacing has been removed in the preceding output, but the horizontal formatting has
been left intact.

It’s worth noting that RedCloth’s output isn’t immediately as clean as that from Blue-
Cloth, but it’s still valid HTML.

Further Information

• Official RedCloth home page: http://whytheluckystiff.net/ruby/redcloth/

• Official Textile home page: http://www.textism.com/tools/textile/

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS534

7664 CH16.qxd 2/21/07 10:56 PM Page 534

StringScanner
StringScanner is a library that lets you “walk through” a string, matching patterns one
at a time, while only applying them to the remainder of the data that you haven’t yet
matched. This is in stark contrast to the standard scan method that automatically returns
all matching patterns immediately.

Installation

StringScanner is in the standard library, so it comes with Ruby by default. To use it, you
only need to place this line near the start of your program:

require 'strscan'

■Note It’s important to recognize that the filename doesn’t match the name of the library, or class in this
case. Although most library developers tend to keep names consistent, not all do!

Examples

The best way to see StringScanner’s feature set is to see it in action:

require 'strscan'

string = StringScanner.new "This is a test"

puts string.scan(/\w+/)

puts string.scan(/\s+/)

puts string.scan(/\w+/)

puts string.scan(/\s+/)

puts string.rest

This

is

a test

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS 535

7664 CH16.qxd 2/21/07 10:56 PM Page 535

In this example you step through the string by first matching a word with scan, then
whitespace, then another word, then more whitespace, before asking StringScanner to
give you the rest of the string with the rest method.

However, scan will only return content if the specified pattern matches at the current
position in the string. For example, this doesn’t retrieve each word:

puts string.scan(/\w+/)

puts string.scan(/\w+/)

puts string.scan(/\w+/)

puts string.scan(/\w+/)

This

nil

nil

nil

After the first scan, the pointer for string is waiting at the whitespace after “This,”
and scan must match the whitespace for it to continue. One way to get around this would
be like so:

puts string.scan(/\w+\s*/)

puts string.scan(/\w+\s*/)

puts string.scan(/\w+\s*/)

puts string.scan(/\w+\s*/)

In the preceding example, you’d retrieve the words and any whitespace located after
each word. Of course, this might not be desirable, so StringScanner also provides other
useful methods for scanning through strings.

scan_until scans through the string from the current position until the specified pat-
tern matches. All the data from the start of the scan, until and including the match, is
then returned. In this example, you perform a normal scan and pick off the first word, but
then you use scan_until to scan all text until you reach a number:

string = StringScanner.new "I want to live to be 100 years old!"

puts string.scan(/\w+/)

puts string.scan_until(/\d+/)

I

want to live to be 100

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS536

7664 CH16.qxd 2/21/07 10:56 PM Page 536

You can also use scan_until to give a different solution to the previous “scan for each
word” problem:

require 'strscan'

string = StringScanner.new("This is a test")

puts string.scan_until(/\w+/)

puts string.scan_until(/\w+/)

puts string.scan_until(/\w+/)

puts string.scan_until(/\w+/)

Another useful method is unscan, which gives you the opportunity to roll back a sin-
gle scan:

string = StringScanner.new "I want to live to be 100 years old!"

puts string.scan(/\w+/)

string.unscan

puts string.scan_until(/\d+/)

string.unscan

puts string.scan_until(/live/)

I

I want to live to be 100

I want to live

You can also retrieve the current position of the scanner in the string:

string = StringScanner.new "I want to live to be 100 years old!"

string.scan(/\w+/)

string.unscan

puts string.pos

string.scan_until(/\d+/)

puts string.pos

string.unscan

string.scan_until(/live/)

puts string.pos

0

24

14

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS 537

7664 CH16.qxd 2/21/07 10:56 PM Page 537

You can use pos to set or override the position of the scanner too:

string = StringScanner.new "I want to live to be 100 years old!"

string.pos = 12

puts string.scan(/...../)

ve to

■Note StringScanner isn’t a subclass of String, so typical methods provided by String won’t neces-
sarily work. However, StringScanner does implement some of them, such as <<, which concatenates data
onto the end of the string.

Further Information

• Standard library documentation for StringScanner: http://www.ruby-doc.org/
stdlib/libdoc/strscan/rdoc/index.html

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS538

7664 CH16.qxd 2/21/07 10:56 PM Page 538

tempfile
Temporary files are files that are intended for a single one-time purpose. They’re
ephemeral files that you use to store information temporarily, but that are quickly erased.
In Chapter 9 you looked at the creation of temporary files using several techniques, but
tempfile provides an easy and standard way to create and manipulate them.

Installation

tempfile is in the standard library, so comes with Ruby by default. To use it, you only need
to place this line near the start of your program:

require 'tempfile'

Examples

tempfile manages the creation and manipulation of temporary files. It creates temporary
files in the correct place for your operating system, and gives them unique names so that
you can concentrate on the main logic of your application.

To create a temporary file, use Tempfile.new:

require 'tempfile'

f = Tempfile.new('myapp')

f.puts "Hello"

puts f.path

f.close

/tmp/myapp1842.0

Tempfile.new creates a temporary file using the given string as a prefix in the format
of <supplied name>-<program's process ID>.<unique number>. The returned object is a
Tempfile object that delegates most of its methods to the usual File and IO classes, allow-
ing you to use the file methods you’re already familiar with, as with f.puts earlier.

To use the data in your temporary file, you can close it and reopen it quickly:

f.close

f.open

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS 539

7664 CH16.qxd 2/21/07 10:56 PM Page 539

If you specify no arguments to f.open, it will reopen the temporary file associated
with that object. At that point you can continue to write to the temporary file or read
from it.

require 'tempfile'

f = Tempfile.new('myapp')

f.puts "Hello"

f.close

f.open

puts f.read

f.close!

Hello

The preceding code creates a temporary file, writes data to it, closes the temporary
file (which flushes the written data out to disk from the memory buffers), and then
reopens it for reading.

The last line uses close! instead of close, which forces the temporary file to be closed
and permanently deleted.

Of course, you can flush the buffers manually so you can use the same temporary file
for reading and writing without having to close it at any point:

require 'tempfile'

f = Tempfile.new('myapp')

f.puts "Hello"

f.pos = 0

f.print "Y"

f.pos = f.size - 1

f.print "w"

f.flush

f.pos = 0

puts f.read

f.close!

Yellow

■Note By default, temporary files are opened in the w+ mode.

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS540

7664 CH16.qxd 2/21/07 10:56 PM Page 540

In some situations, you might want to use temporary files, but not allow tempfile to
put them in a place that can be seen by other programs or users. Tempfile.new accepts an
optional second argument that specifies where you want temporary files to be created:

f = Tempfile.new('myapp', '/my/secret/temporary/directory')

As with other file-related classes, you can use Tempfile in block form:

require 'tempfile'

Tempfile.open('myapp') do |f|

f.puts "Hello"

f.pos = 0

f.print "Y"

f.pos = f.size - 1

f.print "w"

f.flush

f.pos = 0

puts f.read

end

Yellow

■Note You use Tempfile.open instead of Tempfile.new when using a block.

The benefit of using block form in this case is that the temporary file is removed
automatically and no closing is required. However, if you want to use a temporary file
throughout the scope of a whole program, block form might not be suitable.

Further Information

• Standard library documentation for tempfile: http://www.ruby-doc.org/stdlib/
libdoc/tempfile/rdoc/index.html

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS 541

7664 CH16.qxd 2/21/07 10:56 PM Page 541

uri
You use the uri library to manage Uniform Resource Identifiers (URIs), which are typi-
cally referred to as Uniform Resource Locators (URLs). A URL is an address such as
http://www.rubyinside.com/, ftp://your-ftp-site.com/directory/filename, or even
mailto:your-email-address@privacy.net. uri makes it easy to detect, create, parse, and
manipulate these addresses.

Installation

uri is in the standard library, so it comes with Ruby by default. To use it, you only need to
place this line near the start of your program:

require 'uri'

Examples

In this section you’ll look at a few examples of how to use the uri library to perform basic
URL-related functions.

Extracting URLs from Text

URI.extract is a class method that extracts URLs from a given string into an array:

require 'uri'

puts URI.extract('Check out http://www.rubyinside.com/ or e-mail ➥

mailto:me@privacy.net').inspect

["http://www.rubyinside.com/", "mailto:me@privacy.net"]

You can also limit the types of URLs that extract should find:

require 'uri'

puts URI.extract('http://www.rubyinside.com/ and mailto:me@privacy.net', ➥

['http']).inspect

["http://www.rubyinside.com/"]

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS542

7664 CH16.qxd 2/21/07 10:56 PM Page 542

If you immediately want to use the URLs one by one, you can use extract with a
block:

require 'uri'

email = %q{Some cool Ruby sites are http://www.ruby-lang.org/ and ➥

http://www.rubyinside.com/ and http://redhanded.hobix.com/}

URI.extract(email, ['http', 'https']) do |url|

puts "Fetching URL #{url}"

Do some work here…

end

Parsing URLs

A URL in a string can be useful, particularly if you want to use that URL with open-uri
or net/http, for example, but it can also be useful to split URLs into their constituent sec-
tions. Doing this with a regular expression would give inconsistent results and be prone
to failure in uncommon situations, so the URI class provides the tools necessary to split
URLs apart easily.

URI.parse('http://www.rubyinside.com/')

=> #<URI::HTTP:0x2d071c URL:http://www.rubyinside.com/>

URI.parse parses a URL provided in a string and returns a URI-based object for it. URI
has specific subclasses for FTP, HTTP, HTTPS, LDAP, and MailTo URLs, but returns a
URI::Generic object for an unrecognized URL that’s in a URL-type format.

The URI objects have a number of methods that you can use to access information
about the URL:

require 'uri'

a = URI.parse('http://www.rubyinside.com/')

puts a.scheme

puts a.host

puts a.port

puts a.path

puts a.query

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS 543

7664 CH16.qxd 2/21/07 10:56 PM Page 543

http

www.rubyinside.com

80

/

nil

Note that URI::HTTP is smart enough to know that if no port is specifically stated in an
HTTP URL, the default port 80 must apply. The other URI classes, such as URI::FTP and
URI::HTTPS, also make similar assumptions.

With more complex URLs, you can access some extended data:

require 'uri'

url = 'http://www.x.com:1234/test/1.html?x=y&y=z#top'

puts URI.parse(url).port

puts URI.parse(url).path

puts URI.parse(url).query

puts URI.parse(url).fragment

1234

/test/1.html

x=y&y=z

top

The uri library also makes a convenience method available to make it even easier to
parse URLs:

u = URI('http://www.test.com/')

In this case, URI(url) is synonymous with URI.parse.
As well as URI.parse, you can use URI.split to split a URL into its constituent parts

without involving a URI object:

URI.split('http://www.x.com:1234/test/1.html?x=y&y=z#top')

=> ["http", nil, "www.x.com", "1234", nil, "/test/1.html", nil,

"x=y&y=z", "top"]

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS544

7664 CH16.qxd 2/21/07 10:56 PM Page 544

URI.split returns, in order, the scheme, user info, hostname, port number, registry,
path, opaque attribute, query, and fragment. Any elements that are missing are nil.

■Note The only benefit of URI.split is that no URI object is created, so there can be minimal gains in
memory and processor usage. However, generally it’s more acceptable to use URI() or URI.parse so that
you can address the different elements by name, rather than rely on the order of elements in an array (which
could change between versions of the library).

Creating URLs

You can also use uri to create URLs that meet the accepted specifications. At their sim-
plest, you can use the URI subclasses for each protocol to generate URLs by passing in a
hash of the elements you want to make up the URL:

require 'uri'

u = URI::HTTP.build(:host => 'rubyinside.com', :path => '/')

puts u.to_s

puts u.request_uri

http://rubyinside.com/

/

Note that to_s returns the entire URL, whereas request_uri returns the portion of the
URL that follows the hostname. This is because libraries such as net/http would use the
data from request_uri, whereas libraries such as open-uri can use the entire URL.

You could also pass in :port, :query, :fragment, :userinfo, and other elements to the
URI subclasses to generate more complex URLs.

Here’s an example of creating an FTP URL:

ftp_url = URI::FTP.build(:userinfo => 'username:password',

:host => 'ftp.example.com',

:path => '/pub/folder',

:typecode => 'a')

puts ftp_url.to_s

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS 545

7664 CH16.qxd 2/21/07 10:56 PM Page 545

ftp://username:password@ftp.example.com/pub/folder;type=a

Also note that uri is good at adjusting URLs in a safe manner, as you can set the vari-
ous attributes to new values, as well as read them:

require 'uri'

my_url = "http://www.test.com/something/test.html"

url = URI.parse(my_url)

url.host = "www.test2.com"

url.port = 1234

puts url.to_s

http://www.test2.com:1234/something/test.html

Further Information

• Standard library documentation for uri: http://www.ruby-doc.org/
stdlib/libdoc/uri/rdoc/index.html

• Information about URLs and URIs: http://en.wikipedia.org/wiki/URL

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS546

7664 CH16.qxd 2/21/07 10:56 PM Page 546

zlib
zlib is an open source data-compression library. It’s a significant standard in data com-
pression, and you can manipulate zlib archives on almost every platform. Notably, zlib is
often used to compress Web pages between servers and Web browsers, is used in the
Linux kernel, and forms a key part of many operating system libraries.

You can use zlib from Ruby as a mechanism to compress and uncompress data.

Installation

zlib is in the standard library, so comes with Ruby by default. To use it, you only need to
place this line near the start of your program:

require 'zlib'

Examples

Under zlib, compression and uncompression are called deflating and inflating. The
quickest way to compress (deflate) data is by using the Zlib::Deflate class directly:

require 'zlib'

test_text = 'this is a test string' * 100

puts "Original string is #{test_text.length} bytes long"

compressed_text = Zlib::Deflate.deflate(test_text)

puts "Compressed data is #{compressed_text.length} bytes long"

Original string is 2100 bytes long

Compressed data is 46 bytes long

This test text compresses extremely well, as it’s the same string repeated 100 times
over. However, on normal data, it’s more practical to see compression rates of around
10 to 50 percent.

Restoring compressed data requires Zlib::Inflate:

require 'zlib'

test_text = 'this is a test string' * 100

puts "Original string is #{test_text.length} bytes long"

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS 547

7664 CH16.qxd 2/21/07 10:56 PM Page 547

compressed_text = Zlib::Deflate.deflate(test_text)

puts "Compressed data is #{compressed_text.length} bytes long"

uncompressed_text = Zlib::Inflate.inflate(compressed_text)

puts "Uncompressed data is back to #{uncompressed_text.length} bytes in length"

Original string is 2100 bytes long

Compressed data is 46 bytes long

Uncompressed data is back to 2100 bytes in length

■Note The compressed data returned by zlib is full 8-bit data, so might not be suitable to use in e-mails or
in formats where regular plain text is necessary. To get around this, you can compress your data using zlib
as usual, and then use the base64 library to turn the compressed results into plain text.

zlib also comes with classes to help you work directly with compressed files. Files
compressed with the zlib algorithm are often known as gzipped files, and Zlib::Gzip-
Writer and Zlib::GzipReader make it easy to create, and read from, these files:

require 'zlib'

Zlib::GzipWriter.open('my_compressed_file.gz') do |gz|

gz.write 'This data will be compressed automatically!'

end

Zlib::GzipReader.open('my_compressed_file.gz') do |my_file|

puts my_file.read

end

This data will be compressed automatically!

Further Information

• Standard library documentation for zlib: http://www.ruby-doc.org/stdlib/
libdoc/zlib/rdoc/index.html

CHAPTER 16 ■ USEFUL RUBY L IBRARIES AND GEMS548

7664 CH16.qxd 2/21/07 10:56 PM Page 548

Ruby Primer and Review
for Developers

This appendix is designed to act as both a Ruby primer and review, useful both to devel-
opers who want to brush up rapidly on their Ruby knowledge, and to those who are new
to the language but who have existing programming knowledge and want to get a quick
overview.

If you’re a new programmer, or at least are new to concepts such as object orienta-
tion, scripting languages, and dynamic languages, you’ll want to read through Chapter 2
and continue with the rest of the book instead of depending on this appendix to teach
you about Ruby. This appendix is designed for those who have either finished reading the
rest of this book and who want to brush up on the basics, or those who want to look
quickly through some basic elements of Ruby syntax in the flesh.

With that in mind, this appendix isn’t instructional, as most of the other chapters in
this book are. A lot of concepts will be covered at a quick pace with succinct code exam-
ples. References to more explanatory detail found in this book are given where possible.

The Basics
In this section I’ll give a brief overview of the Ruby programming language, its concepts,
and how to use the Ruby interpreter.

Definition and Concepts

Ruby is an open source, object-oriented programming language created and maintained
by Yukihiro Matsumoto (among others). Languages such as Perl, LISP, Smalltalk, and
Python have inspired the syntax and styling of the language. It is cross platform and runs
on several different architectures, although its “home” architecture is Linux on x86.

549

A P P E N D I X A

7664 XA.qxd 2/19/07 12:33 AM Page 549

550 APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS

Among other things, Ruby has automatic garbage collection, is easily portable, sup-
ports cooperative multitasking on all supported platforms using its own threading
system, has a large standard library, and supports most features associated with dynamic
languages (such as closures, iterators, exceptions, overloading, and reflection).

Ruby is an interpreted language. This is in opposition to languages that are compiled.
Code developed in languages such as C and C++ has to be compiled into object code that
represents instructions supported by a computer’s processor. Ruby, however, is compiled
down into platform-independent bytecode that is run by a virtual machine. Python, Java,
and C# share this characteristic, although they all run upon different virtual machine
implementations and have different execution characteristics. Table A-1 highlights some
key differences between several popular programming languages.

Table A-1. Feature Comparison Between Several Popular Programming Languages

Language Object-Oriented? Reflective? Dynamically Typed? Interpreted?

Ruby Yes Yes Yes Yes

C No No No No

C++ Yes No No No

C# Yes Yes Yes Yes, through VM

Perl Partially Partially Yes Yes

Java Yes, mostly Not generally No Yes, through VM

Python Yes Yes Yes Yes

Ruby has been developed with the “principle of least surprise” in mind, so the way
you’d expect things to work is usually a valid way of doing something. This means Ruby is
very much a “There’s More Than One Way To Do It” type of language, in the same vein as
Perl but quite different in philosophy from languages such as Python, where having one
clear process to achieve something is seen as the best way to do things.

■Note A useful resource is the official Ruby site’s “Ruby From Other Languages” section at
http://www.ruby-lang.org/en/documentation/ruby-from-other-languages/, where in-depth
comparisons of Ruby against C, C++, Java, Perl, PHP, and Python are given.

7664 XA.qxd 2/19/07 12:33 AM Page 550

One important concept in Ruby is that almost everything is an object. For example,
the following line of code calls a primitive, internal method called puts with a single
argument of 10. puts prints its arguments to the screen:

puts 10

10

The following line of code calls the class method on the numeric object 10. Even the
literal number 10 is an object in this situation. The result demonstrates that 10 is an
object of the Fixnum class.

puts 10.class

Fixnum

Ruby’s reflection, overriding, object orientation, and other dynamic features make it
possible for developers to entirely override the behaviors of even built-in classes such as
Fixnum. It’s possible to make Fixnum objects work in totally different ways. You can override
Fixnum to the point that 2 + 2 could well equal 5. Although some developers already expe-
rienced with languages such as Java and C see this as a downside, this level of control
over the internals of the language gives Ruby developers a significant amount of power.
The key is to use that power carefully.

The Ruby Interpreter and Running Ruby Code

As Ruby is an interpreted language, Ruby code is executed using the Ruby interpreter. On
most platforms, that makes running a Ruby script as easy as this:

ruby name_of_script.rb

■Note Ruby program files usually end with the extension of RB, although this isn’t a strict requirement.

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS 551

7664 XA.qxd 2/19/07 12:33 AM Page 551

The Ruby interpreter has a number of options. You can ask the Ruby interpreter to
print out its version details using the -v (version) option:

ruby –v

ruby 1.8.5 (2006-08-25) [i686-darwin8.8.1]

You can also execute Ruby commands directly from the command line, using -e:

ruby -e "puts 2 + 2"

4

You can learn more about the Ruby interpreter’s command line options by typing
man ruby (on Unix-related platforms) or by visiting a Web-based version of the Ruby
man page at http://www.linuxcommand.org/man_pages/ruby1.html.

■Note In Microsoft Windows, you might choose to associate the Ruby interpreter directly with any RB files
so that you can double-click Ruby files to execute them.

On Unix-related platforms, it’s possible to add a “shebang” line as the first line of a
Ruby script so that it can be executed without having to invoke the Ruby interpreter
explicitly. For example:

#!/usr/bin/ruby

puts "Hello, world!"

You can take this script, give it a simple filename such as hello (no RB extension
needed), make the file executable (using chmod), and run it directly using its filename
rather than having to invoke the Ruby interpreter explicitly. Chapter 10 covers this tech-
nique in more depth. More information about the shebang line specifically is available at
http://en.wikipedia.org/wiki/Shebang_(Unix).

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS552

7664 XA.qxd 2/19/07 12:33 AM Page 552

Interactive Ruby

With the normal Ruby interpreter also comes an interactive Ruby interpreter called irb.
This allows you to write Ruby code in an immediate, interactive environment where the
results of your code are given as soon as you type it. Here’s an example irb session:

irb

irb(main):001:0> puts "test"

test

=> nil

irb(main):002:0> 10 + 10

=> 20

irb(main):003:0> 10 == 20

=> false

irb(main):004:0> exit

irb gives you the results of methods and expressions immediately. This makes it
an ideal tool for debugging or putting together quick snippets of code, and for testing
concepts.

Expressions, Logic, and Flow Control
Expressions, logic, and flow control make up a significant part of any developer’s tools in
any programming language. This section looks at how Ruby implements them.

Basic Expressions

Ruby supports expressions in a style familiar to almost any programmer:

"a" + "b" + "c"

abc

10 + 20 + 30

60

("a" * 5) + ("c" * 6)

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS 553

7664 XA.qxd 2/19/07 12:33 AM Page 553

aaaaacccccc

a = 10

b = 20

a * b

200

You can assign the results of expressions to variables, which you can then use in
other expressions.

Method calls, variables, literals, brackets, and operators can all combine so long as
subexpressions always feed values of the correct type into their parent expressions or
provide methods that allow them to be coerced into the right types. The next section
covers this topic in more depth. (Expressions are covered in depth in Chapter 3.)

Class Mismatches

Ruby is a dynamic language, but unlike Perl, objects aren’t converted between different
classes automatically. For example, this expression is valid in Perl:

"20" + 10

30

However, in Ruby, you get an error response with the same expression:

TypeError: can't convert Fixnum into String

from (irb):1:in `+'

from (irb):1

In Ruby, you can only use objects that are of the same class or that support automatic
translation between classes (coercion) in operations with one another.

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS554

7664 XA.qxd 2/19/07 12:33 AM Page 554

However, Ruby comes with a set of methods that exist on many types of objects,
which make conversion easy. For example:

"20" + 10.to_s

2010

In this example, the number 10 is converted to a string "10" in situ with the to_s
method.

Consider this inverse example, where you convert the string "20" into an integer
object using the to_i method before adding 10 to it:

"20".to_i + 10

30

■Note Methods are covered in depth in Chapters 2, 3, and 6, as well as later in this appendix.

The to_s method provided by all number classes in Ruby results in a number being
converted into a String object. C and C++ programmers might recognize this concept as
similar to casting.

Other conversions that can take place are converting integers to floats using to_f,
and vice versa with to_i. You can convert strings and numbers using to_s, to_i, and to_f.
Many other classes support to_s for converting their structure and other data into a
string (the Time class provides a good demonstration of this). This topic is covered in
Chapter 3 in the section “Converting Between Classes.”

Comparison Expressions

Comparison expressions in Ruby, as in most other languages, return true or false, except
that in some situations comparisons might return nil, Ruby’s concept of “null” or nonex-
istence. For example:

2 == 1

false

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS 555

7664 XA.qxd 2/19/07 12:33 AM Page 555

2 == 2

true

(2 == 2) && (1 == 1)

true

x = 12

x * 2 == x + 1

false

x * x == x ** 2

true

In each of the preceding examples, you test whether variables, literals, or other
expressions are equal to one another using == (symbolizing “is equal to”). You can check
that multiple expressions result in true (logical “and”—if x and y are true) using &&
(symbolizing “and”).

As in other languages, the concept of a logical “or” is symbolized by ||:

(2 == 5) || (1 == 1)

true

This expression is true because even though 2 is not equal to 5, the other subexpres-
sion is true, meaning that one or another of the expressions is true, so the whole
comparison is also true.

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS556

7664 XA.qxd 2/19/07 12:33 AM Page 556

Last, it can be useful to negate expressions. You can do this with the ! operator, as in
many other programming languages. For example, you might want to see if one thing is
true but another thing is false. Here’s an example:

(2 == 2) && !(1 == 2)

true

The expression is true because both subexpressions are true. 2 is equal to 2, and 1 is
not equal to 2.

You can also check that one thing is not equal to another with the inequality operator
!=:

(2 == 2) && (1 != 2)

true

Flow

Ruby supports a few different forms of flow control. In this section you’ll see several tech-
niques you can use for branching and looping. (All the topics in this section are covered
in more depth in Chapter 3.)

Branching and Conditional Execution

The simplest form of conditional execution is with just a single line using if or unless:

puts "The universe is broken!" if 2 == 1

This example won’t print anything to the screen because 2 is not equal to 1. In this
case, if performs the comparison before the rest of the line is executed. This usage will
be familiar to Perl programmers (indeed, that’s where this construction came from), but
might appear back-to-front to developers from languages such as C.

Ruby also supports a multiline construction that’s more familiar to non-Perl or Ruby
coders:

if 2 == 1

puts "The universe is broken!"

end

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS 557

7664 XA.qxd 2/19/07 12:33 AM Page 557

This multiline construction is less space efficient than the previous, single-line con-
struction, but it allows you to put multiple lines between the condition and the end of the
block, which isn’t possible with the “end of line” technique. Pascal coders should note the
absence of a begin, though otherwise the style is similar to that in Pascal.

You can also write the preceding conditional logic in a single-line way, but it’s a
messy style and rarely seen:

if 2 == 1: puts "The universe is broken!" end

This technique is only shown for completeness. Try not to use it!

■Note unless is the opposite of if. It executes code if the expression is false (or nil), rather than
true. Some coders think of it as “if not,” because unless acts like if with the expression negated.

Ruby also supports the else directive, as found in languages such as C, Perl, and
Pascal:

if 2 == 1

puts "The universe is broken!"

else

puts "The universe is okay!"

end

The universe is okay!

If the expression (2 == 1 in this example) is true, the main block of code is executed,
else the other block of code is. There’s also a feature called elsif that lets you chain
multiple ifs together:

if x == 1 || x == 3 || x == 5 || x == 7 || x == 9

puts "x is odd and under 10"

elsif x == 2 || x == 4 || x == 6 || x == 8

puts "x is even and under 10"

else

puts "x is over 10 or under 1"

end

The preceding rather obtuse example demonstrates how you can use if, elsif, and
else in tandem. The only thing to note is that end always finishes an if (or unless) block,

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS558

7664 XA.qxd 2/19/07 12:33 AM Page 558

whether end is on its own or features elsif and else blocks too. In some languages there’s
no need to delimit the end of if blocks if they only contain a single line. This isn’t true of
Ruby.

■Note C coders will be used to else if. Ruby’s variation is based on the Perl standard of elsif.

Ruby also supports another construction familiar to C, C++, Java, and Pascal coders,
case (known as switch in C, C++, and Java):

fruit = "orange"

case fruit

when "orange"

color = "orange"

when "apple"

color = "green"

when "banana"

color = "yellow"

else

color = "unknown"

end

This code is similar to the if block, except that the syntax is a lot cleaner. A case block
works by processing an expression first (supplied after case), and then the case block
finds and executes a contained when block with an associated value matching the result of
that expression. If no matching when block is found, then the else block within the case
block will be executed instead.

case is, essentially, a substitution for a large, messy clump of if and elsif statements.

The Ternary Operator (Conditional Expressions)

Ruby supports a construction called the ternary operator. Its usage is simple:

x = 10

puts x > 10 ? "Higher than ten" : "Lower or equal to ten"

Lower or equal to ten

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS 559

7664 XA.qxd 2/19/07 12:33 AM Page 559

The ternary operator works like so:

expression ? true_expression : false_expression

It works like an expression, but with built-in flow control. If the initial expression is
true, then the first following expression will be evaluated and returned. If the initial
expression is false, then the final following expression will be evaluated and returned
instead.

Loops

Ruby supports loops in a similar way to other programming languages. For example,
while, loop, until, next, and break features will be familiar (although with possibly differ-
ent names) to most programmers.

■Note Ruby also supports iteration and code blocks, which can prove a lot more powerful than regular
loops. These are covered later in this appendix and in Chapters 2, 3, and 6.

Loop techniques are covered in Chapter 3, but some basic demonstrations follow.
Here’s a permanent loop that you can break out of using break:

i = 0

loop do

i += 1

break if i > 100

end

■Note It’s worth noting that unlike in C or Perl, you cannot increment variables by 1 with variable++ in
Ruby. variable = variable + 1 or variable += 1 are necessary instead.

Here’s a while loop, using next to skip even numbers (using the % modulo operator):

i = 0

while (i < 15)

i += 1

next if i % 2 == 0

puts i

end

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS560

7664 XA.qxd 2/19/07 12:33 AM Page 560

1

3

5

7

9

11

13

15

■Note until is the opposite to while. until (i >= 15) is equivalent to while (i < 15).

Further looping techniques are covered in Chapter 3 and throughout the book.

Object Orientation
Ruby is considered a pure object-oriented language, because everything appears, to
Ruby, as an object. An earlier example in this appendix demonstrated this:

puts 10.class

Fixnum

Even literal data within code is considered to be an object, and you can call the
methods made available by those objects (and/or their parent classes).

■Note Object orientation, classes, objects, methods, and their respective techniques are covered in full in
Chapters 2 and 6. This section presents merely a brief overview.

Ruby implements object orientation in a simple way (syntax-wise), but offers more
dynamic features than other major languages (see Chapter 6 for many examples of such
features).

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS 561

7664 XA.qxd 2/19/07 12:33 AM Page 561

Objects

Objects in Ruby have no special qualities beyond objects that exist in any other object-
oriented programming language. However, the key difference between Ruby and most
other major object-oriented languages is that in Ruby everything is an object. With this in
mind, you can call methods on almost everything, and even chain methods together.

In C or Perl it would be common practice to write code in this form:

function1(function2(function3(something)))

However, in Ruby you’d do this:

something.function3.function2.function1

Periods are used between an object and the method to call, as in C++ or Java (as
opposed to -> used in Perl). In this example, you call the function3 method upon the
something object, then the function2 method upon the result of that, and then the
function1 method on the result of that. A real-world demonstration can illustrate:

"this is a test".reverse

tset a si siht

"this is a test".reverse.upcase.split(' ').reverse.join('-')

SIHT-SI-A-TSET

This example is deliberately long to demonstrate the power of method chaining in
Ruby. The syntax is a lot cleaner than the equivalent in Perl, C, or C++, and almost reads
like English. This example takes your string "this is a test", reverses it, converts it to
upper case, splits it into words (splitting on spaces), reverses the position of the words in
an array, then joins the array back into a string with each element separated by dashes.
(Objects are covered in depth in Chapters 2, 3, and 6.)

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS562

7664 XA.qxd 2/19/07 12:33 AM Page 562

Classes and Methods

Ruby classes are similar in style to those in Perl, C++, or Java, but keep the benefits of
Ruby’s dynamic features. Let’s look at an example class definition:

class Person

def initialize(name, age)

@name = name

@age = age

end

def name

return @name

end

def age

return @age

end

end

This class features an initialize method that is called automatically when you create
a new instance of that class. Two parameters or arguments are accepted (name and age)
and assigned to instance variables. Instance variables are variables associated with a par-
ticular instance of a class and begin with an @ sign (as in @name). Java developers should
recognize @name as being similar to this.name.

After the initializer come two methods (name and age) that act as basic accessors. They
simply return the value of their respective instance variables.

■Note In Ruby, if no value is explicitly returned from a method, the value of the last expression is returned
instead. Therefore, return @name and just @name as the last line in the name method would be equivalent.

With the preceding class definition, it’s trivial to create new objects:

person1 = Person.new('Chris', 25)

person2 = Person.new('Laura', 23)

puts person1.name

puts person2.age

Chris

23

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS 563

7664 XA.qxd 2/19/07 12:33 AM Page 563

One benefit of Ruby is that you can add features to classes even if they’ve already
been defined. Within the same program as before, you can simply “reopen” the class and
add more definitions:

class Person

def name=(new_name)

@name = new_name

end

def age=(new_age)

@age = new_age

end

end

These new methods are added to the Person class and are automatically made avail-
able to any existing instances of that class. These new methods are setter methods, as
signified by the equal sign following their names. They allow you to do this:

person1.name = "Barney"

person2.age = 101

puts person1.name

puts person2.age

Barney

101

Ruby can simplify most of the preceding work for you though, as it provides the
attr_accessor helper method that automatically creates accessors and setter methods
within a class for you.

class Person

attr_accessor :name, :age

end

You can also create class methods: methods that don’t exist within the scope of a
single object, but that are bound directly to the class. For example:

class Person

@@count = 0

def initialize

@@count += 1

end

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS564

7664 XA.qxd 2/19/07 12:33 AM Page 564

def Person.count

@@count

end

end

a = Person.new

b = Person.new

c = Person.new

puts Person.count

3

This Person class implements a count class method (notice that it is defined as
Person.count, rather than just count, making it a class method). The count class method
returns the value of a class variable (@@count) that stores the total number of Person
objects created so far. Class variables begin with two @ signs and exist within the scope
of a class and all its objects, but not within the scope of any specific object. Therefore,
@@count equals 3 and only 3 once you’ve created three Person objects.

This section has given only a brief overview of classes, objects, and their special
variables. For a detailed look at classes and objects, refer to Chapter 6.

Reflection

Ruby is often called a reflective language, as it supports reflection. Reflection is a process
that allows a computer program to observe and modify its own structure and behavior
during execution. This functionality can seem like a novelty to developers experienced
with C, C++, and Perl, but it’s incredibly important in terms of Ruby’s operation and
Ruby’s ability to define domain-specific languages, making other forms of development
easier.

A brief demonstration of reflection is the ability to programmatically retrieve a list of
all the methods associated with any object or class in Ruby. For example, here’s how to
display a list of all methods of the Hash class:

Hash.methods

["methods", "instance_eval", "display", "dup", "object_id",

"instance_variables",

"include?", "private_instance_methods", "instance_of?",

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS 565

7664 XA.qxd 2/19/07 12:33 AM Page 565

"protected_method_defined?", "extend", "const_defined?", "eql?", "name",

"public_class_method", "new", "hash", "id", "singleton_methods", "taint",

"constants", "autoload", "frozen?", "instance_variable_get", "kind_of?",

"ancestors", "to_a", "private_class_method", "const_missing", "type",

"instance_method", "instance_methods", "protected_methods", "superclass",

"method_defined?", "instance_variable_set", "const_get", "is_a?", "respond_to?",

"to_s", "module_eval", "class_variables", "allocate", "class", "<=>", "<",

"tainted?", "private_methods", "==", "public_instance_methods", "__id__",

"autoload?", "===", "public_method_defined?", ">", "included_modules", "nil?",

"untaint", "const_set", ">=", "method", "<=", "send", "inspect", "class_eval",

"clone", "=~", "protected_instance_methods", "public_methods",

"private_method_defined?", "__send__", "equal?", "freeze", "[]"]

Similarly, you can retrieve a list of methods available on a String object directly:

"testing".methods

["methods", "instance_eval", "%", "rindex", "map", "<<", "display", "split",

"any?", "dup", "object_id", "sort", "strip", "size", "instance_variables",

"downcase", "min", "gsub!", "count", "include?", "succ!", "instance_of?",

"extend", "downcase!", "intern", "squeeze!", "eql?", "*", "next", "find_all",

"each", "rstrip!", "each_line", "+", "id", "sub", "slice!", "hash",

"singleton_methods", "tr", "replace", "inject", "reverse", "taint", "sort_by",

"lstrip", "frozen?", "instance_variable_get", "capitalize", "max", "chop!",

"kind_of?", "capitalize!", "scan", "select", "to_a", "each_byte", "type",

"casecmp", "gsub", "protected_methods", "empty?", "to_str", "partition", "tr_s",

"tr!", "match", "grep", "rstrip", "to_sym", "instance_variable_set", "next!",

"swapcase", "chomp!", "is_a?", "swapcase!", "ljust", "respond_to?", "between?",

"reject", "to_s", "upto", "hex", "sum", "class", "reverse!", "chop", "<=>",

"insert", "<", "tainted?", "private_methods", "==", "delete", "dump", "===",

"__id__", "member?", "tr_s!", ">", "concat", "nil?", "succ", "find", "untaint",

"strip!", "each_with_index", ">=", "method", "to_i", "rjust", "<=", "send",

"index", "collect", "inspect", "slice", "oct", "all?", "clone", "length",

"entries", "chomp", "=~", "public_methods", "upcase", "sub!", "squeeze",

"__send__", "upcase!", "crypt", "delete!", "equal?", "freeze", "unpack",

"detect",

"zip", "[]", "lstrip!", "center", "[]=", "to_f"]

The results given by the methods method might seem overwhelming at first, but over
time they become incredibly useful. Using the methods method on any object allows you

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS566

7664 XA.qxd 2/19/07 12:33 AM Page 566

to learn about methods that aren’t necessarily covered in this book (or other books), or
that are new to the language. You can also use methods to retrieve a list of class methods,
because classes are also objects in Ruby!

This section provides only a taste of reflection, but the topic is covered in more detail
in Chapter 6.

Reopening Classes

It’s trivial to override already defined methods on classes. Earlier in this appendix I men-
tioned that, if you so wish, you can adjust the Fixnum class so that 2 + 2 would equal 5.
Here’s how you do that:

class Fixnum

alias_method :old_plus, :+

def +(other_number)

return 5 if self == 2 && other_number == 2

old_plus other_number

end

end

puts 2 + 2

5

The first thing this code does is to enter the Fixnum class, so you can define methods
and perform actions within it. Next you make an alias from the addition
operator/method (+) to a new method called old_plus. This is so you can still use the
normal addition feature, though with a different name.

Next you redefine (or “override”) the + method and return 5 if the current number is 2
and the number you’re adding to the current number is also 2. Otherwise, you simply call
old_plus (the original addition function) with the supplied argument. This means that
2 + 2 now equals 5, but all other addition is performed correctly.

You can redefine nearly any method within Ruby. This can make testing essential
because you (or another developer) might incorporate changes that affect classes and
objects being used elsewhere within your program. Testing is covered in Chapters 8
and 12.

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS 567

7664 XA.qxd 2/19/07 12:33 AM Page 567

Method Visibility

It’s possible to change the visibility of methods within Ruby classes in one of three ways.
Methods can be public (callable by any scope within the program), private (callable only
within the scope of the instance the methods exist upon), and protected (callable by any
object of the same class). Full details about method visibility are available in Chapter 6.

To encapsulate methods as public, private, or protected, you can use two different
techniques. Using the words public, private, and protected within a class definition
causes the methods defined thereafter to be encapsulated in the respective fashion:

class MyClass

def public_method

end

private

def private_method1

end

def private_method2

end

protected

def protected_method

end

end

You can also explicitly set methods to be encapsulated in one way or another, but
only after you’ve first defined them. For example:

class MyClass

def public_method

end

def private_method1

end

def private_method2

end

def protected_method

end

public :public_method

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS568

7664 XA.qxd 2/19/07 12:33 AM Page 568

private :private_method1, :private_method2

protected :protected_method

end

Declarations such as this should come after you define the methods, as otherwise
Ruby won’t know what you’re referring to.

Data
As everything is an object in Ruby, all forms of data represented within Ruby are also
objects, just of varying classes. Therefore, some Ruby developers will try to correct you if
you refer to types rather than classes, although this is merely pedantry.

In this section we’ll take a quick look at some of the basic data classes in Ruby.

Strings

Strings in Ruby are generally unexceptional, except for the object-oriented benefits you
gain. Previously in this appendix we looked at how powerful classes and methods can be
when working upon strings:

"this is a test".reverse.upcase.split(' ').reverse.join('-')

SIHT-SI-A-TSET

The String class offers a plethora of useful methods for managing text. I’ll cover sev-
eral of these in the following “Regular Expressions” section. However, if you want to see
what other methods strings offer, it’s easy: just execute "test".methods!

Regular Expressions

In Ruby, regular expressions are implemented in a reasonably standard way, being some-
what aligned with the Perl style. If you’re familiar with regular expressions, Ruby’s
techniques shouldn’t seem alien:

"this is a test".sub(/[aeiou]/, '*')

th*s is a test

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS 569

7664 XA.qxd 2/19/07 12:33 AM Page 569

"this is a test".gsub(/[aeiou]/, '*')

th*s *s * t*st

"THIS IS A TEST".gsub(/[aeiou]/, '*')

THIS IS A TEST

"THIS IS A TEST".gsub(/[aeiou]/i, '*')

TH*S *S * T*ST

sub performs a single substitution based on a regular expression, whereas gsub
performs a global substitution. As in Perl, you use the /i option to make the regular
expression case insensitive.

Ruby also makes matching easy, with the match method of String returning a special
MatchData array you can query:

m = "this is a test".match(/\b..\b/)

m[0]

is

m = "this is a test".match(/\b(.)(.)\b/)

m[0]

is

m[1]

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS570

7664 XA.qxd 2/19/07 12:33 AM Page 570

i

m[2]

s

The latter example demonstrates how you can parenthesize elements of the regular
expression to separate their contents in the results. m[0] contains the full match, whereas
m[1] onwards matches each set of parentheses. This behavior is similar to that of $1, $2,
$.. in Perl (note that these special variables also exist in Ruby, but their use is generally
frowned upon unless there are no other solutions).

You can also scan through a string, returning each match for a regular expression:

"this is a test".scan(/[aeiou]/)

['i', 'i', 'a', 'e']

"this is a test".scan(/\w+/)

['this', 'is', 'a', 'test']

Methods such as split also accept regular expressions (as well as normal strings):

"this is a test".split(/\s/)

['this', 'is', 'a', 'test']

Regular expressions are covered in more depth in Chapter 3, and are used through-
out the book.

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS 571

7664 XA.qxd 2/19/07 12:33 AM Page 571

Numbers

Integers and floating point numbers are available in Ruby and operate mostly as you’d
expect. Numbers support all common operators such as modulus (%), addition, subtrac-
tion, division, multiplication, and powers (**).

■Note You can produce roots easily by raising a number to the power of 1/n. For example, you can find the
square root of 25 with 25 ** 0.5.

A key consideration with numbers in Ruby is that unless you explicitly define a num-
ber as a floating point number, it won’t be one unless it contains a decimal point. For
example:

10 / 3

3

In this situation, 10 and 3 are both considered integers, so integer division is used. If
integer division is what you’re after—and it might be in some cases—then you’re fine. But
if you’re after floating point division, you need to do something to ensure that at least one
of the values involved is recognized as a floating point number. You can generate a float-
ing point value in one of three ways as follows:

• By invoking the to_f method, to convert an integer to its floating point equivalent

• By writing the number with a decimal point, even if you just add “.0” to the end

• By invoking the Float() initializer method to convert an integer to a floating point
value

Here are some examples:

10.to_f / 3

3.33333333333333

10.0 / 3

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS572

7664 XA.qxd 2/19/07 12:33 AM Page 572

3.33333333333333

10 / Float(3)

3.33333333333333

Which method you choose to make the 10 be recognized as a Float object can be
largely influenced by the situation, so it’s useful to see all your options.

Another useful feature in Ruby is that even though whole numbers are typically
stored as 32-bit integers internally, Ruby automatically converts integer Fixnum objects
into Bignum objects when the 32-bit barrier is breached. For example:

(2 ** 24).class

Fixnum

(2 ** 30).class

Bignum

2 ** 100

1267650600228229401496703205376

Ruby appears to have no problem in dealing with numbers of up to about 78,000 dig-
its in length, certainly enough to solve any mathematical problems you might face!
However, clearly there are limits:

2 ** 263000

Infinity

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS 573

7664 XA.qxd 2/19/07 12:33 AM Page 573

Numbers are covered in depth in Chapter 3.

Arrays

As in other programming languages, arrays act as ordered collections. However, in Ruby
specifically, arrays are ordered collections of objects, because everything in Ruby is an
object! Arrays can contain any combination of objects of any class.

At first sight, Ruby arrays work much like arrays in any other language, although note
that you work upon an array using methods, because an array itself is an object. The fol-
lowing example shows the invocation of the Array class’s push method:

a = []

a.push(10)

a.push('test')

a.push(30)

a << 40

[10, 'test', 30, 40]

Notice the use of a different form of pushing objects to an array with the << operator
on the last line of the preceding example.

■Note Although [] defines an empty literal array, you can also use Array.new to generate an empty array
if you prefer to stick to object orientation all the way. Java and C++ developers might prefer this syntax ini-
tially.

Arrays are objects of class Array and support a plethora of useful methods, as covered
in full in Chapter 3.

Hashes (Associative Arrays)

Hashes (also known as associative arrays) exist as a concept in many programming lan-
guages, such as Perl, Java, and Python (where they are called dictionaries). Hashes are
data structures that let you associate keys with values.

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS574

7664 XA.qxd 2/19/07 12:33 AM Page 574

Ruby’s implementation of hashes is straightforward and should be familiar to both
Perl and Python developers, despite some minor syntax changes. For example:

fred = {

'name' => 'Fred Elliott',

'age' => 63,

'gender' => 'male',

'favorite painters' => ['Monet', 'Constable', 'Da Vinci']

}

fred refers to a basic hash that contains four elements that have keys of 'name', 'age',
'gender', and 'favorite painters'. You can refer back to each of these elements easily:

puts fred['age']

63

puts fred['gender']

male

puts fred['favorite painters'].first

Monet

Hashes are objects of class Hash and come with a large number of helpful methods to
make hashes easy to navigate and manipulate, much like regular arrays. It’s important to
note that both hash element keys and values can be objects of any class themselves, as
long as each element key is distinct. Otherwise, previously existing values will be over-
written. Hashes and associated methods and techniques are covered in detail in
Chapter 3.

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS 575

7664 XA.qxd 2/19/07 12:33 AM Page 575

Complex Structures

Because hashes and arrays can contain other objects, it’s possible to create complex
structures of data. Here’s a basic example of a hash containing other hashes (and another
hash containing an array at one point):

people = {

'fred' => {

'name' => 'Fred Elliott',

'age' => 63,

'gender' => 'male',

'favorite painters' => ['Monet', 'Constable', 'Da Vinci']

},

'janet' => {

'name' => 'Janet S Porter',

'age' => 55,

'gender' => 'female'

}

}

puts people['fred']['age']

puts people['janet']['gender']

puts people['janet'].inspect

63

female

{"name"=>"Janet S Porter", "gender"=>"female", "age"=>55}

This example presents a hash called people that contains two entries with keys of
'fred' and 'janet', each of which refer to another hash containing information about
each person. These sorts of structures are common in Ruby (as well as in Perl and C++).
They are covered in more depth in Chapter 3 and throughout this book. Typically, com-
pared to other languages, the syntax is simple, and in Ruby, the simplest answer is usually
the right one.

Input/Output
Ruby has powerful Input/Output (I/O) support, from the ability to create, read, and
manipulate files through to database support, external devices, and network

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS576

7664 XA.qxd 2/19/07 12:33 AM Page 576

connectivity. These topics are covered in full in this book (primarily in Chapters 9, 14, and
15), but this section presents a basic overview of the most important forms of I/O.

Files

Ruby’s support for file I/O is powerful compared to that of other languages. Although
Ruby supports traditional techniques for reading and manipulating files, its object-
oriented features and tight syntax offer more exciting possibilities. First, here is the
traditional way you’d open and read a file (as when using a more procedural language):

lines = []

file_handle = File.new("/file/name/here", "r")

while line = file_handle.gets

lines << line

end

This example opens a file in read-only mode, then uses the file handle to read the file
line by line before pushing it into an array. This is a reasonably standard technique in,
say, C or Pascal. Let’s look at a Ruby-specific technique:

lines = File.readlines('/file/name/here')

Ruby’s file handling and manipulation support is particularly deep and extensive, so
is out of the scope of this chapter. However, the preceding examples should have pro-
vided a glimpse into what’s possible, and files are covered in full in Chapter 9 of this book.

Databases

There are several ways to connect to database systems such as MySQL, PostgreSQL, Ora-
cle, SQLite, and Microsoft SQL Server from Ruby. Typically, a “driver” library is available
for each of the main database systems, although these don’t come with Ruby by default.
You typically install database driver libraries using the RubyGems Ruby library packaging
system, or you might need to download and install them manually. Explaining how to
use such libraries is beyond the scope of this appendix, but they are covered in full in
Chapter 9.

Ruby also has a DBI library that can provide a more standardized interface to all the
various driver libraries. Because each driver library is mostly based on the official library
for each database system, they’re extremely inconsistent and differ in their implementa-
tion. DBI makes many of the features provided by these drivers available in a consistent
manner.

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS 577

7664 XA.qxd 2/19/07 12:33 AM Page 577

■Note Ruby’s DBI library is not exactly like Perl’s DBI library, but is heavily influenced by it, and Perl
developers will feel at home using it. It’s covered in Chapter 9 of this book.

Web Access

Ruby comes with libraries that make accessing data on the Web incredibly easy. At a high
level is the open-uri library, which makes it easy to access data from the Web. This exam-
ple retrieves a Web page and returns an array containing all the lines on that page:

require 'open-uri'

open('http://www.rubyinside.com/').readlines

open-uri is a convenience library that provides an open method that allows you to
load data from URLs. open returns a File handle (technically a Tempfile object) that works
in the same way as any other File object, allowing you to use methods such as readlines
to read all the lines of the data into an array. (This topic is covered in significantly more
depth in Chapter 14.)

Ruby also provides lower-level libraries, such as net/http. Here’s an example of
retrieving a file from a Web site and displaying it on the screen:

require 'net/http'

Net::HTTP.start('www.rubyinside.com') do |http|

req = Net::HTTP::Get.new('/test.txt')

puts http.request(req).body

end

Hello Beginning Ruby reader!

This example connects to the Web server at www.rubyinside.com and performs an
HTTP GET request for /test.txt. This file’s contents are then returned and displayed. The
equivalent URL for this request is http://www.rubyinside.com/test.txt, and if you load
that URL in your Web browser, you’ll get the same response as this Ruby program.

net/http also lets you make requests using other HTTP verbs such as POST and
DELETE, and is the most flexible HTTP library for Ruby. As it’s included with the standard
library, it’s usually the first choice for most Ruby developers. Refer to Chapter 14 for full
information.

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS578

7664 XA.qxd 2/19/07 12:33 AM Page 578

Libraries
This section looks at how you can organize code into multiple files and manage libraries
within Ruby.

File Organization

Ruby libraries don’t need to be packaged in any special way (unlike, say, Java’s JAR
archives). Ruby does have a library packaging system called RubyGems (covered in the
next section), but its use is entirely optional. The simplest way to create a library is to
create a Ruby file containing classes and methods and use require to load it. This tech-
nique will be familiar to Perl (using use), C (using #include), Pascal (using uses), and
other developers.

Let’s assume you have a file called mylib.rb containing the following:

class MyLib

def MyLib.hello_world

puts "Hello, world!"

end

end

And then you have another file like so:

require 'mylib'

MyLib.hello_world

This program loads in mylib.rb and includes its classes, methods, and other particu-
lars into the current runtime environment, meaning that MyLib.hello_world calls the
correct routine.

Ruby searches through its library folders in a specific order (and, usually, the current
directory too, as in the previous example) as dictated by the special variable $:. This vari-
able is an array that can be manipulated like any other array. You can push, pop, and
otherwise change the order and directories in which your program searches for libraries.

Here’s an example of what $: contains on an Intel Mac running Ruby 1.8.5:

["/usr/local/lib/ruby/site_ruby/1.8", "/usr/local/lib/ruby/site_ruby/1

.8/i686-darwin8.8.1", "/usr/local/lib/ruby/site_ruby", "/usr/local/lib

/ruby/1.8", "/usr/local/lib/ruby/1.8/i686darwin8.8.1", "."]

This topic is covered in depth in Chapter 7, and demonstrations of several Ruby
libraries are offered in Chapter 16. A basic Ruby library is also created from scratch in
Chapter 12.

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS 579

7664 XA.qxd 2/19/07 12:33 AM Page 579

Packaging

RubyGems (http://rubygems.org/) is a packaging system for Ruby libraries and applica-
tions. Each package within the RubyGems universe is called a gem or RubyGem (in this
book both terms are used interchangeably). RubyGems makes it easier to distribute,
update, install, and remove libraries and applications on your system.

Before the advent of RubyGems, Ruby libraries and applications were distributed in
a basic fashion in archive files, or even as source code to copy and paste from the Web.
RubyGems makes it easier and more centralized, and also takes care of any prerequisites
and dependencies required when installing a library. For example, here’s how to install
the Ruby on Rails system:

gem install rails

■Note On some platforms, sudo gem install rails would be required so as to install the libraries as a
super-user.

This installs the Rails gems along with all their dependencies. The gem application
prompts at each step of the way so you know exactly what’s being installed (you can over-
ride this with command line options). For example, gem install rails –y installs Rails
and its dependencies without questioning you at all.

You can uninstall gems in as simple a fashion:

gem uninstall rails

If you have multiple versions of the same gem(s) installed, gem will ask you which
version(s) you want to remove.

By default, gems are searched for in the default repository, hosted by RubyForge
(http://www.rubyforge.org/) at http://gems.rubyforge.org/. Any gem files uploaded to
Ruby projects hosted on the RubyForge site are made available in the default repository,
making a RubyForge account a necessity if you want to distribute your libraries to the
widest audience possible in an easy fashion.

However, you can run your own gems repository on your own Web site or by using
the RubyGems server software. This is less common and requires users of your gems to
specify your server name at the same time as installing the gem.

RubyGems is covered in full in Chapter 7 and several RubyGems are documented in
Chapter 16.

APPENDIX A ■ RUBY PRIMER AND REVIEW FOR DEVELOPERS580

7664 XA.qxd 2/19/07 12:33 AM Page 580

Ruby Reference

This appendix provides several reference sections that you’ll find useful from time to
time while developing applications with Ruby. More specifically, what’s in this appendix
is limited to direct reference information that you might find useful while otherwise
using this book. For a list of external resources, such as Web sites and mailing lists you
can query for more detailed or up-to-date information, refer to Appendix C. Over time,
it’s essential you learn to use Ruby’s online references, as they’ll be updated in line with
how the Ruby language develops. They’ll also open your mind to new possibilities and
advanced techniques not covered in this book.

Useful Classes and Methods
The following subsections highlight several of the basic classes and their most useful
methods.

■Note This section is not designed to be an exhaustive reference. Only the most useful methods of several
key classes are covered. For a complete, easy-to-search reference of the Ruby core classes, refer to
http://www.ruby-doc.org/core/.

Array

See Enumerable, a module that’s mixed in with Array, for more methods. The following are
the most commonly used methods available on Array objects:

• &: Intersects the contents of one array with another. For example: [1, 2, 3] &
[2, 3, 4] == [2, 3].

• *: Repeats the elements of an array a certain number of times if an integer is sup-
plied; otherwise, joins the array elements together if a string is supplied. For
example: [1, 2, 3] * 2 == [1, 2, 3, 1, 2, 3] and [1, 2, 3] * " " == "1 2 3". 581

A P P E N D I X B

7664 XB.qxd 2/21/07 10:51 PM Page 581

582 APPENDIX B ■ RUBY REFERENCE

• +: Concatenates two arrays together into a new array. For example: [1, 2, 3] +
[2, 3, 4] == [1, 2, 3, 2, 3, 4].

• -: Returns a new array with elements removed. For example: [1, 2, 2, 3] -
[2] == [1, 3].

• <<: Pushes or appends objects on to the end of the array. Equivalent to push.

• compact (and compact!): Returns a copy of the array with any nil elements removed.
For compact!, nil elements are removed from the current array in place.

• delete_if: Invokes the supplied code block for each element of the array and
deletes any elements that result in the code block evaluating to true. For example:
[1, 11, 20].delete_if { |i| i > 10 } == [1].

• each: Invokes the supplied code block for each element of the array, passing in each
element as a parameter.

• each_index: Invokes the supplied code block for each element of the array, passing
in the index of each element as a parameter.

• empty?: Returns true if the array contains no elements.

• first: Returns the first element of the array. If none, then nil.

• flatten (and flatten!): Returns the array with all subarrays flattened. For example:
[[1, 2], [2, 3], [4, 5]].flatten == [1, 2, 2, 3, 4, 5].

• include?: Returns true if the supplied object is also found within the array.

• index: Returns the index of the first instance of the supplied object within the array,
if any. For example: %w{a b c d e}.index("d") == 3.

• join: Joins the array elements together using an optionally supplied string as a
separator.

• last: Returns the last element of the array. If none, then nil.

• length: Returns the total number of elements within the array.

• pop: Removes the last element of the array and returns it.

• push: Pushes or appends the supplied object to the array (as with <<).

• reverse (and reverse!): Reverses the elements of the array and returns a new array.
With reverse! the elements are reversed in the current array in place.

7664 XB.qxd 2/21/07 10:51 PM Page 582

• reverse_each: The same as each, but going through each element in reverse order.

• shift: Removes the first element of the array and returns it. Therefore, every other
element of the array is moved one element toward the start of the array, to com-
pensate for the newly missing element.

• sort (and sort!): Sorts the elements of the array, returning a new array or in place
(with sort!). The sorting uses the <=> comparison operator of each object. You can
also supply an optional code block with which to perform custom sorts.

• uniq (and uniq!): Returns the array with duplicate values removed (uniq! removes
them in place).

• unshift: Pushes objects onto the start of the array (whereas push appends to the
end of the array).

Bignum and Fixnum

The Bignum and Fixnum classes represent integers of differing sizes (see Chapter 3 for the
full details of how this works). Both classes descend from Integer (and therefore Numeric).
You’ll want to refer to the “Integer” and “Numeric” sections for further methods you
can use.

Arithmetic Methods

Bignum and Fixnum objects support the following arithmetic methods:

• +: Adds one number to another. For example: 10 + 5 == 15.

• -: Subtracts one number from another. For example: 10 - 5 == 5.

• *: Multiplies one number with another. For example: 10 * 5 == 50.

• /: Divides one number by another. For example: 10 / 3 == 3 (but 10.0 /
3.0 == 3.3333333).

• **: Multiplies a number by itself a certain number of times. Known as
exponentiation or raising to the power of. For example: 5 ** 2 == 25.

• %: Divides one number by another and returns the modulus (remainder). For
example: 10 % 3 == 1 because 10 divides into 3 cleanly three times, leaving 1 as a
remainder.

APPENDIX B ■ RUBY REFERENCE 583

7664 XB.qxd 2/21/07 10:51 PM Page 583

Bitwise Methods

Bignum and Fixnum objects also support the following bitwise methods:

• &: Bitwise AND. Be careful not to confuse with the && Boolean operator!

• |: Bitwise OR. Be careful not to confuse with the || Boolean operator!

• ^: Bitwise XOR (eXclusive OR).

• <<: Shifts the bits within the integer a certain number of places to the left. This
usually has the effect of doubling the value for each bit shifted. For example:
10 << 2 == 40.

• >>: Shifts the bits within the integer a certain number of places to the right.
This has the opposite effect of shifting to the left. For example: 40 >> 2 == 10.

• ~: Inverts the bits within the integer. Also known as a bitwise NOT.

Enumerable

Enumerable is a module that’s automatically mixed in to Array and Hash classes. Therefore,
you can also use the methods in this section upon arrays and hashes. In these references,
the parent array or hash is referred to as a collection. The following methods are available
and are the most commonly used:

• all?: Invokes the supplied code block for every element of the collection. It ulti-
mately returns true or false depending on whether, for every element, each call to
the code block returned true.

• any?: Invokes the code block for every element of the collection and ultimately
returns true or false depending on whether, for any element, a code block
returned true.

• collect: Returns an array of the results obtained by passing each element of the
collection into a supplied code block. For example: %w{this is a test}.collect
{ |i| i * 2 } == ["thisthis", "isis", "aa", "testtest"].

• find (or detect): Passes each element of the collection to a supplied code block and
returns the first for which the code block evaluates to true.

• find_all (or select): Passes each element of the collection to a supplied code block
and returns all for which the code block evaluates to true.

APPENDIX B ■ RUBY REFERENCE584

7664 XB.qxd 2/21/07 10:51 PM Page 584

• include?: Returns true if the supplied object is also found within the collection.

• min: Returns the object within the collection with the smallest (minimum) value.

• max: Returns the object within the collection with the largest (maximum) value.

• sort (and sort!): Sorts the elements of the collection, returning a new collection or
in place (with sort!). The sorting uses the <=> comparison operator of each object.
You can also supply an optional code block with which to perform custom sorts.

• sort_by: Sorts the collection using the values generated by an invoked code block
(to which each element of the collection is passed).

Float

Objects of the Float class represent floating point or decimal numbers. They have the
same arithmetic methods as Bignum and Fixnum (see the section “Bignum and Fixnum”),
but don’t have any bitwise methods, as they are internally represented in an entirely dif-
ferent way to integers. Refer to Bignum and Fixnum for arithmetic methods, and to Numeric
for other inherited methods.

Hash

See Enumerable, a module that’s mixed in with Array, for more methods. The following are
some of the most popular methods made available by Hash objects:

• clear: Removes all key and value pairs from the hash.

• delete: Deletes the hash entry whose key is equal to the supplied object.

• delete_if: Deletes all hash entries where, for a code block invoked with the key and
value, true is returned. For example: { :a => 10, :b => 20, :c => 30 }.delete_if
{ |k, v| v > 10 } == { :a => 10 }.

• each: Invokes a supplied code block once for each entry in the hash, passing in the
key and value of that element as two parameters.

• each_key: Invokes a supplied code block once for each entry in the hash, passing in
the key only.

• each_value: Invokes a supplied code block once for each entry in the hash, passing
in the value only.

APPENDIX B ■ RUBY REFERENCE 585

7664 XB.qxd 2/21/07 10:51 PM Page 585

• empty?: Returns true if the hash has no entries (that is, pairs of keys and values).

• has_key?: Returns true if the hash has an entry with the supplied key.

• keys: Returns an array containing all the keys from the hash’s entries.

• length (or size): Returns the number of entries within the hash.

• to_a: Returns an array representing the hash with each entry given an array
containing its key and value.

• values: Returns an array containing all the values from the hash’s entries.

Integer

Integer is the parent class of Fixnum and Bignum and is not generally used on its own.
However, its methods are made available to both classes. The following are some of the
most commonly used methods:

• chr: Returns a string containing an ASCII character of the code represented by the
integer. For example: 65.chr == "A".

• downto(end_integer): Invokes the code block for each integer between that repre-
sented by the current object down to end_integer, passing each integer into the
code block as i.

• next: Returns the next integer in ascending sequence from the current one. For
example: 5.next == 6.

• times: Invokes the code block the number of times represented by the current
object. The number of each iteration is passed to i. For example: 10.times { |i|
puts "This is iteration #{i}" }.

• upto(end_integer): Invokes the code block for each integer between that repre-
sented by the current object up to end_integer, passing each integer into the code
block as i.

Numeric

Float and Integer (and therefore Fixnum and Bignum) are subclasses of Numeric, and so
inherit all Numeric’s methods. Numeric objects aren’t instantiated on their own. The follow-
ing are the most commonly used methods available to objects whose classes inherit from
Numeric:

APPENDIX B ■ RUBY REFERENCE586

7664 XB.qxd 2/21/07 10:51 PM Page 586

• abs: Returns the absolute value of the object as another instance of that object. For
example, the absolute value of -3 and 3 is 3. Therefore, -3.abs == 3.

• ceil: Rounds up a value to the nearest integer. For example: 1.2.ceil == 2.

• integer?: Returns true if the object is of class Integer, otherwise false. Note that
floats might contain integer values, but they aren’t necessarily of class Integer.

• floor: Rounds down a value to the nearest integer. For example: 1.2.floor == 1.

• round: Rounds a value to the nearest integer. Note: 0.5 rounds up to 1.

• step(end_number, step_amount): Invokes the supplied code block, passing in num-
bers (to i) starting from the value of the object and going in steps of step_amount to
end_number.

• zero?: Returns true if the object represents zero, otherwise false.

Object

Object is a “superclass.” All other classes in Ruby descend from it. Therefore, all its meth-
ods—several of which are described in the following list—are made available to all other
classes and objects via inheritance. Some classes and objects might choose to override
Object’s methods, but generally they all work.

• class: Returns the name of the class of an object. For example: "test".class ==
String.

• clone: Copies an object to create a new one. However, it’s only a shallow copy, so
objects referenced by instance variables might still be the same as those referenced
by any copies.

• freeze: Freezes the object so that no more changes can be made to it. A TypeError
exception will be raised if any attempts are made to change the object.

• frozen?: Returns true if the object is frozen.

• instance_eval: Evaluates a supplied string or code block in the scope of the object.

• is_a? (or kind_of?): Returns true if the object is of a supplied class. For example:
10.is_a?(Integer) == true.

• methods (or public_methods): Returns an array of the methods publicly accessible on
the object.

APPENDIX B ■ RUBY REFERENCE 587

7664 XB.qxd 2/21/07 10:51 PM Page 587

• nil?: Returns true if the object is nil.

• object_id: Returns an integer that uniquely identifies the object internally to Ruby.

• private_methods: Returns an array of all private methods associated with the object.

• protected_methods: Returns an array of all protected methods associated with the
object.

• send: Invokes the method represented by a symbol passed as the first argument.
All other arguments are passed through to the destination method. For example:
10.send(:+, 20) == 30.

• taint: Taints the object, making it impossible to perform certain operations under
certain safe levels (see Chapter 8).

• untaint: Untaints the object.

String

The following commonly used methods are available on String objects:

• *: Returns a new string representing the current string multiplied by a certain
number of times. For example: "abc" * 3 == "abcabcabc".

• <<: Appends data to the end of the string. If the supplied argument is an integer
between 0 and 255, the ASCII character represented by that number is appended
instead.

• =~: Matches a supplied regular expression against the string. The position of the
first match is returned, otherwise nil. This technique is commonly used as a
comparison expression to see if a string matches a regular expression.

• capitalize (and capitalize!): Capitalizes the first letter of the string, with the
remainder converted to lower case. capitalize! performs the operation in place on
the current string.

• chop (and chop!): Removes the last character of a string (or two characters if equal
to '\r\n').

• count: Counts the occurrences of the supplied strings within the string. For exam-
ple: "this is a test".count("i") == 2.

APPENDIX B ■ RUBY REFERENCE588

7664 XB.qxd 2/21/07 10:51 PM Page 588

• delete (and delete!): Removes instances of the supplied strings from the string. For
example: "this is a test".delete("i") == "ths s a test".

• downcase (and downcase!): Converts all letters in the string to lower case.

• each_byte: Invokes the supplied code block for each byte within the string, passing
in the ASCII code of the character.

• empty?: Returns true if the string is empty.

• gsub (and gsub!): Substitutes all occurrences of the first supplied parameter (or that
match a supplied regular expression) with the second supplied parameter. For
example: "this is a test".gsub(/[aeiou]/, "X") == "thXs Xs X tXst".

• gsub(exp) (and gsub!) with a following code block: Invokes the code block for each
occurrence of exp (whether a String or Regexp), substituting each occurrence within
the result of the code block.

• include?: Returns true if the string contains the supplied string.

• length: Returns the length of the string.

• lstrip (and lstrip!): Removes whitespace from the start of the string. lstrip!
removes the whitespace in place on the string.

• reverse (and reverse!): Returns a reversed copy of the string (or reverses the cur-
rent string in place, with reverse!).

• rstrip (and rstrip!): Removes whitespace from the end of the string. rstrip!
removes the whitespace in place on the string.

• scan: Iterates through the string, finding each match against a supplied string or
regular expression. All matches are returned as an array.

• scan(pattern): Iterates through the string, invoking the code block and passing in
each match found against a supplied string or regular expression.

• split: Splits the string into an array using a supplied pattern as a delimiter, or if
none is supplied, $;. See the “Special Variables” section of this appendix.

• strip (and strip!): Removes whitespace from the start and end of the string. strip!
removes the whitespace in place on the string.

APPENDIX B ■ RUBY REFERENCE 589

7664 XB.qxd 2/21/07 10:51 PM Page 589

• sub (and sub!): Substitutes only the first occurrence of the first supplied parameter
(or the first match of a supplied regular expression) with the second supplied
parameter. For example: "this is a test".sub(/[aeiou]/, "X") == "thXs is a
test".

• sub(exp) (and sub!) with following code block: Invokes the code block for the first
occurrence of exp (whether a String or Regexp), substituting that occurrence with
the result of the code block.

• to_f: Attempts to return a Float representing a value depicted in the string.
For example: "3.141592 is equal to pi".to_f == 3.141592.

• to_i: Attempts to return an integer representing a value depicted in the string.
For example: "100".to_i == 100.

• to_sym: Converts the string into a Symbol object.

• upcase (and upcase!): Converts all characters into upper case.

Regular Expression Syntax
Regular expressions are special expressions that can be used to match patterns within
strings, and were covered in depth in Chapter 3. This section provides a reference for the
main elements of regular expression syntax.

Regular expressions are usually represented as strings contained within forward
slashes, like so:

/regular expression here/

Regular expressions can also be contained within %r{ and }, like so:

%r{regular expression here}

Regular expression syntax is reasonably standard between programming languages,
and Ruby supports most of the standard POSIX regular expression syntax. Therefore,
many examples of regular expressions you might find online are also likely to work within
Ruby.

APPENDIX B ■ RUBY REFERENCE590

7664 XB.qxd 2/21/07 10:51 PM Page 590

Regular Expression Options

When using the forward-slash notation for regular expressions, you can set options for
the regular expression by placing letters after the last forward slash, as follows:

• i: Makes the regular expression case insensitive. Therefore, /test/i matches
positively against strings containing 'TEST', 'TeSt', 'tESt', 'test', or any other
combination of lower- and upper case letters making up the word “test.”

• m: Puts the regular expression into multiline mode where the special character “.”
(usually meaning “any character except newline”) matches newlines. Therefore,
/.*/m matches the whole of a multiline string, whereas /.*/ alone would only
match the first line within that string.

• x: Makes the regular expression ignore whitespace. This allows you to format the
regular expression in a more readable way without worrying about whitespace
becoming part of the regular expression. For example, /t e s t/x matches against
“test.” This option is particularly useful if you want to spread out your regular
expression over multiple lines for easier reading.

Special Characters and Formations

Regular expressions can contain normal characters (such as letters or digits) and match
against these, but you can use special characters to represent more abstract concepts
such as “any character” or “any digit.” The following are some of the special characters
that you can use in regular expressions or to create sub-expressions:

• .: Matches any character except the newline character.

• []: Matches a character range or set. See Chapter 3 for full details.

• (): Denotes a sub-expression. For example, (abc)+ matches 'abcabcabc'.

• |: Separates alternate choices. For example, t|x matches 't' or 'x'.

• \w: Matches any alphanumeric character or underscore.

• \W: Matches anything \w doesn’t match.

• \b: Matches a word boundary (but not a specific character).

• \B: Matches anything \b doesn’t match.

• \d: Matches digits (0 through 9).

APPENDIX B ■ RUBY REFERENCE 591

7664 XB.qxd 2/21/07 10:51 PM Page 591

• \D: Matches anything \d doesn’t match (nondigits).

• \s: Matches whitespace characters (spaces, tabs, newlines, form feeds).

• \S: Matches anything \S doesn’t match (non-whitespace).

• \A: Matches the beginning of a string.

• \Z: Matches the end of a string.

• ^: Matches the beginning of a line (or string).

• $: Matches the end of a line (or string).

Character and Sub-Expression Suffixes

You can use the following characters after a character, character range, or a sub-expression
(as provided within parentheses) to modify how that element is matched by the regular
expression:

• +: Matches one or more of the previous.

• +?: Matches one or more, but as few as possible, of the previous.

• ?: Matches zero or one of the previous.

• *: Matches zero or more of the previous.

• *?: Matches zero or more, but as few as possible, of the previous.

■Note You can learn more about regular expressions, and more advanced syntax, at http://en.
wikipedia.org/wiki/Regular_expression.

Exception Classes
Exceptions are covered in Chapter 8, but this section gives a hierarchical list of all stan-
dard exception classes within Ruby. You can raise these for your own purposes using
raise. This list might also be useful if you want to catch certain exceptions. For example,
IOError is useful to rescue in many situations.

APPENDIX B ■ RUBY REFERENCE592

7664 XB.qxd 2/21/07 10:51 PM Page 592

To get more information about certain exceptions, you can raise them from irb to get
a more complete error message. For example:

irb(main):001:0> raise Errno::EAGAIN

Errno::EAGAIN: Resource temporarily unavailable

from (irb):1

from :0

Here’s the exception class list:

Exception

fatal

NoMemoryError

ScriptError

LoadError

NotImplementedError

SyntaxError

Interrupt

SignalException

StandardError

ArgumentError

IndexError

EOFError

IOError

LocalJumpError

NameError

NoMethodError

FloatDomainError

RangeError

RegexpError

RuntimeError

SecurityError

Errno::E2BIG

Errno::EACCES

Errno::EADDRINUSE

Errno::EADDRNOTAVAIL

Errno::EAFNOSUPPORT

Errno::EAGAIN

Errno::EALREADY

Errno::EBADF

APPENDIX B ■ RUBY REFERENCE 593

7664 XB.qxd 2/21/07 10:51 PM Page 593

Errno::EBADMSG

Errno::EBUSY

Errno::ECHILD

Errno::ECONNABORTED

Errno::ECONNREFUSED

Errno::ECONNRESET

Errno::EDEADLK

Errno::EDESTADDRREQ

Errno::EDOM

Errno::EDQUOT

Errno::EEXIST

Errno::EFAULT

Errno::EFBIG

Errno::EHOSTDOWN

Errno::EHOSTUNREACH

Errno::EIDRM

Errno::EILSEQ

Errno::EINPROGRESS

Errno::EINTR

Errno::EINVAL

Errno::EIO

Errno::EISCONN

Errno::EISDIR

Errno::ELOOP

Errno::EMFILE

Errno::EMLINK

Errno::EMSGSIZE

Errno::EMULTIHOP

Errno::ENAMETOOLONG

Errno::ENETDOWN

Errno::ENETRESET

Errno::ENETUNREACH

Errno::ENFILE

Errno::ENOBUFS

Errno::ENODATA

Errno::ENODEV

Errno::ENOENT

Errno::ENOEXEC

Errno::ENOLCK

Errno::ENOLINK

Errno::ENOMEM

Errno::ENOMSG

APPENDIX B ■ RUBY REFERENCE594

7664 XB.qxd 2/21/07 10:51 PM Page 594

Errno::ENOPROTOOPT

Errno::ENOSPC

Errno::ENOSR

Errno::ENOSTR

Errno::ENOSYS

Errno::ENOTBLK

Errno::ENOTCONN

Errno::ENOTDIR

Errno::ENOTEMPTY

Errno::ENOTSOCK

Errno::ENOTTY

Errno::ENXIO

Errno::EOPNOTSUPP

Errno::EOVERFLOW

Errno::EPERM

Errno::EPFNOSUPPORT

Errno::EPIPE

Errno::EPROTO

Errno::EPROTONOSUPPORT

Errno::EPROTOTYPE

Errno::ERANGE

Errno::EREMOTE

Errno::EROFS

Errno::ESHUTDOWN

Errno::ESOCKTNOSUPPORT

Errno::ESPIPE

Errno::ESRCH

Errno::ESTALE

Errno::ETIME

Errno::ETIMEDOUT

Errno::ETOOMANYREFS

Errno::ETXTBSY

Errno::EUSERS

Errno::EXDEV

SystemCallError

SystemStackError

ThreadError

TypeError

ZeroDivisionError

SystemExit

APPENDIX B ■ RUBY REFERENCE 595

7664 XB.qxd 2/21/07 10:51 PM Page 595

Special Variables
Throughout this book you’ve used special variables provided automatically by Ruby for
various purposes. For example, $! is a string of the last error message raised in the pro-
gram, $$ returns the process ID of the current program, and $/ lets you adjust the default
line or record separator as used by the gets method.

The English library (used by simply placing require 'English' in your program) allows
you to access Ruby’s special variables using names expressed in English, rather than sym-
bols. This makes the variables easier to remember. The following are the main ones:

• $DEFAULT_OUTPUT (or $>) is an alias for the destination of output sent by commands
such as print and puts. By default it points to $stdout, the standard output (see the
sidebar “Standard Input and Output” in Chapter 9 for more information), typically
the screen or current terminal.

• $DEFAULT_INPUT (or $<) is an object that acts somewhat like a File object for data
being sent to the script at the command line. It’s read-only.

• $ERROR_INFO (or $!) refers to the exception object passed to raise or, more pragmat-
ically, can contain the most recent error message. In the initial form, it can be
useful when used within a rescue block.

• $ERROR_POSITION (or $@) returns a stack trace as generated by the previous excep-
tion. This is in the same format as the trace provided by Kernel.caller.

• $OFS and $OUTPUT_FIELD_SEPARATOR (or $,) can be set or read, and contain the default
separator as used in output from the print method and Array’s join method. The
default value is nil, as can be confirmed with %w{a b c}.join, which results in
'abc'.

• $ORS and $OUTPUT_RECORD_SEPARATOR (or $\) can be set or read, and contain the
default separator as used when sending output with methods such as print and
IO.write. The default value is nil, as typically you use puts instead when you want
to append a newline to data being sent.

• $FS and $FIELD_SEPARATOR (or $;) can be set or read, and contain the default separa-
tor as used by String’s split method. Changing this and then calling split on a
string without a split regex or character can give different results than expected.

• $RS and $INPUT_RECORD_SEPARATOR (or $/) can be set or read, and contain the default
separator as used for input, such as from gets. The default value is a newline (\n),
and results in gets receiving one line at a time. If you set this value to nil, then an
entire file or data stream would be read by gets in one go.

APPENDIX B ■ RUBY REFERENCE596

7664 XB.qxd 2/21/07 10:51 PM Page 596

• $PID and $PROCESS_ID (or $$) returns the process ID of the current program. This ID
is unique for every program or instance of a program running on a computer,
which is why Tempfile uses it when constructing names for temporary files. It is
read-only.

• $LAST_MATCH_INFO (or $~) returns a MatchData object that contains the results of the
last successful pattern match.

• $IGNORECASE (or $=) is a flag that you can set or read from that determines whether
regular expressions and pattern matches performed in the program will be case
insensitive by default. This special variable is deprecated and might be removed in
Ruby 2. Typically, if you required this feature you’d use the /i flag on the end of a
regular expression instead.

• $MATCH (or $&) contains the entire string matched by the last successful regular
expression match in the current scope. If there has been no match, its value is nil.

• $PREMATCH (or $`) contains the string preceding the match discovered by the last
successful regular expression match in the current scope. If there has been no
match, its value is nil.

• $POSTMATCH (or $') contains the string succeeding the match discovered by the last
successful regular expression match in the current scope. If there has been no
match, its value is nil.

Ruby License
From time to time you might need to check on some detail of Ruby’s licensing to be
sure that you’re in compliance. The following is the exact text of the Ruby license as of
January 2007:

Ruby is copyrighted free software by Yukihiro Matsumoto <matz@netlab.co.jp>.
You can redistribute it and/or modify it under either the terms of the GPL (see
COPYING.txt file), or the conditions below:

1. You may make and give away verbatim copies of the source form of the software
without restriction, provided that you duplicate all of the original copyright notices
and associated disclaimers.

APPENDIX B ■ RUBY REFERENCE 597

7664 XB.qxd 2/21/07 10:51 PM Page 597

2. You may modify your copy of the software in any way, provided that you do at
least ONE of the following:

a) place your modifications in the Public Domain or otherwise make them
Freely Available, such as by posting said modifications to Usenet or an equiva-
lent medium, or by allowing the author to include your modifications in the
software.

b) use the modified software only within your corporation or organization.

c) rename any non-standard executables so the names do not conflict with
standard executables, which must also be provided.

d) make other distribution arrangements with the author.

3. You may distribute the software in object code or executable form, provided that
you do at least ONE of the following:

a) distribute the executables and library files of the software, together with
instructions (in the manual page or equivalent) on where to get the original
distribution.

b) accompany the distribution with the machine-readable source of the soft-
ware.

c) give non-standard executables non-standard names, with instructions on
where to get the original software distribution.

d) make other distribution arrangements with the author.

4. You may modify and include the part of the software into any other software
(possibly commercial). But some files in the distribution are not written by the
author, so that they are not under this terms. They are gc.c(partly), utils.c(partly),
regex.[ch], st.[ch] and some files under the ./missing directory. See each file for the
copying condition.

5. The scripts and library files supplied as input to or produced as output from the
software do not automatically fall under the copyright of the software, but belong
to whomever generated them, and may be sold commercially, and may be aggre-
gated with this software.

APPENDIX B ■ RUBY REFERENCE598

7664 XB.qxd 2/21/07 10:51 PM Page 598

6. THIS SOFTWARE IS PROVIDED “AS IS” AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE.

■Note The latest copy of the Ruby license is always available at http://www.ruby-lang.org/
en/LICENSE.txt.

APPENDIX B ■ RUBY REFERENCE 599

7664 XB.qxd 2/21/07 10:51 PM Page 599

7664 XB.qxd 2/21/07 10:51 PM Page 600

Useful Resources

This appendix provides links to useful Ruby resources that are available online, from
Web sites to chatrooms and mailing lists.

Note that because the Internet is ever-changing, some resources that were available
at the time of writing might no longer be available to you. When you find that to be the
case, it’s worth using a search engine to search for the keywords involved, as the site
you’re looking for might have simply changed URLs.

References
The resources covered in this section are general references to Ruby and Ruby on Rails.
For specific tutorials and guides to doing certain things, you need to refer instead to the
“Tutorials and Guides” section later on in this appendix.

Ruby

Official Ruby home page (http://www.ruby-lang.org/): The official Ruby home page.

Ruby-Doc.org (http://www.ruby-doc.org/): Ruby-Doc.org is a documentation site built
by the Ruby community that features documentation for the core API, standard
libraries, and other miscellaneous Ruby bits and pieces. Its primary maintainer is
James Britt, who has been involved with Ruby documentation for many years.

Ruby core documentation (http://www.ruby-doc.org/core/): Documentation for the
core elements of Ruby, such as the included classes (Array, Hash, and so on), as well as
much of the standard library. The documentation is presented in the standard RDoc
format.

Ruby 1.9 documentation (http://www.ruby-doc.org/core-1.9/index.html): Documen-
tation for the cutting-edge (at the time of writing) 1.9 developer-only version of Ruby.
Prior to the release of Ruby 2.0, this documentation is useful to get a glimpse into
what 2.0 may contain. 601

A P P E N D I X C

7664 XC.qxd 2/21/07 10:53 PM Page 601

602 APPENDIX C ■ USEFUL RESOURCES

“Ruby Standard Library Documentation” (http://www.ruby-doc.org/stdlib/):
Documentation for the Ruby standard libraries. Each library is presented separately,
making it easier to read than the core documentation.

RubyForge (http://rubyforge.org/): The home for open source Ruby projects. Any
Ruby developer can sign up and promote his or her own libraries, or simply down-
load existing libraries for free. RubyForge hosts the default RubyGems repository
(see Chapter 7).

“Ruby Application Archive” (http://raa.ruby-lang.org/): A repository of applications
and libraries for Ruby. It has largely been superseded by RubyForge, but is still used
to host a large number of projects.

Thomas, David and Andrew Hunt. Programming Ruby: The Pragmatic Programmer’s
Guide, First Edition. Addison Wesley Longman, 2001 (http://www.rubycentral.com/
book/): A free, online copy of the first edition of a Ruby book, targeted to an old
version of Ruby (1.6).

“Ruby Quickref” (http://www.zenspider.com/Languages/Ruby/QuickRef.html): A quick-
fire set of references and reminders that act as a cheat sheet for Ruby, listing reserved
words, regular expression syntax, language constructions, special variables, and
more.

“6 Ruby and Rails Job Sites” (http://www.rubyinside.com/
6-ruby-and-rails-job-sites-312.html): A list of Ruby- and Rails-related job
sites. Ideal if you’re looking for employment with your newly found Ruby skills!

Ruby on Rails

Official Rails home page (http://www.rubyonrails.org/): The official home page for
the Ruby on Rails framework. It features screencasts, tutorials, and links to many
useful Rails references.

Rails documentation (http://api.rubyonrails.org/): API documentation for the
entire Ruby on Rails framework in RDoc format. This is the most useful reference
documentation for Ruby on Rails, as almost all Rails techniques and methods are
covered.

Rails edge documentation (http://caboo.se/doc.html): API documentation for the
most cutting-edge releases of Rails. Unlike the typical Rails documentation, all the
methods available in Ruby have been exposed, even if there’s no full documentation
for them. This makes this reference ideal for advanced users.

7664 XC.qxd 2/21/07 10:53 PM Page 602

Rails wiki (http://wiki.rubyonrails.com/): A publicly updateable site with random
reference information about Ruby on Rails. At one time well updated and popular, at
the time of writing it’s a little neglected. There’s still some useful content available on
the wiki, but much of the advice has been written for old versions of Rails and might
not be relevant by the time you read this.

Blogs
Blogs (or “weblogs”) are frequently updated “journal”-style Web pages where content is
displayed in reverse time order (the most recently posted content is at the top of the front
page). Blogs have become important places to go for the latest Ruby news, and the
thoughts and latest projects of developers in the Ruby community.

Aggregators and Community Blogs

“Ruby Inside” (http://www.rubyinside.com/): The semi-official blog associated with
this book, but also the most often updated, central blog for Ruby- and Rails-related
announcements, along with occasional editorial and tutorial posts.

“PlanetRubyOnRails” (http://www.planetrubyonrails.com/): An automatic aggregator
of many of the top Ruby and Rails weblogs.

Ruby on Rails podcast (http://podcast.rubyonrails.com/): Although it isn’t strictly a
blog, the Ruby on Rails podcast is a regular presentation of audio programs related to
both Ruby and Rails, produced by Geoffrey Grosenbach.

“RubyCorner” (http://rubycorner.com/): A site that automatically posts links to the
latest posts from Ruby and Rails blogs. Unlike Planet Ruby on Rails, Ruby Corner only
provides quick links to each blog post, rather than republishing them in full.

“Riding Rails” (http://weblog.rubyonrails.org/): The official blog for Ruby on Rails,
updated by several core Rails developers along with Rails creator David Heinemeier
Hansson. This blog focuses on sporadic announcements of interesting uses or
deployments of Rails, along with new Rails features.

“The Unofficial Ruby on Rails Blog” (http://www.rubyonrailsblog.com/): An unofficial
blog attempting to cover the full gamut of Ruby on Rails topics.

APPENDIX C ■ USEFUL RESOURCES 603

7664 XC.qxd 2/21/07 10:53 PM Page 603

Personal Blogs

“RedHanded” (http://redhanded.hobix.com/): “why the lucky stiff,” author of this
book’s foreword, blogs at RedHanded, covering exciting new Ruby developments and
numerous advanced topics. RedHanded is not a generalist blog, but one packed with
humor, wit, and an eclectic range of Ruby knowledge.

Yukihiro Matsumoto (http://www.rubyist.net/~matz/): A blog from the creator of
Ruby himself, Yukihiro “Matz” Matsumoto. The blog is in Japanese, although you can
run it through BabelFish or Google Translate to get the basic gist. Some Ruby users
read the blog simply for the code examples.

Pat Eyler: “On Ruby” (http://on-ruby.blogspot.com/): A blog about general Ruby
topics and things that take the interest of Pat Eyler. This blog is great for its many
interviews and detail on topics.

“Loud Thinking” (http://www.loudthinking.com/): The blog from the creator of Ruby
on Rails, David Heinemeier Hansson. Posts are infrequent, but are usually related to
the future of Rails, making it a popular read nonetheless.

“eigenclass” (http://eigenclass.org/): A blog by Ruby guru Mauricio Fernandez
focusing on particularly advanced Ruby topics.

“has_many :through” (http://blog.hasmanythrough.com/): Josh Susser, a popular com-
mentator and writer about Ruby on Rails, blogs here.

“err.the_blog” (http://errtheblog.com/): A blog by PJ Hyett and Chris Wanstrath pre-
senting regular tutorials, hints, and tips relevant to both Ruby and Rails.

Forums and Newsgroups
A forum is a site that acts as an online discussion system. You make posts to which other
users can respond with comments, making forums ideal for discussing topics, sharing
code, and having debates of all kinds.

comp.lang.ruby newsgroup (http://groups.google.com/group/comp.lang.ruby):
comp.lang.ruby is a Usenet newsgroup you can access through any Usenet server,
or on the Web via Google Groups.

“comp.lang.ruby FAQ” (http://rubyhacker.com/clrFAQ.html): Frequently asked
questions, and their answers, about the Ruby newsgroup.

APPENDIX C ■ USEFUL RESOURCES604

7664 XC.qxd 2/21/07 10:53 PM Page 604

“Rails Weenie” (http://rails.techno-weenie.net/): A questions-and-answers forum
for Rails-related questions. This forum has been popular for quite some time, and
is a great place to ask questions.

“Rails Forum” (http://railsforum.com/): A popular Ruby on Rails help and discussion
forum. There are more than 1,000 registered members and many posts each day.

SitePoint Ruby forum (http://www.sitepoint.com/forums/forumdisplay.php?f=227):
A Ruby forum provided by the SitePoint webmaster resources site. Unlike with the
Rails Forum, all posts to the SitePoint Ruby Forum are within a single category,
making it easier to scan through.

Mailing Lists
Mailing lists are like forums, but based upon e-mail. People subscribe to a “list,” and then
all messages sent to that list are received by all the subscribers. There are also archives of
e-mail lists available on the Web for reference or for those who don’t want to sign up for
the list.

Ruby mailing lists (http://www.ruby-lang.org/en/community/mailing-lists/): The
official page on the Ruby site that provides information about the official Ruby
mailing lists.

Ruby-Talk mailing list: Ruby-Talk is the most popular Ruby mailing list, where all
aspects of Ruby development are discussed. To join the Ruby-Talk mailing list,
send an e-mail to ruby-talk-ctl@ruby-lang.org with the first line as
subscribe YourFirstName YourLastName, replacing the relevant parts as necessary.

Ruby-Talk Web gateway (http://www.ruby-forum.com/forum/4): The Ruby-Talk Web
Gateway mirrors messages from the Ruby-Talk mailing list onto the Web in a forum-
style format, and also allows messages to be posted to the list from the Web.

Ruby-Talk mailing list archives (http://blade.nagaokaut.ac.jp/ruby/ruby-talk/
index.shtml): Offers Web access to more than 200,000 posts made to the Ruby-Talk
mailing list, including a search feature.

“ruby-core” (http://blade.nagaokaut.ac.jp/ruby/ruby-core/index.shtml): Ruby-Core is
a mailing list dedicated to discussing implementation details and the development
of Ruby itself. Those who are developing the Ruby language use this list. However, it
isn’t a list on which to ask general Ruby questions.

APPENDIX C ■ USEFUL RESOURCES 605

7664 XC.qxd 2/21/07 10:53 PM Page 605

■Note It’s important when using a mailing list that you look at the format and tone of other posts and don’t
offend anyone. If your postings sound too demanding or are of the wrong tone, you might not get any
responses.

Real-Time Chat
On the Internet there are several ways you can discuss topics with other users in real
time. For example, Web sites can contain Flash or Java chatrooms. Alternatively, you can
use instant messenger or Internet Relay Chat (IRC) clients. Ruby is the primary focus of
discussion in only a few real-time chat systems at present:

#ruby-lang (irc://irc.freenode.net/%23ruby-lang): #ruby-lang is an IRC channel on
the irc.freenode.net server, and is used for general discussion about Ruby. Ruby on
Rails isn’t covered here. The number of people in the channel can vary, although
there are usually a few hundred or so. Despite this, not many tend to talk at the same
time.

#rubyonrails (irc://irc.freenode.net/%23rubyonrails): #rubyonrails is the official
Ruby on Rails IRC channel. You can ask questions about Ruby on Rails here, and
most people are willing to help. As with #ruby-lang, the channel has many visitors,
but isn’t too noisy.

#ruby (irc://irc.freenode.net/%23ruby): #ruby is a more generic Ruby IRC channel,
and far less busy than either #ruby-lang or #rubyonrails, with fewer than a hundred
people at once.

“Ruby Inside Chatroom” (http://www.lingr.com/room/5Rfd8nM5tMF): The official chat-
room for the Ruby Inside blog. It’s Web-based, but isn’t as consistently busy as the
preceding IRC channels. Chats are scheduled here from time to time, and you can
learn about these by subscribing to the Ruby Inside blog.

■Note If you aren’t familiar with IRC, you can learn more at http://en.wikipedia.org/wiki/
Internet_Relay_Chat.

APPENDIX C ■ USEFUL RESOURCES606

7664 XC.qxd 2/21/07 10:53 PM Page 606

Tutorials and Guides
The Internet is host to a significant number of tutorials and guides on how to use various
features of Ruby and its libraries. Often there are multiple tutorials on how to do the
same thing in different ways, and tutorials can appear quickly after libraries are released.
This is why it’s worth subscribing to a few Ruby blogs so that you can learn about the
latest action as it happens.

However, in this section are links to a number of useful tutorials and guides that have
already proven useful.

Installation

In this section I present links to a collection of guides to installing Ruby and/or Rails on
multiple platforms.

■Note Full instructions for Windows, Linux, and Mac OS X are provided in Chapter 1. These resources are
only provided if you want to get more specific information.

Linux

“Install Ruby Rails on Ubuntu Dapper Drake” (http://www.urbanpuddle.com/
articles/2006/06/10/install-ruby-rails-on-ubuntu-dapper-drake): A guide to
installing Ruby and Rails on Ubuntu Dapper Drake.

“Ruby, Gems and RMagick on Ubuntu Edgy” (http://www.digitalblueprint.co.
uk/articles/2006/10/26/ruby-gems-and-rmagick-on-ubuntu-edgy/): Step-by-step
instructions for installing Ruby, Rails, and the RMagick image-processing gem on
Ubuntu Edgy.

“Ruby on Rails on Fedora Core 6” (http://felipec.wordpress.com/2006/11/06/
ruby-on-rails-on-fedora-core-6/): Installation of Ruby on Rails on Fedora. These
details will likely be relevant even on future releases of Fedora.

“Ruby on Rails on Red Hat” by David Berube (http://www.redhat.com/magazine/
025nov06/features/ruby/?sc_cid=bcm_edmsept_007): An article published by Red Hat
about getting Ruby on Rails running on the Red Hat Enterprise Linux OS.

“Ruby on Rails on Debian” (http://www.debian-administration.org/articles/329):
Covers the installation of Ruby, Rails, and the RadRails IDE on Debian.

APPENDIX C ■ USEFUL RESOURCES 607

7664 XC.qxd 2/21/07 10:53 PM Page 607

Mac OS X

“Building Ruby, Rails, LightTPD, and MySQL on Tiger” by Dan Benjamin
(http://hivelogic.com/articles/2005/12/01/ruby_rails_lighttpd_mysql_tiger):
A comprehensive guide to installing Ruby, Rails, and a Web and database server on
Mac OS X.

“Using Ruby on Rails for Web Development on Mac OS X” (http://developer.
apple.com/tools/rubyonrails.html): Official documentation provided by Apple about
installing Ruby on Rails on Mac OS X.

Other Platforms

“Installing Rails on Solaris 9” (http://www.hydrus.org.uk/journal/rails-sun.html):
Notes on installing Ruby on Rails on Sun’s Solaris OS.

“RubyOnRails + FastCGI in OpenBSD 4.0 Apache-chroot” (http://bsd.phoenix.az.
us/faq/openbsd/rails-chroot-fastcgi): A guide to installing Ruby on Rails in
OpenBSD 4.0.

“RailsOnFreeBSD” (http://wiki.rubyonrails.org/rails/pages/RailsOnFreeBSD):
Notes on setting up Ruby on Rails on FreeBSD.

Ruby and Techniques

“Learning Ruby” (http://sitekreator.com/satishtalim/index.html): A collection of
short tutorials on various aspects of Ruby by Satish Talim. Ideal as a quick recap on
various topics.

“Mr. Neighborly’s Humble Little Ruby Book” by Jeremy McAnally (http://
humblelittlerubybook.com/): An up-to-date Ruby book available in both print
(for a nominal fee) and online (for free).

“Try Ruby!” (http://tryruby.hobix.com/): An online Ruby interpreter with a built-in
tutorial.

“Getting Started with Ruby on Windows IIS Tutorial” (http://www.tutorialized.com/
tutorial/eRuby-Getting-Started-with-Ruby-on-Windows-IIS/17025): A tutorial demon-
strating how to hook up Ruby with Windows IIS and eRuby to provide another
dynamic templating system.

APPENDIX C ■ USEFUL RESOURCES608

7664 XC.qxd 2/21/07 10:53 PM Page 608

“Using Ruby, PostgreSQL, and MySQL on Windows” (http://www.tutorialized.com/
tutorial/eRuby-Using-Ruby-PostgreSQL-and-MySQL-on-Windows/17026): A guide to using
two popular database systems alongside Ruby on Windows.

“Why’s (Poignant) Guide to Ruby” (http://poignantguide.net/ruby/): An amazingly
quirky and exciting Ruby tutorial written by “why the lucky stiff,” the author of this
book’s foreword.

“Ruby in Twenty Minutes” (http://www.ruby-lang.org/en/documentation/quickstart/):
A basic primer to the bare essentials of Ruby. This guide won’t be of any use to read-
ers of this book, but might be useful to forward to others who are interested in Ruby
and want to get a quick look at the language from a beginner’s point of view.

Ruby on Rails

“Time For A Grown-Up Server: Rails, Mongrel, Apache, Capistrano, and You”
(http://blog.codahale.com/2006/06/19/
time-for-a-grown-up-server-rails-mongrel-apache-capistrano-and-you/): An
excellent walkthrough of several key technologies for deploying and maintaining
Ruby on Rails applications.

“Rolling with Ruby on Rails Revisited” by Bill Walton and Curt Hibbs
(http://www.onlamp.com/pub/a/onlamp/2006/12/14/
revisiting-ruby-on-rails-revisited.html): A tutorial walking through the
creation of a basic Ruby on Rails application.

“Rails Security Checklist” (http://rubythis.blogspot.com/2006/11/
rails-security-checklist.html): A list of important security considerations when
developing and deploying Rails applications.

“Subversion Primer for Rails projects” (http://blog.teksol.info/articles/
2006/03/09/subversion-primer-for-rails-projects): An introduction
to using Subversion source control and management with your Rails projects.

“PeepCode Screencasts for Ruby on Rails Developers” (http://www.peepcode.com/):
A series of Rails-related screencasts (videos that show you how to accomplish certain
tasks), by Geoffrey Grosenbach.

“HOWTO: Make A Rails Plugin From Scratch” (http://www.railsforum.com/
viewtopic.php?id=682): An excellent tutorial demonstrating how to create a Rails plugin.

APPENDIX C ■ USEFUL RESOURCES 609

7664 XC.qxd 2/21/07 10:53 PM Page 609

Other

“REXML Tutorial” (http://www.germane-software.com/software/rexml/docs/
tutorial.html): A tutorial giving lots of quick code snippets showing how to use the
REXML XML–processing library that comes in the Ruby standard library.

“Ruby/Tk Tutorial” (http://members.chello.nl/~k.vangelder/ruby/learntk/): A tutorial
demonstrating how to use Tk, a GUI toolkit for Ruby that makes it possible to build
graphical applications.

“Verifying Server Certificates in Ruby” (http://brianellin.com/blog/2006/03/18/
verifying-server-certificates-in-ruby/): A blog post demonstrating how to use
net/http and OpenSSL to verify HTTPS security certificates in Ruby.

“Using the Rake Build Language” by Martin Fowler (http://www.martinfowler.com/
articles/rake.html): A comprehensive run through the Ruby “Rake” (Ruby Make)
system, as briefly covered in Chapter 13 of this book.

“SQL Tutorial” (http://www.w3schools.com/sql/): A comprehensive SQL tutorial,
extending upon what was covered in Chapter 9 of this book.

“XML Matters: The REXML library” (http://www-128.ibm.com/developerworks/xml/
library/x-matters18.html): It’s several years old, but this IBM article about using
REXML is still relevant.

APPENDIX C ■ USEFUL RESOURCES610

7664 XC.qxd 2/21/07 10:53 PM Page 610

Symbols
@ symbol, 134, 136
@@ symbol, 137
& (bitwise AND) operator, 75, 581, 584
&& (and) operator, 38–39, 556
= (assignment operator), 39, 588
== (is equal to), 556
`` (backtick syntax), 315
| (bitwise OR), 101, 584, 591
|| symbol, 39
^ (bitwise XOR), 52, 54, 584, 592
() (brackets), 36, 40, 591
, (comma), 234
{} (curly brackets), 41, 74, 96
\. delimiter, 61, 100
$ (dollar sign), 52, 54, 135, 592, 596, 597
$! variable, 513, 596
$$ variable, 513, 597
$& variable, 597
$' variable, 597
$/ variable, 234, 513, 596
$\ variable, 596
$= variable, 597
$: variable, 184
$@ variable, 596
$db variable, 264
$` variable, 597
. (dot) character, 54, 61, 591
! (exclamation mark), 45, 105, 281, 557
/ (forward slash), 583
!= (inequality operator), 557
- (minus), 582, 583
% (percent), 583
+ (plus sign), 55, 582, 583, 592
+? character, 55, 592
(pound) symbol, 111, 281
? (question mark), 55, 592
; (semicolon), 18, 150
[] (square brackets), 574, 591
<< operator, 59

<%= tag, 412
<=> operator, 165–166
* wildcard character, 55, 261, 592
* method, 581, 583, 588
** method, 583
*? modifier, 55, 592

A
\A, 54, 592
A records, 472–475
abbrev library, 494–495
abs method, 587
accessors, 564
ActionMailer library, 389, 457–458
ActionPack library, 390
ActionWeb Service library, 390
ActiveRecord library, 274, 390, 420–422
ActiveSupport library, 390
ActiveSupport::Multibyte, 338
ActiveX Data Objects (ADO), 272
addition, arrays, 62
add_accessor method, 312–313
aliases, for special variables, 513
all? method, 584
--all option, 207
alpha stage, 114
anchors, 52–54
anti-spam filters, 456
any? method, 584
app folder, 394
app/controllers folder, 394
app/helpers folder, 394
app/models folder, 394
app/views folder, 394
Apple Mac OS X. See Mac OS X
application development

adding features, 103–108
finding stop words, 103–105
summarization features, 105–107

bot, 341–343

Index

611

7664 INDEX.qxd 3/1/07 6:12 AM Page 611

Bot class and data loader, 358,
363–365

code listings, 374–387
data, 360–363
extending, 378–383
life cycle and parts, 358–363
playing with, 371–374
response_to method, 365–371
text processing tools, 344–357

building basic application, 94–95
calculating averages, 102
counting characters, 97–98
counting lines, 96
counting words and paragraphs,

100–102
creating test file, 88–89
loading text files, 95–97
obtaining dummy text, 95
source code, 102–103
text analyzer (example), 93–111
word counter, 98–100
working with source files, 87–93

application environments, 398
ArgumentError class, 209
arguments, 30, 34
ARGV array, 108, 287–288
arithmetic methods, 583
Array class, 161–163, 574, 581–583. See

also arrays
Array.new method, 574
arrays, 57, 86, 574

accessing first and last elements of, 64
adding elements to, 59
addition, 62
associative. See hashes
basic, 58–60
checking for empty, 63
complex structures, 576
concatenation, 62
empty, 59, 574
iteration, 61–62
joining elements of, 59–60
ranges and, 82
removing elements from, 59
reversing order of elements in, 64
searching for specific item, 63
shortcut for building, 104

splitting strings into, 60–61
subtraction, 63
within hashes, 67–68

ASCII table, 47
ASCII values, 46–47
assert(<boolean expression>), 222
assertions, 218–222, 228, 352
assert_equal, 221–222
assert_instance_of, 222
assert_nothing_raised, 222
assert_not_equal, 222
assert_raise, 222
assignment operator (=), 39, 588
associations, model, 420–422
associative arrays (hashes). See hashes
Atom feeds, 453–454
attributes, 21–22

class-specific, 25–26
providing, with attr_accessor, 172

attr_accessor method, 170–172, 314–315,
564

autorequire parameter, 292

B
\b, 591
backtick syntax (``), 315
base64 library, 496–499
Basecamp, 118–120
Basic Authentication, 436–437
BASIC, 113
basic_client.rb, 378
before_filter method, 422–424
benchmarking, 222–225, 228, 334–335
BeOS, 12
beta stage, 114
between? method, 39, 165
Bignum class, 81, 583–586
Bignum objects, 573
binary data

converting base64 data to, 497
converting to base64, 496–497
representing 8-bit as 7-bit, 496–497

bindings, 310–311, 339
bitwise methods, 584
blogs, 125–126, 603–604
BlueCloth library, 448, 500–501, 533

■INDEX612

7664 INDEX.qxd 3/1/07 6:12 AM Page 612

bm method, 224
bmbm method, 225
bots, 341

Bot class, 357–371
code listing, 374–378
constructing, 363–365
response_to method, 365–371

bot-to-bot conversations, 382–383
connecting to Web, 379–382
conversations with, 373–374
data, 360–363

external storage, 361–363
structure, 360–361

data loader, 363–365
ELIZA, 342
extending, 378–383
introduction to, 341–343
life cycle and parts, 358–363
personality, 371–373
playing with, 371–374
reasons to develop, 343
text files as source of conversations, 379
text processing tools library, 344–357

building, 345–357
flowchart, 344
source code, 354–357
testing, 351–354

brackets (), 36
branching, conditional execution and,

557–559
break command, 214
breakpoints, 213–214

C
C language, 113, 279, 339, 550

basic method or function creation,
332–334

benchmarking against Ruby, 334–335
influence of, 32
RubyInline and, 332

C# language, 550
C++ language, 279, 550
call2 method, 304
callback functions, 451
capitalize method, 588
capitalize! method, 588

case blocks, 72, 559
case insensitivity, 570
case/when syntax, 348
catch method, 212–213
ceil method, 587
CGI (Common Gateway Interface)

scripts, 295–298, 308, 502–507
variables, 503–504

cgi library, 296, 502–507
cookies, 505–506
sessions, 506–507

character classes, 55–56
character encoding, 526–527, 336–340
characters, 46–47, 85
chatrooms, 606
chatterbots. See bots
chdir method, 244, 246
child classes, inheritance and, 141–142
chomp method, 265
chop method, 588
chop! method, 588
chr method, 234, 586
chronic library, 508–509
class array method, 245
class variables, 137
classes

adding features to, 564
attributes of, 21–22, 25–26
constant scope within, 154–156
converting between, 84
defined, 21–26, 33
exception, 208
extensions for, 182
hierarchy, 24–26
inheritance and, 24–26, 140–143
instances of, 133
method visibility in, 568–569
methods of, 134, 564–564, 587

vs. object methods, 138–140
overriding existing, 143–145

mismatches, 554–555
mix-ins, 159–167
names, 21
nested, 153–154, 168–169
overview, 133
reopening, 567

■INDEX 613

Find it faster at http://superindex.apress.com
/

7664 INDEX.qxd 3/1/07 6:12 AM Page 613

reusing in multiple projects, 181–186
simple example, 133

class_eval method, 311–315
clear method, 585
client application, sample life cycle,

358–359
client/server networks, 475–490
clone method, 587
close method, 231
code. See also source code

benchmarking, 222–225
breakpoints in, 213–214
comments in, 111
conflicts between, 156–157
contributing, 125
dynamically created, 309–315
indenting, 25
profiling, 225–227
reusing in multiple projects, 181–186
semicolons in, 18
testing. See testing
turning ideas into, 20–27
variables in, 23
writing abstracted, 358

code blocks, 74–76
code documentation. See documentation
code_is_safe? method, 321
coercion, 554–555
collect method, 62, 584
collections, 584
columns

id, 256–260
names for, 256
sorting, 262
specifying, 261
updating, 263
variable length, 260

command line arguments, accessing,
287–288

command line options, RDoc utility, 207
command prompt, 7–8, 91
commands, 17, 108, 160
commas, as delimiters, 234
comments, 111, 202
compact method, 582
Comparable module, 165–167
comparison expressions, 38–40, 555–557

comparison operators, 165
in expressions, 38–40
with strings, 46–47

compiled languages, 279–280, 550
components folder, 395
compression

using with Base64, 497–499
with zlib, 547–548

computer programs, 17
concatenation, arrays, 62
conditional execution, 557–559
conditional expressions, 559–560
config folder, 395
connections argument, 173
console tool, 395
constants, 43–44, 85, 154–156
cont command, 214
controller actions, creating, 413–416
controller files, 394
controller methods, accessing, 406
controllers, 388, 408–410
cookies, 505–506
cooperative multitasking, 330
count method, 588
CRUD operations, 404–405
CSV (Comma-Separated Values) data, 248

FasterCSV library, 519–525
generating, 521–525
parsing, 520
reading and searching, 249–250
saving, 251

curly braces {}, 41, 74, 96
Cygwin environment, RubyInline and, 331

D
\d, 54, 591
\D, 592
daemon processes, 488–491
data, 569

arrays. See arrays
bot, 360–363
complex structures, 576
constants, 43–44
converting between classes, 84
CSV, 248–250, 519–525
hashes. See hashes

■INDEX614

7664 INDEX.qxd 3/1/07 6:12 AM Page 614

input and output (I/O), 229–248
keyboard input, 230–231
numbers, 35, 572–574
parsing Web, 448–454
passing, to methods, 29–30
posting to Web server, 437–438
regular expressions. See regular

expressions
relating to objects, 420–422
retrieving from tables, 261–262
safe levels, 321–322
strings. See strings
tainted, 318–321, 339
text, 44–57
untainted, 319

data compression, with zlib, 547–548
data structures, storing, 251–255
database handles, 264–265
database initialization, for Rails

application, 396–398
DataBase Interface (DBI) library, 269,

272–275, 577
database tables. See tables
databases

ActiveRecord and, 274
connecting to, 269–275

DBI library, 272–275
MS SQL Server, 269–272
Oracle, 271–272
MySQL, 271
Postgre, 271

creating tables in, 399–400
I/O, 577–578
introduction, 248
making changes to, 402–403
migrations, 399–403
relational, 255–275
for Ruby on Rails, 391
storing objects and data structures,

251–255
text file, 248–251

date conversions, 508–509
dates, 76–79
day method, 79
db folder, 395

DBI library. See DataBase Interface (DBI)
library

debugging, 208–216, 228
catch and throw method, 212–213
Ruby debugger, 213–216
vs. testing, 216

$DEFAULT_INPUT, 513
$DEFAULT_OUTPUT, 513
DELETE command, 262–263
delete method, 67, 247, 585, 589
delete! method, 589
delete_if method, 582, 585
delimited input literals, 315–316
delimiters, 45, 74, 234. See also specific

delimiters
detect method, 584
difference, arrays, 63
digests, 510–512
Dir class, 244–248
directories, 244

absolute pathnames with, 246–247
changing, 461
creating, 246, 461
deleting, 247
loading files from external, 184
navigating, 244–246
temporary, creating files in, 247–248

DNS (Domain Name Service), 468, 491
DNS queries, 471–473
do delimiter, 41, 74, 96
doc folder, 395
Document Object Model (DOM), 327
documentation, 123, 201–207

basic formatting, 204–205
producing for entire project, 204
RDoc utility, 201–207, 228, 395

downcase method, 589
downcase! method, 589
downto(end_integer) method, 586
DRb (Distributed Ruby), 306–308
driver libraries, 577
DRY (Don't Repeat Yourself) principle,

143, 388
dungeon text adventure (example),

168–178
concepts, 168
creating initial classes, 168–170

■INDEX 615

Find it faster at http://superindex.apress.com
/

7664 INDEX.qxd 3/1/07 6:12 AM Page 615

navigation, 173–178
room creation, 173
structs, 170–171

dynamic code execution, 310–315
attr_accessor method, 314–315
bindings, 310–311
eval method, 309–313

E
-e option, 552
e-mail, 454–458

receiving, with POP3, 454–456
sending, with ActionMailer, 457–458
sending, with SMTP, 456–457

each iterator, 160–161
each method, 61–62, 66, 74, 96, 161–163,

231–234, 582, 585
each_address method, 471
each_byte method, 234, 589
each_index method, 582
each_key method, 585
each_value method, 585
element references, 58
elements, class or ID names for, 445
ELIZA, 342
else blocks, 71, 558
elsif statement, 71, 558
empty arrays, 574
empty? method, 63, 582, 586, 589
encapsulation, 146–151
end delimiter, 41, 74, 96, 558
English library, 513–514, 596
entries method, 245
Enumerable module, 160–165, 581,

584–585
ENV hash, 285–287
env tool, 281
environment variables, 285–287, 308
eof? method, 244
equality, testing for, 39
ERB library, 515–518

accessing outside variables, 516–517
safe levels, 517–518

error 403, File Not Found, 436
error 403, Forbidden, 436
error handling, 208–212

$ERROR_INFO, 513, 596
$ERROR_POSITION, 513, 596
errors

debugging, 208–216
HTTP, 436
learning from, 19
types of, 208

escaping process, 61
eval method

bindings and, 310–311
class_eval, 311–315
dynamic code execution with, 309–315
instance_eval, 313

exception classes, 592, 596
exceptions

handling, 210–212
raising, 208–210

exclamation mark (!), 45, 105, 281, 557
exec method, 316
exist? method, 243
experimentation, 18–20, 34
expressions

basic, 35–36, 553–554
comparison, 38–40, 555–557
interpolation, 48–49
negating, 557
regular, 50–57, 569–571
string, 46–47
variables in, 37–38

F
FasterCSV library, 519–525
feeds, 453–454
FeedTools, 453–454
$FIELD_SEPARATOR, 514, 596
File class, 95–96

close method, 231
CSV data and, 249–250
each method, 231–234
eof? method, 244
exist? method, 243
I/O, 231–248
join method, 240–241, 247
mtime method, 242–243
new method, 231–232, 237–238
open method, 231, 237–239

■INDEX616

7664 INDEX.qxd 3/1/07 6:12 AM Page 616

pos method, 236–237
puts method, 237–239
read method, 235–236
seek method, 241–242
size method, 244
write method, 239

file inclusion
basic, 181–183
from external directories, 184
logic and, 185
nested, 185–186

file organization, 579
File Transfer Protocol (FTP), 458–465. See

also FTP servers
basic operations, 460–461
connections, 459–461

file types, associated, 282
File.expand_path, 241
filenames, platform independent, 240–241
files. See also directories

checking for existence of, 243
checking for identical, 240
creating, in temporary directory,

247–248
creating specification, 291–292
CSV, saving data to, 251
deleting, 461
downloading from FTP server, 461–462
end of, 244
I/O, 577
modifications to, 242–243
opening and reading, 231–236
position within, 236–237
renaming and deleting, 239, 461
seeking, 241–242
size of, 244
specifying location of, 232
structuring for gem, 290
uploading to FTP server, 462–464
writing to, 237–239

files attribute, 291
filters, 422–424
find method, 250, 416, 584
find_all method, 250, 584
first method, 64, 582
Fixnum class, 77–78, 81, 583–586
Fixnum objects, 573
flatten method, 582
Float class, 42, 585–586

Float() method, 572
float, 85
floating point numbers, 20, 42–43,

572–574
floor method, 587
flow charts, 94
flow control, 68–76, 86, 557–561

branching and conditional execution,
557–559

case blocks, 72
code blocks, 74–76
elsif statement, 71
if and unless, 69–70
loops, 560–561
ternary operator, 70–71, 559–560
while/until loops, 72–74

flowcharts, 344, 358–359
flunk assertion, 222
--fmt option, 207
footer code, 424
foreach method, 245
fork method, 316–317
forks/forking, 316–317, 339, 480–482
forms, posting data to Web, 437–438
Fortran, 113
forums, 124, 604–605
forward-slash (/) notation, 590
FreeBSD, 12
FreeRIDE, 88–89, 93
freeze method, 587
frozen? method, 587
$FS, 514, 596
FTP. See File Transfer Protocol
FTP servers

changing directories, 461
creating directories, 461
deleting files, 461
downloading files, 461–462
listing files, 460
renaming files, 461
uploading files, 462–464

functional testing, 427
functions, 33

callback, 451
creating, in RubyInline, 332–334

fxri interactive Ruby program, 5–6, 16. See
also irb

■INDEX 617

Find it faster at http://superindex.apress.com
/

7664 INDEX.qxd 3/1/07 6:12 AM Page 617

G
gamma stage, 114
gcc compiler, 331
gem install command, 193–196, 293
gem list, 291
gems. 189–197, 580. See also RubyGems;

specific gems
creating, 198, 290–293, 289

building gem file, 292
specification file, 291–292
structuring files, 290
with newgem tool, 293

distributing libraries as, 288–295
distributing, 293–294
Hpricot, 195–197
installing, 580

complex, 195–197
simple, 193–194

listing installed, 191–193
mysql, 269–270
postgres, 271
RubyForge, 294–295
uninstalling, 198, 580
upgrading, 198
using, 194–195

generate script, 395, 399
GET requests, 433–435
getbinaryfile method, 461–462
getc method, 235
getname method, 471
gets method, 230–231

chomp method with, 265
for reading I/O streams, 234–235

gettextfile method, 461–462
global substitutions, 570
global variables, 135–136
gmt? method, 79
go method, 176–178
Google Groups, 122
GServer, 482–491
gsub method, 97, 106, 570
gsub(exp) method, 589
guides, 607–610
gzipped files, 548

H
Hansson, David Heinemeier, 118–119
Hash class, 585–586
hashes (associative arrays), 65–68, 86,

510–512, 574–575
vs. arrays, 65
complex structures, 576
data structure, 360–363
deleting elements from, 67
within hashes, 67–68
iteration, 66
key retrieval, 66
params, 416–418

has_key? method, 586
header code, 424
--help, 207
helper files, 394
here documents, 45, 457
history, of Ruby, 113–117
hostnames

converting between IP addresses and,
471–473

mail servers associated with, 472–475
hour method, 79
Hpricot gem, 195–197, 448–450, 464
HTML (HyperText Markup Language),

443–448, 464
converting Markdown into, 500–501
converting Textile documents to,

533–534
Markaby, 443–446
parsing, with Hpricot, 448–450
RedCloth, 446–448

HTML documents
with embedded Ruby, 410–411
headers and footers in, 424

HTTP (HyperText Transfer Protocol),
187–188, 433–442, 464

downloading Web pages, 433–442
net/http library, 434–440

Basic Authentication, 436–437
errors and redirects, 435–436
HTTP proxies, 438–439
posting form data, 437–438

HTTP proxies, 438–439

■INDEX618

7664 INDEX.qxd 3/1/07 6:12 AM Page 618

HTTP servers, 488
creating generic, 298–302

with Mongrel, 301–302
with WEBrick, 298–301

HTTPS, 439–440, 464
http_class, proxies and, 439

I
i, 591
/i option, 570
I/O streams, 229, 234–235
ICMP echoes, 470
iconv library, 339, 526–527
id column, 256, 259–260
ideas, turning into code, 20–27
if statements, 68–70, 557–558
if/else construction, flow control and,

70–71
$IGNORECASE, 514, 597
include method, 82, 167
include? method, 63, 582, 585, 589
index method, 582
index.html file, 406
inheritance, 24–26, 140–143, 159
initialize method, 134
--inline-source, 207
input and output (I/O), 229, 576–578

databases, 577–578
File class, 231–248
files, 577
keyboard input, 230–231
readlines, 230–231
standard, 230
streams, 229, 234–235
Web access, 578

$INPUT_RECORD_SEPARATOR, 514, 596
INSERT command, 260–261
inspect method, 61
install command, gem, 193–196
installation

guides, 607–608
Ruby, 4–13

in Mac OS X, 7–9
on Linux, 10–12
on Windows, 4–7

instance (object) methods, 138–139
instance variables, 136–137, 311–314
instances, 133. See also objects
instance_eval method, 313, 587
instance_variables method, 146
Instant Messenger (AOL), 341
Instant Rails, 390
Instiki, 430
Integer class, 586
integer? method, 587
integers, 20, 43, 85, 555, 572–574
integration testing, 427
interactive (immediate) environments,

16–17
interactive Ruby interpreter. See irb
international character set support,

336–339
Internet, 467

FTP, 458–464
HTTP, 433–442
Ruby and, 433

Internet Protocol (IP), 468, 490. See also IP
addresses

Internet Relay Chat (IRC), 122–123
interpolation, 47–49, 86
interpreted languages, 550. See also Ruby

vs. compiled languages, 280
deploying code in, 283

in_service? method, 484
IO.select, 487
iODBC, 272
IP addresses, 468

converting between hostnames and,
471–473

resolving, 471–473
irb (Interactive Ruby), 10–13, 16–17, 553
is_a? method, 587
iteration

array, 61–62
hashes, 66
methods, 161–163
process, 160
with regular expressions, 52–56

iterators, 41–42, 86

■INDEX 619

Find it faster at http://superindex.apress.com
/

7664 INDEX.qxd 3/1/07 6:12 AM Page 619

J
Java language, 550
Java Virtual Machines (JVMs), 12
jcode, 337
join method, 59–60, 240–241, 247, 484, 582

K
Kernel methods, 29
Kernel module, 29–30, 34, 160
keyboard input, 230–231
keys, hash, 65–66
keys method, 66, 586
kind_of? method, 587

L
Lafacdio, 275
lambda method, 75–76
large numbers, 80–81
$LAST_MATCH_INFO, 514, 597
last method, 64, 582
layouts, 424–426
length method, 31, 59, 97–98, 582, 586, 589
lib folder, 395
libraries, 187–198, 579–580. See also

specific libraries
creating, 579
digest, 510–512
distributing and releasing as gems,

288–295
driver, 577
file organization, 579
introduction, 186–187
packaging, 580
standard, 187–189

license, 597–599
LIMIT clause, 262
Lindows, 12
line delimiters, 234
line_count, 96
link_to method, 412
Linspire, 12
Linux

installing Ruby on, 10–12
installing RubyGems on, 190–191

running source code in, 92
working with source code files on,

87–89
list command, 191–193, 214
lists, ranges and, 81–83
load command, 182–186
local area network (LAN), 467
local variables, 134–135
Locomotive, 9, 390
log folder, 395
logger library, 528–530
logging levels, 529
logging messages, 529
logic, comparison operations, 38–40
loops, 560–561

iterators, 41–42
number, 40–42
until, 72–74
while, 72–74

lstrip method, 589
lstrip! method, 589

M
Mac OS X

installing Ruby on, 7–9
installing RubyGems on, 190–191
Platypus tool, 283–284
Rails installation on, 390
running source code in, 92
working with source files in, 87–89

Mac OS X Leopard, 7
Mac OS X Panther, 7–8
Mac OS X Tiger, 7–8
machine code, 279
MacroMates, 88
mail servers, 472–475
mailing lists, 121, 605–606
--main option, 207
man ruby command, 552
many-to-many relationships, 257, 421
Markaby library, 443–446, 464
Markdown, converting to HTML, 500–501
marshalling technique, 251–253
$MATCH, 514, 597
match method, 56–57, 570
MatchData object, 57

■INDEX620

7664 INDEX.qxd 3/1/07 6:12 AM Page 620

matching operators, 56–57
Matsumoto, Yukihiro (Matz), 114–115,

126, 549
max method, 585
mday method, 79
Mephisto, 430
MessageBox function, 323–325
methods, 26–27, 563–565. See also specific

methods
about, 34
chaining together, 50
class vs. object, 138–140
conflicting, 156–157
creating, in RubyInline, 332–334
defining, 27
discovering object's, 145–146
encapsulation of, 568–569
example, 133
to handle code blocks, 74–76
including module, 159–160
initialize, 134
Kernel, 29, 34
overriding existing, 143–145
overriding previously defined, 567
passing data to, 29–30
private, 149–151, 365, 568
protected, 150–151, 568
public, 149–150, 568
reflective, 145–146
separating functionality into distinct,

365
setter, 172, 564
string, 31–32, 49–50
visibility of, 568–569
XML-RPC-enabled, 303–304

methods method, 145–146, 566–567, 587
Microsoft SQL Server, 257, 272
Microsoft Windows. See Windows
migrations, 399–403
min method, 79, 585
mix-ins, 159–167
mkdir method, 246
model names, 399
Model-View-Controller (MVC)

architecture, 388–389

models, 388
creating, 398–400
CRUD operations for, 404–405
database tables and, 398–400
files, 394
relationships among, 420–422

modifiers. See also specific modifiers
for regular expressions, 55
RDoc utility, 205–207

modules, 156
Comparable, 165–167
Enumerable, 160–165
Kernel, 160
mix-ins and, 159–167
namespaces and, 156–159, 167

Mongrel library, 308, 405, 64
Mongrel server, 301–302
month method, 79
MS-DOS, 12
mtime method, 242–243
multi-client TCP servers, 480–482
multiple inheritance, 141, 159
multithreaded servers, 480–482
MVC. See Model-View-Controller (MVC)

architecture
MX records, 472–475
MySQL server, 257, 391

connecting to, 269–470
database initialization on, 396–398

N
names, 156–159

columns, 256
conflicts, 156–157
mix-ins with, 167
model, 399
table, 256, 399
of variables, 36–37, 134–137

nested classes, 153–154, 168–169
net-ping library, 470
net/ftp library, 459–461

chdir method, 461
list method, 460
login method, 460
mkdir method, 461
open method, 460

■INDEX 621

Find it faster at http://superindex.apress.com
/

7664 INDEX.qxd 3/1/07 6:12 AM Page 621

net/http library, 187–188, 434–440, 578
Basic Authentication, 436–437
errors and redirects, 435–436
HTTP proxies, 438–439
HTTPS, 439–440
posting form data, 437–438

net/pop library, 454
net/smtp library, 456–457
net/telnet library, 474, 479
Net::HTTP.post_form, 437–438
Net::HTTP.start, 436–437
Net::HTTP::Proxy, 438–439
Net::HTTPSuccess class, 436
network availability, checking, 469–470
network operations, 469–475

direct connection to TCP server, 474
DNS queries, 471–473
pings, 469–470

networking concepts, 467–468
networks

client/server, 475–490
defined, 467, 490

new method, 418, 231–232, 237–238, 483
newgem tool, 293
news feeds, 453–454
newsgroups, 121–122, 604–605
next method, 586
nil method, 555
nil? method, 588
:nodoc: modifier, 206
not equal to !=, 39
numbers, 35, 572–574. See also

expressions
converting to String objects, 555
floating point, 20, 42–43, 572–574
integers, 20, 43, 85, 555, 572–574
large, 80–81
looping through, 40–42

Numeric class, 586–587

O
Object class, 587–588
object code, 550
object instances, 21
object methods, vs. class methods,

138–140

object orientation, 27, 561–569
about, 34
basics of, 133–156
classes, 133, 153–154, 563–565
dungeon text adventure (example),

168–178
encapsulation, 146–151
inheritance, 24–26, 140–143, 159
method visibility, 568–569
methods, 563–565

class vs. object, 138–140
overriding existing, 143–145

objects, 562
polymorphism, 151–153
vs. procedural style, 129–132
reasons to use, 129–132
reflection, 145–146, 565–567
reopening classes, 567
scope of constants, 154–156
using Ruby without, 32–33
variables, 134–137

object persistence, 251–253, 361
object variables, 136–137
object-oriented programming language,

20–23
object-relational mapper (ORM), 390
objects, 20, 562

class requirements of, 554–555
converting between classes, 84
converting between, using YAML, 255
defined, 22, 133
definition of, 33
encapsulation, 146–151
everything as, 551, 562
in Ruby, 27–28
methods for, 26–27
querying for methods, 145–146
relating data to, 420–422
storing, in databases, 251–255
tainted, 318–321

object_id method, 588
OC18 library, 271
$OFS, 513, 596
Og, 275
OLE Automation, 327, 339
--one-file option, 207
--op option, 207

■INDEX622

7664 INDEX.qxd 3/1/07 6:12 AM Page 622

open method, 231, 237–239, 578
open source culture, 119–121
open-uri library, 440–442, 459, 578
OpenStruct library, 189
operating systems (OSs). See also specific

operating systems
compatible with Ruby, 3–4
detection of, with RUBY_PLATFORM

variable, 285
environment variables, 285–287

operations, precedence of, 36
operators, 85, 584

comparison, 38–40, 165
matching, 56–57

optimization, 228
through benchmarking, 223–225
through profiling, 225–227

Oracle, 257, 271–272
ORDER BY clause, 262
$ORS, 514, 596. See also $OFS
OS/2, 12
$OUTPUT_FIELD_SEPARATOR, 513, 596
$OUTPUT_RECORD_SEPARATOR, 514,

596

P
package managers, installing Ruby with,

11
packets, 468
paginate method, 410
paragraph_count variable, 102
parameters, 30, 34, 416–418

appending to commands, 108
in ARGV array, 287–288

params hash, 416–418
parent classes, inheritance and, 141–142
parentheses (), 36, 40
parsing

CVS data, 520
feeds, 453–454
stream, 451
strings, 519–520
tree, 451–452
URLs, 543–545

passwords, 510–512

path, retrieval of current, 285
pattern matching

strings, 56–57
with StringScanner, 535–538

perform_substitutions method, 367
periods, 562
Perl language, 32, 115, 295
persistence, object, 251–253
phrases, finding matching, 368–369
Pi, 43
$PID, 514, 597
pingecho method, 469–470
pings, 469–470. 491
Planet Ruby on Rails, 126
platforms compatibility, 3–4
Platypus, 283–284
plugins, 428–429
podcasts, 453
polymorphism, 151–153
pop method, 582
popen method, 317–318
popping, 59
ports, 468
pos method, 236–237, 538
possible_responses method, 368–371
$POSTMATCH, 514, 597
Post Office Protocol 3 (POP3), 454–456,

465
POST requests, 437
Postgre MySQL, 257, 271, 391
pound (#) sign, 111, 281
pp library, 531–532
$PREMATCH, 514, 597
preprocess method, 366–367
:presubs array, 366
principle of least surprise, 550
print method, 23
private keyword, 149–151
private methods, 365, 568
private_methods method, 588
procedural programming style, 129–132
procedures, 33
$PROCESS_ID, 514, 597
process IDs, 316
profiling, 225–228
program execution, threads, 327–331

■INDEX 623

Find it faster at http://superindex.apress.com
/

7664 INDEX.qxd 3/1/07 6:12 AM Page 623

programming
art and science of, 15
experimentation in, 18–20
ideas, 20–27

programming instructions, 17
programming languages, 17. See also

specific languages
comparisons among, 550
object-oriented, 20–23

Programming Ruby (Thomas and Hunt),
602

programming styles
object oriented. See object orientation
procedural, 129–132

programs, 17
forking, 480–482
interactions between, 317–318
running as daemon processes, 488–490
running concurrently, 316–317
running from Ruby, 315–318
transferring execution to another, 316
Windows, 325–327

projects
file inclusion, 181–186
management of, 181–186

pronoun switches, 347–354
protected keyword, 150–151
protected methods, 568
protected_methods method, 588
proxying, 438–439
PStore library, 251–253, 361
public folder, 395, 418
public keyword, 149–150
public methods, 568
public_methods method, 587
push method, 59, 574, 582
putbinaryfile method, 462–464
puts method, 23, 29–30, 47, 96, 237–239
puttextfile method, 462–464
pwd method, 245
Python language, 115, 550

Q
query languages, 259. See also SQL
quit command, 215

R
r+ file mode, 242
rails command, 392–394
Rails documentation, 602. See also

documentation
Rails Forum, 124
Rails library, 389
Rails wiki, 603
Rails. See Ruby on Rails
raise method, 209, 592
Rake tasks, 401–402
random phrases, 364
ranges, 81–83, 86
RB file extension, 551
RDoc utility (Ruby Documentation),

201–207, 228, 395
command line options, 207
generating documentation with,

202–203
techniques, 203–207

basic formatting, 204–205
documentation for entire project, 204
modifiers and options, 205–207
turning on and off, 206–207

read method, 235–236
readlines method, 97, 230–231, 235
real-time chat, 606
RedCloth library, 446–448, 464, 533–534
RedHanded, 126
redirection requests, 436
redirect_to method, 418
reference sites, for Ruby on Rails, 429–430
references, 601–603
reflection, 115, 145–146, 565–567
reflective methods, 145–146
regular expressions, 86, 569–571

character and sub-expression suffixes,
592

character classes, 55–56
defined, 50
iteration with, 52–56
modifiers, 55
special characters and formations,

591–592
special characters with, 53–55

■INDEX624

7664 INDEX.qxd 3/1/07 6:12 AM Page 624

string manipulation and, 50–57
syntax, 590–592
for word matching, 347

relational databases, 255–275
ActiveRecord and, 274
connecting to database systems,

269–274
introduction to, 256–257
MySQL, 257
Oracle, 257
PostgreSQL, 257
SQL and, 259–263
SQLite, 257

installation, 258
using, 264–268

relationships, many-to-many, 421
Remote Procedure Calls (RPCs), 303–308

DRb, 306–307
XML-RPC, 303–306

remote services, deploying Ruby
applications as, 295–307

render method, 418
repetition, cutting down on, 143
request objects, 299–300
require command, 157, 182–186, 579
require_ruby_version parameter, 292
rescue clause, 210–212
resolv library, 471–473
resources, 121–124, 550, 601–610
response objects, 299–300
responses array, 369
response_to method, 365–371
reverse method, 582, 589
reverse! method, 589
reverse_each method, 583
REXML, 451–452
RHTML files, 410–411
RHTML views, 515
rmdir method, 247
robots. See bots
Rolling with Ruby on Rails, 430
roots, 572
round method, 587
routing, 418–420
rows

adding to tables, 260–261
deleting from, 262–263

relationships between, 257
sorting, 262
updating, 263

$RS, 514, 596
RSS feeds, 453–454
rstrip method, 589
rstrip! method, 589
Ruby

advantages of, 17–18
benchmarking against C, 334–335
compatibility, 3–4
everything as object in, 27–28
features, 550–551
history, 113–117
influences on development of, 115
installation, 4–13
introduction to ecosystem, 113
object orientation, 20–23, 561–569
open source culture and, 119–121
overview, 549–551
readability of, 17–18
references, 601
running other programs from, 315–318
runtime environment, detecting,

284–288
testing for preinstalled version, 8–9
tutorials, 608–609
using without object orientation, 32–33
views, 410–413

Ruby 1.9 documentation, 601
Ruby Application Archive, 602
Ruby applications

deploying as remote services, 295–307
CGI scripts, 295–298
HTTP servers, 298–302
remote procedure calls, 303–307

distribution of
associated file types and, 282
basic, 279–283
in Windows, 282
shebang lines, 280–282
using Platypus, 283–284
using RubyScript2Exe, 283

Ruby Asset manager, 430
Ruby code, running, 551–552
Ruby core documentation, 601
Ruby development community, 121–126

■INDEX 625

Find it faster at http://superindex.apress.com
/

7664 INDEX.qxd 3/1/07 6:12 AM Page 625

Ruby Forums, 124
Ruby Inside, 126
Ruby interpreter, 4, 551–552
Ruby libraries. See libraries
Ruby license, 597–599
Ruby on Rails, 117–120

ActionMailer, 457–458
building basic application, 391–424

controllers and views, 408–418
creating blank application, 391–396
creating model and migrations,

398–403
database initialization, 396–398
files and directories within

application, 394–396
model relationships, 420–422
routing, 418–420
scaffolding, 404–408
sessions and filters, 422–424

database considerations, 391
demo applications, 430
edge versions and, 197
installation, 389–390, 580
introduction to, 387–388
layouts, 424–426
libraries, 390
MVC architecture, 388–389
plugins, 428–429
rails command line tool, 392–394
references and tutorials, 429–430,

602–603, 609
screencasts, 430
testing, 426–428

Ruby Quickref, 602
Ruby Standard Library Documentation,

602
Ruby Web site, 116
ruby-core mailing list, 121
ruby-doc mailing list, 121
Ruby-Doc.org, 601
Ruby-Forum.com, 124
ruby-lang.org, 116
ruby-talk mailing list, 115, 121
RubyForge, 192, 294–295, 308, 602

hosting gems with, 294–295

RubyGems, 189–197, 579–580. See also
gems

gem_server script, 294
installing, 190–191

complex gem, 195–197
simple gem, 193–194

listing installed, 191–193
upgrading and uninstalling gems, 198
using, 194–195

RubyInline, 331–335, 340
basic method or function creation,

332–334
benchmarking, 334–335
C language and, 332
installing, 331

RubyScript2Exe, 283
RUBY_PLATFORM variable, 285, 308
runtime environment, detecting, 284–288
RuntimeError exception, 209

S
\S, 54, 592
safe levels, 320–322, 339, 517–518
save method, 420–422
$SAFE variable, 321–322
scaffolding, 404–408
scan method, 54, 60, 98–100, 589
scan(pattern) method, 589
scan_until method, 536
SciTE, 88
scope

of constants, 154–156
local, 134–135

script folder, 395
script/plugin script, 428
sec method, 79
Secure Sockets Layer (SSL), HTTPS,

439–440
seek method, 241–242
SELECT command, 261–262
select method, 107, 584
semicolon (;), 18, 150
send method, 588
sentence separations, testing, 352

■INDEX626

7664 INDEX.qxd 3/1/07 6:12 AM Page 626

sentences
choosing best, 367–368
splitting into words, 346
splitting text into, 345–346
testing best choice, 353

sentence_count variable, 102
server script, 395
servers, 475–491

creating multiple, 483–484
daemon processes, 488–490
FTP, 458–464
GServer, 482–488
HTTP, 488
multithreaded, 480–482
POP3, 454–456
SMTP, 456
TCP, 478–482
UDP, 475–478
Web, 488

servlets, creation of, 299
session IDs, 422, 506–507
sessions, 422–424, 506–507
setsid function, 489
setter methods, 172, 564
shebang lines, 280–282, 308, 552
shell, 8
shift method, 583
SitePoint Ruby Forums, 124
size method, 98, 244, 586
Slashdot, 119
Smalltalk, 115
SMTP (Simple Mail Transfer Protocol),

456–457, 465
SOAP (Simple Object Access Protocol),

303, 308
software development

public vs. private, 115
stages of, 114

sort method, 583–585
sort! method, 585
sort_by method, 106–107, 585
source code

comments in, 111
installing Ruby from, 9, 11–13
WordPlay, 354–357

source code editors, 93

source code files
distributing, 279–283
loading external, 181–186
working with, 87–93

creating test file, 88–89
running source code, 90–93
test file, 90

special variables, 513–514, 596–597
specification file, 289, 291–292
split method, 60–61, 98–102, 106, 589
SQL (Structured Query Language),

259–263
about, 259
CREATE TABLE command, 259–260
DELETE command, 262–263
INSERT command, 260–261
SELECT command, 261–262
UPDATE command, 263

SQLite, 257
data types, 260
installation, 258
using, 264–268

sqlite-ruby gem, 258
square roots, 572
stacks, 208
standard input, 230
standard libraries, 187–189
standard output, 230
step command, 214
step() method, 587
stop words, 103–105
stream parsing, 451
String class, 44, 569, 588–590. See also

strings
methods of, 31–32, 49–50
overriding methods of, 143

strings, 44, 85, 569
concatenation, 46–47
converting between character

encodings, 526–527
converting to integer object, 555
delimiter characters with, 45
expressions, 46–47
interpolation, 47–49, 312
literals, 44–45, 319
methods, 31–32, 49–50
regular expressions and, 50–57

■INDEX 627

Find it faster at http://superindex.apress.com
/

7664 INDEX.qxd 3/1/07 6:12 AM Page 627

iteration, 52–56
matching, 56–57
substitutions, 51–52

splitting into arrays, 60–61
StringScanner library, 535–538
strip method, 106, 589
strip! method, 589
Struct class, 170–171, 189
sub method, 570, 590
sub! method, 590
sub(exp) method, 590
sub-expression suffixes, 592
subfunctions, 33
subroutines, 32
subtraction, arrays, 63
sudo, 302
Symbian Series 60, 12
symbols, 83–86
syntax, 17, 590–592
system method, 315–316

T
tables, 256. See also columns; rows

adding rows to, 260–261
creating, 259–260, 399–402
CRUD operations, 404–405
deleting rows from, 262–263
id columns, 256
models and, 398
names for, 256, 399
relationships between, 256–257
retrieving data from, 261–262
updating, 263

tags, HTML, 443
taint method, 321, 588
tainted data, 318–321, 339
tainted? method, 319–320
tar.gz file, 11
TCP (Transmission Control Protocol), 468,

490
TCP echoes, 470
TCP ports, 468, 474
TCP servers

building, 478–479
GServer, 482–488
multi-client, 480–481

TCP/IP, 468
Telnet, 299, 474
Tempfile library, 248, 539–541
templates, ERB library for, 515–518
temporary files, tempfile and, 539–541
ternary operator, 70–71, 137, 559–560
test case, 218, 228
test folder, 395
test-driven development, 216–219, 228,

358
test-first development. See test-driven

development
Test::Unit library, 219–222
testing, 18–20, 216–222

assertions, 218, 221–222
vs. debugging, 216
functional, 427
integration, 427
Ruby on Rails, 426–428
test-driven development, 216–219, 228,

358
unit, 216, 219–222, 228, 427

test_fils attribute, 292
text, 44–57. See also strings; text

processing
text adventure (example), 168–178

creating initial classes, 168–170
dungeon concepts, 168
navigation, 173–178
room creation, 173
structs, 170–171

text editors
creating test file, 88–89
vs. source code editors, 93

text file databases, 248–251
reading and searching, 249–250
saving data, 251

text processing
choosing best sentences, 367–368
finding matching phrases, 368–369
preprocessing, 344
pronoun switching, 347–354
sentence separation, testing, 352
splitting into sentences, 345–346
splitting sentences into words, 346
testing best sentence choice, 353
word matching, 347
word separation, testing, 352

■INDEX628

7664 INDEX.qxd 3/1/07 6:12 AM Page 628

text processing tools library
creating, 344–357

flowchart, 344
WordPlay library, 345–357

source code, 354–57
testing, 351–354

text variable, 96
TextEdit, 88–89
Textile documents, converting to HTML,

533–534
Textile markup language, 446–448, 464
TextMate, 88
37signals, 118–120
Thread class, 480–482
threads, 327–331, 339

listing, 329–30
thread operations from within threads,

330
waiting for, to finish, 329

throw method, 212–213
Time class, 76–79, 243, 509
time conversions, 508–509
time, 76–79
timeout errors, 475
times method, 586
tmp folder, 395
tmpdir method, 247–248
to_ methods, 84
to_a method, 586
to_f method, 555, 572, 590
to_i method, 555, 590
to_s method, 555
to_sym method, 590
Tracks, 430
transactions, PStore files and, 252
Transmission Control Protocol (TCP), 468,

490
tree parsing, 451–452
tutorials, 429–430, 607–610
Typo, 430

U
UDP client/server systems, 475–478
unicode, 336–339
Uniform Resource Identifiers (URIs),

542–546

Uniform Resource Locators. See URLs
uninstall command, 198
unit testing, 216, 219–222, 228, 427
Unix/Unix-based systems

filenames, 240
installing Ruby on, 13
installing RubyGems on, 190–191
running source code in, 92
shebang lines, 281–282

Unix-style pathnames, 240
unless statements, 68–70, 557–558
unlink method, 247
unscan method, 537
unshift method, 583
untaint method, 321, 588
untainted data, 319
until statement, 72–74
upcase method, 590
upcase! method, 590
UPDATE command, 263
upto(end_integer), 586
URI class, 435
URI library, 188, 542–546
URI.parse, 460
URL parameters, 416–418
URLs, 433

creating, 545–546
extracting from text, 542–543
parsing, 543–545
routing, 418–420
uri library, 542–546

usec method, 79
Usenet newsgroups, 121–122
User Datagram Protocol (UDP), 468
UTF-8 (Unicode Transformation Format-

8), 340
UTF-8 support, 336–339
utx? method, 79

V
-v option, 552
values method, 586
VARCHAR columns, 260
variables, 22–23, 36–38, 85, 554

about, 34
assigning strings to, 44

■INDEX 629

Find it faster at http://superindex.apress.com
/

7664 INDEX.qxd 3/1/07 6:12 AM Page 629

CGI, 296–298
class, 137
global, 135–136
instance (object), 136–137
local, 134–135
names, 36–37, 134–137
scope of, 134–135
special, 596–597
storing code blocks within, 75–76

vendor folder, 395
views, 388

creating, 413–416
embedded Ruby and, 410–413
folder, 394

W
\W, 54, 591
Wall, Larry, 115
watch command, 215
watches, 214
wday method, 79
Web access, 578
Web application development. See

application development
Web content, processing, 448–454
Web feeds, 453–454
Web forums, 124
Web pages

downloading, 433–442
Basic Authentication, 436–437
checking for errors and redirects,

435–436
net/http library, 434–440
open-uri library, 440–442

generating, 443–448
Markaby, 443–446
RedCloth, 446–448

posting form data, 437–438
Web servers, 488
weblogs, 125–126
WEBrick library, 298–301, 308, 464
Weizenbaum, Joseph, 342
while statement, 72–74
wikis, 430

Win32API library, 323–325, 339
WIN32OLE library, 326–327
Windows

controlling programs, 325–327
distribution of Ruby programs in, 282
file associations, 282
filenames, 240
installing Rails on, 390
installing Ruby on, 4–7
installing RubyGems on, 190
RubyInline and, 331
running source code in, 91–92
working with, 322–327

controlling Windows programs,
325–327

source code files on, 87–88
Windows API, 323–325

Windows API, using, 323–325
Windows Automation, 325–327, 339
word counter feature, 98–100
word matching, 347
word separation, testing, 352
WordPlay library, 345–358

pronoun switching, 347–351
source code, 354–357
splitting sentences into words, 346
splitting text into sentences, 345–346
testing, 351–354
word matching, 347

words, splitting sentences into, 346
word_count variable, 102
write method, 239

X
x, 591
Xcode, 9, 88
XML (Extensible Markup Language),

451–452
XML-RPC, 303–308

calling XML-RPC-enabled method,
303–304

XML-RPC-enabled programs, 304–306
XPath, 452

■INDEX630

7664 INDEX.qxd 3/1/07 6:12 AM Page 630

Y
YAML (YAML Ain't Markup Language)

library, 253–255, 361–364, 451
yday method, 79
year method, 79
yield method, 75
Yukishiro Matsumoto's Blog, 126

Z
\Z, 54, 592
zero? method, 587
zlib library, 497–499, 547–548
zone method, 79

■INDEX 631

Find it faster at http://superindex.apress.com
/

7664 INDEX.qxd 3/1/07 6:12 AM Page 631

forums.apress.com
FOR PROFESSIONALS BY PROFESSIONALS™

JOIN THE APRESS FORUMS AND BE PART OF OUR COMMUNITY. You’ll find discussions that cover topics

of interest to IT professionals, programmers, and enthusiasts just like you. If you post a query to one of our

forums, you can expect that some of the best minds in the business—especially Apress authors, who all write

with The Expert’s Voice™—will chime in to help you. Why not aim to become one of our most valuable partic-

ipants (MVPs) and win cool stuff? Here’s a sampling of what you’ll find:

DATABASES

Data drives everything.

Share information, exchange ideas, and discuss any database

programming or administration issues.

INTERNET TECHNOLOGIES AND NETWORKING

Try living without plumbing (and eventually IPv6).

Talk about networking topics including protocols, design,

administration, wireless, wired, storage, backup, certifications,

trends, and new technologies.

JAVA

We’ve come a long way from the old Oak tree.

Hang out and discuss Java in whatever flavor you choose:

J2SE, J2EE, J2ME, Jakarta, and so on.

MAC OS X

All about the Zen of OS X.

OS X is both the present and the future for Mac apps. Make

suggestions, offer up ideas, or boast about your new hardware.

OPEN SOURCE

Source code is good; understanding (open) source is better.

Discuss open source technologies and related topics such as

PHP, MySQL, Linux, Perl, Apache, Python, and more.

PROGRAMMING/BUSINESS

Unfortunately, it is.

Talk about the Apress line of books that cover software

methodology, best practices, and how programmers interact with

the “suits.”

WEB DEVELOPMENT/DESIGN

Ugly doesn’t cut it anymore, and CGI is absurd.

Help is in sight for your site. Find design solutions for your

projects and get ideas for building an interactive Web site.

SECURITY

Lots of bad guys out there—the good guys need help.

Discuss computer and network security issues here. Just don’t let

anyone else know the answers!

TECHNOLOGY IN ACTION

Cool things. Fun things.

It’s after hours. It’s time to play. Whether you’re into LEGO®

MINDSTORMS™ or turning an old PC into a DVR, this is where

technology turns into fun.

WINDOWS

No defenestration here.

Ask questions about all aspects of Windows programming, get

help on Microsoft technologies covered in Apress books, or

provide feedback on any Apress Windows book.

HOW TO PARTICIPATE:

Go to the Apress Forums site at http://forums.apress.com/.

Click the New User link.

7664 INDEX.qxd 3/1/07 6:12 AM Page 632

FIND IT FAST
with the Apress SuperIndex ™

Quickly Find Out What the Experts Know

L eading by innovation, Apress now offers you its SuperIndex™, a turbocharged

companion to the fine index in this book. The Apress SuperIndex™ is a keyword

and phrase-enabled search tool that lets you search through the entire Apress library.

Powered by dtSearch™, it delivers results instantly.

Instead of paging through a book or a PDF, you can electronically access the topic

of your choice from a vast array of Apress titles. The Apress SuperIndex™ is the

perfect tool to find critical snippets of code or an obscure reference. The Apress

SuperIndex™ enables all users to harness essential information and data from the

best minds in technology.

No registration is required, and the Apress SuperIndex™ is free to use.

1 Thorough and comprehensive searches of over 300 titles

2 No registration required

3 Instantaneous results

4 A single destination to find what you need

5 Engineered for speed and accuracy

6 Will spare your time, application, and anxiety level

Search now: http://superindex.apress.com

7664 INDEX.qxd 3/1/07 6:12 AM Page 633

	Table of Content
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Appendix Af
	Appendix Bf
	Appendix Cf
	Index

