

Design Patterns
Elements of Reusable Object-Oriented Software

Produced by KevinZhang

Design Patterns: Elements of Reusable Object-Oriented Software

2

Contents

Preface to CD .. 5

Preface to Book .. 7

Foreword ... 9

Guide to Readers .. 10

1 Introduction .. 11
1.1 What Is a Design Pattern? 12
1.2 Design Patterns in Smalltalk MVC 14
1.3 Describing Design Patterns 16
1.4 The Catalog of Design Patterns 18
1.5 Organizing the Catalog ... 21
1.6 How Design Patterns Solve Design Problems 23
1.7 How to Select a Design Pattern 42
1.8 How to Use a Design Pattern 44

2 A Case Study: Designing a Document Editor 46
2.1 Design Problems .. 46
2.2 Document Structure ... 47
2.3 Formatting ... 53
2.4 Embellishing the User Interface 56
2.5 Supporting Multiple Look-and-Feel Standards 60
2.6 Supporting Multiple Window Systems 64
2.7 User Operations .. 72
2.8 Spelling Checking and Hyphenation 77
2.9 Summary .. 90

Design Pattern Catalog .. 93

3 Creational Patterns ... 94
Abstract Factory ... 99
Builder ... 110
Factory Method .. 121
Prototype ... 133
Singleton ... 144

Discussion of Creational Patterns 153

Design Patterns: Elements of Reusable Object-Oriented Software

3

4 Structural Patterns .. 155
Adapter ... 157
Bridge .. 171
Composite ... 183
Decorator ... 196
Façade .. 208
Flyweight ... 218
Proxy ... 233

Discussion of Structural Patterns 246

5 Behavioral Patterns .. 249
Chain of Responsibility ... 251
Command ... 263
Interpreter ... 274
Iterator .. 289
Mediator .. 305
Memento ... 316
Observer .. 326
State ... 338
Strategy .. 349
Template Method ... 360
Visitor ... 366

Discussion of Behavioral Patterns 382

6 Conclusion ... 388
6.1 What to Expect from Design Patterns 388
6.2 A Brief History ... 392
6.3 The Pattern Community ... 393
6.4 An Invitation ... 395
6.5 A Parting Thought ... 396

A Glossary ... 397

B Guide to Notation .. 404
B.1 Class Diagram ... 404
B.2 Object Diagram .. 406
B.3 Interaction Diagram ... 407

C Foundation Classes ... 409
C.1 List .. 409
C.2 Iterator .. 412
C.3 ListIterator .. 413

Design Patterns: Elements of Reusable Object-Oriented Software

4

C.4 Point ... 413
C.5 Rect .. 414

Bibliography ... 416

Design Patterns: Elements of Reusable Object-Oriented Software

5

Preface to CD

As we were writing Design Patterns, we knew the patterns we weredescribing had
value because they had proven themselves in manydifferent contexts. Our hope was
that other software engineers wouldbenefit from these patterns as much as we had.

Now, three years after its debut, we find ourselves both grateful andthrilled
by how the book has been received. Lots of people use it.Many tell us the patterns
have helped them design and build bettersystems. Many others have been inspired
to write their own patterns,and the pool of patterns is growing. And many have
commented on whatmight be improved about the book and what they would like to
see inthe future.

A recurring comment in all the feedback has been how well-suited thebook is to
hypertext. There are numerous cross-references, andchasing references is
something a computer can do very well. Sincemuch of the software development
process takes place on computers, itwould be natural to have a book like ours
as an on-line resource.Observations like these got us excited about the potential
of thismedium. So when Mike Hendrickson approached us about turning the bookinto
a CD-ROM, we jumped at the chance.

Two years and several megabytes of e-mail later, we're delighted thatyou can
finally obtain this edition, the Design Patterns CD,and put its unique capabilities
to work. Now you can access a patternfrom your computer even when someone has
borrowed your book. You can search the text for key words and phrases. It's also
considerably easier to incorporate parts of it in your own on-line
documentation.And if you travel with a notebook computer, you can keep the
bookhandy without lugging an extra two pounds of paper.

Hypertext is a relatively new publishing venue, one we arelearning to use just
like everyone else. If you have ideas on howto improve this edition, please send
them todesign-patterns-cd@cs.uiuc.edu.If you have questions or suggestions
concerning the patternsthemselves, send them to
thegang-of-4-patterns@cs.uiuc.edumailing list. (To subscribe, send e-mail to
gang-of-4-patterns@cs.uiuc.eduwith the subject "subscribe".) This list has quite
a few readers, and many of them can answer questions as well as we can—andusually
a lot faster! Also, be sure to check out thePatterns Home Page
athttp://hillside.net/patterns/.There you'll find other books and mailing lists
on patterns, notto mention conference information and patterns published on-line.

This CD entailed considerable design and implementation work. We areindebted to
Mike Hendrickson and the team at Addison-Wesley for theiron-going encouragement
and support. Jeff Helgesen, Jason Jones, andDaniel Savarese garner many thanks

mailto:design-patterns-cd@cs.uiuc.edu
mailto:gang-of-4-patterns@cs.uiuc.edu
http://hillside.net/patterns/

Design Patterns: Elements of Reusable Object-Oriented Software

6

for their development effort andfor patience despite what must appear to have
been our insatiableappetite for revision. A special acknowledgment is due IBM
Research,which continues to underwrite much of this activity. We also thankthe
reviewers, including Robert Brunner, Sandeep Dani, Bob Koss, ScottMeyers, Stefan
Schulz, and the Patterns Discussion Group at theUniversity of Illinois
Urbana-Champaign. Their advice led to at leastone major redesign and several minor
ones.

Finally, we thank all who have taken time to comment on DesignPatterns. Your
feedback has been invaluable to us as we striveto better our understanding and
presentation of this material.

Zurich, Switzerland E.G.
Sydney, Australia R.H.
Urbana, Illinois R.J.
Hawthorne, New York J.V.

August 1997

Design Patterns: Elements of Reusable Object-Oriented Software

7

Preface to Book

This book isn't an introduction to object-oriented technology or design. Many
books already do a good job of that. This book assumes you are reasonably proficient
in at least one object-oriented programming language, and you should have some
experience in object-oriented design as well. You definitely shouldn't have to
rush to the nearest dictionary the moment we mention "types" and "polymorphism,"
or "interface" as opposed to "implementation” inheritance.

On the other hand, this isn't an advanced technical treatise either. It’s a book
of design patterns that describes simple and elegant solutions to specific problems
in object-oriented software design. Design patterns capture solutions that have
developed and evolved overtime. Hence they aren't the designs people tend to
generate initially. They reflect untold redesign and recoding as developers have
struggled for greater reuse and flexibility in their software. Design patterns
capture these solutions in a succinct and easily applied form.

The design patterns require neither unusual language features nor amazing
programming tricks with which to astound your friends and managers. All can be
implemented in standard object-oriented languages, though they might take a little
more work than ad hoc solutions. But the extra effort invariably pays dividends
in increased flexibility and reusability.

Once you understand the design patterns and have had an "Aha!" (and not just a
"Huh?") experience with them, you won't ever think about object-oriented design
in the same way. You'll have insights that can make your own designs more flexible,
modular, reusable, and understandable—which is why you're interested in
object-oriented technology in the first place, right?

A word of warning and encouragement: Don't worry if you don’t understand this
book completely on the first reading. We didn’t understand it all on the first
writing! Remember that this isn't a book to read once and put on a shelf. We hope
you'll find yourself referring to it again and again for design insights and for
inspiration.

This book has had a long gestation. It has seen four countries, three of its authors'
marriages, and the birth of two (unrelated) offspring.Many people have had a part
in its development. Special thanks are due Bruce Anderson, Kent Beck, and André
Weinand for their inspiration and advice. We also thank those who reviewed drafts
of the manuscript: Roger Bielefeld, Grady Booch, Tom Cargill, Marshall Cline,
Ralph Hyre, Brian Kernighan, Thomas Laliberty, Mark Lorenz, Arthur Riel, Doug
Schmidt, Clovis Tondo, Steve Vinoski, andRebecca Wirfs-Brock. We are also grateful
to the team at Addison-Wesley for their help and patience: Kate Habib,Tiffany
Moore,Lisa Raffaele,Pradeepa Siva, and John Wait.Special thanks to Carl Kessler,

Design Patterns: Elements of Reusable Object-Oriented Software

8

Danny Sabbah, and Mark Wegman at IBMResearch for their unflagging support of this
work.

Last but certainly not least, we thank everyone on the Internet andpoints beyond
who commented on versions of the patterns, offeredencouraging words, and told
us that what we were doing was worthwhile.These people include but are not limited
toJon Avotins,Steve Berczuk,Julian Berdych,Matthias Bohlen,John Brant,Allan
Clarke,Paul Chisholm,Jens Coldewey,Dave Collins,Jim Coplien,Don
Dwiggins,Gabriele Elia,Doug Felt,Brian Foote,Denis Fortin,Ward Harold,Hermann
Hueni,Nayeem Islam,Bikramjit Kalra,Paul Keefer,Thomas Kofler,Doug Lea,Dan
LaLiberte,James Long,Ann Louise Luu,Pundi Madhavan,Brian Marick,Robert
Martin,Dave McComb,Carl McConnell,Christine Mingins,Hanspeter Mössenböck,Eric
Newton,Marianne Ozkan,Roxsan Payette,Larry Podmolik,George Radin,Sita
Ramakrishnan,Russ Ramirez,Alexander Ran,Dirk Riehle,Bryan Rosenburg,Aamod
Sane,Duri Schmidt,Robert Seidl,Xin Shu,and Bill Walker.

We don't consider this collection of design patterns complete andstatic; it's
more a recording of our current thoughts on design. Wewelcome comments on it,
whether criticisms of our examples, referencesand known uses we've missed, or
design patterns we should haveincluded. You can write us care of Addison-Wesley,
or send electronicmail to design-patterns@cs.uiuc.edu. You can also
obtainsoftcopy for the code in the Sample Code sections by sending themessage
"send design pattern source" to design-patterns-source@cs.uiuc.edu. And now
there's a Web page at
http://st-www.cs.uiuc.edu/users/patterns/DPBook/DPBook.html for late-breaking
information and updates.

Mountain View, California E.G.
Montreal, Quebec R.H.
Urbana, Illinois R.J.
Hawthorne, New York J.V.

August 1994

mailto:design-patterns@cs.uiuc.edu
mailto:design-patterns-source@cs.uiuc.edu
http://st-www.cs.uiuc.edu/users/patterns/DPBook/DPBook.html

Design Patterns: Elements of Reusable Object-Oriented Software

9

Foreword

Consider the work of a future software archeologist, tracingthe history of
computing. The fossil record will likely show clearstrata: here is a layer formed
of assembly language artifacts,there is a layer populated with the skeletons of
high orderprogramming languages (with certain calcified legacy partsprobably
still showing some signs of life). Each such layer willbe intersected with the
imprint of other factors that have shapedthe software landscape: components,
residue from the greatoperating system and browser wars, methods, processes, tools.
Eachline in this strata marks a definitive event: below that line,computing was
this way; above that line, the art of computing hadchanged.

Design Patterns draws such a line of demarcation;this is a work that represents
a change in the practice ofcomputing. Erich, Richard, Ralph, and John present
a compellingcase for the importance of patterns in crafting complex
systems.Additionally, they give us a language of common patterns that canbe used
in a variety of domains.

The impact of this work cannot be overstated. As I travel aboutthe world working
with projects of varying domains andcomplexities, it is uncommon for me to
encounter developers whohave not at least heard of the patterns movement. In the
moresuccessful projects, it is quite common to see many of thesedesign patterns
actually used.

With this book, the Gang of Four have made a seminalcontribution to software
engineering. There is much to learnedfrom them, and much to be actively applied.

Grady Booch
Chief Scientist, Rational Software Corporation

Design Patterns: Elements of Reusable Object-Oriented Software

10

Guide to Readers

This book has two main parts. The first part (Chapters 1 and 2)describes what
design patterns are and how they help you designobject-oriented software. It
includes a design case study thatdemonstrates how design patterns apply in practice.
The second partof the book (Chapters 3, 4, and 5) is a catalog of the actual
designpatterns.

The catalog makes up the majority of the book. Its chapters dividethe design
patterns into three types: creational, structural, andbehavioral. You can use
the catalog in several ways. You can readthe catalog from start to finish, or
you can just browse from patternto pattern. Another approach is to study one of
the chapters. Thatwill help you see how closely related patterns distinguish
themselves.

You can use the references between the patterns as a logicalroute through the
catalog. This approach will give you insightinto how patterns relate to each other,
how they can be combinedwith other patterns, and which patterns work well together.
Figure 1.1(page 23) depicts these references graphically.

Yet another way to read the catalog is to use a more problem-directedapproach.
Skip to Section 1.6 (page 23) to read about some common problems in designing
reusable object-orientedsoftware; then read the patterns that address these
problems. Somepeople read the catalog through first and then use aproblem-directed
approach to apply the patterns to their projects.

If you aren't an experienced object-oriented designer, then start withthe simplest
and most common patterns:

• Abstract Factory (page 99)
• Adapter (157)
• Composite (183)
• Decorator (196)
• Factory Method (121)
• Observer (326)
• Strategy (349)
• Template Method (360)

It's hard to find an object-oriented system that doesn't use at leasta couple
of these patterns, and large systems use nearly all of them.This subset will help
you understand design patterns in particular andgood object-oriented design in
general.

Design Patterns: Elements of Reusable Object-Oriented Software

11

1. Introduction

Designing object-oriented software is hard, and designing reusable
object-oriented software is even harder. You must find pertinent objects, factor
them into classes at the right granularity, define class interfaces and inheritance
hierarchies, and establish key relationships among them. Your design should be
specific to the problem at hand but also general enough to address future problems
and requirements. You also want to avoid redesign, or at least minimize it.
Experienced object-oriented designers will tell you that a reusable and flexible
design is difficult if not impossible to get "right" the first time. Before a
design is finished, they usually try to reuse it several times, modifying it each
time.

Yet experienced object-oriented designers do make good designs. Meanwhile new
designers are overwhelmed by the options available and tend to fall back on
non-object-oriented techniques they've used before. It takes a long time for
novices to learn what good object-oriented design is all about. Experienced
designers evidently know something inexperienced ones don't. What is it?

One thing expert designers know not to do is solve every problem from first
principles. Rather, they reuse solutions that have worked for them in the past.
When they find a good solution, they use it again and again. Such experience is
part of what makes them experts. Consequently, you'll find recurring patterns
of classes and communicating objects in many object-oriented systems. These
patterns solve specific design problems and make object-oriented designs more
flexible, elegant, and ultimately reusable. They help designers reuse successful
designs by basing new designs on prior experience. A designer who is familiar
with such patterns can apply them immediately to design problems without having
to rediscover them.

An analogy will help illustrate the point. Novelists and playwrights rarely design
their plots from scratch. Instead, they follow patterns like "Tragically Flawed
Hero" (Macbeth, Hamlet, etc.) or "The Romantic Novel" (countless romance novels).
In the same way, object-oriented designers follow patterns like "represent states
with objects" and "decorate objects so you can easily add/remove features." Once
you know the pattern, a lot of design decisions follow automatically.

We all know the value of design experience. How many times have you had design
déjà-vu—that feeling that you've solved a problem before but not knowing exactly
where or how? If you could remember the details of the previous problem and how
you solved it, then you could reuse the experience instead of rediscovering it.
However, we don't do a good job of recording experience in software design for
others to use.

Design Patterns: Elements of Reusable Object-Oriented Software

12

The purpose of this book is to record experience in designing object-oriented
software as design patterns. Each design pattern systematically names, explains,
and evaluates an important and recurring design in object-oriented systems. Our
goal is to capture design experience in a form that people can use effectively.
To this end we have documented some of the most important design patterns and
present them as a catalog.

Design patterns make it easier to reuse successful designs and architectures.
Expressing proven techniques as design patterns makes them more accessible to
developers of new systems. Design patterns help you choose design alternatives
that make a system reusable and avoid alternatives that compromise reusability.
Design patterns can even improve the documentation and maintenance of existing
systems by furnishing an explicit specification of class and object interactions
and their underlying intent. Put simply, design patterns help a designer get a
design "right" faster.

None of the design patterns in this book describes new or unproven designs. We
have included only designs that have been applied more than once in different
systems. Most of these designs have never been documented before. They are either
part of the folklore of the object-oriented community or are elements of some
successful object-oriented systems—neither of which is easy for novice designers
to learn from. So although these designs aren't new, we capture them in a new
and accessible way: as a catalog of design patterns having a consistent format.

Despite the book's size, the design patterns in it capture only a fraction of
what an expert might know. It doesn't have any patterns dealing with concurrency
or distributed programming or real-time programming. It doesn't have any
application domain-specific patterns. It doesn't tell you how to build user
interfaces, how to write device drivers, or how to use an object-oriented database.
Each of these areas has its own patterns, and it would be worthwhile for someone
to catalog those too.

What is a Design Pattern?

Christopher Alexander says, "Each pattern describes a problem which occurs over
and over again in our environment, and then describes the core of the solution
to that problem, in such a way that you can use this solution a million times
over, without ever doing it the same way twice" [AIS+77]. Even though Alexander
was talking about patterns in buildings and towns, what he says is true about
object-oriented design patterns. Our solutions are expressed in terms of objects
and interfaces instead of walls and doors, but at the core of both kinds of patterns
is a solution to a problem in a context.

In general, a pattern has four essential elements:

Design Patterns: Elements of Reusable Object-Oriented Software

13

1. The pattern name is a handle we can use to describe a design problem, its
solutions, and consequences in a word or two. Naming a pattern immediately
increases our design vocabulary. It lets us design at a higher level of
abstraction. Having a vocabulary for patterns lets us talk about them with
our colleagues, in our documentation, and even to ourselves. It makes it
easier to think about designs and to communicate them and their trade-offs
to others. Finding good names has been one of the hardest parts of developing
our catalog.

2. The problem describes when to apply the pattern. It explains the problem
and its context. It might describe specific design problems such as how
to represent algorithms as objects. It might describe class or object
structures that are symptomatic of an inflexible design. Sometimes the
problem will include a list of conditions that must be met before it makes
sense to apply the pattern.

3. The solution describes the elements that make up the design, their
relationships, responsibilities, and collaborations. The solution doesn't
describe a particular concrete design or implementation, because a pattern
is like a template that can be applied in many different situations. Instead,
the pattern provides an abstract description of a design problem and how
a general arrangement of elements (classes and objects in our case) solves
it.

4. The consequences are the results and trade-offs of applying the pattern.
Though consequences are often unvoiced when we describe design decisions,
they are critical for evaluating design alternatives and for understanding
the costs and benefits of applying the pattern. The consequences for
software often concern space and time trade-offs. They may address language
and implementation issues as well. Since reuse is often a factor in
object-oriented design, the consequences of a pattern include its impact
on a system's flexibility, extensibility, or portability. Listing these
consequences explicitly helps you understand and evaluate them.

Point of view affects one's interpretation of what is and isn't a pattern. One
person's pattern can be another person's primitive building block. For this book
we have concentrated on patterns at a certain level of abstraction. Design patterns
are not about designs such as linked lists and hash tables that can be encoded
in classes and reused as is. Nor are they complex, domain-specific designs for
an entire application or subsystem. The design patterns in this book are
descriptions of communicating objects and classes that are customized to solve

a general design problem in a particular context.

A design pattern names, abstracts, and identifies the key aspects of a common
design structure that make it useful for creating a reusable object-oriented design.
The design pattern identifies the participating classes and instances, their roles
and collaborations, and the distribution of responsibilities. Each design pattern

Robin Hood
Underline

Design Patterns: Elements of Reusable Object-Oriented Software

14

focuses on a particular object-oriented design problem or issue. It describes
when it applies, whether it can be applied in view of other design constraints,
and the consequences and trade-offs of its use. Since we must eventually implement
our designs, a design pattern also provides sample C++ and (sometimes) Smalltalk
code to illustrate an implementation.

Although design patterns describe object-oriented designs, they are based on
practical solutions that have been implemented in mainstream object-oriented
programming languages like Smalltalk and C++ rather than procedural languages
(Pascal, C, Ada) or more dynamic object-oriented languages (CLOS, Dylan, Self).
We chose Smalltalk and C++ for pragmatic reasons: Our day-to-day experience has
been in these languages, and they are increasingly popular.

The choice of programming language is important because it influences one's point
of view. Our patterns assume Smalltalk/C++-level language features, and that
choice determines what can and cannot be implemented easily. If we assumed
procedural languages, we might have included design patterns called "Inheritance,"
"Encapsulation," and "Polymorphism." Similarly, some of our patterns are supported
directly by the less common object-oriented languages. CLOS has multi-methods,
for example, which lessen the need for a pattern such as Visitor (page 366). In
fact, there are enough differences between Smalltalk and C++ to mean that some
patterns can be expressed more easily in one language than the other. (See Iterator
(289) for an example.)

Design Patterns in Smalltalk MVC

The Model/View/Controller (MVC) triad of classes [KP88] is used to build user
interfaces in Smalltalk-80. Looking at the design patterns inside MVC should help
you see what we mean by the term "pattern."

MVC consists of three kinds of objects. The Model is the application object, the
View is its screen presentation, and the Controller defines the way the user
interface reacts to user input. Before MVC, user interface designs tended to lump
these objects together. MVC decouples them to increase flexibility and reuse.

MVC decouples views and models by establishing a subscribe/notify protocol between
them. A view must ensure that its appearance reflects the state of the model.
Whenever the model's data changes, the model notifies views that depend on it.
In response, each view gets an opportunity to update itself. This approach lets
you attach multiple views to a model to provide different presentations. You can
also create new views for a model without rewriting it.

The following diagram shows a model and three views. (We've left out the controllers
for simplicity.) The model contains some data values, and the views defining a

Design Patterns: Elements of Reusable Object-Oriented Software

15

spreadsheet, histogram, and pie chart display these data in various ways. The
model communicates with its views when its values change, and the views communicate
with the model to access these values.

Taken at face value, this example reflects a design that decouples views from
models. But the design is applicable to a more general problem: decoupling objects
so that changes to one can affect any number of others without requiring the changed
object to know details of the others. This more general design is described by
the Observer (page 326) design pattern.

Another feature of MVC is that views can be nested. For example, a control panel
of buttons might be implemented as a complex view containing nested button views.
The user interface for an object inspector can consist of nested views that may
be reused in a debugger. MVC supports nested views with the CompositeView class,
a subclass of View. CompositeView objects act just like View objects; a composite
view can be used wherever a view can be used, but it also contains and manages
nested views.

Again, we could think of this as a design that lets us treat a composite view
just like we treat one of its components. But the design is applicable to a more
general problem, which occurs whenever we want to group objects and treat the
group like an individual object. This more general design is described by the

Design Patterns: Elements of Reusable Object-Oriented Software

16

Composite (183) design pattern. It lets you create a class hierarchy in which
some subclasses define primitive objects (e.g., Button) and other classes define
composite objects (CompositeView) that assemble the primitives into more complex
objects.

MVC also lets you change the way a view responds to user input without changing
its visual presentation. You might want to change the way it responds to the keyboard,
for example, or have it use a pop-up menu instead of command keys. MVC encapsulates
the response mechanism in a Controller object. There is a class hierarchy of
controllers, making it easy to create a new controller as a variation on an existing
one.

A view uses an instance of a Controller subclass to implement a particular response
strategy; to implement a different strategy, simply replace the instance with
a different kind of controller. It's even possible to change a view's controller
at run-time to let the view change the way it responds to user input. For example,
a view can be disabled so that it doesn't accept input simply by giving it a
controller that ignores input events.

The View-Controller relationship is an example of the Strategy (349) design pattern.
A Strategy is an object that represents an algorithm. It's useful when you want
to replace the algorithm either statically or dynamically, when you have a lot
of variants of the algorithm, or when the algorithm has complex data structures
that you want to encapsulate.

MVC uses other design patterns, such as Factory Method (121) to specify the default
controller class for a view and Decorator (196) to add scrolling to a view. But
the main relationships in MVC are given by the Observer, Composite, and Strategy
design patterns.

Describing Design Patterns

How do we describe design patterns? Graphical notations, while important and
useful, aren't sufficient. They simply capture the end product of the design
process as relationships between classes and objects. To reuse the design, we
must also record the decisions, alternatives, and trade-offs that led to it.
Concrete examples are important too, because they help you see the design in action.

We describe design patterns using a consistent format. Each pattern is divided
into sections according to the following template. The template lends a uniform
structure to the information, making design patterns easier to learn, compare,
and use.

Pattern Name and Classification

Design Patterns: Elements of Reusable Object-Oriented Software

17

The pattern's name conveys the essence of the pattern succinctly. A
good name is vital, because it will become part of your design vocabulary.
The pattern's classification reflects the scheme we introduce in Section
1.5.

Intent

A short statement that answers the following questions: What does the
design pattern do? What is its rationale and intent? What particular design
issue or problem does it address?

Also Known As

Other well-known names for the pattern, if any.

Motivation

A scenario that illustrates a design problem and how the class and object
structures in the pattern solve the problem. The scenario will help you
understand the more abstract description of the pattern that follows.

Applicability

What are the situations in which the design pattern can be applied?
What are examples of poor designs that the pattern can address? How can
you recognize these situations?

Structure

A graphical representation of the classes in the pattern using a notation
based on the Object Modeling Technique (OMT) [RBP+91]. We also use
interaction diagrams [JCJO92, Boo94] to illustrate sequences of requests
and collaborations between objects. Appendix B describes these notations
in detail.

Participants

The classes and/or objects participating in the design pattern and their
responsibilities.

Collaborations

How the participants collaborate to carry out their responsibilities.

Consequences

Design Patterns: Elements of Reusable Object-Oriented Software

18

How does the pattern support its objectives? What are the trade-offs
and results of using the pattern? What aspect of system structure does it
let you vary independently?

Implementation

What pitfalls, hints, or techniques should you be aware of when
implementing the pattern? Are there language-specific issues?

Sample Code

Code fragments that illustrate how you might implement the pattern in
C++ or Smalltalk.

Known Uses

Examples of the pattern found in real systems. We include at least two
examples from different domains.

Related Patterns

What design patterns are closely related to this one? What are the
important differences? With which other patterns should this one be used?

The appendices provide background information that will help you understand the
patterns and the discussions surrounding them. Appendix A is a glossary of
terminology we use. We've already mentioned Appendix B, which presents the various
notations. We'll also describe aspects of the notations as we introduce them in
the upcoming discussions. Finally, Appendix C contains source code for the
foundation classes we use in code samples.

The Catalog of Design Patterns

The catalog beginning on page 93 contains 23 design patterns. Their names and
intents are listed next to give you an overview. The number in parentheses after
each pattern name gives the page number for the pattern (a convention we follow
throughout the book).

Abstract Factory (99)

Provide an interface for creating families of related or dependent
objects without specifying their concrete classes.

Adapter (157)

Design Patterns: Elements of Reusable Object-Oriented Software

19

Convert the interface of a class into another interface clients expect.
Adapter lets classes work together that couldn't otherwise because of
incompatible interfaces.

Bridge (171)

Decouple an abstraction from its implementation so that the two can
vary independently.

Builder (110)

Separate the construction of a complex object from its representation
so that the same construction process can create different representations.

Chain of Responsibility (251)

Avoid coupling the sender of a request to its receiver by giving more
than one object a chance to handle the request. Chain the receiving objects
and pass the request along the chain until an object handles it.

Command (263)

Encapsulate a request as an object, thereby letting you parameterize
clients with different requests, queue or log requests, and support undoable
operations.

Composite (183)

Compose objects into tree structures to represent part-whole
hierarchies. Composite lets clients treat individual objects and
compositions of objects uniformly.

Decorator (196)

Attach additional responsibilities to an object dynamically. Decorators
provide a flexible alternative to subclassing for extending functionality.

Facade (208)

Provide a unified interface to a set of interfaces in a subsystem. Facade
defines a higher-level interface that makes the subsystem easier to use.

Factory Method (121)

Define an interface for creating an object, but let subclasses decide
which class to instantiate. Factory Method lets a class defer instantiation

Design Patterns: Elements of Reusable Object-Oriented Software

20

to subclasses.

Flyweight (218)

Use sharing to support large numbers of fine-grained objects
efficiently.

Interpreter (274)

Given a language, define a represention for its grammar along with an
interpreter that uses the representation to interpret sentences in the
language.

Iterator (289)

Provide a way to access the elements of an aggregate object sequentially
without exposing its underlying representation.

Mediator (305)

Define an object that encapsulates how a set of objects interact.
Mediator promotes loose coupling by keeping objects from referring to each
other explicitly, and it lets you vary their interaction independently.

Memento (316)

Without violating encapsulation, capture and externalize an object's
internal state so that the object can be restored to this state later.

Observer (326)

Define a one-to-many dependency between objects so that when one object
changes state, all its dependents are notified and updated automatically.

Prototype (133)

Specify the kinds of objects to create using a prototypical instance,
and create new objects by copying this prototype.

Proxy (233)

Provide a surrogate or placeholder for another object to control access
to it.

Singleton (144)

Design Patterns: Elements of Reusable Object-Oriented Software

21

Ensure a class only has one instance, and provide a global point of
access to it.

State (338)

Allow an object to alter its behavior when its internal state changes.
The object will appear to change its class.

Strategy (349)

Define a family of algorithms, encapsulate each one, and make them
interchangeable. Strategy lets the algorithm vary independently from
clients that use it.

Template Method (360)

Define the skeleton of an algorithm in an operation, deferring some
steps to subclasses. Template Method lets subclasses redefine certain steps
of an algorithm without changing the algorithm's structure.

Visitor (366)

Represent an operation to be performed on the elements of an object
structure. Visitor lets you define a new operation without changing the
classes of the elements on which it operates.

Organizing the Catalog

Design patterns vary in their granularity and level of abstraction. Because there
are many design patterns, we need a way to organize them. This section classifies
design patterns so that we can refer to families of related patterns. The
classification helps you learn the patterns in the catalog faster, and it can
direct efforts to find new patterns as well.

We classify design patterns by two criteria (Table 1.1). The first criterion,
called purpose, reflects what a pattern does. Patterns can have either creational,
structural, or behavioral purpose. Creational patterns concern the process of
object creation. Structural patterns deal with the composition of classes or
objects. Behavioral patterns characterize the ways in which classes or objects
interact and distribute responsibility.

Purpose
Creational Structural Behavioral

Design Patterns: Elements of Reusable Object-Oriented Software

22

Class Factory Method (121) Adapter (157) Interpreter (274)
Template Method (360)

Scope

Object Abstract Factory (99)
Builder (110)
Prototype (133)
Singleton (144)

Adapter (157)
Bridge (171)
Composite (183)
Decorator (196)
Facade (208)
Flyweight (218)
Proxy (233)

Chain of Responsibility
(251)
Command (263)
Iterator (289)
Mediator (305)
Memento (316)
Observer (326)
State (338)
Strategy (349)
Visitor (366)

Table 1.1: Design pattern space

The second criterion, called scope, specifies whether the pattern applies
primarily to classes or to objects. Class patterns deal with relationships between
classes and their subclasses. These relationships are established through
inheritance, so they are static—fixed at compile-time. Object patterns deal with
object relationships, which can be changed at run-time and are more dynamic. Almost
all patterns use inheritance to some extent. So the only patterns labeled "class
patterns" are those that focus on class relationships. Note that most patterns
are in the Object scope.

Creational class patterns defer some part of object creation to subclasses, while
Creational object patterns defer it to another object. The Structural class
patterns use inheritance to compose classes, while the Structural object patterns
describe ways to assemble objects. The Behavioral class patterns use inheritance
to describe algorithms and flow of control, whereas the Behavioral object patterns
describe how a group of objects cooperate to perform a task that no single object
can carry out alone.

There are other ways to organize the patterns. Some patterns are often used together.
For example, Composite is often used with Iterator or Visitor. Some patterns are
alternatives: Prototype is often an alternative to Abstract Factory. Some patterns
result in similar designs even though the patterns have different intents. For
example, the structure diagrams of Composite and Decorator are similar.

Yet another way to organize design patterns is according to how they reference
each other in their "Related Patterns" sections. Figure 1.1 depicts these
relationships graphically.

Design Patterns: Elements of Reusable Object-Oriented Software

23

Clearly there are many ways to organize design patterns. Having multiple ways
of thinking about patterns will deepen your insight into what they do, how they
compare, and when to apply them.

Figure 1.1: Design pattern relationships

How Design Patterns Solve Design Problems

Design patterns solve many of the day-to-day problems object-oriented designers
face, and in many different ways. Here are several of these problems and how design
patterns solve them.

Design Patterns: Elements of Reusable Object-Oriented Software

24

Finding Appropriate Objects

Object-oriented programs are made up of objects. An object packages both data
and the procedures that operate on that data. The procedures are typically called
methods or operations. An object performs an operation when it receives a request
(or message) from a client.

Requests are the only way to get an object to execute an operation. Operations
are the only way to change an object's internal data. Because of these restrictions,
the object's internal state is said to be encapsulated; it cannot be accessed
directly, and its representation is invisible from outside the object.

The hard part about object-oriented design is decomposing a system into objects.
The task is difficult because many factors come into play: encapsulation,
granularity, dependency, flexibility, performance, evolution, reusability, and
on and on. They all influence the decomposition, often in conflicting ways.

Object-oriented design methodologies favor many different approaches. You can
write a problem statement, single out the nouns and verbs, and create corresponding
classes and operations. Or you can focus on the collaborations and responsibilities
in your system. Or you can model the real world and translate the objects found
during analysis into design. There will always be disagreement on which approach
is best.

Many objects in a design come from the analysis model. But object-oriented designs
often end up with classes that have no counterparts in the real world. Some of
these are low-level classes like arrays. Others are much higher-level. For example,
the Composite (183) pattern introduces an abstraction for treating objects
uniformly that doesn't have a physical counterpart. Strict modeling of the real
world leads to a system that reflects today's realities but not necessarily
tomorrow's. The abstractions that emerge during design are key to making a design
flexible.

Design patterns help you identify less-obvious abstractions and the objects that
can capture them. For example, objects that represent a process or algorithm don't
occur in nature, yet they are a crucial part of flexible designs. The Strategy
(349) pattern describes how to implement interchangeable families of algorithms.
The State (338) pattern represents each state of an entity as an object. These
objects are seldom found during analysis or even the early stages of design; they're
discovered later in the course of making a design more flexible and reusable.

Design Patterns: Elements of Reusable Object-Oriented Software

25

Determining Object Granularity

Objects can vary tremendously in size and number. They can represent everything
down to the hardware or all the way up to entire applications. How do we decide
what should be an object?

Design patterns address this issue as well. The Facade (208) pattern describes
how to represent complete subsystems as objects, and the Flyweight (218) pattern
describes how to support huge numbers of objects at the finest granularities.
Other design patterns describe specific ways of decomposing an object into smaller
objects. Abstract Factory (99) and Builder (110) yield objects whose only
responsibilities are creating other objects. Visitor (366) and Command (263) yield
objects whose only responsibilities are to implement a request on another object
or group of objects.

Specifying Object Interfaces

Every operation declared by an object specifies the operation's name, the objects
it takes as parameters, and the operation's return value. This is known as the
operation's signature. The set of all signatures defined by an object's operations
is called the interface to the object. An object's interface characterizes the
complete set of requests that can be sent to the object. Any request that matches
a signature in the object's interface may be sent to the object.

A type is a name used to denote a particular interface. We speak of an object
as having the type "Window" if it accepts all requests for the operations defined
in the interface named "Window." An object may have many types, and widely different
objects can share a type. Part of an object's interface may be characterized by
one type, and other parts by other types. Two objects of the same type need only
share parts of their interfaces. Interfaces can contain other interfaces as subsets.
We say that a type is a subtype of another if its interface contains the interface
of its supertype. Often we speak of a subtype inheriting the interface of its
supertype.

Interfaces are fundamental in object-oriented systems. Objects are known only
through their interfaces. There is no way to know anything about an object or
to ask it to do anything without going through its interface. An object's interface
says nothing about its implementation—different objects are free to implement
requests differently. That means two objects having completely different
implementations can have identical interfaces.

When a request is sent to an object, the particular operation that's performed
depends on both the request and the receiving object. Different objects that
support identical requests may have different implementations of the operations

Design Patterns: Elements of Reusable Object-Oriented Software

26

that fulfill these requests. The run-time association of a request to an object
and one of its operations is known as dynamic binding.

Dynamic binding means that issuing a request doesn't commit you to a particular
implementation until run-time. Consequently, you can write programs that expect
an object with a particular interface, knowing that any object that has the correct
interface will accept the request. Moreover, dynamic binding lets you substitute
objects that have identical interfaces for each other at run-time. This
substitutability is known as polymorphism, and it's a key concept in
object-oriented systems. It lets a client object make few assumptions about other
objects beyond supporting a particular interface. Polymorphism simplifies the
definitions of clients, decouples objects from each other, and lets them vary
their relationships to each other at run-time.

Design patterns help you define interfaces by identifying their key elements and
the kinds of data that get sent across an interface. A design pattern might also
tell you what not to put in the interface. The Memento (316) pattern is a good
example. It describes how to encapsulate and save the internal state of an object
so that the object can be restored to that state later. The pattern stipulates
that Memento objects must define two interfaces: a restricted one that lets clients
hold and copy mementos, and a privileged one that only the original object can
use to store and retrieve state in the memento.

Design patterns also specify relationships between interfaces. In particular,
they often require some classes to have similar interfaces, or they place
constraints on the interfaces of some classes. For example, both Decorator (196)
and Proxy (233) require the interfaces of Decorator and Proxy objects to be
identical to the decorated and proxied objects. In Visitor (366), the Visitor
interface must reflect all classes of objects that visitors can visit.

Specifying Object Implementations

So far we've said little about how we actually define an object. An object's
implementation is defined by its class. The class specifies the object's internal
data and representation and defines the operations the object can perform.

Our OMT-based notation (summarized in Appendix B) depicts a class as a rectangle
with the class name in bold. Operations appear in normal type below the class
name. Any data that the class defines comes after the operations. Lines separate
the class name from the operations and the operations from the data:

Design Patterns: Elements of Reusable Object-Oriented Software

27

Return types and instance variable types are optional, since we don't assume a
statically typed implementation language.

Objects are created by instantiating a class. The object is said to be an instance
of the class. The process of instantiating a class allocates storage for the
object's internal data (made up of instance variables) and associates the
operations with these data. Many similar instances of an object can be created
by instantiating a class.

A dashed arrowhead line indicates a class that instantiates objects of another
class. The arrow points to the class of the instantiated objects.

New classes can be defined in terms of existing classes using class inheritance.
When a subclass inherits from a parent class, it includes the definitions of all
the data and operations that the parent class defines. Objects that are instances
of the subclass will contain all data defined by the subclass and its parent classes,
and they'll be able to perform all operations defined by this subclass and its
parents. We indicate the subclass relationship with a vertical line and a triangle:

An abstract class is one whose main purpose is to define a common interface for
its subclasses. An abstract class will defer some or all of its implementation
to operations defined in subclasses; hence an abstract class cannot be instantiated.

Design Patterns: Elements of Reusable Object-Oriented Software

28

The operations that an abstract class declares but doesn't implement are called
abstract operations. Classes that aren't abstract are called concrete classes.

Subclasses can refine and redefine behaviors of their parent classes. More
specifically, a class may override an operation defined by its parent class.
Overriding gives subclasses a chance to handle requests instead of their parent
classes. Class inheritance lets you define classes simply by extending other
classes, making it easy to define families of objects having related functionality.

The names of abstract classes appear in slanted type to distinguish them from
concrete classes. Slanted type is also used to denote abstract operations. A
diagram may include pseudocode for an operation's implementation; if so, the code
will appear in a dog-eared box connected by a dashed line to the operation it
implements.

A mixin class is a class that's intended to provide an optional interface or
functionality to other classes. It's similar to an abstract class in that it's
not intended to be instantiated. Mixin classes require multiple inheritance:

Design Patterns: Elements of Reusable Object-Oriented Software

29

Class versus Interface Inheritance

It's important to understand the difference between an object's class and its
type.

An object's class defines how the object is implemented. The class defines the
object's internal state and the implementation of its operations. In contrast,
an object's type only refers to its interface—the set of requests to which it
can respond. An object can have many types, and objects of different classes can
have the same type.

Of course, there's a close relationship between class and type. Because a class
defines the operations an object can perform, it also defines the object's type.
When we say that an object is an instance of a class, we imply that the object
supports the interface defined by the class.

Languages like C++ and Eiffel use classes to specify both an object's type and
its implementation. Smalltalk programs do not declare the types of variables;
consequently, the compiler does not check that the types of objects assigned to
a variable are subtypes of the variable's type. Sending a message requires checking
that the class of the receiver implements the message, but it doesn't require
checking that the receiver is an instance of a particular class.

It's also important to understand the difference between class inheritance and
interface inheritance (or subtyping). Class inheritance defines an object's
implementation in terms of another object's implementation. In short, it's a
mechanism for code and representation sharing. In contrast, interface inheritance
(or subtyping) describes when an object can be used in place of another.

It's easy to confuse these two concepts, because many languages don't make the
distinction explicit. In languages like C++ and Eiffel, inheritance means both
interface and implementation inheritance. The standard way to inherit an interface
in C++ is to inherit publicly from a class that has (pure) virtual member functions.
Pure interface inheritance can be approximated in C++ by inheriting publicly from
pure abstract classes. Pure implementation or class inheritance can be
approximated with private inheritance. In Smalltalk, inheritance means just
implementation inheritance. You can assign instances of any class to a variable
as long as those instances support the operation performed on the value of the
variable.

Although most programming languages don't support the distinction between
interface and implementation inheritance, people make the distinction in practice.
Smalltalk programmers usually act as if subclasses were subtypes (though there

Design Patterns: Elements of Reusable Object-Oriented Software

30

are some well-known exceptions [Coo92]); C++ programmers manipulate objects
through types defined by abstract classes.

Many of the design patterns depend on this distinction. For example, objects in
a Chain of Responsibility (251) must have a common type, but usually they don't
share a common implementation. In the Composite (183) pattern, Component defines
a common interface, but Composite often defines a common implementation. Command
(263), Observer (326), State (338), and Strategy (349) are often implemented with
abstract classes that are pure interfaces.

Programming to an Interface, not an Implementation

Class inheritance is basically just a mechanism for extending an application's
functionality by reusing functionality in parent classes. It lets you define a
new kind of object rapidly in terms of an old one. It lets you get new implementations
almost for free, inheriting most of what you need from existing classes.

However, implementation reuse is only half the story. Inheritance's ability to
define families of objects with identical interfaces (usually by inheriting from
an abstract class) is also important. Why? Because polymorphism depends on it.

When inheritance is used carefully (some will say properly), all classes derived
from an abstract class will share its interface. This implies that a subclass
merely adds or overrides operations and does not hide operations of the parent
class. All subclasses can then respond to the requests in the interface of this
abstract class, making them all subtypes of the abstract class.

There are two benefits to manipulating objects solely in terms of the interface
defined by abstract classes:

1. Clients remain unaware of the specific types of objects they use, as long
as the objects adhere to the interface that clients expect.

2. Clients remain unaware of the classes that implement these objects. Clients
only know about the abstract class(es) defining the interface.

This so greatly reduces implementation dependencies between subsystems that it
leads to the following principle of reusable object-oriented design:

Program to an interface, not an implementation.

Don't declare variables to be instances of particular concrete classes. Instead,
commit only to an interface defined by an abstract class. You will find this to
be a common theme of the design patterns in this book.

Design Patterns: Elements of Reusable Object-Oriented Software

31

You have to instantiate concrete classes (that is, specify a particular
implementation) somewhere in your system, of course, and the creational patterns
(Abstract Factory (99), Builder (110), Factory Method (121), Prototype (133),
and Singleton (144) let you do just that. By abstracting the process of object
creation, these patterns give you different ways to associate an interface with
its implementation transparently at instantiation. Creational patterns ensure
that your system is written in terms of interfaces, not implementations.

Putting Reuse Mechanisms to Work

Most people can understand concepts like objects, interfaces, classes, and
inheritance. The challenge lies in applying them to build flexible, reusable
software, and design patterns can show you how.

Inheritance versus Composition

The two most common techniques for reusing functionality in object-oriented
systems are class inheritance and object composition. As we've explained, class
inheritance lets you define the implementation of one class in terms of another's.
Reuse by subclassing is often referred to as white-box reuse. The term "white-box"
refers to visibility: With inheritance, the internals of parent classes are often
visible to subclasses.

Object composition is an alternative to class inheritance. Here, new functionality
is obtained by assembling or composing objects to get more complex functionality.
Object composition requires that the objects being composed have well-defined
interfaces. This style of reuse is called black-box reuse, because no internal
details of objects are visible. Objects appear only as "black boxes."

Inheritance and composition each have their advantages and disadvantages. Class
inheritance is defined statically at compile-time and is straightforward to use,
since it's supported directly by the programming language. Class inheritance also
makes it easier to modify the implementation being reused. When a subclass
overrides some but not all operations, it can affect the operations it inherits
as well, assuming they call the overridden operations.

But class inheritance has some disadvantages, too. First, you can't change the
implementations inherited from parent classes at run-time, because inheritance
is defined at compile-time. Second, and generally worse, parent classes often
define at least part of their subclasses' physical representation. Because
inheritance exposes a subclass to details of its parent's implementation, it's
often said that "inheritance breaks encapsulation" [Sny86]. The implementation
of a subclass becomes so bound up with the implementation of its parent class
that any change in the parent's implementation will force the subclass to change.

Design Patterns: Elements of Reusable Object-Oriented Software

32

Implementation dependencies can cause problems when you're trying to reuse a
subclass. Should any aspect of the inherited implementation not be appropriate
for new problem domains, the parent class must be rewritten or replaced by something
more appropriate. This dependency limits flexibility and ultimately reusability.
One cure for this is to inherit only from abstract classes, since they usually
provide little or no implementation.

Object composition is defined dynamically at run-time through objects acquiring
references to other objects. Composition requires objects to respect each others'
interfaces, which in turn requires carefully designed interfaces that don't stop
you from using one object with many others. But there is a payoff. Because objects
are accessed solely through their interfaces, we don't break encapsulation. Any
object can be replaced at run-time by another as long as it has the same type.
Moreover, because an object's implementation will be written in terms of object
interfaces, there are substantially fewer implementation dependencies.

Object composition has another effect on system design. Favoring object
composition over class inheritance helps you keep each class encapsulated and
focused on one task. Your classes and class hierarchies will remain small and
will be less likely to grow into unmanageable monsters. On the other hand, a design
based on object composition will have more objects (if fewer classes), and the
system's behavior will depend on their interrelationships instead of being defined
in one class.

That leads us to our second principle of object-oriented design:

Favor object composition over class inheritance.

Ideally, you shouldn't have to create new components to achieve reuse. You should
be able to get all the functionality you need just by assembling existing components
through object composition. But this is rarely the case, because the set of
available components is never quite rich enough in practice. Reuse by inheritance
makes it easier to make new components that can be composed with old ones.
Inheritance and object composition thus work together.

Nevertheless, our experience is that designers overuse inheritance as a reuse
technique, and designs are often made more reusable (and simpler) by depending
more on object composition. You'll see object composition applied again and again
in the design patterns.

Delegation

Delegation is a way of making composition as powerful for reuse as inheritance
[Lie86, JZ91]. In delegation, two objects are involved in handling a request:

Design Patterns: Elements of Reusable Object-Oriented Software

33

a receiving object delegates operations to its delegate. This is analogous to
subclasses deferring requests to parent classes. But with inheritance, an
inherited operation can always refer to the receiving object through the this
member variable in C++ and self in Smalltalk. To achieve the same effect with
delegation, the receiver passes itself to the delegate to let the delegated
operation refer to the receiver.

For example, instead of making class Window a subclass of Rectangle (because
windows happen to be rectangular), the Window class might reuse the behavior of
Rectangle by keeping a Rectangle instance variable and delegating
Rectangle-specific behavior to it. In other words, instead of a Window being a
Rectangle, it would have a Rectangle. Window must now forward requests to its
Rectangle instance explicitly, whereas before it would have inherited those
operations.

The following diagram depicts the Window class delegating its Area operation to
a Rectangle instance.

A plain arrowhead line indicates that a class keeps a reference to an instance
of another class. The reference has an optional name, "rectangle" in this case.

The main advantage of delegation is that it makes it easy to compose behaviors
at run-time and to change the way they're composed. Our window can become circular
at run-time simply by replacing its Rectangle instance with a Circle instance,
assuming Rectangle and Circle have the same type.

Delegation has a disadvantage it shares with other techniques that make software
more flexible through object composition: Dynamic, highly parameterized software
is harder to understand than more static software. There are also run-time
inefficiencies, but the human inefficiencies are more important in the long run.
Delegation is a good design choice only when it simplifies more than it complicates.
It isn't easy to give rules that tell you exactly when to use delegation, because
how effective it will be depends on the context and on how much experience you

Design Patterns: Elements of Reusable Object-Oriented Software

34

have with it. Delegation works best when it's used in highly stylized ways—that
is, in standard patterns.

Several design patterns use delegation. The State (338), Strategy (349), and
Visitor (366) patterns depend on it. In the State pattern, an object delegates
requests to a State object that represents its current state. In the Strategy
pattern, an object delegates a specific request to an object that represents a
strategy for carrying out the request. An object will only have one state, but
it can have many strategies for different requests. The purpose of both patterns
is to change the behavior of an object by changing the objects to which it delegates
requests. In Visitor, the operation that gets performed on each element of an
object structure is always delegated to the Visitor object.

Other patterns use delegation less heavily. Mediator (305) introduces an object
to mediate communication between other objects. Sometimes the Mediator object
implements operations simply by forwarding them to the other objects; other times
it passes along a reference to itself and thus uses true delegation. Chain of
Responsibility (251) handles requests by forwarding them from one object to another
along a chain of objects. Sometimes this request carries with it a reference to
the original object receiving the request, in which case the pattern is using
delegation. Bridge (171) decouples an abstraction from its implementation. If
the abstraction and a particular implementation are closely matched, then the
abstraction may simply delegate operations to that implementation.

Delegation is an extreme example of object composition. It shows that you can
always replace inheritance with object composition as a mechanism for code reuse.

Inheritance versus Parameterized Types

Another (not strictly object-oriented) technique for reusing functionality is
through parameterized types, also known as generics (Ada, Eiffel) and templates
(C++). This technique lets you define a type without specifying all the other
types it uses. The unspecified types are supplied as parameters at the point of
use. For example, a List class can be parameterized by the type of elements it
contains. To declare a list of integers, you supply the type "integer" as a parameter
to the List parameterized type. To declare a list of String objects, you supply
the "String" type as a parameter. The language implementation will create a
customized version of the List class template for each type of element.

Parameterized types give us a third way (in addition to class inheritance and
object composition) to compose behavior in object-oriented systems. Many designs
can be implemented using any of these three techniques. To parameterize a sorting
routine by the operation it uses to compare elements, we could make the comparison

Design Patterns: Elements of Reusable Object-Oriented Software

35

1. an operation implemented by subclasses (an application of Template Method
(360),

2. the responsibility of an object that's passed to the sorting routine
(Strategy (349), or

3. an argument of a C++ template or Ada generic that specifies the name of
the function to call to compare the elements.

There are important differences between these techniques. Object composition lets
you change the behavior being composed at run-time, but it also requires
indirection and can be less efficient. Inheritance lets you provide default
implementations for operations and lets subclasses override them. Parameterized
types let you change the types that a class can use. But neither inheritance nor
parameterized types can change at run-time. Which approach is best depends on
your design and implementation constraints.

None of the patterns in this book concerns parameterized types, though we use
them on occasion to customize a pattern's C++ implementation. Parameterized types
aren't needed at all in a language like Smalltalk that doesn't have compile-time
type checking.

Relating Run-Time and Compile-Time Structures

An object-oriented program's run-time structure often bears little resemblance
to its code structure. The code structure is frozen at compile-time; it consists
of classes in fixed inheritance relationships. A program's run-time structure
consists of rapidly changing networks of communicating objects. In fact, the two
structures are largely independent. Trying to understand one from the other is
like trying to understand the dynamism of living ecosystems from the static
taxonomy of plants and animals, and vice versa.

Consider the distinction between object aggregation and acquaintance and how
differently they manifest themselves at compile- and run-times. Aggregation
implies that one object owns or is responsible for another object. Generally we
speak of an object having or being part of another object. Aggregation implies
that an aggregate object and its owner have identical lifetimes.

Acquaintance implies that an object merely knows of another object. Sometimes
acquaintance is called "association" or the "using" relationship. Acquainted
objects may request operations of each other, but they aren't responsible for
each other. Acquaintance is a weaker relationship than aggregation and suggests
much looser coupling between objects.

In our diagrams, a plain arrowhead line denotes acquaintance. An arrowhead line
with a diamond at its base denotes aggregation:

Design Patterns: Elements of Reusable Object-Oriented Software

36

It's easy to confuse aggregation and acquaintance, because they are often
implemented in the same way. In Smalltalk, all variables are references to other
objects. There's no distinction in the programming language between aggregation
and acquaintance. In C++, aggregation can be implemented by defining member
variables that are real instances, but it's more common to define them as pointers
or references to instances. Acquaintance is implemented with pointers and
references as well.

Ultimately, acquaintance and aggregation are determined more by intent than by
explicit language mechanisms. The distinction may be hard to see in the
compile-time structure, but it's significant. Aggregation relationships tend to
be fewer and more permanent than acquaintance. Acquaintances, in contrast, are
made and remade more frequently, sometimes existing only for the duration of an
operation. Acquaintances are more dynamic as well, making them more difficult
to discern in the source code.

With such disparity between a program's run-time and compile-time structures,
it's clear that code won't reveal everything about how a system will work. The
system's run-time structure must be imposed more by the designer than the language.
The relationships between objects and their types must be designed with great
care, because they determine how good or bad the run-time structure is.

Many design patterns (in particular those that have object scope) capture the
distinction between compile-time and run-time structures explicitly. Composite
(183) and Decorator (196) are especially useful for building complex run-time
structures. Observer (326) involves run-time structures that are often hard to
understand unless you know the pattern. Chain of Responsibility (251) also results
in communication patterns that inheritance doesn't reveal. In general, the
run-time structures aren't clear from the code until you understand the patterns.

Designing for Change

The key to maximizing reuse lies in anticipating new requirements and changes
to existing requirements, and in designing your systems so that they can evolve
accordingly.

To design the system so that it's robust to such changes, you must consider how
the system might need to change over its lifetime. A design that doesn't take
change into account risks major redesign in the future. Those changes might involve
class redefinition and reimplementation, client modification, and retesting.

Design Patterns: Elements of Reusable Object-Oriented Software

37

Redesign affects many parts of the software system, and unanticipated changes
are invariably expensive.

Design patterns help you avoid this by ensuring that a system can change in specific
ways. Each design pattern lets some aspect of system structure vary independently
of other aspects, thereby making a system more robust to a particular kind of
change.

Here are some common causes of redesign along with the design pattern(s) that
address them:

1. Creating an object by specifying a class explicitly. Specifying a class
name when you create an object commits you to a particular implementation
instead of a particular interface. This commitment can complicate future
changes. To avoid it, create objects indirectly.

Design patterns: Abstract Factory (99), Factory Method (121), Prototype
(133).

2. Dependence on specific operations. When you specify a particular operation,
you commit to one way of satisfying a request. By avoiding hard-coded
requests, you make it easier to change the way a request gets satisfied
both at compile-time and at run-time.

Design patterns: Chain of Responsibility (251), Command (263).

3. Dependence on hardware and software platform. External operating system
interfaces and application programming interfaces (APIs) are different on
different hardware and software platforms. Software that depends on a
particular platform will be harder to port to other platforms. It may even
be difficult to keep it up to date on its native platform. It's important
therefore to design your system to limit its platform dependencies.

Design patterns: Abstract Factory (99), Bridge (171).

4. Dependence on object representations or implementations. Clients that know
how an object is represented, stored, located, or implemented might need
to be changed when the object changes. Hiding this information from clients
keeps changes from cascading.

Design patterns: Abstract Factory (99), Bridge (171), Memento (316), Proxy
(233).

5. Algorithmic dependencies. Algorithms are often extended, optimized, and
replaced during development and reuse. Objects that depend on an algorithm

Design Patterns: Elements of Reusable Object-Oriented Software

38

will have to change when the algorithm changes. Therefore algorithms that
are likely to change should be isolated.

Design patterns: Builder (110), Iterator (289), Strategy (349), Template
Method (360), Visitor (366).

6. Tight coupling. Classes that are tightly coupled are hard to reuse in
isolation, since they depend on each other. Tight coupling leads to
monolithic systems, where you can't change or remove a class without
understanding and changing many other classes. The system becomes a dense
mass that's hard to learn, port, and maintain.

Loose coupling increases the probability that a class can be reused by itself
and that a system can be learned, ported, modified, and extended more easily.
Design patterns use techniques such as abstract coupling and layering to
promote loosely coupled systems.

Design patterns: Abstract Factory (99), Bridge (171), Chain of
Responsibility (251), Command (263), Facade (208), Mediator (305),
Observer (326).

7. Extending functionality by subclassing. Customizing an object by
subclassing often isn't easy. Every new class has a fixed implementation
overhead (initialization, finalization, etc.). Defining a subclass also
requires an in-depth understanding of the parent class. For example,
overriding one operation might require overriding another. An overridden
operation might be required to call an inherited operation. And subclassing
can lead to an explosion of classes, because you might have to introduce
many new subclasses for even a simple extension.

Object composition in general and delegation in particular provide flexible
alternatives to inheritance for combining behavior. New functionality can
be added to an application by composing existing objects in new ways rather
than by defining new subclasses of existing classes. On the other hand,
heavy use of object composition can make designs harder to understand. Many
design patterns produce designs in which you can introduce customized
functionality just by defining one subclass and composing its instances
with existing ones.

Design patterns: Bridge (171), Chain of Responsibility (251), Composite
(183), Decorator (196), Observer (326), Strategy (349).

8. Inability to alter classes conveniently. Sometimes you have to modify a
class that can't be modified conveniently. Perhaps you need the source code
and don't have it (as may be the case with a commercial class library).

Design Patterns: Elements of Reusable Object-Oriented Software

39

Or maybe any change would require modifying lots of existing subclasses.
Design patterns offer ways to modify classes in such circumstances.

Design patterns: Adapter (157), Decorator (196), Visitor (366).

These examples reflect the flexibility that design patterns can help you build
into your software. How crucial such flexibility is depends on the kind of software
you're building. Let's look at the role design patterns play in the development
of three broad classes of software: application programs, toolkits, and
frameworks.

Application Programs

If you're building an application program such as a document editor or spreadsheet,
then internal reuse, maintainability, and extension are high priorities. Internal
reuse ensures that you don't design and implement any more than you have to. Design
patterns that reduce dependencies can increase internal reuse. Looser coupling
boosts the likelihood that one class of object can cooperate with several others.
For example, when you eliminate dependencies on specific operations by isolating
and encapsulating each operation, you make it easier to reuse an operation in
different contexts. The same thing can happen when you remove algorithmic and
representational dependencies too.

Design patterns also make an application more maintainable when they're used to
limit platform dependencies and to layer a system. They enhance extensibility
by showing you how to extend class hierarchies and how to exploit object composition.
Reduced coupling also enhances extensibility. Extending a class in isolation is
easier if the class doesn't depend on lots of other classes.

Toolkits

Often an application will incorporate classes from one or more libraries of
predefined classes called toolkits. A toolkit is a set of related and reusable
classes designed to provide useful, general-purpose functionality. An example
of a toolkit is a set of collection classes for lists, associative tables, stacks,
and the like. The C++ I/O stream library is another example. Toolkits don't impose
a particular design on your application; they just provide functionality that
can help your application do its job. They let you as an implementer avoid recoding
common functionality. Toolkits emphasize code reuse. They are the object-oriented
equivalent of subroutine libraries.

Toolkit design is arguably harder than application design, because toolkits have
to work in many applications to be useful. Moreover, the toolkit writer isn't
in a position to know what those applications will be or their special needs.

Design Patterns: Elements of Reusable Object-Oriented Software

40

That makes it all the more important to avoid assumptions and dependencies that
can limit the toolkit's flexibility and consequently its applicability and
effectiveness.

Frameworks

A framework is a set of cooperating classes that make up a reusable design for
a specific class of software [Deu89, JF88]. For example, a framework can be geared
toward building graphical editors for different domains like artistic drawing,
music composition, and mechanical CAD [VL90, Joh92]. Another framework can help
you build compilers for different programming languages and target machines
[JML92]. Yet another might help you build financial modeling applications [BE93].
You customize a framework to a particular application by creating
application-specific subclasses of abstract classes from the framework.

The framework dictates the architecture of your application. It will define the
overall structure, its partitioning into classes and objects, the key
responsibilities thereof, how the classes and objects collaborate, and the thread
of control. A framework predefines these design parameters so that you, the
application designer/implementer, can concentrate on the specifics of your
application. The framework captures the design decisions that are common to its
application domain. Frameworks thus emphasize design reuse over code reuse, though
a framework will usually include concrete subclasses you can put to work
immediately.

Reuse on this level leads to an inversion of control between the application and
the software on which it's based. When you use a toolkit (or a conventional
subroutine library for that matter), you write the main body of the application
and call the code you want to reuse. When you use a framework, you reuse the main
body and write the code it calls. You'll have to write operations with particular
names and calling conventions, but that reduces the design decisions you have
to make.

Not only can you build applications faster as a result, but the applications have
similar structures. They are easier to maintain, and they seem more consistent
to their users. On the other hand, you lose some creative freedom, since many
design decisions have been made for you.

If applications are hard to design, and toolkits are harder, then frameworks are
hardest of all. A framework designer gambles that one architecture will work for
all applications in the domain. Any substantive change to the framework's design
would reduce its benefits considerably, since the framework's main contribution
to an application is the architecture it defines. Therefore it's imperative to
design the framework to be as flexible and extensible as possible.

Design Patterns: Elements of Reusable Object-Oriented Software

41

Furthermore, because applications are so dependent on the framework for their
design, they are particularly sensitive to changes in framework interfaces. As
a framework evolves, applications have to evolve with it. That makes loose coupling
all the more important; otherwise even a minor change to the framework will have
major repercussions.

The design issues just discussed are most critical to framework design. A framework
that addresses them using design patterns is far more likely to achieve high levels
of design and code reuse than one that doesn't. Mature frameworks usually
incorporate several design patterns. The patterns help make the framework's
architecture suitable to many different applications without redesign.

An added benefit comes when the framework is documented with the design patterns
it uses [BJ94]. People who know the patterns gain insight into the framework faster.
Even people who don't know the patterns can benefit from the structure they lend
to the framework's documentation. Enhancing documentation is important for all
types of software, but it's particularly important for frameworks. Frameworks
often pose a steep learning curve that must be overcome before they're useful.
While design patterns might not flatten the learning curve entirely, they can
make it less steep by making key elements of the framework's design more explicit.

Because patterns and frameworks have some similarities, people often wonder how
or even if they differ. They are different in three major ways:

1. Design patterns are more abstract than frameworks. Frameworks can be
embodied in code, but only examples of patterns can be embodied in code.
A strength of frameworks is that they can be written down in programming
languages and not only studied but executed and reused directly. In contrast,
the design patterns in this book have to be implemented each time they're
used. Design patterns also explain the intent, trade-offs, and consequences
of a design.

2. Design patterns are smaller architectural elements than frameworks. A
typical framework contains several design patterns, but the reverse is never
true.

3. Design patterns are less specialized than frameworks. Frameworks always
have a particular application domain. A graphical editor framework might
be used in a factory simulation, but it won't be mistaken for a simulation
framework. In contrast, the design patterns in this catalog can be used
in nearly any kind of application. While more specialized design patterns
than ours are certainly possible (say, design patterns for distributed
systems or concurrent programming), even these wouldn't dictate an
application architecture like a framework would.

Design Patterns: Elements of Reusable Object-Oriented Software

42

Frameworks are becoming increasingly common and important. They are the way that
object-oriented systems achieve the most reuse. Larger object-oriented
applications will end up consisting of layers of frameworks that cooperate with
each other. Most of the design and code in the application will come from or be
influenced by the frameworks it uses.

How to Select a Design Pattern

With more than 20 design patterns in the catalog to choose from, it might be hard
to find the one that addresses a particular design problem, especially if the
catalog is new and unfamiliar to you. Here are several different approaches to
finding the design pattern that's right for your problem:

1. Consider how design patterns solve design problems. Section 1.6 discusses
how design patterns help you find appropriate objects, determine object
granularity, specify object interfaces, and several other ways in which
design patterns solve design problems. Referring to these discussions can
help guide your search for the right pattern.

2. Scan Intent sections. Section 1.4 (page 18) lists the Intent sections from
all the patterns in the catalog. Read through each pattern's intent to find
one or more that sound relevant to your problem. You can use the
classification scheme presented in Table 1.1 (page 21) to narrow your
search.

3. Study how patterns interrelate. Figure 1.1 (page 23) shows relationships
between design patterns graphically. Studying these relationships can help
direct you to the right pattern or group of patterns.

4. Study patterns of like purpose. The catalog (page 93) has three chapters,
one for creational patterns, another for structural patterns, and a third
for behavioral patterns. Each chapter starts off with introductory comments
on the patterns and concludes with a section that compares and contrasts
them. These sections give you insight into the similarities and differences
between patterns of like purpose.

5. Examine a cause of redesign. Look at the causes of redesign starting on
page 37 to see if your problem involves one or more of them. Then look at
the patterns that help you avoid the causes of redesign.

6. Consider what should be variable in your design. This approach is the
opposite of focusing on the causes of redesign. Instead of considering what
might force a change to a design, consider what you want to be able to change
without redesign. The focus here is on encapsulating the concept that varies,
a theme of many design patterns. Table 1.2 lists the design aspect(s) that
design patterns let you vary independently, thereby letting you change them
without redesign.

Design Patterns: Elements of Reusable Object-Oriented Software

43

Purpose Design Pattern Aspect(s) That Can Vary
Abstract Factory (99) families of product objects
Builder (110) how a composite object gets created
Factory Method (121) subclass of object that is instantiated
Prototype (133) class of object that is instantiated

Creational

Singleton (144) the sole instance of a class
Adapter (157) interface to an object
Bridge (171) implementation of an object
Composite (183) structure and composition of an object
Decorator (196) responsibilities of an object without

subclassing
Facade (208) interface to a subsystem
Flyweight (218) storage costs of objects

Structural

Proxy (233) how an object is accessed; its location
Chain of Responsibility
(251)

object that can fulfill a request

Command (263) when and how a request is fulfilled
Interpreter (274) grammar and interpretation of a language
Iterator (289) how an aggregate's elements are accessed,

traversed
Mediator (305) how and which objects interact with each

other
Memento (316) what private information is stored outside

an object, and when
Observer (326) number of objects that depend on another

object; how the dependent objects stay up to
date

State (338) states of an object
Strategy (349) an algorithm
Template Method (360) steps of an algorithm

Behavioral

Visitor (366) operations that can be applied to object(s)
without changing their class(es)

Design Patterns: Elements of Reusable Object-Oriented Software

44

Table 1.2: Design aspects that design patterns let you vary

How to Use a Design Pattern

Once you've picked a design pattern, how do you use it? Here's a step-by-step
approach to applying a design pattern effectively:

1. Read the pattern once through for an overview. Pay particular attention
to the Applicability and Consequences sections to ensure the pattern is
right for your problem.

2. Go back and study the Structure, Participants, and Collaborations sections.
Make sure you understand the classes and objects in the pattern and how
they relate to one another.

3. Look at the Sample Code section to see a concrete example of the pattern

in code. Studying the code helps you learn how to implement the pattern.
4. Choose names for pattern participants that are meaningful in the application

context. The names for participants in design patterns are usually too
abstract to appear directly in an application. Nevertheless, it's useful
to incorporate the participant name into the name that appears in the
application. That helps make the pattern more explicit in the implementation.
For example, if you use the Strategy pattern for a text compositing algorithm,
then you might have classes SimpleLayoutStrategy or TeXLayoutStrategy.

5. Define the classes. Declare their interfaces, establish their inheritance
relationships, and define the instance variables that represent data and
object references. Identify existing classes in your application that the
pattern will affect, and modify them accordingly.

6. Define application-specific names for operations in the pattern. Here again,
the names generally depend on the application. Use the responsibilities
and collaborations associated with each operation as a guide. Also, be
consistent in your naming conventions. For example, you might use the
"Create-" prefix consistently to denote a factory method.

7. Implement the operations to carry out the responsibilities and

collaborations in the pattern. The Implementation section offers hints to
guide you in the implementation. The examples in the Sample Code section
can help as well.

These are just guidelines to get you started. Over time you'll develop your own
way of working with design patterns.

No discussion of how to use design patterns would be complete without a few words
on how not to use them. Design patterns should not be applied indiscriminately.
Often they achieve flexibility and variability by introducing additional levels
of indirection, and that can complicate a design and/or cost you some performance.

Design Patterns: Elements of Reusable Object-Oriented Software

45

A design pattern should only be applied when the flexibility it affords is actually
needed. The Consequences sections are most helpful when evaluating a pattern's
benefits and liabilities.

Design Patterns: Elements of Reusable Object-Oriented Software

46

2. A Case Study: Design a Document Editor

This chapter presents a case study in the design of a
"What-You-See-Is-What-You-Get" (or "WYSIWYG") document editor called Lexi.1
We'llsee how design patterns capture solutions to design problems inLexi and
applications like it. By the end of this chapter you willhave gained experience
with eight patterns, learning them byexample.

Figure 2.1 depicts Lexi's user interface. AWYSIWYG representation of the document
occupies the large rectangulararea in the center. The document can mix text and
graphics freely ina variety of formatting styles. Surrounding the document are
theusual pull-down menus and scroll bars, plus a collection of page iconsfor
jumping to a particular page in the document.

Figure 2.1: Lexi's user interface

Design Problems

We will examine seven problems in Lexi's design:

Design Patterns: Elements of Reusable Object-Oriented Software

47

1. Document structure.The choice of internal representation for the document
affects nearlyevery aspect of Lexi's design. All editing, formatting,
displaying,and textual analysis will require traversing the representation.
Theway we organize this information will impact the design of the rest ofthe
application.

2. Formatting.How does Lexi actually arrange text and graphics into lines
andcolumns? What objects are responsible for carrying out
differentformatting policies? How do these policies interact with
thedocument's internal representation?

3. Embellishing the user interface.Lexi's user interface includes scroll bars,
borders, and drop shadowsthat embellish the WYSIWYG document interface.
Such embellishments arelikely to change as Lexi's user interface evolves.
Hence it'simportant to be able to add and remove embellishments easily
withoutaffecting the rest of the application.

4. Supporting multiple look-and-feel standards.Lexi should adapt easily to
different look-and-feel standardssuch as Motif and Presentation Manager
(PM) without major modification.

5. Supporting multiple window systems.Different look-and-feel standards are
usually implemented on differentwindow systems. Lexi's design should be
as independent of the windowsystem as possible.

6. User operations.Users control Lexi through various user interfaces,
includingbuttons and pull-down menus. The functionality behind
theseinterfaces is scattered throughout the objects in the application.The
challenge here is to provide a uniform mechanism both foraccessing this
scattered functionality and for undoing its effects.

7. Spelling checking and hyphenation.How does Lexi support analytical
operations such as checking formisspelled words and determining
hyphenation points? How can weminimize the number of classes we have to
modify to add a newanalytical operation?

We discuss these design problems in the sections that follow. Eachproblem has
an associated set of goals plus constraints on how weachieve those goals. We explain
the goals and constraints in detailbefore proposing a specific solution. The
problem and its solutionwill illustrate one or more design patterns. The discussion
for eachproblem will culminate in a brief introduction to the relevantpatterns.

Document Structure

A document is ultimately just an arrangement of basic graphicalelements such as
characters, lines, polygons, and other shapes. Theseelements capture the total
information content of the document. Yet anauthor often views these elements not
in graphical terms but in termsof the document's physical structure—lines, columns,

Design Patterns: Elements of Reusable Object-Oriented Software

48

figures,tables, and other substructures.2In turn, these substructures have
substructures of theirown, and so on.

Lexi's user interface should let users manipulate thesesubstructures directly.
For example, a user should be able to treat adiagram as a unit rather than as
a collection of individual graphicalprimitives. The user should be able to refer
to a table as a whole,not as an unstructured mass of text and graphics. That helps
make theinterface simple and intuitive. To give Lexi's implementationsimilar
qualities, we'll choose an internal representation thatmatches the document's
physical structure.

In particular, the internal representation should support thefollowing:

• Maintaining the document's physical structure, that is, thearrangement of
text and graphics into lines, columns, tables, etc.

• Generating and presenting the document visually.
• Mapping positions on the display to elements in the internalrepresentation.

This lets Lexi determine what the user isreferring to when he points to
something in the visual representation.

In addition to these goals are some constraints. First, we shouldtreat text and
graphics uniformly. The application's interface letsthe user embed text within
graphics freely and vice versa. We shouldavoid treating graphics as a special
case of text or text as a specialcase of graphics; otherwise we'll end up with
redundant formatting andmanipulation mechanisms. One set of mechanisms should
suffice forboth text and graphics.

Second, our implementation shouldn't have to distinguish betweensingle elements
and groups of elements in the internal representation.Lexi should be able to treat
simple and complex elementsuniformly, thereby allowing arbitrarily complex
documents. The tenthelement in line five of column two, for instance, could be
a singlecharacter or an intricate diagram with many subelements. As long as weknow
this element can draw itself and specify its dimensions, itscomplexity has no
bearing on how and where it should appear on thepage.

Opposing the second constraint, however, is the need to analyze thetext for such
things as spelling errors and potential hyphenationpoints. Often we don't care
whether the element of a line is a simpleor complex object. But sometimes an analysis
depends on the objectsbeing analyzed. It makes little sense, for example, to check
thespelling of a polygon or to hyphenate it. The internalrepresentation's design
should take this and other potentiallyconflicting constraints into account.

Design Patterns: Elements of Reusable Object-Oriented Software

49

Recursive Composition

A common way to represent hierarchically structured information isthrough a
technique called recursive composition, whichentails building increasingly
complex elements out of simpler ones.Recursive composition gives us a way to
compose a document out ofsimple graphical elements. As a first step, we can tile
a set ofcharacters and graphics from left to right to form a line in thedocument.
Then multiple lines can be arranged to form a column,multiple columns can form
a page, and so on (seeFigure 2.2).

Figure 2.2: Recursive composition of text and graphics

We can represent this physical structure by devoting an object to eachimportant
element. That includes not just the visible elements likethe characters and
graphics but the invisible, structural elements aswell—the lines and the column.
The result is the object structureshown in Figure 2.3.

Design Patterns: Elements of Reusable Object-Oriented Software

50

Figure 2.3: Object structure for recursive composition oftext and graphics

By using an object for each character and graphical element in thedocument, we
promote flexibility at the finest levels of Lexi'sdesign. We can treat text and
graphics uniformly with respect to howthey are drawn, formatted, and embedded
within each other. We canextend Lexi to support new character sets without
disturbing otherfunctionality. Lexi's object structure mimics the
document'sphysical structure.

This approach has two important implications. The first is obvious:The objects
need corresponding classes. The second implication, whichmay be less obvious,
is that these classes must have compatibleinterfaces, because we want to treat
the objects uniformly. The way tomake interfaces compatible in a language like
C++ is to relate theclasses through inheritance.

Glyphs

We'll define a Glyph abstract class for allobjects that can appear in a document
structure.3 Its subclasses define bothprimitive graphical elements (like
characters and images) andstructural elements (like rows and columns). Figure
2.4 depicts a representative partof the Glyph class hierarchy, and Table 2.1
presents the basic glyph interfacein more detail using C++ notation.4

Design Patterns: Elements of Reusable Object-Oriented Software

51

Figure 2.4: Partial Glyph class hierarchy

Responsibility Operations
appearance virtual void Draw(Window*)

virtual void Bounds(Rect&)

hit detection virtual bool Intersects(const Point&)

structure virtual void Insert(Glyph*, int)
virtual void Remove(Glyph*)
virtual Glyph* Child(int)
virtual Glyph* Parent()

Table 2.1: Basic glyph interface

Glyphs have three basic responsibilities. They know (1) how to drawthemselves,
(2) what space they occupy, and (3) their children andparent.

Glyph subclasses redefine the Draw operation to renderthemselves onto a window.
They are passed a reference to a Windowobject in the call to Draw. The Window
class definesgraphics operations for rendering text and basic shapes in a window
on thescreen. A Rectangle subclass of Glyph might redefineDraw as follows:

Design Patterns: Elements of Reusable Object-Oriented Software

52

void Rectangle::Draw (Window* w) {
 w->DrawRect(_x0, _y0, _x1, _y1);
}

where _x0, _y0, _x1, and _y1are data members of Rectangle that define two opposing
corners ofthe rectangle. DrawRect is the Window operation that makesthe rectangle
appear on the screen.

A parent glyph often needs to know how much space a child glyph occupies,for example,
to arrange it and other glyphs in a line so that none overlaps(as shown in Figure
2.3). TheBounds operation returns the rectangular area that the glyphoccupies.
It returns the opposite corners of the smallest rectangle thatcontains the glyph.
Glyph subclasses redefine this operation to return therectangular area in which
they draw.

The Intersects operation returns whether a specified pointintersects the glyph.
Whenever the user clicks somewhere in thedocument, Lexi calls this operation to
determine which glyph orglyph structure is under the mouse. The Rectangle class
redefinesthis operation to compute the intersection of the rectangle and thegiven
point.

Because glyphs can have children, we need a common interface toadd, remove, and
access those children. For example, a Row's childrenare the glyphs it arranges
into a row. The Insertoperation inserts a glyph at a position specified by an
integerindex.5 The Removeoperation removes a specified glyph if it is indeed a
child.

The Child operation returns the child (if any) at the givenindex. Glyphs like
Row that can have children should use Childinternally instead of accessing the
child data structure directly. That wayyou won't have to modify operations like
Draw that iteratethrough the children when you change the data structure from,
say, an arrayto a linked list. Similarly, Parent provides a standard interfaceto
the glyph's parent, if any. Glyphs in Lexi store a reference totheir parent, and
their Parent operation simply returns thisreference.

Composite Pattern

Recursive composition is good for more than just documents. We can useit to
represent any potentially complex, hierarchical structure. TheComposite (183)
pattern captures the essence ofrecursive composition in object-oriented terms.
Now would be a goodtime to turn to that pattern and study it, referring back to
thisscenario as needed.

Design Patterns: Elements of Reusable Object-Oriented Software

53

Formatting

We've settled on a way to represent the document's physicalstructure. Next, we
need to figure out how to construct a particular physical structure, one that
corresponds to a properlyformatted document. Representation and formatting are
distinct: Theability to capture the document's physical structure doesn't tell
ushow to arrive at a particular structure. This responsibility restsmostly on
Lexi. It must break text into lines, lines into columns,and so on, taking into
account the user's higher-level desires. Forexample, the user might want to vary
margin widths, indentation, andtabulation; single or double space; and probably
many other formattingconstraints.6Lexi'sformatting algorithm must take all of
these into account.

By the way, we'll restrict "formatting" to mean breaking a collection ofglyphs
into lines. In fact, we'll use the terms "formatting" and"linebreaking"
interchangeably. The techniques we'll discuss applyequally well to breaking lines
into columns and to breaking columns intopages.

Encapsulating the Formatting Algorithm

The formatting process, with all its constraints and details, isn't easy toautomate.
There are many approaches to the problem, and people have come upwith a variety
of formatting algorithms with different strengths andweaknesses. Because Lexi
is a WYSIWYG editor, an important trade-off toconsider is the balance between
formatting quality and formatting speed. Wewant generally good response from the
editor without sacrificing how goodthe document looks. This trade-off is subject
to many factors, not all ofwhich can be ascertained at compile-time. For example,
the user mighttolerate slightly slower response in exchange for better formatting.
Thattrade-off might make an entirely different formatting algorithm
moreappropriate than the current one. Another, more
implementation-driventrade-off balances formatting speed and storage
requirements: It may bepossible to decrease formatting time by caching more
information.

Because formatting algorithms tend to be complex, it's also desirableto keep them
well-contained or—better yet—completely independentof the document structure.
Ideally we could add a new kind of Glyphsubclass without regard to the formatting
algorithm. Conversely,adding a new formatting algorithm shouldn't require
modifying existingglyphs.

These characteristics suggest we should design Lexi so that it'seasy to change
the formatting algorithm at least at compile-time, ifnot at run-time as well.
We can isolate the algorithm and make iteasily replaceable at the same time by

Design Patterns: Elements of Reusable Object-Oriented Software

54

encapsulating it in an object.More specifically, we'll define a separate class
hierarchy for objectsthat encapsulate formatting algorithms. The root of the
hierarchy willdefine an interface that supports a wide range of
formattingalgorithms, and each subclass will implement the interface to carryout
a particular algorithm. Then we can introduce a Glyph subclassthat will structure
its children automatically using a given algorithmobject.

Compositor and Composition

We'll define a Compositor class for objectsthat can encapsulate a formatting
algorithm. The interface (Table 2.2) letsthe compositor know what glyphs to format
and whento do the formatting. The glyphs it formats are the children ofa special
Glyph subclass called Composition. Acomposition gets an instance of a Compositor
subclass (specializedfor a particular linebreaking algorithm) when it is created,
andit tells the compositor to Compose its glyphs whennecessary, for example, when
the user changes a document.Figure 2.5 depicts the relationships between the
Composition and Compositor classes.

Responsibility Operations
what to format void SetComposition(Composition*)

when to format virtual void Compose()

Table 2.2 Basic compositor interface

Figure 2.5: Composition and Compositor class relationships

An unformatted Composition object contains only the visibleglyphs that make up
the document's basic content. It doesn't containglyphs that determine the

Design Patterns: Elements of Reusable Object-Oriented Software

55

document's physical structure, such asRow and Column. The composition is in this
state just after it'screated and initialized with the glyphs it should format.
Whenthe composition needs formatting, it calls its compositor'sCompose operation.
The compositor in turn iteratesthrough the composition's children and inserts
new Row and Columnglyphs according to its linebreaking algorithm.7 Figure 2.6 shows
the resulting objectstructure. Glyphs that the compositor created and inserted
intothe object structure appear with gray backgrounds in the figure.

Figure 2.6: Object structure reflectingcompositor-directed linebreaking

Each Compositor subclass can implement a different linebreaking algorithm.For
example, a SimpleCompositor might do a quick pass without regard forsuch esoterica
as the document's "color." Good color means having an evendistribution of text
and whitespace. A TeXCompositor would implement thefull TeX algorithm [Knu84],
which takes things like color into accountin exchange for longer formatting times.

The Compositor-Composition class split ensures a strong separationbetween code
that supports the document's physical structure and thecode for different
formatting algorithms. We can add new Compositorsubclasses without touching the
glyph classes, and vice versa. Infact, we can change the linebreaking algorithm
at run-time by adding asingle SetCompositor operation to Composition's basic
glyphinterface.

Strategy Pattern

Encapsulating an algorithm in an object is the intent of the Strategy (349) pattern.
The key participants in thepattern are Strategy objects (which encapsulate
different algorithms)and the context in which they operate. Compositors are

Design Patterns: Elements of Reusable Object-Oriented Software

56

strategies;they encapsulate different formatting algorithms. A composition is
thecontext for a compositor strategy.

The key to applying the Strategy pattern is designing interfaces forthe strategy
and its context that are general enough to support arange of algorithms. You
shouldn't have to change the strategy orcontext interface to support a new
algorithm. In our example, thebasic Glyph interface's support for child access,
insertion, andremoval is general enough to let Compositor subclasses change
thedocument's physical structure, regardless of the algorithm they use todo it.
Likewise, the Compositor interface gives compositions whateverthey need to
initiate formatting.

Embellishing the User Interface

We consider two embellishments in Lexi's user interface. Thefirst adds a border
around the text editing area to demarcate the pageof text. The second adds scroll
bars that let the user view differentparts of the page. To make it easy to add
and remove theseembellishments (especially at run-time), we shouldn't use
inheritanceto add them to the user interface. We achieve the most flexibilityif
other user interface objects don't even know the embellishments arethere. That
will let us add and remove the embellishments withoutchanging other classes.

Transparent Enclosure

From a programming point of view, embellishing the user interface involves
extending existing code. Using inheritance to do such extension
precludesrearranging embellishments at run-time, but an equally serious problem
is the explosion of classes that can result from an inheritance-basedapproach.

We could add a border to Composition by subclassing it to yield
aBorderedComposition class. Or we could add a scrolling interface inthe same way
to yield a ScrollableComposition. If we want both scrollbars and a border, we
might produce a BorderedScrollableComposition,and so forth. In the extreme, we
end up with a class for everypossible combination of embellishments, a solution
that quicklybecomes unworkable as the variety of embellishments grows.

Object composition offers a potentially more workable and flexibleextension
mechanism. But what objects do we compose? Since we knowwe're embellishing an
existing glyph, we could make the embellishmentitself an object (say, an instance
of class Border). Thatgives us two candidates for composition, the glyph and the
border. Thenext step is to decide who composes whom. We could have the bordercontain
the glyph, which makes sense given that the border willsurround the glyph on the
screen. Or we could do the opposite—putthe border into the glyph—but then we must

Design Patterns: Elements of Reusable Object-Oriented Software

57

make modifications to thecorresponding Glyph subclass to make it aware of the
border. Our firstchoice, composing the glyph in the border, keeps the
border-drawingcode entirely in the Border class, leaving other classes alone.

What does the Border class look like? The fact that borders have anappearance
suggests they should actually be glyphs; that is, Bordershould be a subclass of
Glyph. But there's a more compelling reasonfor doing this: Clients shouldn't care
whether glyphs have borders ornot. They should treat glyphs uniformly. When clients
tell a plain,unbordered glyph to draw itself, it should do so withoutembellishment.
If that glyph is composed in a border, clientsshouldn't have to treat the border
containing the glyph anydifferently; they just tell it to draw itself as they
told the plainglyph before. This implies that the Border interface matches the
Glyphinterface. We subclass Border from Glyph to guarantee thisrelationship.

All this leads us to the concept of transparent enclosure,which combines the
notions of (1) single-child (orsingle-component) composition and (2)
compatibleinterfaces. Clients generally can't tell whether they're dealing
withthe component or its enclosure (i.e., the child's parent),especially if the
enclosure simply delegates all its operations to itscomponent. But the enclosure
can also augment the component'sbehavior by doing work of its own before and/or
after delegating anoperation. The enclosure can also effectively add state to
thecomponent. We'll see how next.

Monoglyph

We can apply the concept of transparent enclosure to all glyphs thatembellish
other glyphs. To make this concept concrete, we'll define asubclass of Glyph called
MonoGlyph to serve as an abstractclass for "embellishment glyphs," likeBorder
(see Figure 2.7).MonoGlyph stores a reference to a component and forwards all
requests toit. That makes MonoGlyph totally transparent to clients by default.For
example, MonoGlyph implements the Draw operation like this:

void MonoGlyph::Draw (Window* w) {
 _component->Draw(w);
}

Design Patterns: Elements of Reusable Object-Oriented Software

58

Figure 2.7: MonoGlyph class relationships

MonoGlyph subclasses reimplement at least one of these forwardingoperations.
Border::Draw, for instance, first invokes the parentclass operation
MonoGlyph::Draw on the component to let thecomponent do its part—that is, draw
everything but the border. ThenBorder::Draw draws the border by calling a
privateoperation called DrawBorder, the details of which we'llomit:

void Border::Draw (Window* w) {
 MonoGlyph::Draw(w);
 DrawBorder(w);
}

Notice how Border::Draw effectively extends the parentclass operation to draw
the border. This is in contrast to merelyreplacing the parent class operation,
which would omit the call toMonoGlyph::Draw.

Another MonoGlyph subclass appears in Figure 2.7. Scroller is a MonoGlyph that
draws its component in differentlocations based on the positions of two scroll
bars, which it adds asembellishments. When Scroller draws its component, it tells
thegraphics system to clip to its bounds. Clipping parts of the componentthat
are scrolled out of view keeps them from appearing on the screen.

Now we have all the pieces we need to add a border and a scrollinginterface to
Lexi's text editing area. We compose the existingComposition instance in a Scroller
instance to add the scrollinginterface, and we compose that in a Border instance.
The resultingobject structure appears in Figure 2.8.

Design Patterns: Elements of Reusable Object-Oriented Software

59

Figure 2.8: Embellished object structure

Note that we can reverse the order of composition, putting thebordered composition
into the Scroller instance. In that case theborder would be scrolled along with
the text, which may or may not bedesirable. The point is, transparent enclosure
makes it easy toexperiment with different alternatives, and it keeps clients free
ofembellishment code.

Note also how the border composes one glyph, not two or more. This isunlike
compositions we've defined so far, in which parent objects wereallowed to have
arbitrarily many children. Here, putting a borderaround something implies that
"something" is singular. We couldassign a meaning to embellishing more than one
object at a time, butthen we'd have to mix many kinds of composition in with the
notion ofembellishment: row embellishment, column embellishment, and so
forth.That won't help us, since we already have classes to do those kinds
ofcompositions. So it's better to use existing classes for compositionand add
new classes to embellish the result. Keeping embellishmentindependent of other
kinds of composition both simplifies theembellishment classes and reduces their
number. It also keeps us fromreplicating existing composition functionality.

Decorator Pattern

The Decorator (196) pattern captures class and objectrelationships that support
embellishment by transparent enclosure.The term "embellishment" actually has

Design Patterns: Elements of Reusable Object-Oriented Software

60

broader meaning than whatwe've considered here. In the Decorator pattern,
embellishment refersto anything that adds responsibilities to an object. We can
thinkfor example of embellishing an abstract syntax tree with semanticactions,
a finite state automaton with new transitions, or a networkof persistent objects
with attribute tags. Decorator generalizes theapproach we've used in Lexi to make
it more widely applicable.

Supporting Multiple Look-and-Feel Standards

Achieving portability across hardware and software platforms is amajor problem
in system design. Retargeting Lexi to a newplatform shouldn't require a major
overhaul, or it wouldn't be worthretargeting. We should make porting as easy as
possible.

One obstacle to portability is the diversity of look-and-feel standards,which
are intended to enforce uniformity between applications. Thesestandards define
guidelines for how applications appear and react to theuser. While existing
standards aren't that different from each other,people certainly won't confuse
one for the other—Motif applications don'tlook and feel exactly like their
counterparts on other platforms, and viceversa. An application that runs on more
than one platform must conform tothe user interface style guide on each platform.

Our design goals are to make Lexi conform to multiple existinglook-and-feel
standards and to make it easy to add support for newstandards as they (invariably)
emerge. We also want our design tosupport the ultimate in flexibility: changing
Lexi's look and feelat run-time.

Abstracting Object Creation

Everything we see and interact with in Lexi's user interface is aglyph composed
in other, invisible glyphs like Row and Column. Theinvisible glyphs compose visible
ones like Button and Character and laythem out properly. Style guides have much
to say about the look andfeel of so-called "widgets," another term for visible
glyphs likebuttons, scroll bars, and menus that act as controlling elements in
auser interface. Widgets might use simpler glyphs such as characters,circles,
rectangles, and polygons to present data.

We'll assume we have two sets of widget glyph classes with which toimplement
multiple look-and-feel standards:

1. A set of abstract Glyph subclasses for each category of widgetglyph. For
example, an abstract class ScrollBar will augment the basicglyph interface

Design Patterns: Elements of Reusable Object-Oriented Software

61

to add general scrolling operations; Button is anabstract class that adds
button-oriented operations; and so on.

2. A set of concrete subclasses for each abstract subclass thatimplement
different look-and-feel standards. For example, ScrollBarmight have
MotifScrollBar and PMScrollBar subclasses that implementMotif and
Presentation Manager-style scroll bars, respectively.

Lexi must distinguish between widget glyphs for different look-and-feelstyles.
For example, when Lexi needs to put a button in its interface,it must instantiate
a Glyph subclass for the right style of button(MotifButton, PMButton, MacButton,
etc.).

It's clear that Lexi's implementation can't do this directly, say,using a
constructor call in C++. That would hard-code the button of aparticular style,
making it impossible to select the style atrun-time. We'd also have to track down
and change every suchconstructor call to port Lexi to another platform. And buttons
areonly one of a variety of widgets in Lexi's user interface.Littering our code
with constructor calls to specific look-and-feelclasses yields a maintenance
nightmare—miss just one, and you couldend up with a Motif menu in the middle of
your Mac application.

Lexi needs a way to determine the look-and-feel standard that's beingtargeted
in order to create the appropriate widgets. Not only must weavoid making explicit
constructor calls; we must also be able toreplace an entire widget set easily.
We can achieve both by abstracting the process of object creation. An example
willillustrate what we mean.

Factories and Product Classes

Normally we might create an instance of a Motif scroll bar glyph with thefollowing
C++ code:

 ScrollBar* sb = new MotifScrollBar;

This is the kind of code to avoid if you want to minimizeLexi's look-and-feel
dependencies. But suppose weinitialize sb as follows:

 ScrollBar* sb = guiFactory->CreateScrollBar();

where guiFactory is an instance of aMotifFactory class. CreateScrollBarreturns
a new instance of the proper ScrollBar subclass for thelook and feel desired,
Motif in this case. As far as clients areconcerned, the effect is the same as
calling the MotifScrollBarconstructor directly. But there's a crucial difference:
There'sno longer anything in the code that mentions Motif by name. TheguiFactory

Design Patterns: Elements of Reusable Object-Oriented Software

62

object abstracts the process of creatingnot just Motif scroll bars but scroll
bars for anylook-and-feel standard. And guiFactory isn't limitedto producing
scroll bars. It can manufacture a full range of widgetglyphs, including scroll
bars, buttons, entry fields, menus, andso forth.

All this is possible because MotifFactory is a subclass ofGUIFactory, an abstract
class that defines ageneral interface for creating widget glyphs. It includes
operationslike CreateScrollBar and CreateButtonfor instantiating different kinds
of widget glyphs. Subclasses ofGUIFactory implement these operations to return
glyphs such asMotifScrollBar and PMButton that implement a particular look andfeel.
Figure 2.9 showsthe resulting class hierarchy for guiFactory objects.

Figure 2.9: GUIFactory class hierarchy

We say that factories create product objects.Moreover, the products that a factory
produces are related to oneanother; in this case, the products are all widgets
for the samelook and feel. Figure 2.10 shows some of the product classes needed
to make factories workfor widget glyphs.

Design Patterns: Elements of Reusable Object-Oriented Software

63

Figure 2.10: Abstract product classes and concrete subclasses

The last question we have to answer is, Where does the GUIFactoryinstance come
from? The answer is, Anywhere that's convenient. Thevariable guiFactory could
be a global, a static member of awell-known class, or even a local variable if
the entire user interface iscreated within one class or function. There's even
a design pattern,Singleton (144), for managing well-known, one-of-a-kindobjects
like this. The important thing, though, is to initializeguiFactory at a point
in the program before it's ever usedto create widgets but after it's clear which
look and feel isdesired.

If the look and feel is known at compile-time, then guiFactorycan be initialized
with a simple assignment of a new factory instanceat the beginning of the program:

 GUIFactory* guiFactory = new MotifFactory;

If the user can specify the look and feel with a string name atstartup time, then
the code to create the factory might be

GUIFactory* guiFactory;
const char* styleName = getenv("LOOK_AND_FEEL");
 // user or environment supplies this at startup
if (strcmp(styleName, "Motif") == 0) {
 guiFactory = new MotifFactory;
} else if (strcmp(styleName, "Presentation_Manager") == 0) {
 guiFactory = new PMFactory;

Design Patterns: Elements of Reusable Object-Oriented Software

64

} else {
 guiFactory = new DefaultGUIFactory;
}

There are more sophisticated ways to select the factory at run-time.For example,
you could maintain a registry that maps strings tofactory objects. That lets you
register instances of new factorysubclasses without modifying existing code, as
the preceding approach requires. And you don't have to link all platform-specific
factoriesinto the application. That's important, because it might not bepossible
to link a MotifFactory on a platform that doesn't supportMotif.

But the point is that once we've configured the application with theright factory
object, its look and feel is set from then on. If wechange our minds, we can
reinitialize guiFactory with afactory for a different look and feel and then
reconstruct theinterface. Regardless of how and when we decide to
initializeguiFactory, we know that once we do, the application cancreate the
appropriate look and feel without modification.

Abstract Factory Pattern

Factories and products are the key participants in the Abstract Factory (99)
pattern. This pattern captures howto create families of related product objects
without instantiatingclasses directly. It's most appropriate when the number and
generalkinds of product objects stay constant, and there are differences
inspecific product families. We choose between families by instantiatinga
particular concrete factory and using it consistently to createproducts thereafter.
We can also swap entire families of products byreplacing the concrete factory
with an instance of a different one.The Abstract Factory pattern's emphasis on
families of productsdistinguishes it from other creational patterns, which involve
only onekind of product object.

Supporting Multiple Window Systems

Look and feel is just one of many portability issues. Another is thewindowing
environment in which Lexi runs. A platform's window systemcreates the illusion
of multiple overlapping windows on a bitmappeddisplay. It manages screen space
for windows and routes input to them fromthe keyboard and mouse. Several important
and largely incompatible windowsystems exist today (e.g., Macintosh, Presentation
Manager, Windows, X).We'd like Lexi to run on as many of them as possible for
exactly thesame reasons we support multiple look-and-feel standards.

Design Patterns: Elements of Reusable Object-Oriented Software

65

Can We Use an Abstract Factory?

At first glance this may look like another opportunity to apply theAbstract Factory
pattern. But the constraints for window system portabilitydiffer significantly
from those for look-and-feel independence.

In applying the Abstract Factory pattern, we assumed we would definethe concrete
widget glyph classes for each look-and-feel standard.That meant we could derive
each concrete product for a particularstandard (e.g., MotifScrollBar and
MacScrollBar) from an abstractproduct class (e.g., ScrollBar). But suppose we
already have severalclass hierarchies from different vendors, one for each
look-and-feelstandard. Of course, it's highly unlikely these hierarchies
arecompatible in any way. Hence we won't have a common abstract productclass for
each kind of widget (ScrollBar, Button, Menu, etc.)—and theAbstract Factory
pattern won't work without those crucial classes.We have to make the different
widget hierarchies adhere to a commonset of abstract product interfaces. Only
then could we declare theCreate... operations properly in our abstract
factory'sinterface.

We solved this problem for widgets by developing our own abstract andconcrete
product classes. Now we're faced with a similar problem whenwe try to make Lexi
work on existing window systems; namely,different window systems have incompatible
programming interfaces.Things are a bit tougher this time, though, because we
can't afford toimplement our own nonstandard window system.

But there's a saving grace. Like look-and-feel standards, windowsystem interfaces
aren't radically different from one another, becauseall window systems do
generally the same thing. We need a uniform setof windowing abstractions that
lets us take different window systemimplementations and slide any one of them
under a common interface.

Encapsulating Implementation Dependencies

In Section 2.2 we introduced a Window class for displaying a glyph or glyphstructure
on the display. We didn't specify the window system thatthis object worked with,
because the truth is that it doesn't comefrom any particular window system. The
Window class encapsulatesthe things windows tend to do across window systems:

• They provide operations for drawing basic geometric shapes.
• They can iconify and de-iconify themselves.
• They can resize themselves.
• They can (re)draw their contents on demand, for example, when theyare

de-iconified or when an overlapped and obscured portion of theirscreen space
is exposed.

Design Patterns: Elements of Reusable Object-Oriented Software

66

The Window class must span the functionality of windows from differentwindow
systems. Let's consider two extreme philosophies:

1. Intersection of functionality.The Window class interface provides only
functionality that's commonto all window systems. The problem with this
approach is thatour Window interface winds up being only as powerful as
the leastcapable window system. We can't take advantage of more
advancedfeatures even if most (but not all) window systems support them.

2. Union of functionality.Create an interface that incorporates the
capabilities of allexisting systems. The trouble here is that the resulting
interface maywell be huge and incoherent. Besides, we'll have to change
it (andLexi, which depends on it) anytime a vendor revises its windowsystem
interface.

Neither extreme is a viable solution, so our design will fallsomewhere between
the two. The Window class will provide a convenientinterface that supports the
most popular windowing features. BecauseLexi will deal with this class directly,
the Window class must alsosupport the things Lexi knows about, namely, glyphs.
That meansWindow's interface must include a basic set of graphics operationsthat
lets glyphs draw themselves in the window.Table 2.3 gives a sampling of the
operations in the Window class interface.

Responsibility Operations
window management virtual void Redraw()

virtual void Raise()
virtual void Lower()
virtual void Iconify()
virtual void Deiconify()
...

graphics virtual void DrawLine(...)
virtual void DrawRect(...)
virtual void DrawPolygon(...)
virtual void DrawText(...)
...

Table 2.3: Window class interface

Window is an abstract class. Concrete subclasses of Window support thedifferent
kinds of windows that users deal with. For example,application windows, icons,
and warning dialogs are all windows, butthey have somewhat different behaviors.
So we can define subclasseslike ApplicationWindow, IconWindow, and DialogWindow
to capture thesedifferences. The resulting class hierarchy gives applications

Design Patterns: Elements of Reusable Object-Oriented Software

67

likeLexi a uniform and intuitive windowing abstraction, one that doesn'tdepend
on any particular vendor's window system:

Now that we've defined a window interface for Lexi to work with,where does the
real platform-specific window come in? If we're notimplementing our own window
system, then at some point our windowabstraction must be implemented in terms
of what the target windowsystem provides. So where does that implementation live?

One approach is to implement multiple versions of the Window class andits
subclasses, one version for each windowing platform. We'd have tochoose the version
to use when we build Lexi for a given platform.But imagine the maintenance headaches
we'd have keeping track ofmultiple classes, all named "Window" but each implemented
on adifferent window system. Alternatively, we could
createimplementation-specific subclasses of each class in the Windowhierarchy—and
end up with another subclass explosion problem like the onewe had trying to add
embellishments. Both of these alternatives haveanother drawback: Neither gives
us the flexibility to change thewindow system we use after we've compiled the
program. So we'll haveto keep several different executables around as well.

Neither alternative is very appealing, but what else can we do? Thesame thing
we did for formatting and embellishment, namely, encapsulate the concept that
varies. What varies in this case is thewindow system implementation. If we
encapsulate a window system'sfunctionality in an object, then we can implement
our Window class andsubclasses in terms of that object's interface. Moreover,
if thatinterface can serve all the window systems we're interested in, thenwe
won't have to change Window or any of its subclasses to supportdifferent window
systems. We can configure window objects to thewindow system we want simply by

Design Patterns: Elements of Reusable Object-Oriented Software

68

passing them the right windowsystem-encapsulating object. We can even configure
the window atrun-time.

Window and WindowImp

We'll define a separate WindowImp class hierarchy in which tohide different window
system implementations. WindowImp is an abstractclass for objects that encapsulate
window system-dependent code. To makeLexi work on a particular window system,
we configure each windowobject with an instance of a WindowImp subclass for that
system. Thefollowing diagram shows the relationship between the Window and
WindowImphierarchies:

By hiding the implementations in WindowImp classes, we avoid pollutingthe Window
classes with window system dependencies, which keeps theWindow class hierarchy
comparatively small and stable. Meanwhile wecan easily extend the implementation
hierarchy to support new windowsystems.

WindowImp Subclasses

Subclasses of WindowImp convert requests into window system-specificoperations.
Consider the example we used in Section 2.2. We defined theRectangle::Draw in
terms of the DrawRect operation onthe Window instance:

void Rectangle::Draw (Window* w) {
 w->DrawRect(_x0, _y0, _x1, _y1);
}

The default implementation of DrawRect uses the abstractoperation for drawing
rectangles declared by WindowImp:

Design Patterns: Elements of Reusable Object-Oriented Software

69

void Window::DrawRect (Coord x0, Coord y0, Coord x1, Coord y1)
{ _imp->DeviceRect(x0, y0, x1, y1); }

where _imp is a member variable of Window that stores theWindowImp with which
the Window is configured. The windowimplementation is defined by the instance
of the WindowImp subclassthat _imp points to. For an XWindowImp (that is,
aWindowImp subclass for the X Window System), theDeviceRect's implementation might
look like

void XWindowImp::DeviceRect (Coord x0, Coord y0, Coord x1, Coord y1)
{
 int x = round(min(x0, x1));
 int y = round(min(y0, y1));
 int w = round(abs(x0 - x1));
 int h = round(abs(y0 - y1));
 XDrawRectangle(_dpy, _winid, _gc, x, y, w, h);
}

DeviceRect is defined like this becauseXDrawRectangle (the X interface for drawing
a rectangle)defines a rectangle in terms of its lower left corner, its width,and
its height. DeviceRect must compute these valuesfrom those supplied. First it
ascertains the lower left corner(since (x0, y0) might be any oneof the rectangle's
four corners) and then calculates the width andheight.

PMWindowImp (a subclass of WindowImp for Presentation Manager) would define
DeviceRect differently:

void PMWindowImp::DeviceRect (Coord x0, Coord y0, Coord x1, Coord y1)
{
 Coord left = min(x0, x1);
 Coord right = max(x0, x1);
 Coord bottom = min(y0, y1);
 Coord top = max(y0, y1);

 PPOINTL point[4];
 point[0].x = left; point[0].y = top;
 point[1].x = right; point[1].y = top;
 point[2].x = right; point[2].y = bottom;
 point[3].x = left; point[3].y = bottom;
 if ((GpiBeginPath(_hps, 1L) == false) ||
(GpiSetCurrentPosition(_hps, &point[3]) == false) ||
(GpiPolyLine(_hps, 4L, point) == GPI_ERROR) ||
(GpiEndPath(_hps) == false))
{

Design Patterns: Elements of Reusable Object-Oriented Software

70

 // report error
} else {
 GpiStrokePath(_hps, 1L, 0L);
}
}

Why is this so different from the X version? Well, PM doesn't have anoperation
for drawing rectangles explicitly as X does. Instead, PM has amore general
interface for specifying vertices of multisegment shapes(called a path) and for
outlining or filling the area theyenclose.

PM's implementation of DeviceRect is obviously quitedifferent from X's, but that
doesn't matter. WindowImp hidesvariations in window system interfaces behind a
potentially large butstable interface. That lets Window subclass writers focus
on the windowabstraction and not on window system details. It also lets us
addsupport for new window systems without disturbing the Window classes.

Configuring Windows with WindowImps

A key issue we haven't addressed is how a window gets configured withthe proper
WindowImp subclass in the first place. Stated another way,when does _imp get
initialized, and who knows what windowsystem (and consequently which WindowImp
subclass) is in use? Thewindow will need some kind of WindowImp before it can
do anythinginteresting.

There are several possibilities, but we'll focus on one that uses theAbstract
Factory (99) pattern. We can definean abstract factory class WindowSystemFactory
that provides aninterface for creating different kinds of window
system-dependentimplementation objects:

class WindowSystemFactory {
public:
 virtual WindowImp* CreateWindowImp() = 0;
 virtual ColorImp* CreateColorImp() = 0;
 virtual FontImp* CreateFontImp() = 0;

 // a "Create..." operation for all window system resources
};

Now we can define a concrete factory for each window system:

class PMWindowSystemFactory : public WindowSystemFactory {
 virtual WindowImp* CreateWindowImp()
 { return new PMWindowImp; }

Design Patterns: Elements of Reusable Object-Oriented Software

71

 // ...
};

class XWindowSystemFactory : public WindowSystemFactory {
 virtual WindowImp* CreateWindowImp()
 { return new XWindowImp; }
 // ...
};

The Window base class constructor can use theWindowSystemFactory interface to
initialize the_imp member with the WindowImp that's right for the windowsystem:

Window::Window () {
 _imp = windowSystemFactory->CreateWindowImp();
}

The windowSystemFactory variable is a well-known instance ofa WindowSystemFactory
subclass, akin to the well-knownguiFactory variable defining the look and feel.
ThewindowSystemFactory variable can be initialized in the sameway.

Bridge Pattern

The WindowImp class defines an interface to common window systemfacilities, but
its design is driven by different constraints thanWindow's interface. Application
programmers won't deal withWindowImp's interface directly; they only deal with
Window objects.So WindowImp's interface needn't match the application
programmer'sview of the world, as was our concern in the design of the Windowclass
hierarchy and interface. WindowImp's interface can more closelyreflect what window
systems actually provide, warts and all. It can bebiased toward either an
intersection or a union of functionalityapproach, whichever suits the target
window systems best.

The important thing to realize is that Window's interface caters tothe applications
programmer, while WindowImp caters to window systems.Separating windowing
functionality into Window and WindowImphierarchies lets us implement and
specialize these interfacesindependently. Objects from these hierarchies
cooperate to letLexi work without modification on multiple window systems.

The relationship between Window and WindowImp is an example of the Bridge (171)
pattern. The intent behind Bridge is to allowseparate class hierarchies to work
together even as they evolveindependently. Our design criteria led us to create
two separate classhierarchies, one that supports the logical notion of windows,
andanother for capturing different implementations of windows. The Bridgepattern

Design Patterns: Elements of Reusable Object-Oriented Software

72

lets us maintain and enhance our logical windowingabstractions without touching
window system-dependent code, and viceversa.

User Operations

Some of Lexi's functionality is available through the document'sWYSIWYG
representation. You enter and delete text, move the insertionpoint, and select
ranges of text by pointing, clicking, and typingdirectly in the document. Other
functionality is accessed indirectlythrough user operations in Lexi's pull-down
menus, buttons, andkeyboard accelerators. The functionality includes operations
for

• creating a new document,
• opening, saving, and printing an existing document,
• cutting selected text out of the document and pasting it back in,
• changing the font and style of selected text,
• changing the formatting of text, such as its alignment andjustification,
• quitting the application,
• and on and on.

Lexi provides different user interfaces for these operations.But we don't want
to associate a particular user operation with aparticular user interface, because
we may want multiple userinterfaces to the same operation (you can turn the page
using either apage button or a menu operation, for example). We may also want
tochange the interface in the future.

Furthermore, these operations are implemented in many differentclasses. We as
implementors want to access their functionalitywithout creating a lot of
dependencies between implementation and userinterface classes. Otherwise we'll
end up with a tightly coupledimplementation, which will be harder to understand,
extend, andmaintain.

To further complicate matters, we want Lexi to support undo andredo8ofmost but
not all its functionality. Specifically, we want to beable to undo
document-modifying operations like delete, with which auser can destroy lots of
data inadvertently. But we shouldn't try toundo an operation like saving a drawing
or quitting the application.These operations should have no effect on the undo
process. We alsodon't want an arbitrary limit on the number of levels of undo
andredo.

It's clear that support for user operations permeates the application.The
challenge is to come up with a simple and extensible mechanismthat satisfies all
of these needs.

Design Patterns: Elements of Reusable Object-Oriented Software

73

Encapsulating a Request

From our perspective as designers, a pull-down menu is just anotherkind of glyph
that contains other glyphs. What distinguishespull-down menus from other glyphs
that have children is that mostglyphs in menus do some work in response to an
up-click.

Let's assume that these work-performing glyphs are instances of aGlyph subclass
called MenuItem and that they do their work inresponse to a request from a
client.9Carrying out therequest might involve an operation on one object, or many
operationson many objects, or something in between.

We could define a subclass of MenuItem for every user operation andthen hard-code
each subclass to carry out the request. But that's notreally right; we don't need
a subclass of MenuItem for each requestany more than we need a subclass for each
text string in a pull-downmenu. Moreover, this approach couples the request to
a particularuser interface, making it hard to fulfill the request through
adifferent user interface.

To illustrate, suppose you could advance to the last page in thedocument both
through a MenuItem in a pull-down menu and bypressing a page icon at the bottom
of Lexi's interface (which mightbe more convenient for short documents). If we
associate the requestwith a MenuItem through inheritance, then we must do the
same for thepage icon and any other kind of widget that might issue such arequest.
That can give rise to a number of classes approaching theproduct of the number
of widget types and the number of requests.

What's missing is a mechanism that lets us parameterize menu items bythe request
they should fulfill. That way we avoid a proliferation ofsubclasses and allow
for greater flexibility at run-time. We couldparameterize MenuItem with a function
to call, but that's not a completesolution for at least three reasons:

1. It doesn't address the undo/redo problem.
2. It's hard to associate state with a function. For example, afunction that

changes the font needs to know which font.
3. Functions are hard to extend, and it's hard to reuse parts of them.

These reasons suggest that we should parameterize MenuItems with anobject, not
a function. Then we can use inheritance to extendand reuse the request's
implementation. We also have a place to storestate and implement undo/redo
functionality. Here we have anotherexample of encapsulating the concept that
varies, in this case arequest. We'll encapsulate each request in a commandobject.

Design Patterns: Elements of Reusable Object-Oriented Software

74

Command Class and Subclasses

First we define a Command abstract class toprovide an interface for issuing a
request. The basic interfaceconsists of a single abstract operation called
"Execute." Subclassesof Command implement Execute in different ways to fulfill
differentrequests. Some subclasses may delegate part or all of the work toother
objects. Other subclasses may be in a position to fulfillthe request entirely
on their own (see Figure 2.11).To the requester, however, a Command object is
a Command object—theyare treated uniformly.

Figure 2.11: Partial Command class hierarchy

Now MenuItem can store a Command object that encapsulates arequest (Figure 2.12).
We give each menu item objectan instance of the Command subclass that's suitable
for that menuitem, just as we specify the text to appear in the menu item. Whena
user chooses a particular menu item, the MenuItem simply callsExecute on its
Command object to carry out the request. Note thatbuttons and other widgets can
use commands in the same way menuitems do.

Design Patterns: Elements of Reusable Object-Oriented Software

75

Figure 2.12: MenuItem-Command relationship

Undoability

Undo/redo is an important capability in interactive applications. Toundo and redo
commands, we add an Unexecute operation to Command'sinterface. Unexecute reverses
the effects of a preceding Executeoperation using whatever undo information
Execute stored. In the caseof a FontCommand, for example, the Execute operation
would store therange of text affected by the font change along with the
originalfont(s). FontCommand's Unexecute operation would restore the range oftext
to its original font(s).

Sometimes undoability must be determined at run-time. A request tochange the font
of a selection does nothing if the text alreadyappears in that font. Suppose the
user selects some text and thenrequests a spurious font change. What should be
the result of asubsequent undo request? Should a meaningless change cause the
undorequest to do something equally meaningless? Probably not. If theuser repeats
the spurious font change several times, he shouldn't haveto perform exactly the
same number of undo operations to get back tothe last meaningful operation. If
the net effect of executing acommand was nothing, then there's no need for a
corresponding undorequest.

So to determine if a command is undoable, we add an abstractReversible operation
to the Command interface. Reversible returns aBoolean value. Subclasses can
redefine this operation to return trueor false based on run-time criteria.

Command History

The final step in supporting arbitrary-level undo and redo is todefine a command
history, or list of commands that havebeen executed (or unexecuted, if some
commands have been undone).Conceptually, the command history looks like this:

Design Patterns: Elements of Reusable Object-Oriented Software

76

Each circle represents a Command object. In this case the user hasissued four
commands. The leftmost command was issued first, followedby the second-leftmost,
and so on until the most recently issuedcommand, which is rightmost. The line
marked "present" keeps trackof the most recently executed (and unexecuted)
command.

To undo the last command, we simply call Unexecute on the most recentcommand:

After unexecuting the command, we move the "present" line onecommand to the left.
If the user chooses undo again, the next-mostrecently issued command will be undone
in the same way, and we're leftin the state depicted here:

You can see that by simply repeating this procedure we get multiplelevels of undo.
The number of levels is limited only by the length ofthe command history.

To redo a command that's just been undone, we do the same thing inreverse. Commands
to the right of the present line are commands thatmay be redone in the future.
To redo the last undone command, we callExecute on the command to the right of
the present line:

Design Patterns: Elements of Reusable Object-Oriented Software

77

Then we advance the present line so that a subsequent redo will callredo on the
following command in the future.

Of course, if the subsequent operation is not another redo but an undo,then the
command to the left of the present line will be undone. Thusthe user can effectively
go back and forth in time as needed torecover from errors.

Command Pattern

Lexi's commands are an application of the Command (263) pattern, which describes
how toencapsulate a request. The Command pattern prescribes a uniforminterface
for issuing requests that lets you configure clients tohandle different requests.
The interface shields clients from therequest's implementation. A command may
delegate all, part, or noneof the request's implementation to other objects. This
is perfect forapplications like Lexi that must provide centralized access
tofunctionality scattered throughout the application. The pattern alsodiscusses
undo and redo mechanisms built on the basic Commandinterface.

Spelling Checking and Hyphenation

The last design problem involves textual analysis, specifically checkingfor
misspellings and introducing hyphenation points where needed forgood formatting.

The constraints here are similar to those we had for the formattingdesign problem
in Section 2.3.As was the case for linebreaking strategies, there's more than
oneway to check spelling and compute hyphenation points. So here toowe want to
support multiple algorithms. A diverse set of algorithmscan provide a choice of
space/time/quality trade-offs. We shouldmake it easy to add new algorithms as
well.

Design Patterns: Elements of Reusable Object-Oriented Software

78

We also want to avoid wiring this functionality into the documentstructure. This
goal is even more important here than it was in theformatting case, because spelling
checking and hyphenation are justtwo of potentially many kinds of analyses we
may want Lexi tosupport. Inevitably we'll want to expand Lexi's
analyticalabilities over time. We might add searching, word counting, acalculation
facility for adding up tabular values, grammar checking,and so forth. But we don't
want to change the Glyph class and all itssubclasses every time we introduce new
functionality of this sort.

There are actually two pieces to this puzzle: (1) accessing theinformation to
be analyzed, which we have scattered over the glyphsin the document structure,
and (2) doing the analysis. We'll look atthese two pieces separately.

Accessing Scattered Information

Many kinds of analysis require examining the text character bycharacter. The text
we need to analyze is scattered throughout ahierarchical structure of glyph objects.
To examine text in such astructure, we need an access mechanism that has knowledge
about thedata structures in which objects are stored. Some glyphs might storetheir
children in linked lists, others might use arrays, and stillothers might use more
esoteric data structures. Our access mechanismmust be able to handle all of these
possibilities.

An added complication is that different analyses access information indifferent
ways. Most analyses will traverse the text frombeginning to end. But some do the
opposite—a reverse search, forexample, needs to progress through the text backward
rather thanforward. Evaluating algebraic expressions could require an
inordertraversal.

So our access mechanism must accommodate differing data structures, andwe must
support different kinds of traversals, such as preorder,postorder, and inorder.

Encapsulating Access and Traversal

Right now our glyph interface uses an integer index to let clientsrefer to children.
Although that might be reasonable for glyph classesthat store their children in
an array, it may be inefficient forglyphs that use a linked list. An important
role of the glyphabstraction is to hide the data structure in which children
arestored. That way we can change the data structure a glyph class useswithout
affecting other classes.

Therefore only the glyph can know the data structure it uses. Acorollary is that
the glyph interface shouldn't be biased toward onedata structure or another. It

Design Patterns: Elements of Reusable Object-Oriented Software

79

shouldn't be better suited to arraysthan to linked lists, for example, as it is
now.

We can solve this problem and support several different kinds oftraversals at
the same time. We can put multiple access and traversalcapabilities directly in
the glyph classes and provide a way to chooseamong them, perhaps by supplying
an enumerated constant as aparameter. The classes pass this parameter around during
a traversalto ensure they're all doing the same kind of traversal. They have topass
around any information they've accumulated during traversal.

We might add the following abstract operations to Glyph's interface tosupport
this approach:

void First(Traversal kind)
void Next()
bool IsDone()
Glyph* GetCurrent()
void Insert(Glyph*)

Operations First, Next, and IsDonecontrol the traversal. First initializes the
traversal. Ittakes the kind of traversal as a parameter of typeTraversal, an
enumerated constant with valuessuch as CHILDREN (to traverse the glyph's immediate
childrenonly), PREORDER (to traverse the entire structure inpreorder), POSTORDER,
and INORDER.Next advances to the next glyph in the traversal, andIsDone reports
whether the traversal is over or not.GetCurrent replaces theChild operation; it
accesses the current glyph in thetraversal. Insert replaces the old operation;
it insertsthe given glyph at the current position.An analysis would use the
following C++ code to do a preordertraversal of a glyph structure rooted at g:

Glyph* g;

for (g->First(PREORDER); !g->IsDone(); g->Next()) {
 Glyph* current = g->GetCurrent();

 // do some analysis
}

Notice that we've banished the integer index from the glyph interface.There's
no longer anything that biases the interface toward one kindof collection or
another. We've also saved clients from having toimplement common kinds of
traversals themselves.

But this approach still has problems. For one thing, it can't supportnew traversals
without either extending the set of enumerated valuesor adding new operations.
Say we wanted to have a variation on preordertraversal that automatically skips

Design Patterns: Elements of Reusable Object-Oriented Software

80

non-textual glyphs. We'd have tochange the Traversal enumeration to include
something likeTEXTUAL_PREORDER.

We'd like to avoid changing existing declarations.Putting the traversal mechanism
entirely in the Glyph class hierarchymakes it hard to modify or extend without
changing lots of classes.It's also difficult to reuse the mechanism to traverse
other kinds ofobject structures. And we can't have more than one traversal
inprogress on a structure.

Once again, a better solution is to encapsulate the concept thatvaries, in this
case the access and traversal mechanisms. We canintroduce a class of objects called
iterators whose solepurpose is to define different sets of these mechanisms. We
can useinheritance to let us access different data structures uniformly andsupport
new kinds of traversals as well. And we won't have to changeglyph interfaces or
disturb existing glyph implementations to do it.

Iterator Class and Subclasses

We'll use an abstract class called Iterator todefine a general interface for access
and traversal. Concretesubclasses like ArrayIterator andListIterator implement
the interface to provideaccess to arrays and lists, while
PreorderIterator,PostorderIterator, and the like implement differenttraversals
on specific structures. Each Iterator subclass has areference to the structure
it traverses. Subclass instances areinitialized with this reference when they
are created. Figure 2.13 illustrates theIterator class along with several
subclasses. Notice that we'veadded a CreateIterator abstract operation to the
Glyph classinterface to support iterators.

Design Patterns: Elements of Reusable Object-Oriented Software

81

Figure 2.13: Iterator class and subclasses

The Iterator interface provides operations First, Next, and IsDone forcontrolling
the traversal. The ListIterator class implements First topoint to the first element
in the list, and Next advances the iteratorto the next item in the list. IsDone
returns whether or not the listpointer points beyond the last element in the list.
CurrentItemdereferences the iterator to return the glyph it points to.
AnArrayIterator class would do similar things but on anarray of glyphs.

Now we can access the children of a glyph structure without knowingits
representation:

Glyph* g;
Iterator<Glyph*>* i = g->CreateIterator();

for (i->First(); !i->IsDone(); i->Next()) {
 Glyph* child = i->CurrentItem();

 // do something with current child
}

Design Patterns: Elements of Reusable Object-Oriented Software

82

CreateIterator returns a NullIterator instance by default. ANullIterator is a
degenerate iterator for glyphs that have nochildren, that is, leaf glyphs.
NullIterator's IsDone operationalways returns true.

A glyph subclass that has children will override CreateIterator toreturn an
instance of a different Iterator subclass. Whichsubclass depends on the structure
that stores the children. If theRow subclass of Glyph stores its children in a
list_children, then its CreateIterator operation would looklike this:

Iterator<Glyph*>* Row::CreateIterator () {
 return new ListIterator<Glyph*>(_children);
}

Iterators for preorder and inorder traversals implement theirtraversals in terms
of glyph-specific iterators. The iterators forthese traversals are supplied the
root glyph in the structure theytraverse. They call CreateIterator on the glyphs
in the structure anduse a stack to keep track of the resulting iterators.

For example, class PreorderIterator gets the iterator fromthe root glyph,
initializes it to point to its first element, and thenpushes it onto the stack:

void PreorderIterator::First () {
 Iterator<Glyph*>* i = _root->CreateIterator();
 if (i) {
 i->First();
 _iterators.RemoveAll();
 _iterators.Push(i);
 }
}

CurrentItem would simply call CurrentItem on theiterator at the top of the stack:

Glyph* PreorderIterator::CurrentItem () const {
 Return _iterators.Size() > 0 ? _iterators.Top()->CurrentItem() : 0;
}

The Next operation gets the top iterator on the stack andasks its current item
to create an iterator, in an effort to descendthe glyph structure as far as possible
(this is a preordertraversal, after all). Next sets the new iterator to thefirst
item in the traversal and pushes it on the stack. ThenNext tests the latest iterator;
if its IsDoneoperation returns true, then we've finished traversing the
currentsubtree (or leaf) in the traversal. In that case, Next popsthe top iterator
off the stack and repeats this process until it findsthe next incomplete traversal,
if there is one; if not, then we havefinished traversing the structure.

Design Patterns: Elements of Reusable Object-Oriented Software

83

void PreorderIterator::Next () {
Iterator<Glyph*>* i = _iterators.Top()->CurrentItem()->CreateIterator();

i->First();
_iterators.Push(i);

while (_iterators.Size() > 0 && _iterators.Top()->IsDone()) {
 delete _iterators.Pop();
 _iterators.Top()->Next();
}
}

Notice how the Iterator class hierarchy lets us add new kinds oftraversals without
modifying glyph classes—we simply subclassIterator and add a new traversal as
we have withPreorderIterator. Glyph subclasses use the sameinterface to give
clients access to their children without revealingthe underlying data structure
they use to store them. Becauseiterators store their own copy of the state of
a traversal, we cancarry on multiple traversals simultaneously, even on the
samestructure. And though our traversals have been over glyph structuresin this
example, there's no reason we can't parameterize a class likePreorderIterator
by the type of object in the structure.We'd use templates to do that in C++. Then
we can reuse the machineryin PreorderIterator to traverse other structures.

Iterator Pattern

The Iterator (289) pattern captures these techniquesfor supporting access and
traversal over object structures. It'sapplicable not only to composite structures
but to collections aswell. It abstracts the traversal algorithm and shields clients
fromthe internal structure of the objects they traverse. The Iteratorpattern
illustrates once more how encapsulating the concept thatvaries helps us gain
flexibility and reusability. Even so, theproblem of iteration has surprising depth,
and the Iterator patterncovers many more nuances and trade-offs than we've
considered here.

Traversal versus Traversal Actions

Now that we have a way of traversing the glyph structure, we need tocheck the
spelling and do the hyphenation. Both analyses involveaccumulating information
during the traversal.

First we have to decide where to put the responsibility for analysis.We could
put it in the Iterator classes, thereby making analysis anintegral part of
traversal. But we get more flexibility and potentialfor reuse if we distinguish
between the traversal and the actionsperformed during traversal. That's because

Design Patterns: Elements of Reusable Object-Oriented Software

84

different analyses oftenrequire the same kind of traversal. Hence we can reuse
the same setof iterators for different analyses. For example, preorder traversalis
common to many analyses, including spelling checking, hyphenation,forward search,
and word count.

So analysis and traversal should be separate. Where else can we putthe
responsibility for analysis? We know there are many kinds ofanalyses we might
want to do. Each analysis will do different thingsat different points in the
traversal. Some glyphs are moresignificant than others depending on the kind of
analysis. If we'rechecking spelling or hyphenating, we want to consider character
glyphsand not graphical ones like lines and bitmapped images. If we'remaking color
separations, we'd want to consider visible glyphs and notinvisible ones.
Inevitably, different analyses will analyze differentglyphs.

Therefore a given analysis must be able to distinguish different kinds ofglyphs.
An obvious approach is to put the analytical capability into theglyph classes
themselves. For each analysis we can add one or moreabstract operations to the
Glyph class and have subclasses implementthem in accordance with the role they
play in the analysis.

But the trouble with that approach is that we'll have to change everyglyph class
whenever we add a new kind of analysis. We can ease thisproblem in some cases:
If only a few classes participate in theanalysis, or if most classes do the analysis
the same way, then we can supplya default implementation for the abstract operation
in the Glyphclass. The default operation would cover the common case. Thus
we'dlimit changes to just the Glyph class and those subclasses that deviatefrom
the norm.

Yet even if a default implementation reduces the number of changes, aninsidious
problem remains: Glyph's interface expands with every newanalytical capability.
Over time the analytical operations will startto obscure the basic Glyph interface.
It becomes hard to see that aglyph's main purpose is to define and structure objects
that haveappearance and shape—that interface gets lost in the noise.

Encapsulating the Analysis

From all indications, we need to encapsulate the analysis in aseparate object,
much like we've done many times before. We could putthe machinery for a given
analysis into its own class. We could usean instance of this class in conjunction
with an appropriate iterator.The iterator would "carry" the instance to each glyph
in thestructure. The analysis object could then perform a piece of theanalysis
at each point in the traversal. The analyzer accumulatesinformation of interest
(characters in this case) as the traversalproceeds:

Design Patterns: Elements of Reusable Object-Oriented Software

85

The fundamental question with this approach is how the analysis
objectdistinguishes different kinds of glyphs without resorting to typetests or
downcasts. We don't want a SpellingChecker classto include (pseudo)code like

void SpellingChecker::Check (Glyph* glyph) {
Character* c;
Row* r;
Image* i;

if (c = dynamic_cast<Character*>(glyph)) {
 // analyze the character
} else if (r = dynamic_cast<Row*>(glyph)) {
 // prepare to analyze r's children
} else if (i = dynamic_cast<Image*>(glyph)) {
 // do nothing
}
}

This code is pretty ugly. It relies on fairly esoteric capabilitieslike type-safe
casts. It's hard to extend as well. We'll have toremember to change the body of
this function whenever we change theGlyph class hierarchy. In fact, this is the
kind of code thatobject-oriented languages were intended to eliminate.

We want to avoid such a brute-force approach, but how? Let's considerwhat happens
when we add the following abstract operation to the Glyphclass:

 void CheckMe(SpellingChecker&)

We define CheckMe in every Glyph subclass as follows:

Design Patterns: Elements of Reusable Object-Oriented Software

86

 void GlyphSubclass::CheckMe (SpellingChecker& checker)
{ checker.CheckGlyphSubclass(this); }

where GlyphSubclass would be replaced by the name of theglyph subclass. Note that
when CheckMe is called, thespecific Glyph subclass is known—after all, we're in
one of itsoperations. In turn, theSpellingChecker class interface includes an
operation likeCheckGlyphSubclass for every Glyphsubclass10:

class SpellingChecker {
public:
SpellingChecker();
virtual void CheckCharacter(Character*);
virtual void CheckRow(Row*);
virtual void CheckImage(Image*);
// ... and so forth
List<char*>& GetMisspellings();

protected:
virtual bool IsMisspelled(const char*);

private:
char _currentWord[MAX_WORD_SIZE];
List<char*> _misspellings;
};

SpellingChecker's checking operation forCharacter glyphs might look something
like this:

void SpellingChecker::CheckCharacter (Character* c) {
const char ch = c->GetCharCode();
if (isalpha(ch)) {
 // append alphabetic character to _currentWord
} else {
 // we hit a nonalphabetic character
 if (IsMisspelled(_currentWord)) {
 // add _currentWord to _misspellings
 _misspellings.Append(strdup(_currentWord));
}
_currentWord[0] = '\0';
// reset _currentWord to check next word
}
}

Design Patterns: Elements of Reusable Object-Oriented Software

87

Notice we've defined a special GetCharCode operation onjust the Character class.
The spelling checker can deal withsubclass-specific operations without resorting
to type tests orcasts—it lets us treat objects specially.

CheckCharacter accumulates alphabetic charactersinto the _currentWord buffer.
When it encounters anonalphabetic character, such as an underscore, it uses
theIsMisspelled operation to check the spelling of theword in _currentWord.11If
the word ismisspelled, then CheckCharacter adds the word to thelist of misspelled
words. Then it must clear out the_currentWord buffer to ready it for the next
word.When the traversal is over, you can retrieve the list of misspelledwords
with the GetMisspellings operation.

Now we can traverse the glyph structure, callingCheckMe on each glyph with the
spelling checker as an argument.This effectively identifies each glyph to the
SpellingChecker andprompts the checker to do the next increment in the spelling
check.

SpellingChecker spellingChecker;
Composition* c;
// ...
Glyph* g;
PreorderIterator i(c);
for (i.First(); !i.IsDone(); i.Next()) {
 g = i.CurrentItem();
 g->CheckMe(spellingChecker);
}

The following interaction diagram illustrates howCharacter glyphs and the
SpellingChecker objectwork together:

Design Patterns: Elements of Reusable Object-Oriented Software

88

This approach works for finding spelling errors, but how does it helpus support
multiple kinds of analysis? It looks like we have to addan operation like
CheckMe(SpellingChecker&) to Glyph andits subclasses whenever we add a new kind
of analysis. That's true ifwe insist on an independent class for every analysis.
Butthere's no reason why we can't give all analysis classes thesame interface.
Doing so lets us use them polymorphically. Thatmeans we can replace
analysis-specific operations likeCheckMe(SpellingChecker&) with an
analysis-independentoperation that takes a more general parameter.

Visitor Class and Subclasses

We'll use the term visitor to refer generally to classesof objects that "visit"
other objects during a traversal and dosomething appropriate.12In this case we
can define aVisitor class that defines an abstract interface forvisiting glyphs
in a structure.

class Visitor {
public:
virtual void VisitCharacter(Character*) { }
virtual void VisitRow(Row*) { }
virtual void VisitImage(Image*) { }

// ... and so forth
};

Design Patterns: Elements of Reusable Object-Oriented Software

89

Concrete subclasses of Visitor perform different analyses.For example, we could
have a SpellingCheckingVisitorsubclass for checking spelling, and a
HyphenationVisitorsubclass for hyphenation. SpellingCheckingVisitor wouldbe
implemented exactly as we implemented SpellingCheckerabove, except the operation
names would reflect the more generalVisitor interface. For example,CheckCharacter
would be called VisitCharacter.

Since CheckMe isn't appropriate for visitors that don'tcheck anything, we'll give
it a more general name:

Accept. Its argument must also change to take aVisitor&, reflecting the fact

that it can accept any visitor.Now adding a new analysis requires just defining

a new subclass ofVisitor—we don't have to touch any of the glyph classes.We support

all future analyses by adding this one operationto Glyph and its subclasses.

We've already seen how spelling checking works. We use a similarapproach in
HyphenationVisitor to accumulate text. Butonce HyphenationVisitor's
VisitCharacter operationhas assembled an entire word, it works a little
differently. Insteadof checking the word for misspelling, it applies a
hyphenationalgorithm to determine the potential hyphenation points in the word,if
any. Then at each hyphenation point, it inserts a discretionary glyph into the
composition. Discretionaryglyphs are instances of Discretionary, a subclass
ofGlyph.

A discretionary glyph has one of two possible appearances depending onwhether
or not it is the last character on a line. If it's the lastcharacter, then the
discretionary looks like a hyphen; if it's not atthe end of a line, then the
discretionary has no appearancewhatsoever. The discretionary checks its parent
(a Row object) to seeif it is the last child. The discretionary makes this check
wheneverit's called on to draw itself or calculate its boundaries. Theformatting
strategy treats discretionaries the same as whitespace,making them candidates
for ending a line. The following diagram shows howan embedded discretionary can
appear.

Design Patterns: Elements of Reusable Object-Oriented Software

90

Visitor Pattern

What we've described here is an application of the Visitor (366) pattern. The
Visitor class and itssubclasses described earlier are the key participants in
the pattern.The Visitor pattern captures the technique we've used to allow
anopen-ended number of analyses of glyph structures without having tochange the
glyph classes themselves. Another nice feature of visitorsis that they can be
applied not just to composites like our glyphstructures but to any object structure.
That includes sets,lists, even directed-acyclic graphs. Furthermore, the classes
that avisitor can visit needn't be related to each other through a commonparent
class. That means visitors can work across class hierarchies.

An important question to ask yourself before applying the Visitorpattern is, Which
class hierarchies change most often? The pattern ismost suitable when you want
to be able to do a variety of differentthings to objects that have a stable class
structure. Adding a newkind of visitor requires no change to that class structure,
which isespecially important when the class structure is large. But whenever youadd
a subclass to the structure, you'll also have to update all yourvisitor interfaces
to include a Visit... operation for thatsubclass. In our example that means adding
a newGlyph subclass called Foo will require changingVisitor and all its subclasses
to include aVisitFoo operation. But given our design constraints, we'remuch more
likely to add a new kind of analysis to Lexi than a newkind of Glyph. So the Visitor
pattern is well-suited to our needs.

Summary

We've applied eight different patterns to Lexi's design:

1. Composite (183)to represent the document's physical structure,
2. Strategy (349) to allow differentformatting algorithms,
3. Decorator (196) for embellishingthe user interface,
4. Abstract Factory (99) forsupporting multiple look-and-feel standards,

Design Patterns: Elements of Reusable Object-Oriented Software

91

5. Bridge (171) to allow multiplewindowing platforms,
6. Command (263) for undoable useroperations,
7. Iterator (289) for accessing andtraversing object structures, and
8. Visitor (366) for allowing anopen-ended number of analytical capabilities

without complicatingthe document structure's implementation.

None of these design issues is limited to document editingapplications like Lexi.
Indeed, most nontrivial applications willhave occasion to use many of these
patterns, though perhaps to dodifferent things. A financial analysis application
might useComposite to define investment portfolios made up of subportfolios
andaccounts of different sorts. A compiler might use the Strategypattern to allow
different register allocation schemes for differenttarget machines. Applications
with a graphical user interface willprobably apply at least Decorator and Command
just as we have here.

While we've covered several major problems in Lexi's design, thereare lots of
others we haven't discussed. Then again, this bookdescribes more than just the
eight patterns we've used here. So asyou study the remaining patterns, think about
how you might use eachone in Lexi. Or better yet, think about using them in your
owndesigns!

1Lexi's design is based on Doc, a text editingapplication developed byCalder
[CL92].

2Authors often view the document in terms of itslogical structure as well, that
is, in terms of sentences,paragraphs, sections, subsections, and chapters. To
keep thisexample simple, our internal representation won't store informationabout
the logical structure explicitly. But the design solution wedescribe works equally
well for representing such information.

3Calder was the first to use the term "glyph" in thiscontext [CL90].Most
contemporary document editors don't use an object for everycharacter, presumably
for efficiency reasons. Calder demonstratedthat this approach is feasible in his
thesis [Cal93]. Our glyphs are lesssophisticated than his in that we have
restricted ours to stricthierarchies for simplicity. Calder's glyphs can be shared
to reducestorage costs, thereby forming directed-acyclic graph structures.We can
apply the Flyweight (218)pattern to get the same effect, but we'll leave that
as an exercisefor the reader.

4The interface we describehere is purposely minimal to keep the discussion simple.
A completeinterface would include operations for managing graphical

Design Patterns: Elements of Reusable Object-Oriented Software

92

attributessuch as color, font, and coordinate transformations, plus operationsfor
more sophisticated child management.

5An integer index is probably not the best way to specifya glyph's children,
depending on the data structure the glyph uses.If it stores its children in a
linked list, then a pointer into thelist would be more efficient. We'll see a
better solution to theindexing problem in Section 2.8, when we discuss document
analysis.

6The user will have even more to say about thedocument's logical structure—the
sentences, paragraphs,sections, chapters, and so forth. The physical structure
is lessinteresting by comparison. Most people don't care where the linebreaksin
a paragraph occur as long as the paragraph is formatted properly.The same is true
for formatting columns and pages. Thus users end upspecifying only high-level
constraints on the physical structure,leaving Lexi to do the hard work of
satisfying them.

7The compositor must get the character codes ofCharacter glyphs in order to compute
the linebreaks. In Section 2.8 we'll see howto get this information polymorphically
without adding acharacter-specific operation to the Glyph interface.

8That is, redoing an operation that was just undone.

9Conceptually, the client is Lexi's user, but inreality it's another object (such
as an event dispatcher) thatmanages inputs from the user.

10We could use function overloading to give each of these memberfunctions the same
name, since their parameters already differentiatethem. We've given them different
names here to emphasize theirdifferences, especially when they're called.

11IsMisspelled implements the spellingalgorithm, which we won't detail here
because we've made itindependent of Lexi's design. We can support different
algorithmsby subclassing SpellingChecker; alternatively, we canapply the Strategy
(349) pattern (as we did for formatting in Section 2.3) to supportdifferent
spelling checking algorithms.

12"Visit" is just a slightly moregeneral term for "analyze." It foreshadows the
terminology we use inthe design pattern we're leading to.

Design Patterns: Elements of Reusable Object-Oriented Software

93

Design Pattern Catalog

Design Patterns: Elements of Reusable Object-Oriented Software

94

3. Creational Patterns

Creational design patterns abstract the instantiation process.They help make a
system independent of how its objects are created,composed, and represented. A
class creational pattern uses inheritanceto vary the class that's instantiated,
whereas an object creationalpattern will delegate instantiation to another object.

Creational patterns become important as systems evolve to depend moreon object
composition than class inheritance. As that happens,emphasis shifts away from
hard-coding a fixed set of behaviors towarddefining a smaller set of fundamental
behaviors that can be composedinto any number of more complex ones. Thus creating
objects withparticular behaviors requires more than simply instantiating a class.

There are two recurring themes in these patterns. First, they allencapsulate
knowledge about which concrete classes the system uses.Second, they hide how
instances of these classes are created and puttogether. All the system at large
knows about the objects is theirinterfaces as defined by abstract classes.
Consequently, thecreational patterns give you a lot of flexibility in what
getscreated, who creates it, how it gets created, and when. They let you configure
a system with "product" objects thatvary widely in structure and functionality.
Configuration can bestatic (that is, specified at compile-time) or dynamic
(atrun-time).

Sometimes creational patterns are competitors. For example,there are cases when
either Prototype (133)or Abstract Factory (99) couldbe used profitably. At other
times they are complementary: Builder (110) can use one of the otherpatterns to
implement which components get built. Prototype (133) can use Singleton (144)
in its implementation.

Because the creational patterns are closely related, we'll study allfive of them
together to highlight their similarities and differences.We'll also use a common
example—building a maze for a computergame—to illustrate their implementations.
The maze and the game willvary slightly from pattern to pattern. Sometimes the
game will besimply to find your way out of a maze; in that case the player
willprobably only have a local view of the maze. Sometimes mazes containproblems
to solve and dangers to overcome, and these games may providea map of the part
of the maze that has been explored.

We'll ignore many details of what can be in a maze and whether a mazegame has
a single or multiple players. Instead, we'll just focus onhow mazes get created.
We define a maze as a set of rooms. A roomknows its neighbors; possible neighbors
are another room, a wall, or adoor to another room.

Design Patterns: Elements of Reusable Object-Oriented Software

95

The classes Room, Door, and Walldefine the components of the maze used in all
our examples. We defineonly the parts of these classes that are important for
creating amaze. We'll ignore players, operations for displaying and
wanderingaround in a maze, and other important functionality that isn'trelevant
to building the maze.

The following diagram shows the relationships between these classes:

Each room has four sides. We use an enumeration Direction inC++ implementations
to specify the north, south, east, and west sides ofa room:

 enum Direction {North, South, East, West};

The Smalltalk implementations use corresponding symbols to representthese
directions.

The class MapSite is the common abstract class for all thecomponents of a maze.
To simplify the example, MapSite definesonly one operation, Enter. Its meaning
depends on what you'reentering. If you enter a room, then your location changes.
If you try toenter a door, then one of two things happen: If the door is open,
you gointo the next room. If the door is closed, then you hurt your nose.

class MapSite {
public:
virtual void Enter() = 0;
};

Enter provides a simple basis for more sophisticated gameoperations. For example,
if you are in a room and say "Go East," thegame can simply determine which MapSite
is immediately to theeast and then call Enter on it. The subclass-specificEnter
operation will figure out whether your location changedor your nose got hurt.
In a real game, Enter could take theplayer object that's moving about as an argument.

Design Patterns: Elements of Reusable Object-Oriented Software

96

Room is the concrete subclass of MapSite thatdefines the key relationships between
components in the maze. Itmaintains references to other MapSite objects and stores
aroom number. The number will identify rooms in the maze.

class Room : public MapSite {
public:
Room(int roomNo);

MapSite* GetSide(Direction) const;
void SetSide(Direction, MapSite*);

virtual void Enter();

private:
MapSite* _sides[4];
int _roomNumber;
};

The following classes represent the wall or door that occurs on eachside of a
room.

class Wall : public MapSite {
public:
Wall();
virtual void Enter();
};

class Door : public MapSite {
public:
Door(Room* = 0, Room* = 0);

virtual void Enter();
Room* OtherSideFrom(Room*);

private:
Room* _room1;
Room* _room2;
bool _isOpen;
};

We need to know about more than just the parts of a maze. We'll alsodefine a Maze
class to represent a collection of rooms.Maze can also find a particular room
given a room numberusing its RoomNo operation.

Design Patterns: Elements of Reusable Object-Oriented Software

97

class Maze {
public:
Maze();

void AddRoom(Room*);
Room* RoomNo(int) const;
private:
// ...
};

RoomNo could do a look-up using a linear search, a hash table,or even a simple
array. But we won't worry about such details here.Instead, we'll focus on how
to specify the components of a maze object.

Another class we define is MazeGame, which creates the maze.One straightforward
way to create a maze is with a series of operationsthat add components to a maze
and then interconnect them. Forexample, the following member function will create
a maze consistingof two rooms with a door between them:

Maze* MazeGame::CreateMaze () {
Maze* aMaze = new Maze;
Room* r1 = new Room(1);
Room* r2 = new Room(2);
Door* theDoor = new Door(r1, r2);

aMaze->AddRoom(r1);
aMaze->AddRoom(r2);

r1->SetSide(North, new Wall);
r1->SetSide(East, theDoor);
r1->SetSide(South, new Wall);
r1->SetSide(West, new Wall);

r2->SetSide(North, new Wall);
r2->SetSide(East, new Wall);
r2->SetSide(South, new Wall);
r2->SetSide(West, theDoor);

return aMaze;
}

This function is pretty complicated, considering that all it does is createa maze
with two rooms. There are obvious ways to make it simpler. Forexample, the Room
constructor could initialize the sideswith walls ahead of time. But that just

Design Patterns: Elements of Reusable Object-Oriented Software

98

moves the code somewhere else.The real problem with this member function isn't
its size but its inflexibility. It hard-codes the maze layout. Changing the
layoutmeans changing this member function, either by overriding it—whichmeans
reimplementing the whole thing—or by changing parts ofit—which is error-prone
and doesn't promote reuse.

The creational patterns show how to make this design more flexible, not necessarily
smaller. In particular, they will make iteasy to change the classes that define
the components of a maze.

Suppose you wanted to reuse an existing maze layout for a new gamecontaining (of
all things) enchanted mazes. The enchanted maze game hasnew kinds of components,
like DoorNeedingSpell, a door thatcan be locked and opened subsequently only with
a spell; andEnchantedRoom, a room that can have unconventional items init, like
magic keys or spells. How can you change CreateMazeeasily so that it creates mazes
with these new classes of objects?

In this case, the biggest barrier to change lies in hard-coding theclasses that
get instantiated. The creational patterns providedifferent ways to remove explicit
references to concrete classesfrom code that needs to instantiate them:

• If CreateMaze calls virtual functions instead of constructorcalls to create
the rooms, walls, and doors it requires, then you canchange the classes
that get instantiated by making a subclass ofMazeGame and redefining those
virtual functions. This approachis an example of the Factory Method (121)
pattern.

• If CreateMaze is passed an object as a parameter to use tocreate rooms,
walls, and doors, then you can change the classes ofrooms, walls, and doors
by passing a different parameter. This is anexample of the Abstract Factory
(99) pattern.

• If CreateMaze is passed an object that can create a new mazein its entirety
using operations for adding rooms, doors, and walls tothe maze it builds,
then you can use inheritance to change parts ofthe maze or the way the maze
is built. This is an example of the Builder (110) pattern.

• If CreateMaze is parameterized by various prototypical room,door, and wall
objects, which it then copies and adds to the maze,then you can change the
maze's composition by replacing theseprototypical objects with different
ones. This is an example of the Prototype (133) pattern.

The remaining creational pattern, Singleton (144), canensure there's only one
maze per game and that all game objects haveready access to it—without resorting
to global variables orfunctions. Singleton also makes it easy to extend or replace
the mazewithout touching existing code.

Design Patterns: Elements of Reusable Object-Oriented Software

99

Abstract Factory

Intent

Provide an interface for creating families of related or dependent objects without
specifying their concrete classes.

Also Known As

Kit

Motivation

Consider a user interface toolkit that supports multiple look-and-feel standards,
such as Motif and Presentation Manager. Different look-and-feels define different
appearances and behaviors for user interface "widgets" like scroll bars, windows,
and buttons. To be portable across look-and-feel standards, an application should
not hard-code its widgets for a particular look and feel. Instantiating
look-and-feel-specific classes of widgets throughout the application makes it
hard to change the look and feel later.

We can solve this problem by defining an abstract WidgetFactory class that declares
an interface for creating each basic kind of widget. There's also an abstract
class for each kind of widget, and concrete subclasses implement widgets for
specific look-and-feel standards. WidgetFactory's interface has an operation that
returns a new widget object for each abstract widget class. Clients call these
operations to obtain widget instances, but clients aren't aware of the concrete
classes they're using. Thus clients stay independent of the prevailing look and
feel.

Design Patterns: Elements of Reusable Object-Oriented Software

100

There is a concrete subclass of WidgetFactory for each look-and-feel standard.
Each subclass implements the operations to create the appropriate widget for the
look and feel. For example, the CreateScrollBar operation on the
MotifWidgetFactory instantiates and returns a Motif scroll bar, while the
corresponding operation on the PMWidgetFactory returns a scroll bar for
Presentation Manager. Clients create widgets solely through the WidgetFactory
interface and have no knowledge of the classes that implement widgets for a
particular look and feel. In other words, clients only have to commit to an interface
defined by an abstract class, not a particular concrete class.

A WidgetFactory also enforces dependencies between the concrete widget classes.
A Motif scroll bar should be used with a Motif button and a Motif text editor,
and that constraint is enforced automatically as a consequence of using a
MotifWidgetFactory.

Applicability

Use the Abstract Factory pattern when

• a system should be independent of how its products are created, composed,
and represented.

• a system should be configured with one of multiple families of products.
• a family of related product objects is designed to be used together, and

you need to enforce this constraint.
• you want to provide a class library of products, and you want to reveal

just their interfaces, not their implementations.

Design Patterns: Elements of Reusable Object-Oriented Software

101

Structure

Participants

• AbstractFactory (WidgetFactory)
o declares an interface for operations that create abstract product

objects.
• ConcreteFactory (MotifWidgetFactory, PMWidgetFactory)

o implements the operations to create concrete product objects.
• AbstractProduct (Window, ScrollBar)

o declares an interface for a type of product object.
• ConcreteProduct (MotifWindow, MotifScrollBar)

o defines a product object to be created by the corresponding concrete
factory.

o implements the AbstractProduct interface.
• Client

o uses only interfaces declared by AbstractFactory and
AbstractProduct classes.

Collaborations

• Normally a single instance of a ConcreteFactory class is created at run-time.
This concrete factory creates product objects having a particular
implementation. To create different product objects, clients should use
a different concrete factory.

• AbstractFactory defers creation of product objects to its ConcreteFactory
subclass.

Design Patterns: Elements of Reusable Object-Oriented Software

102

Consequences

The Abstract Factory pattern has the following benefits and liabilities:

1. It isolates concrete classes. The Abstract Factory pattern helps you control
the classes of objects that an application creates. Because a factory
encapsulates the responsibility and the process of creating product objects,
it isolates clients from implementation classes. Clients manipulate
instances through their abstract interfaces. Product class names are
isolated in the implementation of the concrete factory; they do not appear
in client code.

2. It makes exchanging product families easy. The class of a concrete factory
appears only once in an application—that is, where it's instantiated. This
makes it easy to change the concrete factory an application uses. It can
use different product configurations simply by changing the concrete
factory. Because an abstract factory creates a complete family of products,
the whole product family changes at once. In our user interface example,
we can switch from Motif widgets to Presentation Manager widgets simply
by switching the corresponding factory objects and recreating the
interface.

3. It promotes consistency among products. When product objects in a family
are designed to work together, it's important that an application use
objects from only one family at a time. AbstractFactory makes this easy
to enforce.

4. Supporting new kinds of products is difficult. Extending abstract factories
to produce new kinds of Products isn't easy. That's because the
AbstractFactory interface fixes the set of products that can be created.
Supporting new kinds of products requires extending the factory interface,
which involves changing the AbstractFactory class and all of its subclasses.
We discuss one solution to this problem in the Implementation section.

Implementation

Here are some useful techniques for implementing the Abstract Factory pattern.

1. Factories as singletons. An application typically needs only one instance
of a ConcreteFactory per product family. So it's usually best implemented
as a Singleton (144).

2. Creating the products. AbstractFactory only declares an interface for
creating products. It's up to ConcreteProduct subclasses to actually create
them. The most common way to do this is to define a factory method (see
Factory Method (121)) for each product. A concrete factory will specify

Design Patterns: Elements of Reusable Object-Oriented Software

103

its products by overriding the factory method for each. While this
implementation is simple, it requires a new concrete factory subclass for
each product family, even if the product families differ only slightly.

If many product families are possible, the concrete factory can be
implemented using the Prototype (133) pattern. The concrete factory is
initialized with a prototypical instance of each product in the family,
and it creates a new product by cloning its prototype. The Prototype-based
approach eliminates the need for a new concrete factory class for each new
product family.

Here's a way to implement a Prototype-based factory in Smalltalk. The
concrete factory stores the prototypes to be cloned in a dictionary called
partCatalog. The method make: retrieves the prototype and clones it:

make: partName
 ̂ (partCatalog at: partName) copy

The concrete factory has a method for adding parts to the catalog.

 addPart: partTemplate named: partName
 partCatalog at: partName put: partTemplate

Prototypes are added to the factory by identifying them with a symbol:

 aFactory addPart: aPrototype named: #ACMEWidget

A variation on the Prototype-based approach is possible in languages that
treat classes as first-class objects (Smalltalk and Objective C, for
example). You can think of a class in these languages as a degenerate factory
that creates only one kind of product. You can store classes inside a
concrete factory that create the various concrete products in variables,
much like prototypes. These classes create new instances on behalf of the
concrete factory. You define a new factory by initializing an instance of
a concrete factory with classes of products rather than by subclassing.
This approach takes advantage of language characteristics, whereas the pure
Prototype-based approach is language-independent.

Like the Prototype-based factory in Smalltalk just discussed, the
class-based version will have a single instance variable partCatalog, which
is a dictionary whose key is the name of the part. Instead of storing
prototypes to be cloned, partCatalog stores the classes of the products.
The method make: now looks like this:

 make: partName

Design Patterns: Elements of Reusable Object-Oriented Software

104

 ̂ (partCatalog at: partName) new

3. Defining extensible factories. AbstractFactory usually defines a different
operation for each kind of product it can produce. The kinds of products
are encoded in the operation signatures. Adding a new kind of product
requires changing the AbstractFactory interface and all the classes that
depend on it.

A more flexible but less safe design is to add a parameter to operations
that create objects. This parameter specifies the kind of object to be
created. It could be a class identifier, an integer, a string, or anything
else that identifies the kind of product. In fact with this approach,
AbstractFactory only needs a single "Make" operation with a parameter
indicating the kind of object to create. This is the technique used in the
Prototype- and the class-based abstract factories discussed earlier.

This variation is easier to use in a dynamically typed language like
Smalltalk than in a statically typed language like C++. You can use it in
C++ only when all objects have the same abstract base class or when the
product objects can be safely coerced to the correct type by the client
that requested them. The implementation section of Factory Method (121)
shows how to implement such parameterized operations in C++.

But even when no coercion is needed, an inherent problem remains: All
products are returned to the client with the same abstract interface as
given by the return type. The client will not be able to differentiate or
make safe assumptions about the class of a product. If clients need to
perform subclass-specific operations, they won't be accessible through the
abstract interface. Although the client could perform a downcast (e.g.,
with dynamic_cast in C++), that's not always feasible or safe, because the
downcast can fail. This is the classic trade-off for a highly flexible and
extensible interface.

Sample Code

We'll apply the Abstract Factory pattern to creating the mazes we discussed at
the beginning of this chapter.

Class MazeFactory can create components of mazes. It builds rooms, walls, and
doors between rooms. It might be used by a program that reads plans for mazes
from a file and builds the corresponding maze. Or it might be used by a program
that builds mazes randomly. Programs that build mazes take a MazeFactory as an
argument so that the programmer can specify the classes of rooms, walls, and doors
to construct.

Design Patterns: Elements of Reusable Object-Oriented Software

105

 class MazeFactory {
 public:
 MazeFactory();

 virtual Maze* MakeMaze() const
 { return new Maze; }
 virtual Wall* MakeWall() const
 { return new Wall; }
 virtual Room* MakeRoom(int n) const
 { return new Room(n); }
 virtual Door* MakeDoor(Room* r1, Room* r2) const
 { return new Door(r1, r2); }
 };

Recall that the member function CreateMaze builds a small maze consisting of two
rooms with a door between them. CreateMaze hard-codes the class names, making
it difficult to create mazes with different components.

Here's a version of CreateMaze that remedies that shortcoming by taking a
MazeFactory as a parameter:

 Maze* MazeGame::CreateMaze (MazeFactory& factory) {
 Maze* aMaze = factory.MakeMaze();
 Room* r1 = factory.MakeRoom(1);
 Room* r2 = factory.MakeRoom(2);
 Door* aDoor = factory.MakeDoor(r1, r2);

 aMaze->AddRoom(r1);
 aMaze->AddRoom(r2);

 r1->SetSide(North, factory.MakeWall());
 r1->SetSide(East, aDoor);
 r1->SetSide(South, factory.MakeWall());
 r1->SetSide(West, factory.MakeWall());

 r2->SetSide(North, factory.MakeWall());
 r2->SetSide(East, factory.MakeWall());
 r2->SetSide(South, factory.MakeWall());
 r2->SetSide(West, aDoor);

 return aMaze;
 }

Design Patterns: Elements of Reusable Object-Oriented Software

106

We can create EnchantedMazeFactory, a factory for enchanted mazes, by subclassing
MazeFactory. EnchantedMazeFactory will override different member functions and
return different subclasses of Room, Wall, etc.

 class EnchantedMazeFactory : public MazeFactory {
 public:
 EnchantedMazeFactory();

 virtual Room* MakeRoom(int n) const
 { return new EnchantedRoom(n, CastSpell()); }

 virtual Door* MakeDoor(Room* r1, Room* r2) const
 { return new DoorNeedingSpell(r1, r2); }

 protected:
 Spell* CastSpell() const;
 };

Now suppose we want to make a maze game in which a room can have a bomb set in
it. If the bomb goes off, it will damage the walls (at least). We can make a subclass
of Room keep track of whether the room has a bomb in it and whether the bomb has
gone off. We'll also need a subclass of Wall to keep track of the damage done
to the wall. We'll call these classes RoomWithABomb and BombedWall.

The last class we'll define is BombedMazeFactory, a subclass of MazeFactory that
ensures walls are of class BombedWall and rooms are of class RoomWithABomb.
BombedMazeFactory only needs to override two functions:

 Wall* BombedMazeFactory::MakeWall () const {
 return new BombedWall;
 }

 Room* BombedMazeFactory::MakeRoom(int n) const {
 return new RoomWithABomb(n);
 }

To build a simple maze that can contain bombs, we simply call CreateMaze with
a BombedMazeFactory.

 MazeGame game;
 BombedMazeFactory factory;

Design Patterns: Elements of Reusable Object-Oriented Software

107

 game.CreateMaze(factory);

CreateMaze can take an instance of EnchantedMazeFactory just as well to build
enchanted mazes.

Notice that the MazeFactory is just a collection of factory methods. This is the
most common way to implement the Abstract Factory pattern. Also note that
MazeFactory is not an abstract class; thus it acts as both the AbstractFactory
and the ConcreteFactory. This is another common implementation for simple
applications of the Abstract Factory pattern. Because the MazeFactory is a concrete
class consisting entirely of factory methods, it's easy to make a new MazeFactory
by making a subclass and overriding the operations that need to change.

CreateMaze used the SetSide operation on rooms to specify their sides. If it

creates rooms with a BombedMazeFactory, then the maze will be made up of

RoomWithABomb objects with BombedWall sides. If RoomWithABomb had to access a

subclass-specific member of BombedWall, then it would have to cast a reference

to its walls from Wall* to BombedWall*. This downcasting is safe as long as the

argument is in fact a BombedWall, which is guaranteed to be true if walls are

built solely with a BombedMazeFactory.

Dynamically typed languages such as Smalltalk don't require downcasting, of course,
but they might produce run-time errors if they encounter a Wall where they expect
a subclass of Wall. Using Abstract Factory to build walls helps prevent these
run-time errors by ensuring that only certain kinds of walls can be created.

Let's consider a Smalltalk version of MazeFactory, one with a single make operation
that takes the kind of object to make as a parameter. Moreover, the concrete factory
stores the classes of the products it creates.

First, we'll write an equivalent of CreateMaze in Smalltalk:

 createMaze: aFactory
 | room1 room2 aDoor |
 room1 := (aFactory make: #room) number: 1.
 room2 := (aFactory make: #room) number: 2.
 aDoor := (aFactory make: #door) from: room1 to: room2.
 room1 atSide: #north put: (aFactory make: #wall).
 room1 atSide: #east put: aDoor.
 room1 atSide: #south put: (aFactory make: #wall).

Design Patterns: Elements of Reusable Object-Oriented Software

108

 room1 atSide: #west put: (aFactory make: #wall).
 room2 atSide: #north put: (aFactory make: #wall).
 room2 atSide: #east put: (aFactory make: #wall).
 room2 atSide: #south put: (aFactory make: #wall).
 room2 atSide: #west put: aDoor.
 ̂ Maze new addRoom: room1; addRoom: room2; yourself

As we discussed in the Implementation section, MazeFactory needs only a single
instance variable partCatalog to provide a dictionary whose key is the class of
the component. Also recall how we implemented the make: method:

 make: partName
 ̂ (partCatalog at: partName) new

Now we can create a MazeFactory and use it to implement createMaze. We'll create
the factory using a method createMazeFactory of class MazeGame.

 createMazeFactory
 ̂ (MazeFactory new
 addPart: Wall named: #wall;
 addPart: Room named: #room;
 addPart: Door named: #door;
 yourself)

A BombedMazeFactory or EnchantedMazeFactory is created by associating different
classes with the keys. For example, an EnchantedMazeFactory could be created like
this:

 createMazeFactory
 ̂ (MazeFactory new
 addPart: Wall named: #wall;
 addPart: EnchantedRoom named: #room;
 addPart: DoorNeedingSpell named: #door;
 yourself)

Known Uses

InterViews uses the "Kit" suffix [Lin92] to denote AbstractFactory classes. It
defines WidgetKit and DialogKit abstract factories for generating
look-and-feel-specific user interface objects. InterViews also includes a
LayoutKit that generates different composition objects depending on the layout

Design Patterns: Elements of Reusable Object-Oriented Software

109

desired. For example, a layout that is conceptually horizontal may require
different composition objects depending on the document's orientation (portrait
or landscape).

ET++ [WGM88] uses the Abstract Factory pattern to achieve portability across
different window systems (X Windows and SunView, for example). The WindowSystem
abstract base class defines the interface for creating objects that represent
window system resources (MakeWindow, MakeFont, MakeColor, for example). Concrete
subclasses implement the interfaces for a specific window system. At run-time,
ET++ creates an instance of a concrete WindowSystem subclass that creates concrete
system resource objects.

Related Patterns

AbstractFactory classes are often implemented with factory methods (Factory Method
(121)), but they can also be implemented using Prototype (133).

A concrete factory is often a singleton (Singleton (144)).

Design Patterns: Elements of Reusable Object-Oriented Software

110

Builder

Intent

Separate the construction of a complex object from its representation so that
the same construction process can create different representations.

Motivation

A reader for the RTF (Rich Text Format) document exchange format should be able
to convert RTF to many text formats. The reader might convert RTF documents into
plain ASCII text or into a text widget that can be edited interactively. The problem,
however, is that the number of possible conversions is open-ended. So it should
be easy to add a new conversion without modifying the reader.

A solution is to configure the RTFReader class with a TextConverter object that
converts RTF to another textual representation. As the RTFReader parses the RTF
document, it uses the TextConverter to perform the conversion. Whenever the
RTFReader recognizes an RTF token (either plain text or an RTF control word),
it issues a request to the TextConverter to convert the token. TextConverter
objects are responsible both for performing the data conversion and for
representing the token in a particular format.

Subclasses of TextConverter specialize in different conversions and formats. For
example, an ASCIIConverter ignores requests to convert anything except plain text.
A TeXConverter, on the other hand, will implement operations for all requests
in order to produce a TeX representation that captures all the stylistic
information in the text. A TextWidgetConverter will produce a complex user
interface object that lets the user see and edit the text.

Design Patterns: Elements of Reusable Object-Oriented Software

111

Each kind of converter class takes the mechanism for creating and assembling a
complex object and puts it behind an abstract interface. The converter is separate
from the reader, which is responsible for parsing an RTF document.

The Builder pattern captures all these relationships. Each converter class is
called a builder in the pattern, and the reader is called the director. Applied
to this example, the Builder pattern separates the algorithm for interpreting
a textual format (that is, the parser for RTF documents) from how a converted
format gets created and represented. This lets us reuse the RTFReader's parsing
algorithm to create different text representations from RTF documents—just
configure the RTFReader with different subclasses of TextConverter.

Applicability

Use the Builder pattern when

• the algorithm for creating a complex object should be independent of the
parts that make up the object and how they're assembled.

• the construction process must allow different representations for the
object that's constructed.

Design Patterns: Elements of Reusable Object-Oriented Software

112

Structure

Participants

• Builder (TextConverter)
o specifies an abstract interface for creating parts of a Product

object.
• ConcreteBuilder (ASCIIConverter, TeXConverter, TextWidgetConverter)

o constructs and assembles parts of the product by implementing the
Builder interface.

o defines and keeps track of the representation it creates.
o provides an interface for retrieving the product (e.g., GetASCIIText,

GetTextWidget).
• Director (RTFReader)

o constructs an object using the Builder interface.
• Product (ASCIIText, TeXText, TextWidget)

o represents the complex object under construction. ConcreteBuilder
builds the product's internal representation and defines the process
by which it's assembled.

o includes classes that define the constituent parts, including
interfaces for assembling the parts into the final result.

Collaborations

• The client creates the Director object and configures it with the desired
Builder object.

• Director notifies the builder whenever a part of the product should be built.
• Builder handles requests from the director and adds parts to the product.
• The client retrieves the product from the builder.

Design Patterns: Elements of Reusable Object-Oriented Software

113

The following interaction diagram illustrates how Builder and Director cooperate
with a client.

Consequences

Here are key consequences of the Builder pattern:

1. It lets you vary a product's internal representation. The Builder object
provides the director with an abstract interface for constructing the
product. The interface lets the builder hide the representation and internal
structure of the product. It also hides how the product gets assembled.
Because the product is constructed through an abstract interface, all you
have to do to change the product's internal representation is define a new
kind of builder.

2. It isolates code for construction and representation. The Builder pattern
improves modularity by encapsulating the way a complex object is constructed
and represented. Clients needn't know anything about the classes that define
the product's internal structure; such classes don't appear in Builder's
interface.

Each ConcreteBuilder contains all the code to create and assemble a
particular kind of product. The code is written once; then different
Directors can reuse it to build Product variants from the same set of parts.
In the earlier RTF example, we could define a reader for a format other
than RTF, say, an SGMLReader, and use the same TextConverters to generate
ASCIIText, TeXText, and TextWidget renditions of SGML documents.

3. It gives you finer control over the construction process. Unlike creational
patterns that construct products in one shot, the Builder pattern constructs

Design Patterns: Elements of Reusable Object-Oriented Software

114

the product step by step under the director's control. Only when the product
is finished does the director retrieve it from the builder. Hence the Builder
interface reflects the process of constructing the product more than other
creational patterns. This gives you finer control over the construction
process and consequently the internal structure of the resulting product.

Implementation

Typically there's an abstract Builder class that defines an operation for each
component that a director may ask it to create. The operations do nothing by default.
A ConcreteBuilder class overrides operations for components it's interested in
creating.

Here are other implementation issues to consider:

1. Assembly and construction interface. Builders construct their products in
step-by-step fashion. Therefore the Builder class interface must be general
enough to allow the construction of products for all kinds of concrete
builders.

A key design issue concerns the model for the construction and assembly
process. A model where the results of construction requests are simply
appended to the product is usually sufficient. In the RTF example, the
builder converts and appends the next token to the text it has converted
so far.

But sometimes you might need access to parts of the product constructed
earlier. In the Maze example we present in the Sample Code, the MazeBuilder
interface lets you add a door between existing rooms. Tree structures such
as parse trees that are built bottom-up are another example. In that case,
the builder would return child nodes to the director, which then would pass
them back to the builder to build the parent nodes.

2. Why no abstract class for products? In the common case, the products produced
by the concrete builders differ so greatly in their representation that
there is little to gain from giving different products a common parent class.
In the RTF example, the ASCIIText and the TextWidget objects are unlikely
to have a common interface, nor do they need one. Because the client usually
configures the director with the proper concrete builder, the client is
in a position to know which concrete subclass of Builder is in use and can
handle its products accordingly.

3. Empty methods as default in Builder. In C++, the build methods are
intentionally not declared pure virtual member functions. They're defined

Design Patterns: Elements of Reusable Object-Oriented Software

115

as empty methods instead, letting clients override only the operations
they're interested in.

Sample Code

We'll define a variant of the CreateMaze member function that takes a builder
of class MazeBuilder as an argument.

The MazeBuilder class defines the following interface for building mazes:

 class MazeBuilder {
 public:
 virtual void BuildMaze() { }
 virtual void BuildRoom(int room) { }
 virtual void BuildDoor(int roomFrom, int roomTo) { }

 virtual Maze* GetMaze() { return 0; }
 protected:
 MazeBuilder();
 };

This interface can create three things: (1) the maze, (2) rooms with a particular
room number, and (3) doors between numbered rooms. The GetMaze operation returns
the maze to the client. Subclasses of MazeBuilder will override this operation
to return the maze that they build.

All the maze-building operations of MazeBuilder do nothing by default. They're
not declared pure virtual to let derived classes override only those methods in
which they're interested.

Given the MazeBuilder interface, we can change the CreateMaze member function
to take this builder as a parameter.

 Maze* MazeGame::CreateMaze (MazeBuilder& builder) {
 builder.BuildMaze();

 builder.BuildRoom(1);
 builder.BuildRoom(2);
 builder.BuildDoor(1, 2);

 return builder.GetMaze();
 }

Design Patterns: Elements of Reusable Object-Oriented Software

116

Compare this version of CreateMaze with the original. Notice how the builder hides
the internal representation of the Maze—that is, the classes that define rooms,
doors, and walls—and how these parts are assembled to complete the final maze.
Someone might guess that there are classes for representing rooms and doors, but
there is no hint of one for walls. This makes it easier to change the way a maze
is represented, since none of the clients of MazeBuilder has to be changed.

Like the other creational patterns, the Builder pattern encapsulates how objects
get created, in this case through the interface defined by MazeBuilder. That means
we can reuse MazeBuilder to build different kinds of mazes. The CreateComplexMaze
operation gives an example:

 Maze* MazeGame::CreateComplexMaze (MazeBuilder& builder) {
 builder.BuildRoom(1);
 // ...
 builder.BuildRoom(1001);

 return builder.GetMaze();
 }

Note that MazeBuilder does not create mazes itself; its main purpose is just to
define an interface for creating mazes. It defines empty implementations primarily
for convenience. Subclasses of MazeBuilder do the actual work.

The subclass StandardMazeBuilder is an implementation that builds simple mazes.
It keeps track of the maze it's building in the variable _currentMaze.

 class StandardMazeBuilder : public MazeBuilder {
 public:
 StandardMazeBuilder();

 virtual void BuildMaze();
 virtual void BuildRoom(int);
 virtual void BuildDoor(int, int);

 virtual Maze* GetMaze();
 private:
 Direction CommonWall(Room*, Room*);
 Maze* _currentMaze;
 };

CommonWall is a utility operation that determines the direction of the common
wall between two rooms.

Design Patterns: Elements of Reusable Object-Oriented Software

117

The StandardMazeBuilder constructor simply initializes _currentMaze.

 StandardMazeBuilder::StandardMazeBuilder () {
 _currentMaze = 0;
 }

BuildMaze instantiates a Maze that other operations will assemble and eventually
return to the client (with GetMaze).

 void StandardMazeBuilder::BuildMaze () {
 _currentMaze = new Maze;
 }

 Maze* StandardMazeBuilder::GetMaze () {
 return _currentMaze;
 }

The BuildRoom operation creates a room and builds the walls around it:

 void StandardMazeBuilder::BuildRoom (int n) {
 if (!_currentMaze->RoomNo(n)) {
 Room* room = new Room(n);
 _currentMaze->AddRoom(room);

 room->SetSide(North, new Wall);
 room->SetSide(South, new Wall);
 room->SetSide(East, new Wall);
 room->SetSide(West, new Wall);
 }
 }

To build a door between two rooms, StandardMazeBuilder looks up both rooms in
the maze and finds their adjoining wall:

 void StandardMazeBuilder::BuildDoor (int n1, int n2) {
 Room* r1 = _currentMaze->RoomNo(n1);
 Room* r2 = _currentMaze->RoomNo(n2);
 Door* d = new Door(r1, r2);

 r1->SetSide(CommonWall(r1,r2), d);
 r2->SetSide(CommonWall(r2,r1), d);

Design Patterns: Elements of Reusable Object-Oriented Software

118

 }

Clients can now use CreateMaze in conjunction with StandardMazeBuilder to create
a maze:

 Maze* maze;
 MazeGame game;
 StandardMazeBuilder builder;

 game.CreateMaze(builder);
 maze = builder.GetMaze();

We could have put all the StandardMazeBuilder operations in Maze and let each
Maze build itself. But making Maze smaller makes it easier to understand and modify,
and StandardMazeBuilder is easy to separate from Maze. Most importantly,
separating the two lets you have a variety of MazeBuilders, each using different
classes for rooms, walls, and doors.

A more exotic MazeBuilder is CountingMazeBuilder. This builder doesn't create
a maze at all; it just counts the different kinds of components that would have
been created.

 class CountingMazeBuilder : public MazeBuilder {
 public:
 CountingMazeBuilder();

 virtual void BuildMaze();
 virtual void BuildRoom(int);
 virtual void BuildDoor(int, int);
 virtual void AddWall(int, Direction);

 void GetCounts(int&, int&) const;
 private:
 int _doors;
 int _rooms;
 };

The constructor initializes the counters, and the overridden MazeBuilder
operations increment them accordingly.

 CountingMazeBuilder::CountingMazeBuilder () {
 _rooms = _doors = 0;

Design Patterns: Elements of Reusable Object-Oriented Software

119

 }

 void CountingMazeBuilder::BuildRoom (int) {
 _rooms++;
 }

 void CountingMazeBuilder::BuildDoor (int, int) {
 _doors++;
 }

 void CountingMazeBuilder::GetCounts (
 int& rooms, int& doors
) const {
 rooms = _rooms;
 doors = _doors;
 }

Here's how a client might use a CountingMazeBuilder:

 int rooms, doors;
 MazeGame game;
 CountingMazeBuilder builder;

 game.CreateMaze(builder);
 builder.GetCounts(rooms, doors);

 cout << "The maze has "
 << rooms << " rooms and "
 << doors << " doors" << endl;

Known Uses

The RTF converter application is from ET++ [WGM88]. Its text building block uses
a builder to process text stored in the RTF format.

Builder is a common pattern in Smalltalk-80 [Par90]:

• The Parser class in the compiler subsystem is a Director that takes a
ProgramNodeBuilder object as an argument. A Parser object notifies its
ProgramNodeBuilder object each time it recognizes a syntactic construct.
When the parser is done, it asks the builder for the parse tree it built
and returns it to the client.

Design Patterns: Elements of Reusable Object-Oriented Software

120

• ClassBuilder is a builder that Classes use to create subclasses for
themselves. In this case a Class is both the Director and the Product.

• ByteCodeStream is a builder that creates a compiled method as a byte array.
ByteCodeStream is a nonstandard use of the Builder pattern, because the
complex object it builds is encoded as a byte array, not as a normal Smalltalk
object. But the interface to ByteCodeStream is typical of a builder, and
it would be easy to replace ByteCodeStream with a different class that
represented programs as a composite object.

The Service Configurator framework from the Adaptive Communications Environment
uses a builder to construct network service components that are linked into a
server at run-time [SS94]. The components are described with a configuration
language that's parsed by an LALR(1) parser. The semantic actions of the parser
perform operations on the builder that add information to the service component.
In this case, the parser is the Director.

Related Patterns

Abstract Factory (99) is similar to Builder in that it too may construct complex
objects. The primary difference is that the Builder pattern focuses on constructing
a complex object step by step. Abstract Factory's emphasis is on families of product
objects (either simple or complex). Builder returns the product as a final step,
but as far as the Abstract Factory pattern is concerned, the product gets returned
immediately.

A Composite (183) is what the builder often builds.

Design Patterns: Elements of Reusable Object-Oriented Software

121

Factory Method

Intent

Define an interface for creating an object, but let subclasses decide which class
to instantiate. Factory Method lets a class defer instantiation to subclasses.

Also Known As

Virtual Constructor

Motivation

Frameworks use abstract classes to define and maintain relationships between
objects. A framework is often responsible for creating these objects as well.

Consider a framework for applications that can present multiple documents to the
user. Two key abstractions in this framework are the classes Application and
Document. Both classes are abstract, and clients have to subclass them to realize
their application-specific implementations. To create a drawing application, for
example, we define the classes DrawingApplication and DrawingDocument. The
Application class is responsible for managing Documents and will create them as
required—when the user selects Open or New from a menu, for example.

Because the particular Document subclass to instantiate is application-specific,
the Application class can't predict the subclass of Document to instantiate—the
Application class only knows when a new document should be created, not what kind
of Document to create. This creates a dilemma: The framework must instantiate
classes, but it only knows about abstract classes, which it cannot instantiate.

The Factory Method pattern offers a solution. It encapsulates the knowledge of
which Document subclass to create and moves this knowledge out of the framework.

Design Patterns: Elements of Reusable Object-Oriented Software

122

Application subclasses redefine an abstract CreateDocument operation on
Application to return the appropriate Document subclass. Once an Application
subclass is instantiated, it can then instantiate application-specific Documents
without knowing their class. We call CreateDocument a factory method because it's
responsible for "manufacturing" an object.

Applicability

Use the Factory Method pattern when

• a class can't anticipate the class of objects it must create.
• a class wants its subclasses to specify the objects it creates.
• classes delegate responsibility to one of several helper subclasses, and

you want to localize the knowledge of which helper subclass is the delegate.

Structure

Design Patterns: Elements of Reusable Object-Oriented Software

123

Participants

• Product (Document)
o defines the interface of objects the factory method creates.

• ConcreteProduct (MyDocument)
o implements the Product interface.

• Creator (Application)
o declares the factory method, which returns an object of type Product.

Creator may also define a default implementation of the factory
method that returns a default ConcreteProduct object.

o may call the factory method to create a Product object.
• ConcreteCreator (MyApplication)

o overrides the factory method to return an instance of a
ConcreteProduct.

Collaborations

• Creator relies on its subclasses to define the factory method so that it
returns an instance of the appropriate ConcreteProduct.

Consequences

Factory methods eliminate the need to bind application-specific classes into your
code. The code only deals with the Product interface; therefore it can work with
any user-defined ConcreteProduct classes.

A potential disadvantage of factory methods is that clients might have to subclass
the Creator class just to create a particular ConcreteProduct object. Subclassing
is fine when the client has to subclass the Creator class anyway, but otherwise
the client now must deal with another point of evolution.

Here are two additional consequences of the Factory Method pattern:

1. Provides hooks for subclasses. Creating objects inside a class with a
factory method is always more flexible than creating an object directly.
Factory Method gives subclasses a hook for providing an extended version
of an object.

In the Document example, the Document class could define a factory method
called CreateFileDialog that creates a default file dialog object for
opening an existing document. A Document subclass can define an
application-specific file dialog by overriding this factory method. In this

Design Patterns: Elements of Reusable Object-Oriented Software

124

case the factory method is not abstract but provides a reasonable default
implementation.

2. Connects parallel class hierarchies. In the examples we've considered so
far, the factory method is only called by Creators. But this doesn't have
to be the case; clients can find factory methods useful, especially in the
case of parallel class hierarchies.

Parallel class hierarchies result when a class delegates some of its
responsibilities to a separate class. Consider graphical figures that can
be manipulated interactively; that is, they can be stretched, moved, or
rotated using the mouse. Implementing such interactions isn't always easy.
It often requires storing and updating information that records the state
of the manipulation at a given time. This state is needed only during
manipulation; therefore it needn't be kept in the figure object. Moreover,
different figures behave differently when the user manipulates them. For
example, stretching a line figure might have the effect of moving an endpoint,
whereas stretching a text figure may change its line spacing.

With these constraints, it's better to use a separate Manipulator object
that implements the interaction and keeps track of any
manipulation-specific state that's needed. Different figures will use
different Manipulator subclasses to handle particular interactions. The
resulting Manipulator class hierarchy parallels (at least partially) the
Figure class hierarchy:

The Figure class provides a CreateManipulator factory method that lets
clients create a Figure's corresponding Manipulator. Figure subclasses
override this method to return an instance of the Manipulator subclass
that's right for them. Alternatively, the Figure class may implement
CreateManipulator to return a default Manipulator instance, and Figure

Design Patterns: Elements of Reusable Object-Oriented Software

125

subclasses may simply inherit that default. The Figure classes that do so
need no corresponding Manipulator subclass—hence the hierarchies are only
partially parallel.

Notice how the factory method defines the connection between the two class
hierarchies. It localizes knowledge of which classes belong together.

Implementation

Consider the following issues when applying the Factory Method pattern:

1. Two major varieties. The two main variations of the Factory Method pattern
are (1) the case when the Creator class is an abstract class and does not
provide an implementation for the factory method it declares, and (2) the
case when the Creator is a concrete class and provides a default
implementation for the factory method. It's also possible to have an
abstract class that defines a default implementation, but this is less
common.

The first case requires subclasses to define an implementation, because
there's no reasonable default. It gets around the dilemma of having to
instantiate unforeseeable classes. In the second case, the concrete Creator
uses the factory method primarily for flexibility. It's following a rule
that says, "Create objects in a separate operation so that subclasses can
override the way they're created." This rule ensures that designers of
subclasses can change the class of objects their parent class instantiates
if necessary.

2. Parameterized factory methods. Another variation on the pattern lets the
factory method create multiple kinds of products. The factory method takes
a parameter that identifies the kind of object to create. All objects the
factory method creates will share the Product interface. In the Document
example, Application might support different kinds of Documents. You pass
CreateDocument an extra parameter to specify the kind of document to create.

The Unidraw graphical editing framework [VL90] uses this approach for
reconstructing objects saved on disk. Unidraw defines a Creator class with
a factory method Create that takes a class identifier as an argument. The
class identifier specifies the class to instantiate. When Unidraw saves
an object to disk, it writes out the class identifier first and then its
instance variables. When it reconstructs the object from disk, it reads
the class identifier first.

Design Patterns: Elements of Reusable Object-Oriented Software

126

Once the class identifier is read, the framework calls Create, passing the
identifier as the parameter. Create looks up the constructor for the
corresponding class and uses it to instantiate the object. Last, Create
calls the object's Read operation, which reads the remaining information
on the disk and initializes the object's instance variables.

A parameterized factory method has the following general form, where
MyProduct and YourProduct are subclasses of Product:

 class Creator {
 public:
 virtual Product* Create(ProductId);
 };

 Product* Creator::Create (ProductId id) {
 if (id == MINE) return new MyProduct;
 if (id == YOURS) return new YourProduct;
 // repeat for remaining products...

 return 0;
 }

Overriding a parameterized factory method lets you easily and selectively
extend or change the products that a Creator produces. You can introduce
new identifiers for new kinds of products, or you can associate existing
identifiers with different products.

For example, a subclass MyCreator could swap MyProduct and YourProduct and
support a new TheirProduct subclass:

 Product* MyCreator::Create (ProductId id) {
 if (id == YOURS) return new MyProduct;
 if (id == MINE) return new YourProduct;
 // N.B.: switched YOURS and MINE

 if (id == THEIRS) return new TheirProduct;

 return Creator::Create(id); // called if all others fail
 }

Notice that the last thing this operation does is call Create on the parent
class. That's because MyCreator::Create handles only YOURS, MINE, and
THEIRS differently than the parent class. It isn't interested in other

Design Patterns: Elements of Reusable Object-Oriented Software

127

classes. Hence MyCreator extends the kinds of products created, and it
defers responsibility for creating all but a few products to its parent.

3. Language-specific variants and issues. Different languages lend themselves
to other interesting variations and caveats.

Smalltalk programs often use a method that returns the class of the object
to be instantiated. A Creator factory method can use this value to create
a product, and a ConcreteCreator may store or even compute this value. The
result is an even later binding for the type of ConcreteProduct to be
instantiated.

A Smalltalk version of the Document example can define a documentClass
method on Application. The documentClass method returns the proper Document
class for instantiating documents. The implementation of documentClass in
MyApplication returns the MyDocument class. Thus in class Application we
have

 clientMethod
 document := self documentClass new.

 documentClass
 self subclassResponsibility

In class MyApplication we have

 documentClass
 ̂ MyDocument

which returns the class MyDocument to be instantiated to Application.

An even more flexible approach akin to parameterized factory methods is
to store the class to be created as a class variable of Application. That
way you don't have to subclass Application to vary the product.

Factory methods in C++ are always virtual functions and are often pure
virtual. Just be careful not to call factory methods in the Creator's
constructor—the factory method in the ConcreteCreator won't be available
yet.

You can avoid this by being careful to access products solely through
accessor operations that create the product on demand. Instead of creating
the concrete product in the constructor, the constructor merely initializes

Design Patterns: Elements of Reusable Object-Oriented Software

128

it to 0. The accessor returns the product. But first it checks to make sure
the product exists, and if it doesn't, the accessor creates it. This
technique is sometimes called lazy initialization. The following code shows
a typical implementation:

 class Creator {
 public:
 Product* GetProduct();
 protected:
 virtual Product* CreateProduct();
 private:
 Product* _product;
 };

 Product* Creator::GetProduct () {
 if (_product == 0) {
 _product = CreateProduct();
 }
 return _product;
 }

4. Using templates to avoid subclassing. As we've mentioned, another potential
problem with factory methods is that they might force you to subclass just
to create the appropriate Product objects. Another way to get around this
in C++ is to provide a template subclass of Creator that's parameterized
by the Product class:

 class Creator {
 public:
 virtual Product* CreateProduct() = 0;
 };

 template <class TheProduct>
 class StandardCreator: public Creator {
 public:
 virtual Product* CreateProduct();
 };

 template <class TheProduct>
 Product* StandardCreator<TheProduct>::CreateProduct () {
 return new TheProduct;
 }

Design Patterns: Elements of Reusable Object-Oriented Software

129

With this template, the client supplies just the product class—no
subclassing of Creator is required.

 class MyProduct : public Product {
 public:
 MyProduct();
 // ...
 };

 StandardCreator<MyProduct> myCreator;

5. Naming conventions. It's good practice to use naming conventions that make
it clear you're using factory methods. For example, the MacApp Macintosh
application framework [App89] always declares the abstract operation that
defines the factory method as Class* DoMakeClass(), where Class is the
Product class.

Sample Code

The function CreateMaze builds and returns a maze. One problem with this function
is that it hard-codes the classes of maze, rooms, doors, and walls. We'll introduce
factory methods to let subclasses choose these components.

First we'll define factory methods in MazeGame for creating the maze, room, wall,
and door objects:

 class MazeGame {
 public:
 Maze* CreateMaze();

 // factory methods:

 virtual Maze* MakeMaze() const
 { return new Maze; }
 virtual Room* MakeRoom(int n) const
 { return new Room(n); }
 virtual Wall* MakeWall() const
 { return new Wall; }
 virtual Door* MakeDoor(Room* r1, Room* r2) const
 { return new Door(r1, r2); }
 };

Design Patterns: Elements of Reusable Object-Oriented Software

130

Each factory method returns a maze component of a given type. MazeGame provides
default implementations that return the simplest kinds of maze, rooms, walls,
and doors.

Now we can rewrite CreateMaze to use these factory methods:

 Maze* MazeGame::CreateMaze () {
 Maze* aMaze = MakeMaze();

 Room* r1 = MakeRoom(1);
 Room* r2 = MakeRoom(2);
 Door* theDoor = MakeDoor(r1, r2);

 aMaze->AddRoom(r1);
 aMaze->AddRoom(r2);

 r1->SetSide(North, MakeWall());
 r1->SetSide(East, theDoor);
 r1->SetSide(South, MakeWall());
 r1->SetSide(West, MakeWall());

 r2->SetSide(North, MakeWall());
 r2->SetSide(East, MakeWall());
 r2->SetSide(South, MakeWall());
 r2->SetSide(West, theDoor);

 return aMaze;
 }

Different games can subclass MazeGame to specialize parts of the maze. MazeGame
subclasses can redefine some or all of the factory methods to specify variations
in products. For example, a BombedMazeGame can redefine the Room and Wall products
to return the bombed varieties:

 class BombedMazeGame : public MazeGame {
 public:
 BombedMazeGame();

 virtual Wall* MakeWall() const
 { return new BombedWall; }

 virtual Room* MakeRoom(int n) const

Design Patterns: Elements of Reusable Object-Oriented Software

131

 { return new RoomWithABomb(n); }
 };

An EnchantedMazeGame variant might be defined like this:

 class EnchantedMazeGame : public MazeGame {
 public:
 EnchantedMazeGame();

 virtual Room* MakeRoom(int n) const
 { return new EnchantedRoom(n, CastSpell()); }

 virtual Door* MakeDoor(Room* r1, Room* r2) const
 { return new DoorNeedingSpell(r1, r2); }
 protected:
 Spell* CastSpell() const;
 };

Known Uses

Factory methods pervade toolkits and frameworks. The preceding document example
is a typical use in MacApp and ET++ [WGM88]. The manipulator example is from Unidraw.

Class View in the Smalltalk-80 Model/View/Controller framework has a method
defaultController that creates a controller, and this might appear to be a factory
method [Par90]. But subclasses of View specify the class of their default
controller by defining defaultControllerClass, which returns the class from which
defaultController creates instances. So defaultControllerClass is the real
factory method, that is, the method that subclasses should override.

A more esoteric example in Smalltalk-80 is the factory method parserClass defined
by Behavior (a superclass of all objects representing classes). This enables a
class to use a customized parser for its source code. For example, a client can
define a class SQLParser to analyze the source code of a class with embedded SQL
statements. The Behavior class implements parserClass to return the standard
Smalltalk Parser class. A class that includes embedded SQL statements overrides
this method (as a class method) and returns the SQLParser class.

The Orbix ORB system from IONA Technologies [ION94] uses Factory Method to generate
an appropriate type of proxy (see Proxy (233)) when an object requests a reference
to a remote object. Factory Method makes it easy to replace the default proxy
with one that uses client-side caching, for example.

Design Patterns: Elements of Reusable Object-Oriented Software

132

Related Patterns

Abstract Factory (99) is often implemented with factory methods. The Motivation
example in the Abstract Factory pattern illustrates Factory Method as well.

Factory methods are usually called within Template Methods (360). In the document
example above, NewDocument is a template method.

Prototypes (133) don't require subclassing Creator. However, they often require
an Initialize operation on the Product class. Creator uses Initialize to initialize
the object. Factory Method doesn't require such an operation.

Design Patterns: Elements of Reusable Object-Oriented Software

133

Prototype

Intent

Specify the kinds of objects to create using a prototypical instance, and create
new objects by copying this prototype.

Motivation

You could build an editor for music scores by customizing a general framework
for graphical editors and adding new objects that represent notes, rests, and
staves. The editor framework may have a palette of tools for adding these music
objects to the score. The palette would also include tools for selecting, moving,
and otherwise manipulating music objects. Users will click on the quarter-note
tool and use it to add quarter notes to the score. Or they can use the move tool
to move a note up or down on the staff, thereby changing its pitch.

Let's assume the framework provides an abstract Graphic class for graphical
components, like notes and staves. Moreover, it'll provide an abstract Tool class
for defining tools like those in the palette. The framework also predefines a
GraphicTool subclass for tools that create instances of graphical objects and
add them to the document.

But GraphicTool presents a problem to the framework designer. The classes for
notes and staves are specific to our application, but the GraphicTool class belongs
to the framework. GraphicTool doesn't know how to create instances of our music
classes to add to the score. We could subclass GraphicTool for each kind of music
object, but that would produce lots of subclasses that differ only in the kind
of music object they instantiate. We know object composition is a flexible
alternative to subclassing. The question is, how can the framework use it to
parameterize instances of GraphicTool by the class of Graphic they're supposed
to create?

The solution lies in making GraphicTool create a new Graphic by copying or "cloning"
an instance of a Graphic subclass. We call this instance a prototype. GraphicTool
is parameterized by the prototype it should clone and add to the document. If
all Graphic subclasses support a Clone operation, then the GraphicTool can clone
any kind of Graphic.

So in our music editor, each tool for creating a music object is an instance of
GraphicTool that's initialized with a different prototype. Each GraphicTool

Design Patterns: Elements of Reusable Object-Oriented Software

134

instance will produce a music object by cloning its prototype and adding the clone
to the score.

We can use the Prototype pattern to reduce the number of classes even further.
We have separate classes for whole notes and half notes, but that's probably
unnecessary. Instead they could be instances of the same class initialized with
different bitmaps and durations. A tool for creating whole notes becomes just
a GraphicTool whose prototype is a MusicalNote initialized to be a whole note.
This can reduce the number of classes in the system dramatically. It also makes
it easier to add a new kind of note to the music editor.

Applicability

Use the Prototype pattern when a system should be independent of how its products
are created, composed, and represented; and

• when the classes to instantiate are specified at run-time, for example,
by dynamic loading; or

• to avoid building a class hierarchy of factories that parallels the class
hierarchy of products; or

• when instances of a class can have one of only a few different combinations
of state. It may be more convenient to install a corresponding number of
prototypes and clone them rather than instantiating the class manually,
each time with the appropriate state.

Design Patterns: Elements of Reusable Object-Oriented Software

135

Structure

Participants

• Prototype (Graphic)
o declares an interface for cloning itself.

• ConcretePrototype (Staff, WholeNote, HalfNote)
o implements an operation for cloning itself.

• Client (GraphicTool)
o creates a new object by asking a prototype to clone itself.

Collaborations

• A client asks a prototype to clone itself.

Consequences

Prototype has many of the same consequences that Abstract Factory (99) and Builder
(110) have: It hides the concrete product classes from the client, thereby reducing
the number of names clients know about. Moreover, these patterns let a client
work with application-specific classes without modification.

Additional benefits of the Prototype pattern are listed below.

1. Adding and removing products at run-time. Prototypes let you incorporate
a new concrete product class into a system simply by registering a
prototypical instance with the client. That's a bit more flexible than other

Design Patterns: Elements of Reusable Object-Oriented Software

136

creational patterns, because a client can install and remove prototypes
at run-time.

2. Specifying new objects by varying values. Highly dynamic systems let you
define new behavior through object composition—by specifying values for
an object's variables, for example—and not by defining new classes. You
effectively define new kinds of objects by instantiating existing classes
and registering the instances as prototypes of client objects. A client
can exhibit new behavior by delegating responsibility to the prototype.

This kind of design lets users define new "classes" without programming.
In fact, cloning a prototype is similar to instantiating a class. The
Prototype pattern can greatly reduce the number of classes a system needs.
In our music editor, one GraphicTool class can create a limitless variety
of music objects.

3. Specifying new objects by varying structure. Many applications build
objects from parts and subparts. Editors for circuit design, for example,
build circuits out of subcircuits.1 For convenience, such applications
often let you instantiate complex, user-defined structures, say, to use
a specific subcircuit again and again.

The Prototype pattern supports this as well. We simply add this subcircuit
as a prototype to the palette of available circuit elements. As long as
the composite circuit object implements Clone as a deep copy, circuits with
different structures can be prototypes.

4. Reduced subclassing. Factory Method (121) often produces a hierarchy of
Creator classes that parallels the product class hierarchy. The Prototype
pattern lets you clone a prototype instead of asking a factory method to
make a new object. Hence you don't need a Creator class hierarchy at all.
This benefit applies primarily to languages like C++ that don't treat
classes as first-class objects. Languages that do, like Smalltalk and
Objective C, derive less benefit, since you can always use a class object
as a creator. Class objects already act like prototypes in these languages.

5. Configuring an application with classes dynamically. Some run-time
environments let you load classes into an application dynamically. The
Prototype pattern is the key to exploiting such facilities in a language
like C++.

An application that wants to create instances of a dynamically loaded class
won't be able to reference its constructor statically. Instead, the run-time
environment creates an instance of each class automatically when it's loaded,
and it registers the instance with a prototype manager (see the
Implementation section). Then the application can ask the prototype manager

Design Patterns: Elements of Reusable Object-Oriented Software

137

for instances of newly loaded classes, classes that weren't linked with
the program originally. The ET++ application framework [WGM88] has a
run-time system that uses this scheme.

The main liability of the Prototype pattern is that each subclass of Prototype
must implement the Clone operation, which may be difficult. For example, adding
Clone is difficult when the classes under consideration already exist.
Implementing Clone can be difficult when their internals include objects that
don't support copying or have circular references.

Implementation

Prototype is particularly useful with static languages like C++, where classes
are not objects, and little or no type information is available at run-time. It's
less important in languages like Smalltalk or Objective C that provide what amounts
to a prototype (i.e., a class object) for creating instances of each class. This
pattern is built into prototype-based languages like Self [US87], in which all
object creation happens by cloning a prototype.

Consider the following issues when implementing prototypes:

1. Using a prototype manager. When the number of prototypes in a system isn't
fixed (that is, they can be created and destroyed dynamically), keep a
registry of available prototypes. Clients won't manage prototypes
themselves but will store and retrieve them from the registry. A client
will ask the registry for a prototype before cloning it. We call this
registry a prototype manager.

A prototype manager is an associative store that returns the prototype
matching a given key. It has operations for registering a prototype under
a key and for unregistering it. Clients can change or even browse through
the registry at run-time. This lets clients extend and take inventory on
the system without writing code.

2. Implementing the Clone operation. The hardest part of the Prototype pattern
is implementing the Clone operation correctly. It's particularly tricky
when object structures contain circular references.

Most languages provide some support for cloning objects. For example,
Smalltalk provides an implementation of copy that's inherited by all
subclasses of Object. C++ provides a copy constructor. But these facilities
don't solve the "shallow copy versus deep copy" problem [GR83]. That is,
does cloning an object in turn clone its instance variables, or do the clone
and original just share the variables?

Design Patterns: Elements of Reusable Object-Oriented Software

138

A shallow copy is simple and often sufficient, and that's what Smalltalk
provides by default. The default copy constructor in C++ does a member-wise
copy, which means pointers will be shared between the copy and the original.
But cloning prototypes with complex structures usually requires a deep copy,
because the clone and the original must be independent. Therefore you must
ensure that the clone's components are clones of the prototype's components.
Cloning forces you to decide what if anything will be shared.

If objects in the system provide Save and Load operations, then you can
use them to provide a default implementation of Clone simply by saving the
object and loading it back immediately. The Save operation saves the object
into a memory buffer, and Load creates a duplicate by reconstructing the
object from the buffer.

3. Initializing clones. While some clients are perfectly happy with the clone
as is, others will want to initialize some or all of its internal state
to values of their choosing. You generally can't pass these values in the
Clone operation, because their number will vary between classes of
prototypes. Some prototypes might need multiple initialization parameters;
others won't need any. Passing parameters in the Clone operation precludes
a uniform cloning interface.

It might be the case that your prototype classes already define operations
for (re)setting key pieces of state. If so, clients may use these operations
immediately after cloning. If not, then you may have to introduce an
Initialize operation (see the Sample Code section) that takes
initialization parameters as arguments and sets the clone's internal state
accordingly. Beware of deep-copying Clone operations—the copies may have
to be deleted (either explicitly or within Initialize) before you
reinitialize them.

Sample Code

We'll define a MazePrototypeFactory subclass of the MazeFactory class.
MazePrototypeFactory will be initialized with prototypes of the objects it will
create so that we don't have to subclass it just to change the classes of walls
or rooms it creates.

MazePrototypeFactory augments the MazeFactory interface with a constructor that
takes the prototypes as arguments:

 class MazePrototypeFactory : public MazeFactory {
 public:

Design Patterns: Elements of Reusable Object-Oriented Software

139

 MazePrototypeFactory(Maze*, Wall*, Room*, Door*);

 virtual Maze* MakeMaze() const;
 virtual Room* MakeRoom(int) const;
 virtual Wall* MakeWall() const;
 virtual Door* MakeDoor(Room*, Room*) const;

 private:
 Maze* _prototypeMaze;
 Room* _prototypeRoom;
 Wall* _prototypeWall;
 Door* _prototypeDoor;
 };

The new constructor simply initializes its prototypes:

 MazePrototypeFactory::MazePrototypeFactory (
 Maze* m, Wall* w, Room* r, Door* d
) {
 _prototypeMaze = m;
 _prototypeWall = w;
 _prototypeRoom = r;
 _prototypeDoor = d;
 }

The member functions for creating walls, rooms, and doors are similar: Each clones
a prototype and then initializes it. Here are the definitions of MakeWall and
MakeDoor:

 Wall* MazePrototypeFactory::MakeWall () const {
 return _prototypeWall->Clone();
 }

 Door* MazePrototypeFactory::MakeDoor (Room* r1, Room *r2) const {
 Door* door = _prototypeDoor->Clone();
 door->Initialize(r1, r2);
 return door;
 }

We can use MazePrototypeFactory to create a prototypical or default maze just
by initializing it with prototypes of basic maze components:

Design Patterns: Elements of Reusable Object-Oriented Software

140

 MazeGame game;
 MazePrototypeFactory simpleMazeFactory(
 new Maze, new Wall, new Room, new Door
);

 Maze* maze = game.CreateMaze(simpleMazeFactory);

To change the type of maze, we initialize MazePrototypeFactory with a different
set of prototypes. The following call creates a maze with a BombedDoor and a
RoomWithABomb:

 MazePrototypeFactory bombedMazeFactory(
 new Maze, new BombedWall,
 new RoomWithABomb, new Door
);

An object that can be used as a prototype, such as an instance of Wall, must support
the Clone operation. It must also have a copy constructor for cloning. It may
also need a separate operation for reinitializing internal state. We'll add the
Initialize operation to Door to let clients initialize the clone's rooms.

Compare the following definition of Door to the one on page 96:

 class Door : public MapSite {
 public:
 Door();
 Door(const Door&);

 virtual void Initialize(Room*, Room*);
 virtual Door* Clone() const;

 virtual void Enter();
 Room* OtherSideFrom(Room*);
 private:
 Room* _room1;
 Room* _room2;
 };

 Door::Door (const Door& other) {
 _room1 = other._room1;
 _room2 = other._room2;
 }

Design Patterns: Elements of Reusable Object-Oriented Software

141

 void Door::Initialize (Room* r1, Room* r2) {
 _room1 = r1;
 _room2 = r2;
 }

 Door* Door::Clone () const {
 return new Door(*this);
 }

The BombedWall subclass must override Clone and implement a corresponding copy
constructor.

 class BombedWall : public Wall {
 public:
 BombedWall();
 BombedWall(const BombedWall&);

 virtual Wall* Clone() const;
 bool HasBomb();
 private:
 bool _bomb;
 };

 BombedWall::BombedWall (const BombedWall& other) : Wall(other) {
 _bomb = other._bomb;
 }

 Wall* BombedWall::Clone () const {
 return new BombedWall(*this);
 }

Although BombedWall::Clone returns a Wall*, its implementation returns a pointer
to a new instance of a subclass, that is, a BombedWall*. We define Clone like
this in the base class to ensure that clients that clone the prototype don't have
to know about their concrete subclasses. Clients should never need to downcast
the return value of Clone to the desired type.

In Smalltalk, you can reuse the standard copy method inherited from Object to
clone any MapSite. You can use MazeFactory to produce the prototypes you'll need;
for example, you can create a room by supplying the name #room. The MazeFactory
has a dictionary that maps names to prototypes. Its make: method looks like this:

Design Patterns: Elements of Reusable Object-Oriented Software

142

 make: partName
 ̂ (partCatalog at: partName) copy

Given appropriate methods for initializing the MazeFactory with prototypes, you
could create a simple maze with the following code:

 CreateMaze
 on: (MazeFactory new
 with: Door new named: #door;
 with: Wall new named: #wall;
 with: Room new named: #room;
 yourself)

where the definition of the on: class method for CreateMaze would be

 on: aFactory
 | room1 room2 |
 room1 := (aFactory make: #room) location: 1@1.
 room2 := (aFactory make: #room) location: 2@1.
 door := (aFactory make: #door) from: room1 to: room2.

 room1
 atSide: #north put: (aFactory make: #wall);
 atSide: #east put: door;
 atSide: #south put: (aFactory make: #wall);
 atSide: #west put: (aFactory make: #wall).
 room2
 atSide: #north put: (aFactory make: #wall);
 atSide: #east put: (aFactory make: #wall);
 atSide: #south put: (aFactory make: #wall);
 atSide: #west put: door.
 ̂ Maze new
 addRoom: room1;
 addRoom: room2;
 yourself

Known Uses

Perhaps the first example of the Prototype pattern was in Ivan Sutherland's
Sketchpad system [Sut63]. The first widely known application of the pattern in
an object-oriented language was in ThingLab, where users could form a composite

Design Patterns: Elements of Reusable Object-Oriented Software

143

object and then promote it to a prototype by installing it in a library of reusable
objects [Bor81]. Goldberg and Robson mention prototypes as a pattern [GR83], but
Coplien [Cop92] gives a much more complete description. He describes idioms related
to the Prototype pattern for C++ and gives many examples and variations.

Etgdb is a debugger front-end based on ET++ that provides a point-and-click
interface to different line-oriented debuggers. Each debugger has a corresponding
DebuggerAdaptor subclass. For example, GdbAdaptor adapts etgdb to the command
syntax of GNU gdb, while SunDbxAdaptor adapts etgdb to Sun's dbx debugger. Etgdb
does not have a set of DebuggerAdaptor classes hard-coded into it. Instead, it
reads the name of the adaptor to use from an environment variable, looks for a
prototype with the specified name in a global table, and then clones the prototype.
New debuggers can be added to etgdb by linking it with the DebuggerAdaptor that
works for that debugger.

The "interaction technique library" in Mode Composer stores prototypes of objects
that support various interaction techniques [Sha90]. Any interaction technique
created by the Mode Composer can be used as a prototype by placing it in this
library. The Prototype pattern lets Mode Composer support an unlimited set of
interaction techniques.

The music editor example discussed earlier is based on the Unidraw drawing
framework [VL90].

Related Patterns

Prototype and Abstract Factory (99) are competing patterns in some ways, as we
discuss at the end of this chapter. They can also be used together, however. An
Abstract Factory might store a set of prototypes from which to clone and return
product objects.

Designs that make heavy use of the Composite (183) and Decorator (196) patterns
often can benefit from Prototype as well.

1Such applications reflect the Composite (183) and Decorator (196) patterns.

Design Patterns: Elements of Reusable Object-Oriented Software

144

Singleton

Intent

Ensure a class only has one instance, and provide a global point of access to
it.

Motivation

It's important for some classes to have exactly one instance. Although there can
be many printers in a system, there should be only one printer spooler. There
should be only one file system and one window manager. A digital filter will have
one A/D converter. An accounting system will be dedicated to serving one company.

How do we ensure that a class has only one instance and that the instance is easily
accessible? A global variable makes an object accessible, but it doesn't keep
you from instantiating multiple objects.

A better solution is to make the class itself responsible for keeping track of
its sole instance. The class can ensure that no other instance can be created
(by intercepting requests to create new objects), and it can provide a way to
access the instance. This is the Singleton pattern.

Applicability

Use the Singleton pattern when

• there must be exactly one instance of a class, and it must be accessible
to clients from a well-known access point.

• when the sole instance should be extensible by subclassing, and clients
should be able to use an extended instance without modifying their code.

Design Patterns: Elements of Reusable Object-Oriented Software

145

Structure

Participants

• Singleton
o defines an Instance operation that lets clients access its unique

instance. Instance is a class operation (that is, a class method
in Smalltalk and a static member function in C++).

o may be responsible for creating its own unique instance.

Collaborations

• Clients access a Singleton instance solely through Singleton's Instance
operation.

Consequences

The Singleton pattern has several benefits:

1. Controlled access to sole instance. Because the Singleton class
encapsulates its sole instance, it can have strict control over how and
when clients access it.

2. Reduced name space. The Singleton pattern is an improvement over global
variables. It avoids polluting the name space with global variables that
store sole instances.

3. Permits refinement of operations and representation. The Singleton class
may be subclassed, and it's easy to configure an application with an instance
of this extended class. You can configure the application with an instance
of the class you need at run-time.

4. Permits a variable number of instances. The pattern makes it easy to change
your mind and allow more than one instance of the Singleton class. Moreover,
you can use the same approach to control the number of instances that the

Design Patterns: Elements of Reusable Object-Oriented Software

146

application uses. Only the operation that grants access to the Singleton
instance needs to change.

5. More flexible than class operations. Another way to package a singleton's
functionality is to use class operations (that is, static member functions
in C++ or class methods in Smalltalk). But both of these language techniques
make it hard to change a design to allow more than one instance of a class.
Moreover, static member functions in C++ are never virtual, so subclasses
can't override them polymorphically.

Implementation

Here are implementation issues to consider when using the Singleton pattern:

1. Ensuring a unique instance. The Singleton pattern makes the sole instance
a normal instance of a class, but that class is written so that only one
instance can ever be created. A common way to do this is to hide the operation
that creates the instance behind a class operation (that is, either a static
member function or a class method) that guarantees only one instance is
created. This operation has access to the variable that holds the unique
instance, and it ensures the variable is initialized with the unique
instance before returning its value. This approach ensures that a singleton
is created and initialized before its first use.

You can define the class operation in C++ with a static member function
Instance of the Singleton class. Singleton also defines a static member
variable _instance that contains a pointer to its unique instance.

The Singleton class is declared as

 class Singleton {
 public:
 static Singleton* Instance();
 protected:
 Singleton();
 private:
 static Singleton* _instance;
 };

The corresponding implementation is

 Singleton* Singleton::_instance = 0;

Design Patterns: Elements of Reusable Object-Oriented Software

147

 Singleton* Singleton::Instance () {
 if (_instance == 0) {
 _instance = new Singleton;
 }
 return _instance;
 }

Clients access the singleton exclusively through the Instance member
function. The variable _instance is initialized to 0, and the static member
function Instance returns its value, initializing it with the unique
instance if it is 0. Instance uses lazy initialization; the value it returns
isn't created and stored until it's first accessed.

Notice that the constructor is protected. A client that tries to instantiate
Singleton directly will get an error at compile-time. This ensures that
only one instance can ever get created.

Moreover, since the _instance is a pointer to a Singleton object, the
Instance member function can assign a pointer to a subclass of Singleton
to this variable. We'll give an example of this in the Sample Code.

There's another thing to note about the C++ implementation. It isn't enough
to define the singleton as a global or static object and then rely on
automatic initialization. There are three reasons for this:

1. We can't guarantee that only one instance of a static object will
ever be declared.

2. We might not have enough information to instantiate every singleton
at static initialization time. A singleton might require values that
are computed later in the program's execution.

3. C++ doesn't define the order in which constructors for global objects
are called across translation units [ES90]. This means that no
dependencies can exist between singletons; if any do, then errors
are inevitable.

An added (albeit small) liability of the global/static object approach is
that it forces all singletons to be created whether they are used or not.
Using a static member function avoids all of these problems.

In Smalltalk, the function that returns the unique instance is implemented
as a class method on the Singleton class. To ensure that only one instance
is created, override the new operation. The resulting Singleton class might
have the following two class methods, where SoleInstance is a class variable
that is not used anywhere else:

Design Patterns: Elements of Reusable Object-Oriented Software

148

 new
 self error: 'cannot create new object'

 default
 SoleInstance isNil ifTrue: [SoleInstance := super new].
 ̂ SoleInstance

2. Subclassing the Singleton class. The main issue is not so much defining
the subclass but installing its unique instance so that clients will be
able to use it. In essence, the variable that refers to the singleton
instance must get initialized with an instance of the subclass. The simplest
technique is to determine which singleton you want to use in the Singleton's
Instance operation. An example in the Sample Code shows how to implement
this technique with environment variables.

Another way to choose the subclass of Singleton is to take the implementation
of Instance out of the parent class (e.g., MazeFactory) and put it in the
subclass. That lets a C++ programmer decide the class of singleton at
link-time (e.g., by linking in an object file containing a different
implementation) but keeps it hidden from the clients of the singleton.

The link approach fixes the choice of singleton class at link-time, which
makes it hard to choose the singleton class at run-time. Using conditional
statements to determine the subclass is more flexible, but it hard-wires
the set of possible Singleton classes. Neither approach is flexible enough
in all cases.

A more flexible approach uses a registry of singletons. Instead of having
Instance define the set of possible Singleton classes, the Singleton classes
can register their singleton instance by name in a well-known registry.

The registry maps between string names and singletons. When Instance needs
a singleton, it consults the registry, asking for the singleton by name.
The registry looks up the corresponding singleton (if it exists) and returns
it. This approach frees Instance from knowing all possible Singleton classes
or instances. All it requires is a common interface for all Singleton classes
that includes operations for the registry:

 class Singleton {
 public:
 static void Register(const char* name, Singleton*);
 static Singleton* Instance();
 protected:

Design Patterns: Elements of Reusable Object-Oriented Software

149

 static Singleton* Lookup(const char* name);
 private:
 static Singleton* _instance;
 static List<NameSingletonPair>* _registry;
 };

Register registers the Singleton instance under the given name. To keep
the registry simple, we'll have it store a list of NameSingletonPair objects.
Each NameSingletonPair maps a name to a singleton. The Lookup operation
finds a singleton given its name. We'll assume that an environment variable
specifies the name of the singleton desired.

 Singleton* Singleton::Instance () {
 if (_instance == 0) {
 const char* singletonName = getenv("SINGLETON");
 // user or environment supplies this at startup

 _instance = Lookup(singletonName);
 // Lookup returns 0 if there's no such singleton
 }
 return _instance;
 }

Where do Singleton classes register themselves? One possibility is in their
constructor. For example, a MySingleton subclass could do the following:

 MySingleton::MySingleton() {
 // ...
 Singleton::Register("MySingleton", this);
 }

Of course, the constructor won't get called unless someone instantiates
the class, which echoes the problem the Singleton pattern is trying to solve!
We can get around this problem in C++ by defining a static instance of
MySingleton. For example, we can define

 static MySingleton theSingleton;

in the file that contains MySingleton's implementation.

No longer is the Singleton class responsible for creating the singleton.
Instead, its primary responsibility is to make the singleton object of

Design Patterns: Elements of Reusable Object-Oriented Software

150

choice accessible in the system. The static object approach still has a
potential drawback—namely that instances of all possible Singleton
subclasses must be created, or else they won't get registered.

Sample Code

Suppose we define a MazeFactory class for building mazes as described on page
92. MazeFactory defines an interface for building different parts of a maze.
Subclasses can redefine the operations to return instances of specialized product
classes, like BombedWall objects instead of plain Wall objects.

What's relevant here is that the Maze application needs only one instance of a
maze factory, and that instance should be available to code that builds any part
of the maze. This is where the Singleton pattern comes in. By making the MazeFactory
a singleton, we make the maze object globally accessible without resorting to
global variables.

For simplicity, let's assume we'll never subclass MazeFactory. (We'll consider
the alternative in a moment.) We make it a Singleton class in C++ by adding a
static Instance operation and a static _instance member to hold the one and only
instance. We must also protect the constructor to prevent accidental instantiation,
which might lead to more than one instance.

 class MazeFactory {
 public:
 static MazeFactory* Instance();

 // existing interface goes here
 protected:
 MazeFactory();
 private:
 static MazeFactory* _instance;
 };

The corresponding implementation is

 MazeFactory* MazeFactory::_instance = 0;

 MazeFactory* MazeFactory::Instance () {
 if (_instance == 0) {
 _instance = new MazeFactory;
 }

Design Patterns: Elements of Reusable Object-Oriented Software

151

 return _instance;
 }

Now let's consider what happens when there are subclasses of MazeFactory, and
the application must decide which one to use. We'll select the kind of maze through
an environment variable and add code that instantiates the proper MazeFactory
subclass based on the environment variable's value. The Instance operation is
a good place to put this code, because it already instantiates MazeFactory:

 MazeFactory* MazeFactory::Instance () {
 if (_instance == 0) {
 const char* mazeStyle = getenv("MAZESTYLE");

 if (strcmp(mazeStyle, "bombed") == 0) {
 _instance = new BombedMazeFactory;

 } else if (strcmp(mazeStyle, "enchanted") == 0) {
 _instance = new EnchantedMazeFactory;

 // ... other possible subclasses

 } else { // default
 _instance = new MazeFactory;
 }
 }
 return _instance;
 }

Note that Instance must be modified whenever you define a new subclass of
MazeFactory. That might not be a problem in this application, but it might be
for abstract factories defined in a framework.

A possible solution would be to use the registry approach described in the
Implementation section. Dynamic linking could be useful here as well—it would
keep the application from having to load all the subclasses that are not used.

Known Uses

An example of the Singleton pattern in Smalltalk-80 [Par90] is the set of changes
to the code, which is ChangeSet current. A more subtle example is the relationship
between classes and their metaclasses. A metaclass is the class of a class, and
each metaclass has one instance. Metaclasses do not have names (except indirectly

Design Patterns: Elements of Reusable Object-Oriented Software

152

through their sole instance), but they keep track of their sole instance and will
not normally create another.

The InterViews user interface toolkit [LCI+92] uses the Singleton pattern to access
the unique instance of its Session and WidgetKit classes, among others. Session
defines the application's main event dispatch loop, stores the user's database
of stylistic preferences, and manages connections to one or more physical displays.
WidgetKit is an Abstract Factory (99) for defining the look and feel of user
interface widgets. The WidgetKit::instance() operation determines the particular
WidgetKit subclass that's instantiated based on an environment variable that
Session defines. A similar operation on Session determines whether monochrome
or color displays are supported and configures the singleton Session instance
accordingly.

Related Patterns

Many patterns can be implemented using the Singleton pattern. See Abstract Factory
(99), Builder (110), and Prototype (133).

Design Patterns: Elements of Reusable Object-Oriented Software

153

Discussion of Creational Patterns

There are two common ways to parameterize a system by the classes ofobjects it
creates. One way is to subclass the class that creates theobjects; this corresponds
to using the Factory Method (121) pattern. The main drawback of thisapproach is
that it can require creating a new subclass just to changethe class of the product.
Such changes can cascade. For example,when the product creator is itself created
by a factory method, thenyou have to override its creator as well.

The other way to parameterize a system relies more on objectcomposition: Define
an object that's responsible for knowing the classof the product objects, and
make it a parameter of the system. Thisis a key aspect of the Abstract Factory
(99),Builder (110), and Prototype (133) patterns. All three involve creating a
new "factory object" whoseresponsibility is to create product objects. Abstract
Factory has thefactory object producing objects of several classes. Builder has
thefactory object building a complex product incrementally using acorrespondingly
complex protocol. Prototype has the factory objectbuilding a product by copying
a prototype object. In this case, thefactory object and the prototype are the
same object, because theprototype is responsible for returning the product.

Consider the drawing editor framework described in the Prototypepattern. There
are several ways to parameterize a GraphicTool by theclass of product:

• By applying the Factory Method pattern, a subclass of GraphicTool will
becreated for each subclass of Graphic in the palette. GraphicTool willhave
a NewGraphic operation that each GraphicTool subclass willredefine.

• By applying the Abstract Factory pattern, there will be a class hierarchyof
GraphicsFactories, one for each Graphic subclass. Each factorycreates just
one product in this case: CircleFactory will createCircles, LineFactory
will create Lines, and so on. A GraphicTool willbe parameterized with a
factory for creating the appropriate kind ofGraphics.

• By applying the Prototype pattern, each subclass of Graphics willimplement
the Clone operation, and a GraphicTool will be parameterizedwith a prototype
of the Graphic it creates.

Which pattern is best depends on many factors. In our drawing editorframework,
the Factory Method pattern is easiest to use at first.It's easy to define a new
subclass of GraphicTool, and the instancesof GraphicTool are created only when
the palette is defined. The maindisadvantage here is that GraphicTool subclasses
proliferate, and noneof them does very much.

Abstract Factory doesn't offer much of an improvement, because itrequires an
equally large GraphicsFactory class hierarchy. AbstractFactory would be
preferable to Factory Method only if there werealready a GraphicsFactory class

Design Patterns: Elements of Reusable Object-Oriented Software

154

hierarchy—either because thecompiler provides it automatically (as in Smalltalk
or Objective C) orbecause it's needed in another part of the system.

Overall, the Prototype pattern is probably the best for the drawingeditor framework,
because it only requires implementing a Cloneoperation on each Graphics class.
That reduces the number of classes,and Clone can be used for purposes other than
pure instantiation (e.g.,a Duplicate menu operation).

Factory Method makes a design more customizable and only a little morecomplicated.
Other design patterns require new classes, whereasFactory Method only requires
a new operation. People often useFactory Method as the standard way to create
objects, but it isn'tnecessary when the class that's instantiated never changes
or wheninstantiation takes place in an operation that subclasses can
easilyoverride, such as an initialization operation.

Designs that use Abstract Factory, Prototype, or Builder are even moreflexible
than those that use Factory Method, but they're also morecomplex. Often, designs
start out using Factory Method and evolvetoward the other creational patterns
as the designer discovers wheremore flexibility is needed. Knowing many design
patterns gives youmore choices when trading off one design criterion against
another.

Design Patterns: Elements of Reusable Object-Oriented Software

155

4. Structural Patterns

Structural patterns are concerned with how classes and objects arecomposed to
form larger structures.Structural class patterns use inheritance to compose
interfacesor implementations. As a simple example, consider how
multipleinheritance mixes two or more classes into one. The result is a classthat
combines the properties of its parent classes. This pattern isparticularly useful
for making independently developed class librarieswork together. Another example
is the class form of the Adapter (157) pattern. In general, an adapter makes
oneinterface (the adaptee's) conform to another, thereby providing auniform
abstraction of different interfaces. A class adapteraccomplishes this by
inheriting privately from an adaptee class. Theadapter then expresses its
interface in terms of the adaptee's.

Rather than composing interfaces or implementations, structural object patterns
describe ways to compose objects to realize newfunctionality. The added
flexibility of object composition comes fromthe ability to change the composition
at run-time, which is impossiblewith static class composition.

Composite (183) is an example of a structural objectpattern. It describes how
to build a class hierarchy made up ofclasses for two kinds of objects: primitive
and composite. Thecomposite objects let you compose primitive and other
compositeobjects into arbitrarily complex structures. In the Proxy (233) pattern,
a proxy acts as a convenientsurrogate or placeholder for another object. A proxy
can be used inmany ways. It can act as a local representative for an object in
aremote address space. It can represent a large object that should beloaded on
demand. It might protect access to a sensitive object.Proxies provide a level
of indirection to specific properties ofobjects. Hence they can restrict, enhance,
or alter these properties.

The Flyweight (218) pattern defines a structure forsharing objects. Objects are
shared for at least two reasons:efficiency and consistency. Flyweight focuses
on sharing for spaceefficiency. Applications that use lots of objects must pay
carefulattention to the cost of each object. Substantial savings can be hadby
sharing objects instead of replicating them. But objects can beshared only if
they don't define context-dependent state. Flyweightobjects have no such state.
Any additional information they need toperform their task is passed to them when
needed. With nocontext-dependent state, Flyweight objects may be shared freely.

Whereas Flyweight shows how to make lots of little objects, Facade (208) shows
how to make a single object representan entire subsystem. A facade is a
representative for a set ofobjects. The facade carries out its responsibilities
by forwardingmessages to the objects it represents. The Bridge (171) pattern

Design Patterns: Elements of Reusable Object-Oriented Software

156

separates an object's abstraction from its implementation sothat you can vary
them independently.

Decorator (196) describes how to add responsibilitiesto objects dynamically.
Decorator is a structural pattern thatcomposes objects recursively to allow an
open-ended number ofadditional responsibilities. For example, a Decorator
objectcontaining a user interface component can add a decoration like aborder
or shadow to the component, or it can add functionality likescrolling and zooming.
We can add two decorations simply by nestingone Decorator object within another,
and so on for additionaldecorations. To accomplish this, each Decorator object
must conformto the interface of its component and must forward messages to it.The
Decorator can do its job (such as drawing a border around thecomponent) either
before or after forwarding a message.

Many structural patterns are related to some degree. We'll discussthese
relationships at the end of the chapter.

Design Patterns: Elements of Reusable Object-Oriented Software

157

Adapter

Intent

Convert the interface of a class into another interface clients expect. Adapter
lets classes work together that couldn't otherwise because of incompatible
interfaces.

Also Known As

Wrapper

Motivation

Sometimes a toolkit class that's designed for reuse isn't reusable only because
its interface doesn't match the domain-specific interface an application requires.

Consider for example a drawing editor that lets users draw and arrange graphical
elements (lines, polygons, text, etc.) into pictures and diagrams. The drawing
editor's key abstraction is the graphical object, which has an editable shape
and can draw itself. The interface for graphical objects is defined by an abstract
class called Shape. The editor defines a subclass of Shape for each kind of graphical
object: a LineShape class for lines, a PolygonShape class for polygons, and so
forth.

Classes for elementary geometric shapes like LineShape and PolygonShape are rather
easy to implement, because their drawing and editing capabilities are inherently
limited. But a TextShape subclass that can display and edit text is considerably
more difficult to implement, since even basic text editing involves complicated
screen update and buffer management. Meanwhile, an off-the-shelf user interface
toolkit might already provide a sophisticated TextView class for displaying and
editing text. Ideally we'd like to reuse TextView to implement TextShape, but
the toolkit wasn't designed with Shape classes in mind. So we can't use TextView
and Shape objects interchangeably.

How can existing and unrelated classes like TextView work in an application that
expects classes with a different and incompatible interface? We could change the
TextView class so that it conforms to the Shape interface, but that isn't an option
unless we have the toolkit's source code. Even if we did, it wouldn't make sense
to change TextView; the toolkit shouldn't have to adopt domain-specific interfaces
just to make one application work.

Design Patterns: Elements of Reusable Object-Oriented Software

158

Instead, we could define TextShape so that it adapts the TextView interface to
Shape's. We can do this in one of two ways: (1) by inheriting Shape's interface
and TextView's implementation or (2) by composing a TextView instance within a
TextShape and implementing TextShape in terms of TextView's interface. These two
approaches correspond to the class and object versions of the Adapter pattern.
We call TextShape an adapter.

This diagram illustrates the object adapter case. It shows how BoundingBox requests,
declared in class Shape, are converted to GetExtent requests defined in TextView.
Since TextShape adapts TextView to the Shape interface, the drawing editor can
reuse the otherwise incompatible TextView class.

Often the adapter is responsible for functionality the adapted class doesn't
provide. The diagram shows how an adapter can fulfill such responsibilities. The
user should be able to "drag" every Shape object to a new location interactively,
but TextView isn't designed to do that. TextShape can add this missing
functionality by implementing Shape's CreateManipulator operation, which returns
an instance of the appropriate Manipulator subclass.

Manipulator is an abstract class for objects that know how to animate a Shape
in response to user input, like dragging the shape to a new location. There are
subclasses of Manipulator for different shapes; TextManipulator, for example,
is the corresponding subclass for TextShape. By returning a TextManipulator
instance, TextShape adds the functionality that TextView lacks but Shape requires.

Applicability

Use the Adapter pattern when

• you want to use an existing class, and its interface does not match the
one you need.

Design Patterns: Elements of Reusable Object-Oriented Software

159

• you want to create a reusable class that cooperates with unrelated or
unforeseen classes, that is, classes that don't necessarily have compatible
interfaces.

• (object adapter only) you need to use several existing subclasses, but it's
impractical to adapt their interface by subclassing every one. An object
adapter can adapt the interface of its parent class.

Structure

A class adapter uses multiple inheritance to adapt one interface to another:

An object adapter relies on object composition:

Participants

• Target (Shape)
o defines the domain-specific interface that Client uses.

• Client (DrawingEditor)
o collaborates with objects conforming to the Target interface.

• Adaptee (TextView)
o defines an existing interface that needs adapting.

Design Patterns: Elements of Reusable Object-Oriented Software

160

• Adapter (TextShape)
o adapts the interface of Adaptee to the Target interface.

Collaborations

• Clients call operations on an Adapter instance. In turn, the adapter calls
Adaptee operations that carry out the request.

Consequences

Class and object adapters have different trade-offs. A class adapter

• adapts Adaptee to Target by committing to a concrete Adapter class. As a
consequence, a class adapter won't work when we want to adapt a class and
all its subclasses.

• lets Adapter override some of Adaptee's behavior, since Adapter is a
subclass of Adaptee.

• introduces only one object, and no additional pointer indirection is needed
to get to the adaptee.

An object adapter

• lets a single Adapter work with many Adaptees—that is, the Adaptee itself
and all of its subclasses (if any). The Adapter can also add functionality
to all Adaptees at once.

• makes it harder to override Adaptee behavior. It will require subclassing
Adaptee and making Adapter refer to the subclass rather than the Adaptee
itself.

Here are other issues to consider when using the Adapter pattern:

1. How much adapting does Adapter do? Adapters vary in the amount of work they
do to adapt Adaptee to the Target interface. There is a spectrum of possible
work, from simple interface conversion—for example, changing the names of
operations—to supporting an entirely different set of operations. The
amount of work Adapter does depends on how similar the Target interface
is to Adaptee's.

2. Pluggable adapters. A class is more reusable when you minimize the
assumptions other classes must make to use it. By building interface
adaptation into a class, you eliminate the assumption that other classes
see the same interface. Put another way, interface adaptation lets us
incorporate our class into existing systems that might expect different

Design Patterns: Elements of Reusable Object-Oriented Software

161

interfaces to the class. ObjectWorks\Smalltalk [Par90] uses the term
pluggable adapter to describe classes with built-in interface adaptation.

Consider a TreeDisplay widget that can display tree structures graphically.
If this were a special-purpose widget for use in just one application, then
we might require the objects that it displays to have a specific interface;
that is, all must descend from a Tree abstract class. But if we wanted to
make TreeDisplay more reusable (say we wanted to make it part of a toolkit
of useful widgets), then that requirement would be unreasonable.
Applications will define their own classes for tree structures. They
shouldn't be forced to use our Tree abstract class. Different tree
structures will have different interfaces.

In a directory hierarchy, for example, children might be accessed with a
GetSubdirectories operation, whereas in an inheritance hierarchy, the
corresponding operation might be called GetSubclasses. A reusable
TreeDisplay widget must be able to display both kinds of hierarchies even
if they use different interfaces. In other words, the TreeDisplay should
have interface adaptation built into it.

We'll look at different ways to build interface adaptation into classes
in the Implementation section.

3. Using two-way adapters to provide transparency. A potential problem with
adapters is that they aren't transparent to all clients. An adapted object
no longer conforms to the Adaptee interface, so it can't be used as is
wherever an Adaptee object can. Two-way adapters can provide such
transparency. Specifically, they're useful when two different clients need
to view an object differently.

Consider the two-way adapter that integrates Unidraw, a graphical editor
framework [VL90], and QOCA, a constraint-solving toolkit [HHMV92]. Both
systems have classes that represent variables explicitly: Unidraw has
StateVariable, and QOCA has ConstraintVariable. To make Unidraw work with
QOCA, ConstraintVariable must be adapted to StateVariable; to let QOCA
propagate solutions to Unidraw, StateVariable must be adapted to
ConstraintVariable.

Design Patterns: Elements of Reusable Object-Oriented Software

162

The solution involves a two-way class adapter ConstraintStateVariable, a
subclass of both StateVariable and ConstraintVariable, that adapts the two
interfaces to each other. Multiple inheritance is a viable solution in this
case because the interfaces of the adapted classes are substantially
different. The two-way class adapter conforms to both of the adapted classes
and can work in either system.

Implementation

Although the implementation of Adapter is usually straightforward, here are some
issues to keep in mind:

1. Implementing class adapters in C++. In a C++ implementation of a class
adapter, Adapter would inherit publicly from Target and privately from
Adaptee. Thus Adapter would be a subtype of Target but not of Adaptee.

2. Pluggable adapters. Let's look at three ways to implement pluggable adapters
for the TreeDisplay widget described earlier, which can lay out and display
a hierarchical structure automatically.

The first step, which is common to all three of the implementations discussed
here, is to find a "narrow" interface for Adaptee, that is, the smallest
subset of operations that lets us do the adaptation. A narrow interface
consisting of only a couple of operations is easier to adapt than an
interface with dozens of operations. For TreeDisplay, the adaptee is any
hierarchical structure. A minimalist interface might include two
operations, one that defines how to present a node in the hierarchical
structure graphically, and another that retrieves the node's children.

The narrow interface leads to three implementation approaches:

a. Using abstract operations. Define corresponding abstract operations
for the narrow Adaptee interface in the TreeDisplay class.
Subclasses must implement the abstract operations and adapt the
hierarchically structured object. For example, a

Design Patterns: Elements of Reusable Object-Oriented Software

163

DirectoryTreeDisplay subclass will implement these operations by
accessing the directory structure.

DirectoryTreeDisplay specializes the narrow interface so that it
can display directory structures made up of FileSystemEntity
objects.

b. Using delegate objects. In this approach, TreeDisplay forwards
requests for accessing the hierarchical structure to a delegate
object. TreeDisplay can use a different adaptation strategy by
substituting a different delegate.

For example, suppose there exists a DirectoryBrowser that uses a
TreeDisplay. DirectoryBrowser might make a good delegate for
adapting TreeDisplay to the hierarchical directory structure. In
dynamically typed languages like Smalltalk or Objective C, this
approach only requires an interface for registering the delegate
with the adapter. Then TreeDisplay simply forwards the requests to
the delegate. NEXTSTEP [Add94] uses this approach heavily to reduce
subclassing.

Statically typed languages like C++ require an explicit interface
definition for the delegate. We can specify such an interface by
putting the narrow interface that TreeDisplay requires into an
abstract TreeAccessorDelegate class. Then we can mix this interface
into the delegate of our choice—DirectoryBrowser in this case—using
inheritance. We use single inheritance if the DirectoryBrowser has
no existing parent class, multiple inheritance if it does. Mixing
classes together like this is easier than introducing a new
TreeDisplay subclass and implementing its operations individually.

Design Patterns: Elements of Reusable Object-Oriented Software

164

c. Parameterized adapters. The usual way to support pluggable adapters
in Smalltalk is to parameterize an adapter with one or more blocks.
The block construct supports adaptation without subclassing. A block
can adapt a request, and the adapter can store a block for each
individual request. In our example, this means TreeDisplay stores
one block for converting a node into a GraphicNode and another block
for accessing a node's children.

For example, to create TreeDisplay on a directory hierarchy, we write

 directoryDisplay :=
 (TreeDisplay on: treeRoot)
 getChildrenBlock:
 [:node | node getSubdirectories]
 createGraphicNodeBlock:
 [:node | node createGraphicNode].

If you're building interface adaptation into a class, this approach
offers a convenient alternative to subclassing.

Sample Code

We'll give a brief sketch of the implementation of class and object adapters for
the Motivation example beginning with the classes Shape and TextView.

Design Patterns: Elements of Reusable Object-Oriented Software

165

 class Shape {
 public:
 Shape();
 virtual void BoundingBox(
 Point& bottomLeft, Point& topRight
) const;
 virtual Manipulator* CreateManipulator() const;
 };

 class TextView {
 public:
 TextView();
 void GetOrigin(Coord& x, Coord& y) const;
 void GetExtent(Coord& width, Coord& height) const;
 virtual bool IsEmpty() const;
 };

Shape assumes a bounding box defined by its opposing corners. In contrast, TextView
is defined by an origin, height, and width. Shape also defines a CreateManipulator
operation for creating a Manipulator object, which knows how to animate a shape
when the user manipulates it.1 TextView has no equivalent operation. The class
TextShape is an adapter between these different interfaces.

A class adapter uses multiple inheritance to adapt interfaces. The key to class
adapters is to use one inheritance branch to inherit the interface and another
branch to inherit the implementation. The usual way to make this distinction in
C++ is to inherit the interface publicly and inherit the implementation privately.
We'll use this convention to define the TextShape adapter.

 class TextShape : public Shape, private TextView {
 public:
 TextShape();

 virtual void BoundingBox(
 Point& bottomLeft, Point& topRight
) const;
 virtual bool IsEmpty() const;
 virtual Manipulator* CreateManipulator() const;
 };

The BoundingBox operation converts TextView's interface to conform to Shape's.

Design Patterns: Elements of Reusable Object-Oriented Software

166

 void TextShape::BoundingBox (
 Point& bottomLeft, Point& topRight
) const {
 Coord bottom, left, width, height;

 GetOrigin(bottom, left);
 GetExtent(width, height);

 bottomLeft = Point(bottom, left);
 topRight = Point(bottom + height, left + width);
 }

The IsEmpty operation demonstrates the direct forwarding of requests common in
adapter implementations:

 bool TextShape::IsEmpty () const {
 return TextView::IsEmpty();
 }

Finally, we define CreateManipulator (which isn't supported by TextView) from
scratch. Assume we've already implemented a TextManipulator class that supports
manipulation of a TextShape.

 Manipulator* TextShape::CreateManipulator () const {
 return new TextManipulator(this);
 }

The object adapter uses object composition to combine classes with different
interfaces. In this approach, the adapter TextShape maintains a pointer to
TextView.

 class TextShape : public Shape {
 public:
 TextShape(TextView*);

 virtual void BoundingBox(
 Point& bottomLeft, Point& topRight
) const;
 virtual bool IsEmpty() const;
 virtual Manipulator* CreateManipulator() const;
 private:
 TextView* _text;

Design Patterns: Elements of Reusable Object-Oriented Software

167

 };

TextShape must initialize the pointer to the TextView instance, and it does so
in the constructor. It must also call operations on its TextView object whenever
its own operations are called. In this example, assume that the client creates
the TextView object and passes it to the TextShape constructor:

 TextShape::TextShape (TextView* t) {
 _text = t;
 }

 void TextShape::BoundingBox (
 Point& bottomLeft, Point& topRight
) const {
 Coord bottom, left, width, height;

 _text->GetOrigin(bottom, left);
 _text->GetExtent(width, height);

 bottomLeft = Point(bottom, left);
 topRight = Point(bottom + height, left + width);
 }

 bool TextShape::IsEmpty () const {
 return _text->IsEmpty();
 }

CreateManipulator's implementation doesn't change from the class adapter version,
since it's implemented from scratch and doesn't reuse any existing TextView
functionality.

 Manipulator* TextShape::CreateManipulator () const {
 return new TextManipulator(this);
 }

Compare this code to the class adapter case. The object adapter requires a little
more effort to write, but it's more flexible. For example, the object adapter
version of TextShape will work equally well with subclasses of TextView—the client
simply passes an instance of a TextView subclass to the TextShape constructor.

Design Patterns: Elements of Reusable Object-Oriented Software

168

Known Uses

The Motivation example comes from ET++Draw, a drawing application based on ET++
[WGM88]. ET++Draw reuses the ET++ classes for text editing by using a TextShape
adapter class.

InterViews 2.6 defines an Interactor abstract class for user interface elements
such as scroll bars, buttons, and menus [VL88]. It also defines a Graphic abstract
class for structured graphic objects such as lines, circles, polygons, and splines.
Both Interactors and Graphics have graphical appearances, but they have different
interfaces and implementations (they share no common parent class) and are
therefore incompatible—you can't embed a structured graphic object in, say, a
dialog box directly.

Instead, InterViews 2.6 defines an object adapter called GraphicBlock, a subclass
of Interactor that contains a Graphic instance. The GraphicBlock adapts the
interface of the Graphic class to that of Interactor. The GraphicBlock lets a
Graphic instance be displayed, scrolled, and zoomed within an Interactor
structure.

Pluggable adapters are common in ObjectWorks\Smalltalk [Par90]. Standard
Smalltalk defines a ValueModel class for views that display a single value.
ValueModel defines a value, value: interface for accessing the value. These are
abstract methods. Application writers access the value with more domain-specific
names like width and width:, but they shouldn't have to subclass ValueModel to
adapt such application-specific names to the ValueModel interface.

Instead, ObjectWorks\Smalltalk includes a subclass of ValueModel called
PluggableAdaptor. A PluggableAdaptor object adapts other objects to the ValueModel
interface (value, value:). It can be parameterized with blocks for getting and
setting the desired value. PluggableAdaptor uses these blocks internally to
implement the value, value: interface. PluggableAdaptor also lets you pass in
the selector names (e.g., width, width:) directly for syntactic convenience. It
converts these selectors into the corresponding blocks automatically.

Design Patterns: Elements of Reusable Object-Oriented Software

169

Another example from ObjectWorks\Smalltalk is the TableAdaptor class. A
TableAdaptor can adapt a sequence of objects to a tabular presentation. The table
displays one object per row. The client parameterizes TableAdaptor with the set
of messages that a table can use to get the column values from an object.

Some classes in NeXT's AppKit [Add94] use delegate objects to perform interface
adaptation. An example is the NXBrowser class that can display hierarchical lists
of data. NXBrowser uses a delegate object for accessing and adapting the data.

Meyer's "Marriage of Convenience" [Mey88] is a form of class adapter. Meyer
describes how a FixedStack class adapts the implementation of an Array class to
the interface of a Stack class. The result is a stack containing a fixed number
of entries.

Related Patterns

Bridge (171) has a structure similar to an object adapter, but Bridge has a different
intent: It is meant to separate an interface from its implementation so that they
can be varied easily and independently. An adapter is meant to change the interface
of an existing object.

Decorator (196) enhances another object without changing its interface. A
decorator is thus more transparent to the application than an adapter is. As a
consequence, Decorator supports recursive composition, which isn't possible with
pure adapters.

Proxy (233) defines a representative or surrogate for another object and does
not change its interface.

Design Patterns: Elements of Reusable Object-Oriented Software

170

1CreateManipulator is an example of a Factory Method (121).

Design Patterns: Elements of Reusable Object-Oriented Software

171

Bridge

Intent

Decouple an abstraction from its implementation so that the two can vary
independently.

Also Known As

Handle/Body

Motivation

When an abstraction can have one of several possible implementations, the usual
way to accommodate them is to use inheritance. An abstract class defines the
interface to the abstraction, and concrete subclasses implement it in different
ways. But this approach isn't always flexible enough. Inheritance binds an
implementation to the abstraction permanently, which makes it difficult to modify,
extend, and reuse abstractions and implementations independently.

Consider the implementation of a portable Window abstraction in a user interface
toolkit. This abstraction should enable us to write applications that work on
both the X Window System and IBM's Presentation Manager (PM), for example. Using
inheritance, we could define an abstract class Window and subclasses XWindow and
PMWindow that implement the Window interface for the different platforms. But
this approach has two drawbacks:

1. It's inconvenient to extend the Window abstraction to cover different kinds
of windows or new platforms. Imagine an IconWindow subclass of Window that
specializes the Window abstraction for icons. To support IconWindows for
both platforms, we have to implement two new classes, XIconWindow and
PMIconWindow. Worse, we'll have to define two classes for every kind of
window. Supporting a third platform requires yet another new Window subclass
for every kind of window.

Design Patterns: Elements of Reusable Object-Oriented Software

172

2. It makes client code platform-dependent. Whenever a client creates a window,
it instantiates a concrete class that has a specific implementation. For
example, creating an XWindow object binds the Window abstraction to the
X Window implementation, which makes the client code dependent on the X
Window implementation. This, in turn, makes it harder to port the client
code to other platforms.

Clients should be able to create a window without committing to a concrete
implementation. Only the window implementation should depend on the
platform on which the application runs. Therefore client code should
instantiate windows without mentioning specific platforms.

The Bridge pattern addresses these problems by putting the Window abstraction
and its implementation in separate class hierarchies. There is one class hierarchy
for window interfaces (Window, IconWindow, TransientWindow) and a separate
hierarchy for platform-specific window implementations, with WindowImp as its
root. The XWindowImp subclass, for example, provides an implementation based on
the X Window System.

Design Patterns: Elements of Reusable Object-Oriented Software

173

All operations on Window subclasses are implemented in terms of abstract operations
from the WindowImp interface. This decouples the window abstractions from the
various platform-specific implementations. We refer to the relationship between
Window and WindowImp as a bridge, because it bridges the abstraction and its
implementation, letting them vary independently.

Applicability

Use the Bridge pattern when

• you want to avoid a permanent binding between an abstraction and its
implementation. This might be the case, for example, when the implementation
must be selected or switched at run-time.

• both the abstractions and their implementations should be extensible by
subclassing. In this case, the Bridge pattern lets you combine the different
abstractions and implementations and extend them independently.

• changes in the implementation of an abstraction should have no impact on
clients; that is, their code should not have to be recompiled.

• (C++) you want to hide the implementation of an abstraction completely from
clients. In C++ the representation of a class is visible in the class
interface.

• you have a proliferation of classes as shown earlier in the first Motivation
diagram. Such a class hierarchy indicates the need for splitting an object

Design Patterns: Elements of Reusable Object-Oriented Software

174

into two parts. Rumbaugh uses the term "nested generalizations" [RBP+91]
to refer to such class hierarchies.

• you want to share an implementation among multiple objects (perhaps using
reference counting), and this fact should be hidden from the client. A simple
example is Coplien's String class [Cop92], in which multiple objects can
share the same string representation (StringRep).

Structure

Participants

• Abstraction (Window)
o defines the abstraction's interface.
o maintains a reference to an object of type Implementor.

• RefinedAbstraction (IconWindow)
o Extends the interface defined by Abstraction.

• Implementor (WindowImp)
o defines the interface for implementation classes. This interface

doesn't have to correspond exactly to Abstraction's interface; in
fact the two interfaces can be quite different. Typically the
Implementor interface provides only primitive operations, and
Abstraction defines higher-level operations based on these
primitives.

• ConcreteImplementor (XWindowImp, PMWindowImp)
o implements the Implementor interface and defines its concrete

implementation.

Design Patterns: Elements of Reusable Object-Oriented Software

175

Collaborations

• Abstraction forwards client requests to its Implementor object.

Consequences

The Bridge pattern has the following consequences:

1. Decoupling interface and implementation. An implementation is not bound
permanently to an interface. The implementation of an abstraction can be
configured at run-time. It's even possible for an object to change its
implementation at run-time.

Decoupling Abstraction and Implementor also eliminates compile-time
dependencies on the implementation. Changing an implementation class
doesn't require recompiling the Abstraction class and its clients. This
property is essential when you must ensure binary compatibility between
different versions of a class library.

Furthermore, this decoupling encourages layering that can lead to a
better-structured system. The high-level part of a system only has to know
about Abstraction and Implementor.

2. Improved extensibility. You can extend the Abstraction and Implementor
hierarchies independently.

3. Hiding implementation details from clients. You can shield clients from
implementation details, like the sharing of implementor objects and the
accompanying reference count mechanism (if any).

Implementation

Consider the following implementation issues when applying the Bridge pattern:

1. Only one Implementor. In situations where there's only one implementation,
creating an abstract Implementor class isn't necessary. This is a degenerate
case of the Bridge pattern; there's a one-to-one relationship between
Abstraction and Implementor. Nevertheless, this separation is still useful
when a change in the implementation of a class must not affect its existing
clients—that is, they shouldn't have to be recompiled, just relinked.

Carolan [Car89] uses the term "Cheshire Cat" to describe this separation.
In C++, the class interface of the Implementor class can be defined in a

Design Patterns: Elements of Reusable Object-Oriented Software

176

private header file that isn't provided to clients. This lets you hide an
implementation of a class completely from its clients.

2. Creating the right Implementor object. How, when, and where do you decide
which Implementor class to instantiate when there's more than one?

If Abstraction knows about all ConcreteImplementor classes, then it can
instantiate one of them in its constructor; it can decide between them based
on parameters passed to its constructor. If, for example, a collection class
supports multiple implementations, the decision can be based on the size
of the collection. A linked list implementation can be used for small
collections and a hash table for larger ones.

Another approach is to choose a default implementation initially and change
it later according to usage. For example, if the collection grows bigger
than a certain threshold, then it switches its implementation to one that's
more appropriate for a large number of items.

It's also possible to delegate the decision to another object altogether.
In the Window/WindowImp example, we can introduce a factory object (see
Abstract Factory (99)) whose sole duty is to encapsulate platform-specifics.
The factory knows what kind of WindowImp object to create for the platform
in use; a Window simply asks it for a WindowImp, and it returns the right
kind. A benefit of this approach is that Abstraction is not coupled directly
to any of the Implementor classes.

3. Sharing implementors. Coplien illustrates how the Handle/Body idiom in C++
can be used to share implementations among several objects [Cop92]. The
Body stores a reference count that the Handle class increments and
decrements. The code for assigning handles with shared bodies has the
following general form:

 Handle& Handle::operator= (const Handle& other) {
 other._body->Ref();
 _body->Unref();

 if (_body->RefCount() == 0) {
 delete _body;
 }
 _body = other._body;

 return *this;
 }

Design Patterns: Elements of Reusable Object-Oriented Software

177

4. Using multiple inheritance. You can use multiple inheritance in C++ to
combine an interface with its implementation [Mar91]. For example, a class
can inherit publicly from Abstraction and privately from a
ConcreteImplementor. But because this approach relies on static
inheritance, it binds an implementation permanently to its interface.
Therefore you can't implement a true Bridge with multiple inheritance—at
least not in C++.

Sample Code

The following C++ code implements the Window/WindowImp example from the Motivation
section. The Window class defines the window abstraction for client applications:

 class Window {
 public:
 Window(View* contents);

 // requests handled by window
 virtual void DrawContents();

 virtual void Open();
 virtual void Close();
 virtual void Iconify();
 virtual void Deiconify();

 // requests forwarded to implementation
 virtual void SetOrigin(const Point& at);
 virtual void SetExtent(const Point& extent);
 virtual void Raise();
 virtual void Lower();

 virtual void DrawLine(const Point&, const Point&);
 virtual void DrawRect(const Point&, const Point&);
 virtual void DrawPolygon(const Point[], int n);
 virtual void DrawText(const char*, const Point&);

 protected:
 WindowImp* GetWindowImp();
 View* GetView();

 private:
 WindowImp* _imp;

Design Patterns: Elements of Reusable Object-Oriented Software

178

 View* _contents; // the window's contents
 };

Window maintains a reference to a WindowImp, the abstract class that declares
an interface to the underlying windowing system.

 class WindowImp {
 public:
 virtual void ImpTop() = 0;
 virtual void ImpBottom() = 0;
 virtual void ImpSetExtent(const Point&) = 0;
 virtual void ImpSetOrigin(const Point&) = 0;

 virtual void DeviceRect(Coord, Coord, Coord, Coord) = 0;
 virtual void DeviceText(const char*, Coord, Coord) = 0;
 virtual void DeviceBitmap(const char*, Coord, Coord) = 0;
 // lots more functions for drawing on windows...
 protected:
 WindowImp();
 };

Subclasses of Window define the different kinds of windows the application might
use, such as application windows, icons, transient windows for dialogs, floating
palettes of tools, and so on.

For example, ApplicationWindow will implement DrawContents to draw the View
instance it stores:

 class ApplicationWindow : public Window {
 public:
 // ...
 virtual void DrawContents();
 };

 void ApplicationWindow::DrawContents () {
 GetView()->DrawOn(this);
 }

IconWindow stores the name of a bitmap for the icon it displays...

 class IconWindow : public Window {
 public:

Design Patterns: Elements of Reusable Object-Oriented Software

179

 // ...
 virtual void DrawContents();
 private:
 const char* _bitmapName;
 };

...and it implements DrawContents to draw the bitmap on the window:

 void IconWindow::DrawContents() {
 WindowImp* imp = GetWindowImp();
 if (imp != 0) {
 imp->DeviceBitmap(_bitmapName, 0.0, 0.0);
 }
 }

Many other variations of Window are possible. A TransientWindow may need to
communicate with the window that created it during the dialog; hence it keeps
a reference to that window. A PaletteWindow always floats above other windows.
An IconDockWindow holds IconWindows and arranges them neatly.

Window operations are defined in terms of the WindowImp interface. For example,
DrawRect extracts four coordinates from its two Point parameters before calling
the WindowImp operation that draws the rectangle in the window:

 void Window::DrawRect (const Point& p1, const Point& p2) {
 WindowImp* imp = GetWindowImp();
 imp->DeviceRect(p1.X(), p1.Y(), p2.X(), p2.Y());
 }

Concrete subclasses of WindowImp support different window systems. The XWindowImp
subclass supports the X Window System:

 class XWindowImp : public WindowImp {
 public:
 XWindowImp();

 virtual void DeviceRect(Coord, Coord, Coord, Coord);
 // remainder of public interface...
 private:
 // lots of X window system-specific state, including:
 Display* _dpy;
 Drawable _winid; // window id

Design Patterns: Elements of Reusable Object-Oriented Software

180

 GC _gc; // window graphic context
 };

For Presentation Manager (PM), we define a PMWindowImp class:

 class PMWindowImp : public WindowImp {
 public:
 PMWindowImp();
 virtual void DeviceRect(Coord, Coord, Coord, Coord);

 // remainder of public interface...
 private:
 // lots of PM window system-specific state, including:
 HPS _hps;
 };

These subclasses implement WindowImp operations in terms of window system
primitives. For example, DeviceRect is implemented for X as follows:

 void XWindowImp::DeviceRect (
 Coord x0, Coord y0, Coord x1, Coord y1
) {
 int x = round(min(x0, x1));
 int y = round(min(y0, y1));
 int w = round(abs(x0 - x1));
 int h = round(abs(y0 - y1));
 XDrawRectangle(_dpy, _winid, _gc, x, y, w, h);
 }

The PM implementation might look like this:

 void PMWindowImp::DeviceRect (
 Coord x0, Coord y0, Coord x1, Coord y1
) {
 Coord left = min(x0, x1);
 Coord right = max(x0, x1);
 Coord bottom = min(y0, y1);
 Coord top = max(y0, y1);

 PPOINTL point[4];

 point[0].x = left; point[0].y = top;

Design Patterns: Elements of Reusable Object-Oriented Software

181

 point[1].x = right; point[1].y = top;
 point[2].x = right; point[2].y = bottom;
 point[3].x = left; point[3].y = bottom;

 if (
 (GpiBeginPath(_hps, 1L) == false) ||
 (GpiSetCurrentPosition(_hps, &point[3]) == false) ||
 (GpiPolyLine(_hps, 4L, point) == GPI_ERROR) ||
 (GpiEndPath(_hps) == false)
) {
 // report error

 } else {
 GpiStrokePath(_hps, 1L, 0L);
 }
 }

How does a window obtain an instance of the right WindowImp subclass? We'll assume
Window has that responsibility in this example. Its GetWindowImp operation gets
the right instance from an abstract factory (see Abstract Factory (99)) that
effectively encapsulates all window system specifics.

 WindowImp* Window::GetWindowImp () {
 if (_imp == 0) {
 _imp = WindowSystemFactory::Instance()->MakeWindowImp();
 }
 return _imp;
 }

WindowSystemFactory::Instance() returns an abstract factory that manufactures
all window system-specific objects. For simplicity, we've made it a Singleton
(144) and have let the Window class access the factory directly.

Known Uses

The Window example above comes from ET++ [WGM88]. In ET++, WindowImp is called
"WindowPort" and has subclasses such as XWindowPort and SunWindowPort. The Window
object creates its corresponding Implementor object by requesting it from an
abstract factory called "WindowSystem." WindowSystem provides an interface for
creating platform-specific objects such as fonts, cursors, bitmaps, and so forth.

The ET++ Window/WindowPort design extends the Bridge pattern in that the WindowPort
also keeps a reference back to the Window. The WindowPort implementor class uses

Design Patterns: Elements of Reusable Object-Oriented Software

182

this reference to notify Window about WindowPort-specific events: the arrival
of input events, window resizes, etc.

Both Coplien [Cop92] and Stroustrup [Str91] mention Handle classes and give some
examples. Their examples emphasize memory management issues like sharing string
representations and support for variable-sized objects. Our focus is more on
supporting independent extension of both an abstraction and its implementation.

libg++ [Lea88] defines classes that implement common data structures, such as
Set, LinkedSet, HashSet, LinkedList, and HashTable. Set is an abstract class that
defines a set abstraction, while LinkedList and HashTable are concrete
implementors for a linked list and a hash table, respectively. LinkedSet and
HashSet are Set implementors that bridge between Set and their concrete
counterparts LinkedList and HashTable. This is an example of a degenerate bridge,
because there's no abstract Implementor class.

NeXT's AppKit [Add94] uses the Bridge pattern in the implementation and display
of graphical images. An image can be represented in several different ways. The
optimal display of an image depends on the properties of a display device,
specifically its color capabilities and its resolution. Without help from AppKit,
developers would have to determine which implementation to use under various
circumstances in every application.

To relieve developers of this responsibility, AppKit provides an
NXImage/NXImageRep bridge. NXImage defines the interface for handling images.
The implementation of images is defined in a separate NXImageRep class hierarchy
having subclasses such as NXEPSImageRep, NXCachedImageRep, and NXBitMapImageRep.
NXImage maintains a reference to one or more NXImageRep objects. If there is more
than one image implementation, then NXImage selects the most appropriate one for
the current display device. NXImage is even capable of converting one
implementation to another if necessary. The interesting aspect of this Bridge
variant is that NXImage can store more than one NXImageRep implementation at a
time.

Related Patterns

An Abstract Factory (99) can create and configure a particular Bridge.

The Adapter (157) pattern is geared toward making unrelated classes work together.
It is usually applied to systems after they're designed. Bridge, on the other
hand, is used up-front in a design to let abstractions and implementations vary
independently.

Design Patterns: Elements of Reusable Object-Oriented Software

183

Composite

Intent

Compose objects into tree structures to represent part-whole hierarchies.
Composite lets clients treat individual objects and compositions of objects
uniformly.

Motivation

Graphics applications like drawing editors and schematic capture systems let users
build complex diagrams out of simple components. The user can group components
to form larger components, which in turn can be grouped to form still larger
components. A simple implementation could define classes for graphical primitives
such as Text and Lines plus other classes that act as containers for these
primitives.

But there's a problem with this approach: Code that uses these classes must treat
primitive and container objects differently, even if most of the time the user
treats them identically. Having to distinguish these objects makes the application
more complex. The Composite pattern describes how to use recursive composition
so that clients don't have to make this distinction.

The key to the Composite pattern is an abstract class that represents both
primitives and their containers. For the graphics system, this class is Graphic.
Graphic declares operations like Draw that are specific to graphical objects.

Design Patterns: Elements of Reusable Object-Oriented Software

184

It also declares operations that all composite objects share, such as operations
for accessing and managing its children.

The subclasses Line, Rectangle, and Text (see preceding class diagram) define
primitive graphical objects. These classes implement Draw to draw lines,
rectangles, and text, respectively. Since primitive graphics have no child
graphics, none of these subclasses implements child-related operations.

The Picture class defines an aggregate of Graphic objects. Picture implements
Draw to call Draw on its children, and it implements child-related operations
accordingly. Because the Picture interface conforms to the Graphic interface,
Picture objects can compose other Pictures recursively.

The following diagram shows a typical composite object structure of recursively
composed Graphic objects:

Applicability

Use the Composite pattern when

• you want to represent part-whole hierarchies of objects.
• you want clients to be able to ignore the difference between compositions

of objects and individual objects. Clients will treat all objects in the
composite structure uniformly.

Design Patterns: Elements of Reusable Object-Oriented Software

185

Structure

A typical Composite object structure might look like this:

Participants

• Component (Graphic)
o declares the interface for objects in the composition.
o implements default behavior for the interface common to all classes,

as appropriate.
o declares an interface for accessing and managing its child

components.
o (optional) defines an interface for accessing a component's parent

in the recursive structure, and implements it if that's appropriate.
• Leaf (Rectangle, Line, Text, etc.)

o represents leaf objects in the composition. A leaf has no children.
o defines behavior for primitive objects in the composition.

• Composite (Picture)

Design Patterns: Elements of Reusable Object-Oriented Software

186

o defines behavior for components having children.
o stores child components.
o implements child-related operations in the Component interface.

• Client
o manipulates objects in the composition through the Component

interface.

Collaborations

• Clients use the Component class interface to interact with objects in the
composite structure. If the recipient is a Leaf, then the request is handled
directly. If the recipient is a Composite, then it usually forwards requests
to its child components, possibly performing additional operations before
and/or after forwarding.

Consequences

The Composite pattern

• defines class hierarchies consisting of primitive objects and composite
objects. Primitive objects can be composed into more complex objects, which
in turn can be composed, and so on recursively. Wherever client code expects
a primitive object, it can also take a composite object.

• makes the client simple. Clients can treat composite structures and
individual objects uniformly. Clients normally don't know (and shouldn't
care) whether they're dealing with a leaf or a composite component. This
simplifies client code, because it avoids having to write
tag-and-case-statement-style functions over the classes that define the
composition.

• makes it easier to add new kinds of components. Newly defined Composite
or Leaf subclasses work automatically with existing structures and client
code. Clients don't have to be changed for new Component classes.

• can make your design overly general. The disadvantage of making it easy
to add new components is that it makes it harder to restrict the components
of a composite. Sometimes you want a composite to have only certain
components. With Composite, you can't rely on the type system to enforce
those constraints for you. You'll have to use run-time checks instead.

Implementation

There are many issues to consider when implementing the Composite pattern:

Design Patterns: Elements of Reusable Object-Oriented Software

187

1. Explicit parent references. Maintaining references from child components
to their parent can simplify the traversal and management of a composite
structure. The parent reference simplifies moving up the structure and
deleting a component. Parent references also help support the Chain of
Responsibility (251) pattern.

The usual place to define the parent reference is in the Component class.
Leaf and Composite classes can inherit the reference and the operations
that manage it.

With parent references, it's essential to maintain the invariant that all
children of a composite have as their parent the composite that in turn
has them as children. The easiest way to ensure this is to change a
component's parent only when it's being added or removed from a composite.
If this can be implemented once in the Add and Remove operations of the
Composite class, then it can be inherited by all the subclasses, and the
invariant will be maintained automatically.

2. Sharing components. It's often useful to share components, for example,
to reduce storage requirements. But when a component can have no more than
one parent, sharing components becomes difficult.

A possible solution is for children to store multiple parents. But that
can lead to ambiguities as a request propagates up the structure. The
Flyweight (218) pattern shows how to rework a design to avoid storing parents
altogether. It works in cases where children can avoid sending parent
requests by externalizing some or all of their state.

3. Maximizing the Component interface. One of the goals of the Composite
pattern is to make clients unaware of the specific Leaf or Composite classes
they're using. To attain this goal, the Component class should define as
many common operations for Composite and Leaf classes as possible. The
Component class usually provides default implementations for these
operations, and Leaf and Composite subclasses will override them.

However, this goal will sometimes conflict with the principle of class
hierarchy design that says a class should only define operations that are
meaningful to its subclasses. There are many operations that Component
supports that don't seem to make sense for Leaf classes. How can Component
provide a default implementation for them?

Sometimes a little creativity shows how an operation that would appear to
make sense only for Composites can be implemented for all Components by
moving it to the Component class. For example, the interface for accessing
children is a fundamental part of a Composite class but not necessarily

Design Patterns: Elements of Reusable Object-Oriented Software

188

Leaf classes. But if we view a Leaf as a Component that never has children,
then we can define a default operation for child access in the Component
class that never returns any children. Leaf classes can use the default
implementation, but Composite classes will reimplement it to return their
children.

The child management operations are more troublesome and are discussed in
the next item.

4. Declaring the child management operations. Although the Composite class
implements the Add and Remove operations for managing children, an important
issue in the Composite pattern is which classes declare these operations
in the Composite class hierarchy. Should we declare these operations in
the Component and make them meaningful for Leaf classes, or should we declare
and define them only in Composite and its subclasses?

The decision involves a trade-off between safety and transparency:

o Defining the child management interface at the root of the class
hierarchy gives you transparency, because you can treat all
components uniformly. It costs you safety, however, because clients
may try to do meaningless things like add and remove objects from
leaves.

o Defining child management in the Composite class gives you safety,
because any attempt to add or remove objects from leaves will be
caught at compile-time in a statically typed language like C++. But
you lose transparency, because leaves and composites have different
interfaces.

We have emphasized transparency over safety in this pattern. If you opt
for safety, then at times you may lose type information and have to convert
a component into a composite. How can you do this without resorting to a
type-unsafe cast?

One approach is to declare an operation Composite* GetComposite() in the
Component class. Component provides a default operation that returns a null
pointer. The Composite class redefines this operation to return itself
through the this pointer:

 class Composite;

 class Component {
 public:
 //...

Design Patterns: Elements of Reusable Object-Oriented Software

189

 virtual Composite* GetComposite() { return 0; }
 };

 class Composite : public Component {
 public:
 void Add(Component*);
 // ...
 virtual Composite* GetComposite() { return this; }
 };

 class Leaf : public Component {
 // ...
 };

GetComposite lets you query a component to see if it's a composite. You
can perform Add and Remove safely on the composite it returns.

 Composite* aComposite = new Composite;
 Leaf* aLeaf = new Leaf;

 Component* aComponent;
 Composite* test;

 aComponent = aComposite;
 if (test = aComponent->GetComposite()) {
 test->Add(new Leaf);
 }

 aComponent = aLeaf;

 if (test = aComponent->GetComposite()) {
 test->Add(new Leaf); // will not add leaf
 }

Similar tests for a Composite can be done using the C++ dynamic_cast
construct.

Of course, the problem here is that we don't treat all components uniformly.
We have to revert to testing for different types before taking the
appropriate action.

The only way to provide transparency is to define default Add and Remove
operations in Component. That creates a new problem: There's no way to

Design Patterns: Elements of Reusable Object-Oriented Software

190

implement Component::Add without introducing the possibility of it failing.
You could make it do nothing, but that ignores an important consideration;
that is, an attempt to add something to a leaf probably indicates a bug.
In that case, the Add operation produces garbage. You could make it delete
its argument, but that might not be what clients expect.

Usually it's better to make Add and Remove fail by default (perhaps by
raising an exception) if the component isn't allowed to have children or
if the argument of Remove isn't a child of the component, respectively.

Another alternative is to change the meaning of "remove" slightly. If the
component maintains a parent reference, then we could redefine
Component::Remove to remove itself from its parent. However, there still
isn't a meaningful interpretation for a corresponding Add.

5. Should Component implement a list of Components? You might be tempted to
define the set of children as an instance variable in the Component class
where the child access and management operations are declared. But putting
the child pointer in the base class incurs a space penalty for every leaf,
even though a leaf never has children. This is worthwhile only if there
are relatively few children in the structure.

6. Child ordering. Many designs specify an ordering on the children of
Composite. In the earlier Graphics example, ordering may reflect
front-to-back ordering. If Composites represent parse trees, then compound
statements can be instances of a Composite whose children must be ordered
to reflect the program.

When child ordering is an issue, you must design child access and management
interfaces carefully to manage the sequence of children. The Iterator (289)
pattern can guide you in this.

7. Caching to improve performance. If you need to traverse or search
compositions frequently, the Composite class can cache traversal or search
information about its children. The Composite can cache actual results or
just information that lets it short-circuit the traversal or search. For
example, the Picture class from the Motivation example could cache the
bounding box of its children. During drawing or selection, this cached
bounding box lets the Picture avoid drawing or searching when its children
aren't visible in the current window.

Changes to a component will require invalidating the caches of its parents.
This works best when components know their parents. So if you're using
caching, you need to define an interface for telling composites that their
caches are invalid.

Design Patterns: Elements of Reusable Object-Oriented Software

191

8. Who should delete components? In languages without garbage collection, it's
usually best to make a Composite responsible for deleting its children when
it's destroyed. An exception to this rule is when Leaf objects are immutable
and thus can be shared.

9. What's the best data structure for storing components? Composites may use
a variety of data structures to store their children, including linked lists,
trees, arrays, and hash tables. The choice of data structure depends (as
always) on efficiency. In fact, it isn't even necessary to use a
general-purpose data structure at all. Sometimes composites have a variable
for each child, although this requires each subclass of Composite to
implement its own management interface. See Interpreter (274) for an
example.

Sample Code

Equipment such as computers and stereo components are often organized into
part-whole or containment hierarchies. For example, a chassis can contain drives
and planar boards, a bus can contain cards, and a cabinet can contain chassis,
buses, and so forth. Such structures can be modeled naturally with the Composite
pattern.

Equipment class defines an interface for all equipment in the part-whole hierarchy.

 class Equipment {
 public:
 virtual ~Equipment();

 const char* Name() { return _name; }

 virtual Watt Power();
 virtual Currency NetPrice();
 virtual Currency DiscountPrice();

 virtual void Add(Equipment*);
 virtual void Remove(Equipment*);
 virtual Iterator* CreateIterator();
 protected:
 Equipment(const char*);
 private:
 const char* _name;
 };

Design Patterns: Elements of Reusable Object-Oriented Software

192

Equipment declares operations that return the attributes of a piece of equipment,
like its power consumption and cost. Subclasses implement these operations for
specific kinds of equipment. Equipment also declares a CreateIterator operation
that returns an Iterator (see Appendix C) for accessing its parts. The default
implementation for this operation returns a NullIterator, which iterates over
the empty set.

Subclasses of Equipment might include Leaf classes that represent disk drives,
integrated circuits, and switches:

 class FloppyDisk : public Equipment {
 public:
 FloppyDisk(const char*);
 virtual ~FloppyDisk();

 virtual Watt Power();
 virtual Currency NetPrice();
 virtual Currency DiscountPrice();
 };

CompositeEquipment is the base class for equipment that contains other equipment.
It's also a subclass of Equipment.

 class CompositeEquipment : public Equipment {
 public:
 virtual ~CompositeEquipment();

 virtual Watt Power();
 virtual Currency NetPrice();
 virtual Currency DiscountPrice();

 virtual void Add(Equipment*);
 virtual void Remove(Equipment*);
 virtual Iterator* CreateIterator();

 protected:
 CompositeEquipment(const char*);
 private:
 List _equipment;
 };

Design Patterns: Elements of Reusable Object-Oriented Software

193

CompositeEquipment defines the operations for accessing and managing subequipment.
The operations Add and Remove insert and delete equipment from the list of equipment
stored in the _equipment member. The operation CreateIterator returns an iterator
(specifically, an instance of ListIterator) that will traverse this list.

A default implementation of NetPrice might use CreateIterator to sum the net prices
of the subequipment2:

 Currency CompositeEquipment::NetPrice () {
 Iterator* i = CreateIterator();
 Currency total = 0;

 for (i->First(); !i->IsDone(); i->Next()) {
 total += i->CurrentItem()->NetPrice();
 }
 delete i;
 return total;
 }

Now we can represent a computer chassis as a subclass of CompositeEquipment called
Chassis. Chassis inherits the child-related operations from CompositeEquipment.

 class Chassis : public CompositeEquipment {
 public:
 Chassis(const char*);
 virtual ~Chassis();

 virtual Watt Power();
 virtual Currency NetPrice();
 virtual Currency DiscountPrice();
 };

We can define other equipment containers such as Cabinet and Bus in a similar
way. That gives us everything we need to assemble equipment into a (pretty simple)
personal computer:

 Cabinet* cabinet = new Cabinet("PC Cabinet");
 Chassis* chassis = new Chassis("PC Chassis");

 cabinet->Add(chassis);

 Bus* bus = new Bus("MCA Bus");

Design Patterns: Elements of Reusable Object-Oriented Software

194

 bus->Add(new Card("16Mbs Token Ring"));

 chassis->Add(bus);
 chassis->Add(new FloppyDisk("3.5in Floppy"));

 cout << "The net price is " << chassis->NetPrice() << endl;

Known Uses

Examples of the Composite pattern can be found in almost all object-oriented
systems. The original View class of Smalltalk Model/View/Controller [KP88] was
a Composite, and nearly every user interface toolkit or framework has followed
in its steps, including ET++ (with its VObjects [WGM88]) and InterViews (Styles
[LCI+92], Graphics [VL88], and Glyphs [CL90]). It's interesting to note that the
original View of Model/View/Controller had a set of subviews; in other words,
View was both the Component class and the Composite class. Release 4.0 of
Smalltalk-80 revised Model/View/Controller with a VisualComponent class that has
subclasses View and CompositeView.

The RTL Smalltalk compiler framework [JML92] uses the Composite pattern
extensively. RTLExpression is a Component class for parse trees. It has subclasses,
such as BinaryExpression, that contain child RTLExpression objects. These classes
define a composite structure for parse trees. RegisterTransfer is the Component
class for a program's intermediate Single Static Assignment (SSA) form. Leaf
subclasses of RegisterTransfer define different static assignments such as

• primitive assignments that perform an operation on two registers and assign
the result to a third;

• an assignment with a source register but no destination register, which
indicates that the register is used after a routine returns; and

• an assignment with a destination register but no source, which indicates
that the register is assigned before the routine starts.

Another subclass, RegisterTransferSet, is a Composite class for representing
assignments that change several registers at once.

Another example of this pattern occurs in the financial domain, where a portfolio
aggregates individual assets. You can support complex aggregations of assets by
implementing a portfolio as a Composite that conforms to the interface of an
individual asset [BE93].

The Command (263) pattern describes how Command objects can be composed and
sequenced with a MacroCommand Composite class.

Design Patterns: Elements of Reusable Object-Oriented Software

195

Related Patterns

Often the component-parent link is used for a Chain of Responsibility (251).

Decorator (196) is often used with Composite. When decorators and composites are
used together, they will usually have a common parent class. So decorators will
have to support the Component interface with operations like Add, Remove, and
GetChild.

Flyweight (218) lets you share components, but they can no longer refer to their
parents.

Iterator (289) can be used to traverse composites.

Visitor (366) localizes operations and behavior that would otherwise be
distributed across Composite and Leaf classes.

2It's easy to forget to delete the iterator once you're done with it. The Iterator
pattern shows how to guard against such bugs on page 299.

Design Patterns: Elements of Reusable Object-Oriented Software

196

Decorator

Intent

Attach additional responsibilities to an object dynamically. Decorators provide
a flexible alternative to subclassing for extending functionality.

Also Known As

Wrapper

Motivation

Sometimes we want to add responsibilities to individual objects, not to an entire
class. A graphical user interface toolkit, for example, should let you add
properties like borders or behaviors like scrolling to any user interface
component.

One way to add responsibilities is with inheritance. Inheriting a border from
another class puts a border around every subclass instance. This is inflexible,
however, because the choice of border is made statically. A client can't control
how and when to decorate the component with a border.

A more flexible approach is to enclose the component in another object that adds
the border. The enclosing object is called a decorator. The decorator conforms
to the interface of the component it decorates so that its presence is transparent
to the component's clients. The decorator forwards requests to the component and
may perform additional actions (such as drawing a border) before or after
forwarding. Transparency lets you nest decorators recursively, thereby allowing
an unlimited number of added responsibilities.

Design Patterns: Elements of Reusable Object-Oriented Software

197

For example, suppose we have a TextView object that displays text in a window.
TextView has no scroll bars by default, because we might not always need them.
When we do, we can use a ScrollDecorator to add them. Suppose we also want to
add a thick black border around the TextView. We can use a BorderDecorator to
add this as well. We simply compose the decorators with the TextView to produce
the desired result.

The following object diagram shows how to compose a TextView object with
BorderDecorator and ScrollDecorator objects to produce a bordered, scrollable
text view:

The ScrollDecorator and BorderDecorator classes are subclasses of Decorator, an
abstract class for visual components that decorate other visual components.

Design Patterns: Elements of Reusable Object-Oriented Software

198

VisualComponent is the abstract class for visual objects. It defines their drawing
and event handling interface. Note how the Decorator class simply forwards draw
requests to its component, and how Decorator subclasses can extend this operation.

Decorator subclasses are free to add operations for specific functionality. For
example, ScrollDecorator's ScrollTo operation lets other objects scroll the
interface if they know there happens to be a ScrollDecorator object in the interface.
The important aspect of this pattern is that it lets decorators appear anywhere
a VisualComponent can. That way clients generally can't tell the difference between
a decorated component and an undecorated one, and so they don't depend at all
on the decoration.

Applicability

Use Decorator

• to add responsibilities to individual objects dynamically and
transparently, that is, without affecting other objects.

• for responsibilities that can be withdrawn.
• when extension by subclassing is impractical. Sometimes a large number of

independent extensions are possible and would produce an explosion of
subclasses to support every combination. Or a class definition may be hidden
or otherwise unavailable for subclassing.

Design Patterns: Elements of Reusable Object-Oriented Software

199

Structure

Participants

• Component (VisualComponent)
o defines the interface for objects that can have responsibilities

added to them dynamically.
• ConcreteComponent (TextView)

o defines an object to which additional responsibilities can be
attached.

• Decorator
o maintains a reference to a Component object and defines an interface

that conforms to Component's interface.
• ConcreteDecorator (BorderDecorator, ScrollDecorator)

o adds responsibilities to the component.

Collaborations

• Decorator forwards requests to its Component object. It may optionally
perform additional operations before and after forwarding the request.

Consequences

The Decorator pattern has at least two key benefits and two liabilities:

Design Patterns: Elements of Reusable Object-Oriented Software

200

1. More flexibility than static inheritance. The Decorator pattern provides
a more flexible way to add responsibilities to objects than can be had with
static (multiple) inheritance. With decorators, responsibilities can be
added and removed at run-time simply by attaching and detaching them. In
contrast, inheritance requires creating a new class for each additional
responsibility (e.g., BorderedScrollableTextView, BorderedTextView).
This gives rise to many classes and increases the complexity of a system.
Furthermore, providing different Decorator classes for a specific
Component class lets you mix and match responsibilities.

Decorators also make it easy to add a property twice. For example, to give
a TextView a double border, simply attach two BorderDecorators. Inheriting
from a Border class twice is error-prone at best.

2. Avoids feature-laden classes high up in the hierarchy. Decorator offers
a pay-as-you-go approach to adding responsibilities. Instead of trying to
support all foreseeable features in a complex, customizable class, you can
define a simple class and add functionality incrementally with Decorator
objects. Functionality can be composed from simple pieces. As a result,
an application needn't pay for features it doesn't use. It's also easy to
define new kinds of Decorators independently from the classes of objects
they extend, even for unforeseen extensions. Extending a complex class tends
to expose details unrelated to the responsibilities you're adding.

3. A decorator and its component aren't identical. A decorator acts as a
transparent enclosure. But from an object identity point of view, a
decorated component is not identical to the component itself. Hence you
shouldn't rely on object identity when you use decorators.

4. Lots of little objects. A design that uses Decorator often results in systems
composed of lots of little objects that all look alike. The objects differ
only in the way they are interconnected, not in their class or in the value
of their variables. Although these systems are easy to customize by those
who understand them, they can be hard to learn and debug.

Implementation

Several issues should be considered when applying the Decorator pattern:

1. Interface conformance. A decorator object's interface must conform to the
interface of the component it decorates. ConcreteDecorator classes must
therefore inherit from a common class (at least in C++).

2. Omitting the abstract Decorator class. There's no need to define an abstract
Decorator class when you only need to add one responsibility. That's often
the case when you're dealing with an existing class hierarchy rather than

Design Patterns: Elements of Reusable Object-Oriented Software

201

designing a new one. In that case, you can merge Decorator's responsibility
for forwarding requests to the component into the ConcreteDecorator.

3. Keeping Component classes lightweight. To ensure a conforming interface,
components and decorators must descend from a common Component class. It's
important to keep this common class lightweight; that is, it should focus
on defining an interface, not on storing data. The definition of the data
representation should be deferred to subclasses; otherwise the complexity
of the Component class might make the decorators too heavyweight to use
in quantity. Putting a lot of functionality into Component also increases
the probability that concrete subclasses will pay for features they don't
need.

4. Changing the skin of an object versus changing its guts. We can think of
a decorator as a skin over an object that changes its behavior. An
alternative is to change the object's guts. The Strategy (349) pattern is
a good example of a pattern for changing the guts.

Strategies are a better choice in situations where the Component class is
intrinsically heavyweight, thereby making the Decorator pattern too costly
to apply. In the Strategy pattern, the component forwards some of its
behavior to a separate strategy object. The Strategy pattern lets us alter
or extend the component's functionality by replacing the strategy object.

For example, we can support different border styles by having the component
defer border-drawing to a separate Border object. The Border object is a
Strategy object that encapsulates a border-drawing strategy. By extending
the number of strategies from just one to an open-ended list, we achieve
the same effect as nesting decorators recursively.

In MacApp 3.0 [App89] and Bedrock [Sym93a], for example, graphical
components (called "views") maintain a list of "adorner" objects that can
attach additional adornments like borders to a view component. If a view
has any adorners attached, then it gives them a chance to draw additional
embellishments. MacApp and Bedrock must use this approach because the View
class is heavyweight. It would be too expensive to use a full-fledged View
just to add a border.

Since the Decorator pattern only changes a component from the outside, the
component doesn't have to know anything about its decorators; that is, the
decorators are transparent to the component:

Design Patterns: Elements of Reusable Object-Oriented Software

202

With strategies, the component itself knows about possible extensions. So
it has to reference and maintain the corresponding strategies:

The Strategy-based approach might require modifying the component to
accommodate new extensions. On the other hand, a strategy can have its own
specialized interface, whereas a decorator's interface must conform to the
component's. A strategy for rendering a border, for example, need only
define the interface for rendering a border (DrawBorder, GetWidth, etc.),
which means that the strategy can be lightweight even if the Component class
is heavyweight.

MacApp and Bedrock use this approach for more than just adorning views.
They also use it to augment the event-handling behavior of objects. In both
systems, a view maintains a list of "behavior" objects that can modify and
intercept events. The view gives each of the registered behavior objects
a chance to handle the event before nonregistered behaviors, effectively
overriding them. You can decorate a view with special keyboard-handling
support, for example, by registering a behavior object that intercepts and
handles key events.

Sample Code

The following code shows how to implement user interface decorators in C++. We'll
assume there's a Component class called VisualComponent.

 class VisualComponent {
 public:
 VisualComponent();

Design Patterns: Elements of Reusable Object-Oriented Software

203

 virtual void Draw();
 virtual void Resize();
 // ...
 };

We define a subclass of VisualComponent called Decorator, which we'll subclass
to obtain different decorations.

 class Decorator : public VisualComponent {
 public:
 Decorator(VisualComponent*);

 virtual void Draw();
 virtual void Resize();
 // ...
 private:
 VisualComponent* _component;
 };

Decorator decorates the VisualComponent referenced by the _component instance
variable, which is initialized in the constructor. For each operation in
VisualComponent's interface, Decorator defines a default implementation that
passes the request on to _component:

 void Decorator::Draw () {
 _component->Draw();
 }

 void Decorator::Resize () {
 _component->Resize();
 }

Subclasses of Decorator define specific decorations. For example, the class
BorderDecorator adds a border to its enclosing component. BorderDecorator is a
subclass of Decorator that overrides the Draw operation to draw the border.
BorderDecorator also defines a private DrawBorder helper operation that does the
drawing. The subclass inherits all other operation implementations from Decorator.

 class BorderDecorator : public Decorator {
 public:
 BorderDecorator(VisualComponent*, int borderWidth);

Design Patterns: Elements of Reusable Object-Oriented Software

204

 virtual void Draw();
 private:
 void DrawBorder(int);
 private:
 int _width;
 };

 void BorderDecorator::Draw () {
 Decorator::Draw();
 DrawBorder(_width);
 }

A similar implementation would follow for ScrollDecorator and DropShadowDecorator,
which would add scrolling and drop shadow capabilities to a visual component.

Now we can compose instances of these classes to provide different decorations.
The following code illustrates how we can use decorators to create a bordered
scrollable TextView.

First, we need a way to put a visual component into a window object. We'll assume
our Window class provides a SetContents operation for this purpose:

 void Window::SetContents (VisualComponent* contents) {
 // ...
 }

Now we can create the text view and a window to put it in:

 Window* window = new Window;
 TextView* textView = new TextView;

TextView is a VisualComponent, which lets us put it into the window:

 window->SetContents(textView);

But we want a bordered and scrollable TextView. So we decorate it accordingly
before putting it in the window.

 window->SetContents(
 new BorderDecorator(

Design Patterns: Elements of Reusable Object-Oriented Software

205

 new ScrollDecorator(textView), 1
)
);

Because Window accesses its contents through the VisualComponent interface, it's
unaware of the decorator's presence. You, as the client, can still keep track
of the text view if you have to interact with it directly, for example, when you
need to invoke operations that aren't part of the VisualComponent interface.
Clients that rely on the component's identity should refer to it directly as well.

Known Uses

Many object-oriented user interface toolkits use decorators to add graphical
embellishments to widgets. Examples include InterViews [LVC98, LCI+92], ET++
[WGM88], and the ObjectWorks\Smalltalk class library [Par90]. More exotic
applications of Decorator are the DebuggingGlyph from InterViews and the
PassivityWrapper from ParcPlace Smalltalk. A DebuggingGlyph prints out debugging
information before and after it forwards a layout request to its component. This
trace information can be used to analyze and debug the layout behavior of objects
in a complex composition. The PassivityWrapper can enable or disable user
interactions with the component.

But the Decorator pattern is by no means limited to graphical user interfaces,
as the following example (based on the ET++ streaming classes [WGM88]) illustrates.

Streams are a fundamental abstraction in most I/O facilities. A stream can provide
an interface for converting objects into a sequence of bytes or characters. That
lets us transcribe an object to a file or to a string in memory for retrieval
later. A straightforward way to do this is to define an abstract Stream class
with subclasses MemoryStream and FileStream. But suppose we also want to be able
to do the following:

• Compress the stream data using different compression algorithms
(run-length encoding, Lempel-Ziv, etc.).

• Reduce the stream data to 7-bit ASCII characters so that it can be
transmitted over an ASCII communication channel.

The Decorator pattern gives us an elegant way to add these responsibilities to
streams. The diagram below shows one solution to the problem:

Design Patterns: Elements of Reusable Object-Oriented Software

206

The Stream abstract class maintains an internal buffer and provides operations
for storing data onto the stream (PutInt, PutString). Whenever the buffer is full,
Stream calls the abstract operation HandleBufferFull, which does the actual data
transfer. The FileStream version of this operation overrides this operation to
transfer the buffer to a file.

The key class here is StreamDecorator, which maintains a reference to a component
stream and forwards requests to it. StreamDecorator subclasses override
HandleBufferFull and perform additional actions before calling StreamDecorator's
HandleBufferFull operation.

For example, the CompressingStream subclass compresses the data, and the
ASCII7Stream converts the data into 7-bit ASCII. Now, to create a FileStream that
compresses its data and converts the compressed binary data to 7-bit ASCII, we
decorate a FileStream with a CompressingStream and an ASCII7Stream:

 Stream* aStream = new CompressingStream(
 new ASCII7Stream(
 new FileStream("aFileName")
)
);
 aStream->PutInt(12);
 aStream->PutString("aString");

Related Patterns

Adapter (157): A decorator is different from an adapter in that a decorator only
changes an object's responsibilities, not its interface; an adapter will give
an object a completely new interface.

Design Patterns: Elements of Reusable Object-Oriented Software

207

Composite (183): A decorator can be viewed as a degenerate composite with only
one component. However, a decorator adds additional responsibilities—it isn't
intended for object aggregation.

Strategy (349): A decorator lets you change the skin of an object; a strategy
lets you change the guts. These are two alternative ways of changing an object.

Design Patterns: Elements of Reusable Object-Oriented Software

208

Façade

Intent

Provide a unified interface to a set of interfaces in a subsystem. Facade defines
a higher-level interface that makes the subsystem easier to use.

Motivation

Structuring a system into subsystems helps reduce complexity. A common design
goal is to minimize the communication and dependencies between subsystems. One
way to achieve this goal is to introduce a facade object that provides a single,
simplified interface to the more general facilities of a subsystem.

Consider for example a programming environment that gives applications access
to its compiler subsystem. This subsystem contains classes such as Scanner, Parser,
ProgramNode, BytecodeStream, and ProgramNodeBuilder that implement the compiler.
Some specialized applications might need to access these classes directly. But
most clients of a compiler generally don't care about details like parsing and
code generation; they merely want to compile some code. For them, the powerful
but low-level interfaces in the compiler subsystem only complicate their task.

To provide a higher-level interface that can shield clients from these classes,
the compiler subsystem also includes a Compiler class. This class defines a unified
interface to the compiler's functionality. The Compiler class acts as a facade:
It offers clients a single, simple interface to the compiler subsystem. It glues
together the classes that implement compiler functionality without hiding them
completely. The compiler facade makes life easier for most programmers without
hiding the lower-level functionality from the few that need it.

Design Patterns: Elements of Reusable Object-Oriented Software

209

Applicability

Use the Facade pattern when

• you want to provide a simple interface to a complex subsystem. Subsystems
often get more complex as they evolve. Most patterns, when applied, result
in more and smaller classes. This makes the subsystem more reusable and
easier to customize, but it also becomes harder to use for clients that
don't need to customize it. A facade can provide a simple default view of
the subsystem that is good enough for most clients. Only clients needing
more customizability will need to look beyond the facade.

• there are many dependencies between clients and the implementation classes
of an abstraction. Introduce a facade to decouple the subsystem from clients
and other subsystems, thereby promoting subsystem independence and
portability.

• you want to layer your subsystems. Use a facade to define an entry point
to each subsystem level. If subsystems are dependent, then you can simplify
the dependencies between them by making them communicate with each other
solely through their facades.

Design Patterns: Elements of Reusable Object-Oriented Software

210

Structure

Participants

• Facade (Compiler)
o knows which subsystem classes are responsible for a request.
o delegates client requests to appropriate subsystem objects.

• subsystem classes (Scanner, Parser, ProgramNode, etc.)
o implement subsystem functionality.
o handle work assigned by the Facade object.
o have no knowledge of the facade; that is, they keep no references

to it.

Collaborations

• Clients communicate with the subsystem by sending requests to Facade, which
forwards them to the appropriate subsystem object(s). Although the
subsystem objects perform the actual work, the facade may have to do work
of its own to translate its interface to subsystem interfaces.

• Clients that use the facade don't have to access its subsystem objects
directly.

Consequences

The Facade pattern offers the following benefits:

1. It shields clients from subsystem components, thereby reducing the number
of objects that clients deal with and making the subsystem easier to use.

2. It promotes weak coupling between the subsystem and its clients. Often the
components in a subsystem are strongly coupled. Weak coupling lets you vary
the components of the subsystem without affecting its clients. Facades help

Design Patterns: Elements of Reusable Object-Oriented Software

211

layer a system and the dependencies between objects. They can eliminate
complex or circular dependencies. This can be an important consequence when
the client and the subsystem are implemented independently.

Reducing compilation dependencies is vital in large software systems. You
want to save time by minimizing recompilation when subsystem classes change.
Reducing compilation dependencies with facades can limit the recompilation
needed for a small change in an important subsystem. A facade can also
simplify porting systems to other platforms, because it's less likely that
building one subsystem requires building all others.

3. It doesn't prevent applications from using subsystem classes if they need
to. Thus you can choose between ease of use and generality.

Implementation

Consider the following issues when implementing a facade:

1. Reducing client-subsystem coupling. The coupling between clients and the
subsystem can be reduced even further by making Facade an abstract class
with concrete subclasses for different implementations of a subsystem. Then
clients can communicate with the subsystem through the interface of the
abstract Facade class. This abstract coupling keeps clients from knowing
which implementation of a subsystem is used.

An alternative to subclassing is to configure a Facade object with different
subsystem objects. To customize the facade, simply replace one or more of
its subsystem objects.

2. Public versus private subsystem classes. A subsystem is analogous to a class
in that both have interfaces, and both encapsulate something—a class
encapsulates state and operations, while a subsystem encapsulates classes.
And just as it's useful to think of the public and private interface of
a class, we can think of the public and private interface of a subsystem.

The public interface to a subsystem consists of classes that all clients
can access; the private interface is just for subsystem extenders. The
Facade class is part of the public interface, of course, but it's not the
only part. Other subsystem classes are usually public as well. For example,
the classes Parser and Scanner in the compiler subsystem are part of the
public interface.

Making subsystem classes private would be useful, but few object-oriented
languages support it. Both C++ and Smalltalk traditionally have had a global

Design Patterns: Elements of Reusable Object-Oriented Software

212

name space for classes. Recently, however, the C++ standardization
committee added name spaces to the language [Str94], which will let you
expose just the public subsystem classes.

Sample Code

Let's take a closer look at how to put a facade on a compiler subsystem.

The compiler subsystem defines a {BytecodeStream} class that implements a stream
of Bytecode objects. A Bytecode object encapsulates a bytecode, which can specify
machine instructions. The subsystem also defines a Token class for objects that
encapsulate tokens in the programming language.

The Scanner class takes a stream of characters and produces a stream of tokens,
one token at a time.

 class Scanner {
 public:
 Scanner(istream&);
 virtual ~Scanner();

 virtual Token& Scan();
 private:
 istream& _inputStream;
 };

The class Parser uses a ProgramNodeBuilder to construct a parse tree from a
Scanner's tokens.

 class Parser {
 public:
 Parser();
 virtual ~Parser();

 virtual void Parse(Scanner&, ProgramNodeBuilder&);
 };

Parser calls back on ProgramNodeBuilder to build the parse tree incrementally.
These classes interact according to the Builder (110) pattern.

 class ProgramNodeBuilder {

Design Patterns: Elements of Reusable Object-Oriented Software

213

 public:
 ProgramNodeBuilder();

 virtual ProgramNode* NewVariable(
 const char* variableName
) const;

 virtual ProgramNode* NewAssignment(
 ProgramNode* variable, ProgramNode* expression
) const;

 virtual ProgramNode* NewReturnStatement(
 ProgramNode* value
) const;

 virtual ProgramNode* NewCondition(
 ProgramNode* condition,
 ProgramNode* truePart, ProgramNode* falsePart
) const;
 // ...

 ProgramNode* GetRootNode();
 private:
 ProgramNode* _node;
 };

The parse tree is made up of instances of ProgramNode subclasses such as
StatementNode, ExpressionNode, and so forth. The ProgramNode hierarchy is an
example of the Composite (183) pattern. ProgramNode defines an interface for
manipulating the program node and its children, if any.

 class ProgramNode {
 public:
 // program node manipulation
 virtual void GetSourcePosition(int& line, int& index);
 // ...

 // child manipulation
 virtual void Add(ProgramNode*);
 virtual void Remove(ProgramNode*);
 // ...

 virtual void Traverse(CodeGenerator&);

Design Patterns: Elements of Reusable Object-Oriented Software

214

 protected:
 ProgramNode();
 };

The Traverse operation takes a CodeGenerator object. ProgramNode subclasses use
this object to generate machine code in the form of Bytecode objects on a
BytecodeStream. The class CodeGenerator is a visitor (see Visitor (366)).

 class CodeGenerator {
 public:
 virtual void Visit(StatementNode*);
 virtual void Visit(ExpressionNode*);
 // ...
 protected:
 CodeGenerator(BytecodeStream&);
 protected:
 BytecodeStream& _output;
 };

CodeGenerator has subclasses, for example, StackMachineCodeGenerator and
RISCCodeGenerator, that generate machine code for different hardware
architectures.

Each subclass of ProgramNode implements Traverse to call Traverse on its child
ProgramNode objects. In turn, each child does the same for its children, and so
on recursively. For example, ExpressionNode defines Traverse as follows:

 void ExpressionNode::Traverse (CodeGenerator& cg) {
 cg.Visit(this);

 ListIterator i(_children);

 for (i.First(); !i.IsDone(); i.Next()) {
 i.CurrentItem()->Traverse(cg);
 }
 }

The classes we've discussed so far make up the compiler subsystem. Now we'll
introduce a Compiler class, a facade that puts all these pieces together. Compiler
provides a simple interface for compiling source and generating code for a
particular machine.

Design Patterns: Elements of Reusable Object-Oriented Software

215

 class Compiler {
 public:
 Compiler();

 virtual void Compile(istream&, BytecodeStream&);
 };

 void Compiler::Compile (
 istream& input, BytecodeStream& output
) {
 Scanner scanner(input);
 ProgramNodeBuilder builder;
 Parser parser;

 parser.Parse(scanner, builder);

 RISCCodeGenerator generator(output);
 ProgramNode* parseTree = builder.GetRootNode();
 parseTree->Traverse(generator);
 }

This implementation hard-codes the type of code generator to use so that
programmers aren't required to specify the target architecture. That might be
reasonable if there's only ever one target architecture. If that's not the case,
then we might want to change the Compiler constructor to take a CodeGenerator
parameter. Then programmers can specify the generator to use when they instantiate
Compiler. The compiler facade can parameterize other participants such as Scanner
and ProgramNodeBuilder as well, which adds flexibility, but it also detracts from
the Facade pattern's mission, which is to simplify the interface for the common
case.

Known Uses

The compiler example in the Sample Code section was inspired by the
ObjectWorks\Smalltalk compiler system [Par90].

In the ET++ application framework [WGM88], an application can have built-in
browsing tools for inspecting its objects at run-time. These browsing tools are
implemented in a separate subsystem that includes a Facade class called
"ProgrammingEnvironment." This facade defines operations such as InspectObject
and InspectClass for accessing the browsers.

Design Patterns: Elements of Reusable Object-Oriented Software

216

An ET++ application can also forgo built-in browsing support. In that case,
ProgrammingEnvironment implements these requests as null operations; that is,
they do nothing. Only the ETProgrammingEnvironment subclass implements these
requests with operations that display the corresponding browsers. The application
has no knowledge of whether a browsing environment is available or not; there's
abstract coupling between the application and the browsing subsystem.

The Choices operating system [CIRM93] uses facades to compose many frameworks
into one. The key abstractions in Choices are processes, storage, and address
spaces. For each of these abstractions there is a corresponding subsystem,
implemented as a framework, that supports porting Choices to a variety of different
hardware platforms. Two of these subsystems have a "representative" (i.e., facade).
These representatives are FileSystemInterface (storage) and Domain (address
spaces).

For example, the virtual memory framework has Domain as its facade. A Domain
represents an address space. It provides a mapping between virtual addresses and
offsets into memory objects, files, or backing store. The main operations on Domain
support adding a memory object at a particular address, removing a memory object,
and handling a page fault.

As the preceding diagram shows, the virtual memory subsystem uses the following
components internally:

• MemoryObject represents a data store.

Design Patterns: Elements of Reusable Object-Oriented Software

217

• MemoryObjectCache caches the data of MemoryObjects in physical memory.
MemoryObjectCache is actually a Strategy (349) that localizes the caching
policy.

• AddressTranslation encapsulates the address translation hardware.

The RepairFault operation is called whenever a page fault interrupt occurs. The
Domain finds the memory object at the address causing the fault and delegates
the RepairFault operation to the cache associated with that memory object. Domains
can be customized by changing their components.

Related Patterns

Abstract Factory (99) can be used with Facade to provide an interface for creating
subsystem objects in a subsystem-independent way. Abstract Factory can also be
used as an alternative to Facade to hide platform-specific classes.

Mediator (305) is similar to Facade in that it abstracts functionality of existing
classes. However, Mediator's purpose is to abstract arbitrary communication
between colleague objects, often centralizing functionality that doesn't belong
in any one of them. A mediator's colleagues are aware of and communicate with
the mediator instead of communicating with each other directly. In contrast, a
facade merely abstracts the interface to subsystem objects to make them easier
to use; it doesn't define new functionality, and subsystem classes don't know
about it.

Usually only one Facade object is required. Thus Facade objects are often
Singletons (144).

Design Patterns: Elements of Reusable Object-Oriented Software

218

Flyweight

Intent

Use sharing to support large numbers of fine-grained objects efficiently.

Motivation

Some applications could benefit from using objects throughout their design, but
a naive implementation would be prohibitively expensive.

For example, most document editor implementations have text formatting and editing
facilities that are modularized to some extent. Object-oriented document editors
typically use objects to represent embedded elements like tables and figures.
However, they usually stop short of using an object for each character in the
document, even though doing so would promote flexibility at the finest levels
in the application. Characters and embedded elements could then be treated
uniformly with respect to how they are drawn and formatted. The application could
be extended to support new character sets without disturbing other functionality.
The application's object structure could mimic the document's physical structure.
The following diagram shows how a document editor can use objects to represent
characters.

The drawback of such a design is its cost. Even moderate-sized documents may require
hundreds of thousands of character objects, which will consume lots of memory
and may incur unacceptable run-time overhead. The Flyweight pattern describes
how to share objects to allow their use at fine granularities without prohibitive
cost.

Design Patterns: Elements of Reusable Object-Oriented Software

219

A flyweight is a shared object that can be used in multiple contexts simultaneously.
The flyweight acts as an independent object in each context—it's indistinguishable
from an instance of the object that's not shared. Flyweights cannot make
assumptions about the context in which they operate. The key concept here is the
distinction between intrinsic and extrinsic state. Intrinsic state is stored in
the flyweight; it consists of information that's independent of the flyweight's
context, thereby making it sharable. Extrinsic state depends on and varies with
the flyweight's context and therefore can't be shared. Client objects are
responsible for passing extrinsic state to the flyweight when it needs it.

Flyweights model concepts or entities that are normally too plentiful to represent
with objects. For example, a document editor can create a flyweight for each letter
of the alphabet. Each flyweight stores a character code, but its coordinate
position in the document and its typographic style can be determined from the
text layout algorithms and formatting commands in effect wherever the character
appears. The character code is intrinsic state, while the other information is
extrinsic.

Logically there is an object for every occurrence of a given character in the
document:

Physically, however, there is one shared flyweight object per character, and it
appears in different contexts in the document structure. Each occurrence of a
particular character object refers to the same instance in the shared pool of
flyweight objects:

Design Patterns: Elements of Reusable Object-Oriented Software

220

The class structure for these objects is shown next. Glyph is the abstract class
for graphical objects, some of which may be flyweights. Operations that may depend
on extrinsic state have it passed to them as a parameter. For example, Draw and
Intersects must know which context the glyph is in before they can do their job.

A flyweight representing the letter "a" only stores the corresponding character
code; it doesn't need to store its location or font. Clients supply the
context-dependent information that the flyweight needs to draw itself. For example,
a Row glyph knows where its children should draw themselves so that they are tiled
horizontally. Thus it can pass each child its location in the draw request.

Because the number of different character objects is far less than the number
of characters in the document, the total number of objects is substantially less
than what a naive implementation would use. A document in which all characters
appear in the same font and color will allocate on the order of 100 character
objects (roughly the size of the ASCII character set) regardless of the document's
length. And since most documents use no more than 10 different font-color
combinations, this number won't grow appreciably in practice. An object
abstraction thus becomes practical for individual characters.

Design Patterns: Elements of Reusable Object-Oriented Software

221

Applicability

The Flyweight pattern's effectiveness depends heavily on how and where it's used.
Apply the Flyweight pattern when all of the following are true:

• An application uses a large number of objects.
• Storage costs are high because of the sheer quantity of objects.
• Most object state can be made extrinsic.
• Many groups of objects may be replaced by relatively few shared objects

once extrinsic state is removed.
• The application doesn't depend on object identity. Since flyweight objects

may be shared, identity tests will return true for conceptually distinct
objects.

Structure

The following object diagram shows how flyweights are shared:

Design Patterns: Elements of Reusable Object-Oriented Software

222

Participants

• Flyweight
o declares an interface through which flyweights can receive and act

on extrinsic state.
• ConcreteFlyweight (Character)

o implements the Flyweight interface and adds storage for intrinsic
state, if any. A ConcreteFlyweight object must be sharable. Any state
it stores must be intrinsic; that is, it must be independent of the
ConcreteFlyweight object's context.

• UnsharedConcreteFlyweight (Row, Column)
o not all Flyweight subclasses need to be shared. The Flyweight

interface enables sharing; it doesn't enforce it. It's common for
UnsharedConcreteFlyweight objects to have ConcreteFlyweight
objects as children at some level in the flyweight object structure
(as the Row and Column classes have).

• FlyweightFactory
o creates and manages flyweight objects.
o ensures that flyweights are shared properly. When a client requests

a flyweight, the FlyweightFactory object supplies an existing
instance or creates one, if none exists.

• Client
o maintains a reference to flyweight(s).
o computes or stores the extrinsic state of flyweight(s).

Collaborations

• State that a flyweight needs to function must be characterized as either
intrinsic or extrinsic. Intrinsic state is stored in the ConcreteFlyweight

Design Patterns: Elements of Reusable Object-Oriented Software

223

object; extrinsic state is stored or computed by Client objects. Clients
pass this state to the flyweight when they invoke its operations.

• Clients should not instantiate ConcreteFlyweights directly. Clients must
obtain ConcreteFlyweight objects exclusively from the FlyweightFactory
object to ensure they are shared properly.

Consequences

Flyweights may introduce run-time costs associated with transferring, finding,
and/or computing extrinsic state, especially if it was formerly stored as intrinsic
state. However, such costs are offset by space savings, which increase as more
flyweights are shared.

Storage savings are a function of several factors:

• the reduction in the total number of instances that comes from sharing
• the amount of intrinsic state per object
• whether extrinsic state is computed or stored.

The more flyweights are shared, the greater the storage savings. The savings
increase with the amount of shared state. The greatest savings occur when the
objects use substantial quantities of both intrinsic and extrinsic state, and
the extrinsic state can be computed rather than stored. Then you save on storage
in two ways: Sharing reduces the cost of intrinsic state, and you trade extrinsic
state for computation time.

The Flyweight pattern is often combined with the Composite (183) pattern to
represent a hierarchical structure as a graph with shared leaf nodes. A consequence
of sharing is that flyweight leaf nodes cannot store a pointer to their parent.
Rather, the parent pointer is passed to the flyweight as part of its extrinsic
state. This has a major impact on how the objects in the hierarchy communicate
with each other.

Implementation

Consider the following issues when implementing the Flyweight pattern:

1. Removing extrinsic state. The pattern's applicability is determined
largely by how easy it is to identify extrinsic state and remove it from
shared objects. Removing extrinsic state won't help reduce storage costs
if there are as many different kinds of extrinsic state as there are objects
before sharing. Ideally, extrinsic state can be computed from a separate
object structure, one with far smaller storage requirements.

Design Patterns: Elements of Reusable Object-Oriented Software

224

In our document editor, for example, we can store a map of typographic
information in a separate structure rather than store the font and type
style with each character object. The map keeps track of runs of characters
with the same typographic attributes. When a character draws itself, it
receives its typographic attributes as a side-effect of the draw traversal.
Because documents normally use just a few different fonts and styles,
storing this information externally to each character object is far more
efficient than storing it internally.

2. Managing shared objects. Because objects are shared, clients shouldn't
instantiate them directly. FlyweightFactory lets clients locate a
particular flyweight. FlyweightFactory objects often use an associative
store to let clients look up flyweights of interest. For example, the
flyweight factory in the document editor example can keep a table of
flyweights indexed by character codes. The manager returns the proper
flyweight given its code, creating the flyweight if it does not already
exist.

Sharability also implies some form of reference counting or garbage
collection to reclaim a flyweight's storage when it's no longer needed.
However, neither is necessary if the number of flyweights is fixed and small
(e.g., flyweights for the ASCII character set). In that case, the flyweights
are worth keeping around permanently.

Sample Code

Returning to our document formatter example, we can define a Glyph base class
for flyweight graphical objects. Logically, glyphs are Composites (see Composite
(183)) that have graphical attributes and can draw themselves. Here we focus on
just the font attribute, but the same approach can be used for any other graphical
attributes a glyph might have.

 class Glyph {
 public:
 virtual ~Glyph();

 virtual void Draw(Window*, GlyphContext&);

 virtual void SetFont(Font*, GlyphContext&);
 virtual Font* GetFont(GlyphContext&);

 virtual void First(GlyphContext&);

Design Patterns: Elements of Reusable Object-Oriented Software

225

 virtual void Next(GlyphContext&);
 virtual bool IsDone(GlyphContext&);
 virtual Glyph* Current(GlyphContext&);

 virtual void Insert(Glyph*, GlyphContext&);
 virtual void Remove(GlyphContext&);
 protected:
 Glyph();
 };

The Character subclass just stores a character code:

 class Character : public Glyph {
 public:
 Character(char);

 virtual void Draw(Window*, GlyphContext&);
 private:
 char _charcode;
 };

To keep from allocating space for a font attribute in every glyph, we'll store
the attribute extrinsically in a GlyphContext object. GlyphContext acts as a
repository of extrinsic state. It maintains a compact mapping between a glyph
and its font (and any other graphical attributes it might have) in different
contexts. Any operation that needs to know the glyph's font in a given context
will have a GlyphContext instance passed to it as a parameter. The operation can
then query the GlyphContext for the font in that context. The context depends
on the glyph's location in the glyph structure. Therefore Glyph's child iteration
and manipulation operations must update the GlyphContext whenever they're used.

 class GlyphContext {
 public:
 GlyphContext();
 virtual ~GlyphContext();

 virtual void Next(int step = 1);
 virtual void Insert(int quantity = 1);

 virtual Font* GetFont();
 virtual void SetFont(Font*, int span = 1);
 private:

Design Patterns: Elements of Reusable Object-Oriented Software

226

 int _index;
 BTree* _fonts;
 };

GlyphContext must be kept informed of the current position in the glyph structure
during traversal. GlyphContext::Next increments _index as the traversal proceeds.
Glyph subclasses that have children (e.g., Row and Column) must implement Next
so that it calls GlyphContext::Next at each point in the traversal.

GlyphContext::GetFont uses the index as a key into a BTree structure that stores
the glyph-to-font mapping. Each node in the tree is labeled with the length of
the string for which it gives font information. Leaves in the tree point to a
font, while interior nodes break the string into substrings, one for each child.

Consider the following excerpt from a glyph composition:

The BTree structure for font information might look like

Design Patterns: Elements of Reusable Object-Oriented Software

227

Interior nodes define ranges of glyph indices. BTree is updated in response to
font changes and whenever glyphs are added to or removed from the glyph structure.
For example, assuming we're at index 102 in the traversal, the following code
sets the font of each character in the word "expect" to that of the surrounding
text (that is, times12, an instance of Font for 12-point Times Roman):

 GlyphContext gc;
 Font* times12 = new Font("Times-Roman-12");
 Font* timesItalic12 = new Font("Times-Italic-12");
 // ...

 gc.SetFont(times12, 6);

The new BTree structure (with changes shown in black) looks like

Design Patterns: Elements of Reusable Object-Oriented Software

228

Suppose we add the word "don't " (including a trailing space) in 12-point Times
Italic before "expect." The following code informs the gc of this event, assuming
it is still at index 102:

 gc.Insert(6);
 gc.SetFont(timesItalic12, 6);

The BTree structure becomes

Design Patterns: Elements of Reusable Object-Oriented Software

229

When the GlyphContext is queried for the font of the current glyph, it descends
the BTree, adding up indices as it goes until it finds the font for the current
index. Because the frequency of font changes is relatively low, the tree stays
small relative to the size of the glyph structure. This keeps storage costs down
without an inordinate increase in look-up time.3

The last object we need is a FlyweightFactory that creates glyphs and ensures
they're shared properly. Class GlyphFactory instantiates Character and other kinds
of glyphs. We only share Character objects; composite glyphs are far less plentiful,
and their important state (i.e., their children) is intrinsic anyway.

 const int NCHARCODES = 128;

 class GlyphFactory {
 public:
 GlyphFactory();
 virtual ~GlyphFactory();

 virtual Character* CreateCharacter(char);
 virtual Row* CreateRow();
 virtual Column* CreateColumn();
 // ...
 private:
 Character* _character[NCHARCODES];

Design Patterns: Elements of Reusable Object-Oriented Software

230

 };

The _character array contains pointers to Character glyphs indexed by character
code. The array is initialized to zero in the constructor.

 GlyphFactory::GlyphFactory () {
 for (int i = 0; i < NCHARCODES; ++i) {
 _character[i] = 0;
 }
 }

CreateCharacter looks up a character in the character glyph in the array, and
it returns the corresponding glyph if it exists. If it doesn't, then
CreateCharacter creates the glyph, puts it in the array, and returns it:

 Character* GlyphFactory::CreateCharacter (char c) {
 if (!_character[c]) {
 _character[c] = new Character(c);
 }

 return _character[c];
 }

The other operations simply instantiate a new object each time they're called,
since noncharacter glyphs won't be shared:

 Row* GlyphFactory::CreateRow () {
 return new Row;
 }

 Column* GlyphFactory::CreateColumn () {
 return new Column;
 }

We could omit these operations and let clients instantiate unshared glyphs directly.
However, if we decide to make these glyphs sharable later, we'll have to change
client code that creates them.

Design Patterns: Elements of Reusable Object-Oriented Software

231

Known Uses

The concept of flyweight objects was first described and explored as a design
technique in InterViews 3.0 [CL90]. Its developers built a powerful document editor
called Doc as a proof of concept [CL92]. Doc uses glyph objects to represent each
character in the document. The editor builds one Glyph instance for each character
in a particular style (which defines its graphical attributes); hence a character's
intrinsic state consists of the character code and its style information (an index
into a style table).4 That means only position is extrinsic, making Doc fast.
Documents are represented by a class Document, which also acts as the
FlyweightFactory. Measurements on Doc have shown that sharing flyweight characters
is quite effective. In a typical case, a document containing 180,000 characters
required allocation of only 480 character objects.

ET++ [WGM88] uses flyweights to support look-and-feel independence.5 The
look-and-feel standard affects the layout of user interface elements (e.g., scroll
bars, buttons, menus—known collectively as "widgets") and their decorations (e.g.,
shadows, beveling). A widget delegates all its layout and drawing behavior to
a separate Layout object. Changing the Layout object changes the look and feel,
even at run-time.

For each widget class there is a corresponding Layout class (e.g., ScrollbarLayout,
MenubarLayout, etc.). An obvious problem with this approach is that using separate
layout objects doubles the number of user interface objects: For each user
interface object there is an additional Layout object. To avoid this overhead,
Layout objects are implemented as flyweights. They make good flyweights because
they deal mostly with defining behavior, and it's easy to pass them what little
extrinsic state they need to lay out or draw an object.

The Layout objects are created and managed by Look objects. The Look class is
an Abstract Factory (99) that retrieves a specific Layout object with operations
like GetButtonLayout, GetMenuBarLayout, and so forth. For each look-and-feel
standard there is a corresponding Look subclass (e.g., MotifLook, OpenLook) that
supplies the appropriate Layout objects.

By the way, Layout objects are essentially strategies (see Strategy (349)). They
are an example of a strategy object implemented as a flyweight.

Related Patterns

The Flyweight pattern is often combined with the Composite (183) pattern to
implement a logically hierarchical structure in terms of a directed-acyclic graph
with shared leaf nodes.

Design Patterns: Elements of Reusable Object-Oriented Software

232

It's often best to implement State (338) and Strategy (349) objects as flyweights.

3Look-up time in this scheme is proportional to the font change frequency.
Worst-case performance occurs when a font change occurs on every character, but
that's unusual in practice.

4 In the Sample Code given earlier, style information is made extrinsic, leaving
the character code as the only intrinsic state.

5See Abstract Factory (99) for another approach to look-and-feel independence.

Design Patterns: Elements of Reusable Object-Oriented Software

233

Proxy

Intent

Provide a surrogate or placeholder for another object to control access to it.

Also Known As

Surrogate

Motivation

One reason for controlling access to an object is to defer the full cost of its
creation and initialization until we actually need to use it. Consider a document
editor that can embed graphical objects in a document. Some graphical objects,
like large raster images, can be expensive to create. But opening a document should
be fast, so we should avoid creating all the expensive objects at once when the
document is opened. This isn't necessary anyway, because not all of these objects
will be visible in the document at the same time.

These constraints would suggest creating each expensive object on demand, which
in this case occurs when an image becomes visible. But what do we put in the document
in place of the image? And how can we hide the fact that the image is created
on demand so that we don't complicate the editor's implementation? This
optimization shouldn't impact the rendering and formatting code, for example.

The solution is to use another object, an image proxy, that acts as a stand-in
for the real image. The proxy acts just like the image and takes care of
instantiating it when it's required.

The image proxy creates the real image only when the document editor asks it to
display itself by invoking its Draw operation. The proxy forwards subsequent
requests directly to the image. It must therefore keep a reference to the image
after creating it.

Design Patterns: Elements of Reusable Object-Oriented Software

234

Let's assume that images are stored in separate files. In this case we can use
the file name as the reference to the real object. The proxy also stores its extent,
that is, its width and height. The extent lets the proxy respond to requests for
its size from the formatter without actually instantiating the image.

The following class diagram illustrates this example in more detail.

The document editor accesses embedded images through the interface defined by
the abstract Graphic class. ImageProxy is a class for images that are created
on demand. ImageProxy maintains the file name as a reference to the image on disk.
The file name is passed as an argument to the ImageProxy constructor.

ImageProxy also stores the bounding box of the image and a reference to the real
Image instance. This reference won't be valid until the proxy instantiates the
real image. The Draw operation makes sure the image is instantiated before
forwarding it the request. GetExtent forwards the request to the image only if
it's instantiated; otherwise ImageProxy returns the extent it stores.

Applicability

Proxy is applicable whenever there is a need for a more versatile or sophisticated
reference to an object than a simple pointer. Here are several common situations
in which the Proxy pattern is applicable:

1. A remote proxy provides a local representative for an object in a different
address space. NEXTSTEP [Add94] uses the class NXProxy for this purpose.
Coplien [Cop92] calls this kind of proxy an "Ambassador."

Design Patterns: Elements of Reusable Object-Oriented Software

235

2. A virtual proxy creates expensive objects on demand. The ImageProxy
described in the Motivation is an example of such a proxy.

3. A protection proxy controls access to the original object. Protection
proxies are useful when objects should have different access rights. For
example, KernelProxies in the Choices operating system [CIRM93] provide
protected access to operating system objects.

4. A smart reference is a replacement for a bare pointer that performs
additional actions when an object is accessed. Typical uses include

o counting the number of references to the real object so that it can
be freed automatically when there are no more references (also called
smart pointers [Ede92]).

o loading a persistent object into memory when it's first referenced.
o checking that the real object is locked before it's accessed to ensure

that no other object can change it.

Structure

Here's a possible object diagram of a proxy structure at run-time:

Participants

• Proxy (ImageProxy)
o maintains a reference that lets the proxy access the real subject.

Proxy may refer to a Subject if the RealSubject and Subject interfaces
are the same.

Design Patterns: Elements of Reusable Object-Oriented Software

236

o provides an interface identical to Subject's so that a proxy can
by substituted for the real subject.

o controls access to the real subject and may be responsible for
creating and deleting it.

o other responsibilities depend on the kind of proxy:
§ remote proxies are responsible for encoding a request and

its arguments and for sending the encoded request to the real
subject in a different address space.

§ virtual proxies may cache additional information about the
real subject so that they can postpone accessing it. For
example, the ImageProxy from the Motivation caches the real
image's extent.

§ protection proxies check that the caller has the access
permissions required to perform a request.

• Subject (Graphic)
o defines the common interface for RealSubject and Proxy so that a

Proxy can be used anywhere a RealSubject is expected.
• RealSubject (Image)

o defines the real object that the proxy represents.

Collaborations

• Proxy forwards requests to RealSubject when appropriate, depending on the
kind of proxy.

Consequences

The Proxy pattern introduces a level of indirection when accessing an object.
The additional indirection has many uses, depending on the kind of proxy:

1. A remote proxy can hide the fact that an object resides in a different address
space.

2. A virtual proxy can perform optimizations such as creating an object on
demand.

3. Both protection proxies and smart references allow additional housekeeping
tasks when an object is accessed.

There's another optimization that the Proxy pattern can hide from the client.
It's called copy-on-write, and it's related to creation on demand. Copying a large
and complicated object can be an expensive operation. If the copy is never modified,
then there's no need to incur this cost. By using a proxy to postpone the copying
process, we ensure that we pay the price of copying the object only if it's modified.

Design Patterns: Elements of Reusable Object-Oriented Software

237

To make copy-on-write work, the subject must be reference counted. Copying the
proxy will do nothing more than increment this reference count. Only when the
client requests an operation that modifies the subject does the proxy actually
copy it. In that case the proxy must also decrement the subject's reference count.
When the reference count goes to zero, the subject gets deleted.

Copy-on-write can reduce the cost of copying heavyweight subjects significantly.

Implementation

The Proxy pattern can exploit the following language features:

1. Overloading the member access operator in C++. C++ supports overloading
operator->, the member access operator. Overloading this operator lets you
perform additional work whenever an object is dereferenced. This can be
helpful for implementing some kinds of proxy; the proxy behaves just like
a pointer.

The following example illustrates how to use this technique to implement
a virtual proxy called ImagePtr.

 class Image;
 extern Image* LoadAnImageFile(const char*);
 // external function

 class ImagePtr {
 public:
 ImagePtr(const char* imageFile);
 virtual ~ImagePtr();

 virtual Image* operator->();
 virtual Image& operator*();
 private:
 Image* LoadImage();
 private:
 Image* _image;
 const char* _imageFile;
 };

 ImagePtr::ImagePtr (const char* theImageFile) {
 _imageFile = theImageFile;
 _image = 0;
 }

Design Patterns: Elements of Reusable Object-Oriented Software

238

 Image* ImagePtr::LoadImage () {
 if (_image == 0) {
 _image = LoadAnImageFile(_imageFile);
 }
 return _image;
 }

The overloaded -> and * operators use LoadImage to return _image to callers
(loading it if necessary).

 Image* ImagePtr::operator-> () {
 return LoadImage();
 }

 Image& ImagePtr::operator* () {
 return *LoadImage();
 }

This approach lets you call Image operations through ImagePtr objects
without going to the trouble of making the operations part of the ImagePtr
interface:

 ImagePtr image = ImagePtr("anImageFileName");
 image->Draw(Point(50, 100));
 // (image.operator->())->Draw(Point(50, 100))

Notice how the image proxy acts like a pointer, but it's not declared to
be a pointer to an Image. That means you can't use it exactly like a real
pointer to an Image. Hence clients must treat Image and ImagePtr objects
differently in this approach.

Overloading the member access operator isn't a good solution for every kind
of proxy. Some proxies need to know precisely which operation is called,
and overloading the member access operator doesn't work in those cases.

Consider the virtual proxy example in the Motivation. The image should be
loaded at a specific time—namely when the Draw operation is called—and not
whenever the image is referenced. Overloading the access operator doesn't
allow this distinction. In that case we must manually implement each proxy
operation that forwards the request to the subject.

Design Patterns: Elements of Reusable Object-Oriented Software

239

These operations are usually very similar to each other, as the Sample Code
demonstrates. Typically all operations verify that the request is legal,
that the original object exists, etc., before forwarding the request to
the subject. It's tedious to write this code again and again. So it's common
to use a preprocessor to generate it automatically.

2. Using doesNotUnderstand in Smalltalk. Smalltalk provides a hook that you
can use to support automatic forwarding of requests. Smalltalk calls
doesNotUnderstand: aMessage when a client sends a message to a receiver
that has no corresponding method. The Proxy class can redefine
doesNotUnderstand so that the message is forwarded to its subject.

To ensure that a request is forwarded to the subject and not just absorbed
by the proxy silently, you can define a Proxy class that doesn't understand
any messages. Smalltalk lets you do this by defining Proxy as a class with
no superclass.6

The main disadvantage of doesNotUnderstand: is that most Smalltalk systems
have a few special messages that are handled directly by the virtual machine,
and these do not cause the usual method look-up. The only one that's usually
implemented in Object (and so can affect proxies) is the identity operation
==.

If you're going to use doesNotUnderstand: to implement Proxy, then you must
design around this problem. You can't expect identity on proxies to mean
identity on their real subjects. An added disadvantage is that
doesNotUnderstand: was developed for error handling, not for building
proxies, and so it's generally not very fast.

3. Proxy doesn't always have to know the type of real subject. If a Proxy class
can deal with its subject solely through an abstract interface, then there's
no need to make a Proxy class for each RealSubject class; the proxy can
deal with all RealSubject classes uniformly. But if Proxies are going to
instantiate RealSubjects (such as in a virtual proxy), then they have to
know the concrete class.

Another implementation issue involves how to refer to the subject before it's
instantiated. Some proxies have to refer to their subject whether it's on disk
or in memory. That means they must use some form of address space-independent
object identifiers. We used a file name for this purpose in the Motivation.

Design Patterns: Elements of Reusable Object-Oriented Software

240

Sample Code

The following code implements two kinds of proxy: the virtual proxy described
in the Motivation section, and a proxy implemented with doesNotUnderstand:.7

1. A virtual proxy. The Graphic class defines the interface for graphical
objects:

 class Graphic {
 public:
 virtual ~Graphic();

 virtual void Draw(const Point& at) = 0;
 virtual void HandleMouse(Event& event) = 0;

 virtual const Point& GetExtent() = 0;

 virtual void Load(istream& from) = 0;
 virtual void Save(ostream& to) = 0;
 protected:
 Graphic();
 };

The Image class implements the Graphic interface to display image files.
Image overrides HandleMouse to let users resize the image interactively.

 class Image : public Graphic {
 public:
 Image(const char* file); // loads image from a file
 virtual ~Image();

 virtual void Draw(const Point& at);
 virtual void HandleMouse(Event& event);

 virtual const Point& GetExtent();

 virtual void Load(istream& from);
 virtual void Save(ostream& to);
 private:
 // ...
 };

Design Patterns: Elements of Reusable Object-Oriented Software

241

ImageProxy has the same interface as Image:

 class ImageProxy : public Graphic {
 public:
 ImageProxy(const char* imageFile);
 virtual ~ImageProxy();

 virtual void Draw(const Point& at);
 virtual void HandleMouse(Event& event);

 virtual const Point& GetExtent();

 virtual void Load(istream& from);
 virtual void Save(ostream& to);
 protected:
 Image* GetImage();
 private:
 Image* _image;
 Point _extent;
 char* _fileName;
 };

The constructor saves a local copy of the name of the file that stores the
image, and it initializes _extent and _image:

 ImageProxy::ImageProxy (const char* fileName) {
 _fileName = strdup(fileName);
 _extent = Point::Zero; // don't know extent yet
 _image = 0;
 }

 Image* ImageProxy::GetImage() {
 if (_image == 0) {
 _image = new Image(_fileName);
 }
 return _image;
 }

The implementation of GetExtent returns the cached extent if possible;
otherwise the image is loaded from the file. Draw loads the image, and
HandleMouse forwards the event to the real image.

Design Patterns: Elements of Reusable Object-Oriented Software

242

 const Point& ImageProxy::GetExtent () {
 if (_extent == Point::Zero) {
 _extent = GetImage()->GetExtent();
 }
 return _extent;
 }

 void ImageProxy::Draw (const Point& at) {
 GetImage()->Draw(at);
 }

 void ImageProxy::HandleMouse (Event& event) {
 GetImage()->HandleMouse(event);
 }

The Save operation saves the cached image extent and the image file name
to a stream. Load retrieves this information and initializes the
corresponding members.

 void ImageProxy::Save (ostream& to) {
 to << _extent << _fileName;
 }

 void ImageProxy::Load (istream& from) {
 from >> _extent >> _fileName;
 }

Finally, suppose we have a class TextDocument that can contain Graphic
objects:

 class TextDocument {
 public:
 TextDocument();

 void Insert(Graphic*);
 // ...
 };

We can insert an ImageProxy into a text document like this:

 TextDocument* text = new TextDocument;

Design Patterns: Elements of Reusable Object-Oriented Software

243

 // ...
 text->Insert(new ImageProxy("anImageFileName"));

2. Proxies that use doesNotUnderstand. You can make generic proxies in
Smalltalk by defining classes whose superclass is nil8 and defining the
doesNotUnderstand: method to handle messages.

The following method assumes the proxy has a realSubject method that returns
its real subject. In the case of ImageProxy, this method would check to
see if the the Image had been created, create it if necessary, and finally
return it. It uses perform:withArguments: to perform the message being
trapped on the real subject.

 doesNotUnderstand: aMessage
 ̂ self realSubject
 perform: aMessage selector
 withArguments: aMessage arguments

The argument to doesNotUnderstand: is an instance of Message that represents
the message not understood by the proxy. So the proxy responds to all
messages by making sure that the real subject exists before forwarding the
message to it.

One of the advantages of doesNotUnderstand: is it can perform arbitrary
processing. For example, we could produce a protection proxy by specifying
a set legalMessages of messages to accept and then giving the proxy the
following method:

 doesNotUnderstand: aMessage
 ̂ (legalMessages includes: aMessage selector)
 ifTrue: [self realSubject
 perform: aMessage selector
 withArguments: aMessage arguments]
 ifFalse: [self error: 'Illegal operator']

This method checks to see that a message is legal before forwarding it to
the real subject. If it isn't legal, then it will send error: to the proxy,
which will result in an infinite loop of errors unless the proxy defines
error:. Consequently, the definition of error: should be copied from class
Object along with any methods it uses.

Design Patterns: Elements of Reusable Object-Oriented Software

244

Known Uses

The virtual proxy example in the Motivation section is from the ET++ text building
block classes.

NEXTSTEP [Add94] uses proxies (instances of class NXProxy) as local
representatives for objects that may be distributed. A server creates proxies
for remote objects when clients request them. On receiving a message, the proxy
encodes it along with its arguments and then forwards the encoded message to the
remote subject. Similarly, the subject encodes any return results and sends them
back to the NXProxy object.

McCullough [McC87] discusses using proxies in Smalltalk to access remote objects.
Pascoe [Pas86] describes how to provide side-effects on method calls and access
control with "Encapsulators."

Related Patterns

Adapter (157): An adapter provides a different interface to the object it adapts.
In contrast, a proxy provides the same interface as its subject. However, a proxy
used for access protection might refuse to perform an operation that the subject
will perform, so its interface may be effectively a subset of the subject's.

Decorator (196): Although decorators can have similar implementations as proxies,
decorators have a different purpose. A decorator adds one or more responsibilities
to an object, whereas a proxy controls access to an object.

Proxies vary in the degree to which they are implemented like a decorator. A
protection proxy might be implemented exactly like a decorator. On the other hand,
a remote proxy will not contain a direct reference to its real subject but only
an indirect reference, such as "host ID and local address on host." A virtual
proxy will start off with an indirect reference such as a file name but will
eventually obtain and use a direct reference.

6The implementation of distributed objects in NEXTSTEP [Add94] (specifically, the
class NXProxy) uses this technique. The implementation redefines forward, the
equivalent hook in NEXTSTEP.

7Iterator (289) describes another kind of proxy on page 299.

Design Patterns: Elements of Reusable Object-Oriented Software

245

8Almost all classes ultimately have Object as their superclass. Hence this is the
same as saying "defining a class that doesn't have Object as its superclass."

Design Patterns: Elements of Reusable Object-Oriented Software

246

Discussion of Structural Patterns

You may have noticed similarities between the structural patterns,especially in
their participants and collaborations. This is soprobably because structural
patterns rely on the same small set oflanguage mechanisms for structuring code
and objects: single andmultiple inheritance for class-based patterns, and object
compositionfor object patterns. But the similarities belie the different
intentsamong these patterns. In this section we compare and contrast groupsof
structural patterns to give you a feel for their relative merits.

Adapter versus Bridge

The Adapter (157) and Bridge (171) patternshave some common attributes. Both
promote flexibility by providing alevel of indirection to another object. Both
involve forwardingrequests to this object from an interface other than its own.

The key difference between these patterns lies in their intents.Adapter focuses
on resolving incompatibilities between two existinginterfaces. It doesn't focus
on how those interfaces are implemented,nor does it consider how they might evolve
independently. It's a wayof making two independently designed classes work
together withoutreimplementing one or the other. Bridge, on the other hand, bridges
anabstraction and its (potentially numerous) implementations. Itprovides a stable
interface to clients even as it lets you vary theclasses that implement it. It
also accommodates new implementations asthe system evolves.

As a result of these differences, Adapter and Bridge are often used atdifferent
points in the software lifecycle. An adapter often becomesnecessary when you
discover that two incompatible classesshould work together, generally to avoid
replicating code. Thecoupling is unforeseen. In contrast, the user of a bridge
understandsup-front that an abstraction must have several implementations,
andboth may evolve independently. The Adapter pattern makes things workafter
they're designed; Bridge makes them work before theyare. That doesn't mean Adapter
is somehow inferior to Bridge; eachpattern merely addresses a different problem.

You might think of a facade (see Facade (208)) as anadapter to a set of other
objects. But that interpretation overlooksthe fact that a facade defines a new
interface, whereas an adapterreuses an old interface. Remember that an adapter
makes two existing interfaces work together as opposed to defining an entirelynew
one.

Design Patterns: Elements of Reusable Object-Oriented Software

247

Composite versus Decorator versus Proxy

Composite (183) and Decorator (196) have similar structure diagrams, reflecting
the fact that both rely onrecursive composition to organize an open-ended number
of objects.This commonality might tempt you to think of a decorator object as
adegenerate composite, but that misses the point of the Decoratorpattern. The
similarity ends at recursive composition, again becauseof differing intents.

Decorator is designed to let you add responsibilities to objectswithout
subclassing. It avoids the explosion of subclasses that canarise from trying to
cover every combination of responsibilitiesstatically. Composite has a different
intent. It focuses onstructuring classes so that many related objects can be
treateduniformly, and multiple objects can be treated as one. Its focus isnot
on embellishment but on representation.

These intents are distinct but complementary. Consequently, theComposite and
Decorator patterns are often used in concert. Both leadto the kind of design in
which you can build applications just byplugging objects together without defining
any new classes. There willbe an abstract class with some subclasses that are
composites, somethat are decorators, and some that implement the fundamental
buildingblocks of the system. In this case, both composites and decoratorswill
have a common interface. From the point of view of the Decoratorpattern, a composite
is a ConcreteComponent. From the point of view ofthe Composite pattern, a decorator
is a Leaf. Of course, they don'thave to be used together and, as we have seen,
their intentsare quite different.

Another pattern with a structure similar to Decorator's is Proxy (233).Both
patterns describe how to provide a level of indirection to anobject, and the
implementations of both the proxy and decoratorobject keep a reference to another
object to which they forward requests. Once again, however, they are intended
for different purposes.

Like Decorator, the Proxy pattern composes an object and provides anidentical
interface to clients. Unlike Decorator, the Proxy pattern isnot concerned with
attaching or detaching properties dynamically, andit's not designed for recursive
composition. Its intent is to providea stand-in for a subject when it's
inconvenient or undesirable toaccess the subject directly because, for example,
it lives on a remotemachine, has restricted access, or is persistent.

In the Proxy pattern, the subject defines the key functionality, andthe proxy
provides (or refuses) access to it. In Decorator, thecomponent provides only part
of the functionality, and one or moredecorators furnish the rest. Decorator
addresses the situation wherean object's total functionality can't be determined
at compile time,at least not conveniently. That open-endedness makes recursive

Design Patterns: Elements of Reusable Object-Oriented Software

248

composition an essential part of Decorator. That isn't the case inProxy, because
Proxy focuses on one relationship—between the proxyand its subject—and that
relationship can be expressed statically.

These differences are significant because they capture solutions tospecific
recurring problems in object-oriented design. But thatdoesn't mean these patterns
can't be combined. You might envision aproxy-decorator that adds functionality
to a proxy, or adecorator-proxy that embellishes a remote object. Although such
hybridsmight be useful (we don't have real examples handy), they aredivisible
into patterns that are useful.

Design Patterns: Elements of Reusable Object-Oriented Software

249

5. Behavioral Patterns

Behavioral patterns are concerned with algorithms and theassignment of
responsibilities between objects. Behavioral patternsdescribe not just patterns
of objects or classes but also the patternsof communication between them. These
patterns characterize complexcontrol flow that's difficult to follow at run-time.
They shift yourfocus away from flow of control to let you concentrate just on
the wayobjects are interconnected.

Behavioral class patterns use inheritance to distribute behaviorbetween classes.
This chapter includes two such patterns. Template Method (360) is the simpler
and more common ofthe two. A template method is an abstract definition of an
algorithm.It defines the algorithm step by step. Each step invokes either
anabstract operation or a primitive operation. A subclass fleshes outthe algorithm
by defining the abstract operations. The otherbehavioral class pattern is
Interpreter (274), whichrepresents a grammar as a class hierarchy and implements
aninterpreter as an operation on instances of these classes.

Behavioral object patterns use object composition rather thaninheritance. Some
describe how a group of peer objects cooperate toperform a task that no single
object can carry out by itself. Animportant issue here is how peer objects know
about each other. Peerscould maintain explicit references to each other, but that
wouldincrease their coupling. In the extreme, every object would knowabout every
other. The Mediator (305) pattern avoidsthis by introducing a mediator object
between peers. The mediatorprovides the indirection needed for loose coupling.

Chain of Responsibility (251) provides even loosercoupling. It lets you send
requests to an object implicitly through achain of candidate objects. Any candidate
may fulfill the requestdepending on run-time conditions. The number of candidates
isopen-ended, and you can select which candidates participate in thechain at
run-time.

The Observer (326) pattern defines and maintains adependency between objects.
The classic example of Observer is inSmalltalk Model/View/Controller, where all
views of the model are notified whenever themodel's state changes.

Other behavioral object patterns are concerned with encapsulatingbehavior in an
object and delegating requests to it. The Strategy (349) pattern encapsulates
an algorithm in anobject. Strategy makes it easy to specify and change the algorithm
anobject uses. The Command (263) pattern encapsulates arequest in an object so
that it can be passed as a parameter, storedon a history list, or manipulated
in other ways. The State (338) pattern encapsulates the states of an objectso
that the object can change its behavior when its state object changes. Visitor
(366) encapsulates behavior that wouldotherwise be distributed across classes,

Design Patterns: Elements of Reusable Object-Oriented Software

250

and Iterator (289) abstracts the way you access andtraverse objects in an
aggregate.

Design Patterns: Elements of Reusable Object-Oriented Software

251

Chain of Responsibility

Intent

Avoid coupling the sender of a request to its receiver by giving morethan one
object a chance to handle the request. Chain the receivingobjects and pass the
request along the chain until an objecthandles it.

Motivation

Consider a context-sensitive help facility for a graphical userinterface. The
user can obtain help information on any part of theinterface just by clicking
on it. The help that's provided depends onthe part of the interface that's selected
and its context; forexample, a button widget in a dialog box might have different
helpinformation than a similar button in the main window. If no specifichelp
information exists for that part of the interface, thenthe help system should
display a more general help message about theimmediate context—the dialog box
as a whole, for example.

Hence it's natural to organize help information according to itsgenerality—from
the most specific to the most general. Furthermore,it's clear that a help request
is handled by one of several userinterface objects; which one depends on the context
and how specificthe available help is.

The problem here is that the object that ultimately provides thehelp isn't known
explicitly to the object (e.g., the button) that initiates the help request. What
we need is a way to decouple thebutton that initiates the help request from the
objects that mightprovide help information. The Chain of Responsibility pattern
defineshow that happens.

The idea of this pattern is to decouple senders and receivers bygiving multiple
objects a chance to handle a request. The requestgets passed along a chain of
objects until one of them handles it.

Design Patterns: Elements of Reusable Object-Oriented Software

252

The first object in the chain receives the request and either handlesit or forwards
it to the next candidate on the chain, which doeslikewise. The object that made
the request has no explicit knowledgeof who will handle it—we say the request
has an implicitreceiver.

Let's assume the user clicks for help on a button widget marked"Print." The button
is contained in an instance of PrintDialog,which knows the application object
it belongs to (see preceding object diagram).The following interaction diagram
illustrates how the helprequest gets forwarded along the chain:

In this case, neither aPrintButton nor aPrintDialog handles therequest; it stops
at anApplication, which can handle it or ignore it.The client that issued the
request has no direct reference to theobject that ultimately fulfills it.

To forward the request along the chain, and to ensure receivers remainimplicit,
each object on the chain shares a common interface forhandling requests and for
accessing its successor on thechain. For example, the help system might define
a HelpHandler classwith a corresponding HandleHelp operation. HelpHandler can
be theparent class for candidate object classes, or it can be defined as amixin
class. Then classes that want to handle help requests can makeHelpHandler a parent:

Design Patterns: Elements of Reusable Object-Oriented Software

253

The Button, Dialog, and Application classes use HelpHandler operationsto handle
help requests. HelpHandler's HandleHelp operation forwardsthe request to the
successor by default. Subclasses can override thisoperation to provide help under
the right circumstances; otherwisethey can use the default implementation to
forward the request.

Applicability

Use Chain of Responsibility when

• more than one object may handle a request, and the handler isn't knowna
priori. The handler should be ascertained automatically.

• you want to issue a request to one of several objects withoutspecifying
the receiver explicitly.

• the set of objects that can handle a request should be specifieddynamically.

Structure

Design Patterns: Elements of Reusable Object-Oriented Software

254

A typical object structure might look like this:

Participants

• Handler (HelpHandler)
o defines an interface for handling requests.
o (optional) implements the successor link.

• ConcreteHandler (PrintButton, PrintDialog)
o handles requests it is responsible for.
o can access its successor.
o if the ConcreteHandler can handle the request, it does so; otherwise

it forwards the request to its successor.
• Client

o initiates the request to a ConcreteHandler object on the chain.

Collaborations

• When a client issues a request, the request propagates along the chainuntil
a ConcreteHandler object takes responsibility for handling it.

Consequences

Chain of Responsibility has the following benefits and liabilities:

1. Reduced coupling.The pattern frees an object from knowing which other object
handles arequest. An object only has to know that a request will be
handled"appropriately." Both the receiver and the sender have no
explicitknowledge of each other, and an object in the chain doesn't have
toknow about the chain's structure.

As a result, Chain of Responsibility can simplify objectinterconnections.
Instead of objects maintaining references to allcandidate receivers, they
keep a single reference to their successor.

Design Patterns: Elements of Reusable Object-Oriented Software

255

2. Added flexibility in assigning responsibilities to objects.Chain of
Responsibility gives you added flexibility in
distributingresponsibilities among objects. You can add or
changeresponsibilities for handling a request by adding to or
otherwisechanging the chain at run-time. You can combine this with
subclassingto specialize handlers statically.

3. Receipt isn't guaranteed.Since a request has no explicit receiver, there's
no guaranteeit'll be handled—the request can fall off the end of the
chainwithout ever being handled. A request can also go unhandled when
thechain is not configured properly.

Implementation

Here are implementation issues to consider in Chain of Responsibility:

1. Implementing the successor chain.There are two possible ways to implement
the successor chain:

a. Define new links (usually in the Handler, but ConcreteHandlerscould
define them instead).

b. Use existing links.

Our examples so far define new links, but often you can use existingobject
references to form the successor chain. For example, parentreferences in
a part-whole hierarchy can define a part's successor. Awidget structure
might already have such links. Composite (183) discusses parent references
in more detail.

Using existing links works well when the links support the chain youneed.
It saves you from defining links explicitly, and it savesspace. But if the
structure doesn't reflect the chain ofresponsibility your application
requires, then you'll have to define redundant links.

2. Connecting successors.If there are no preexisting references for defining
a chain, then you'llhave to introduce them yourself. In that case, the
Handler not only defines the interface for the requests but usually
maintains thesuccessor as well. That lets the handler provide a
defaultimplementation of HandleRequest that forwards the request to
thesuccessor (if any). If a ConcreteHandler subclass isn't interestedin
the request, it doesn't have to override the forwarding operation,since
its default implementation forwards unconditionally.

Here's a HelpHandler base class that maintains a successor link:

class HelpHandler {

Design Patterns: Elements of Reusable Object-Oriented Software

256

public:
HelpHandler(HelpHandler* s) : _successor(s) { }
virtual void HandleHelp();
private:
HelpHandler* _successor;
};

void HelpHandler::HandleHelp () {
if (_successor) {
_successor->HandleHelp();
}
 }

3. Representing requests.Different options are available for representing
requests. In thesimplest form, the request is a hard-coded operation
invocation, as inthe case of HandleHelp. This is convenient and safe, but
you canforward only the fixed set of requests that the Handler class defines.

An alternative is to use a single handler function that takes arequest code
(e.g., an integer constant or a string) as parameter.This supports an
open-ended set of requests. The only requirement isthat the sender and
receiver agree on how the request should beencoded.

This approach is more flexible, but it requires conditional statementsfor
dispatching the request based on its code. Moreover, there's notype-safe
way to pass parameters, so they must be packed and unpackedmanually.
Obviously this is less safe than invoking an operationdirectly.

To address the parameter-passing problem, we can use separate
requestobjects that bundle request parameters. A Requestclass can
represent requests explicitly, and new kinds of requests canbe defined by
subclassing. Subclasses can define different parameters.Handlers must know
the kind of request (that is, whichRequest subclass they're using) to access
these parameters.

To identify the request, Request can define an accessorfunction that returns
an identifier for the class. Alternatively, thereceiver can use run-time
type information if the implementationlanguages supports it.

Here is a sketch of a dispatch function that uses request objects toidentify
requests.A GetKind operation defined in the base Requestclass identifies
the kind of request:

void Handler::HandleRequest (Request* theRequest) {
switch (theRequest->GetKind()) {

Design Patterns: Elements of Reusable Object-Oriented Software

257

case Help:
// cast argument to appropriate type
HandleHelp((HelpRequest*) theRequest);
break;
case Print:
HandlePrint((PrintRequest*) theRequest);
// ...
break;
default:
// ...
break;
}
}

Subclasses can extend the dispatch by overridingHandleRequest. The
subclass handles only therequests in which it's interested; other requests
are forwarded to theparent class. In this way, subclasses effectively extend
(rather thanoverride) the HandleRequest operation.For example, here's how
an ExtendedHandler subclass extendsHandler's version of HandleRequest:

class ExtendedHandler : public Handler {
public:
virtual void HandleRequest(Request* theRequest);
// ...
};

void ExtendedHandler::HandleRequest(Request*theRequest){
switch (theRequest->GetKind()) {
case Preview:
// handle the Preview request
break;
default:
// let Handler handle other requests
Handler::HandleRequest(theRequest);
}
}

4. Automatic forwarding in Smalltalk.You can use the doesNotUnderstand
mechanism in Smalltalk toforward requests. Messages that have no
corresponding methods aretrapped in the implementation of
doesNotUnderstand, whichcan be overridden to forward the message to an
object's successor.Thus it isn't necessary to implement forwarding
manually; the classhandles only the request in which it's interested, and
it relies ondoesNotUnderstand to forward all others.

Design Patterns: Elements of Reusable Object-Oriented Software

258

Sample Code

The following example illustrates how a chain of responsibility canhandle requests
for an on-line help system like the one describedearlier. The help request is
an explicit operation. We'll use existingparent references in the widget hierarchy
to propagate requestsbetween widgets in the chain, and we'll define a reference
in theHandler class to propagate help requests between nonwidgets in thechain.

The HelpHandler class defines the interface for handlinghelp requests. It
maintains a help topic (which is empty by default)and keeps a reference to its
successor on the chain of help handlers.The key operation is HandleHelp, which
subclassesoverride. HasHelp is a convenience operation for checkingwhether there
is an associated help topic.

typedef int Topic;
const Topic NO_HELP_TOPIC = -1;

class HelpHandler {
public:
HelpHandler(HelpHandler* = 0, Topic = NO_HELP_TOPIC);
virtual bool HasHelp();
virtual void SetHandler(HelpHandler*, Topic);
virtual void HandleHelp();
private:
HelpHandler* _successor;
Topic _topic;
};

HelpHandler::HelpHandler (
HelpHandler* h, Topic t
) : _successor(h), _topic(t) { }

bool HelpHandler::HasHelp () {
return _topic != NO_HELP_TOPIC;
}

void HelpHandler::HandleHelp () {
if (_successor != 0) {
successor->HandleHelp();
}
}

Design Patterns: Elements of Reusable Object-Oriented Software

259

All widgets are subclasses of the Widget abstract class.Widget is a subclass of
HelpHandler, since alluser interface elements can have help associated with them.
(We couldhave used a mixin-based implementation just as well.)

class Widget : public HelpHandler {
protected:
Widget(Widget* parent, Topic t = NO_HELP_TOPIC);
private:
Widget* _parent;
};

Widget::Widget (Widget* w, Topic t) : HelpHandler(w, t) {
_parent = w;
}

In our example, a button is the first handler on the chain. TheButton class is
a subclass of Widget.The Button constructor takes two parameters: a reference
toits enclosing widget and the help topic.

class Button : public Widget {
public:
Button(Widget* d, Topic t = NO_HELP_TOPIC);
virtual void HandleHelp();
// Widget operations that Button overrides...
};

Button's version of HandleHelp first tests to see ifthere is a help topic for
buttons. If the developer hasn't definedone, then the request gets forwarded to
the successor using theHandleHelp operation in HelpHandler. If thereis a help
topic, then the button displays it, and the searchends.

Button::Button (Widget* h, Topic t) : Widget(h, t) { }

void Button::HandleHelp () {
if (HasHelp()) {
// offer help on the button
} else {
HelpHandler::HandleHelp();
}
}

Dialog implements a similar scheme, except that itssuccessor is not a widget but
any help handler. In ourapplication this successor will be an instance of
Application.

Design Patterns: Elements of Reusable Object-Oriented Software

260

class Dialog : public Widget {
public:
Dialog(HelpHandler* h, Topic t = NO_HELP_TOPIC);
virtual void HandleHelp();
// Widget operations that Dialog overrides...
// ...
};

Dialog::Dialog (HelpHandler* h, Topic t) : Widget(0) {
SetHandler(h, t);
}

void Dialog::HandleHelp () {
if (HasHelp()) {
// offer help on the dialog
} else {
HelpHandler::HandleHelp();
}
}

At the end of the chain is an instance of Application. Theapplication is not a
widget, so Application is subclasseddirectly from HelpHandler.When a help request
propagates to this level, theapplication can supply information on the application
in general, orit can offer a list of different help topics:

class Application : public HelpHandler {
public:
Application(Topic t) : HelpHandler(0, t) { }
virtual void HandleHelp();
// application-specific operations...
};

void Application::HandleHelp () {
// show a list of help topics
}

The following code creates and connects these objects. Here thedialog concerns
printing, and so the objects have printing-relatedtopics assigned.

const Topic PRINT_TOPIC = 1;
const Topic PAPER_ORIENTATION_TOPIC = 2;
const Topic APPLICATION_TOPIC = 3;

Application* application = new Application(APPLICATION_TOPIC);

Design Patterns: Elements of Reusable Object-Oriented Software

261

Dialog* dialog = new Dialog(application, PRINT_TOPIC);
Button* button = new Button(dialog, PAPER_ORIENTATION_TOPIC);

We can invoke the help request by calling HandleHelp on anyobject on the chain.
To start the search at the button object, justcall HandleHelp on it:

 button->HandleHelp();

In this case, the button will handle the request immediately. Notethat any
HelpHandler class could be made the successor ofDialog. Moreover, its successor
could be changeddynamically. So no matter where a dialog is used, you'll get
theproper context-dependent help information for it.

Known Uses

Several class libraries use the Chain of Responsibility pattern tohandle user
events. They use different names for the Handler class,but the idea is the same:
When the user clicks the mouse or presses akey, an event gets generated and passed
along the chain.MacApp [App89] and ET++ [WGM88] call it "EventHandler,"Symantec's
TCL library [Sym93b] calls it "Bureaucrat," andNeXT's AppKit [Add94] uses the
name "Responder."

The Unidraw framework for graphical editors defines Command objectsthat
encapsulate requests to Component and ComponentViewobjects [VL90]. Commands are
requests in the sensethat a component or component view may interpret a command
to performan operation. This corresponds to the "requests as objects"approach
described in Implementation. Components and component viewsmay be structured
hierarchically. A component or a component view mayforward command interpretation
to its parent, which may in turnforward it to its parent, and so on, thereby forming
a chain ofresponsibility.

ET++ uses Chain of Responsibility to handle graphical update. Agraphical object
calls the InvalidateRect operation whenever it mustupdate a part of its appearance.
A graphical object can't handleInvalidateRect by itself, because it doesn't know
enough about itscontext. For example, a graphical object can be enclosed in
objectslike Scrollers or Zoomers that transform its coordinate system. Thatmeans
the object might be scrolled or zoomed so that it's partiallyout of view. Therefore
the default implementation of InvalidateRectforwards the request to the enclosing
container object. The lastobject in the forwarding chain is a Window instance.
By the timeWindow receives the request, the invalidation rectangle is guaranteedto
be transformed properly. The Window handles InvalidateRect bynotifying the window
system interface and requesting an update.

Design Patterns: Elements of Reusable Object-Oriented Software

262

Related Patterns

Chain of Responsibility is often applied in conjunction with Composite (183).
There, a component's parent can act as its successor.

Design Patterns: Elements of Reusable Object-Oriented Software

263

Command

Intent

Encapsulate a request as an object, thereby letting you parameterizeclients with
different requests, queue or log requests, and supportundoable operations.

Also Known As

Action, Transaction

Motivation

Sometimes it's necessary to issue requests to objects without knowinganything
about the operation being requested or the receiver of therequest. For example,
user interface toolkits include objects likebuttons and menus that carry out a
request in response to user input.But the toolkit can't implement the request
explicitly in the buttonor menu, because only applications that use the toolkit
know whatshould be done on which object. As toolkit designers we have no wayof
knowing the receiver of the request or the operations that willcarry it out.

The Command pattern lets toolkit objects make requests of unspecifiedapplication
objects by turning the request itself into an object. Thisobject can be stored
and passed around like other objects. The key tothis pattern is an abstract Command
class, which declares an interfacefor executing operations. In the simplest form
this interfaceincludes an abstract Execute operation. Concrete Command
subclassesspecify a receiver-action pair by storing the receiver as an
instancevariable and by implementing Execute to invoke the request. Thereceiver
has the knowledge required to carry out the request.

Design Patterns: Elements of Reusable Object-Oriented Software

264

Menus can be implemented easily with Command objects. Each choice ina Menu is
an instance of a MenuItem class. An Application class createsthese menus and their
menu items along with the rest of the user interface.The Application class also
keeps track of Document objects that a user hasopened.

The application configures each MenuItem with an instance of aconcrete Command
subclass. When the user selects a MenuItem, theMenuItem calls Execute on its
command, and Execute carries out theoperation. MenuItems don't know which subclass
of Command they use.Command subclasses store the receiver of the request and invoke
one ormore operations on the receiver.

For example, PasteCommand supports pasting text from the clipboardinto a Document.
PasteCommand's receiver is the Document object it issupplied upon instantiation.
The Execute operation invokes Paste onthe receiving Document.

OpenCommand's Execute operation is different: it prompts the userfor a document
name, creates a corresponding Document object, adds thedocument to the receiving
application, and opens the document.

Design Patterns: Elements of Reusable Object-Oriented Software

265

Sometimes a MenuItem needs to execute a sequence of commands.For example, a
MenuItem for centering a page at normal size could beconstructed from a
CenterDocumentCommand object and aNormalSizeCommand object. Because it's common
to string commandstogether in this way, we can define a MacroCommand class to
allow aMenuItem to execute an open-ended number of commands. MacroCommand isa
concrete Command subclass that simply executes a sequence ofCommands. MacroCommand
has no explicit receiver, because the commandsit sequences define their own
receiver.

In each of these examples, notice how the Command pattern decouplesthe object
that invokes the operation from the one having theknowledge to perform it. This
gives us a lot of flexibility indesigning our user interface. An application can
provide both a menuand a push button interface to a feature just by making the
menu andthe push button share an instance of the same concrete Command subclass.We
can replace commands dynamically, which would be useful forimplementing
context-sensitive menus. We can also support commandscripting by composing
commands into larger ones. All of this ispossible because the object that issues
a request only needs to knowhow to issue it; it doesn't need to know how the request
will be carried out.

Applicability

Use the Command pattern when you want to

• parameterize objects by an action to perform, as MenuItem objects did above.
You can express such parameterization in a procedural language with a
callback function, that is, a function that's registered somewhere to be
called at a later point. Commands are an object-oriented replacement for
callbacks.

Design Patterns: Elements of Reusable Object-Oriented Software

266

• specify, queue, and execute requests at different times. A Command object
can have a lifetime independent of the original request. If the receiver
of a request can be represented in an address space-independent way, then
you can transfer a command object for the request to a different process
and fulfill the request there.

• support undo. The Command's Execute operation can store state for reversing
its effects in the command itself. The Command interface must have an added
Unexecute operation that reverses the effects of a previous call to Execute.
Executed commands are stored in a history list. Unlimited-level undo and
redo is achieved by traversing this list backwards and forwards calling
Unexecute and Execute, respectively.

• support logging changes so that they can be reapplied in case of a system
crash. By augmenting the Command interface with load and store operations,
you can keep a persistent log of changes. Recovering from a crash involves
reloading logged commands from disk and reexecuting them with the Execute
operation.

• structure a system around high-level operations built on primitives
operations. Such a structure is common in information systems that support
transactions. A transaction encapsulates a set of changes to data. The
Command pattern offers a way to model transactions. Commands have a common
interface, letting you invoke all transactions the same way. The pattern
also makes it easy to extend the system with new transactions.

Structure

Participants

• Command
o declares an interface for executing an operation.

• ConcreteCommand (PasteCommand, OpenCommand)

Design Patterns: Elements of Reusable Object-Oriented Software

267

o defines a binding between a Receiver object and an action.
o implements Execute by invoking the corresponding operation(s) on

Receiver.
• Client (Application)

o creates a ConcreteCommand object and sets its receiver.
• Invoker (MenuItem)

o asks the command to carry out the request.
• Receiver (Document, Application)

o knows how to perform the operations associated with carrying out
a request. Any class may serve as a Receiver.

Collaborations

• The client creates a ConcreteCommand object and specifies its receiver.
• An Invoker object stores the ConcreteCommand object.
• The invoker issues a request by calling Execute on the command. Whencommands

are undoable, ConcreteCommand stores state for undoing thecommand prior
to invoking Execute.

• The ConcreteCommand object invokes operations on its receiver to carryout
the request.

The following diagram shows the interactions between these objects.It illustrates
how Command decouples the invoker from the receiver(and the request it carries
out).

Consequences

The Command pattern has the following consequences:

1. Command decouples the object that invokes the operation from the onethat
knows how to perform it.

Design Patterns: Elements of Reusable Object-Oriented Software

268

2. Commands are first-class objects. They can be manipulated and extendedlike
any other object.

3. You can assemble commands into a composite command. An example is
theMacroCommand class described earlier. In general, composite commandsare
an instance of the Composite (183) pattern.

4. It's easy to add new Commands, because you don't have to changeexisting
classes.

Implementation

Consider the following issues when implementing the Command pattern:

1. How intelligent should a command be?A command can have a wide range of
abilities. At one extreme itmerely defines a binding between a receiver
and the actions that carryout the request. At the other extreme it implements
everything itselfwithout delegating to a receiver at all. The latter extreme
is usefulwhen you want to define commands that are independent of
existingclasses, when no suitable receiver exists, or when a command knows
itsreceiver implicitly. For example, a command that creates
anotherapplication window may be just as capable of creating the window
asany other object. Somewhere in between these extremes are commandsthat
have enough knowledge to find their receiver dynamically.

2. Supporting undo and redo.Commands can support undo and redo capabilities
if they provide a wayto reverse their execution (e.g., an Unexecute or Undo
operation). AConcreteCommand class might need to store additional state
to do so. Thisstate can include

o the Receiver object, which actually carries out operations
inresponse to the request,

o the arguments to the operation performed on the receiver, and
o any original values in the receiver that can changeas a result of

handling the request. The receiver must provideoperations that let
the command return the receiver to its prior state.

To support one level of undo, an application needs to store only thecommand
that was executed last. For multiple-level undo and redo, theapplication
needs a history list of commands that havebeen executed, where the maximum
length of the list determines thenumber of undo/redo levels. The history
list stores sequences ofcommands that have been executed. Traversing
backward through thelist and reverse-executing commands cancels their
effect; traversingforward and executing commands reexecutes them.

An undoable command might have to be copied before it can be placed onthe
history list. That's because the command object that carried outthe original

Design Patterns: Elements of Reusable Object-Oriented Software

269

request, say, from a MenuItem, will perform otherrequests at later times.
Copying is required to distinguish differentinvocations of the same command
if its state can vary acrossinvocations.

For example, a DeleteCommand that deletes selected objects must
storedifferent sets of objects each time it's executed. Therefore
theDeleteCommand object must be copied following execution, and the copyis
placed on the history list. If the command's state never changeson execution,
then copying is not required—only a reference to thecommand need be placed
on the history list. Commands that must becopied before being placed on
the history list act as prototypes (see Prototype (133)).

3. Avoiding error accumulation in the undo process.Hysteresis can be a problem
in ensuring a reliable,semantics-preserving undo/redo mechanism. Errors
can accumulate ascommands are executed, unexecuted, and reexecuted
repeatedly so thatan application's state eventually diverges from original
values. Itmay be necessary therefore to store more information in the
command toensure that objects are restored to their original state. The
Memento (316) pattern can be applied to give the commandaccess to this
information without exposing the internals of otherobjects.

4. Using C++ templates.For commands that (1) aren't undoable and (2) don't
require arguments,we can use C++ templates to avoid creating a Command
subclass forevery kind of action and receiver. We show how to do this in
the SampleCode section.

Sample Code

The C++ code shown here sketches the implementation of the Command classesin the
Motivation section. We'll define OpenCommand,PasteCommand, and MacroCommand.
First theabstract Command class:

class Command {
public:
virtual ~Command();
virtual void Execute() = 0;
protected:
Command();
};

OpenCommand opens a document whose name is supplied by theuser. An OpenCommand
must be passed anApplication object in its constructor. AskUser is
animplementation routine that prompts the user for the name of thedocument to
open.

Design Patterns: Elements of Reusable Object-Oriented Software

270

class OpenCommand : public Command {
public:
OpenCommand(Application*);
virtual void Execute();
protected:
virtual const char* AskUser();
private:
Application* _application;
char* _response;
};

OpenCommand::OpenCommand (Application* a) {
_application = a;
}

void OpenCommand::Execute () {
const char* name = AskUser();
if (name != 0) {
Document* document = new Document(name);
_application->Add(document);
document->Open();
}
}

A PasteCommand must be passed a Document object asits receiver. The receiver is
given as a parameter to PasteCommand'sconstructor.

class PasteCommand : public Command {
public:
PasteCommand(Document*);
virtual void Execute();
private:
Document* _document;
};

PasteCommand::PasteCommand (Document* doc) { _document = doc; } void
PasteCommand::Execute () { _document->Paste(); }

For simple commands that aren't undoable and don't require arguments,we can use
a class template to parameterize the command's receiver.We'll define a template
subclass SimpleCommand for suchcommands. SimpleCommand is parameterized by
theReceiver type and maintains a binding between a receiver objectand an action
stored as a pointer to a member function.

Design Patterns: Elements of Reusable Object-Oriented Software

271

template <class Receiver>
class SimpleCommand : public Command {
public:
typedef void (Receiver::* Action)();
SimpleCommand(Receiver* r, Action a) :
_receiver(r), _action(a) { }
virtual void Execute();
private:
Action _action;
Receiver* _receiver;
};

The constructor stores the receiver and the action in the correspondinginstance
variables. Execute simply applies the action to thereceiver.

template <class Receiver>
void SimpleCommand<Receiver>::Execute () { (_receiver->*_action)(); }

To create a command that calls Actionon an instance of class MyClass, a client
simply writes

MyClass* receiver = new MyClass;
// ...
Command* aCommand =
new SimpleCommand<MyClass>(receiver, &MyClass::Action);
// ...
aCommand->Execute();

Keep in mind that this solution only works for simple commands. More complex
commands that keep track of not only their receivers but also arguments and/or
undo state require a Command subclass.

A MacroCommand manages a sequence of subcommands and providesoperations for adding
and removing subcommands. No explicit receiveris required, because the subcommands
already define their receiver.

class MacroCommand : public Command {
public:
MacroCommand();
virtual ~MacroCommand();
virtual void Add(Command*);
virtual void Remove(Command*);
virtual void Execute();
private:
List<Command*>* _cmds;

Design Patterns: Elements of Reusable Object-Oriented Software

272

};

The key to the MacroCommand is its Execute memberfunction. This traverses all
the subcommands and performsExecute on each of them.

void MacroCommand::Execute () {
ListIterator<Command*> i(_cmds);
for (i.First(); !i.IsDone(); i.Next()) {
Command* c = i.CurrentItem();
c->Execute();
}
}

Note that should the MacroCommand implement anUnexecute operation, then its
subcommands must beunexecuted in reverse order relative to
Execute'simplementation.

Finally, MacroCommand must provide operations to manage itssubcommands. The
MacroCommand is also responsible fordeleting its subcommands.

void MacroCommand::Add (Command* c) { _cmds->Append(c); }
void MacroCommand::Remove (Command* c) { _cmds->Remove(c); }

Known Uses

Perhaps the first example of the Command pattern appears in a paper byLieberman
[Lie85]. MacApp [App89] popularizedthe notion of commands for implementing
undoable operations.ET++ [WGM88], InterViews [LCI+92], andUnidraw [VL90] also
define classes that follow theCommand pattern. InterViews defines an Action
abstract class thatprovides command functionality. It also defines an
ActionCallbacktemplate, parameterized by action method, that can instantiate
commandsubclasses automatically.

The THINK class library [Sym93b] also uses commands to supportundoable actions.
Commands in THINK are called "Tasks." Taskobjects are passed along a Chain of
Responsibility (251) for consumption.

Unidraw's command objects are unique in that they can behave likemessages. A
Unidraw command may be sent to another object forinterpretation, and the result
of the interpration varies with thereceiving object. Moreover, the receiver may
delegate theinterpretation to another object, typically the receiver's parent
in alarger structure as in a Chain of Responsibility. The receiver of aUnidraw
command is thus computed rather than stored. Unidraw'sinterpretation mechanism
depends on run-time type information.

Design Patterns: Elements of Reusable Object-Oriented Software

273

Coplien describes how to implement functors, objects thatare functions, in C++
[Cop92]. He achieves a degree oftransparency in their use by overloading the
function call operator(operator()). The Command pattern is different; its focusis
on maintaining a binding between a receiver and a function(i.e., action), not
just maintaining a function.

Related Patterns

A Composite (183)can be used to implement MacroCommands.

A Memento (316)can keep state the command requires to undo its effect.

A command that must be copied before being placed on the historylist acts as a
Prototype (133).

Design Patterns: Elements of Reusable Object-Oriented Software

274

Interpreter

Intent

Given a language, define a represention for its grammar along with aninterpreter
that uses the representation to interpret sentences in thelanguage.

Motivation

If a particular kind of problem occurs often enough, then it might beworthwhile
to express instances of the problem as sentences in asimple language. Then you
can build an interpreter that solves theproblem by interpreting these sentences.

For example, searching for strings that match a pattern is a commonproblem. Regular
expressions are a standard language for specifyingpatterns of strings. Rather
than building custom algorithms to matcheach pattern against strings, search
algorithms could interpret aregular expression that specifies a set of strings
to match.

The Interpreter pattern describes how to define a grammar for simplelanguages,
represent sentences in the language, and interpret thesesentences. In this example,
the pattern describes how to define agrammar for regular expressions, represent
a particular regularexpression, and how to interpret that regular expression.

Suppose the following grammar defines the regular expressions:

expression ::= literal | alternation | sequence | repetition |
 '(' expression ')'
alternation ::= expression '|' expression
sequence ::= expression '&' expression
repetition ::= expression '*'
literal ::= 'a' | 'b' | 'c' | ... { 'a' | 'b' | 'c' | ... }*

The symbol expression is the start symbol, and literalis a terminal symbol defining
simple words.

The Interpreter pattern uses a class to represent each grammar rule.Symbols on
the right-hand side of the rule are instance variables ofthese classes. The grammar
above is represented by five classes: anabstract class RegularExpression and its
four subclassesLiteralExpression, AlternationExpression, SequenceExpression,
andRepetitionExpression. The last three classes define variables thathold
subexpressions.

Design Patterns: Elements of Reusable Object-Oriented Software

275

Every regular expression defined by this grammar is represented by anabstract
syntax tree made up of instances of these classes. Forexample, the abstract syntax
tree

represents the regular expression

 raining & (dogs | cats) *

We can create an interpreter for these regular expressions by definingthe Interpret
operation on each subclass of RegularExpression.Interpret takes as an argument

Design Patterns: Elements of Reusable Object-Oriented Software

276

the context in which to interpret theexpression. The context contains the input
string and information onhow much of it has been matched so far. Each subclass
ofRegularExpression implements Interpret to match the next part of theinput string
based on the current context. For example,

• LiteralExpression will check if the input matches the literal itdefines,
• AlternationExpression will check if the input matches any of

itsalternatives,
• RepetitionExpression will check if the input has multiple copies

ofexpression it repeats,

and so on.

Applicability

Use the Interpreter pattern when there is a language to interpret, andyou can
represent statements in the language as abstract syntax trees.The Interpreter
pattern works best when

• the grammar is simple. For complex grammars, the class hierarchy forthe
grammar becomes large and unmanageable. Tools such as parsergenerators are
a better alternative in such cases. They can interpretexpressions without
building abstract syntax trees, which can savespace and possibly time.

• efficiency is not a critical concern. The most efficient interpretersare
usually not implemented by interpreting parse trees directlybut by first
translating them into another form. For example, regularexpressions are
often transformed into state machines. But even then,the translator can
be implemented by the Interpreter pattern, sothe pattern is still
applicable.

Design Patterns: Elements of Reusable Object-Oriented Software

277

Structure

Participants

• AbstractExpression (RegularExpression)
o declares an abstract Interpret operation that is common to all nodes

in the abstract syntax tree.
• TerminalExpression (LiteralExpression)

o implements an Interpret operation associated with terminal symbols
in the grammar.

o an instance is required for every terminal symbol in a sentence.
• NonterminalExpression (AlternationExpression,RepetitionExpression,

SequenceExpressions)
o one such class is required for every rule R ::= R1 R2 ... Rn in the

grammar.
o maintains instance variables of type AbstractExpression for each

of the symbols R1 through Rn.
o implements an Interpret operation for nonterminal symbols in the

grammar. Interpret typically calls itself recursively on the
variables representing R1 through Rn.

• Context
o contains information that's global to the interpreter.

• Client
o builds (or is given) an abstract syntax tree representing a

particular sentence in the language that the grammar defines. The
abstract syntax tree is assembled from instances of the
NonterminalExpression and TerminalExpression classes.

o invokes the Interpret operation.

Design Patterns: Elements of Reusable Object-Oriented Software

278

Collaborations

• The client builds (or is given) the sentence as an abstract syntaxtree of
NonterminalExpression and TerminalExpression instances. Thenthe client
initializes the context and invokes the Interpretoperation.

• Each NonterminalExpression node defines Interpret in terms ofInterpret on
each subexpression. The Interpret operation of eachTerminalExpression
defines the base case in the recursion.

• The Interpret operations at each node use the context tostore and access
the state of the interpreter.

Consequences

The Interpreter pattern has the following benefits and liabilities:

1. It's easy to change and extend the grammar.Because the pattern uses classes
to represent grammar rules, you canuse inheritance to change or extend the
grammar. Existing expressionscan be modified incrementally, and new
expressions can be defined asvariations on old ones.

2. Implementing the grammar is easy, too.Classes defining nodes in the abstract
syntax tree have similarimplementations. These classes are easy to write,
and often theirgeneration can be automated with a compiler or parser
generator.

3. Complex grammars are hard to maintain.The Interpreter pattern defines at
least one class for every rulein the grammar (grammar rules defined using
BNF may require multipleclasses). Hence grammars containing many rules can
be hard tomanage and maintain. Other design patterns can be applied
tomitigate the problem (see Implementation).But when the grammar is very
complex, other techniques such asparser or compiler generators are more
appropriate.

4. Adding new ways to interpret expressions.The Interpreter pattern makes it
easier to evaluate an expression in anew way. For example, you can support
pretty printing ortype-checking an expression by defining a new operation
on theexpression classes. If you keep creating new ways of interpreting
anexpression, then consider using the Visitor (366) pattern to avoid
changing the grammar classes.

Implementation

The Interpreter and Composite (183) patterns share many implementation issues.
The following issuesare specific to Interpreter:

Design Patterns: Elements of Reusable Object-Oriented Software

279

1. Creating the abstract syntax tree.The Interpreter pattern doesn't explain
how to create anabstract syntax tree. In other words, it doesn't address
parsing.The abstract syntax tree can be created by a table-driven parser,
by ahand-crafted (usually recursive descent) parser, or directly by
theclient.

2. Defining the Interpret operation.You don't have to define the Interpret
operation in the expressionclasses. If it's common to create a new
interpreter, then it's betterto use the Visitor (366) pattern to put
Interpret in aseparate "visitor" object. For example, a grammar for a
programminglanguage will have many operations on abstract syntax trees,
such asas type-checking, optimization, code generation, and so on. It will
bemore likely to use a visitor to avoid defining these operations onevery
grammar class.

3. Sharing terminal symbols with the Flyweight pattern.Grammars whose
sentences contain many occurrences of a terminal symbolmight benefit from
sharing a single copy of that symbol. Grammars forcomputer programs are
good examples—each program variable willappear in many places throughout
the code. In the Motivation example,a sentence can have the terminal symbol
dog (modeled by theLiteralExpression class) appearing many times.

Terminal nodes generally don't store information about their positionin
the abstract syntax tree. Parent nodes pass them whatever contextthey need
during interpretation. Hence there is a distinction betweenshared
(intrinsic) state and passed-in (extrinsic) state, and the Flyweight (218)
pattern applies.

For example, each instance of LiteralExpression for dogreceives a context
containing the substring matched so far. And everysuch LiteralExpression
does the same thing in its Interpretoperation—it checks whether the next
part of the input contains adog—no matter where the instance appears in
the tree.

Sample Code

Here are two examples. The first is a complete example in Smalltalkfor checking
whether a sequence matches a regular expression. Thesecond is a C++ program for
evaluating Boolean expressions.

The regular expression matcher tests whether a string is in thelanguage defined
by the regular expression. The regular expression isdefined by the following
grammar:

expression ::= literal | alternation | sequence | repetition |
 '(' expression ')'

Design Patterns: Elements of Reusable Object-Oriented Software

280

alternation ::= expression '|' expression
sequence ::= expression '&' expression
repetition ::= expression 'repeat'
literal ::= 'a' | 'b' | 'c' | ... { 'a' | 'b' | 'c' | ... }*

This grammar is a slight modification of the Motivation example. Wechanged the
concrete syntax of regular expressions a little, becausesymbol "*" can't be a
postfix operation in Smalltalk. Sowe use repeat instead. For example, the regular
expression

 (('dog ' | 'cat ') repeat & 'weather')

matches the input string "dog dog cat weather".

To implement the matcher, we define the five classes described on page 274. The
classSequenceExpression has instance variablesexpression1 and expression2 for
its childrenin the abstract syntax tree. AlternationExpressionstores its
alternatives in the instance variablesalternative1 and alternative2,
whileRepetitionExpression holds the expression it repeats in itsrepetition
instance variable.LiteralExpression has a components instance variable thatholds
a list of objects (probably characters). These represent the literalstring that
must match the input sequence.

The match: operation implements an interpreter for theregular expression. Each
of the classes defining the abstract syntaxtree implements this operation. It
takesinputState as an argument representing the current stateof the matching
process, having read part of the input string.

This current state is characterized by a set of input streamsrepresenting the
set of inputs that the regular expression could haveaccepted so far. (This is
roughly equivalent to recording all statesthat the equivalent finite state
automata would be in, havingrecognized the input stream to this point).

The current state is most important to the repeat operation.For example, if the
regular expression were

 'a' repeat

then the interpreter could match "a", "aa","aaa", and so on. If it were

 'a' repeat & 'bc'

then it could match "abc", "aabc","aaabc", and so on. But if the regular expression
were

Design Patterns: Elements of Reusable Object-Oriented Software

281

 'a' repeat & 'abc'

then matching the input "aabc" against the subexpression"'a' repeat" would yield
two input streams, one having matchedone character of the input, and the other
having matched twocharacters. Only the stream that has accepted one character
willmatch the remaining "abc".

Now we consider the definitions of match: for each classdefining the regular
expression. The definition forSequenceExpression matches each of its
subexpressions insequence. Usually it will eliminate input streams from
itsinputState.

match: inputState
 ^ expression2 match: (expression1 match: inputState).

An AlternationExpression will return a state that consistsof the union of states
from either alternative. The definition ofmatch: for AlternationExpression is

match: inputState
 | finalState |
 finalState := alternative1 match: inputState.
 finalState addAll: (alternative2 match: inputState).
 ^ finalState

The match: operation for RepetitionExpressiontries to find as many states that
could match as possible:

match: inputState
 | aState finalState |
 aState := inputState.
 finalState := inputState copy.
 [aState isEmpty]
 whileFalse:
 [aState := repetition match: aState.
 finalState addAll: aState].
 ^ finalState

Its output state usually contains more states than its input state,because a
RepetitionExpression can match one, two, or manyoccurrences of repetition on the
input state. The outputstates represent all these possibilities, allowing
subsequent elementsof the regular expression to decide which state is the correct
one.

Design Patterns: Elements of Reusable Object-Oriented Software

282

Finally, the definition of match: forLiteralExpression tries to match its
components against eachpossible input stream. It keeps only those input streams
that have amatch:

match: inputState
| finalState tStream |
finalState := Set new.
inputState
 do:
 [:stream | tStream := stream copy.
 (tStream nextAvailable:
 components size
) = components
 ifTrue: [finalState add: tStream]
].
 ^ finalState

The nextAvailable: message advances the input stream. Thisis the only match:
operation that advances the stream.Notice how the state that's returned contains
a copy of the inputstream, thereby ensuring that matching a literal never changes
theinput stream. This is important because each alternative of
anAlternationExpression should see identical copies ofthe input stream.

Now that we've defined the classes that make up an abstract syntaxtree, we can
describe how to build it.Rather than write a parser for regular expressions, we'll
definesome operations on the RegularExpression classes so thatevaluating a
Smalltalk expression will produce an abstract syntax treefor the corresponding
regular expression. That lets us use thebuilt-in Smalltalk compiler as if it were
a parser for regularexpressions.

To build the abstract syntax tree, we'll need to define"|", "repeat", and "&"
asoperations on RegularExpression. These operations aredefined in class
RegularExpression like this:

& aNode
 ^ SequenceExpression new
 expression1: self expression2: aNode asRExp

repeat
 ^ RepetitionExpression new repetition: self
 | aNode
 ^ AlternationExpression new
 alternative1: self alternative2: aNode asRExp

Design Patterns: Elements of Reusable Object-Oriented Software

283

asRExp
 ^ self

The asRExp operation will convert literals intoRegularExpressions. These
operations are defined in classString:

& aNode
 ^ SequenceExpression new
 expression1: self asRExp expression2: aNode asRExp

repeat
 ^ RepetitionExpression new repetition: self

| aNode
 ^ AlternationExpression new
 alternative1: self asRExp alternative2: aNode asRExp

asRExp
 ^ LiteralExpression new components: self

If we defined these operations higher up in the class
hierarchy(SequenceableCollection in Smalltalk-80,IndexedCollection in
Smalltalk/V), then they wouldalso be defined for classes such as Array
andOrderedCollection. This would letregular expressions match sequences of any
kind of object.

The second example is a system for manipulating and evaluatingBoolean expressions
implemented in C++. The terminal symbols in thislanguage are Boolean variables,
that is, the constantstrue and false. Nonterminal symbols representexpressions
containing the operators and, or, andnot. The grammar is defined asfollows1:

BooleanExp ::= VariableExp | Constant | OrExp | AndExp | NotExp |
 '(' BooleanExp ')'
AndExp ::= BooleanExp 'and' BooleanExp
OrExp ::= BooleanExp 'or' BooleanExp
NotExp ::= 'not' BooleanExp
Constant ::= 'true' | 'false'
VariableExp ::= 'A' | 'B' | ... | 'X' | 'Y' | 'Z'

We define two operations on Boolean expressions. The first,Evaluate, evaluates
a Boolean expression in a contextthat assigns a true or false value to each variable.
The secondoperation, Replace, produces a new Boolean expression byreplacing a
variable with an expression. Replace showshow the Interpreter pattern can be used
for more than just evaluatingexpressions. In this case, it manipulates the
expression itself.

Design Patterns: Elements of Reusable Object-Oriented Software

284

We give details of just the BooleanExp,VariableExp, and AndExp classes here.
ClassesOrExp and NotExp are similar to AndExp.The Constant class represents the
Boolean constants.

BooleanExp defines the interface for all classes that definea Boolean expression:

class BooleanExp {
public:
 BooleanExp();
 virtual ~BooleanExp();
 virtual bool Evaluate(Context&) = 0;
 virtual BooleanExp* Replace(const char*, BooleanExp&) = 0;
 virtual BooleanExp* Copy() const = 0;
};

The class Context defines a mapping from variables toBoolean values, which we
represent with the C++ constantstrue and false. Context has thefollowing
interface:

class Context {
public:
 bool Lookup(const char*) const;
 void Assign(VariableExp*, bool);
};

A VariableExp represents a named variable:

class VariableExp : public BooleanExp {
public:
 VariableExp(const char*);
 virtual ~VariableExp();
 virtual bool Evaluate(Context&);
 virtual BooleanExp* Replace(const char*, BooleanExp&);
 virtual BooleanExp* Copy() const;
private:
 char* _name;
};

The constructor takes the variable's name as an argument:

VariableExp::VariableExp (const char* name) {
 _name = strdup(name);
}

Evaluating a variable returns its value in the current context.

Design Patterns: Elements of Reusable Object-Oriented Software

285

bool VariableExp::Evaluate (Context& aContext) {
 return aContext.Lookup(_name);
}

Copying a variable returns a new VariableExp:

BooleanExp* VariableExp::Copy () const {
 return new VariableExp(_name);
}

To replace a variable with an expression, we check to see if thevariable has the
same name as the one it is passed as an argument:

BooleanExp* VariableExp::Replace (const char* name, BooleanExp& exp) {
 if (strcmp(name, _name) == 0) {
 return exp.Copy();
 } else {
 return new VariableExp(_name);
 }
}

An AndExp represents an expression made by ANDing twoBoolean expressions together.

class AndExp : public BooleanExp {
public:
 AndExp(BooleanExp*, BooleanExp*);
 virtual ~ AndExp();
 virtual bool Evaluate(Context&);
 virtual BooleanExp* Replace(const char*, BooleanExp&);
 virtual BooleanExp* Copy() const;
private:
 BooleanExp* _operand1;
 BooleanExp* _operand2;
};

AndExp::AndExp (BooleanExp* op1, BooleanExp* op2)
{ _operand1 = op1; _operand2 = op2; }

Evaluating an AndExp evaluates its operands and returnsthe logical "and" of the
results.

bool AndExp::Evaluate (Context& aContext) {
return _operand1->Evaluate(aContext) && _operand2->Evaluate(aContext);
}

Design Patterns: Elements of Reusable Object-Oriented Software

286

An AndExp implements Copy and Replace bymaking recursive calls on its operands:

BooleanExp* AndExp::Copy () const
{ return new AndExp(_operand1->Copy(), _operand2->Copy()); }

BooleanExp* AndExp::Replace (const char* name, BooleanExp& exp) {
 return new AndExp(
 _operand1->Replace(name, exp),
 _operand2->Replace(name, exp)
);
}

Now we can define the Boolean expression

 (true and x) or (y and (not x))

and evaluate it for a given assignment of true orfalse to the variables x and
y:

BooleanExp* expression;
Context context;

VariableExp* x = new VariableExp("X");
VariableExp* y = new VariableExp("Y");

expression = new OrExp(
 new AndExp(new Constant(true), x),
 new AndExp(y, new NotExp(x))
);

context.Assign(x, false);
context.Assign(y, true);

bool result = expression->Evaluate(context);

The expression evaluates to true for this assignment tox and y. We can evaluate
the expression with adifferent assignment to the variables simply by changing
thecontext.

Finally, we can replace the variable y with a new expression andthen reevaluate
it:

VariableExp* z = new VariableExp("Z");
NotExp not_z(z);

Design Patterns: Elements of Reusable Object-Oriented Software

287

BooleanExp* replacement = expression->Replace("Y", not_z);

context.Assign(z, true);

result = replacement->Evaluate(context);

This example illustrates an important point about the Interpreterpattern: many
kinds of operations can "interpret" a sentence. Ofthe three operations defined
for BooleanExp,Evaluate fits our idea of what an interpreter should do
mostclosely—that is, it interprets a program or expression and returns asimple
result.

However, Replace can be viewed as an interpreter as well.It's an interpreter whose
context is the name of the variable beingreplaced along with the expression that
replaces it, and whose resultis a new expression. Even Copy can be thought of
as aninterpreter with an empty context. It may seem a little strange toconsider
Replace and Copy to be interpreters, becausethese are just basic operations on
trees. The examples in Visitor (366) illustrate how all three operations can
berefactored into a separate "interpreter" visitor, thus showing thatthe
similarity is deep.

The Interpreter pattern is more than just an operation distributedover a class
hierarchy that uses the Composite (183) pattern. We consider Evaluate an
interpreter because wethink of the BooleanExp class hierarchy as representing
alanguage. Given a similar class hierarchy for representing automotivepart
assemblies, it's unlikely we'd consider operations likeWeight and Copy as
interpreters even though theyare distributed over a class hierarchy that uses
the Compositepattern—we just don't think of automotive parts as a language. It'sa
matter of perspective; if we started publishing grammars ofautomotive parts, then
we could consider operations on those parts tobe ways of interpreting the language.

Known Uses

The Interpreter pattern is widely used in compilers implemented
withobject-oriented languages, as the Smalltalk compilers are. SPECTalkuses the
pattern to interpret descriptions of input fileformats [Sza92]. The QOCA
constraint-solving toolkituses it to evaluate constraints [HHMV92].

Considered in its most general form (i.e., an operation distributedover a class
hierarchy based on the Composite pattern), nearly everyuse of the Composite pattern
will also contain the Interpreterpattern. But the Interpreter pattern should be
reserved for thosecases in which you want to think of the class hierarchy as defining
alanguage.

Design Patterns: Elements of Reusable Object-Oriented Software

288

Related Patterns

Composite (183):The abstract syntax tree is an instance of the Composite pattern.

Flyweight (218) shows how to share terminal symbols within the abstract syntaxtree.

Iterator (289):The interpreter can use an Iterator to traverse the structure.

Visitor (366) canbe used to maintain the behavior in each node in the abstract
syntaxtree in one class.

1For simplicity, we ignore operator precedence andassume it's the responsibility
of whichever object constructs thesyntax tree.

Design Patterns: Elements of Reusable Object-Oriented Software

289

Iterator

Intent

Provide a way to access the elements of an aggregate objectsequentially without
exposing its underlying representation.

Also Known As

Cursor

Motivation

An aggregate object such as a list should give you a way to access itselements
without exposing its internal structure. Moreover, you mightwant to traverse the
list in different ways, depending on what youwant to accomplish. But you probably
don't want to bloat the Listinterface with operations for different traversals,
even if you couldanticipate the ones you will need. You might also need to have
more thanone traversal pending on the same list.

The Iterator pattern lets you do all this. The key idea in thispattern is to take
the responsibility for access and traversal out ofthe list object and put it into
an iterator object. TheIterator class defines an interface for accessing the list's
elements.An iterator object is responsible for keeping track of the currentelement;
that is, it knows which elements have been traversed already.

For example, a List class would call for a ListIterator with thefollowing
relationship between them:

Before you can instantiate ListIterator, you must supply the List totraverse.
Once you have the ListIterator instance, you can access thelist's elements
sequentially. The CurrentItem operation returns thecurrent element in the list,
First initializes the current element tothe first element, Next advances the

Design Patterns: Elements of Reusable Object-Oriented Software

290

current element to the nextelement, and IsDone tests whether we've advanced beyond
the lastelement—that is, we're finished with the traversal.

Separating the traversal mechanism from the List object lets us defineiterators
for different traversal policies without enumerating them inthe List interface.
For example, FilteringListIterator might provideaccess only to those elements
that satisfy specific filteringconstraints.

Notice that the iterator and the list are coupled, and the client mustknow that
it is a list that's traversed as opposed to some otheraggregate structure. Hence
the client commits to a particularaggregate structure. It would be better if we
could change the aggregateclass without changing client code. We can do this by
generalizingthe iterator concept to support polymorphic iteration.

As an example, let's assume that we also have a SkipListimplementation of a list.
A skiplist [Pug90] is aprobabilistic data structure with characteristics similar
to balancedtrees. We want to be able to write code that works for both List
andSkipList objects.

We define an AbstractList class that provides a common interfacefor manipulating
lists. Similarly, we need an abstract Iteratorclass that defines a common iteration
interface. Then we can defineconcrete Iterator subclasses for the different list
implementations.As a result, the iteration mechanism becomes independent of
concreteaggregate classes.

The remaining problem is how to create the iterator. Since we want towrite code
that's independent of the concrete List subclasses, wecannot simply instantiate
a specific class. Instead, we make the listobjects responsible for creating their

Design Patterns: Elements of Reusable Object-Oriented Software

291

corresponding iterator. Thisrequires an operation like CreateIterator through
which clientsrequest an iterator object.

CreateIterator is an example of a factory method (see Factory Method (121)). We
use it here to let a client aska list object for the appropriate iterator. The
Factory Methodapproach give rise to two class hierarchies, one for lists and
anotherfor iterators. The CreateIterator factory method "connects" the
twohierarchies.

Applicability

Use the Iterator pattern

• to access an aggregate object's contents without exposing its
internalrepresentation.

• to support multiple traversals of aggregate objects.
• to provide a uniform interface for traversing different

aggregatestructures (that is, to support polymorphic iteration).

Structure

Participants

• Iterator
o defines an interface for accessing and traversing elements.

• ConcreteIterator
o implements the Iterator interface.

Design Patterns: Elements of Reusable Object-Oriented Software

292

o keeps track of the current position in the traversal of the aggregate.
• Aggregate

o defines an interface for creating an Iterator object.
• ConcreteAggregate

o implements the Iterator creation interface to return an instance
of the proper ConcreteIterator.

Collaborations

• A ConcreteIterator keeps track of the current object in theaggregate and
can compute the succeeding object in thetraversal.

Consequences

The Iterator pattern has three important consequences:

1. It supports variations in the traversal of an aggregate.Complex aggregates
may be traversed in many ways. For example, codegeneration and semantic
checking involve traversing parse trees. Codegeneration may traverse the
parse tree inorder or preorder.Iterators make it easy to change the
traversal algorithm: Just replacethe iterator instance with a different
one. You can also defineIterator subclasses to support new traversals.

2. Iterators simplify the Aggregate interface.Iterator's traversal interface
obviates the need for a similarinterface in Aggregate, thereby simplifying
the aggregate's interface.

3. More than one traversal can be pending on an aggregate.An iterator keeps
track of its own traversal state. Therefore you canhave more than one
traversal in progress at once.

Implementation

Iterator has many implementation variants and alternatives. Someimportant ones
follow. The trade-offs often depend on thecontrol structures your language
provides. Some languages (CLU [LG86], for example) even support this pattern
directly.

1. Who controls the iteration?A fundamental issue is deciding which party
controls the iteration,the iterator or the client that uses the iterator.
When the clientcontrols the iteration, the iterator is called an
externaliterator, and when the iterator controls it, the iterator is
aninternal iterator.2Clients that use anexternal iterator must advance the
traversal and request the nextelement explicitly from the iterator. In

Design Patterns: Elements of Reusable Object-Oriented Software

293

contrast, the client handsan internal iterator an operation to perform,
and the iterator appliesthat operation to every element in the aggregate.

External iterators are more flexible than internal iterators. It'seasy to
compare two collections for equality with an externaliterator, for example,
but it's practically impossible with internaliterators. Internal iterators
are especially weak in a language likeC++ that does not provide anonymous
functions, closures, orcontinuations like Smalltalk and CLOS. But on the
other hand,internal iterators are easier to use, because they define the
iterationlogic for you.

2. Who defines the traversal algorithm?The iterator is not the only place where
the traversal algorithm canbe defined. The aggregate might define the
traversal algorithm anduse the iterator to store just the state of the
iteration. We callthis kind of iterator a cursor, since it merely points
tothe current position in the aggregate. A client will invoke the
Nextoperation on the aggregate with the cursor as an argument, and theNext
operation will change the state of thecursor.3

If the iterator is responsible for the traversal algorithm, then it'seasy
to use different iteration algorithms on the same aggregate, andit can also
be easier to reuse the same algorithm on differentaggregates. On the other
hand, the traversal algorithm might need toaccess the private variables
of the aggregate. If so, putting thetraversal algorithm in the iterator
violates the encapsulation of theaggregate.

3. How robust is the iterator?It can be dangerous to modify an aggregate while
you're traversing it.If elements are added or deleted from the aggregate,
you might end upaccessing an element twice or missing it completely. A
simplesolution is to copy the aggregate and traverse the copy, but that'stoo
expensive to do in general.

A robust iterator ensures that insertions and removalswon't interfere with
traversal, and it does it without copying theaggregate. There are many ways
to implement robust iterators. Mostrely on registering the iterator with
the aggregate. On insertion orremoval, the aggregate either adjusts the
internal state of iteratorsit has produced, or it maintains information
internally to ensureproper traversal.

Kofler provides a good discussion of how robust iterators areimplemented
in ET++ [Kof93]. Murray discusses theimplementation of robust iterators
for the USL StandardComponents'List class [Mur93].

4. Additional Iterator operations.The minimal interface to Iterator consists
of the operations First,Next, IsDone, and CurrentItem.4Someadditional

Design Patterns: Elements of Reusable Object-Oriented Software

294

operations might prove useful. For example, orderedaggregates can have a
Previous operation that positions the iteratorto the previous element. A
SkipTo operation is useful for sorted orindexed collections. SkipTo
positions the iterator to an objectmatching specific criteria.

5. Using polymorphic iterators in C++.Polymorphic iterators have their cost.
They require the iteratorobject to be allocated dynamically by a factory
method. Hence theyshould be used only when there's a need for polymorphism.
Otherwiseuse concrete iterators, which can be allocated on the stack.

Polymorphic iterators have another drawback: the client is responsiblefor
deleting them. This is error-prone, because it's easy to forgetto free a
heap-allocated iterator object when you're finished with it.That's
especially likely when there are multiple exit points in anoperation. And
if an exception is triggered, the iterator object willnever be freed.

The Proxy (233) pattern provides a remedy. We can use astack-allocated proxy
as a stand-in for the real iterator. The proxydeletes the iterator in its
destructor. Thus when the proxy goes outof scope, the real iterator will
get deallocated along with it. Theproxy ensures proper cleanup, even in
the face of exceptions. Thisis an application of the well-known C++
technique "resourceallocation is initialization" [ES90]. The Sample Code
givesan example.

6. Iterators may have privileged access.An iterator can be viewed as an
extension of the aggregate thatcreated it. The iterator and the aggregate
are tightly coupled. Wecan express this close relationship in C++ by making
the iterator afriend of its aggregate. Then you don't need todefine
aggregate operations whose sole purpose is to let iteratorsimplement
traversal efficiently.

However, such privileged access can make defining new traversalsdifficult,
since it'll require changing the aggregate interface to addanother friend.
To avoid this problem, the Iterator class can includeprotected operations
for accessing important but publiclyunavailable members of the aggregate.
Iterator subclasses (and only Iterator subclasses) may use these protected
operations to gainprivileged access to the aggregate.

7. Iterators for composites.External iterators can be difficult to implement
over recursiveaggregate structures like those in the Composite (183)
pattern, because a position in the structure may span many levels ofnested
aggregates. Therefore an external iterator has to store a paththrough the
Composite to keep track of the current object. Sometimesit's easier just
to use an internal iterator. It can record thecurrent position simply by

Design Patterns: Elements of Reusable Object-Oriented Software

295

calling itself recursively, thereby storingthe path implicitly in the call
stack.

If the nodes in a Composite have an interface for moving from a nodeto its
siblings, parents, and children, then a cursor-based iteratormay offer a
better alternative. The cursor only needs to keep track ofthe current node;
it can rely on the node interface to traverse theComposite.

Composites often need to be traversed in more than one way.
Preorder,postorder, inorder, and breadth-first traversals are common. You
cansupport each kind of traversal with a different class of iterator.

8. Null iterators.A NullIterator is a degenerate iterator that's helpful
forhandling boundary conditions. By definition, a NullIterator is always
done with traversal; that is, its IsDone operation alwaysevaluates to true.

NullIterator can make traversing tree-structured aggregates
(likeComposites) easier. At each point in the traversal, we ask thecurrent
element for an iterator for its children. Aggregate elementsreturn a
concrete iterator as usual. But leaf elements return aninstance of
NullIterator. That lets us implement traversal over theentire structure
in a uniform way.

Sample Code

We'll look at the implementation of a simple List class, which is partof our
foundation library (Appendix C) .We'll show two Iterator implementations, one
for traversing the List infront-to-back order, and another for traversing
back-to-front (thefoundation library supports only the first one). Then we show
how touse these iterators and how to avoid committing to a particularimplementation.
After that, we change the design to make sureiterators get deleted properly. The
last example illustrates aninternal iterator and compares it to its external
counterpart.

1. List and Iterator interfaces.First let's look at the part of the List
interface that's relevant toimplementing iterators. Refer to (Appendix C).
for the full interface.

template <class Item>
class List {
public:
List(long size = DEFAULT_LIST_CAPACITY);
long Count() const;
Item& Get(long index) const;

Design Patterns: Elements of Reusable Object-Oriented Software

296

// ...
};

The List class provides a reasonably efficient way tosupport iteration
through its public interface. It's sufficient toimplement both traversals.
So there's no need to give iteratorsprivileged access to the underlying
data structure; that is, theiterator classes are not friends of List. To
enabletransparent use of the different traversals we define an
abstractIterator class, which defines the iterator interface.

template <class Item>
class Iterator {
public:
virtual void First() = 0;
virtual void Next() = 0;
virtual bool IsDone() const = 0;
virtual Item CurrentItem() const = 0;
protected:
Iterator();
};

2. Iterator subclass implementations.ListIterator is a subclass of Iterator.

template <class Item>
class ListIterator : public Iterator<Item> {
public:
ListIterator(const List<Item>* aList);
virtual void First();
virtual void Next();
virtual bool IsDone() const;
virtual Item CurrentItem() const;
private:
const List<Item>* _list;
long _current;
};

The implementation of ListIterator is straightforward. Itstores the List
along with an index _current intothe list:

template <class Item>
ListIterator<Item>::ListIterator (const List<Item>* aList)
 : _list(aList), _current(0) { }

First positions the iterator to the first element:

Design Patterns: Elements of Reusable Object-Oriented Software

297

template <class Item>
void ListIterator<Item>::First ()
{ _current = 0; }

Next advances the current element:

template <class Item>
void ListIterator<Item>::Next ()
{ _current++; }

IsDone checks whether the index refers to an element withinthe List:

template <class Item>
bool ListIterator<Item>::IsDone () const
{ return _current >= _list->Count(); }

Finally, CurrentItem returns the item at the current index.If the iteration
has already terminated, then we throw anIteratorOutOfBounds exception:

template <class Item>
Item ListIterator<Item>::CurrentItem () const {
if (IsDone()) {
throw IteratorOutOfBounds;
}
return _list->Get(_current);
}

The implementation of ReverseListIterator is identical, except itsFirst
operation positions _currentto the end of the list, and Next
decrements_current toward the first item.

3. Using the iterators.Let's assume we have a List of Employee objects,and
we would like to print all the contained employees. TheEmployee class
supports this with a Printoperation. To print the list, we define a
PrintEmployeesoperation that takes an iterator as an argument. It uses the
iteratorto traverse and print the list.

void PrintEmployees (Iterator<Employee*>& i) {
for (i.First(); !i.IsDone(); i.Next()){
i.CurrentItem()->Print();
}
}

Since we have iterators for both back-to-front and front-to-backtraversals,
we can reuse this operation to print the employees in bothorders.

Design Patterns: Elements of Reusable Object-Oriented Software

298

List<Employee*>* employees;
// ...
ListIterator<Employee*> forward(employees);
ReverseListIterator<Employee*> backward(employees);
PrintEmployees(forward);
PrintEmployees(backward);

4. Avoiding commitment to a specific list implementation.Let's consider how
a skiplist variation of List would affectour iteration code. A SkipList
subclass ofList must provide a SkipListIterator thatimplements the
Iterator interface. Internally, theSkipListIterator has to keep more than
just an index todo the iteration efficiently. But sinceSkipListIterator
conforms to theIterator interface, the PrintEmployees operationcan also
be used when the employees are stored in a SkipListobject.

SkipList<Employee*>* employees;
// ...
SkipListIterator<Employee*> iterator(employees);
PrintEmployees(iterator);

Although this approach works, it would be better if we didn't have to
committo a specific List implementation, namelySkipList. We can introduce
an AbstractListclass to standardize the list interface for different
listimplementations. List and SkipList becomesubclasses of AbstractList.

To enable polymorphic iteration, AbstractList defines afactory method
CreateIterator, which subclasses override toreturn their corresponding
iterator:

template <class Item>
class AbstractList {
public:
virtual Iterator<Item>* CreateIterator() const = 0;
// ...
};

An alternative would be to define a general mixin classTraversable that
defines the interface for creating aniterator. Aggregate classes can mix
inTraversable to support polymorphic iteration.

List overrides CreateIterator to return aListIterator object:

template <class Item>
Iterator<Item>* List<Item>::CreateIterator () const {
return new ListIterator<Item>(this);

Design Patterns: Elements of Reusable Object-Oriented Software

299

}

Now we're in a position to write the code for printingthe employees
independent of a concrete representation.

// we know only that we have an AbstractList
AbstractList<Employee*>* employees;
// ...
Iterator<Employee*>* iterator = employees->CreateIterator();
PrintEmployees(*iterator);
delete iterator;

5. Making sure iterators get deleted.Notice that CreateIterator returns a
newly allocatediterator object. We're responsible for deleting it. If we
forget,then we've created a storage leak. To make life easier for
clients,we'll provide an IteratorPtr that acts as a proxy for aniterator.
It takes care of cleaning up the Iterator objectwhen it goes out of scope.

IteratorPtr is always allocated on thestack.5C++ automatically takes care
of callingits destructor, which deletes the real iterator.IteratorPtr
overloads bothoperator-> andoperator* in such a way that an IteratorPtr
can betreated just like a pointer to an iterator. The members ofIteratorPtr
are all implemented inline; thus they can incur nooverhead.

template <class Item>
class IteratorPtr {
public:
IteratorPtr(Iterator<Item>* i): _i(i) { }
~IteratorPtr() { delete _i; }
Iterator<Item>* operator->() { return _i; }
Iterator<Item>& operator*() { return *_i; }
private:
// disallow copy and assignment to avoid
// multiple deletions of _i:
IteratorPtr(const IteratorPtr&);
IteratorPtr& operator=(const IteratorPtr&);
private:
Iterator<Item>* _i;
};

IteratorPtr lets us simplify our printing code:

AbstractList<Employee*>* employees;
// ...
IteratorPtr<Employee*> iterator(employees->CreateIterator());

Design Patterns: Elements of Reusable Object-Oriented Software

300

PrintEmployees(*iterator);

6. An internal ListIterator.As a final example, let's look at a possible
implementation of aninternal or passive ListIterator class. Here the
iteratorcontrols the iteration, and it applies an operation to each element.

The issue in this case is how to parameterize the iterator with theoperation
we want to perform on each element. C++ does not supportanonymous functions
or closures that other languages provide for thistask. There are at least
two options: (1) Pass in a pointer to afunction (global or static), or (2)
rely on subclassing. In the firstcase, the iterator calls the operation
passed to it at each point inthe iteration. In the second case, the iterator
calls an operationthat a subclass overrides to enact specific behavior.

Neither option is perfect. Often you want to accumulate state duringthe
iteration, and functions aren't well-suited to that; we would haveto use
static variables to remember the state. AnIterator subclass provides us
with a convenient place tostore the accumulated state, like in an instance
variable. Butcreating a subclass for every different traversal is more work.

Here's a sketch of the second option, which uses subclassing. We callthe
internal iterator a ListTraverser.

template <class Item>
class ListTraverser {
public:
ListTraverser(List<Item>* aList);
bool Traverse();
protected:
virtual bool ProcessItem(const Item&) = 0;
private:
ListIterator<Item> _iterator;
};

ListTraverser takes a List instance as a parameter.Internally it uses an
external ListIterator to do thetraversal. Traverse starts the traversal
and callsProcessItem for each item. The internal iterator can choose
toterminate a traversal by returning false fromProcessItem. Traverse
returns whether the traversalterminated prematurely.

template <class Item>
ListTraverser<Item>::ListTraverser (List<Item>* aList)
: _iterator(aList) { }

template <class Item>

Design Patterns: Elements of Reusable Object-Oriented Software

301

bool ListTraverser<Item>::Traverse () {
bool result = false;
for (_iterator.First(); !_iterator.IsDone();_iterator.Next()) {
result = ProcessItem(_iterator.CurrentItem());
if (result == false) {
break;
}
}
return result;
}

Let's use a ListTraverser to print the first 10employees from our employee
list. To do it we have to subclassListTraverser and override ProcessItem.
Wecount the number of printed employees in a _count instancevariable.

class PrintNEmployees : public ListTraverser<Employee*> {
public:
PrintNEmployees(List<Employee*>* aList, int n) :
ListTraverser<Employee*>(aList),
_total(n), _count(0) { }
protected:
bool ProcessItem(Employee* const&);
private:
int _total;
int _count;
};

bool PrintNEmployees::ProcessItem (Employee* const& e) {
_count++;
e->Print();
return _count < _total;
}

Here's how PrintNEmployees prints the first 10 employeeson the list:

List<Employee*>* employees;
// ...
PrintNEmployees pa(employees, 10);
pa.Traverse();

Note how the client doesn't specify the iteration loop. The entireiteration
logic can be reused. This is the primary benefit of aninternal iterator.
It's a bit more work than an external iterator,though, because we have to
define a new class. Contrast this withusing an external iterator:

Design Patterns: Elements of Reusable Object-Oriented Software

302

ListIterator<Employee*> i(employees);
int count = 0;
for (i.First(); !i.IsDone(); i.Next()) {
count++;
i.CurrentItem()->Print();
if (count >= 10) {
break;
}
}

Internal iterators can encapsulate different kinds of iteration.
Forexample, FilteringListTraverser encapsulates aniteration that
processes only items that satisfy a test:

template <class Item>
class FilteringListTraverser {
public:
FilteringListTraverser(List<Item>* aList);
bool Traverse();
protected:
virtual bool ProcessItem(const Item&) = 0;
virtual bool TestItem(const Item&) = 0;
private:
ListIterator<Item> _iterator;
};

This interface is the same as ListTraverser's except for anadded TestItem
member function that defines the test.Subclasses override TestItem to
specify the test.

Traverse decides to continue the traversal based on theoutcome of the test:

template <class Item>
void FilteringListTraverser<Item>::Traverse () {
bool result = false;
for (_iterator.First();!_iterator.IsDone();_iterator.Next()) {
if (TestItem(_iterator.CurrentItem())) {
result = ProcessItem(_iterator.CurrentItem());
if (result == false) {
break;
}
}
}
return result;

Design Patterns: Elements of Reusable Object-Oriented Software

303

}

A variant of this class could define Traverse to return ifat least one item
satisfies the test.6

Known Uses

Iterators are common in object-oriented systems. Most collectionclass libraries
offer iterators in one form or another.

Here's an example from the Booch components [Boo94], apopular collection class
library. It provides both a fixed size(bounded) and dynamically growing (unbounded)
implementation of aqueue. The queue interface is defined by an abstract Queue
class. Tosupport polymorphic iteration over the different queueimplementations,
the queue iterator is implemented in the terms of theabstract Queue class interface.
This variation has the advantage thatyou don't need a factory method to ask the
queue implementations fortheir appropriate iterator. However, it requires the
interface of theabstract Queue class to be powerful enough to implement the
iteratorefficiently.

Iterators don't have to be defined as explicitly in Smalltalk. Thestandard
collection classes (Bag, Set, Dictionary, OrderedCollection,String, etc.) define
an internal iterator method do:, whichtakes a block (i.e., closure) as an argument.
Each element in thecollection is bound to the local variable in the block; then
the blockis executed. Smalltalk also includes a set of Stream classes thatsupport
an iterator-like interface. ReadStream is essentially anIterator, and it can act
as an external iterator for all thesequential collections. There are no standard
external iterators fornonsequential collections such as Set and Dictionary.

Polymorphic iterators and the cleanup Proxy described earlier areprovided by the
ET++ container classes [WGM88]. The Unidrawgraphical editing framework classes
use cursor-basediterators [VL90].

ObjectWindows 2.0 [Bor94] provides a class hierarchy ofiterators for containers.
You can iterate over different containertypes in the same way. The ObjectWindow
iteration syntax relies onoverloading the postincrement operator ++ to advance
theiteration.

Related Patterns

Composite (183):Iterators are often applied to recursive structures such
asComposites.

Design Patterns: Elements of Reusable Object-Oriented Software

304

Factory Method (121):Polymorphic iterators rely on factory methods to instantiate
theappropriate Iterator subclass.

Memento (316) isoften used in conjunction with the Iterator pattern. An iteratorcan
use a memento to capture the state of an iteration. The iteratorstores the memento
internally.

2Booch refers to external and internal iterators asactive and passive
iterators,respectively [Boo94]. Theterms "active" and "passive" describe the role
of the client, notthe level of activity in the iterator.

3Cursors are a simple example of the Memento (316) pattern and share many of
itsimplementation issues.

4We can make this interfaceeven smaller by merging Next, IsDone, and CurrentItem
into asingle operation that advances to the next object and returns it. Ifthe
traversal is finished, then this operation returns a specialvalue (0, for instance)
that marks the end of the iteration.

5You can ensure this at compile-time just by declaringprivate new and delete
operators. An accompanyingimplementation isn't needed.

6The Traverse operation in these examplesis a Template Method (360) with primitive
operations TestItem andProcessItem.

Design Patterns: Elements of Reusable Object-Oriented Software

305

Mediator

Intent

Define an object that encapsulates how a set of objects interact.Mediator promotes
loose coupling by keeping objects from referring toeach other explicitly, and
it lets you vary their interactionindependently.

Motivation

Object-oriented design encourages the distribution of behavioramong objects. Such
distribution can result in an object structurewith many connections between
objects; in the worst case, every objectends up knowing about every other.

Though partitioning a system into many objects generally enhancesreusability,
proliferating interconnections tend to reduce it again.Lots of interconnections
make it less likely that an object can workwithout the support of others—the system
acts as though it weremonolithic. Moreover, it can be difficult to change the
system'sbehavior in any significant way, since behavior is distributed amongmany
objects. As a result, you may be forced to define many subclassesto customize
the system's behavior.

As an example, consider the implementation of dialog boxes in agraphical user
interface. A dialog box uses a window to present acollection of widgets such as
buttons, menus, and entry fields, asshown here:

Design Patterns: Elements of Reusable Object-Oriented Software

306

Often there are dependencies between the widgets in the dialog. Forexample, a
button gets disabled when a certain entry field is empty.Selecting an entry in
a list of choices called a list boxmight change the contents of an entry field.
Conversely, typing textinto the entry field might automatically select one or
morecorresponding entries in the list box. Once text appears in the entryfield,
other buttons may become enabled that let the user do somethingwith the text,
such as changing or deleting the thing to which it refers.

Different dialog boxes will have different dependencies betweenwidgets. So even
though dialogs display the same kinds of widgets,they can't simply reuse stock
widget classes; they have to becustomized to reflect dialog-specific dependencies.
Customizing themindividually by subclassing will be tedious, since many classes
areinvolved.

You can avoid these problems by encapsulating collective behavior in aseparate
mediator object. A mediator is responsible forcontrolling and coordinating the
interactions of a group of objects.The mediator serves as an intermediary that
keeps objects in the groupfrom referring to each other explicitly. The objects
only know themediator, thereby reducing the number of interconnections.

For example, FontDialogDirector can be the mediatorbetween the widgets in a dialog
box. A FontDialogDirector object knowsthe widgets in a dialog and coordinates
their interaction. It acts asa hub of communication for widgets:

Design Patterns: Elements of Reusable Object-Oriented Software

307

The following interaction diagram illustrates how the objects cooperate tohandle
a change in a list box's selection:

Here's the succession of events by which a list box's selection passesto an entry
field:

1. The list box tells its director that it's changed.
2. The director gets the selection from the list box.
3. The director passes the selection to the entry field.
4. Now that the entry field contains some text, the directorenables button(s)

for initiating an action (e.g., "demibold," "oblique").

Design Patterns: Elements of Reusable Object-Oriented Software

308

Note how the director mediates between the list box and the entry field.Widgets
communicate with each other only indirectly, through thedirector. They don't have
to know about each other; all they know is thedirector. Furthermore, because the
behavior is localized in one class,it can be changed or replaced by extending
or replacing that class.

Here's how the FontDialogDirector abstraction can be integrated into aclass
library:

DialogDirector is an abstract class that defines the overall behavior ofa dialog.
Clients call the ShowDialog operation to display the dialog onthe screen.
CreateWidgets is an abstract operation for creating thewidgets of a dialog.
WidgetChanged is another abstract operation;widgets call it to inform their
director that they have changed.DialogDirector subclasses override CreateWidgets
to create the properwidgets, and they override WidgetChanged to handle the changes.

Applicability

Use the Mediator pattern when

• a set of objects communicate in well-defined but complex ways. Theresulting
interdependencies are unstructured and difficult tounderstand.

• reusing an object is difficult because it refers to and communicateswith
many other objects.

• a behavior that's distributed between several classes should
becustomizable without a lot of subclassing.

Design Patterns: Elements of Reusable Object-Oriented Software

309

Structure

A typical object structure might look like this:

Participants

• Mediator (DialogDirector)
o defines an interface for communicating with Colleague objects.

• ConcreteMediator (FontDialogDirector)
o implements cooperative behavior by coordinating Colleague objects.
o knows and maintains its colleagues.

• Colleague classes (ListBox, EntryField)
o each Colleague class knows its Mediator object.
o each colleague communicates with its mediator whenever it would have

otherwise communicated with another colleague.

Design Patterns: Elements of Reusable Object-Oriented Software

310

Collaborations

• Colleagues send and receive requests from a Mediator object. Themediator
implements the cooperative behavior by routing requestsbetween the
appropriate colleague(s).

Consequences

The Mediator pattern has the following benefits and drawbacks:

1. It limits subclassing.A mediator localizes behavior that otherwise would
be distributed amongseveral objects. Changing this behavior requires
subclassing Mediatoronly; Colleague classes can be reused as is.

2. It decouples colleagues.A mediator promotes loose coupling between
colleagues. You can varyand reuse Colleague and Mediator classes
independently.

3. It simplifies object protocols.A mediator replaces many-to-many
interactions with one-to-manyinteractions between the mediator and its
colleagues. One-to-manyrelationships are easier to understand, maintain,
and extend.

4. It abstracts how objects cooperate.Making mediation an independent concept
and encapsulating it in anobject lets you focus on how objects interact
apart from theirindividual behavior. That can help clarify how objects
interact in asystem.

5. It centralizes control.The Mediator pattern trades complexity of
interaction for complexity inthe mediator. Because a mediator encapsulates
protocols, it can becomemore complex than any individual colleague. This
can make the mediatoritself a monolith that's hard to maintain.

Implementation

The following implementation issues are relevant to the Mediatorpattern:

1. Omitting the abstract Mediator class.There's no need to define an abstract
Mediator class when colleagueswork with only one mediator. The abstract
coupling that theMediator class provides lets colleagues work with
different Mediatorsubclasses, and vice versa.

2. Colleague-Mediator communication.Colleagues have to communicate with
their mediator when an event ofinterest occurs. One approach is to implement
the Mediator as anObserver using the Observer (326) pattern.
Colleagueclasses act as Subjects, sending notifications to the

Design Patterns: Elements of Reusable Object-Oriented Software

311

mediatorwhenever they change state. The mediator responds by propagating
theeffects of the change to other colleagues.

Another approach defines a specialized notification interface inMediator
that lets colleagues be more direct in their communication.Smalltalk/V for
Windows uses a form of delegation: When communicatingwith the mediator,
a colleague passes itself as an argument, allowingthe mediator to identify
the sender. The Sample Code uses thisapproach, and the Smalltalk/V
implementation is discussed further inthe Known Uses.

Sample Code

We'll use a DialogDirector to implement the font dialog box shown inthe Motivation.
The abstract class DialogDirector definesthe interface for directors.

class DialogDirector {
public:
virtual ~DialogDirector();
virtual void ShowDialog();
virtual void WidgetChanged(Widget*) = 0;
protected:
DialogDirector();
virtual void CreateWidgets() = 0;
};

Widget is the abstract base class for widgets. Awidget knows its director.

class Widget {
public:
Widget(DialogDirector*);
virtual void Changed();
virtual void HandleMouse(MouseEvent& event);
// ...
private:
DialogDirector* _director;
};

Changed calls the director's WidgetChangedoperation. Widgets call WidgetChanged
on their director toinform it of a significant event.

void Widget::Changed ()
{ _director->WidgetChanged(this); }

Design Patterns: Elements of Reusable Object-Oriented Software

312

Subclasses of DialogDirector overrideWidgetChanged to affect the appropriate
widgets. The widgetpasses a reference to itself as an argument to WidgetChangedto
let the director identify the widget that changed.DialogDirector subclasses
redefine theCreateWidgets pure virtual to construct the widgets in thedialog.

The ListBox, EntryField, and Button aresubclasses of Widget for specialized user
interfaceelements. ListBox provides a GetSelectionoperation to get the current
selection, and EntryField'sSetText operation puts new text into the field.

class ListBox : public Widget {
public:
ListBox(DialogDirector*);
virtual const char* GetSelection();
virtual void SetList(List<char*>* listItems);
virtual void HandleMouse(MouseEvent& event);
// ...
};

class EntryField : public Widget {
public:
EntryField(DialogDirector*);
virtual void SetText(const char* text);
virtual const char* GetText();
virtual void HandleMouse(MouseEvent& event);
// ...
};

Button is a simple widget that calls Changedwhenever it's pressed. This gets done
in its implementation ofHandleMouse:

class Button : public Widget {
public:
Button(DialogDirector*);
virtual void SetText(const char* text);
virtual void HandleMouse(MouseEvent& event);
// ...
};

void Button::HandleMouse (MouseEvent& event) {
// ...
Changed();
}

Design Patterns: Elements of Reusable Object-Oriented Software

313

The FontDialogDirector class mediates between widgets in thedialog box.
FontDialogDirector is a subclass ofDialogDirector:

class FontDialogDirector : public DialogDirector {
public:
FontDialogDirector();
virtual ~FontDialogDirector();
virtual void WidgetChanged(Widget*);
protected:
virtual void CreateWidgets();
private:
Button* _ok;
Button* _cancel;
ListBox* _fontList;
EntryField* _fontName;
};

FontDialogDirector keeps track of the widgets it displays.
ItredefinesCreateWidgets to create the widgets and initialize itsreferences to
them:

void FontDialogDirector::CreateWidgets () {
_ok = new Button(this);
_cancel = new Button(this);
_fontList = new ListBox(this);
_fontName = new EntryField(this);
// fill the listBox with the available font names
// assemble the widgets in the dialog
}

WidgetChanged ensures that the widgets work together properly:

void FontDialogDirector::WidgetChanged (Widget* theChangedWidget) {
if (theChangedWidget == _fontList) {
_fontName->SetText(_fontList->GetSelection());
} else if (theChangedWidget == _ok) {
// apply font change and dismiss dialog
// ...
} else if (theChangedWidget == _cancel) {
// dismiss dialog
}
}

Design Patterns: Elements of Reusable Object-Oriented Software

314

The complexity of WidgetChanged increases proportionallywith the complexity of
the dialog. Large dialogs are undesirable forother reasons, of course, but mediator
complexity might mitigate thepattern's benefits in other applications.

Known Uses

Both ET++ [WGM88] and the THINK C class library [Sym93b] usedirector-like objects
in dialogs as mediators between widgets.

The application architecture of Smalltalk/V for Windows is based on amediator
structure [LaL94]. In that environment, anapplication consists of a Window
containing a set of panes. Thelibrary contains several predefined Pane objects;
examples includeTextPane, ListBox, Button, and so on.These panes can be used
without subclassing. An application developeronly subclasses from ViewManager,
a class that's responsible for doinginter-pane coordination. ViewManager is the
Mediator, and each paneonly knows its view manager, which is considered the "owner"
of thepane. Panes don't refer to each other directly.

The following object diagram shows a snapshot of an application atrun-time:

Smalltalk/V uses an event mechanism for Pane-ViewManagercommunication. A pane
generates an event when it wants to getinformation from the mediator or when it
wants to inform the mediatorthat something significant happened. An event defines
a symbol (e.g.,#select) that identifies the event. To handle the event, theview
manager registers a method selector with the pane. This selectoris the event's
handler; it will be invoked whenever the event occurs.

The following code excerpt shows how a ListPane object gets created insidea
ViewManager subclass and how ViewManager registers an event handlerfor the #select
event:

Design Patterns: Elements of Reusable Object-Oriented Software

315

self addSubpane: (ListPane new
 paneName: 'myListPane';
 owner: self;
 when: #select perform: #listSelect:).

Another application of the Mediator pattern is in coordinating complexupdates.
An example is the ChangeManager class mentioned in Observer (326). ChangeManager
mediates betweensubjects and observers to avoid redundant updates. When an
objectchanges, it notifies the ChangeManager, which in turn coordinates theupdate
by notifying the object's dependents.

A similar application appears in the Unidraw drawingframework [VL90] and uses
a class called CSolver toenforce connectivity constraints between "connectors."
Objects ingraphical editors can appear to stick to one another in differentways.
Connectors are useful in applications that maintainconnectivity automatically,
like diagram editors and circuit designsystems. CSolver is a mediator between
connectors. It solves theconnectivity constraints and updates the connectors'
positions toreflect them.

Related Patterns

Facade (208) differsfrom Mediator in that it abstracts a subsystem of objects
to providea more convenient interface. Its protocol is unidirectional; thatis,
Facade objects make requests of the subsystem classes but notvice versa. In
contrast, Mediator enables cooperative behaviorthat colleague objects don't or
can't provide, and the protocol ismultidirectional.

Colleagues can communicate with the mediator using the Observer (326) pattern.

Design Patterns: Elements of Reusable Object-Oriented Software

316

Memento

Intent

Without violating encapsulation, capture and externalize an object'sinternal
state so that the object can be restored to this state later.

Also Known As

Token

Motivation

Sometimes it's necessary to record the internal state of an object.This is required
when implementing checkpoints and undo mechanismsthat let users back out of
tentative operations or recover fromerrors. You must save state information
somewhere so that you canrestore objects to their previous states. But objects
normallyencapsulate some or all of their state, making it inaccessible toother
objects and impossible to save externally. Exposing this statewould violate
encapsulation, which can compromise the application'sreliability and
extensibility.

Consider for example a graphical editor that supports connectivitybetween objects.
A user can connect two rectangles with a line, andthe rectangles stay connected
when the user moves either of them. Theeditor ensures that the line stretches
to maintain the connection.

A well-known way to maintain connectivity relationships betweenobjects is with
a constraint-solving system. We can encapsulate thisfunctionality in a
ConstraintSolver object.ConstraintSolver records connections as they are made
and generatesmathematical equations that describe them. It solves these
equationswhenever the user makes a connection or otherwise modifies thediagram.
ConstraintSolver uses the results of its calculations torearrange the graphics
so that they maintain the proper connections.

Design Patterns: Elements of Reusable Object-Oriented Software

317

Supporting undo in this application isn't as easy as it may seem. Anobvious way
to undo a move operation is to store the original distancemoved and move the object
back an equivalent distance. However, thisdoes not guarantee all objects will
appear where they did before.Suppose there is some slack in the connection. In
that case, simplymoving the rectangle back to its original location won't
necessarilyachieve the desired effect.

In general, the ConstraintSolver's public interface might beinsufficient to allow
precise reversal of its effects on otherobjects. The undo mechanism must work
more closely withConstraintSolver to reestablish previous state, but we should
alsoavoid exposing the ConstraintSolver's internals to the undo mechanism.

We can solve this problem with the Memento pattern. A memento is an object that
stores a snapshot of theinternal state of another object — the memento's originator.
The undo mechanism will request a mementofrom the originator when it needs to
checkpoint the originator'sstate. The originator initializes the memento with
information thatcharacterizes its current state. Only the originator can store
andretrieve information from the memento—the memento is "opaque" toother objects.

In the graphical editor example just discussed, the ConstraintSolver can actas
an originator. The following sequence of events characterizes theundo process:

1. The editor requests a memento from the ConstraintSolver as aside-effect
of the move operation.

2. The ConstraintSolver creates and returns a memento, an instance of aclass
SolverState in this case. A SolverState memento contains datastructures
that describe the current state of the ConstraintSolver'sinternal
equations and variables.

3. Later when the user undoes the move operation, the editor gives
theSolverState back to the ConstraintSolver.

4. Based on the information in the SolverState, the ConstraintSolverchanges
its internal structures to return its equations and variablesto their exact
previous state.

This arrangement lets the ConstraintSolver entrust other objects withthe
information it needs to revert to a previous state withoutexposing its internal
structure and representations.

Design Patterns: Elements of Reusable Object-Oriented Software

318

Applicability

Use the Memento pattern when

• a snapshot of (some portion of) an object's state must be saved sothat it
can be restored to that state later, and

• a direct interface to obtaining the state would exposeimplementation
details and break the object's encapsulation.

Structure

Participants

• Memento (SolverState)
o stores internal state of the Originator object. The memento may store

as much or as little of the originator's internal state as necessary
at its originator's discretion.

o protects against access by objects other than the originator.
Mementos have effectively two interfaces. Caretaker sees a narrow
interface to the Memento—it can only pass the memento to other objects.
Originator, in contrast, sees a wide interface, one that lets it
access all the data necessary to restore itself to its previous state.
Ideally, only the originator that produced the memento would be
permitted to access the memento's internal state.

• Originator (ConstraintSolver)
o creates a memento containing a snapshot of its current internal

state.
o uses the memento to restore its internal state.

• Caretaker (undo mechanism)
o is responsible for the memento's safekeeping.
o never operates on or examines the contents of a memento.

Design Patterns: Elements of Reusable Object-Oriented Software

319

Collaborations

• A caretaker requests a memento from an originator, holds it for atime, and
passes it back to the originator, as the followinginteraction diagram
illustrates:

Sometimes the caretaker won't pass the memento back to the
originator,because the originator might never need to revert to an earlier
state.

• Mementos are passive. Only the originator that created a memento willassign
or retrieve its state.

Consequences

The Memento pattern has several consequences:

1. Preserving encapsulation boundaries.Memento avoids exposing information
that only an originator shouldmanage but that must be stored nevertheless
outside the originator.The pattern shields other objects from potentially
complex Originatorinternals, thereby preserving encapsulation boundaries.

2. It simplifies Originator.In other encapsulation-preserving designs,
Originator keeps theversions of internal state that clients have requested.
That puts allthe storage management burden on Originator. Having
clientsmanage the state they ask for simplifies Originator and keepsclients
from having to notify originators when they're done.

3. Using mementos might be expensive.Mementos might incur considerable
overhead if Originator must copylarge amounts of information to store in
the memento or if clientscreate and return mementos to the originator often

Design Patterns: Elements of Reusable Object-Oriented Software

320

enough. Unlessencapsulating and restoring Originator state is cheap, the
patternmight not be appropriate. See the discussion of incrementality in
theImplementation section.

4. Defining narrow and wide interfaces.It may be difficult in some languages
to ensure that only theoriginator can access the memento's state.

5. Hidden costs in caring for mementos.A caretaker is responsible for deleting
the mementos it cares for.However, the caretaker has no idea how much state
is in the memento.Hence an otherwise lightweight caretaker might incur large
storagecosts when it stores mementos.

Implementation

Here are two issues to consider when implementing the Memento pattern:

1. Language support.Mementos have two interfaces: a wide one for originators
and a narrowone for other objects. Ideally the implementation language
willsupport two levels of static protection. C++ lets you do this bymaking
the Originator a friend of Memento and making Memento's wideinterface
private. Only the narrow interface should be declaredpublic. For example:

class State;

class Originator {
public:
Memento* CreateMemento();
void SetMemento(const Memento*);
// ...
private:
State* _state;
// internal data structures
// ...
};

class Memento {
public:
// narrow public interface
virtual ~Memento();
private:
// private members accessible only to Originator
friend class Originator;
Memento();
void SetState(State*);
State* GetState();

Design Patterns: Elements of Reusable Object-Oriented Software

321

// ...
private:
State* _state;
// ...
};

2. Storing incremental changes.When mementos get created and passed back to
their originator in apredictable sequence, then Memento can save just the
incrementalchange to the originator's internal state.

For example, undoable commands in a history list can use mementos toensure
that commands are restored to their exact state when they'reundone (see
Command (263)). The history list defines aspecific order in which commands
can be undone and redone. That meansmementos can store just the incremental
change that a command makesrather than the full state of every object they
affect. In theMotivation example given earlier, the constraint solver can
store only thoseinternal structures that change to keep the line connecting
therectangles, as opposed to storing the absolute positions of
theseobjects.

Sample Code

The C++ code given here illustrates the ConstraintSolver example discussed earlier.
Weuse MoveCommand objects (see Command (263)) to (un)dothe translation of a
graphical object from one position to another.The graphical editor calls the
command's Execute operationto move a graphical object and Unexecute to undo the
move.The command stores its target, the distance moved, and an instance
ofConstraintSolverMemento, a memento containing state from theconstraint solver.

class Graphic;
// base class for graphical objects in the graphical editor

class MoveCommand {
public:
MoveCommand(Graphic* target, const Point& delta);
void Execute();
void Unexecute();
private:
ConstraintSolverMemento* _state;
Point _delta;
Graphic* _target;
};

Design Patterns: Elements of Reusable Object-Oriented Software

322

The connection constraints are established by the classConstraintSolver. Its key
member function isSolve, which solves the constraints registered withthe
AddConstraint operation. To support undo,ConstraintSolver's state can be
externalized withCreateMemento into a ConstraintSolverMementoinstance. The
constraint solver can be returned to a previousstate by calling SetMemento.
ConstraintSolveris a Singleton (144).

class ConstraintSolver {
public:
static ConstraintSolver* Instance();
void Solve();
void AddConstraint(
Graphic* startConnection, Graphic* endConnection
);
void RemoveConstraint(
Graphic* startConnection, Graphic* endConnection
);
ConstraintSolverMemento* CreateMemento();
void SetMemento(ConstraintSolverMemento*);
private:
// nontrivial state and operations for enforcing
// connectivity semantics };

class ConstraintSolverMemento {
public:
virtual ~ConstraintSolverMemento();
private:
friend class ConstraintSolver;
ConstraintSolverMemento();
// private constraint solver state
};

Given these interfaces, we can implement MoveCommand membersExecute and Unexecute
as follows:

void MoveCommand::Execute () {
ConstraintSolver* solver = ConstraintSolver::Instance();
_state = solver->CreateMemento();
// create a memento
_target->Move(_delta);
solver->Solve();
}

void MoveCommand::Unexecute () {

Design Patterns: Elements of Reusable Object-Oriented Software

323

ConstraintSolver* solver = ConstraintSolver::Instance();
_target->Move(-_delta);
solver->SetMemento(_state);
// restore solver state
solver->Solve();
}

Execute acquires a ConstraintSolverMemento mementobefore it moves the graphic.
Unexecute moves the graphicback, sets the constraint solver's state to the previous
state, andfinally tells the constraint solver to solve the constraints.

Known Uses

The preceding sample code is based on Unidraw's support for connectivitythrough
its CSolver class [VL90].

Collections in Dylan [App92] provide an iteration interface thatreflects the
Memento pattern. Dylan's collections have the notion of a"state" object, which
is a memento that represents the state of theiteration. Each collection can
represent the current state of theiteration in any way it chooses; the
representation is completelyhidden from clients. The Dylan iteration approach
might be translatedto C++ as follows:

template <class Item>
class Collection {
public:
Collection();
IterationState* CreateInitialState();
void Next(IterationState*);
bool IsDone(const IterationState*) const;
Item CurrentItem(const IterationState*) const;
IterationState* Copy(const IterationState*) const;
void Append(const Item&);
void Remove(const Item&);
// ...
};

CreateInitialState returns an initializedIterationState object for the collection.
Next advancesthe state object to the next position in the iteration; it
effectivelyincrements the iteration index. IsDone returnstrue if Next has advanced
beyond the last elementin the collection. CurrentItem dereferences the stateobject
and returns the element in the collection to which it refers.Copy returns a copy
of the given state object. This isuseful for marking a point in an iteration.

Design Patterns: Elements of Reusable Object-Oriented Software

324

Given a class ItemType, we can iterate over a collection ofits instances as
follows7:

class ItemType {
public:
void Process();
// ...
};

Collection<ItemType*> aCollection;
IterationState* state;
state = aCollection.CreateInitialState();
while (!aCollection.IsDone(state)) {
aCollection.CurrentItem(state)->Process();
aCollection.Next(state);
}
delete state;

The memento-based iteration interface has two interesting benefits:

1. More than one state can work on the same collection. (The sameis true of
the Iterator (289) pattern.)

2. It doesn't require breaking a collection's encapsulationto support
iteration. The memento is only interpreted by thecollection itself; no one
else has access to it. Other approaches toiteration require breaking
encapsulation by making iterator classesfriends of their collection
classes (see Iterator (289)). The situation is reversed in thememento-based
implementation: Collection is a friend of theIteratorState.

The QOCA constraint-solving toolkit stores incremental information inmementos
[HHMV92]. Clients can obtain a memento that characterizesthe current solution
to a system of constraints. The memento containsonly those constraint variables
that have changed since the lastsolution. Usually only a small subset of the
solver's variableschanges for each new solution. This subset is enough to return
thesolver to the preceding solution; reverting to earlier solutionsrequires
restoring mementos from the intervening solutions. Hence youcan't set mementos
in any order; QOCA relies on a history mechanism torevert to earlier solutions.

Related Patterns

Command (263): Commands can use mementos to maintainstate for undoable operations.

Iterator (289): Mementoscan be used for iteration as described earlier.

Design Patterns: Elements of Reusable Object-Oriented Software

325

7Note that our example deletes the state object at the end of the iteration.

But delete won't get called if ProcessItem throws an exception, thus creating

garbage. This is a problem in C++ but not in Dylan, which has garbage collection.

We discuss a solution to this problem on page 299.

Design Patterns: Elements of Reusable Object-Oriented Software

326

Observer

Intent

Define a one-to-many dependency between objects so that when oneobject changes
state, all its dependents are notified and updatedautomatically.

Also Known As

Dependents, Publish-Subscribe

Motivation

A common side-effect of partitioning a system into a collection ofcooperating
classes is the need to maintain consistency betweenrelated objects. You don't
want to achieve consistency by making theclasses tightly coupled, because that
reduces their reusability.

For example, many graphical user interface toolkits separate thepresentational
aspects of the user interface from the underlyingapplication data [KP88, LVC89,
P+88, WGM88].Classes defining application data and presentations can be
reusedindependently. They can work together, too. Both a spreadsheet objectand
bar chart object can depict information in the same application dataobject using
different presentations. The spreadsheet and the bar chartdon't know about each
other, thereby letting you reuse only the one youneed. But they behave as though
they do. When the user changes theinformation in the spreadsheet, the bar chart
reflects the changesimmediately, and vice versa.

Design Patterns: Elements of Reusable Object-Oriented Software

327

This behavior implies that the spreadsheet and bar chart are dependenton the data
object and therefore should be notified of any change inits state. And there's
no reason to limit the number of dependentobjects to two; there may be any number
of different user interfacesto the same data.

The Observer pattern describes how to establish these relationships.The key
objects in this pattern are subject andobserver. A subject may have any number
of dependentobservers. All observers are notified whenever the subject undergoesa
change in state. In response, each observer will query the subjectto synchronize
its state with the subject's state.

This kind of interaction is also known aspublish-subscribe. The subject is the
publisher ofnotifications. It sends out these notifications without having to
knowwho its observers are. Any number of observers can subscribe toreceive
notifications.

Applicability

Use the Observer pattern in any of the following situations:

• When an abstraction has two aspects, one dependent on the
other.Encapsulating these aspects in separate objects lets you vary
andreuse them independently.

• When a change to one object requires changing others, and youdon't know
how many objects need to be changed.

• When an object should be able to notify other objects without
makingassumptions about who these objects are. In other words, you don'twant
these objects tightly coupled.

Design Patterns: Elements of Reusable Object-Oriented Software

328

Structure

Participants

• Subject
o knows its observers. Any number of Observer objects may observe a

subject.
o provides an interface for attaching and detaching Observer objects.

• Observer
o defines an updating interface for objects that should be notified

of changes in a subject.
• ConcreteSubject

o stores state of interest to ConcreteObserver objects.
o sends a notification to its observers when its state changes.

• ConcreteObserver
o maintains a reference to a ConcreteSubject object.
o stores state that should stay consistent with the subject's.
o implements the Observer updating interface to keep its state

consistent with the subject's.

Collaborations

• ConcreteSubject notifies its observers whenever a changeoccurs that could
make its observers' state inconsistent with its own.

• After being informed of a change in the concrete subject, aConcreteObserver
object may query the subject for information.ConcreteObserver uses this
information to reconcile its state with thatof the subject.

Design Patterns: Elements of Reusable Object-Oriented Software

329

The following interaction diagram illustrates the collaborationsbetween
a subject and two observers:

Note how the Observer object that initiates the change requestpostpones
its update until it gets a notification from the subject.Notify is not always
called by the subject. It can be called by anobserver or by another kind
of object entirely. The Implementationsection discusses some common
variations.

Consequences

The Observer pattern lets you vary subjects and observersindependently. You can
reuse subjects without reusing theirobservers, and vice versa. It lets you add
observers withoutmodifying the subject or other observers.

Further benefits and liabilities of the Observer pattern include thefollowing:

1. Abstract coupling between Subject and Observer.All a subject knows is that
it has a list of observers, eachconforming to the simple interface of the
abstract Observer class.The subject doesn't know the concrete class of any
observer. Thus thecoupling between subjects and observers is abstract and
minimal.

Because Subject and Observer aren't tightly coupled, they can belong
todifferent layers of abstraction in a system. A lower-level subjectcan
communicate and inform a higher-level observer, thereby keeping
thesystem's layering intact. If Subject and Observer are lumpedtogether,
then the resulting object must either span two layers (andviolate the

Design Patterns: Elements of Reusable Object-Oriented Software

330

layering), or it must be forced to live in one layer orthe other (which
might compromise the layering abstraction).

2. Support for broadcast communication.Unlike an ordinary request, the
notification that a subject sendsneedn't specify its receiver. The
notification is broadcastautomatically to all interested objects that
subscribed to it. Thesubject doesn't care how many interested objects exist;
its onlyresponsibility is to notify its observers. This gives you the
freedomto add and remove observers at any time. It's up to the observer
tohandle or ignore a notification.

3. Unexpected updates.Because observers have no knowledge of each other's
presence, they canbe blind to the ultimate cost of changing the subject.
A seeminglyinnocuous operation on the subject may cause a cascade of updates
toobservers and their dependent objects. Moreover, dependency criteriathat
aren't well-defined or maintained usually lead to spuriousupdates, which
can be hard to track down.

This problem is aggravated by the fact that the simple update
protocolprovides no details on what changed in the subject.
Withoutadditional protocol to help observers discover what changed, they
maybe forced to work hard to deduce the changes.

Implementation

Several issues related to the implementation of the dependencymechanism are
discussed in this section.

1. Mapping subjects to their observers.The simplest way for a subject to keep
track of the observers itshould notify is to store references to them
explicitly in thesubject. However, such storage may be too expensive when
there aremany subjects and few observers. One solution is to trade space
fortime by using an associative look-up (e.g., a hash table) to maintainthe
subject-to-observer mapping. Thus a subject with no observersdoes not incur
storage overhead. On the other hand, this approachincreases the cost of
accessing the observers.

2. Observing more than one subject.It might make sense in some situations for
an observer to depend onmore than one subject. For example, a spreadsheet
may depend on morethan one data source. It's necessary to extend the Update
interfacein such cases to let the observer know which subject is sendingthe
notification. The subject can simply pass itself as a parameterin the Update
operation, thereby letting the observer know whichsubject to examine.

Design Patterns: Elements of Reusable Object-Oriented Software

331

3. Who triggers the update?The subject and its observers rely on the
notification mechanism tostay consistent. But what object actually calls
Notify to trigger theupdate? Here are two options:

a. Have state-setting operations on Subject call Notify after
theychange the subject's state. The advantage of this approach is
thatclients don't have to remember to call Notify on the subject.
Thedisadvantage is that several consecutive operations will
causeseveral consecutive updates, which may be inefficient.

b. Make clients responsible for calling Notify at the right time.The
advantage here is that the client can wait to trigger the updateuntil
after a series of state changes has been made, therebyavoiding
needless intermediate updates. The disadvantage is thatclients have
an added responsibility to trigger the update. Thatmakes errors more
likely, since clients might forget to call Notify.

4. Dangling references to deleted subjects.Deleting a subject should not
produce dangling references in itsobservers. One way to avoid dangling
references is to make thesubject notify its observers as it is deleted so
that they can resettheir reference to it. In general, simply deleting the
observers is not an option, because other objects may reference them, or
they may beobserving other subjects as well.

5. Making sure Subject state is self-consistent beforenotification.It's
important to make sure Subject state is self-consistent beforecalling
Notify, because observers query the subject for its currentstate in the
course of updating their own state.

This self-consistency rule is easy to violate unintentionally whenSubject
subclass operations call inherited operations. For example,the
notification in the following code sequence is trigged when thesubject is
in an inconsistent state:

void MySubject::Operation (int newValue) {
BaseClassSubject::Operation(newValue);
// trigger notification
_myInstVar += newValue;
// update subclass state (too late!)
}

You can avoid this pitfall by sending notifications from template methods
(Template Method (360)) in abstract Subjectclasses. Define a primitive
operation for subclasses to override, and makeNotify the last operation
in the template method, which will ensure thatthe object is self-consistent
when subclasses override Subjectoperations.

void Text::Cut (TextRange r) {

Design Patterns: Elements of Reusable Object-Oriented Software

332

ReplaceRange(r); // redefined in subclasses
Notify();
}

By the way, it's always a good idea to document which Subject
operationstrigger notifications.

6. Avoiding observer-specific update protocols: the pushand pull models.
Implementations of the Observer pattern often havethe subject broadcast
additional information about the change. Thesubject passes this
information as an argument to Update. The amountof information may vary
widely.

At one extreme, which we call the push model, the subjectsends observers
detailed information about the change, whether theywant it or not. At the
other extreme is the pull model;the subject sends nothing but the most
minimal notification, andobservers ask for details explicitly thereafter.

The pull model emphasizes the subject's ignorance of its observers,whereas
the push model assumes subjects know something about theirobservers' needs.
The push model might make observers less reusable,because Subject classes
make assumptions about Observer classes thatmight not always be true. On
the other hand, the pull model may beinefficient, because Observer classes
must ascertain what changedwithout help from the Subject.

7. Specifying modifications of interest explicitly.You can improve update
efficiency by extending the subject'sregistration interface to allow
registering observers only forspecific events of interest. When such an
event occurs, the subjectinforms only those observers that have registered
interest in thatevent. One way to support this uses the notion ofaspects
for Subject objects. To registerinterest in particular events, observers
are attached to theirsubjects using

 void Subject::Attach(Observer*, Aspect& interest);

where interest specifies the eventof interest. At notification time, the
subject supplies the changedaspect to its observers as a parameter to the
Update operation. Forexample:

 void Observer::Update(Subject*, Aspect& interest);

8. Encapsulating complex update semantics.When the dependency relationship
between subjects and observers isparticularly complex, an object that
maintains these relationships mightbe required. We call such an object a
ChangeManager. Itspurpose is to minimize the work required to make observers

Design Patterns: Elements of Reusable Object-Oriented Software

333

reflect achange in their subject. For example, if an operation
involveschanges to several interdependent subjects, you might have
toensure that their observers are notified only after all thesubjects have
been modified to avoid notifying observers more thanonce.

ChangeManager has three responsibilities:

1. It maps a subject to its observers and provides an interface
tomaintain this mapping. This eliminates the need for subjects to
maintainreferences to their observers and vice versa.

2. It defines a particular update strategy.
3. It updates all dependent observers at the request of a subject.

The following diagram depicts a simple ChangeManager-based implementation
ofthe Observer pattern. There are two specialized
ChangeManagers.SimpleChangeManager is naive in that it always updates all
observers ofeach subject. In contrast, DAGChangeManager handles
directed-acyclicgraphs of dependencies between subjects and their
observers. ADAGChangeManager is preferable to a SimpleChangeManager when
an observerobserves more than one subject. In that case, a change in two
or moresubjects might cause redundant updates. The DAGChangeManager
ensuresthe observer receives just one update. SimpleChangeManager isfine
when multiple updates aren't an issue.

Design Patterns: Elements of Reusable Object-Oriented Software

334

ChangeManager is an instance of the Mediator (305) pattern. In general there
is only one ChangeManager, and it is knownglobally. The Singleton (144)
pattern would beuseful here.

9. Combining the Subject and Observer classes.Class libraries written in
languages that lack multiple inheritance(like Smalltalk) generally don't
define separate Subject and Observerclasses but combine their interfaces
in one class. That lets youdefine an object that acts as both a subject
and an observer withoutmultiple inheritance. In Smalltalk, for example,
the Subject andObserver interfaces are defined in the root class Object,
making themavailable to all classes.

Sample Code

An abstract class defines the Observer interface:

class Subject;

class Observer {
public:
 virtual ~ Observer();
 virtual void Update(Subject* theChangedSubject) = 0;
protected:
 Observer();
};

This implementation supports multiple subjects for each observer. Thesubject
passed to the Update operation lets the observerdetermine which subject changed
when it observes more than one.

Similarly, an abstract class defines the Subject interface:

class Subject {
public:
 virtual ~Subject();
 virtual void Attach(Observer*);
 virtual void Detach(Observer*);
 virtual void Notify();
protected:
 Subject();
private:
List<Observer*> *_observers;
};

Design Patterns: Elements of Reusable Object-Oriented Software

335

void Subject::Attach (Observer* o) { _observers->Append(o); }

void Subject::Detach (Observer* o) { _observers->Remove(o); }

void Subject::Notify () {
ListIterator<Observer*> i(_observers);
for (i.First(); !i.IsDone(); i.Next()) {
 i.CurrentItem()->Update(this);
}
}

ClockTimer is a concrete subject for storing andmaintaining the time of day. It
notifies its observers every second.ClockTimer provides the interface for
retrieving individualtime units such as the hour, minute, and second.

class ClockTimer : public Subject {
public:
 ClockTimer();
 virtual int GetHour();
 virtual int GetMinute();
 virtual int GetSecond();
 void Tick();
};

The Tick operation gets called by an internal timer atregular intervals to provide
an accurate time base. Tickupdates the ClockTimer's internal state and callsNotify
to inform observers of the change:

void ClockTimer::Tick () {
 // update internal time-keeping state
 // ...
 Notify();
}

Now we can define a class DigitalClock that displays thetime. It inherits its
graphical functionality from a Widgetclass provided by a user interface toolkit.
The Observer interface ismixed into the DigitalClock interface by inheriting
fromObserver.

class DigitalClock: public Widget, public Observer {
public:
 DigitalClock(ClockTimer*);
 virtual ~DigitalClock();
 virtual void Update(Subject*);
 // overrides Observer operation

Design Patterns: Elements of Reusable Object-Oriented Software

336

 virtual void Draw();
 // overrides Widget operation;
 // defines how to draw the digital clock
private:
 ClockTimer* _subject;
};

DigitalClock::DigitalClock (ClockTimer* s) {
 _subject = s;
 _subject->Attach(this);
}

DigitalClock:: DigitalClock () {
 _subject->Detach(this);
}

Before the Update operation draws the clock face, it checksto make sure the
notifying subject is the clock's subject:

void DigitalClock::Update (Subject* theChangedSubject) {
 if (theChangedSubject == _subject) {
 Draw();
 }
}

void DigitalClock::Draw () {
 // get the new values from the subject

 int hour = _subject->GetHour();
 int minute = _subject->GetMinute();
 // etc.

 // draw the digital clock
}

An AnalogClock class can be defined in the same way.

class AnalogClock : public Widget, public Observer {
public:
 AnalogClock(ClockTimer*);
 virtual void Update(Subject*);
 virtual void Draw();
 // ...

Design Patterns: Elements of Reusable Object-Oriented Software

337

};

The following code creates an AnalogClock and aDigitalClock that always show the
same time:

ClockTimer* timer = new ClockTimer;
AnalogClock* analogClock = new AnalogClock(timer);
DigitalClock* digitalClock = new DigitalClock(timer);

Whenever the timer ticks, the two clocks will be updatedand will redisplay
themselves appropriately.

Known Uses

The first and perhaps best-known example of the Observer pattern appearsin
Smalltalk Model/View/Controller (MVC), the user interface framework in the
Smalltalkenvironment [KP88]. MVC's Model class plays the role ofSubject, while
View is the base class for observers. Smalltalk,ET++ [WGM88], and the THINK class
library [Sym93b] provide ageneral dependency mechanism by putting Subject and
Observer interfacesin the parent class for all other classes in the system.

Other user interface toolkits that employ this pattern areInterViews [LVC89],
the AndrewToolkit [P+88], and Unidraw [VL90]. InterViewsdefines Observer and
Observable (for subjects) classes explicitly.Andrew calls them "view" and "data
object," respectively. Unidrawsplits graphical editor objects into View (for
observers) and Subjectparts.

Related Patterns

Mediator (305): Byencapsulating complex update semantics, the ChangeManager acts
asmediator between subjects and observers.

Singleton (144):The ChangeManager may use the Singleton pattern to make it
uniqueand globally accessible.

Design Patterns: Elements of Reusable Object-Oriented Software

338

State

Intent

Allow an object to alter its behavior when its internal state changes.The object
will appear to change its class.

Also Known As

Objects for States

Motivation

Consider a class TCPConnection that represents a network connection.A
TCPConnection object can be in one of several different states:Established,
Listening, Closed. When a TCPConnection object receivesrequests from other objects,
it responds differently depending on itscurrent state. For example, the effect
of an Open request depends onwhether the connection is in its Closed state or
its Establishedstate. The State pattern describes how TCPConnection can
exhibitdifferent behavior in each state.

The key idea in this pattern is to introduce an abstract class calledTCPState
to represent the states of the network connection. TheTCPState class declares
an interface common to all classes thatrepresent different operational states.
Subclasses of TCPStateimplement state-specific behavior. For example, the
classesTCPEstablished and TCPClosed implement behavior particular to
theEstablished and Closed states of TCPConnection.

Design Patterns: Elements of Reusable Object-Oriented Software

339

The class TCPConnection maintains a state object (an instance of asubclass of
TCPState) that represents the current state of the TCPconnection. The class
TCPConnection delegates all state-specificrequests to this state object.
TCPConnection uses its TCPStatesubclass instance to perform operations particular
to the state of theconnection.

Whenever the connection changes state, the TCPConnection objectchanges the state
object it uses. When the connection goes fromestablished to closed, for example,
TCPConnection will replace itsTCPEstablished instance with a TCPClosed instance.

Applicability

Use the State pattern in either of the following cases:

• An object's behavior depends on its state, and it must change itsbehavior
at run-time depending on that state.

• Operations have large, multipart conditional statements that depend onthe
object's state. This state is usually represented by one or moreenumerated
constants. Often, several operations will contain thissame conditional
structure. The State pattern puts each branch of theconditional in a
separate class. This lets you treat the object'sstate as an object in its
own right that can vary independently fromother objects.

Structure

Participants

• Context (TCPConnection)
o defines the interface of interest to clients.
o maintains an instance of a ConcreteState subclass that defines

thecurrent state.

Design Patterns: Elements of Reusable Object-Oriented Software

340

• State (TCPState)
o defines an interface for encapsulating the behavior associated with

aparticular state of the Context.
• ConcreteState subclasses (TCPEstablished, TCPListen, TCPClosed)

o each subclass implements a behavior associated with a state ofthe
Context.

Collaborations

• Context delegates state-specific requests to the current
ConcreteStateobject.

• A context may pass itself as an argument to the State objecthandling the
request. This lets the State object accessthe context if necessary.

• Context is the primary interface for clients. Clients can configure acontext
with State objects. Once a context is configured, its clients don't have
to deal with the State objects directly.

• Either Context or the ConcreteState subclasses can decide which
statesucceeds another and under what circumstances.

Consequences

The State pattern has the following consequences:

1. It localizes state-specific behavior and partitionsbehavior for different

states.The State pattern puts all behavior associated with a particular
stateinto one object. Because all state-specific code lives in a
Statesubclass, new states and transitions can be added easily by definingnew
subclasses.

An alternative is to use data values to define internal states andhave
Context operations check the data explicitly. But then we'dhave look-alike
conditional or case statements scattered throughoutContext's
implementation. Adding a new state could requirechanging several
operations, which complicates maintenance.

The State pattern avoids this problem but might introduce another,because
the pattern distributes behavior for different states acrossseveral State
subclasses. This increases the number of classes and isless compact than
a single class. But such distribution is actuallygood if there are many
states, which would otherwise necessitate largeconditional statements.

Like long procedures, large conditional statements are undesirable.They're
monolithic and tend to make the code less explicit, whichin turn makes them

Design Patterns: Elements of Reusable Object-Oriented Software

341

difficult to modify and extend. The State patternoffers a better way to
structure state-specific code. The logic thatdetermines the state
transitions doesn't reside in monolithicif or switch statements but instead
is partitionedbetween the State subclasses. Encapsulating each state
transition andaction in a class elevates the idea of an execution state
to fullobject status. That imposes structure on the code and makes itsintent
clearer.

2. It makes state transitions explicit.When an object defines its current state
solely in terms of internaldata values, its state transitions have no
explicit representation;they only show up as assignments to some variables.
Introducingseparate objects for different states makes the transitions
moreexplicit. Also, State objects can protect the Context frominconsistent
internal states, because state transitions are atomicfrom the Context's
perspective—they happen by rebinding onevariable (the Context's State
object variable), notseveral [dCLF93].

3. State objects can be shared.If State objects have no instance variables—that
is, the state theyrepresent is encoded entirely in their type—then contexts
can sharea State object. When states are shared in this way, they
areessentially flyweights (see Flyweight (218)) with nointrinsic state,
only behavior.

Implementation

The State pattern raises a variety of implementation issues:

1. Who defines the state transitions?The State pattern does not specify which
participant defines thecriteria for state transitions. If the criteria are
fixed, then theycan be implemented entirely in the Context. It is generally
moreflexible and appropriate, however, to let the State
subclassesthemselves specify their successor state and when to make
thetransition. This requires adding an interface to the Context thatlets
State objects set the Context's current state explicitly.

Decentralizing the transition logic in this way makes it easy tomodify or
extend the logic by defining new State subclasses. Adisadvantage of
decentralization is that one State subclass will haveknowledge of at least
one other, which introduces implementationdependencies between
subclasses.

2. A table-based alternative.In C++ Programming Style [Car92],
Cargilldescribes another way to impose structure on state-driven code:
Heuses tables to map inputs to state transitions. For each state, atable
maps every possible input to a succeeding state. In effect,this approach

Design Patterns: Elements of Reusable Object-Oriented Software

342

converts conditional code (and virtual functions, in thecase of the State
pattern) into a table look-up.

The main advantage of tables is their regularity: You can change
thetransition criteria by modifying data instead of changing programcode.
There are some disadvantages, however:

o A table look-up is often less efficient than a (virtual)function
call.

o Putting transition logic into a uniform, tabular format makes
thetransition criteria less explicit and therefore harder to
understand.

o It's usually difficult to add actions to accompany the
statetransitions. The table-driven approach captures the states and
theirtransitions, but it must be augmented to perform arbitrary
computationon each transition.

The key difference between table-driven state machines and the Statepattern
can be summed up like this: The State pattern modelsstate-specific behavior,
whereas the table-driven approach focuses ondefining state transitions.

3. Creating and destroying State objects.A common implementation trade-off
worth considering is whether(1) to create State objects only when they are
needed and destroy themthereafter versus (2) creating them ahead of time
and neverdestroying them.

The first choice is preferable when the states that will be enteredaren't
known at run-time, and contexts change stateinfrequently. This approach
avoids creating objects that won't beused, which is important if the State
objects store a lot ofinformation. The second approach is better when state
changes occurrapidly, in which case you want to avoid destroying states,
becausethey may be needed again shortly. Instantiation costs are paid
onceup-front, and there are no destruction costs at all. This approachmight
be inconvenient, though, because the Context must keepreferences to all
states that might be entered.

4. Using dynamic inheritance.Changing the behavior for a particular request
could be accomplishedby changing the object's class at run-time, but this
is not possiblein most object-oriented programming languages. Exceptions
includeSelf [US87] and other delegation-based languages thatprovide such
a mechanism and hence support the State pattern directly.Objects in Self
can delegate operations to other objects to achieve aform of dynamic
inheritance. Changing the delegation target atrun-time effectively changes
the inheritance structure. Thismechanism lets objects change their
behavior and amounts to changingtheir class.

Design Patterns: Elements of Reusable Object-Oriented Software

343

Sample Code

The following example gives the C++ code for the TCP connectionexample described
in the Motivation section. This example is asimplified version of the TCP protocol;
it doesn't describe thecomplete protocol or all the states of TCPconnections.8

First, we define the class TCPConnection, which provides aninterface for
transmitting data and handles requests to change state.

class TCPOctetStream;
class TCPState;

class TCPConnection {
public:
 TCPConnection();

 void ActiveOpen();
 void PassiveOpen();
 void Close();
 void Send();
 void Acknowledge();
 void Synchronize();

 void ProcessOctet(TCPOctetStream*);
private:
 friend class TCPState;
 void ChangeState(TCPState*);
private:
 TCPState* _state;
};

TCPConnection keeps an instance of the TCPStateclass in the _state member variable.
The classTCPState duplicates the state-changing interface ofTCPConnection. Each
TCPState operation takes aTCPConnection instance as a parameter, lettingTCPState
access data from TCPConnection andchange the connection's state.

class TCPState {
public:
 virtual void Transmit(TCPConnection*, TCPOctetStream*);
 virtual void ActiveOpen(TCPConnection*);
 virtual void PassiveOpen(TCPConnection*);
 virtual void Close(TCPConnection*);
 virtual void Synchronize(TCPConnection*);

Design Patterns: Elements of Reusable Object-Oriented Software

344

 virtual void Acknowledge(TCPConnection*);
 virtual void Send(TCPConnection*);
protected:
 void ChangeState(TCPConnection*, TCPState*);
};

TCPConnection delegates all state-specific requests to itsTCPState instance
_state.TCPConnection also provides an operation for changing thisvariable to a
new TCPState. The constructor forTCPConnection initializes the object to
theTCPClosed state (defined later).

TCPConnection::TCPConnection () {
 _state = TCPClosed::Instance();
}

void TCPConnection::ChangeState (TCPState* s) {
 _state = s;
}

void TCPConnection::ActiveOpen () {
 _state->ActiveOpen(this);
}

void TCPConnection::PassiveOpen () {
 _state->PassiveOpen(this);
}

void TCPConnection::Close () {
 _state->Close(this);
}

void TCPConnection::Acknowledge () {
 _state->Acknowledge(this);
}

void TCPConnection::Synchronize () {
 _state->Synchronize(this);
}

TCPState implements default behavior for all requestsdelegated to it. It can also
change the state of aTCPConnection with the ChangeState operation.TCPState is
declared a friend of TCPConnection togive it privileged access to this operation.

void TCPState::Transmit (TCPConnection*, TCPOctetStream*) { }

Design Patterns: Elements of Reusable Object-Oriented Software

345

void TCPState::ActiveOpen (TCPConnection*) { }
void TCPState::PassiveOpen (TCPConnection*) { }
void TCPState::Close (TCPConnection*) { }
void TCPState::Synchronize (TCPConnection*) { }

void TCPState::ChangeState (TCPConnection* t, TCPState* s) {
 t->ChangeState(s);
}

Subclasses of TCPState implement state-specific behavior. ATCP connection can
be in many states: Established, Listening, Closed,etc., and there's a subclass
of TCPState for each state.We'll discuss three subclasses in detail:
TCPEstablished,TCPListen, and TCPClosed.

class TCPEstablished : public TCPState {
public:
 static TCPState* Instance();

 virtual void Transmit(TCPConnection*, TCPOctetStream*);
 virtual void Close(TCPConnection*);
};

class TCPListen : public TCPState {
public:
 static TCPState* Instance();

 virtual void Send(TCPConnection*);
 // ...
};

class TCPClosed : public TCPState {
public:
 static TCPState* Instance();

 virtual void ActiveOpen(TCPConnection*);
 virtual void PassiveOpen(TCPConnection*);
 // ...
};

TCPState subclasses maintain no local state, sothey can be shared, and only one
instance of each is required. Theunique instance of each TCPState subclass is
obtained by thestatic Instanceoperation.9

Design Patterns: Elements of Reusable Object-Oriented Software

346

Each TCPState subclass implements state-specific behaviorfor valid requests in
the state:

void TCPClosed::ActiveOpen (TCPConnection* t) {
 // send SYN, receive SYN, ACK, etc.
 ChangeState(t, TCPEstablished::Instance());
}

void TCPClosed::PassiveOpen (TCPConnection* t) {
 ChangeState(t, TCPListen::Instance());
}

void TCPEstablished::Close (TCPConnection* t) {
 // send FIN, receive ACK of FIN
 ChangeState(t, TCPListen::Instance());
}

void TCPEstablished::Transmit (TCPConnection* t, TCPOctetStream* o) {
 t->ProcessOctet(o);
}

void TCPListen::Send (TCPConnection* t) {
 // send SYN, receive SYN, ACK, etc.
 ChangeState(t, TCPEstablished::Instance());
}

After performing state-specific work, these operations call theChangeState
operation to change the state ofthe TCPConnection. TCPConnection itself
doesn'tknow a thing about the TCP connection protocol; it's theTCPState subclasses
that define each state transitionand action in TCP.

Known Uses

Johnson and Zweig [JZ91] characterize theState pattern and its application to
TCP connection protocols.

Most popular interactive drawing programs provide "tools" forperforming
operations by direct manipulation. For example, aline-drawing tool lets a user
click and drag to create a new line. Aselection tool lets the user select shapes.
There's usually a paletteof such tools to choose from. The user thinks of this
activity aspicking up a tool and wielding it, but in reality the editor'sbehavior
changes with the current tool: When a drawing tool is activewe create shapes;

Design Patterns: Elements of Reusable Object-Oriented Software

347

when the selection tool is active we select shapes;and so forth. We can use the
State pattern to change the editor'sbehavior depending on the current tool.

We can define an abstract Tool class from which to define subclassesthat implement
tool-specific behavior. The drawing editor maintains acurrent Tool object and
delegates requests to it. It replaces thisobject when the user chooses a new tool,
causing the behavior of thedrawing editor to change accordingly.

This technique is used in both the HotDraw [Joh92] and Unidraw [VL90] drawing
editor frameworks. It allows clients to define new kinds of tools easily. In HotDraw,
the DrawingController class forwards the requests to the current Tool object.
In Unidraw, the corresponding classes are Viewer and Tool. The following class
diagram sketches the Tool and DrawingController interfaces:

Coplien's Envelope-Letter idiom [Cop92] is related toState. Envelope-Letter is
a technique for changing an object's class atrun-time. The State pattern is more
specific, focusing on how to dealwith an object whose behavior depends on its
state.

Related Patterns

The Flyweight (218) pattern explains when and how State objects can be shared.

State objects are often Singletons (144).

8This example is based on the TCP connection protocoldescribed by Lynch andRose

[LR93].

Design Patterns: Elements of Reusable Object-Oriented Software

348

9This makes each TCPState subclass a Singleton (see Singleton (144)).

Design Patterns: Elements of Reusable Object-Oriented Software

349

Strategy

Intent

Define a family of algorithms, encapsulate each one, and make theminterchangeable.
Strategy lets the algorithm vary independently fromclients that use it.

Also Known As

Policy

Motivation

Many algorithms exist for breaking a stream of text into lines.Hard-wiring all
such algorithms into the classes that require themisn't desirable for several
reasons:

• Clients that need linebreaking get more complex if they includethe
linebreaking code. That makes clients bigger and harder tomaintain,
especially if they support multiple linebreaking algorithms.

• Different algorithms will be appropriate at different times. We don'twant
to support multiple linebreaking algorithms if we don't use themall.

• It's difficult to add new algorithms and vary existing ones whenlinebreaking
is an integral part of a client.

We can avoid these problems by defining classes that encapsulatedifferent
linebreaking algorithms. An algorithm that's encapsulated inthis way is called
a strategy.

Suppose a Composition class is responsible for maintaining andupdating the
linebreaks of text displayed in a text viewer.Linebreaking strategies aren't

Design Patterns: Elements of Reusable Object-Oriented Software

350

implemented by the class Composition.Instead, they are implemented separately
by subclasses of the abstractCompositor class. Compositor subclasses implement
different strategies:

• SimpleCompositorimplements a simple strategy that determines linebreaks
one at atime.

• TeXCompositorimplements the TeX algorithm for finding linebreaks. This
strategytries to optimize linebreaks globally, that is, one paragraph at
atime.

• ArrayCompositorimplements a strategy that selects breaks so that each row
has a fixednumber of items. It's useful for breaking a collection of icons
intorows, for example.

A Composition maintains a reference to a Compositor object. Whenever aComposition
reformats its text, it forwards this responsibility to itsCompositor object. The
client of Composition specifies whichCompositor should be used by installing the
Compositor it desires intothe Composition.

Applicability

Use the Strategy pattern when

• many related classes differ only in their behavior. Strategiesprovide a
way to configure a class with one of many behaviors.

• you need different variants of an algorithm. For example, you might
definealgorithms reflecting different space/time trade-offs.Strategies
can be used when these variants are implemented as a classhierarchy of
algorithms [HO87].

• an algorithm uses data that clients shouldn't know about. Use theStrategy
pattern to avoid exposing complex, algorithm-specific datastructures.

• a class defines many behaviors, and these appear as multipleconditional
statements in its operations. Instead of manyconditionals, move related
conditional branches into their ownStrategy class.

Design Patterns: Elements of Reusable Object-Oriented Software

351

Structure

Participants

• Strategy (Compositor)
o declares an interface common to all supported algorithms. Context

uses this interface to call the algorithm defined by a
ConcreteStrategy.

• ConcreteStrategy (SimpleCompositor, TeXCompositor,ArrayCompositor)
o implements the algorithm using the Strategy interface.

• Context (Composition)
o is configured with a ConcreteStrategy object.
o maintains a reference to a Strategy object.
o may define an interface that lets Strategy access its data.

Collaborations

• Strategy and Context interact to implement the chosen algorithm. Acontext
may pass all data required by the algorithm to the strategywhen the algorithm
is called. Alternatively, the context can passitself as an argument to
Strategy operations. That lets the strategycall back on the context as
required.

• A context forwards requests from its clients to its strategy. Clientsusually
create and pass a ConcreteStrategy object to the context;thereafter,
clients interact with the context exclusively. There isoften a family of
ConcreteStrategy classes for a client to choosefrom.

Consequences

The Strategy pattern has the following benefits and drawbacks:

Design Patterns: Elements of Reusable Object-Oriented Software

352

1. Families of related algorithms.Hierarchies of Strategy classes define a
family of algorithms orbehaviors for contexts to reuse. Inheritance canhelp
factor out common functionality of the algorithms.

2. An alternative to subclassing.Inheritance offers another way to support
a variety of algorithms orbehaviors. You can subclass a Context class
directly to give itdifferent behaviors. But this hard-wires the behavior
into Context.It mixes the algorithm implementation with Context's, making
Contextharder to understand, maintain, and extend. And you can't vary
thealgorithm dynamically. You wind up with many related classes whoseonly
difference is the algorithm or behavior they employ.Encapsulating the
algorithm in separate Strategy classes lets you varythe algorithm
independently of its context, making it easier toswitch, understand, and
extend.

3. Strategies eliminate conditional statements.The Strategy pattern offers
an alternative to conditional statements forselecting desired behavior.
When different behaviors are lumped into oneclass, it's hard to avoid using
conditional statements to select theright behavior. Encapsulating the
behavior in separate Strategy classeseliminates these conditional
statements.

For example, without strategies, the code for breakingtext into lines could
look like

void Composition::Repair () {
 switch (_breakingStrategy) {
 case SimpleStrategy:
 ComposeWithSimpleCompositor();
 break;
 case TeXStrategy:
 ComposeWithTeXCompositor();
 break;
 // ...
 }
 // merge results with existing composition, if necessary
}

The Strategy pattern eliminates this case statement by delegating
thelinebreaking task to a Strategy object:

void Composition::Repair () {
 _compositor->Compose();
 // merge results with existing composition, if necessary
}

Design Patterns: Elements of Reusable Object-Oriented Software

353

Code containing many conditional statements often indicatesthe need to
apply the Strategy pattern.

4. A choice of implementations.Strategies can provide different
implementations of the samebehavior. The client can choose among strategies
with differenttime and space trade-offs.

5. Clients must be aware of different Strategies.The pattern has a potential
drawback in that a client must understandhow Strategies differ before it
can select the appropriate one.Clients might be exposed to implementation
issues. Therefore youshould use the Strategy pattern only when the variation
in behavior isrelevant to clients.

6. Communication overhead between Strategy and Context.The Strategy interface
is shared by all ConcreteStrategy classeswhether the algorithms they
implement are trivial or complex. Henceit's likely that some
ConcreteStrategies won't use all the informationpassed to them through this
interface; simple ConcreteStrategies mayuse none of it! That means there
will be times when the contextcreates and initializes parameters that never
get used. If this is anissue, then you'll need tighter coupling between
Strategy and Context.

7. Increased number of objects.Strategies increase the number of objects in
an application. Sometimesyou can reduce this overhead by implementing
strategies as statelessobjects that contexts can share. Any residual state
is maintained by thecontext, which passes it in each request to the Strategy
object. Sharedstrategies should not maintain state across invocations. The
Flyweight (218) pattern describes this approach in moredetail.

Implementation

Consider the following implementation issues:

1. Defining the Strategy and Context interfaces.The Strategy and Context
interfaces must give a ConcreteStrategyefficient access to any data it needs
from a context, and vice versa.

One approach is to have Context pass data in parameters to
Strategyoperations—in other words, take the data to the strategy. This
keepsStrategy and Context decoupled. On the other hand, Context mightpass
data the Strategy doesn't need.

Another technique has a context pass itself as an argument, andthe strategy
requests data from the context explicitly.Alternatively, the strategy can
store a reference to its context,eliminating the need to pass anything at
all. Either way, thestrategy can request exactly what it needs. But now

Design Patterns: Elements of Reusable Object-Oriented Software

354

Context mustdefine a more elaborate interface to its data, which couples
Strategyand Context more closely.

The needs of the particular algorithm and its data requirements
willdetermine the best technique.

2. Strategies as template parameters.In C++ templates can be used to configure
a class with a strategy.This technique is only applicable if (1) the Strategy
can be selectedat compile-time, and (2) it does not have to be changed at
run-time.In this case, the class to be configured (e.g., Context) isdefined
as a template class that has a Strategy class as aparameter:

template <class AStrategy>
class Context {
 void Operation() { theStrategy.DoAlgorithm(); }
 // ...
private:
 AStrategy theStrategy;
};

The class is then configured with a Strategy class when it's
instantiated:

class MyStrategy {
public:
 void DoAlgorithm();
};

Context<MyStrategy> aContext;

With templates, there's no need to define an abstract class that defines

the interface to the Strategy. Using Strategy as atemplate parameter also

lets you bind a Strategy to itsContext statically, which can increase

efficiency.

3. Making Strategy objects optional.The Context class may be simplified if
it's meaningful not tohave a Strategy object. Context checks to see if it
has a Strategyobject before accessing it. If there is one, then Context
uses itnormally. If there isn't a strategy, then Context carries out
defaultbehavior. The benefit of this approach is that clients don't have
todeal with Strategy objects at all unless they don't like thedefault
behavior.

Design Patterns: Elements of Reusable Object-Oriented Software

355

Sample Code

We'll give the high-level code for the Motivation example, which isbased on the
implementation of Composition and Compositor classes inInterViews [LCI+92].

The Composition class maintains a collection ofComponent instances, which
represent text and graphicalelements in a document. A composition arranges
component objects intolines using an instance of a Compositor subclass,
whichencapsulates a linebreaking strategy. Each component has anassociated
natural size, stretchability, and shrinkability. Thestretchability defines how
much the component can grow beyond itsnatural size; shrinkability is how much
it can shrink. Thecomposition passes these values to a compositor, which uses
them todetermine the best location for linebreaks.

class Composition {
public:
 Composition(Compositor*);
 void Repair();
private:
 Compositor* _compositor;
 Component* _components; // the list of components
 int _componentCount; // the number of components
 int _lineWidth; // the Composition's line width
int* _lineBreaks; // the position of linebreaks
 // in components
int _lineCount; // the number of lines
};

When a new layout is required, the composition asks its compositor todetermine
where to place linebreaks. The composition passes thecompositor three arrays that
define natural sizes, stretchabilities,and shrinkabilities of the components.
It also passes the number ofcomponents, how wide the line is, and an array that
the compositorfills with the position of each linebreak. The compositor returns
thenumber of calculated breaks.

The Compositor interface lets the composition pass thecompositor all the
information it needs. This is an example of"taking the data to the strategy":

class Compositor {
public:
 virtual int Compose(
 Coord natural[], Coord stretch[], Coord shrink[],
 int componentCount, int lineWidth, int breaks[]
) = 0;

Design Patterns: Elements of Reusable Object-Oriented Software

356

protected:
 Compositor();
};

Note that Compositor is an abstract class. Concretesubclasses define specific
linebreaking strategies.

The composition calls its compositor in its Repairoperation. Repair first
initializes arrays with the naturalsize, stretchability, and shrinkability of
each component (the detailsof which we omit for brevity). Then it calls on the
compositor toobtain the linebreaks and finally lays out the components according
tothe breaks (also omitted):

void Composition::Repair () {
 Coord* natural;
 Coord* stretchability;
 Coord* shrinkability;
 int componentCount;
 int* breaks;

 // prepare the arrays with the desired component sizes
// ...

 // determine where the breaks are:
 int breakCount;
 breakCount = _compositor->Compose(
 natural, stretchability, shrinkability,
 componentCount, _lineWidth, breaks
);

 // lay out components according to breaks
 // ...
}

Now let's look at the Compositor subclasses.SimpleCompositor examines components
a line at a time todetermine where breaks should go:

class SimpleCompositor : public Compositor {
public:
 SimpleCompositor();
 virtual int Compose(
 Coord natural[], Coord stretch[], Coord shrink[],
 int componentCount, int lineWidth, int breaks[]
);

Design Patterns: Elements of Reusable Object-Oriented Software

357

 // ...
};

TeXCompositor uses a more global strategy. It examines aparagraph at a time, taking
into account the components' sizeand stretchability. It also tries to give an
even "color" to theparagraph by minimizing the whitespace between components.

class TeXCompositor : public Compositor {
public:
 TeXCompositor();
 virtual int Compose(
 Coord natural[], Coord stretch[], Coord shrink[],
 int componentCount, int lineWidth, int breaks[]
);
 // ...
};

ArrayCompositor breaks the components into lines at regularintervals.

class ArrayCompositor : public Compositor {
public:
 ArrayCompositor(int interval);
 virtual int Compose(
 Coord natural[], Coord stretch[], Coord shrink[],
 int componentCount, int lineWidth, int breaks[]
);
 // ...
};

These classes don't use all the information passed inCompose. SimpleCompositor
ignores the stretchabilityof the components, taking only their natural widths
into account.TeXCompositor uses all the information passed to it,
whereasArrayCompositor ignores everything.

To instantiate Composition, you pass it the compositoryou want to use:

 Composition* quick = new Composition(new SimpleCompositor);
 Composition* slick = new Composition(new TeXCompositor);
 Composition* iconic = new Composition(new ArrayCompositor(100));

Compositor's interface is carefully designed to support alllayout algorithms that
subclasses might implement. You don't want tohave to change this interface with
every new subclass, because that willrequire changing existing subclasses. In
general, the Strategy andContext interfaces determine how well the pattern
achieves its intent.

Design Patterns: Elements of Reusable Object-Oriented Software

358

Known Uses

Both ET++ [WGM88] and InterViews use strategies to encapsulatedifferent
linebreaking algorithms as we've described.

In the RTL System for compiler code optimization [JML92],strategies define
different register allocation schemes(RegisterAllocator) and instruction set
scheduling policies(RISCscheduler, CISCscheduler). This provides flexibility in
targeting theoptimizer for different machine architectures.

The ET++SwapsManager calculation engine framework computes prices fordifferent
financial instruments [EG92]. Its keyabstractions are Instrument and YieldCurve.
Different instruments areimplemented as subclasses of Instrument. YieldCurve
calculatesdiscount factors, which determine the present value of future cashflows.
Both of these classes delegate some behavior to Strategyobjects. The framework
provides a family of ConcreteStrategy classesfor generating cash flows, valuing
swaps, and calculating discountfactors. You can create new calculation engines
by configuringInstrument and YieldCurve with the different ConcreteStrategy
objects.This approach supports mixing and matching existing
Strategyimplementations as well as defining new ones.

The Booch components [BV90] use strategies as templatearguments. The Booch
collection classes support three different kinds ofmemory allocation strategies:
managed (allocation out of a pool),controlled (allocations/deallocations are
protected by locks), andunmanaged (the normal memory allocator). These strategies
are passed astemplate arguments to a collection class when it's instantiated.
Forexample, an UnboundedCollection that uses the unmanaged strategy
isinstantiated as UnboundedCollection.

RApp is a system for integrated circuit layout [GA89, AG90].RApp must lay out
and route wires that connect subsystems on thecircuit. Routing algorithms in RApp
are defined assubclasses of an abstract Router class. Router is a Strategy class.

Borland's ObjectWindows [Bor94] uses strategies in dialogsboxes to ensure that
the user enters valid data. For example, numbers mighthave to be in a certain
range, and a numeric entry field should acceptonly digits. Validating that a string
is correct can require atable look-up.

ObjectWindows uses Validator objects to encapsulate validationstrategies.
Validators are examples of Strategy objects. Data entryfields delegate the
validation strategy to an optional Validatorobject. The client attaches a
validator to a field if validation isrequired (an example of an optional strategy).
When the dialog isclosed, the entry fields ask their validators to validate the
data.The class library provides validators for common cases, such as

Design Patterns: Elements of Reusable Object-Oriented Software

359

aRangeValidator for numbers. New client-specific validation strategiescan be
defined easily by subclassing the Validator class.

Related Patterns

Flyweight (218): Strategy objects often make good flyweights.

Design Patterns: Elements of Reusable Object-Oriented Software

360

Template Method

Intent

Define the skeleton of an algorithm in an operation, deferring somesteps to
subclasses. Template Method lets subclasses redefinecertain steps of an algorithm
without changing the algorithm'sstructure.

Motivation

Consider an application framework that provides Application andDocument classes.
The Application class is responsible for openingexisting documents stored in an
external format, such as a file. ADocument object represents the information in
a document once it'sread from the file.

Applications built with the framework can subclass Application andDocument to
suit specific needs. For example, a drawing applicationdefines DrawApplication
and DrawDocument subclasses; a spreadsheetapplication defines
SpreadsheetApplication and SpreadsheetDocumentsubclasses.

The abstract Application class defines the algorithm for opening andreading a
document in its OpenDocument operation:

void Application::OpenDocument (const char* name) {
 if (!CanOpenDocument(name)) {
 // cannot handle this document
 return;
 }

Design Patterns: Elements of Reusable Object-Oriented Software

361

 Document* doc = DoCreateDocument();
 if (doc) {
 _docs->AddDocument(doc);
AboutToOpenDocument(doc);
doc->Open();
doc->DoRead();
 }
}

OpenDocument defines each step for opening a document. It checks ifthe document
can be opened, creates the application-specific Documentobject, adds it to its
set of documents, and reads the Document from afile.

We call OpenDocument a template method. A template methoddefines an algorithm
in terms of abstract operations that subclassesoverride to provide concrete
behavior. Application subclasses definethe steps of the algorithm that check if
the document can be opened(CanOpenDocument) and that create the Document
(DoCreateDocument).Document classes define the step that reads the document
(DoRead).The template method also defines an operation that lets
Applicationsubclasses know when the document is about to be
opened(AboutToOpenDocument), in case they care.

By defining some of the steps of an algorithm using abstractoperations, the
template method fixes their ordering, but it letsApplication and Document
subclasses vary those steps to suit theirneeds.

Applicability

The Template Method pattern should be used

• to implement the invariant parts of an algorithm once and leave it upto
subclasses to implement the behavior that can vary.

• when common behavior among subclasses should be factored and localizedin
a common class to avoid code duplication. This is a good example
of"refactoring to generalize" as described by Opdyke andJohnson [OJ93].
You first identify thedifferences in the existing code and then separate
the differencesinto new operations. Finally, you replace the differing code
with atemplate method that calls one of these new operations.

• to control subclasses extensions. You can define a template methodthat calls
"hook" operations (see Consequences) at specific points,thereby permitting
extensions only at those points.

Design Patterns: Elements of Reusable Object-Oriented Software

362

Structure

Participants

• AbstractClass (Application)
o defines abstract primitive operations that concretesubclasses

define to implement steps of an algorithm.
o implements a template method defining the skeleton of an

algorithm.The template method calls primitive operations as well
as operationsdefined in AbstractClass or those of other objects.

• ConcreteClass (MyApplication)
o implements the primitive operations to carry out

subclass-specificsteps of the algorithm.

Collaborations

• ConcreteClass relies on AbstractClass to implement the invariant steps of
the algorithm.

Consequences

Template methods are a fundamental technique for code reuse. They areparticularly
important in class libraries, because they are the meansfor factoring out common
behavior in library classes.

Template methods lead to an inverted control structure that'ssometimes referred
to as "the Hollywood principle," that is, "Don'tcall us, we'll call you" [Swe85].
This refers tohow a parent class calls the operations of a subclass and not theother
way around.

Design Patterns: Elements of Reusable Object-Oriented Software

363

Template methods call the following kinds of operations:

• concrete operations (either on the ConcreteClass or onclient classes);
• concrete AbstractClass operations (i.e., operations that aregenerally

useful to subclasses);
• primitive operations (i.e., abstract operations);
• factory methods (see Factory Method (121)); and
• hook operations, which provide default behavior thatsubclasses can extend

if necessary. A hook operation often doesnothing by default.

It's important for template methods to specify which operations arehooks (may
be overridden) and which are abstract operations(must be overridden). To reuse
an abstract class effectively,subclass writers must understand which operations
are designed foroverriding.

A subclass can extend a parent class operation's behavior byoverriding the
operation and calling the parent operation explicitly:

void DerivedClass::Operation () {
 // DerivedClass extended behavior
 ParentClass::Operation();
}

Unfortunately, it's easy to forget to call the inherited operation.We can transform
such an operation into a template method to givethe parent control over how
subclasses extend it. The idea is tocall a hook operation from a template method
in the parent class.Then subclasses can then override this hook operation:

void ParentClass::Operation () {
 // ParentClass behavior
 HookOperation();
}

HookOperation does nothing in ParentClass:

void ParentClass::HookOperation () { }

Subclasses override HookOperation to extend itsbehavior:

void DerivedClass::HookOperation () {
 // derived class extension
}

Design Patterns: Elements of Reusable Object-Oriented Software

364

Implementation

Three implementation issues are worth noting:

1. Using C++ access control.In C++, the primitive operations that a template
method calls can bedeclared protected members. This ensures that they are
only called bythe template method. Primitive operations that must be
overridden aredeclared pure virtual. The template method itself should not
beoverridden; therefore you can make the template method a nonvirtualmember
function.

2. Minimizing primitive operations.An important goal in designing template
methods is to minimize thenumber of primitive operations that a subclass
must override to fleshout the algorithm. The more operations that need
overriding, the moretedious things get for clients.

3. Naming conventions.You can identify the operations that should be
overridden by adding aprefix to their names. For example, the MacApp
framework for Macintoshapplications [App89] prefixes template method names
with "Do-":"DoCreateDocument", "DoRead", and so forth.

Sample Code

The following C++ example shows how a parent class can enforce aninvariant for
its subclasses. The example comes from NeXT'sAppKit [Add94]. Consider a class
View that supportsdrawing on the screen. View enforces the invariant that
itssubclasses can draw into a view only after it becomes the "focus,"which requires
certain drawing state (for example, colors and fonts) tobe set up properly.

We can use a Display template method to set up this state.View defines two concrete
operations,SetFocus and ResetFocus, that set up and clean upthe drawing state,
respectively. View's DoDisplayhook operation performs the actual drawing. Display
callsSetFocus before DoDisplay to set up the drawingstate; Display calls
ResetFocus afterwards torelease the drawing state.

void View::Display () {
 SetFocus();
 DoDisplay();
 ResetFocus();
}

To maintain the invariant, the View's clients always callDisplay, and View
subclasses always overrideDoDisplay.

DoDisplay does nothing in View:

Design Patterns: Elements of Reusable Object-Oriented Software

365

void View::DoDisplay () { }

Subclasses override it to add their specific drawing behavior:

void MyView::DoDisplay () {
 // render the view's contents
}

Known Uses

Template methods are so fundamental that they can be found in almostevery abstract
class. Wirfs-Brock et al. [WBWW90, WBJ90] provide a good overview anddiscussion
of template methods.

Related Patterns

Factory Methods (121) are often called by template methods. In the Motivation
example,the factory method DoCreateDocument is called by the template
methodOpenDocument.

Strategy (349): Template methods use inheritance to vary part of an
algorithm.Strategies use delegation to vary the entire algorithm.

Design Patterns: Elements of Reusable Object-Oriented Software

366

Visitor

Intent

Represent an operation to be performed on the elements of an objectstructure.
Visitor lets you define a new operation without changing theclasses of the elements
on which it operates.

Motivation

Consider a compiler that represents programs as abstract syntax trees.It will
need to perform operations on abstract syntax trees for "staticsemantic" analyses
like checking that all variables are defined. Itwill also need to generate code.
So it might define operations fortype-checking, code optimization, flow analysis,
checking for variablesbeing assigned values before they're used, and so on.
Moreover, we coulduse the abstract syntax trees for pretty-printing,
programrestructuring, code instrumentation, and computing various metrics of
aprogram.

Most of these operations will need to treat nodes that representassignment
statements differently from nodes that represent variables orarithmetic
expressions. Hence there will be one class for assignmentstatements, another for
variable accesses, another for arithmeticexpressions, and so on. The set of node
classes depends on the languagebeing compiled, of course, but it doesn't change
much for a givenlanguage.

This diagram shows part of the Node class hierarchy. The problem hereis that
distributing all these operations across the various nodeclasses leads to a system
that's hard to understand, maintain, andchange. It will be confusing to have

Design Patterns: Elements of Reusable Object-Oriented Software

367

type-checking code mixed withpretty-printing code or flow analysis code. Moreover,
adding a newoperation usually requires recompiling all of these classes. It would
bebetter if each new operation could be added separately, and the nodeclasses
were independent of the operations that apply to them.

We can have both by packaging related operations from each class in aseparate
object, called a visitor, and passing it toelements of the abstract syntax tree
as it's traversed. When an element"accepts" the visitor, it sends a request to
the visitor that encodesthe element's class. It also includes the element as an
argument. Thevisitor will then execute the operation for that element—theoperation
that used to be in the class of the element.

For example, a compiler that didn't use visitors might type-check aprocedure by
calling the TypeCheck operation on its abstract syntaxtree. Each of the nodes
would implement TypeCheck by calling TypeCheckon its components (see the preceding
class diagram). If the compilertype-checked a procedure using visitors, then it
would create aTypeCheckingVisitor object and call the Accept operation on
theabstract syntax tree with that object as an argument. Each of thenodes would
implement Accept by calling back on the visitor: anassignment node calls
VisitAssignment operation on the visitor, whilea variable reference calls
VisitVariableReference. What used to be theTypeCheck operation in class
AssignmentNode is now the VisitAssignmentoperation on TypeCheckingVisitor.

To make visitors work for more than just type-checking, we need anabstract parent
class NodeVisitor for all visitors of an abstract syntaxtree. NodeVisitor must
declare an operation for each node class. Anapplication that needs to compute
program metrics will define newsubclasses of NodeVisitor and will no longer need
to add application-specific code to the node classes. The Visitor pattern
encapsulates the operations for each compilation phase in a Visitor associated
with that phase.

Design Patterns: Elements of Reusable Object-Oriented Software

368

With the Visitor pattern, you define two class hierarchies: one for theelements
being operated on (the Node hierarchy) and one for the visitorsthat define
operations on the elements (the NodeVisitor hierarchy). Youcreate a new operation
by adding a new subclass to the visitor classhierarchy. As long as the grammar
that the compiler accepts doesn'tchange (that is, we don't have to add new Node
subclasses), we can addnew functionality simply by defining new NodeVisitor
subclasses.

Applicability

Use the Visitor pattern when

• an object structure contains many classes of objects with differing
interfaces, and you want to perform operations on these objects that depend
on their concrete classes.

• many distinct and unrelated operations need to be performed on objectsin
an object structure, and you want to avoid "polluting" theirclasses with
these operations. Visitor lets you keep related operationstogether by
defining them in one class. When the object structure isshared by many
applications, use Visitor to put operations in just thoseapplications that
need them.

• the classes defining the object structure rarely change, but you oftenwant
to define new operations over the structure. Changing the objectstructure
classes requires redefining the interface to all visitors,which is
potentially costly. If the object structure classes changeoften, then it's
probably better to define the operations in those classes.

Design Patterns: Elements of Reusable Object-Oriented Software

369

Structure

Participants

• Visitor (NodeVisitor)
o declares a Visit operation for each class of ConcreteElement in the

object structure. The operation's name and signature identifies the
class that sends the Visit request to the visitor. That lets the
visitor determine the concrete class of the element being visited.
Then the visitor can access the element directly through its
particular interface.

• ConcreteVisitor (TypeCheckingVisitor)
o implements each operation declared by Visitor. Each operation

implements a fragment of the algorithm defined for the corresponding
class of object in the structure. ConcreteVisitor provides the
context for the algorithm and stores its local state. This state
often accumulates results during the traversal of the structure.

• Element (Node)
o defines an Accept operation that takes a visitor as an argument.

• ConcreteElement (AssignmentNode,VariableRefNode)

Design Patterns: Elements of Reusable Object-Oriented Software

370

o implements an Accept operation that takes a visitor as an argument.
• ObjectStructure (Program)

o can enumerate its elements.
o may provide a high-level interface to allow the visitor to visit

its elements.
o may either be a composite (see Composite (183)) or a collection such

as a list or a set.

Collaborations

• A client that uses the Visitor pattern must create a ConcreteVisitorobject
and then traverse the object structure, visiting each elementwith the
visitor.

• When an element is visited, it calls the Visitor operation thatcorresponds
to its class. The element supplies itself as an argumentto this operation
to let the visitor access its state, if necessary.

The following interaction diagram illustrates the collaborationsbetween
an object structure, a visitor, and two elements:

Consequences

Some of the benefits and liabilities of the Visitor pattern are as follows:

1. Visitor makes adding new operations easy.Visitors make it easy to add
operations that depend on the components ofcomplex objects. You can define
a new operation over an object structuresimply by adding a new visitor.
In contrast, if you spread functionalityover many classes, then you must
change each class to define a newoperation.

Design Patterns: Elements of Reusable Object-Oriented Software

371

2. A visitor gathers related operations and separates unrelated ones.Related
behavior isn't spread over the classes defining the objectstructure; it's
localized in a visitor. Unrelated sets of behavior arepartitioned in their
own visitor subclasses. That simplifies both theclasses defining the
elements and the algorithms defined in thevisitors. Any algorithm-specific
data structures can be hidden in thevisitor.

3. Adding new ConcreteElement classes is hard.The Visitor pattern makes it
hard to add new subclasses of Element. Eachnew ConcreteElement gives rise
to a new abstract operation on Visitor anda corresponding implementation
in every ConcreteVisitor class. Sometimes adefault implementation can be
provided in Visitor that can be inheritedby most of the ConcreteVisitors,
but this is the exception rather thanthe rule.

So the key consideration in applying the Visitor pattern is whether youare
mostly likely to change the algorithm applied over an objectstructure or
the classes of objects that make up the structure. TheVisitor class
hierarchy can be difficult to maintain when newConcreteElement classes are
added frequently. In such cases, it'sprobably easier just to define
operations on the classes that make upthe structure. If the Element class
hierarchy is stable, but you arecontinually adding operations or changing
algorithms, then the Visitorpattern will help you manage the changes.

4. Visiting across class hierarchies.An iterator (see Iterator (289)) can
visit the objects in astructure as it traverses them by calling their
operations. But an iteratorcan't work across object structures with
different types of elements. Forexample, the Iterator interface defined
on page 295 can access only objects of type Item:

template <class Item>
class Iterator {
 // ...
 Item CurrentItem() const;
};

This implies that all elements the iterator can visit have a common
parentclass Item.

Visitor does not have this restriction. It can visit objects thatdon't have
a common parent class. You can add any type of object to aVisitor interface.
For example, in

class Visitor {
public:
 // ...
 void VisitMyType(MyType*);

Design Patterns: Elements of Reusable Object-Oriented Software

372

 void VisitYourType(YourType*);
};

MyType and YourType do not have to be related throughinheritance at all.

5. Accumulating state.Visitors can accumulate state as they visit each element
in the objectstructure. Without a visitor, this state would be passed as
extraarguments to the operations that perform the traversal, or theymight
appear as global variables.

6. Breaking encapsulation.Visitor's approach assumes that the
ConcreteElement interface is powerfulenough to let visitors do their job.
As a result, the pattern oftenforces you to provide public operations that
access an element'sinternal state, which may compromise its encapsulation.

Implementation

Each object structure will have an associated Visitor class. Thisabstract visitor
class declares a VisitConcreteElement operation foreach class of ConcreteElement
defining the object structure. EachVisit operation on the Visitor declares its
argument to be aparticular ConcreteElement, allowing the Visitor to access
theinterface of the ConcreteElement directly. ConcreteVisitor classesoverride
each Visit operation to implement visitor-specific behaviorfor the corresponding
ConcreteElement class.

The Visitor class would be declared like this in C++:

class Visitor {
public:
 virtual void VisitElementA(ElementA*);
 virtual void VisitElementB(ElementB*);

 // and so on for other concrete elements
protected:
 Visitor();
};

Each class of ConcreteElement implements an Accept operationthat calls the
matching Visit... operation on the visitorfor that ConcreteElement. Thus the
operation that ends up gettingcalled depends on both the class of the element
and the class of thevisitor.10

The concrete elements are declared as

class Element {

Design Patterns: Elements of Reusable Object-Oriented Software

373

public:
 virtual ~Element();
 virtual void Accept(Visitor&) = 0;
protected:
 Element();
};

class ElementA : public Element {
public:
 ElementA();
 virtual void Accept(Visitor& v) { v.VisitElementA(this); }
};

class ElementB : public Element {
public:
 ElementB();
 virtual void Accept(Visitor& v) { v.VisitElementB(this); }
};

A CompositeElement class might implement Acceptlike this:

class CompositeElement : public Element {
public:
 virtual void Accept(Visitor&);
private:
 List<Element*>* _children;
};

void CompositeElement::Accept (Visitor& v) {
 ListIterator<Element*> i(_children);

 for (i.First(); !i.IsDone(); i.Next()) {
 i.CurrentItem()->Accept(v);
 }
 v.VisitCompositeElement(this);
}

Here are two other implementation issues that arise when you apply theVisitor
pattern:

1. Double dispatch.Effectively, the Visitor pattern lets you add operations
to classeswithout changing them. Visitor achieves this by using a
techniquecalled double-dispatch. It's a well-known technique. Infact, some

Design Patterns: Elements of Reusable Object-Oriented Software

374

programming languages support it directly (CLOS, forexample). Languages
like C++ and Smalltalk supportsingle-dispatch.

In single-dispatch languages, two criteria determine which operationwill
fulfill a request: the name of the request and the type ofreceiver. For
example, the operation that a GenerateCode request willcall depends on the
type of node object you ask. In C++, callingGenerateCode on an instance
of VariableRefNode willcall VariableRefNode::GenerateCode (which
generates code for avariable reference). Calling GenerateCode on
anAssignmentNode will callAssignmentNode::GenerateCode (which will
generate code for anassignment). The operation that gets executed depends
both on the kindof request and the type of the receiver.

"Double-dispatch" simply means the operation that gets executeddepends on
the kind of request and the types of two receivers.Accept is a
double-dispatch operation. Its meaning dependson two types: the Visitor's
and the Element's. Double-dispatchinglets visitors request different
operations on each class ofelement.11

This is the key to the Visitor pattern: The operation that getsexecuted
depends on both the type of Visitor and the type of Elementit visits. Instead
of binding operations statically into the Elementinterface, you can
consolidate the operations in a Visitor and useAccept to do the binding
at run-time. Extending the Elementinterface amounts to defining one new
Visitor subclass rather than many newElement subclasses.

2. Who is responsible for traversing the object structure?A visitor must visit
each element of the object structure. The questionis, how does it get there?
We can put responsibility for traversal inany of three places: in the object
structure, in the visitor, or in aseparate iterator object (see Iterator
(289)).

Often the object structure is responsible for iteration. A collectionwill
simply iterate over its elements, calling the Accept operation oneach. A
composite will commonly traverse itself by having each Acceptoperation
traverse the element's children and call Accept on each ofthem recursively.

Another solution is to use an iterator to visit the elements. In C++,you
could use either an internal or external iterator, depending on whatis
available and what is most efficient. In Smalltalk, you usually usean
internal iterator using do: and a block. Since internaliterators are
implemented by the object structure, using an internaliterator is a lot
like making the object structure responsible foriteration. The main
difference is that an internal iterator will notcause
double-dispatching—it will call an operation on the visitor with an element

Design Patterns: Elements of Reusable Object-Oriented Software

375

as an argument as opposed to calling anoperation on the element with the
visitor as an argument.But it's easy to use the Visitor pattern with an
internal iterator ifthe operation on the visitor simply calls the operation
on the elementwithout recursing.

You could even put the traversal algorithm in the visitor, although
you'llend up duplicating the traversal code in each ConcreteVisitor for
eachaggregate ConcreteElement. The main reason to put the traversal
strategyin the visitor is to implement a particularly complex traversal,
onethat depends on the results of the operations on the object
structure.We'll give an example of such a case in the Sample Code.

Sample Code

Because visitors are usually associated with composites, we'll use theEquipment
classes defined in the Sample Code of Composite (183) to illustrate the Visitor
pattern. Wewill use Visitor to define operations for computing theinventory of
materials and the total cost for a piece of equipment.The Equipment classes are
so simple that using Visitorisn't really necessary, but they make it easy to see
what'sinvolved in implementing the pattern.

Here again is the Equipment class from Composite (183). We've augmented it with
anAccept operation to let it work with a visitor.

class Equipment {
public:
 virtual ~Equipment();

 const char* Name() { return _name; }

 virtual Watt Power();
 virtual Currency NetPrice();
 virtual Currency DiscountPrice();

 virtual void Accept(EquipmentVisitor&);
protected:
 Equipment(const char*);
private:
 const char* _name;
};

The Equipment operations return the attributes of a piece ofequipment, such as
its power consumption and cost. Subclasses redefinethese operations appropriately
for specific types of equipment (e.g.,a chassis, drives, and planar boards).

Design Patterns: Elements of Reusable Object-Oriented Software

376

The abstract class for all visitors of equipment has a virtualfunction for each
subclass of equipment, as shown next. All of thevirtual functions do nothing by
default.

class EquipmentVisitor {
public:
 virtual ~EquipmentVisitor();

 virtual void VisitFloppyDisk(FloppyDisk*);
 virtual void VisitCard(Card*);
 virtual void VisitChassis(Chassis*);
 virtual void VisitBus(Bus*);

 // and so on for other concrete subclasses of Equipment
protected:
 EquipmentVisitor();
};

Equipment subclasses define Accept inbasically the same way: It calls
theEquipmentVisitor operation that corresponds to the classthat received the
Accept request, like this:

void FloppyDisk::Accept (EquipmentVisitor& visitor) {
 visitor.VisitFloppyDisk(this);
}

Equipment that contains other equipment (in particular, subclasses
ofCompositeEquipment in the Composite pattern) implementsAccept by iterating over
its children and callingAccept on each of them. Then it calls theVisit operation
as usual.For example, Chassis::Accept could traverseall the parts in the chassis
as follows:

void Chassis::Accept (EquipmentVisitor& visitor) {
 for (
 ListIterator i(_parts);
 !i.IsDone();
 i.Next()
) {
 i.CurrentItem()->Accept(visitor);
 }
 visitor.VisitChassis(this);
}

Subclasses of EquipmentVisitor define particular algorithmsover the equipment
structure. The PricingVisitor computes thecost of the equipment structure. It

Design Patterns: Elements of Reusable Object-Oriented Software

377

computes the net price of all simpleequipment (e.g., floppies) and the discount
price of all compositeequipment (e.g., chassis and buses).

class PricingVisitor : public EquipmentVisitor {
public:
 PricingVisitor();

 Currency& GetTotalPrice();

 virtual void VisitFloppyDisk(FloppyDisk*);
 virtual void VisitCard(Card*);
 virtual void VisitChassis(Chassis*);
 virtual void VisitBus(Bus*);
 // ...
private:
 Currency _total;
};

void PricingVisitor::VisitFloppyDisk (FloppyDisk* e) {
 _total += e->NetPrice();
}

void PricingVisitor::VisitChassis (Chassis* e) {
 _total += e->DiscountPrice();
}

PricingVisitor will compute the total cost of all nodes in theequipment structure.
Note that PricingVisitor chooses theappropriate pricing policy for a class of
equipment by dispatching tothe corresponding member function. What's more, we
can change thepricing policy of an equipment structure just by changing
thePricingVisitor class.

We can define a visitor for computing inventory like this:

class InventoryVisitor : public EquipmentVisitor {
public:
 InventoryVisitor();

 Inventory& GetInventory();

 virtual void VisitFloppyDisk(FloppyDisk*);
 virtual void VisitCard(Card*);
 virtual void VisitChassis(Chassis*);
 virtual void VisitBus(Bus*);

Design Patterns: Elements of Reusable Object-Oriented Software

378

 // ...
private:
 Inventory _inventory;
};

The InventoryVisitor accumulates the totals for each type ofequipment in the object
structure. InventoryVisitor uses anInventory class that defines an interface for
adding equipment(which we won't bother defining here).

void InventoryVisitor::VisitFloppyDisk (FloppyDisk* e) {
 _inventory.Accumulate(e);
}

void InventoryVisitor::VisitChassis (Chassis* e) {
 _inventory.Accumulate(e);
}

Here's how we can use an InventoryVisitor on anequipment structure:

Equipment* component;
InventoryVisitor visitor;

component->Accept(visitor);
cout << "Inventory "
 << component->Name()
 << visitor.GetInventory();

Now we'll show how to implement the Smalltalk example from the Interpreter pattern
(see page 279) with theVisitor pattern. Like the previous example, this one is
so small thatVisitor probably won't buy us much, but it provides a good illustration
ofhow to use the pattern. Further, it illustrates a situation in whichiteration
is the visitor's responsibility.

The object structure (regular expressions) is made of four classes,and all of
them have an accept: method that takes thevisitor as an argument. In class
SequenceExpression, theaccept: method is

accept: aVisitor
 ^ aVisitor visitSequence: self

In class RepeatExpression, the accept: methodsends the visitRepeat: message.In
class AlternationExpression, it sends thevisitAlternation: message.In class
LiteralExpression, it sends thevisitLiteral: message.

Design Patterns: Elements of Reusable Object-Oriented Software

379

The four classes also must have accessing functions that the visitorcan use. For
SequenceExpression these areexpression1 and expression2;
forAlternationExpression these are alternative1and alternative2;
forRepeatExpression it is repetition; and forLiteralExpression these are
components.

The ConcreteVisitor class is REMatchingVisitor. Itis responsible for the traversal
because its traversal algorithmis irregular. The biggest irregularity is that
aRepeatExpression will repeatedly traverse its component.The class
REMatchingVisitor has an instance variableinputState. Its methods are essentially
the same asthe match: methods of the expression classes in theInterpreter pattern
except theyreplace the argument named inputState with theexpression node being
matched. However, theystill return the set of streams that the expression would
matchto identify the current state.

visitSequence: sequenceExp
 inputState := sequenceExp expression1 accept: self.
 ^ sequenceExp expression2 accept: self.

visitRepeat: repeatExp
 | finalState |
 finalState := inputState copy.
 [inputState isEmpty]
 whileFalse:
 [inputState := repeatExp repetition accept: self.
 finalState addAll: inputState].
 ^ finalState

visitAlternation: alternateExp
 | finalState originalState |
 originalState := inputState.
 finalState := alternateExp alternative1 accept: self.
 inputState := originalState.
 finalState addAll: (alternateExp alternative2 accept: self).
 ^ finalState

visitLiteral: literalExp
 | finalState tStream |
 finalState := Set new.
 inputState
 do:
 [:stream | tStream := stream copy.
 (tStream nextAvailable:
 literalExp components size

Design Patterns: Elements of Reusable Object-Oriented Software

380

) = literalExp components
 ifTrue: [finalState add: tStream]
].
 ̂ finalState

Known Uses

The Smalltalk-80 compiler has a Visitor class called ProgramNodeEnumerator.It's
used primarily for algorithms that analyze source code.It isn't used for code
generation or pretty-printing, although it could be.

IRIS Inventor [Str93]is a toolkit for developing 3-D graphics applications.
Inventorrepresents a three-dimensional scene as a hierarchy of nodes,
eachrepresenting either a geometric object or an attribute of one.Operations like
rendering a scene or mapping an input event requiretraversing this hierarchy in
different ways. Inventor does thisusing visitors called "actions." There are
different visitors forrendering, event handling, searching, filing, and
determiningbounding boxes.

To make adding new nodes easier, Inventor implements adouble-dispatch scheme for
C++. The scheme relies on run-time typeinformation and a two-dimensional table
in which rows representvisitors and columns represent node classes. The cells
store apointer to the function bound to the visitor and node class.

Mark Linton coined the term "Visitor" in the X Consortium'sFresco Application
Toolkit specification [LP93].

Related Patterns

Composite (183):Visitors can be used to apply an operation over an object
structuredefined by the Composite pattern.

Interpreter (274):Visitor may be applied to do the interpretation.

10We could use function overloading to give these operationsthe same simple name,
like Visit, since the operations arealready differentiated by the parameter
they're passed. There arepros and cons to such overloading. On the one hand, it
reinforces thefact that each operation involves the same analysis, albeit on
adifferent argument. On the other hand, that might make what's goingon at the

Design Patterns: Elements of Reusable Object-Oriented Software

381

call site less obvious to someone reading the code. Itreally boils down to whether
you believe function overloading is goodor not.

11If we can have double-dispatch, then why nottriple or quadruple, or any other
number? Actually,double-dispatch is just a special case of multipledispatch, in
which the operation is chosen based on any number oftypes. (CLOS actually supports
multiple dispatch.) Languages thatsupport double- or multiple dispatch lessen
the need for theVisitor pattern.

Design Patterns: Elements of Reusable Object-Oriented Software

382

Discussion of Behavioral Patterns

Encapsulating Variation

Encapsulating variation is a theme of many behavioral patterns. Whenan aspect
of a program changes frequently, these patterns define anobject that encapsulates
that aspect. Then other parts of the programcan collaborate with the object
whenever they depend on that aspect.The patterns usually define an abstract class
that describes theencapsulating object, and the pattern derives its name from
thatobject.12For example,

• a Strategy object encapsulates an algorithm (Strategy (349)),
• a State object encapsulates a state-dependent behavior (State (338)),
• a Mediator object encapsulates the protocol betweenobjects (Mediator

(305)), and
• an Iterator object encapsulates the way you access and traverse

thecomponents of an aggregate object (Iterator (289)).

These patterns describe aspects of a program that are likely tochange. Most
patterns have two kinds of objects: the new object(s)that encapsulate the aspect,
and the existing object(s) that use thenew ones. Usually the functionality of
new objects would be anintegral part of the existing objects were it not for the
pattern. Forexample, code for a Strategy would probably be wired into thestrategy's
Context, and code for a State would be implemented directlyin the state's Context.

But not all object behavioral patterns partition functionality likethis. For
example, Chain of Responsibility (251) dealswith an arbitrary number of objects
(i.e., a chain), all of which mayalready exist in the system.

Chain of Responsibility illustrates another difference in behavioralpatterns:
Not all define static communication relationships betweenclasses. Chain of
Responsibility prescribes communication between anopen-ended number of objects.
Other patterns involve objects that arepassed around as arguments.

Objects as Arguments

Several patterns introduce an object that's always usedas an argument. One of
these is Visitor (366). A Visitor object is theargument to a polymorphic Accept
operation on the objects it visits.The visitor is never considered a part of those
objects, even thoughthe conventional alternative to the pattern is to distribute
Visitorcode across the object structure classes.

Design Patterns: Elements of Reusable Object-Oriented Software

383

Other patterns define objects that act as magic tokens to be passedaround and
invoked at a later time. Both Command (263) and Memento (316) fall into this category.
In Command,the token represents a request; in Memento, it represents the
internalstate of an object at a particular time.In both cases, the token can have
a complex internal representation,but the client is never aware of it. But even
here there aredifferences. Polymorphism is important in the Command
pattern,because executing the Command object is a polymorphic operation.
Incontrast, the Memento interface is so narrow that a memento can onlybe passed
as a value. So it's likely to present no polymorphicoperations at all to its clients.

Should Communication be Encapsulated or

Distributed?

Mediator (305) and Observer (326) arecompeting patterns. The difference between
them is that Observerdistributes communication by introducing Observer and Subject
objects,whereas a Mediator object encapsulates the communication between
otherobjects.

In the Observer pattern, there is no single object that encapsulates aconstraint.
Instead, the Observer and the Subject must cooperate tomaintain the constraint.
Communication patterns are determined by theway observers and subjects are
interconnected: a single subjectusually has many observers, and sometimes the
observer of one subjectis a subject of another observer. The Mediator pattern
centralizesrather than distributes. It places the responsibility for maintaininga
constraint squarely in the mediator.

We've found it easier to make reusable Observers and Subjects than tomake reusable
Mediators. The Observer pattern promotes partitioningand loose coupling between
Observer and Subject, and that leads tofiner-grained classes that are more apt
to be reused.

On the other hand, it's easier to understand the flow of communicationin Mediator
than in Observer. Observers and subjects are usuallyconnected shortly after
they're created, and it's hard to see how theyare connected later in the program.
If you know the Observer pattern,then you understand that the way observers and
subjects are connectedis important, and you also know what connections to look
for.However, the indirection that Observer introduces will still make asystem
harder to understand.

Observers in Smalltalk can be parameterized with messages to accessthe Subject
state, and so they are even more reusable than they are inC++. This makes Observer
more attractive than Mediator in Smalltalk.Thus a Smalltalk programmer will often
use Observer where a C++programmer would use Mediator.

Design Patterns: Elements of Reusable Object-Oriented Software

384

Decoupling Senders and Receivers

When collaborating objects refer to each other directly, they becomedependent
on each other, and that can have an adverse impact on thelayering and reusability
of a system. Command, Observer, Mediator,and Chain of Responsibility address how
you can decouple senders andreceivers, but with different trade-offs.

The Command pattern supports decoupling by using a Command object todefine the
binding between a sender and receiver:

The Command object provides a simple interface for issuing the request(that is,
the Execute operation). Defining the sender-receiverconnection in a separate
object lets the sender work with differentreceivers. It keeps the sender decoupled
from the receivers, makingsenders easy to reuse. Moreover, you can reuse the
Command object toparameterize a receiver with different senders. The Command
patternnominally requires a subclass for each sender-receiver connection,although
the pattern describes implementation techniques that avoidsubclassing.

The Observer pattern decouples senders (subjects) from receivers(observers) by
defining an interface for signaling changes insubjects. Observer defines a looser
sender-receiver binding thanCommand, since a subject may have multiple observers,
and their numbercan vary at run-time.

Design Patterns: Elements of Reusable Object-Oriented Software

385

The Subject and Observer interfaces in the Observer pattern aredesigned for
communicating changes. Therefore the Observer pattern isbest for decoupling
objects when there are data dependencies betweenthem.

The Mediator pattern decouples objects by having them refer to eachother indirectly
through a Mediator object.

A Mediator object routes requests between Colleague objects andcentralizes their
communication. Consequently, colleagues can onlytalk to each other through the
Mediator interface. Because thisinterface is fixed, the Mediator might have to
implement its owndispatching scheme for added flexibility. Requests can be encoded
andarguments packed in such a way that colleagues can request anopen-ended set
of operations.

Design Patterns: Elements of Reusable Object-Oriented Software

386

The Mediator pattern can reduce subclassing in a system, because itcentralizes
communication behavior in one class instead ofdistributing it among subclasses.
However, ad hoc dispatching schemesoften decrease type safety.

Finally, the Chain of Responsibility pattern decouples the sender fromthe receiver
by passing the request along a chain of potentialreceivers:

Since the interface between senders and receivers is fixed, Chain ofResponsibility
may also require a custom dispatching scheme. Hence ithas the same type-safety
drawbacks as Mediator. Chain ofResponsibility is a good way to decouple the sender
and the receiverif the chain is already part of the system's structure, and one
ofseveral objects may be in a position to handle the request. Moreover,the pattern
offers added flexibility in that the chain can be changed orextended easily.

Summary

With few exceptions, behavioral design patterns complement andreinforce each other.
A class in a chain of responsibility, forexample, will probably include at least
one application of Template Method (360).The template method can useprimitive
operations to determine whether the object should handle therequest and to choose
the object to forward to. The chain can use theCommand pattern to represent requests
as objects. Interpreter (274) can use the State pattern todefine parsing contexts.
An iterator can traverse an aggregate, and avisitor can apply an operation to
each element in the aggregate.

Behavioral patterns work well with other patterns, too. For example, asystem that
uses the Composite (183) pattern might usea visitor to perform operations on
components of thecomposition. It could use Chain of Responsibility to let
componentsaccess global properties through their parent. It could also use

Design Patterns: Elements of Reusable Object-Oriented Software

387

Decorator (196) to override these properties on partsof the composition. It could
use the Observer pattern to tie oneobject structure to another and the State pattern
to let a componentchange its behavior as its state changes. The composition itself
mightbe created using the approach in Builder (110), and itmight be treated as
a Prototype (133) by some otherpart of the system.

Well-designed object-oriented systems are just like this—they havemultiple
patterns embedded in them—but not because their designersnecessarily thought in
these terms. Composition at the patternlevel rather than the class or object levels
lets us achieve the samesynergy with greater ease.

12This theme runs through other kinds of patterns, too. Abstract Factory (99),
Builder (110), and Prototype (133) all encapsulate knowledge about howobjects
are created. Decorator (196) encapsulates responsibility that can be added to
an object. Bridge (171) separates an abstraction from its implementation, letting
them vary independently.

Design Patterns: Elements of Reusable Object-Oriented Software

388

6. Conclusion

It's possible to argue that this book hasn't accomplished much. Afterall, it
doesn't present any algorithms or programming techniques thathaven't been used
before. It doesn't give a rigorous method fordesigning systems, nor does it develop
a new theory of design—itjust documents existing designs. You could conclude that
itmakes a reasonable tutorial, perhaps, but it certainly can't offermuch to an
experienced object-oriented designer.

We hope you think differently. Cataloging design patterns isimportant. It gives
us standard names and definitions for thetechniques we use. If we don't study
design patterns in software, wewon't be able to improve them, and it'll be harder
to come up with newones.

This book is only a start. It contains some of the most common designpatterns
that expert object-oriented designers use, and yet peoplehear and learn about
them solely by word of mouth or by studyingexisting systems. Early drafts of the
book prompted other people towrite down the design patterns they use, and it should
prompt evenmore in its current form. We hope this will mark the start of amovement
to document the expertise of software practitioners.

This chapter discusses the impact we think design patterns willhave, how they
are related to other work in design, and how you canget involved in finding and
cataloging patterns.

What to Expect from Design Patterns

Here are several ways in which the design patterns in this book canaffect the
way you design object-oriented software, based on ourday-to-day experience with
them.

A Common Design Vocabulary

Studies of expert programmers for conventional languages haveshown that knowledge
and experience isn't organized simply aroundsyntax but in larger conceptual
structures such as algorithms, datastructures and idioms [AS85, Cop92, Cur89,
SS86], and plans for fulfilling a particulargoal [SE84]. Designers probably don't
think about the notation they're usingfor recording the design as much as they
try to match the currentdesign situation against plans, algorithms, data
structures, andidioms they have learned in the past.

Design Patterns: Elements of Reusable Object-Oriented Software

389

Computer scientists name and catalog algorithms and data structures,but we don't
often name other kinds of patterns. Design patternsprovide a common vocabulary
for designers to use to communicate, document,and explore design alternatives.
Design patterns make a system seemless complex by letting you talk about it at
a higher level ofabstraction than that of a design notation or programming
language.Design patterns raise the level at which you design and discuss designwith
your colleagues.

Once you've absorbed the design patterns in this book, your designvocabulary will
almost certainly change. You will speak directly interms of the names of the design
patterns. You'll find yourselfsaying things like, "Let's use an Observer here,"
or, "Let's make aStrategy out of these classes."

A Documentation and Learning Aid

Knowing the design patterns in this book makes it easier to understandexisting
systems. Most large object-oriented systems use these designpatterns. People
learning object-oriented programming often complainthat the systems they're
working with use inheritance in convolutedways and that it's difficult to follow
the flow of control. In largepart this is because they do not understand the design
patterns in thesystem. Learning these design patterns will help you
understandexisting object-oriented systems.

These design patterns can also make you a better designer. Theyprovide solutions
to common problems. If you work withobject-oriented systems long enough, you'll
probably learn thesedesign patterns on your own. But reading the book will help
you learnthem much faster. Learning these patterns will help a novice act morelike
an expert.

Moreover, describing a system in terms of the design patterns that ituses will
make it a lot easier to understand. Otherwise, people willhave to reverse-engineer
the design to unearth the patterns it uses.Having a common vocabulary means you
don't have to describe the wholedesign pattern; you can just name it and expect
your reader to knowit. A reader who doesn't know the patterns will have to look
them upat first, but that's still easier than reverse-engineering.

We use these patterns in our own designs, and we've found theminvaluable. Yet
we use the patterns in arguably naive ways. We usethem to pick names for classes,
to think about and teach good design,and to describe designs in terms of the sequence
of design patterns weapplied [BJ94]. It's easy to imagine moresophisticated ways
of using patterns, such as pattern-based CASE toolsor hypertext documents. But
patterns are a big help even withoutsophisticated tools.

Design Patterns: Elements of Reusable Object-Oriented Software

390

An Adjunct to Existing Methods

Object-oriented design methods are supposed to promote good design, toteach new
designers how to design well, and to standardize the waydesigns are developed.
A design method typically defines a set ofnotations (usually graphical) for
modeling various aspects of a design,along with a set of rules that govern how
and when to use eachnotation. Design methods usually describe problems that occur
in adesign, how to resolve them, and how to evaluate design. But theyhaven't been
able to capture the experience of expert designers.

We believe our design patterns are an important piece that's beenmissing from
object-oriented design methods. The design patterns showhow to use primitive
techniques such as objects, inheritance, andpolymorphism. They show how to
parameterize a system with analgorithm, a behavior, a state, or the kind of objects
it's supposedto create. Design patterns provide a way to describe more of the"why"
of a design and not just record the results of your decisions.The Applicability,
Consequences, and Implementation sections of thedesign patterns help guide you
in the decisions you have to make.

Design patterns are especially useful in turning an analysis modelinto an
implementation model. Despite many claims that promise asmooth transition from
object-oriented analysis to design, in practicethe transition is anything but
smooth. A flexible and reusable designwill contain objects that aren't in the
analysis model. Theprogramming language and class libraries you use affect the
design.Analysis models often must be redesigned to make them reusable. Manyof
the design patterns in the catalog address these issues, which iswhy we call them
design patterns.

A full-fledged design method requires more kinds of patterns than justdesign
patterns. There can also be analysis patterns, user interfacedesign patterns,
or performance-tuning patterns. But the designpatterns are an essential part,
one that's been missing until now.

A Target for Refactoring

One of the problems in developing reusable software is that itoften has to be
reorganized or refactored [OJ90]. Designpatterns help you determine how to
reorganize a design, and theycan reduce the amount of refactoring you need to
do later.

The lifecycle of object-oriented software has several phases.Brian Foote
identifies these phases as the prototyping, expansionary, and consolidating phases
[Foo92].

Design Patterns: Elements of Reusable Object-Oriented Software

391

The prototyping phase is a flurry of activity as the software isbrought to life
through rapid prototyping and incremental changes,until it meets an initial set
of requirements and reaches adolescence.At this point, the software usually
consists of class hierarchies thatclosely reflect entities in the initial problem
domain. The main kindof reuse is white-box reuse by inheritance.

Once the software has reached adolescence and is put into service, itsevolution
is governed by two conflicting needs: (1) the software mustsatisfy more
requirements, and (2) the software must be more reusable.New requirements usually
add new classes and operations and perhapswhole class hierarchies. The software
goes through an expansionaryphase to meet new requirements. This can't continue
for long,however. Eventually the software will become too inflexible andarthritic
for further change. The class hierarchies will no longermatch any problem domain.
Instead they'll reflect many problemdomains, and classes will define many
unrelated operations andinstance variables.

To continue to evolve, the software must be reorganized in a processknown as
refactoring. This is the phase in which frameworksoften emerge. Refactoring
involves tearing apart classes into special-and general-purpose components,
moving operations up or down the classhierarchy, and rationalizing the interfaces
of classes. Thisconsolidation phase produces many new kinds of objects, often
bydecomposing existing objects and using object composition instead ofinheritance.
Hence black-box reuse replaces white-box reuse. Thecontinual need to satisfy more
requirements along with the need formore reuse propels object-oriented software
through repeated phases ofexpansion and consolidation—expansion as new
requirements aresatisfied, and consolidation as the software becomes more general.

This cycle is unavoidable. But good designers are aware of thechanges that can
prompt refactorings. Good designers also know classand object structures that
can help avoid refactorings—their designsare robust in the face of requirement
changes. A thoroughrequirements analysis will highlight those requirements that

Design Patterns: Elements of Reusable Object-Oriented Software

392

arelikely to change during the life of the software, and a good designwill be
robust to them.

Our design patterns capture many of the structures that result fromrefactoring.
Using these patterns early in the life of a designprevents later refactorings.
But even if you don't see how to apply apattern until after you've built your
system, the pattern canstill show you how to change it. Design patterns thus provide
targetsfor your refactorings.

A Brief History

The catalog began as a part of Erich's Ph.D.thesis [Gam91, Gam92]. Roughly half
of thecurrent patterns were in his thesis. By OOPSLA '91 it was officiallyan
independent catalog, and Richard had joined Erich to work on it.John started
working on it soon thereafter. By OOPSLA '92, Ralph hadjoined the group. We worked
hard to make the catalog fit forpublication at ECOOP '93, but soon we realized
that a 90-page paperwas not going to be accepted. So we summarized the catalog
andsubmitted the summary, which was accepted. We decided to turn thecatalog into
a book shortly thereafter.

Our names for the patterns have changed a little along the way."Wrapper" became
"Decorator," "Glue" became "Facade,""Solitaire" became "Singleton," and "Walker"
became "Visitor."A couple of patterns got dropped because they didn't seem
importantenough. But otherwise the set of patterns in the catalog has changedlittle
since the end of 1992. The patterns themselves, however, haveevolved tremendously.

In fact, noticing that something is a pattern is the easy part.All four of us
are actively working on building object-orientedsystems, and we've found that
it's easy to spot patterns when youlook at enough systems. But finding patterns
is mucheasier than describing them.

If you build systems and then reflect on what you build, you will seepatterns
in what you do. But it's hard to describe patterns so thatpeople who don't know
them will understand them and realize why theyare important. Experts immediately
recognized the value of thecatalog in its early stages. But the only ones who
could understandthe patterns were those who had already used them.

Since one of the main purposes of the book was to teachobject-oriented design
to new designers, we knew we had to improve thecatalog. We expanded the average
size of a pattern from less than 2to more than 10 pages by including a detailed
motivating example and samplecode. We also started examining the trade-offs and
the various waysof implementing the pattern. This made the patterns easier to
learn.

Design Patterns: Elements of Reusable Object-Oriented Software

393

Another important change over the past year has been a greater emphasis onthe
problem that a pattern solves. It's easiest to see a pattern as asolution, as
a technique that can be adapted and reused. It's harderto see when it is
appropriate—to characterize the problems itsolves and the context in which it's
the best solution. In general,it's easier to see what someone is doing than to
know why,and the "why" for a pattern is the problem it solves. Knowingthe purpose
of a pattern is important too, because it helps us choosepatterns to apply. It
also helps us understand the design of existingsystems. A pattern author must
determine and characterize the problemthat the pattern solves, even if you have
to do it after you'vediscovered its solution.

The Pattern Community

We aren't the only ones interested in writing books that catalog thepatterns
experts use. We are a part of a larger community interestedin patterns in general
and software-related patterns in particular.Christopher Alexander is the
architect who first studied patterns inbuildings and communities and developed
a "pattern language" forgenerating them. His work has inspired us time and again.
So it'sfitting and worthwhile to compare our work to his. Then we'll look atothers'
work in software-related patterns.

Alexander's Pattern Languages

There are many ways in which our work is like Alexander's. Both arebased on observing
existing systems and looking for patterns in them.Both have templates for
describing patterns (although our templates arequite different). Both rely on
natural language and lots of examplesto describe patterns rather than formal
languages, and both giverationales for each pattern.

But there are just as many ways in which our works are different:

1. People have been making buildings for thousands of years, and thereare many
classic examples to draw upon. We have been making softwaresystems for a
relatively short time, and few are considered classics.

2. Alexander gives an order in which his patterns should be used; we havenot.
3. Alexander's patterns emphasize the problems they address, whereasdesign

patterns describe the solutions in more detail.
4. Alexander claims his patterns will generate complete buildings. We donot

claim that our patterns will generate complete programs.

When Alexander claims you can design a house simply by applying hispatterns one
after another, he has goals similar to those ofobject-oriented design
methodologists who give step-by-step rules fordesign. Alexander doesn't deny the

Design Patterns: Elements of Reusable Object-Oriented Software

394

need for creativity; some of hispatterns require understanding the living habits
of the people whowill use the building, and his belief in the "poetry" of
designimplies a level of expertise beyond the pattern languageitself.1But his
description of how patternsgenerate designs implies that a pattern language can
make the designprocess deterministic and repeatable.

The Alexandrian point of view has helped us focus on designtrade-offs—the different
"forces" that help shape a design. Hisinfluence made us work harder to understand
the applicability andconsequences of our patterns. It also kept us from worrying
aboutdefining a formal representation of patterns. Although such arepresentation
might make automating patterns possible, at this stageit's more important to
explore the space of design patterns than toformalize it.

From Alexander's point of view, the patterns in this book do not forma pattern
language. Given the variety of software systems that peoplebuild, it's hard to
see how we could provide a "complete" set ofpatterns, one that offers step-by-step
instructions for designing anapplication. We can do that for certain classes of
applications, suchas report-writing or making a forms-entry system. But our
catalog isjust a collection of related patterns; we can't pretend it's a
patternlanguage.

In fact, we think it's unlikely that there will ever be acomplete pattern language
for software. But it's certainly possibleto make one that is more complete.
Additions would have toinclude frameworks and how to use them [Joh92], patterns
foruser interface design [BJ94], analysispatterns [Coa92], and all the other
aspects of developingsoftware. Design patterns are just a part of a larger
patternlanguage for software.

Patterns in Software

Our first collective experience in the study of software architecturewas at an
OOPSLA '91 workshop led by Bruce Anderson. Theworkshop was dedicated to developing
a handbook for softwarearchitects. (Judging from this book, we suspect
"architectureencyclopedia" will be a more appropriate name than
"architecturehandbook.") That first workshop has led to a series of meetings,
themost recent of which being the first conference on Pattern Languagesof Programs
held in August 1994. This has created a community ofpeople interested in
documenting software expertise.

Of course, others have had this goal as well. Donald Knuth's TheArt of Computer
Programming [Knu73] was one of the firstattempts to catalog software knowledge,
though he focused ondescribing algorithms. Even so, the task proved too great
tofinish. The Graphics Gemsseries [Gla90, Arv91, Kir92] is anothercatalog of
design knowledge, though it too tends to focus onalgorithms. The Domain Specific

Design Patterns: Elements of Reusable Object-Oriented Software

395

Software Architecture programsponsored by the U.S. Department of Defense [GM92]
concentrates on gathering architectural information. Theknowledge-based software
engineering community tries to representsoftware-related knowledge in general.
There are many other groupswith goals at least a little like ours.

James Coplien's Advanced C++: Programming Styles andIdioms [Cop92] has influenced
us, too. The patterns inhis book tend to be more C++-specific than our design
patterns, andhis book contains lots of lower-level patterns as well. But there
issome overlap, as we point out in our patterns. Jim has been active inthe pattern
community. He's currently working on patterns thatdescribe people's roles in
software development organizations.

There are a lot of other places in which to find descriptionsof patterns. Kent
Beck was one of the first people in the softwarecommunity to advocate Christopher
Alexander's work. In 1993 hestarted writing a column in The Smalltalk Report
onSmalltalk patterns. Peter Coad has also been collecting patternsfor some time.
His paper on patterns seems to us to contain mostlyanalysis patterns [Coa92];
we haven't seen his latest patterns, though we know he is stillworking on them.
We've heard of several books on patterns thatare in the works, but we haven't
seen any of them, either. All wecan do is let you know they're coming. One of
these books will befrom the Pattern Languages of Programs conference.

An Invitation

What can you do if you are interested in patterns? First, use themand look for
other patterns that fit the way you design. A lot of books and articles about
patterns will be coming outin the next few years,so there will be plenty of sources
for new patterns. Develop yourvocabulary of patterns, and use it. Use it when
you talk with otherpeople about your designs. Use it when you think and write
about them.

Second, be a critical consumer. The design pattern catalog is theresult of hard
work, not just ours but that of dozens of reviewers whogave us feedback. If you
spot a problem or believe moreexplanation is needed, contact us. The same goes
for any other catalog ofpatterns: Give the authors feedback! One of the great
things aboutpatterns is that they move design decisions out of the realm of
vagueintuition. They let authors be explicit about the trade-offs theymake. This
makes it easier to see what is wrong with their patternsand to argue with them.
Take advantage of that.

Third, look for patterns you use, and write them down. Make them apart of your
documentation. Show them to other people. You don'thave to be in a research lab
to find patterns. In fact, findingrelevant patterns is nearly impossible if you

Design Patterns: Elements of Reusable Object-Oriented Software

396

don't have practicalexperience. Feel free to write your own catalog of
patterns...butmake sure someone else helps you beat them into shape!

A Parting Thought

The best designs will use many design patterns that dovetail andintertwine to
produce a greater whole. As Christopher Alexander says:

It is possible to make buildings by stringing together patterns,

in arather loose way. A building made like this, is an assembly

ofpatterns. It is not dense. It is not profound. But it is also

possibleto put patterns together in such a way that many patterns

overlap inthe same physical space: the building is very dense; it

has manymeanings captured in a small space; and through this density,

itbecomes profound.

A Pattern Language [AIX+77, page xli]

1See "The poetry of thelanguage" [AIS+77].

Design Patterns: Elements of Reusable Object-Oriented Software

397

Appendix A: Glossary

abstract class

A class whose primary purpose is to define an interface. An abstract

class defers some or all of its implementation to subclasses. An abstract

class cannot be instantiated.

abstract coupling

Given a class A that maintains a reference to an abstract class B, class

A is said to be abstractly coupled to B. We call this abstract coupling

because A refers to a type of object, not a concrete object.

abstract operation

An operation that declares a signature but doesn't implement it. In

C++, an abstract operation corresponds to a pure virtual member function.

acquaintance relationship
 A class that refers to another class has an acquaintance with that class.

aggregate object

An object that's composed of subobjects. The subobjects are called the

aggregate's parts, and the aggregate is responsible for them.

aggregation relationship

The relationship of an aggregate object to its parts. A class defines

this relationship for its instances (e.g., aggregate objects).

Design Patterns: Elements of Reusable Object-Oriented Software

398

black-box reuse

A style of reuse based on object composition. Composed objects reveal

no internal details to each other and are thus analogous to "black boxes."

class

A class defines an object's interface and implementation. It specifies

the object's internal representation and defines the operations the object

can perform.

class diagram

A diagram that depicts classes, their internal structure and operations,

and the static relationships between them.

class operation

An operation targeted to a class and not to an individual object. In

C++, class operations are are called static member functions.

concrete class
 A class having no abstract operations. It can be instantiated.

constructor

In C++, an operation that is automatically invoked to initialize new

instances.

coupling
 The degree to which software components depend on each other.

delegation
 An implementation mechanism in which an object forwards or delegates

Design Patterns: Elements of Reusable Object-Oriented Software

399

a request to another object. The delegate carries out the request on behalf

of the original object.

design pattern

A design pattern systematically names, motivates, and explains a general

design that addresses a recurring design problem in object-oriented

systems. It describes the problem, the solution, when to apply the solution,

and its consequences. It also gives implementation hints and examples. The

solution is a general arrangement of objects and classes that solve the

problem. The solution is customized and implemented to solve the problem

in a particular context.

destructor

In C++, an operation that is automatically invoked to finalize an object

that is about to be deleted.

dynamic binding

The run-time association of a request to an object and one of its

operations. In C++, only virtual functions are dynamically bound.

encapsulation

The result of hiding a representation and implementation in an object.

The representation is not visible and cannot be accessed directly from

outside the object. Operations are the only way to access and modify an

object's representation.

framework

A set of cooperating classes that makes up a reusable design for a

specific class of software. A framework provides architectural guidance

Design Patterns: Elements of Reusable Object-Oriented Software

400

by partitioning the design into abstract classes and defining their

responsibilities and collaborations. A developer customizes the framework

to a particular application by subclassing and composing instances of

framework classes.

friend class

In C++, a class that has the same access rights to the operations and

data of a class as that class itself.

inheritance

A relationship that defines one entity in terms of another. Class

inheritance defines a new class in terms of one or more parent classes.

The new class inherits its interface and implementation from its parents.

The new class is called a subclass or (in C++) a derived class. Class

inheritance combines interface inheritance and implementation

inheritance. Interface inheritance defines a new interface in terms of one

or more existing interfaces. Implementation inheritance defines a new

implementation in terms of one or more existing implementations.

instance variable

A piece of data that defines part of an object's representation. C++

uses the term data member.

interaction diagram
 A diagram that shows the flow of requests between objects.

interface

The set of all signatures defined by an object's operations. The

interface describes the set of requests to which an object can respond.

Design Patterns: Elements of Reusable Object-Oriented Software

401

metaclass

Classes are objects in Smalltalk. A metaclass is the class of a class

object.

mixin class

A class designed to be combined with other classes through inheritance.

Mixin classes are usually abstract.

object

A run-time entity that packages both data and the procedures that operate

on that data.

object composition
 Assembling or composing objects to get more complex behavior.

object diagram
 A diagram that depicts a particular object structure at run-time.

object reference
 A value that identifies another object.

operation

An object's data can be manipulated only by its operations. An object

performs an operation when it receives a request. In C++, operations are

called member functions. Smalltalk uses the term method.

overriding
 Redefining an operation (inherited from a parent class) in a subclass.

Design Patterns: Elements of Reusable Object-Oriented Software

402

parameterized type

A type that leaves some constituent types unspecified. The unspecified

types are supplied as parameters at the point of use. In C++, parameterized

types are called templates.

parent class

The class from which another class inherits. Synonyms are superclass

(Smalltalk), base class (C++), and ancestor class.

polymorphism

The ability to substitute objects of matching interface for one another

at run-time.

private inheritance
 In C++, a class inherited solely for its implementation.

protocol

Extends the concept of an interface to include the allowable sequences

of requests.

receiver
 The target object of a request.

request

An object performs an operation when it receives a corresponding request

from another object. A common synonym for request is message.

signature

Design Patterns: Elements of Reusable Object-Oriented Software

403

 An operation's signature defines its name, parameters, and return value.

subclass

A class that inherits from another class. In C++, a subclass is called

a derived class.

subsystem

An independent group of classes that collaborate to fulfill a set of

responsibilities.

subtype

A type is a subtype of another if its interface contains the interface

of the other type.

supertype
 The parent type from which a type inherits.

toolkit

A collection of classes that provides useful functionality but does

not define the design of an application.

type
 The name of a particular interface.

white-box reuse

A style of reuse based on class inheritance. A subclass reuses the

interface and implementation of its parent class, but it may have access

to otherwise private aspects of its parent.

Design Patterns: Elements of Reusable Object-Oriented Software

404

Appendix B: Guide to Notation

We use diagrams throughout the book to illustrate important ideas.Some diagrams
are informal, like a screen shot of a dialog box or aschematic showing a tree
of objects. But the design patterns inparticular use more formal notations to
denote relationships andinteractions between classes and objects. This appendix
describesthese notations in detail.

We use three different diagrammatic notations:

1. A class diagram depicts classes, their structure, andthe static
relationships between them.

2. An object diagram depicts a particular object structureat run-time.
3. An interaction diagram shows the flow of requests betweenobjects.

Each design pattern includes at least one class diagram. Theother notations are
used as needed to supplement the discussion.The class and object diagrams are
based on OMT (Object ModelingTechnique) [RBP+91, Rum94].1The interaction
diagramsare taken from Objectory [JCJO92] and the Booch method [Boo94]. These
notations are summarizedon the inside back cover of the book.

Class Diagram

Figure B.1a shows the OMT notation for abstract and concrete classes. A classis
denoted by a box with the class name in bold type at the top.The key operations
of the class appear below the class name. Anyinstance variables appear below the
operations. Type informationis optional; we use the C++ convention, which puts
the type namebefore the name of the operation (to signify the return type),instance
variable, or actual parameter. Slanted type indicatesthat the class or operation
is abstract.

Design Patterns: Elements of Reusable Object-Oriented Software

405

Figure B.1: Class diagram notation

In some design patterns it's helpful to see where client classes reference
Participant classes. When a pattern includes a Clientclass as one of its
participants (meaning the client has aresponsibility in the pattern), the Client
appears as an ordinaryclass. This is true in Flyweight (218), for example. When
the pattern does not include a Client participant(i.e., clients have no
responsibilities in the pattern), butincluding it nevertheless clarifies which

Design Patterns: Elements of Reusable Object-Oriented Software

406

pattern participantsinteract with clients, then the Client class is shown in gray,
asshown in Figure B.1b. An example is Proxy (233). A gray Clientalso makes it
clear that we haven't accidentally omitted the Clientfrom the Participants
discussion.

Figure B.1c shows variousrelationships between classes. The OMT notation for

class inheritanceis a triangle connecting a subclass (LineShape in the figure)

to itsparent class (Shape). An object reference representing a part-of

oraggregation relationship is indicated by an arrowheaded line with adiamond at

the base. The arrow points to the class that is aggregated(e.g., Shape). An

arrowheaded line without the diamond denotesacquaintance (e.g., a LineShape keeps

a reference to a Color object,which other shapes may share). A name for the reference

may appearnear the base to distinguish it from otherreferences.2

Another useful thing to show is which classes instantiate whichothers. We use
a dashed arrowheaded line to indicate this, sinceOMT doesn't support it. We call
this the "creates" relationship.The arrow points to the class that's instantiated.
In Figure B.1c, CreationTool creates LineShape objects.

OMT also defines a filled circle to mean "more than one." Whenthe circle appears
at the head of a reference, it means multipleobjects are being referenced or
aggregated. Figure B.1c shows that Drawing aggregatesmultiple objects of type
Shape.

Finally, we've augmented OMT with pseudocode annotations to letus sketch the
implementations of operations. Figure B.1d shows the pseudocode annotationfor
the Draw operation on the Drawing class.

Object Diagram

An object diagram shows instances exclusively. It provides asnapshot of the objects
in a design pattern. The objects are named"aSomething", where Something is the
class ofthe object. Our symbol for an object (modified slightly fromstandard OMT)
is a rounded box with a line separating the objectname from any object references.
Arrows indicate the objectreferenced. Figure B.2 shows an example.

Design Patterns: Elements of Reusable Object-Oriented Software

407

Figure B.2: Object diagram notation

Interaction Diagram

An interaction diagram shows the order in which requests between objectsget
executed. Figure B.3 is aninteraction diagram that shows how a shape gets added
to a drawing.

Figure B.3: Interaction diagram notation

Time flows from top to bottom in an interaction diagram. A solidvertical line
indicates the lifetime of a particular object. Thenaming convention for objects
is the same as for object diagrams—theclass name prefixed by the letter "a" (e.g.,
aShape). If the objectdoesn't get instantiated until after the beginning of time
as recordedin the diagram, then its vertical line appears dashed until the pointof
creation.

Design Patterns: Elements of Reusable Object-Oriented Software

408

A vertical rectangle shows that an object is active; that is, it ishandling a
request. The operation can send requests to other objects;these are indicated
with a horizontal arrow pointing to the receivingobject. The name of the request
is shown above the arrow. A requestto create an object is shown with a dashed
arrowheaded line. Arequest to the sending object itself points back to the sender.

Figure B.3 shows that the first request is from aCreationTool tocreate

aLineShape. Later, aLineShape is Added to aDrawing, whichprompts aDrawing to send

a Refresh request to itself. Note thataDrawing sends a Draw request to aLineShape

as part of the Refreshoperation.

1OMT uses the term "object diagram" torefer to class diagrams. We use "object
diagram" exclusively torefer to diagrams of object structures.

2OMT also defines associationsbetween classes, which appear as plain lines between
class boxes.Associations are bidirectional. Although associations are
appropriateduring analysis, we feel they're too high-level for expressing
therelationships in design patterns, simply because associations mustbe mapped
down to object references or pointers during design.Object references are
intrinsically directed and are thereforebetter suited to the relationships that
concern us. For example,Drawing knows about Shapes, but the Shapes don't know
about theDrawing they're in. You can't express this relationship withassociations
alone.

Design Patterns: Elements of Reusable Object-Oriented Software

409

Appendix C: Foundation Classes

This appendix documents the foundation classes we use in the C++sample code of
several design patterns. We've intentionally kept the classes simple and minimal.
We describe the following classes:

• List, an ordered list of objects.
• Iterator,the interface for accessing an aggregate's objects in a sequence.
• ListIterator,an iterator for traversing a List.
• Point,a two-dimensional point.
• Rect, an axis-aligned rectangle.

Some newer C++ standard types may not be available on allcompilers. In particular,
if your compiler doesn't definebool, then define it manually as

 typedef int bool;
 const int true = 1;
 const int false = 0;

List

The List class template provides a basic container forstoring an ordered list
of objects. List stores elements byvalue, which means it works for built-in types
as well as classinstances. For example, List declares a list ofints. But most
of the patterns use List tostore pointers to objects, as in List. That wayList
can be used for heterogeneous lists.

For convenience, List also provides synonyms for stackoperations, which make code
that uses List for stacks moreexplicit without defining another class.

template <class Item>
class List {
public:
 List(long size = DEFAULT_LIST_CAPACITY);
 List(List&);
 ~List();
 List& operator=(const List&);

 long Count() const;
 Item& Get(long index) const;
 Item& First() const;
 Item& Last() const;
 bool Includes(const Item&) const;

Design Patterns: Elements of Reusable Object-Oriented Software

410

 void Append(const Item&);
 void Prepend(const Item&);

 void Remove(const Item&);
 void RemoveLast();
 void RemoveFirst();
 void RemoveAll();

 Item& Top() const;
 void Push(const Item&);
 Item& Pop();
};

The following sections describe these operations in greater detail.

Construction, Destruction, Initialization, and Assignment

List(long size)

initializes the list. The size parameter is a hint forthe initial number
of elements.

List(List&)

overrides the default copy constructor so that member data
areinitialized properly.

~List()

frees the list's internal data structures but not theelements in the
list. The class is not designed for subclassing;therefore the destructor
isn't virtual.

List& operator=(const List&)

implements the assignment operation to assign member data properly.

Accessing

These operations provide basic access to the list's elements.

long Count() const

Design Patterns: Elements of Reusable Object-Oriented Software

411

returns the number of objects in the list.

Item& Get(long index) const

returns the object at the given index.

Item& First() const

returns the first object in the list.

Item& Last() const

returns the last object in the list.

Adding

void Append(const Item&)

adds the argument to the list, making it the last element.

void Prepend(const Item&)

adds the argument to the list, making it the first element.

Removing

void Remove(const Item&)

removes the given element from the list. This operation requiresthat
the type of elements in the list supports the== operator for comparison.

void RemoveFirst()

removes the first element from the list.

void RemoveLast()

removes the last element from the list.

void RemoveAll()

removes all elements from the list.

Design Patterns: Elements of Reusable Object-Oriented Software

412

Stack Interface

Item& Top() const

returns the top element (when the List is viewed as a stack).

void Push(const Item&)

pushes the element onto the stack.

Item& Pop()

pops the top element from the stack.

Iterator

Iterator is an abstract class that defines a traversalinterface for aggregates.

template <class Item>
class Iterator {
public:
 virtual void First() = 0;
 virtual void Next() = 0;
 virtual bool IsDone() const = 0;
 virtual Item CurrentItem() const = 0;
protected:
 Iterator();
};

The operations do the following:

virtual void First()

positions the iterator to the first object in the aggregate.

virtual void Next()

positions the iterator to the next object in the sequence.

virtual bool IsDone() const

returns true when there are no more objects in the sequence.

virtual Item CurrentItem() const

Design Patterns: Elements of Reusable Object-Oriented Software

413

returns the object at the current position in the sequence.

ListIterator

ListIterator implements the Iterator interfaceto traverse List objects. Its
constructor takes a list to traverse asan argument.

template <class Item>
class ListIterator : public Iterator<Item> {
public:
 ListIterator(const List<Item>* aList);

 virtual void First();
 virtual void Next();
 virtual bool IsDone() const;
 virtual Item CurrentItem() const;
};

Point

Point represents a point in a two-dimensional Cartesiancoordinate space. Point
supports some minimal vector arithmetic.The coordinates of a Point are defined
as

 typedef float Coord;

Point's operations are self-explanatory.

class Point {
public:
 static const Point Zero;

 Point(Coord x = 0.0, Coord y = 0.0);

 Coord X() const; void X(Coord x);
 Coord Y() const; void Y(Coord y);

 friend Point operator+(const Point&, const Point&);
 friend Point operator-(const Point&, const Point&);
 friend Point operator*(const Point&, const Point&);
 friend Point operator/(const Point&, const Point&);

 Point& operator+=(const Point&);

Design Patterns: Elements of Reusable Object-Oriented Software

414

 Point& operator-=(const Point&);
 Point& operator*=(const Point&);
 Point& operator/=(const Point&);

 Point operator-();

 friend bool operator==(const Point&, const Point&);
 friend bool operator!=(const Point&, const Point&);

 friend ostream& operator<<(ostream&, const Point&);
 friend istream& operator>>(istream&, Point&);
};

The static member Zero represents Point(0, 0).

Rect

Rect represents an axis-aligned rectangle. ARect is defined by an origin point
and an extent (thatis, width and height). The Rect operations areself-explanatory.

class Rect {
public:
 static const Rect Zero;

 Rect(Coord x, Coord y, Coord w, Coord h);
 Rect(const Point& origin, const Point& extent);

 Coord Width() const; void Width(Coord);
 Coord Height() const; void Height(Coord);
 Coord Left() const; void Left(Coord);
 Coord Bottom() const; void Bottom(Coord);

 Point& Origin() const; void Origin(const Point&);
 Point& Extent() const; void Extent(const Point&);

 void MoveTo(const Point&);
 void MoveBy(const Point&);

 bool IsEmpty() const;
 bool Contains(const Point&) const;
};

The static member Zero is equivalent to the rectangle

Design Patterns: Elements of Reusable Object-Oriented Software

415

 Rect(Point(0, 0), Point(0, 0));

Design Patterns: Elements of Reusable Object-Oriented Software

416

Bibliography

[Add94]
Addison-Wesley, Reading, MA. NEXTSTEPGeneral Reference: Release 3,

Volumes 1 and 2, 1994.

[AG90]
D.B. Anderson and S. Gossain. Hierarchyevolution and the software

lifecycle. In TOOLS '90 ConferenceProceedings, pages 41–50, Paris, June 1990.

Prentice Hall.

[AIS+77]
Christopher Alexander, Sara Ishikawa, MurraySilverstein, Max Jacobson,

Ingrid Fiksdahl-King, and Shlomo Angel.A Pattern Language. Oxford University

Press, NewYork, 1977.

[App89]
Apple Computer, Inc., Cupertino, CA. MacintoshProgrammers Workshop Pascal

3.0 Reference, 1989.

[App92]
Apple Computer, Inc., Cupertino, CA. Dylan.An object-oriented dynamic

language, 1992.

[Arv91]
James Arvo. Graphics Gems II.Academic Press, Boston, MA, 1991.

[AS85]

Design Patterns: Elements of Reusable Object-Oriented Software

417

B. Adelson and E. Soloway. The role ofdomain experience in software design.

IEEE Transactions onSoftware Engineering, 11(11):1351–1360, 1985.

[BE93]
Andreas Birrer and Thomas Eggenschwiler. Frameworksin the financial

engineering domain: An experience report. InEuropean Conference on

Object-Oriented Programming,pages 21–35, Kaiserslautern, Germany, July

1993.Springer-Verlag.

[BJ94]
Kent Beck and Ralph Johnson. Patterns generatearchitectures. In European

Conference on Object-OrientedProgramming, pages 139–149, Bologna, Italy,

July 1994. Springer-Verlag.

[Boo94]
Grady Booch. Object-Oriented Analysis andDesign with Applications.

Benjamin/Cummings, Redwood City,CA, 1994. Second Edition.

[Bor81]
A. Borning. The programming language aspectsof ThingLab—a

constraint-oriented simulation laboratory.ACM Transactions on Programming

Languages and Systems,3(4):343–387, October 1981.

[Bor94]
Borland International, Inc., Scotts Valley, CA.A Technical Comparison of

Borland ObjectWindows 2.0 andMicrosoft MFC 2.5, 1994.

[BV90]
Grady Booch and Michael Vilot. The design of theC++ Booch components. In

Design Patterns: Elements of Reusable Object-Oriented Software

418

Object-Oriented Programming Systems,Languages, and Applications Conference

Proceedings, pages1–11, Ottawa, Canada, October 1990. ACM Press.

[Cal93]
Paul R. Calder. Building User Interfaceswith Lightweight Objects. PhD

thesis, Stanford University,1993.

[Car89]
J. Carolan. Constructing bullet-proof classes.In Proceedings C++ at Work

'89. SIGS Publications,1989.

[Car92]
Tom Cargill. C++ Programming Style.Addison-Wesley, Reading, MA, 1992.

[CIRM93]
Roy H. Campbell, Nayeem Islam, David Raila,and Peter Madeany. Designing

and implementing Choices: Anobject-oriented system in C++. Communications

of theACM, 36(9):117–126, September 1993.

[CL90]
Paul R. Calder and Mark A. Linton.Glyphs: Flyweight objects for user

interfaces. In ACM UserInterface Software Technologies Conference, pages

92–101, Snowbird, UT, October 1990.

[CL92]
Paul R. Calder and Mark A. Linton. Theobject-oriented implementation of

a document editor. InObject-Oriented Programming Systems, Languages, and

Applications Conference Proceedings, pages 154–165, Vancouver, British

Columbia, Canada, October 1992. ACM Press.

Design Patterns: Elements of Reusable Object-Oriented Software

419

[Coa92]
Peter Coad. Object-oriented patterns.Communications of the ACM,

35(9):152–159, September1992.

[Coo92]
William R. Cook. Interfaces and specificationsfor the Smalltalk-80

collection classes. In Object-Oriented Programming Systems, Languages,and

Applications Conference Proceedings, pages 1–15, Vancouver, British

Columbia, Canada, October 1992. ACM Press.

[Cop92]
James O. Coplien. Advanced C++Programming Styles and Idioms.

Addison-Wesley, Reading,MA, 1992.

[Cur89]
Bill Curtis. Cognitive issues in reusing softwareartifacts. In Ted J.

Biggerstaff and Alan J. Perlis,editors, Software Reusability, Volume II:

Applications and Experience, pages 269–287. Addison-Wesley, Reading, MA,

1989.

[dCLF93]
Dennis de Champeaux, Doug Lea, and PenelopeFaure. Object-Oriented System

Development.Addison-Wesley, Reading, MA, 1993.

[Deu89]
L. Peter Deutsch. Design reuse and frameworksin the Smalltalk-80 system.

In Ted J. Biggerstaff andAlan J. Perlis, editors, Software Reusability,

Volume II: Applications and Experience, pages 57–71. Addison-Wesley, Reading,

Design Patterns: Elements of Reusable Object-Oriented Software

420

MA, 1989.

[Ede92]
D. R. Edelson. Smart pointers: They're smart,but they're not pointers.

In Proceedings of the 1992 USENIXC++ Conference, pages 1–19, Portland, OR,

August 1992. USENIX Association.

[EG92]
Thomas Eggenschwiler and Erich Gamma. TheET++SwapsManager: Using object

technology in the financial engineering domain. In Object-Oriented

Programming Systems,Languages, and Applications Conference Proceedings,

pages 166–178, Vancouver, British Columbia, Canada, October 1992. ACM Press.

[ES90]
Margaret A. Ellis and Bjarne Stroustrup.The Annotated C++ Reference

Manual. Addison-Wesley,Reading, MA, 1990.

[Foo92]
Brian Foote. A fractal model of the lifecyclesof reusable objects. OOPSLA

'92 Workshop on Reuse,October 1992. Vancouver, British Columbia, Canada.

[GA89]
S. Gossain and D.B. Anderson. Designing aclass hierarchy for domain

representation and reusability. In TOOLS '89 Conference Proceedings,pages

201–210, CNIT Paris—La Defense, France, November 1989. Prentice Hall.

[Gam91]
Erich Gamma. Object-Oriented SoftwareDevelopment based on ET++: Design

Patterns, Class Library, Tools (in German). PhD thesis,University of Zurich

Design Patterns: Elements of Reusable Object-Oriented Software

421

Institut für Informatik, 1991.

[Gam92]
Erich Gamma. Object-Oriented SoftwareDevelopment based on ET++: Design

Patterns, Class Library, Tools (in German). Springer-Verlag,Berlin, 1992.

[Gla90]
Andrew Glassner. Graphics Gems.Academic Press, Boston, MA, 1990.

[GM92]
M. Graham and E. Mettala. TheDomain-Specific Software Architecture

Program. In Proceedingsof DARPA Software Technology Conference, 1992, pages

204–210, April 1992. Also published in CrossTalk,The Journal of Defense

Software Engineering, pages 19–21, 32, October 1992.

[GR83]
Adele J. Goldberg and David Robson.Smalltalk-80: The Language and Its

Implementation.Addison-Wesley, Reading, MA, 1983.

[HHMV92]
Richard Helm, Tien Huynh, Kim Marriott, and JohnVlissides. An

object-oriented architecture for constraint-basedgraphical editing. In

Proceedings of the Third Eurographics Workshopon Object-Oriented Graphics,

pages 1–22, Champéry, Switzerland, October 1992. Also available as IBM

Research DivisionTechnical Report RC 18524 (79392).

[HO87]
Daniel C. Halbert and Patrick D. O'Brien.Object-oriented development.

IEEE Software,4(5):71–79, September 1987.

Design Patterns: Elements of Reusable Object-Oriented Software

422

[ION94]
IONA Technologies, Ltd., Dublin, Ireland.Programmer's Guide for Orbix,

Version 1.2, 1994.

[JCJO92]
Ivar Jacobson, Magnus Christerson, Patrik Jonsson,and Gunnar Overgaard.

Object-Oriented Software Engineering—AUse Case Driven Approach.

Addison-Wesley, Wokingham, England, 1992.

[JF88]
Ralph E. Johnson and Brian Foote. Designingreusable classes. Journal of

Object-Oriented Programming,1(2):22–35, June/July 1988.

[JML92]
Ralph E. Johnson, Carl McConnell, andJ. Michael Lake. The RTL system: A

framework for codeoptimization. In Robert Giegerich and Susan L. Graham,

editors,Code Generation—Concepts, Tools, Techniques. Proceedings of the

International Workshop on Code Generation, pages 255–274, Dagstuhl, Germany,

1992. Springer-Verlag.

[Joh92]
Ralph Johnson. Documenting frameworks usingpatterns. In Object-Oriented

Programming Systems, Languages,and Applications Conference Proceedings,

pages 63–76, Vancouver, British Columbia, Canada, October 1992. ACM Press.

[JZ91]
Ralph E. Johnson and Jonathan Zweig. Delegationin C++. Journal of

Object-Oriented Programming,4(11):22–35, November 1991.

Design Patterns: Elements of Reusable Object-Oriented Software

423

[Kir92]
David Kirk. Graphics Gems III.Harcourt, Brace, Jovanovich, Boston, MA,

1992.

[Knu73]
Donald E. Knuth. The Art of ComputerProgramming, Volumes 1, 2, and 3.

Addison-Wesley, Reading,MA, 1973.

[Knu84]
Donald E. Knuth. The TeX book.Addison-Wesley, Reading, MA, 1984.

[Kof93]
Thomas Kofler. Robust iterators in ET++.Structured Programming, 14:62–85,

March1993.

[KP88]
Glenn E. Krasner and Stephen T. Pope.A cookbook for using the model-view

controller user interface paradigm in Smalltalk-80. Journal of

Object-OrientedProgramming, 1(3):26–49, August/September 1988.

[LaL94]
Wilf LaLonde. Discovering Smalltalk.Benjamin/Cummings, Redwood City, CA,

1994.

[LCI+92]
Mark Linton, Paul Calder, John Interrante, StevenTang, and John Vlissides.

InterViews Reference Manual.CSL, Stanford University, 3.1 edition, 1992.

Design Patterns: Elements of Reusable Object-Oriented Software

424

[Lea88]
Doug Lea. libg++, the GNU C++ library. InProceedings of the 1988 USENIX

C++ Conference, pages 243–256, Denver, CO, October 1988. USENIX Association.

[LG86]
Barbara Liskov and John Guttag. Abstractionand Specification in Program

Development. McGraw-Hill, NewYork, 1986.

[Lie85]
Henry Lieberman. There's more to menu systemsthan meets the screen. In

SIGGRAPH Computer Graphics,pages 181–189, San Francisco, CA, July 1985.

[Lie86]
Henry Lieberman. Using prototypical objects toimplement shared behavior

in object-oriented systems. In Object-Oriented ProgrammingSystems,

Languages, and Applications Conference Proceedings, pages 214–223, Portland,

OR, November 1986.

[Lin92]
Mark A. Linton. Encapsulating a C++ library.In Proceedings of the 1992

USENIX C++ Conference,pages 57–66, Portland, OR, August 1992. ACM Press.

[LP93]
Mark Linton and Chuck Price. Building distributeduser interfaces with

Fresco. In Proceedings of the 7th XTechnical Conference, pages 77–87, Boston,

MA, January 1993.

[LR93]
Daniel C. Lynch and Marshall T. Rose.Internet System Handbook.

Design Patterns: Elements of Reusable Object-Oriented Software

425

Addison-Wesley, Reading,MA, 1993.

[LVC89]
Mark A. Linton, John M. Vlissides, andPaul R. Calder. Composing user

interfaces with InterViews.Computer, 22(2):8–22, February 1989.

[Mar91]
Bruce Martin. The separation of interface andimplementation in C++. In

Proceedings of the 1991 USENIXC++ Conference, pages 51–63, Washington, D.C.,

April 1991. USENIX Association.

[McC87]
Paul McCullough. Transparent forwarding: Firststeps. In Object-Oriented

Programming Systems, Languages,and Applications Conference Proceedings,

pages 331–341, Orlando, FL, October 1987. ACM Press.

[Mey88]
Bertrand Meyer. Object-Oriented SoftwareConstruction. Series in Computer

Science. Prentice Hall,Englewood Cliffs, NJ, 1988.

[Mur93]
Robert B. Murray. C++ Strategies andTactics. Addison-Wesley, Reading, MA,

1993.

[OJ90]
William F. Opdyke and Ralph E. Johnson.Refactoring: An aid in designing

application frameworks and evolving object-oriented systems. In SOOPPA

Conference Proceedings,pages 145–161, Marist College, Poughkeepsie, NY,

September 1990. ACM Press.

Design Patterns: Elements of Reusable Object-Oriented Software

426

[OJ93]
William F. Opdyke and Ralph E. Johnson.Creating abstract superclasses by

refactoring. In Proceedingsof the 21st Annual Computer Science Conference

(ACM CSC '93), pages 66–73, Indianapolis, IN, February 1993.

[P+88]
Andrew J. Palay et al. The AndrewToolkit: An overview. In Proceedings of

the 1988 WinterUSENIX Technical Conference, pages 9–21, Dallas, TX, February

1988. USENIX Association.

[Par90]
ParcPlace Systems, Mountain View, CA.ObjectWorks\Smalltalk Release 4

Users Guide,1990.

[Pas86]
Geoffrey A. Pascoe. Encapsulators: A newsoftware paradigm in

Smalltalk-80. In Object-OrientedProgramming Systems, Languages, and

Applications Conference Proceedings, pages 341–346, Portland, OR, October

1986. ACM Press.

[Pug90]
William Pugh. Skiplists: A probabilistic alternativeto balanced trees.

Communications of the ACM,33(6):668–676, June 1990.

[RBP+91]
James Rumbaugh, Michael Blaha, William Premerlani,Frederick Eddy, and

William Lorenson. Object-Oriented Modelingand Design. Prentice Hall,

Englewood Cliffs, NJ, 1991.

Design Patterns: Elements of Reusable Object-Oriented Software

427

[Rum94]
James Rumbaugh. The life of an object model: Howthe object model changes

during development. Journal ofObject-Oriented Programming, 7(1):24–32,

March/April1994.

[SE84]
Elliot Soloway and Kate Ehrlich. Empirical studiesof programming

knowledge. IEEE Transactions on SoftwareEngineering, 10(5):595–609,

September 1984.

[Sha90]
Yen-Ping Shan. MoDE: A UIMS for Smalltalk. InACM OOPSLA/ECOOP '90

Conference Proceedings, pages258–268, Ottawa, Ontario, Canada, October 1990.

ACM Press.

[Sny86]
Alan Snyder. Encapsulation and inheritance inobject-oriented languages.

In Object-Oriented ProgrammingSystems, Languages, and Applications

Conference Proceedings,pages 38–45, Portland, OR, November 1986. ACM Press.

[SS86]
James C. Spohrer and Elliot Soloway. Novicemistakes: Are the folk wisdoms

correct? Communications ofthe ACM, 29(7):624–632, July 1986.

[SS94]
Douglas C. Schmidt and Tatsuya Suda. TheService Configurator Framework:

An extensible architecture fordynamically configuring concurrent,

multi-service network daemons.In Proceeding of the Second International

Design Patterns: Elements of Reusable Object-Oriented Software

428

Workshop onConfigurable Distributed Systems, pages 190–201,Pittsburgh, PA,

March 1994. IEEE Computer Society.

[Str91]
Bjarne Stroustrup. The C++ ProgrammingLanguage. Addison-Wesley, Reading,

MA, 1991. SecondEdition.

[Str93]
Paul S. Strauss. IRIS Inventor, a 3D graphicstoolkit. In Object-Oriented

Programming Systems, Languages,and Applications Conference Proceedings,

pages 192–200,Washington, D.C., September 1993. ACM Press.

[Str94]
Bjarne Stroustrup. The Design and Evolutionof C++. Addison-Wesley,

Reading, MA, 1994.

[Sut63]
I.E. Sutherland. Sketchpad: A Man-MachineGraphical Communication System.

PhD thesis, MIT, 1963.

[Swe85]
Richard E. Sweet. The Mesa programmingenvironment. SIGPLAN Notices,

20(7):216–229,July 1985.

[Sym93a]
Symantec Corporation, Cupertino, CA. BedrockDeveloper's Architecture

Kit, 1993.

[Sym93b]

Design Patterns: Elements of Reusable Object-Oriented Software

429

Symantec Corporation, Cupertino, CA. THINKClass Library Guide, 1993.

[Sza92]
Duane Szafron. SPECTalk: An object-oriented dataspecification language.

In Technology of Object-OrientedLanguages and Systems (TOOLS 8), pages

123–138, SantaBarbara, CA, August 1992. Prentice Hall.

[US87]
David Ungar and Randall B. Smith. Self: Thepower of simplicity. In

Object-Oriented Programming Systems,Languages, and Applications Conference

Proceedings, pages227–242, Orlando, FL, October 1987. ACM Press.

[VL88]
John M. Vlissides and Mark A. Linton.Applying object-oriented design to

structured graphics. InProceedings of the 1988 USENIX C++ Conference,

pages81–94, Denver, CO, October 1988. USENIX Association.

[VL90]
John M. Vlissides and Mark A. Linton.Unidraw: A framework for building

domain-specific graphical editors.ACM Transactions on Information Systems,

8(3):237–268,July 1990.

[WBJ90]
Rebecca Wirfs-Brock and Ralph E. Johnson.A survey of current research in

object-oriented design.Communications of the ACM, 33(9):104–124,1990.

[WBWW90]
Rebecca Wirfs-Brock, Brian Wilkerson, and LaurenWiener. Designing

Object-Oriented Software. PrenticeHall, Englewood Cliffs, NJ, 1990.

Design Patterns: Elements of Reusable Object-Oriented Software

430

[WGM88]
André Weinand, Erich Gamma, and Rudolf Marty.ET++—An object-oriented

application framework in C++. InObject-Oriented Programming Systems,

Languages, and ApplicationsConference Proceedings, pages 46–57, San Diego,

CA,September 1988. ACM Press.

Design Patterns: Elements of Reusable Object-Oriented Software

431

Design pattern relationships

	Contents
	Preface to CD
	Preface to Book
	Foreword
	Guide to Readers
	1. Introduction
	What is a Design Pattern?
	Design Patterns in Smalltalk MVC
	Describing Design Patterns
	The Catalog of Design Patterns
	Organizing the Catalog
	How Design Patterns Solve Design Problems
	Finding Appropriate Objects
	Determining Object Granularity
	Specifying Object Interfaces
	Specifying Object Implementations
	Putting Reuse Mechanisms to Work
	Designing for Change

	How to Select a Design Pattern
	How to Use a Design Pattern

	2. A Case Study: Design a Document Editor
	Design Problems
	Document Structure
	Recursive Composition
	Glyphs
	Composite Pattern

	Formatting
	Encapsulating the Formatting Algorithm
	Compositor and Composition
	Strategy Pattern

	Embellishing the User Interface
	Transparent Enclosure
	Monoglyph
	Decorator Pattern

	Supporting Multiple Look-and-Feel Standards
	Abstracting Object Creation
	Factories and Product Classes
	Abstract Factory Pattern

	Supporting Multiple Window Systems
	Can We Use an Abstract Factory?
	Encapsulating Implementation Dependencies
	Window and WindowImp
	WindowImp Subclasses
	Configuring Windows with WindowImps
	Bridge Pattern

	User Operations
	Encapsulating a Request
	Command Class and Subclasses
	Undoability
	Command History
	Command Pattern

	Spelling Checking and Hyphenation
	Accessing Scattered Information
	Encapsulating Access and Traversal
	Iterator Class and Subclasses
	Iterator Pattern
	Traversal versus Traversal Actions
	Encapsulating the Analysis
	Visitor Class and Subclasses
	Visitor Pattern

	Summary

	3. Creational Patterns
	Abstract Factory
	Intent
	Also Known As
	Motivation
	Applicability
	Structure
	Participants
	Collaborations
	Consequences
	Implementation
	Sample Code
	Known Uses
	Related Patterns

	Builder
	Intent
	Motivation
	Applicability
	Structure
	Participants
	Collaborations
	Consequences
	Implementation
	Sample Code
	Known Uses
	Related Patterns

	Factory Method
	Intent
	Also Known As
	Motivation
	Applicability
	Structure
	Participants
	Collaborations
	Consequences
	Implementation
	Sample Code
	Known Uses
	Related Patterns

	Prototype
	Intent
	Motivation
	Applicability
	Structure
	Participants
	Collaborations
	Consequences
	Implementation
	Sample Code
	Known Uses
	Related Patterns

	Singleton
	Intent
	Motivation
	Applicability
	Structure
	Participants
	Collaborations
	Consequences
	Implementation
	Sample Code
	Known Uses
	Related Patterns

	Discussion of Creational Patterns

	4. Structural Patterns
	Adapter
	Intent
	Also Known As
	Motivation
	Applicability
	Structure
	Participants
	Collaborations
	Consequences
	Implementation
	Sample Code
	Known Uses
	Related Patterns

	Bridge
	Intent
	Also Known As
	Motivation
	Applicability
	Structure
	Participants
	Collaborations
	Consequences
	Implementation
	Sample Code
	Known Uses
	Related Patterns

	Composite
	Intent
	Motivation
	Applicability
	Structure
	Participants
	Collaborations
	Consequences
	Implementation
	Sample Code
	Known Uses
	Related Patterns

	Decorator
	Intent
	Also Known As
	Motivation
	Applicability
	Structure
	Participants
	Collaborations
	Consequences
	Implementation
	Sample Code
	Known Uses
	Related Patterns

	Facade
	Intent
	Motivation
	Applicability
	Structure
	Participants
	Collaborations
	Consequences
	Implementation
	Sample Code
	Known Uses
	Related Patterns

	Flyweight
	Intent
	Motivation
	Applicability
	Structure
	Participants
	Collaborations
	Consequences
	Implementation
	Sample Code
	Known Uses
	Related Patterns

	Proxy
	Intent
	Also Known As
	Motivation
	Applicability
	Structure
	Participants
	Collaborations
	Consequences
	Implementation
	Sample Code
	Known Uses
	Related Patterns

	Discussion of Structural Patterns
	Adapter versus Bridge
	Composite versus Decorator versus Proxy

	5. Behavioral Patterns
	Chain of Responsibility
	Intent
	Motivation
	Applicability
	Structure
	Participants
	Collaborations
	Consequences
	Implementation
	Sample Code
	Known Uses
	Related Patterns

	Command
	Intent
	Also Known As
	Motivation
	Applicability
	Structure
	Participants
	Collaborations
	Consequences
	Implementation
	Sample Code
	Known Uses
	Related Patterns

	Interpreter
	Intent
	Motivation
	Applicability
	Structure
	Participants
	Collaborations
	Consequences
	Implementation
	Sample Code
	Known Uses
	Related Patterns

	Iterator
	Intent
	Also Known As
	Motivation
	Applicability
	Structure
	Participants
	Collaborations
	Consequences
	Implementation
	Sample Code
	Known Uses
	Related Patterns

	Mediator
	Intent
	Motivation
	Applicability
	Structure
	Participants
	Collaborations
	Consequences
	Implementation
	Sample Code
	Known Uses
	Related Patterns

	Memento
	Intent
	Also Known As
	Motivation
	Applicability
	Structure
	Participants
	Collaborations
	Consequences
	Implementation
	Sample Code
	Known Uses
	Related Patterns

	Observer
	Intent
	Also Known As
	Motivation
	Applicability
	Structure
	Participants
	Collaborations
	Consequences
	Implementation
	Sample Code
	Known Uses
	Related Patterns

	State
	Intent
	Also Known As
	Motivation
	Applicability
	Structure
	Participants
	Collaborations
	Consequences
	Implementation
	Sample Code
	Known Uses
	Related Patterns

	Strategy
	Intent
	Also Known As
	Motivation
	Applicability
	Structure
	Participants
	Collaborations
	Consequences
	Implementation
	Sample Code
	Known Uses
	Related Patterns

	Template Method
	Intent
	Motivation
	Applicability
	Structure
	Participants
	Collaborations
	Consequences
	Implementation
	Sample Code
	Known Uses
	Related Patterns

	Visitor
	Intent
	Motivation
	Applicability
	Structure
	Participants
	Collaborations
	Consequences
	Implementation
	Sample Code
	Known Uses
	Related Patterns

	Discussion of Behavioral Patterns
	Encapsulating Variation
	Objects as Arguments
	Should Communication be Encapsulated or
	Distributed?
	Decoupling Senders and Receivers
	Summary

	6. Conclusion
	What to Expect from Design Patterns
	A Common Design Vocabulary
	A Documentation and Learning Aid
	An Adjunct to Existing Methods
	A Target for Refactoring

	A Brief History
	The Pattern Community
	Alexander's Pattern Languages
	Patterns in Software

	An Invitation
	A Parting Thought

	Appendix A: Glossary
	Appendix B: Guide to Notation
	Class Diagram
	Object Diagram
	Interaction Diagram

	Appendix C: Foundation Classes
	List
	Construction, Destruction, Initialization, and Assignment
	Accessing
	Adding
	Removing
	Stack Interface

	Iterator
	ListIterator
	Point
	Rect

	Bibliography

