

Foundation Game Design
with Flash

Rex van der Spuy

Lead Editor
Ben Renow-Clarke

Technical Reviewer
Josh Freeney

Editorial Board
Clay Andres, Steve Anglin, Mark Beckner,

Ewan Buckingham, Tony Campbell, Gary Cornell,
Jonathan Gennick, Jonathan Hassell, Michelle Lowman,

Matthew Moodie, Jeffrey Pepper, Frank Pohlmann,
Ben Renow-Clarke, Dominic Shakeshaft,

Matt Wade, Tom Welsh

Project Manager
Beth Christmas

Copy Editor
Nancy Sixsmith

Associate Production Director
Kari Brooks-Copony

Production Editor
Laura Esterman

Compositor/Artist
Diana Van Winkle

Proofreader
Linda Seifert

Indexer
Brenda Miller

Cover Image Designer
Corné van Dooren

Interior and Cover Designer
Kurt Krames

Manufacturing Director
Tom Debolski

Foundation Game Design with Flash
Copyright © 2009 by Rex van der Spuy

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the

copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1821-0

ISBN-13 (electronic): 978-1-4302-1822-7

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name,
we use the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement

of the trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York, NY 10013.
Phone 1-800-SPRINGER, fax 201-348-4505, e-mail , or visit .

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, Berkeley, CA 94705.
Phone 510-549-5930, fax 510-549-5939, e-mail , or visit .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions and licenses
are also available for most titles. For more information, reference our Special Bulk Sales–eBook Licensing web page at

.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has been taken in the
preparation of this work, neither the author(s) nor Apress shall have any liability to any person or entity with respect to any loss or

damage caused or alleged to be caused directly or indirectly by the information contained in this work.

The source code for this book is freely available to readers at in the Downloads section.

Credits

Dedicated to my father, Mani van der Spuy,
without whom this book would not have been written.

Thanks, Dad, for always believing in me.

“This page left intentionally blank.”

v

CONTENTS AT A GLANCE

About the Author . xv

About the Technical Reviewer .xvi

About the Cover Image Designer . xvii

Introduction .xix

Chapter 1 Programming Foundations: How to Make a Video Game3

Chapter 2 Making Objects . 31

Chapter 3 Programming Objects . 79

Chapter 4 Controlling Movie Clip Objects . 115

Chapter 5 Decision Making . 165

Chapter 6 Controlling a Player Character . 221

Chapter 7 Bumping into Things . 265

Chapter 8 Object-Oriented Game Design . 323

Chapter 9 Platform Game: Physics and Data Management 397

Chapter 10 Advanced Object and Character Control 485

Index . 573

“This page left intentionally blank.”

vii

CONTENTS

About the Author . xv

About the Technical Reviewer .xvi

About the Cover Image Designer . xvii

Introduction .xix

Chapter 1 Programming Foundations: How to Make a Video Game3

Basics you need to have . 4
Things you need to know . 4
And the things you don’t need to know . 4
It’s all about programming . 5

Programming? But I’m terrible at math! . 6
I already know how to program! . 6
What kind of games can I make? . 7
Learning some new terms . 7

Laying the foundation . 7
Files you’ll need . 8
Setting up the work environment . 8
Setting up the Flash Developer workspace . 10
Setting up the ActionScript code format preferences . 10

Writing your first program . 11
I’ll take that to go! . 11
Don’t skip class! . 12
Using the constructor method . 14
Aligning code . 16
What’s your directive? . 17
Importing and extending the MovieClip class . 18
Adding comments to your code . 21

Publishing the SWF file . 22
It didn’t work? . 24

Project Panel . 26
A little more about AS3.0 and the Flash Player . 27
Naming conventions . 28
Summary . 29

CONTENTS

viii

Chapter 2 Making Objects . 31

Understanding Interactive Objects . 32
Setting up the work environment . 32
Creating the first page . 35

Drawing the first page . 38
Drawing the background . 39
Organizing layers and the timeline . 43
Drawing the foreground objects . 45

Creating a hill . 46
Making some water . 49

Grouping objects . 54
Adding some clouds . 55
Creating some flowers . 57
Learning a few more techniques . 60

Creating a character . 62
Adding some more pages . 65

Using buttons . 66
Creating a button symbol . 67
Understanding button states . 71
Creating the Over state . 72
Creating the Down state . 73
Duplicating the button . 74
Organizing the Library . 75
Adding the buttons to your scene . 76

Summary . 77

Chapter 3 Programming Objects . 79

But I’m a bit scared of programming! . 80
Displaying the first page of the storybook . 80

How did that work? . 82
Variables . 83
Variable types . 84
Creating empty boxes . 85
Creating an instance . 86
Displaying the instance on the stage . 88

Programming buttons . 89
Using dot notation . 89
Invoking methods . 91

Using method calls . 91
Using function definitions . 92
Creating method arguments and parameters . 95
Using multiple arguments and parameters . 97

Understanding events and event listeners . 98
Importing an event class . 99
Adding an event listener . 99
Using the event handler . 100
Understanding other events . 102

CONTENTS

ix

Programming storybook buttons . 104
Looking at the onHillButtonClick event handler . 107
Using the onPondButtonClick event handler . 108
Adding back buttons . 108
Knowing when to use this model . 111

Summary . 112

Chapter 4 Controlling Movie Clip Objects . 115

Movie Clip properties . 116
Setting up the project files . 118
Going up and down . 118
Understanding x and y positions of objects . 123
Moving incrementally . 124

Tracing the output . 125
Using increment and decrement operators . 126
Limiting movement . 127
It’s not a bug, it’s a feature! . 129

Making it bigger and smaller . 133
Vanishing! . 138
Having a look . 142

More properties? . 148
Controlling Movie Clip timelines . 148

Using the timeline as a state machine . 161
Taking it further . 162

Summary . 163

Chapter 5 Decision Making . 165

Setting up the project files . 166
Designing a GUI . 168

Inputting and outputting . 169
Adding some text fields . 170

Creating dynamic text . 170
Adding input text . 172
A little more about fonts and text fields . 174
Adding a button . 176

Building a simple guessing game . 176
Setting up the Main.as file . 176

Learning more about variables . 178
Making it more obvious . 181

Making decisions . 184
Displaying the game status . 188

Using postfix operators to change variable values by 1 . 191
Tying up strings . 192
Hey, why use the gameStatus variable, anyway? . 195
Using uint vs. int variables . 196

Winning and losing . 197
Modular programming with methods . 202

CONTENTS

x

Polishing up . 203
Tackling random numbers . 204
Disabling the Guess button . 208
Playing again? . 209
Seeing the final code . 212

Taking it farther . 215
Tracking guesses . 215
Adding a visual display . 215
Entering numbers with the Enter key . 216
Turning the tables . 218

Summary . 219

Chapter 6 Controlling a Player Character . 221

Setting up the project files . 221
Controlling a player character with the keyboard . 222

Controlling with the keyboard—the wrong way! . 222
Creating a player character . 223
Adding keyboard control code . 226

Controlling the keyboard—the right way! . 230
Moving with velocity . 233
Using the new onKeyDown event handler . 235
Using the onKeyUp event handler . 235
Using the onEnterFrame event handler . 237

Setting screen boundaries . 238
Blocking movement at the stage edges . 239
Building a better pigpen . 241
Screen wrapping . 245

Scrolling . 246
Creating an environment . 247
Fine-tuning the player character . 249

Adding a drop shadow . 249
Scrolling basics . 251
Better scrolling . 252
Even better scrolling . 259

Taking it further . 262
Parallax scrolling . 262

Summary . 263

Chapter 7 Bumping into Things . 265

Setting up the project files . 265
Ouch! . 268

Using hitTestObject . 268
Changing a dynamic text field . 270
Triggering a change of state . 271

CONTENTS

xi

Reducing a health meter . 273
Using scaleX to scale the meter based on a percentage . 278

Updating a score . 279
Picking up and dropping objects . 285
Learning the bad news about hitTestObject . 291

Detecting collisions with the bounding box . 292
Learning to live with it . 294
Creating subobjects . 295

Using hitTestPoint . 297
Using hitTestPoint to create an environmental boundary . 301

Creating objects that block movement . 305
Working with axis- based collision detection . 308

Programming with the Collision class . 309
Using static methods . 309
Using the method parameters . 310
Using the Collision.block method . 312
Pushing objects . 313
Taking a closer look at the Collision.block method . 313
Detecting bitmap collisions . 321

Summary . 321

Chapter 8 Object-Oriented Game Design . 323

Introducing object- oriented programming . 324
Binding classes to symbols . 324
Using properties and methods . 325
Private properties and methods . 326

Using an underscore character to highlight private properties 327
Communicating between classes using getters and setters . 327

Using getters . 327
Using setters . 331

Getting started with the object- oriented approach . 332
Case study: Dungeon Maze Adventure . 333

Setting up the game . 334
Gathering project files and objects . 335
Entering the dungeon! . 336
Laying out the level . 337
The objects in the game . 338
Animating with the timeline . 340

Creating the enemies . 340
Animating the object . 342

EnemyTwo . 344
Controlling timeline animations with code . 345

Adding and removing objects from the stage . 347
ADDED_TO_STAGE event . 347
REMOVED_FROM_STAGE event . 349

How Dungeon Maze Adventure works . 351

CONTENTS

xii

DungeonOne_Manager class . 352
Moving the player . 356
Picking up the key . 360
Opening the first door . 361
Adding sound to the game . 364
Creating the Sound and SoundChannel objects . 365
Colliding with the enemies . 367
Losing the game . 368
Picking up the star weapon . 370
Firing bullets . 372
Using bullet objects . 373
Bullets vs. enemy collisions . 375
Player vs. wall collisions . 378
Synchronizing ENTER_FRAME events . 380
Winning the game . 381

Modifying the game . 382
Adding a new level . 382

The problem of dependency . 383
Creating a game manager . 385

Firing bullets in four directions . 386
Accessing the stage outside of the document class . 391

Removing objects from the game . 392
Summary . 395

Chapter 9 Platform Game: Physics and Data Management 397

Natural motion using physics . 398
Setting up the project files . 398
Acceleration . 399

Player_Acceleration class . 401
Friction . 408
Bouncing . 410
Gravity . 411
Jumping . 414

Stage boundaries and subobjects . 417
Case study: Bug Catcher . 419

Setting up the project files . 420
Using the Player_Platform class . 421

Constants . 426
Player friction . 426
Bounce variables . 427
Player collision area . 427

Adding Platforms . 428
Beveling . 429
Tinting . 429

Detecting platform collisions . 430
Using for loops . 434
Looping through platforms . 437

CONTENTS

xiii

Finding the global x and y position of a subobject . 439
Rotating toward an object . 443
Rotating the frog’s eyes toward the player object . 446
Changing the stacking order . 447
Adding some bugs to the code—literally! . 450

Dynamic instance variables . 452
Multiple objects sharing one event handler . 453
Making the bugs move . 454
Artificial intelligence . 455

Using arrays . 457
Pushing elements into an array . 460
Looping arrays . 461
Searching arrays . 462

Collecting bugs . 464
Winning and losing conditions . 468

Complete Main_BugCatcher class . 470
New Collision.playerAndPlatform utility . 474

playerAndPlatform method . 474
Platform bounce and friction . 479
Detecting the top of the platform . 481

Summary . 482

Chapter 10 Advanced Object and Character Control 485

Dragging and dropping objects . 486
Dragging and dropping the procedural way . 486

Using target or currentTarget properties . 490
Using dropTarget . 491
Snapping the object to the target . 492
Centering the drag object to the mouse . 493
Confining the drag area . 493

Dragging and dropping the object- oriented way . 494
DragableObject class . 495
Releasing the mouse outside the stage area . 497
Main_DragAndDrop2 class . 498
Easing . 499

An alternative to inheritance: Composition . 499
Moving objects with the mouse . 502

Fixing an object to the mouse’s position . 503
Adding a dynamic filter . 505
Moving an object with easing . 508
Following the mouse with a bit of delay . 511

Easing—advanced . 513
Properties and methods of the Tween class . 515
Easing package classes and methods . 518
Tween events . 520
Easing to random positions and calculating velocity . 522

Calculating velocity . 525
Implementing a chase feature . 527

CONTENTS

xiv

Case study: Complex mouse- driven player control . 528
Player.as . 528
Moving the player . 531
Rotating the wand . 533
Firing bullets in 360 degrees . 533
Bullet.as . 536

Using a bevel filter . 540
Bullet factory: Using switch . 541

Object factories . 543
Product classes . 544
Factory class . 545
Client class . 547

Enemy AI systems . 548
Following the player . 548

The root property . 551
Moving the object . 551

Running away from the player . 552
Rotating and shooting toward the player . 553

Timer and TimerEvent classes . 555
Using a timer to fire bullets . 558
Shooting at random intervals . 558

Using other player control systems . 559
Dispatching events . 560

Event “bubbling” . 561
Case study: Space Shooter . 563

Game structure . 564
Creating bullets . 565
Checking for bullet collisions with objects . 566
Removing bullets at the stage boundaries . 569
Classes and events . 570

Summary . 570

Index . 573

xv

Rex van der Spuy is a freelance interactive media designer specializing
in Flash game design, interface design, and ActionScript programming.
He programmed his first adventure game at the age of 10 on his
Commodore VIC-20. He went on to study film production, graduating
with a BFA in Film/Video from York University (Toronto) in 1993, and
spent a number of years working as an independent producer and free-
lance cameraman.

Rex has designed Flash games and done interactive interface program-
ming for clients such as Agency Interactive (Dallas), Scottish Power

(Edinburgh), DC Interact (London), Draught Associates (London), and the Bank of Montreal
(Canada). He also builds game engines and interactive museum installations for PixelProject
(Cape Town). In addition, Rex taught advanced courses in Flash game design for the Canadian
School of India (Bangalore).

In his spare time, Rex does a considerable amount of technical and fiction writing, and he
maintains a semiprofessional musical career as a performer on the sitar. He currently divides his
time between Canada, India, and South Africa; and he works on consulting and software devel-
opment projects for clients in India, North America, and the UK. He also maintains the game
design learning and experimental lab .

ABOUT THE AUTHOR

xvi

Josh Freeney is currently an instructor for the Digital Animation and
Game Design program at Ferris State University in Grand Rapids,
Michigan. He likes board games, hiking, sleeping in, and anything
Lego. He teaches Flash game development classes focused on rapid
agile production with maximum reusability. Josh has spoken at the
Michigan Flash Festival and continues to consult anyone, anywhere
with a Flash problem that needs fixing.

ABOUT THE TECHNICAL REVIEWER

xvii

Corné van Dooren designed the front cover image for this book.
After taking a break from friends of ED to create a new design for the
Foundation series, he worked at combining technological and organic
forms, with the results now appearing on this and other books’
covers.

Corné spent his childhood drawing on everything at hand and then
began exploring the infinite world of multimedia—and his journey of
discovery hasn’t stopped since. His mantra has always been “The only
limit to multimedia is the imagination,” a saying that keeps him mov-
ing forward constantly.

Corné works for many international clients, writes features for multimedia magazines, reviews and
tests software, authors multimedia studies, and works on many other friends of ED books. You can
see more of his work (and contact him) at his web site: .

If you like Corné’s work, be sure to check out his chapter in New Masters of Photoshop: Volume 2
(friends of ED, 2004).

ABOUT THE COVER IMAGE DESIGNER

“This page left intentionally blank.”

xix

So you want to make a video game. Where do you start? What do you need to learn? To whom
can you look for help?

If you’ve ever asked any of these questions, you’ll know how difficult it is to find the answers. I
asked myself these same questions many years ago in a little village outside of Bangalore, India,
where I was teaching programming and interactive media at an international school. All my
students were playing games and they all wanted to create games, but there were no compre-
hensive books or online resources available on how to do this.

A little bit of research turned up something surprising: not only did basic game design require
relatively little programming knowledge but the same set of techniques could also be used over
and over again in different contexts to create completely different kinds of games. It was fun to
do, the results were immediate, and it was a great creative outlet. The result of this research was
an in-house textbook on game design that formed the basis of three high school–level courses
and inspired the writing of this book.

That was back in the now almost prehistoric days of Flash 4 and 5, when the ActionScript pro-
gramming language was still in version 1.0, and Flash had some wonderful built-in interactive
tutorials that guided new users every step of the way. It seemed as if everyone was a beginner
in those days, so it was relatively easy to find books and tutorials that assumed the reader had
no background knowledge.

ActionScript is now in version 3.0, and things are not so easy. The ActionScript language has
become much more powerful but also much more complex. Many of the resources that you’ll
find for AS3.0 are focused on that complexity, and it’s harder and harder for beginners with
little previous programming experience to get a comprehensive foothold to start learning. The
irony of all this is that AS3.0 actually makes it much easier to build games than in the days of
AS1.0. What this book does is to strip away the apparent complexity of AS3.0 and get to the
core of what you need to know to make games. It’s fun and easy, and anyone can do it.

Game design is a fantastic thing, and what you’re about to learn is one of the closest things you
can get to creating magic that the real world allows. Hang on for a wild ride—you’ll be amazed
by what you’ll start producing very quickly.

INTRODUCTION

xx

INTRODUCTION

Layout conventions
To keep this book as clear and easy to follow as possible, the following text conventions are
used throughout.

Important words or concepts are normally highlighted on the first appearance in bold type.

Code is presented in .

New or changed code is normally presented in .

Pseudo-code and variable input are written in .

Menu commands are written in the form Menu Submenu Submenu.

Where I want to draw your attention to something, I’ve highlighted it like this:

Ahem, don’t say I didn’t warn you.

Sometimes code won’t fit on a single line in a book. Where this happens, I use an arrow like
this: .

Source files
All the programming code used in this book is available for download at

.

Most of the book’s chapters make reference to these source files, which contain working exam-
ples of games, completed projects, and additional sample programs and utilities.

To make use of these source files, you need to “create a project” using Flash’s CS4’s new Project
panel. Here are the steps you need to follow:

 1. In Flash, make sure that the Project panel is open. If it isn't, select Window Other Panels
Project.

 2. In the Project panel, select Open Project from the drop-down menu.

 3. Find the folder that contains the source files and select it. The source files are organized
by chapter, and the folder you’re looking for will usually be a subfolder of the chapter
folder.

 4. Click the Choose button.

 5. All the files required for the project will be loaded into the Project panel.

xxi

INTRODUCTION

 6. You now need to assign an FLA file as the default document. The default document is
the file that Flash uses to create the SWF file, which is the file that actually runs your
program or game. If the project's default document has already been assigned, it will
be indicated by a yellow star on the FLA file's icon. If the default document hasn’t been
assigned, you need to assign it manually. To do this, right-click the FLA file and select
Make default document from the context menu. (Sometimes this option won't appear the
first time you select the file. If it doesn't, select the FLA file again.)

 7. After the default document has been assigned, you can click the Test Project button
to see the result of the program. Double-click any of the files to open them to make
changes.

“This page left intentionally blank.”

33

Chapter 1

Congratulations on picking up this book! Video game design is one of the most inter-
esting and creative things you can do with a computer. You’re about to embark on
a remarkable journey, and this book will guide you every step of the way.

So how do you make a video game? Although there are probably as many ways to
make games as there are readers of this book, a good place to start is with a piece
of software called Flash. Not only is Flash very easy to learn but you can also use
it to produce games of great complexity and professional quality if you have time
and imagination. The other great thing about Flash is that the skills you’ll acquire
while learning game design with Flash can be directly applied to game design on
many other platforms if you want to take your learning further. Flash is a completely
comprehensive software tool for building games. It’s now in version 10 and is part
of Adobe’s Creative Suite 4 set of design software (although it can be purchased and
used as an individual product).

Learning game design with Flash is really a two- step process. You need to learn Flash’s
visual work and graphic design environment, and also its built- in programming lan-
guage called ActionScript. A programming language is a kind of language, similar to
English or French, that we humans can use to communicate with computers. To make
games with Flash, the game characters and objects are designed in Flash’s visual
design environment and they’re then told how to behave using ActionScript. The big
advantage of using Flash to learn game design over other methods is that the visual

PROGRAMMING FOUNDATIONS:
HOW TO MAKE A VIDEO GAME

4

CHAPTER 1

design and programming elements are completely integrated. This greatly speeds up the simplicity
and efficiency of the game- design process and makes it a whole lot of fun as well.

Tens of thousands of people around the world have made a career out of designing games with Flash.
With this book and a little bit of practice, you could become one of them.

Basics you need to have
Surprisingly, video game design can be a relatively low- tech affair. Here’s the basic equipment you
need:

 A reasonably up-to- date computer, either running Windows or the latest version of Mac OS X.

 An installed copy of Adobe Flash CS4 (version 10). You can download Flash directly from the
Adobe website: . Although it requires an initial investment, it’s a bargain for
such a powerful piece of professional software. Adobe also offers upgrades from previous ver-
sions at an extremely reasonable cost. You can try Flash for a free 30- day trial period if you
want to make completely sure it’s for you.

Things you need to know
This book assumes that you haven’t had any experience using Flash—or any experience with computer
programming. You’ll go on a step-by- step journey through these fascinating worlds. If you want to
learn to design games from scratch, this book is all you need to get started.

That said, Flash and the ActionScript programming language are huge topics that you could easily
spend a lifetime studying, and no one book will be able to provide all the answers to all the questions
you might have while you’re learning. If you’ve never used Flash before, I highly recommend that you
spend a bit of time reading through the documentation and working through some of the exercises
and sample projects in Adobe’s online Help system. (To access them, select Help Flash Help from
Flash’s menu.) You might also find it very beneficial to spend a weekend with a good introductory
book on Flash, such as one of the excellent books for Flash beginners published by friends of ED.
These resources will answer some of the more basic questions that you might have about how to use
Flash and what it’s capable of without the added complexity of having to absorb some of the concep-
tual issues of game design and ActionScript programming at the same time.

But, hey, if you want to dive into the deep end right away, I’m with you! This book is a great a place to
start and is the only resource you need.

And the things you don’t need to know
Perhaps even more enlightening is what you don’t have to know to be able to make use of this book:

 Math (not much, anyway!)

 Computer programming

 Website design

4

5

PROGRAMMING FOUNDATIONS: HOW TO MAKE A VIDEO GAME

 Graphic design

 Practically anything else!

In fact, I’ll even allow you to say, “I hate computers,” or let you indulge in a fantasy of hurtling a par-
ticularly heavy blunt object at your monitor. Rest assured that I have shared exactly those same feel-
ings at some point or another!

It’s all about programming
What most of the content of this book deals with is how to write computer programs. Computer pro-
grams are like movie scripts that tell the characters and objects in your games what they should do
and how to behave under certain conditions. For example, suppose that you designed a game in which
the player must use the arrow keys on the keyboard to guide a duck through a pond infested with
hungry snapping turtles. How will the duck know that it must move when the arrow keys are pressed?
You would need to write a program to tell the duck to do this.

ActionScript is the name of the computer programming language that you’ll be using to write the
programs for your games. It’s a very sophisticated and powerful language, closely related to Java.
ActionScript is currently in version 3 and is known as AS3.0 for short. It’s a wonderful language for
learning to program because of the following:

 It is completely integrated into Flash’s graphic design environment, so you can create visually
rich games much more quickly than with most other programming languages.

 For the same reason, you can often see the results of your programs on the screen right away.
This makes the experience of programming very concrete, very satisfying, and far less abstract
than learning to program in many other programming languages.

 Adobe has done a lot of work to make the experience of programming with AS3.0 extremely
user friendly. It has simplified the technical hurdles to getting programs up and running as
a one- click process.

 AS3.0 is a “real” programming language like Java or C++. It’s been in development for many
years and complies with an open source programming language called EMCAScript. The great
thing about learning to program with AS3.0 is that the skills you learn will be directly applicable
to the study of other programming languages, and you’ll be able to build on these skills for
years to come. ActionScript is here to stay, and you can grow with it.

 Games and programs created with AS3.0 are cross- platform, which means that they run on
any computer operating system (Windows, Mac OSX, or Linux) as long as that system has
Adobe’s free Flash Player software installed. The Flash Player is one of most widely installed
pieces of software in history, so you’re guaranteed a potentially huge audience for your games
without having to rewrite the programming code from scratch for each system.

 There is a huge community of friendly AS3.0 developers on the Internet who have devoted vast
amounts of time to writing tutorials and helping others in online forums and discussion boards.
If you get stuck while writing a program, just ask a question on one of the many Flash and
ActionScript discussion boards, and you’ll surely get a helpful reply.

5

6

CHAPTER 1

Programming? But I’m terrible at math!
So is the author of this book! One of the biggest misunderstandings that nonprogrammers have about
computer programming is that programming is some kind of math. It’s not. It might look the same
on the surface, and some of the syntax has been borrowed from mathematics for matters of conve-
nience, but the whole underlying system is completely different.

That’s not to say you won’t be using any math in these lessons—you will. How much? You’ll use addi-
tion, subtraction, multiplication, division, and some very basic algebra (the kind you might remember
from fifth grade). That’s as complex as the math gets, and AS3.0 actually does all the calculating
for you.

It can get as complicated as you want it to. In a later chapter you’ll use a bit of trigonometry to achieve
some specific motion effects. However, you won’t need to necessarily understand the mechanics of
how trigonometry is achieving those effects—just how to use it in the context of your game. This book
is written largely from a nonmath point of view, so mathophobes of the world are welcome!

Although you certainly don’t need to use much math to start building great games
right away, acquiring a deeper understanding of the mathematical possibilities of pro-
gramming with AS3.0 will definitely give you many more options as a game developer.
Two very comprehensive and highly readable books that cover this area in much more
detail than the scope of this book allows are Foundation ActionScript Animation:
Making Things Move!, by Keith Peters; and Flash Math Creativity, by various authors.
Both books are published by friends of ED and are perfect companions to Foundation
Game Design with Flash. You can apply all the techniques they discuss directly to the
game projects in this book.

I already know how to program!
This book has been written to be as accessible as possible for beginners and doesn’t assume any pro-
gramming background. However, many of you might be experienced programmers who are reading
this book to find out how you can use your existing AS3.0 skills to create games. Don’t worry; although
the earlier chapters are definitely geared toward people new to Flash and ActionScript, later chapters
deal with fairly advanced areas of object- oriented programming that provide quite a bit of meat for
you to sink your programming teeth into.

What I recommend is that you flip ahead to Chapter 5, which is the first chapter that uses program-
ming techniques to build a complete game from beginning to end. If it seems a bit complex or there
are some terms and concepts you don’t understand, step back by a chapter or two until you find your
comfort level. Otherwise, if Chapter 5 seems like a good level for you, go for it! From a programming
point of view, things get quite a bit more interesting from that chapter onward.

Many of the techniques involved in game design are quite specialized, Even though you might know
quite a lot about ActionScript or programming, it’s not always obvious how to use those skills to build
games. The focus of this book is on the architecture of game design instead of the specific nuts and
bolts of programming. If you have a lot of programming experience, this book will show you how you
can use those skills within the context of completely developed games.

7

PROGRAMMING FOUNDATIONS: HOW TO MAKE A VIDEO GAME

Some of you might be new to Flash CS4 and AS3.0, but have used previous versions
of Flash and have programmed in AS1.0 or AS2.0. To ease the transition process, this
book will also point out the major differences between the new AS3.0 way of doing
things and the way it used to be done in earlier versions of the language.

What kind of games can I make?
The focus of this book is on two- dimensional action, adventure, and arcade games; it also touches
on puzzle and logic games. Flash is a fantastic medium for creating these types of games. Each chap-
ter guides you through every step of the design process, but the projects are very open- ended and
encourage you to come up with your own original ways of using the techniques in your own games.

Flash CS4 is actually pretty good at 3D, but 3D is quite a large topic that deserves a whole book in its
own right. The great thing is that most of the game design techniques you learn in the context of 2D,
particularly how games are structured, can be applied directly to 3D games with little or no modifica-
tion. To simplify the learning process and make sure the material is as focused and clear as it can be,
however, I decided to stick to 2D games in this edition.

Learning some new terms
Like any large specialized field, programming comes with a lot of new terminology to learn. This book
will try to sidestep as much of the jargon as possible in favor of slightly longer and concrete descrip-
tions. Some terminology is so widely used that you should learn it, and this book will explain all new
terms in the text.

Laying the foundation
As a game developer, you can think of yourself as an architect. All buildings of any size or shape have
some fundamental things in common: they all have a foundation, walls, and a roof. No matter how big
or small, humble or grand your house is, you need to dig a foundation, erect some walls, and put up
a roof. After that you can start the really fun stuff: designing the interior layout, doing the landscaping,
buying the furniture, and throwing a housewarming party.

Over the course of the rest of this chapter, you’ll write a very simple program that will lay the founda-
tion for all the games and programs you’ll be creating in the rest of the book. If you haven’t done any
programming before or are just starting to get to grips with AS3.0, this chapter is for you.

If you have prior programming experience, you might want to jump ahead to the end of the chapter
to see how much of the technical and conceptual material looks familiar. Make sure that you become
acquainted with the structure you’ll be using to build your games and programs, but feel free to skip
this chapter if it all looks pretty straightforward.

In a tip-of- the hat to the history of computer programming, you’ll write a program called a Hello
World program. It is traditionally the first program that novice programmers write when learning
a new programming language because it’s the simplest complete program that can be written. It does
something very simple; it just outputs the words Hello World! in Flash’s Output panel.

8

CHAPTER 1

The program might seem modest, but you will achieve two very important things by learning to write it:

 1. You’ll build a robust and flexible system for programming that will become the core of all the
projects in this book and probably hold you in good stead with your own projects for years to
come.

 2. You’ll complete a crash course in programming with AS3.0 that will lay the foundations for
some of the very important concepts and techniques covered in later chapters.

Scared of programming? Ha! Not you! In this chapter, you’ll grab the programming beast by the horns
and wrestle it to the ground!

Files you’ll need
When you create a game with Flash and AS3.0, you don’t work with only one file; you’ll need at least
the following two files:

 AS file: This file contains all your AS3.0 programming code—the brains of your game. AS files
are simply text files with an file extension (you’ll learn more details in a moment). If you
have used earlier versions of Flash and are migrating to AS3.0 from AS2.0 or AS1.0, you might
have done most or all of your coding directly in frames on the timeline and used only one file:
an FLA file. You can actually still use timeline code, but now is the time to bite the bullet and
say goodbye to it for good. Don’t worry; you’ll soon see that keeping all your programming
code in a separate AS file is actually much more efficient and in fact much easier than keeping
track of what invariably turned into an unmanageable sprawling mess of timeline code in ear-
lier versions of Flash.

 FLA file: This is an ordinary Flash file and has an file extension. This file is where all the
visual objects for your programs will reside, such as game characters and environments. The AS
file is actually the one that does all the “thinking,” but it depends on the FLA file to do all the
administrative work of interpreting and running the programming code (turning it into a play-
able game), displaying it on the screen, and allowing players to interact with it. The FLA file can
also contain embedded assets (such as animations, sounds, videos, and graphic artwork) that
your game might need.

After you finish designing your game, the FLA and AS files will work together to produce a third file
known as a Flash movie file. The Flash movie file is your finished product; it’s the file that you can
upload to the Internet to share with the rest of the world. Flash movie files have the file extension

, so I’ll call them SWF files throughout the remainder of the book. To create a SWF file, you need
to publish it from Flash. You’ll see how to do that in a moment.

Setting up the work environment
Before you start writing your Hello World program, you need to organize the work directory and cre-
ate blank FLA and AS files that you need to start programming with. You’ll use this same format for all
the projects in the rest of the book.

 1. Find a convenient spot on your hard drive and create a project folder called
.

9

PROGRAMMING FOUNDATIONS: HOW TO MAKE A VIDEO GAME

 2. Open Flash. Select File New and choose ActionScript File from the New Document dialog box
(see Figure 1-1).

 Figure 1-1. Create an ActionScript file.

 3. Click OK.

 4. A new ActionScript file will open called 1. Select File Save As. Enter the new file
name Main.as. Save it in the folder that you created in step 1.

 This new file, , is the AS file in which all the programming will take place. (Make sure
that you spell the name with a capital letter M; your program might not work otherwise.) At
the end of this chapter, I’ll discuss a feature of programming practice called naming conven-
tions, which explain some of the odd capitalizations that you might notice in this project. For
now, just make sure you follow the suggested names exactly.

 5. You now need to create an FLA file. Select File New and choose Flash File (ActionScript 3.0)
from the New Document dialog box.

 6. Click OK.

 7. A new Flash file called will open. Select File Save As. Enter the new file name
helloWorld.fla. Save it in the folder, along with the file.

 8. Check the folder and make
sure that it looks something like Figure 1-2.

 Figure 1-2. Check to make sure that the FLA
and AS files are in the same folder.

10

CHAPTER 1

Setting up the Flash Developer workspace
Flash allows you to customize your work environment so that the various windows and panels you’ll
be working with are comfortably arranged. These areas are called workspaces.

You’ll set up a Developer workspace, which is recommended for doing programming. (Programmers
are sometimes referred to as developers because they develop software applications such as games.)

Setting up the ActionScript code format preferences
You’ll set up Flash’s preferences so that it formats the programming code to be easily readable. You
won’t necessarily notice the benefit of doing this at this stage, but you’ll use the same format for the
rest of the projects in this book, so it makes sense to set it up now.

 1. Select Flash Preferences if you’re using Mac OSX or Edit Preferences if you’re using
Windows.

 2. In the Category menu, select Auto Format.

 3. Select the options so that the Preferences window looks like Figure 1-3.

 You’re free to choose any code format you’re comfortable with, but for learning and debug-
ging purposes, this suggested format is the most clear.

 Figure 1-3. Set the code format preferences to make the code easy to read and debug.

 4. Click OK to save the changes.

Flash now automatically formats the code according to these selected options.

11

PROGRAMMING FOUNDATIONS: HOW TO MAKE A VIDEO GAME

Writing your first program
You now have most of the pieces in place to begin writing your first program. In the next few steps,
you’ll do the following:

 1. Create a package that groups all the code neatly together.

 2. Create a class that is the first building block of your program.

 3. Create a constructor method that triggers the first actions in your program to run.

 4. Create a directive that is the actual action that you want your program to perform.

 5. Import Flash’s built- in class to help your program display its output.

 6. Publish the SWF file to see the actual output of all your hard work.

This process might seem like a lot of work, but at the end of it you’ll have a complete system in place
that will form the basis for all the projects in the rest of the book and a flexible foundation for you to
build any of your own programs and games.

I’ll take that to go!
To make sure that Flash understands which bits of AS3.0 programming code you want to keep sepa-
rate or together, you need to wrap all the code in a package, which consists of three parts:

 Keyword: This keyword is called, conveniently enough, . Keywords are special words
that AS3.0 understands and that do a special job (such as creating a package!). When you type
keywords in your program, Flash turns them blue so you can spot them in the code.

 Identifier: An identifier can any be any name you want to give the package. It is optional, and
you won’t be using package identifiers until much later in the book.

 Curly braces: Curly braces () are used to keep whatever is inside them together. You can
think of them as the string that ties the package together.

Creating a package could not be easier:

 1. Open the AS3.0 editing window that contains the blank file that you created in the
previous steps.

 If you are new to Flash, you can find this file by clicking the Main.as tab in the tab bar just
above Flash’s stage. (The stage is the white rectangle in the middle of the Flash workspace in
which you design the visual elements and layout
for your games.) Figure 1-4 shows you what the
tab bar looks like. You can move back and forth
between the AS and FLA files by clicking these
tabs.

 2. In the file, enter the following text into
the editor window:

 Figure 1-4. Use the tabs above the stage to
move between the AS and FLA files.

12

CHAPTER 1

Your ActionScript editor window should now look some-
thing like Figure 1-5.

What you just created is something programmers call
a block statement. Block statements define a particular
section of the program and are used to group together all
the code between the curly braces. In this case, the pack-
age block statement is completely empty because there’s
nothing between the curly braces. But don’t worry; it won’t
remain empty for long!

Before continuing, however, it’s worth taking a closer look at exactly what you created.

As you started typing the code in the ActionScript editor window, you noticed that the word package
was automatically colored blue by the editor. This is Flash’s helpful way of telling you that what you’ve
just typed is a keyword—a word it understands. Keywords are also known as reserved words. This
means that those words belong to ActionScript and ActionScript alone; you can’t use them as names
you choose to give your packages, classes, variables, or methods (more on them soon). The
keyword simply tells Flash, “Hey, I’m creating a package!” Not too hard, is it?

After the keyword come our dear little friends, the curly braces:

Cute, aren’t they? At the moment, they’re completely empty, but that’s about to change very quickly.
Soon you’ll put something inside them .

Don’t skip class!
Now that you created a package, the next step is to create a class inside that package. You can think
of a class as a basic building block for creating an ActionScript program.

 3. With your ActionScript editor window still open, add the following text in bold, directly inside
the package’s curly braces. Notice that this new text is indented from the left margin. Use the
Tab key on your computer keyboard to indent it when you add it to your program. The code
in this book uses indent levels of two spaces, but the ActionScript editor window indents your
code by four spaces when you press Tab, which is just fine. Very soon you’ll see how important
it is to indent your code like this.

You’ve just created a class called . (Make sure that the M is uppercase.) Both the words
and will be colored blue to show you that they’re reserved keywords that AS3.0 understands.

It doesn’t look like much, does it? And what is a class?

 Figure 1-5. Create a package in the
Main.as file.

13

PROGRAMMING FOUNDATIONS: HOW TO MAKE A VIDEO GAME

If you take a car as an example, each component of a car (such as the steering wheel, the engine, and
the ignition switch) performs a single specific function. If you were building a car with ActionScript,
the steering wheel would be one class, the engine another class, and the ignition switch yet another
class. Each of those classes is a perfectly useful, self- contained unit in its own right, but also works with
the others to create the single bigger and better unit called a “car.”

There is a subtle but extremely important difference between our car example and an
actual class that I’ll touch on briefly (it will become much clearer in the chapters that
follow). A class is also a blueprint for other objects that share its same properties or
behaviors. If that sounds confusing, think of the wheel of a car. Most cars have four
wheels that look exactly the same and do exactly the same thing: they roll. In fact, the
only difference between them is their names: “left front wheel,” “right front wheel,”
“left back wheel,” and “right back wheel.” Other than that, they’re completely identi-
cal. So if you’re designing a car, why go to the all the trouble of designing four wheels
from scratch? Why not just design one wheel and make four copies of it?

That’s exactly the convenience that classes provide. A class is like a master template or
a cookie cutter that you can use to make as many copies as you want. That is, in fact,
exactly what the word class literally refers to—a master category of things that share
the same properties.

For example, a car designer might create one wheel called . The designer could
then make new copies (or instances) of that parent class called ,

, , and In all four cases, the wheels’
behaviors and properties are exactly the same as their parent class; only their
names are different.

You’ll encounter the word instance a lot in this book. If a class is like a printing press,
an instance is the printed paper the press produces. Instances contain exactly the
same properties as the original, but are individual objects in their own right. When an
instance of a class is made, it’s said to be instantiated.

This example is a slight oversimplification, but the important thing to remember is
that when you create a class, you’re also creating a master template that you can
use to make as many individual instances of that class as you need, without having to
rebuild from scratch each time.

Any ActionScript program you write must have at least one class, but most of the programs and games
you’ll be building in this book will have many. Take a quick look at the new code:

This code is called a class definition. Just like the package, a class definition is a type of block state-
ment. You can tell this by the class’s own pair of curly braces, hanging there in space. (Those braces
are empty at the moment, so the class can’t do anything yet. That will change very soon.)

14

CHAPTER 1

A class definition does three main things:

 It creates the class. The keyword tells Flash that you are creating a class. Simple
enough!

 It gives the class some rules to follow. This should be obvious: how many of you have been in
a class without rules? This code tells Flash that the class you’re creating is . That means
that the information it contains can be shared by any other classes that are part of the same
package or part of any other packages your program might be using. The information the class
contains is freely available to all. (Although most of this book uses public classes, sometimes
you’ll want to prevent classes from sharing information, much like a school football team
would not want to share its strategy with a competing school. In a case like that, you would
define a class as . Internal classes share their information only with other classes that
reside in the same package.)

 It gives the class an identifier, a name, which can be any name you choose. In this case, the
class is called . The M is capitalized because, by convention, all class names begin with
a capital letter.

You’re not experiencing déjà vu! You have seen the word Main before. It’s the name of
the AS file that you’re working on: . This is no coincidence. When you create
a class, it has to be saved in a file that has an identical name to the class name. For
every new class you create, you must create a new AS file that shares the same class
name.

The choice of the name Main is an old programmer’s convention for the first file that
gets the program up and running. Like the ignition switch on a car, it fires up the pro-
gram and kick starts any other files you might be using. And when eventually you’re
working on big game- design projects with hundreds of files, you’ll always remember
that your main file is called . You’ll see how all this works in later in the book, but
for the first few chapters you’ll be doing all the programming exclusively inside the

 class.

The class definition’s poor little curly braces are still empty. Let’s put them to use!

Using the constructor method
The constructor method. That sounds daunting, doesn’t it? In fact, it has the ring of science fiction–like
doomsday peril about it. Like a kind of interdimensional quantum death ray used by a race of robotic
drones to crush the spaceships of rival empires into the tin can–sized condiments they sell in their
cafeteria vending machines. But before you put this book down and tiptoe quietly from the room,
take a small step back and look at what you’ve done so far.

First, you created a package. But the package was nothing more than an empty container for the class.
So next you created a class. But that was nothing more than an empty container. Lifeless! What to do?
It seems so hopeless!

15

PROGRAMMING FOUNDATIONS: HOW TO MAKE A VIDEO GAME

This is where the constructor method comes in. It makes things happen. Specifically, it throws the
class into action as soon as the class is called upon by being instantiated, and any programming code
it contains is run instantly. If the class definition alone is just an empty shell, the constructor method is
like its heart and lungs. Fear not; you can come back into the room now. The constructor method is on
your side!

 4. Now create the constructor method for the class. Add the code in bold to the code you
already wrote:

As you can see, the constructor method is simply a block statement that looks an awful lot like the
class definition. In fact, it has the same name: . This is no accident: all classes need to have con-
structor methods that are named exactly the same as the class name.

The other thing you’ll recognize is the keyword . As with the class definition, using the word
 tells Flash that the constructor method is freely available to be used by different classes from

different packages. (A strange quirk of the AS3.0 language, however, is that constructor functions can
only ever be .)

One new thing is the keyword, which tells Flash that you’re creating a function definition.
Function definitions are simply block statements that perform actions. They do all the heavy lifting
for your program. You can think of function definitions as dutiful servants who snap to attention with
a prearranged set of chores as soon as you call on them. The constructor method, which will always
be the first function definition you write when you create a class, has the special job of running any
actions it contains immediately—as soon as the class is called upon and before any other methods
you might be using are put to work. The constructor method is a bit like the head servant who’s up
at the crack of dawn, gets all the other servants out of bed, and greets you with a fresh pot of tea and
the morning paper before you’ve even found your slippers.

The last thing you should notice about the constructor method is the set of parentheses after the
method name:

Those empty parentheses allow you to provide the method with extra information, known as param-
eters, if the method needs it. You’ll look at method parameters in detail fairly soon, but for now you
just need to know that you must provide a set of parentheses when creating a function definition,
even if those parentheses are empty.

16

CHAPTER 1

Aligning code
You might have noticed an interesting pattern developing in the format of the code. Like a set of hol-
low wooden Russian dolls, the constructor method is inside the class, which is inside the

 block statement. Each item sits inside the outer item’s pair of curly braces, and you now have
three levels of block statements. The only way that you can tell where one ends and the other begins
is by whether the block statement’s curly brace is open or closed.

As you can see, this could easily result in a confusing tangle of curly braces. If you weren’t absolutely
sure which pair of braces belonged to which block statement, you could start adding new code in the
wrong place, and you’d get all sorts of errors when you tried to run the program.

The code format that you set in Flash’s Preferences, and that I recommend you use for the projects
in this book, helps solve this potential confusion somewhat. Figure 1-6 shows that you can draw an
imaginary line between a block statement’s opening brace and its closing brace. It very clearly shows
you at which indentation level you should be adding code.

 Figure 1-6. You can make sure that you’re adding code in
the right place by keeping each block statement’s opening
and closing braces aligned along an imaginary line.

A frequent confusion when writing code is not being certain where one block statement ends and
another begins. If you use this suggested format and can see these imaginary divisions while you write,
it will really help to prevent accidentally adding a line of code in the wrong place.

The ActionScript editing window toolbar also has a special button called Auto Format that will auto-
matically format all your code according to the options you set in Flash’s Preferences. If you get a bit
lazy about keeping things neatly aligned, just click it and it will figure out all the indentation and spac-
ing for you.

17

PROGRAMMING FOUNDATIONS: HOW TO MAKE A VIDEO GAME

What’s your directive?
The next bit of code that the program needs is a directive. One of the great pleasures of computer
programming is being able to bandy about terms like constructor method and directive as though you
were the captain of your own personal galactic cruise liner. Very simply, a directive is a single action
that you want the program to perform. Methods are made up of one or more directives, and with
them the program springs to life.

 5. The directive you’ll add to the constructor method will tell Flash to display the words “Hello
World!” in its Output window when the program runs. Add the following text in bold to your
program:

 is a method built into the AS3.0 language that’s used to send whatever is in parentheses to
Flash’s output window. If you want to send the Output window some text, that text needs to be sur-
rounded by quotation marks. AS3.0 has lots of built- in methods, such as , that you can use to
do all kinds of interesting things, and you’ll be looking at many of them in detail over the course of
this book.

Directives end in a semicolon like this one:

The semicolon is a basic piece of punctuation that lets Flash know that “The directive is finished!” It’s
like a period at the end of a sentence.

If you forget to add a semicolon at the end of a directive, Flash will still give you the
benefit of the doubt and assume that you intended to add one. Your program will
still run flawlessly without it. Thanks, Flash! But in the interest of good programming
style, you should always add a semicolon. If you go on to learn other programming
languages that aren’t as lenient (and most aren’t), you’ll have already developed an
excellent habit.

18

CHAPTER 1

Importing and extending the MovieClip class
All the code you’ve written so far is perfectly ready to go, except for one small technical detail. Your
program needs an extra bit of code to help it actually output the words “Hello World!” onto the
screen. To do this, you need to do two more things:

 Import Flash’s built- in or class.

 Use the new imported class to extend your own class.

When you extend a class, the class you’re extending inherits all the properties and methods of that
class without having to program them all from scratch. What does extending a class really mean?
Maybe the following analogy will help.

Let’s say you’ve spent a few months designing and building a car for a client with deep pockets but
a rather difficult reputation. The car works perfectly well, gets good mileage, and you’re particularly
proud of the paint job. But on the day of delivery, the client comes by to pick it up and says, “Hmm
. . . looks good, but I’m in Los Angeles and I really need to get to Ulaanbaatar by tomorrow morning
for the World Cappuccino Tasting finals. So thanks, but I don’t need the car anymore; I’m going to fly
instead.”

Before you panic and call the bank to make sure that the deposit cleared, consider this: a plane is
merely a kind of car with wings. You’ve already done all the hard work: a good engine, a nice set of
wheels, a cozy interior, and a really stellar paint job, if you do say so yourself. How much more work
would it be to slap on a pair of wings and maybe add a navigation system? With the magic of AS3.0,
not much at all: you just have to create a new class called that simply imports and extends your
original car class. The new plane class inherits all the properties of the original car. That means that
you can just take your car as is and do only the little bit of work you need to make it fly without having
to redesign all the original parts of the car that are already working.

The reality of programming is similar, but also slightly different. Programmers usually build a class
that is very general. In the previous example, suppose that the workshop has a class called .
It’s a very general class, but it includes all the properties that are common to both planes and cars,
and maybe even boats. If you want to make a class, all you need to do is import and extend the

 class and add those components that make cars unique.

Importing and extending a class to make a new class is called inheritance, which is extremely useful
and a huge time- saver. Flash has loads of built- in classes that you can import and use. I’ll introduce
many of these built- in classes over the course of this book.

The most important of these built- in classes for game designers are the and classes
because they contain special directives for getting the output of your program onto your screen.
Which one should you use?

In the current program, you’ll import the class. The class contains a timeline, which
is particularly useful for making objects for games. (I’ll be discussing Movie Clip timelines a bit later
in the book.) The little Hello World program doesn’t make use of a timeline, but because you’ll be using
the class as part of almost every class you create in the rest of this book, you’ll use it here for
consistency.

19

PROGRAMMING FOUNDATIONS: HOW TO MAKE A VIDEO GAME

One drawback of the class is that its inclusion of a timeline adds slightly more size to the
file and consumes a little more of the Flash Player’s memory when the program runs. It’s not much
more (about 30 bytes), but the general rule of thumb is that if you’re creating graphic objects that
don’t use a timeline, you should instead import and extend the class. The class is the
same as the class, but it doesn’t include a timeline. If you use the class wherever
you can, you will probably find your larger- scale programs and games run more quickly and smoothly
because they won’t be consuming as much memory or processing power.

As your programs and games become bigger and more complex, they’ll start to run
sluggishly or become less responsive as you add more and more code. The respon-
siveness of software is something programmers call performance. In game design, in
which lightning- quick response time and feedback from a game is essential for making
the game fun to play, performance is the keystone around which your game will be
built. Imagine playing Missile Command, hitting the fire button, and then having to
wait for a second or two before your rocket launches. Wouldn’t be much fun to play,
would it? It doesn’t matter how good or bad your sounds or graphics are; if your game
lags and limps along like a tired racehorse en route to the glue factory, I guarantee
that its performance is the only thing the players will notice and they’ll be demanding
their money back en masse. Performance is the vengeful deity to which game design-
ers bow down and sacrifice their virgins, and you will certainly find yourself making
many difficult decisions about what to sacrifice in your own games in the interest of
performance. By using the class instead of the class wherever you
can, you’ll save a slight bit of processing power that can add up to a lot of improved
performance over the long run (and maybe spare the lives of a few horses and virgins
along the way).

 6. Importing a class to use in your program is conceptually identical to importing images or
sounds into the Flash Library (which you might have done if you’ve worked with Flash before).
The only difference is that you use a directive directly in your program instead of selecting
an option from the Flash menu. Also, the imported class must be imported into the package
before your class definition. To import the class into your program, add the follow-
ing bold text (I also added a blank line between the import directive and class definition so the
program is a little easier to read):

20

CHAPTER 1

The keyword does the importing for you. The class is part of another package
called . The package contains a number of classes that—logically enough—help you
display things on the screen. The package itself resides in another folder called . All of
Flash’s built- in classes are in the folder, so you must use the keyword to remind Flash of
this. The dots (.) that separate , , and indicate their relative positions in the
directory structure. You’re simply saying, “Hey Flash, I need the class from the
package that’s in the folder.” This translates rather prosaically to this:

And don’t forget the semicolon! You don’t need to worry about where Flash actually goes to get all
this, but you do need to remember that if you need to borrow any of Flash’s built- classes, this is the
format you have to use. Later in the book, when you start working with more than one package, you’ll
use this same format to import your own classes into other new classes that you’ll have written from
scratch.

If this seems like suddenly a lot to absorb, don’t worry! Importing classes to use with
your programs is very routine, and you don’t need to feel that you have to memorize
all these technical details right now. You’ll do a lot of importing of many different
classes throughout the course of this book and you’ll soon become comfortable with
this format.

 7. The next step is to tell your class to use all the properties and methods of the newly
imported class to help it display things on the screen. This is called extending the
class, and you can extend your class by modifying the following line in bold:

It’s very simple; you just need to add the keyword , followed by the class you want to use; in
this case, the class.

As discussed, importing and extending a class is called inheritance. It will not be at all obvious to you
how it works at this stage, so don’t worry too much if you don’t really understand what’s happening or
why you need to do this. Later in the book you’ll see some detailed examples of exactly how this works
and learn what a thing of heady and terrifying power inheritance can be. It will be fun!

21

PROGRAMMING FOUNDATIONS: HOW TO MAKE A VIDEO GAME

Adding comments to your code
When you’re writing a program, it is often useful to write a short note about what a particular section
of code does. This is especially helpful if you’ve solved a complex programming problem that you’re
not certain you’ll actually understand the next time you look at it. It also helps other people who
might be looking at your code to understand it better.

There are two ways to add comments to your code. The first is by using two forward slashes:

Any text you add on the same line after these forward slashes will not be interpreted by AS.30 as
programming code. You can write anything you like, and the AS3.0 compiler will ignore it when your
program runs. Here’s an example:

Sometimes you might want to write a comment that contains more text than you can easily fit on one
line. You can do this by creating a multiline comment. Multiline comments look like this:

Multiline comments start with the character sequence and end with the character sequence . You
can write anything you like between them, over any number of lines.

In addition to leaving notes to yourself, comments are especially useful for disabling sections of code
if you want to test how your program behaves without them.

 8. To get used to using comments, add one to the Hello World program. Modify your code with
the following line in bold:

22

CHAPTER 1

Before you go any further, ensure that your program looks like Figure 1-7.

 Figure 1-7. Add a comment to your code.

The ActionScript editor window colors comments gray so that you can easily differentiate them from
your code.

 9. Finally, if everything looks good, save the file.

You’re now ready to see result of the program in action.

Publishing the SWF file
Earlier I mentioned that the FLA and AS files work together to produce a SWF file. The SWF file is your
finished product, and you need to create one to see how your program works. The act of creating
a SWF file is known as publishing it.

The first step is to bind the AS file with an FLA file. You need to do this because the SWF file will be
created by software components that are part of the FLA file; the AS file contains the logic that will
control these components.

You’ll set the class as the FLA file’s document class. Any class that’s assigned as a document
class is automatically run when the SWF file runs. This is a vital step in getting your program to work.
Follow these steps:

 1. Click the helloWorld.fla tab near the top of the editing window to return to the
 file. You’ll know you’ve done this when you see your program replaced by the FLA’s empty

stage.

 2. Check to see whether the Properties panel is open. If it isn’t, display it by selecting Window
Properties.

23

PROGRAMMING FOUNDATIONS: HOW TO MAKE A VIDEO GAME

 3. In the Properties panel there’s a field (a box where you can type text) called Class. In the Class
field, enter Main (this links your class with the FLA file). Your Properties panel should now
look like Figure 1-8. (If the Class field does not appear in the Properties panel, select the black
arrow Selection Tool in the Tools toolbar and click the empty white rectangle in the middle of
the workspace, which is known as the stage.)

 Figure 1-8. Enter Main into the Class box of the Properties panel.

 4. Save the file.

 5. Finally, select Control Test Movie. Flash will publish the FLA file and automatically gener-
ate a SWF file (a Flash movie file) called in the same directory as the FLA
and AS files. You should see the Output panel appear, displaying the words Hello World! (see
 Figure 1-9).

 Figure 1-9. If you’ve followed the instructions
correctly, you should see the words Hello World!
displayed in the Output panel.

Although selecting Test Movie from the Control menu is usually the quickest and easiest way to publish
a SWF file, you can also select File Publish. The difference is that the Test Movie option runs the SWF
file immediately after publishing it. This is great if you want to test how everything is working while
you’re still writing your program or making your game. You’ll usually use the Publish option only when
everything is finished, and you just want to publish the latest version of the SWF file without needing
to run it as well.

24

CHAPTER 1

You can change many parameters that determine exactly how the SWF file is
published from the Flash SWF publish settings. To access the publish settings, select
File Publish Settings and then select Flash. You won’t be looking at any of these cus-
tom settings in this book, but you should know that they exist because you might find
yourself working on a project when you’ll need to make some changes to them.

It didn’t work?
There might be an unlucky few of you who did not see the output shown in Figure 1-9. Instead, you
saw a Compiler Errors window, showing you an error message you probably don’t understand, such as
the example shown in Figure 1-10.

 Figure 1-10. If you made a small mistake in your code, such as forgetting to close one of the curly braces as in
this example, you will receive an error message in the Compiler Errors window.

This error message means that somehow, somewhere, there is a mistake in your code.

When Flash creates the SWF file, it compiles your AS3.0 code. Compiling the code is the job of a soft-
ware component that’s part of Flash called the compiler. It checks to make sure that your code is
okay; if it is, it creates the SWF file. If it finds a problem, it gives you an error message.

Unfortunately, Flash’s compiler doesn’t know what you intend your code to do; it can only tell you
what it expects and what it doesn’t understand. If you’re lucky, it precisely pinpoints the problem. But
more often than not, it will just be able to give you a general idea of where to look and what to look
for. It’s a bit like a two-year- old yelping with pain and pointing to his big toe. You know where the
problem is, but whether it’s a thumbtack, a bee sting, or just another way of saying, “The last time I did
this you gave me some chocolate,” the remedy will depend on experience, skeptical investigation, and
a thoughtful diagnosis.

The Compiler Error window tells you on which line of your program it thinks your problem lies. If you
click the error message with the mouse to select it and then click the Go to Source button, it will actu-
ally highlight the spot in your code for you. For the rest, it’s up to you to intelligently analyze what
you think Flash is looking for and what you might have to fix or change to get your program running
properly.

25

PROGRAMMING FOUNDATIONS: HOW TO MAKE A VIDEO GAME

If you’re not sure where the problem with your program lies, ask yourself whether one or more of
these might be the issue:

 Did you save the file before you published the SWF file?

 Did you spell everything correctly and use the correct case?

 Did you save the files in the correct location, and do the spelling and case of your folders and
files match the package and class names?

 Are all the AS3.0 keywords (such as , , and) a dark blue color? If one
of them isn’t, that’s a clear indication that you might have spelled or capitalized it incorrectly.

 Have you closed all your curly braces and parentheses?

 Did you enter the correct class name, Main, in the Class field in the Properties
panel?

 Did your cat jump on the keyboard while you were in the kitchen getting another cup of
coffee?

And here are some more general pointers that you should always keep in mind while debugging:

 If you receive more than one error message, always try and fix the first one first. Subsequent
errors are usually the result of bits of code that depend on the earlier bits of code working
correctly. Fix the first one, and the correction will cascade through the code and often magi-
cally correct the rest.

 Check the line of code that’s just above the line that Flash thinks is the problem. Often, small
mistakes in the line above, which might not be big enough in themselves to generate a compile
error, could be enough to trip up the code in the next line down.

 Always save the AS file you’re working on before you republish it! I can’t stress enough how com-
mon an oversight this is. A programmer will find an error and fix it, but then gets exactly the
same error message when the SWF is republished. This is because the file wasn’t saved after the
fix was made, so the earlier saved version of the file is the one that Flash is actually
compiling.

 Make only one single change at a time between republishing. If your program worked and then
suddenly stopped working after you made that change, you know exactly what is causing the
problem. If you republish it only after making five changes and it doesn’t work, you won’t know
which of those five things is tripping you up.

 Finally, the programmer’s universal mantra: Test Early; Test Often. Do lots of testing and solve
lots of tiny manageable problems early on to avoid having to deal with hulking intractable
problems that can grind your project to a halt later.

Except for a few exceptional cases, this is the last discussion of debugging issues in any detail in this
book. You’ll be on your own from here on out, but the sooner you gain practice debugging your own
code, the better. Experience counts for everything in this realm, and there is no better whetstone
upon which to sharpen your skills as a programmer than a tricky debugging problem.

Also, get used to the Compiler Errors window—you’ll be seeing a lot of it! It will become your closest
ally in finding and tracking down problems.

26

CHAPTER 1

Project Panel
A new addition to Flash 10 is a great feature called the Project panel, which allows you to manage all
your project files and folders from one convenient place.

When you’re working with only two or three files (as you will be for the next few chapters), the useful-
ness of the Project panel might not seem all that apparent, but it certainly will by Chapter 8 (you’ll be
juggling a small army of AS files). It’s also extremely useful if you’re working on a number of different
projects at the same time because simply selecting the project name from the menu will make all the
project files readily accessible. It also includes some more advanced features such as the ability to
automatically create classes based on templates. You can also add and delete files and folders directly
from the comfort of the Project panel without having to open Windows Explorer or OSX Finder.

You’ll notice the Project panel on the left side of the Flash work-
space. (If you are not using the Developer workspace or if it’s
not visible, select Window Other Panels Project.) Let’s create
a project for the Hello World program.

 1. In the Project panel, click the Projects drop- down menu and
select Quick Project. All the files you’re currently using will
be added to the project, and the project will be named
after the FLA file; in this case, helloWorld. Your Project panel
should look now like Figure 1-11. (Depending on your mon-
itor resolution, the right side of the Project panel might not
be entirely visible. Drag the right edge of the window to
increase its width if you need to.)

 2. When you create a Quick Project, Flash automatically uses
the FLA file as the default document, which it indicates by
a check mark next to it. The default document is the FLA
file from which Flash creates the SWF file. The Quick Project
option also automatically gives the project the same name
as the default document.

Now that your project has been created, you can test your pro-
gram and publish the SWF simply by clicking the Test Project but-
ton. You can also browse and edit each of the files just by clicking
their names in the Project panel.

In most cases, using Quick Project will serve you perfectly well, but if you want to cre-
ate a project from files or folders that aren’t already open, you should use the Open
Project option. Selecting Open Project allows you to browse to a folder that you want
to use as your project root, assign a project name, and then manually assign a default
document.

For game development, the Project panel will become an extremely useful tool to help keep all your
projects organized and will speed up your development time. Try to get into the habit of using it with
each project.

 Figure 1-11. Use the Project panel to help
you keep your files organized.

27

PROGRAMMING FOUNDATIONS: HOW TO MAKE A VIDEO GAME

A little more about AS3.0 and the Flash Player
At the end of this process, you have a SWF file that you can take to any computer and run, as long
as the Flash Player is also installed on that same computer. The fact that the SWF file needs the help
of the Flash Player to run is very important. As a game designer, you need to know why this is and
the kinds of limitations it might impose on you. Let’s take a closer look at what’s going on behind the
scenes when you publish a SWF file.

AS3.0 is a type of high- level programming language. High- level programming languages, such as
Java, C++, and Visual Basic, are designed so that humans can easily read, write, and understand them.
They use real English words such as function and class, and use elements of English grammar such as
quotation marks and semicolons. But computers don’t understand English. Try asking your computer
for help with the dishes this evening, and I expect you’ll get nothing but a stony silence (if not, let
someone, hopefully a professional, know about it!).

At their most basic level, computers, understand only a binary language of 1s and 0s. So all the AS3.0
code has to be translated into binary code so the computer can understand it. Fortunately, you don’t
have to do that manually, so you can put away that pencil and paper. Flash has a built- in compiler (a
software component that translates code) to do the job for you.

Keep in mind that, unlike writing a program in a language such as C++ or Visual Basic, Flash’s compiler
doesn’t compile your code so it’s directly readable by your computer’s central processing unit (CPU),
which is your computer’s main “brain.” It compiles it only so that it can be read by the Flash Player
software.

Before you can run any of your AS3.0 programs, the Flash Player software has to be installed on
your system because it’s the job of the Flash Player to interpret your code to the CPU. Because of
this, AS3.0, like Java, is known as an interpreted programming language. Interpreted languages use
a piece of software known as a virtual machine, which acts as an interpreter between the CPU and
your program. The Flash Player is AS3.0’s virtual machine.

Interpreted languages have a number of advantages over languages that compile directly to the CPU.
Most importantly, it means that your programs will run flawlessly and exactly the same way on any
operating system (Windows, Linux, or OS X) that has the Flash Player installed. You only need to write
your code once, and the Flash Player, which is written for each operating system that it’s available for,
will take care of the job of making sure your code runs properly. The other advantage is that the Flash
Player protects the computer it’s running on from any code that you might have written that could
accidentally freeze or crash your system. All this tends to make interpreted languages very convenient
and reliable languages to program with.

One major disadvantage with interpreted languages, however, is in the area of performance. Imagine
visiting a foreign country where you don’t speak the language, but instead are accompanied by a trans-
lator who painstakingly translates every word you say and then translates each reply back into English.
It would be a very slow and tedious process. Unfortunately, this is exactly what’s happening between
the Flash Player and the CPU when you run your AS3.0 programs. How slow is it? Exact numbers are
hard to come by, but a reasonable estimate might be 10 to 20 times slower than if the code were
compiled as binary machine language and running directly on the CPU. (By “slow,” I mean exactly how
quickly the CPU can process each instruction or calculation your program asks it to perform.)

28

CHAPTER 1

Adobe has done a great deal with each successive generation of the Flash Player to improve perfor-
mance, but this is a major handicap for game developers who depend on squeezing every iota of pro-
cessing power out of a system to maximize performance in their games. This is why 3D Flash games,
which require a vast amount of processing power to calculate geometry, struggle to compete with
the rich graphic splendor of 3D on the game consoles (such as the Xbox, PlayStation, and Wii.) The
consoles use custom compilers that optimize all the game code to run directly as machine language
on their specific processors.

If you’re thinking of eventually getting into game design for the consoles, however, you’re still in
pretty good shape with Flash: the skills you’ll learn by programming in AS3.0 can be directly applied to
programming for consoles when you’re ready to take that step. The AS3.0 programming environment
is also probably the most user- friendly programming environment you can learn in. And, hey, make
a game with Flash, post it on the Web, and you’ve got a potential worldwide audience for it—that’s
power!

Naming conventions
Before this chapter closes, let’s take a quick look at an aspect of programming practice called naming
conventions.

You might have noticed something peculiar about the kinds of names that you gave the file, class, and
method names. Have a look at the choice of file name for the FLA:

Does it look a little strange to you? It should. You’ll notice that the h is lowercase and the W is upper-
case, and there’s no space between the two words. This is a style of giving things names that program-
mers affectionately call camel case (also known as humpBackNotation). Can you guess why it’s called
that? I’m sure you can!

With camel case you can write a compound phrase using more than one word. The words are not
separated with blank spaces, and the phrase is still easily readable you and by AS3.0. Blank spaces in
the middle of compound names are the programming equivalent to foxes in a chicken coop—avoid
them at all cost! The AS3.0 code compiler throws its hands in the air when it encounters a blank space
where there shouldn’t be one, so camel case was developed by programmers as an efficient way of
writing compound words or phrases without spaces.

Camel case is an important feature of naming conventions, which are rules that programmers decide
on before they start a project about the style they’ll use for creating package, variable, class, object,
method, and file names. By strictly sticking to these naming conventions, programmers are better able
to dodge the easy-to- make errors that come from misspelling or incorrectly capitalizing any elements
in their code. They can also easily see what kind of programming object they’re dealing with simply by
the way it’s been capitalized.

29

PROGRAMMING FOUNDATIONS: HOW TO MAKE A VIDEO GAME

There are two types of camel case that you’ll be using throughout this book:

 Lower camel case: startsWithLowerCaseLetter. You’ll be using this case for package names,
variables, methods, and instances. You’ll also be using lower camel case for the names of the
FLA files (for example,).

 Upper camel case: StartsWithUpperCaseLetter. You’ll use this case for class names and con-
structor method names. You’ll also use it for the names of AS class files such as , which
must be named exactly like the class they define in the file.

Because ActionScript is a case sensitive programming language, keep in mind that helloWorld is dif-
ferent from HelloWorld, which is different still from helloworld. Make sure that you follow all the
capitalization as it appears in the text; otherwise, your programs won’t work. If you write a program
that seems perfect in every way but just doesn’t run, check your spelling and capitalization! This is one
of the most common mistakes that novice programmers make, and many a programmer will tell you
tales of woe about debugging sessions running till 4 a.m. where the culprit, when eventually smoked
out, was revealed to be a single misspelled or incorrectly capitalized word. The author of this book
refuses comment!

Summary
Well done! You’ve written and published your first AS3.0 program! It wasn’t so hard, was it? In fact,
congratulate yourself for getting through one of the most difficult chapters in the book. I’ve laid the
programming foundations for all the games and projects to come, and you’ll find that you’ll use this
same format for setting up your programs over and over again in your career as a game designer.

This chapter has covered a lot of theory, and if you are new to programming, you might have found
some of it a bit heavy. I sympathize with you! But you don’t necessarily need to completely understand
all the theory to create games. The most important thing is that you know what programming code
you need to use to get the results you want. A deeper understanding will come with time, a lot of trial
and error, and doing as much experimenting with your own projects as you can.

A deep dark secret that most programmers often don’t like to share with the rest of the world is that
a great deal of the world’s software is built with a little bit of understanding and an awful lot of “copy/
paste.” That’s all part of the learning process. Of course, you need to know exactly what bits of code
you need to copy and paste, and how to change them to get the results you want, which is something
only experience (and this book!) can teach you. But as time goes on, you’ll soon recognize the usual
suspects and be copying and pasting to your heart’s content along with the best of them.

I encourage you to go back to parts of this chapter that might have been little fuzzy the first time
through to try to get a solid understanding of them before continuing much further. If you don’t get it
all just yet, don’t worry! If you managed to get the little Hello World program running and you gener-
ally understand what made it work, you’re in the game!

In the next chapter, you’ll use this same model to start building a simple children’s interactive story-
book. See you there!

31

Chapter 2

When you read a novel, you usually start on the first page, read through each page
sequentially, and finish on the last page. You can’t change the order of the pages with-
out making a mess of the story line, and you certainly can’t tell the characters what
they should do or change the outcome of the novel if you don’t like how it ends.

The development of computers over the last few decades has completely changed
that scenario. With tools such as Flash, you can now create completely interactive
media. Readers or viewers are no longer just passive spectators to a story; they are
active participants.

The next three chapters will cover a number of important techniques that form the
basis of what you need to know to build interactive media. Although the focus will be
on how you can use these techniques to make games, you can also use them as the
basis for building highly interactive Flash websites.

I’ll cover all the core programming and design skills that you need to know, so if
you’ve never used Flash before or never done any programming, relax—it’s all here.
By the end of Chapter 4, you’ll have a broad repertoire of skills you’ll be able to use
to build even very complex interactive environments such as point-and- click adven-
ture games and text- based logic and puzzle games. And you’ll be all set with all the
skills you need to know when you start to look specifically at video game design.

MAKING OBJECTS

32

CHAPTER 2

Understanding Interactive Objects
AS3.0 is what’s known as an object- oriented programming language (OOP). Objects are at the core of
everything you do, but what are they? Objects are just “things” that you can control with programming
code. Those objects can be graphics, animations, videos, buttons, or sounds—really anything at all. I’ll
be discussing objects in much more detail a little later on, but for now all you need to know is that an
object is something that you want to be able to control and program.

If you’ve heard or read about object- oriented programming before now, you might have bumped
into other words surrounding the phrase such as “advanced” or “not for beginners.” Actually, nothing
could be further from the truth. By learning about objects right from the beginning and understanding
how to control them, doors of understanding will start to open up for you that will provide you with
immense control over your programming code in a very short time.

Over the next few pages you’ll create your first objects: three scenes for an interactive children’s sto-
rybook. You’ll then create some buttons to control those objects. In Chapter 3 you’ll learn to program
those buttons using event listeners, and in Chapter 4 you’ll add some characters to the pages and
control those characters using properties. But you can just file that away for later because you’ll take
just one small step at a time.

If you’ve used Flash, creating objects is an almost laughably simple process that you’ve probably
already done many times without even realizing it. If you haven’t used Flash very much, don’t worry;
I’ll cover everything you need to know in detail in this chapter.

There are two ways to create objects in Flash. You can create them with AS3.0 programming code or in
Flash’s visual authoring environment. One of Flash’s great strengths as a game development platform is
that it enables you to draw and animate complex objects without having to look at a single line of code and
then use those objects anywhere in your program. This is a huge time- saver, and it’s also loads of fun!

In the next example, you’ll draw three scenes for a children’s interactive storybook and set them up as
objects that you can control with code. This chapter will cover the following topics:

 Flash’s vector drawing tools

 Creating symbols in the Library

 Instances and the stage

 Making buttons

In this chapter, you’ll make these objects; in the next chapter, you’ll program them.

Setting up the work environment
Your first job is to create the files that you’ll need for this project. Like the Hello World program from
Chapter 1, you need to start with an FLA and an AS file. You’ll create the FLA and then use it to create
a Quick Project in Flash’s Project panel.

 1. Find a convenient spot on your hard drive and create a project folder called
.

 2. Open Flash. Select File New and choose Flash File (ActionScript 3.0) from the New Document
dialog box.

32

33

MAKING OBJECTS

 3. Click the OK button.

 4. Select File Save As.

 5. Give your new FLA file the name .

 6. Find the project folder that you created in step 1.

 7. Click Save to save the file.

 8. In the Project panel, click the drop- down menu. Select Quick Project. You’ll see the new
interactiveStorybook.fla file you just created appear as a project file.

 9. In the Project panel, click the New File button, as shown in Figure 2-1.

 Figure 2-1. Create a new AS file in the Project panel.

 10. Enter Main.as in the File field.

 11. Check that ActionScript is selected as the File type. If the Create File window looks like it does in
 Figure 2-2, click the Create File button.

 Figure 2-2. Create a new AS file called Main.as in the Project panel.

 12. Flash will create and open the file.

33

34

CHAPTER 2

Your Project panel should now look like Figure 2-3.

 Figure 2-3. The Project panel shows the new FLA and AS files.

 13. Finally, you need to create the FLA file’s document class. Double- click the interactiveStorybook.
fla file in the Project panel.

 14. To the right of the stage you’ll notice a panel called Properties. (If the Properties panel isn’t
open, select Window Properties.) In the Publish section, you’ll see a text field called Class.
Enter Main in the Class field. Your Properties panel should now look like Figure 2-4.

 Figure 2-4. Create the document class in the Properties
panel of the FLA file.

 15. Save the file.

Now that you’ve created the FLA and AS files and have set as the document class, you’re ready
to start creating the storybook.

35

MAKING OBJECTS

Creating the first page
The interactive storybook will have three pages. Create the first page by following these steps:

 1. Make sure that your interactiveStorybook.fla tab is open on the screen. If it’s not, double- click
the interactiveStorybook.fla file in the Project panel or in the tab menu near the top of the
stage.

 2. Select Insert New Symbol from the menu to open the Create New Symbol dialog box. Click
the Advanced button to see all the extra settings available to you, as shown in Figure 2-5. (If
your Create New Symbol dialog box already looks like Figure 2-5, it’s already in Advanced
mode.)

 Figure 2-5. Create New Symbol dialog box

36

CHAPTER 2

 3. Enter StartPage in the Name field and make sure that Movie Clip is selected as the Type symbol.
In the Linkage section, select the Export for ActionScript option. As soon as you do this, a num-
ber of other options and fields will be automatically set for you. The New Symbol dialog box
should now look like Figure 2-6.

 Figure 2-6. Create a new symbol called StartPage. Make sure that Export for ActionScript is selected.

37

MAKING OBJECTS

 4. Click the OK button. A warning dialog box will appear (see Figure 2-7), warning you that Flash
couldn’t find the class you’ve specified but will generate it for you automatically when you
publish the SWF file. This is merely Flash’s helpful way of saying, “Um, it doesn’t look like
you’ve got a class called yet. But don’t worry, I’ll create one for you!” You know you
haven’t created this class yet, so that‘s just fine. “Thanks, Flash! Such a helpful little fellow!”
(You can click Don’t show again. to prevent this warning from appearing the next time you cre-
ate a symbol.)

 Figure 2-7. Class definition warning

 5. Click the OK button to ignore this warning.

When you clicked the OK button in step 5, two things happened:

First, Flash created a new symbol in the Library called StartPage.

In the Library you can view all the symbols you create and all the
assets (additional imported files) such as sound, images, and videos
that you import into Flash. The Library panel is located in the panel
on the left of the Flash workspace. (If you don’t see it, select Window

 Library.) Your Library should now look like Figure 2-8.

I recommend using the Developer workspace for the projects
in this book. To set up Flash’s Developer workspace, select
Window Workspace Developer. Flash’s workspace is
designed using panels. Each area of the workspace, includ-
ing the Library or Properties, is a panel. You can rearrange,
minimize, and mix and match these panels in whatever order
you like. It’s quite a nice feature but it’s also easy to acciden-
tally delete a panel or drag it into some strangely inaccessible
part of the workspace. It can cause a lot of frustration if the
panel you are using suddenly disappears and you can’t figure
out how to get it back. Fortunately, it’s very easy to restore
the workspace to its original state if this happens. If you’re in
the Developer workspace, click the Developer button near the
 top- left corner of the Flash window (next to the search box.)
Select Reset ‘Developer’ from the option menu. All the panels
in the workspace will return to their original state.

 Figure 2-8. Your new StartPage symbol is
in the Library.

38

CHAPTER 2

Flash also placed you in symbol editing mode for the symbol. If you are new to Flash,
this might be a bit confusing. You created as a Movie Clip symbol. Movie Clip symbols
have timelines and stages. When you enter symbol editing mode, Flash replaces the main stage and
timeline with the stage and timeline of the Movie Clip symbol you selected. If there’s any doubt about
which stage and timeline you’re working in, have a look at the top- left corner of the stage shown in
 Figure 2-9.

 Figure 2-9. Are you working on Flash’s main
stage or inside a Movie Clip symbol?

If you see the name of a symbol with the Movie Clip icon next to it, you know you’re in symbol editing
mode and that the stage and timeline you see on the screen belong to the that symbol. If you just see
Scene 1, you know you’re working on Flash’s main stage. (To exit symbol editing mode and return to
the main stage, simply click Scene 1. To reenter symbol editing mode, you need to select the symbol
again from the Library by double- clicking it.)

Drawing the first page
You’ll now create a page for the characters in the storybook. This project will take you on a quick
introductory tour of Flash’s vector- drawing capabilities and show you how to organize graphics using
layers on the timeline. Figure 2-10 shows what the finished page will look like.

 Figure 2-10. A happy sunny scene for the first page of the storybook

39

MAKING OBJECTS

Drawing the background
The first thing you’ll do is create the sky. It’s just a big blue rectangle that will completely fill the stage.
Follow these steps:

 1. In the Tools toolbar, select a color for the sky by clicking the Fill Color box. (If the Tools tool-
bar isn’t visible, select Window Tools.) A color palette will open, and the mouse pointer will
change to an eyedropper to allow you to choose an appropriate color for the sky. Figure 2-11
shows what this looks like. (If you have a small monitor, the Fill Color box might actually be hid-
ing under the Properties panel. You can access it another way by selecting the Paint Bucket tool
and selecting the Fill Color box from the Properties panel.)

 Figure 2-11. Select a color for the sky.

Next to the Fill Color box is another box with a pencil icon on the left side. This box allows you to select
the stroke color, which refers to the color of a shape’s outside border. If you select a stroke color,
your rectangle will be drawn with a colored border around it. For this example, I didn’t want a border
for the sky, so I made sure that none was selected (indicated by the red stripe through the stroke color
box). Look carefully at the top- right corner of the color palette shown in Figure 2-11, and you’ll notice
that you can choose this “no color” option for either the stroke or fill color by selecting the small
white square with the red stripe through it.

40

CHAPTER 2

 2. Use the Rectangle tool to draw a rectangle on the stage, as shown in Figure 2-12. The size and
shape of the rectangle doesn’t matter for this step.

 Figure 2-12. Draw a rectangle on the stage.

 3. Select the rectangle by clicking it once with the Selection tool, which is the first tool (the black
arrow) on the toolbar. (If you drew the rectangle with a border around it, double- click it to
select both the fill and stroke completely.) You will know that the rectangle has been selected
when you see a black dot pattern appear across the surface, as shown in Figure 2-13.

 Figure 2-13. Select the rectangle with the Selection tool.

41

MAKING OBJECTS

The Properties panel is context- sensitive (it gives you information about whatever object you’ve
selected on the stage, and that information will change if you select another object). The Properties
panel allows you to change the properties of selected objects. You want to change the height and
width of the rectangle so that it matches the dimensions of the stage. You also want to align its
 top- left corner with the center point of the Movie Clip symbol’s stage.

 4. While the rectangle is still selected, use the Properties panel to change its W (width) property
to 550 and its H (height) to 400. The numbers you enter here represent the size of the object
in pixels, which are tiny dots that are the smallest possible image that can be displayed on the
stage. All visual elements are made up of lots of tiny pixels, and you can see them if you look
carefully. I’ll discuss pixels in a bit more detail soon.

 5. Change the rectangle’s X (horizontal) position to 0 and the Y (vertical) position to 0. Your
Properties panel should now match that shown in Figure 2-14.

 Figure 2-14. Change the size and position of the rectangle in the
Properties panel.

 6. As soon as you enter those numbers, the size of the rectangle will change, and the top- left
hand corner will snap to the small black crosshairs in the middle of the stage. The crosshairs
(also known as the registration point) represent position 0 for both the X and Y position (this
is important to remember, and you will be returning to this soon).

42

CHAPTER 2

 7. From the Tools toolbar, select the Hand tool and use it to scroll the stage so the entire rect-
angle is visible, as shown in Figure 2-15. (Double- check that the rectangle’s top- left corner is
aligned against the bottom- right quadrant of the crosshairs. This will be very important for
correctly positioning the page later.) The Hand tool doesn’t move the object on the stage; it
just repositions your view of it. The effect it has is the same as using the horizontal and vertical
scrollbars on the bottom and right of the stage.

 Figure 2-15. Use the Hand tool to reposition the stage so that whole rectangle is visible in your work area.

Before going any further, now is a good time to organize the drawing layers.

43

MAKING OBJECTS

Organizing layers and the timeline
If you look at the bottom of the workspace you’ll see the timeline (if it isn’t visible, select Window
Timeline.) The timeline is most commonly used for animation (I’ll be discussing that function in some
detail a bit later in the book), but it’s also used to create drawing layers as in Photoshop or other
graphic design software. Using layers allows you to create drawings or graphics on different layers, and
then arrange those layers so that graphics sit above or below other graphics.

Look at the bottom of the Flash workspace, just below the stage, and you’ll see something that looks
much like Figure 2-16.

 Figure 2-16. StartPage’s timeline

Layer 1 is the current layer on which you’ve made your drawing. To the right of it, just below the num-
ber 1 and with the red line running though it, is a black dot known as a keyframe. Black keyframes
tell you that that frame has some graphics on it. In this case, it’s the blue background rectangle that
you’ve just drawn. The red rectangle, which is highlighting frame 1, is known as the playhead (some-
times referred to as the scrubber). The playhead is used to navigate between frames.

To help you stay organized, create two more layers: one for the foreground drawings and one for the
text.

 1. Click the New Layer button on the bottom- left corner of the timeline to create two new layers,
as shown in Figure 2-17. Notice that the keyframes of these layers are empty circles, indicating
that they don’t contain any graphics.

 Figure 2-17. Create two new layers.

44

CHAPTER 2

 2. It’s a good idea to label the layers properly so you can quickly identify them. To change the
name of a layer, click the layer name with the mouse and enter the new name. Change Layer
1 to background, change Layer 2 to foreground, and change Layer 3 to characters. Figure 2-18
shows how your timeline should now look.

 Figure 2-18. Give your new layers descriptive names.

 3. You’ll create the next set of drawings on the foreground layer. But before that, you should lock
the background layer so that you don’t accidentally click it and possibly undo all the work
you’ve already done. To lock the background layer, click the small black circle in the column
indicated by the padlock. Figure 2-19 shows what the background layer looks like when it’s
locked. (If you need to make any changes to the background layer later, you can unlock it by
clicking its padlock icon.)

 Figure 2-19. Lock the background layer while working on other layers.

45

MAKING OBJECTS

 4. Click the empty keyframe on the foreground layer to select it, as shown in Figure 2-20.

 Figure 2-20. Make sure that the keyframe in the foreground layer is selected.

You’re now ready to draw something on the foreground layer.

Drawing the foreground objects
Now that you’ve created a new layer for the foreground objects, let’s draw something on it. One of
the great pleasures of working with Flash is that you can create simple but effective graphics very
easily using its built- in vector drawing tools. Put together a few circles and squares in the right way,
and even if you think you don’t have much design talent, you might still be able to come up with
something fun and colorful.

Before you start, you might want to switch on one of Flash’s snapping options. With snapping turned
on, Flash will assist you in aligning objects by “snapping” them in place next to other objects. There
are a number of different snapping options to choose from, but for this project, use Snap to Objects.
To turn on Snap to Objects, select View Snapping Snap to Objects. You can also turn on snapping
by clicking the Snap to Objects button in the toolbar (it looks like a magnet and is on the right side of
the toolbar).

If you ever make a mistake while doing any of these drawings, simply undo your last
move by selecting Edit Undo. If you’re using OSX, hold down the Apple key and press
Z; if you’re using Windows, hold down Ctrl and press Z. Flash will allow you to undo up
to 100 times, and you can increase this number in Preferences if you need to.

46

CHAPTER 2

Creating a hill
The first thing you’ll draw on the foreground layer is a green hill.

 1. On the foreground layer, draw a green rectangle at the bottom of the stage, as shown in
 Figure 2-21. Make sure that you create the rectangle without a border.

 Figure 2-21. Draw a green rectangle.

47

MAKING OBJECTS

 2. Draw another green rectangle on top of the first one at a 90- degree angle to form an L shape,
as shown in Figure 2-22.

 Figure 2-22. Add a second rectangle.

Flash’s built- in drawing system uses vector lines and shapes (created by plotting points mathemati-
cally). If you overlap two vector shapes that are the same color on the same layer, they merge to
become one shape. If you try selecting either of the green rectangles you created in the preceding
steps with the arrow Selection tool, they will become one big shape (you can’t select them individually
anymore).

48

CHAPTER 2

Flash has two drawing modes: merge mode and object drawing mode. When Flash is in object drawing
mode, overlapping vector shapes don’t automatically merge when they overlap; they remain as indi-
vidual objects. Flash’s drawing system is in merge mode by default, but you can switch to object drawing
mode by clicking the Object Drawing button near the right edge of the toolbar. For now, however, stay
with merge mode because you’ll use it to demonstrate a new technique in the following steps.

The great thing about working with vector shapes is how malleable they are. In the next few steps,
you’ll use the Selection tool to bend the edge of one of the rectangles to create a curved slope.

 1. In the Tools toolbar, select the Selection tool. Position it at the top- right corner of the second
rectangle (the vertical section of the L). A small black angle icon appears next to the arrow,
which indicates that you can now reposition the corner. Hold down the left mouse button and
drag the corner down and to the left. When you release the mouse, the shape of the rectangle
will be transformed, as shown in Figure 2-23.

Drag the top right corner of second rectangle down and to the left

 Figure 2-23. Reposition the top- right corner.

 2. That’s a good start for the hill, but now let’s make it slightly less steep. Select the point at which
the two rectangles join and drag it to the right. When you release the mouse, the slope will be
less steep, as shown in Figure 2-24.

Drag the corner where the two rectangles meet to the right

 Figure 2-24. Make the hill less steep.

49

MAKING OBJECTS

 3. The hill might look a bit prettier if the top were rounded. Position the Selection tool to inter-
sect with the line that represents the top of the hill. You’ll notice that a curved line icon
appears next to the arrow. This icon indicates that you can bend the line. Hold down the left
mouse button and drag the line upward to form a gentle curve. When you release the button,
the top of the hill will be rounded. Figure 2-25 shows what this should look like.

Drag the line that forms the top of the hill to curve it upwards

 Figure 2-25. Make a rounded top for the hill.

I told you that drawing with Flash was fun!

Making some water
The next thing you’ll do is create some water for the pond next to the grassy hill. You’ll create a “wave”
first, and then copy and paste it a few times to make a body of water.

 1. Draw a dark blue rectangle next to the edge of the hill. Make sure that you draw it without
a border. Use the Selection tool to curve the top of the blue rectangle downward. Figure 2-26
shows how.

Create a blue rectangle and curve the top to make a wave

Figure 2-26. Design the first wave.

50

CHAPTER 2

 2. Click the blue rectangle to select it. Click Edit Copy and then Edit Paste to make another
copy of it. Position the new copy next to the first (see Figure 2-27).

Copy and paste the wave to make another one. Position it next to the first wave.

 Figure 2-27. Copy and paste a second wave.

 3. Paste a few more waves and position them next to each other until the water reaches the edge
of the stage. You’ll notice that as you add waves of the same color, they merge to form one
shape like the green rectangles did. (If it didn’t work that way, you’re probably not in merge
mode. To toggle between merge and object mode, click the Object Drawing button near the
top left of the toolbar.)

 4. You’ll probably find that one of the waves overlaps the stage edge slightly. If this is the case,
draw a black rectangle outside the stage and position its left edge so that touches the right-
most edge of the stage and completely covers the part of the wave that extends too far. Click
the rectangle once with the Selection tool to select it. Next, delete the black rectangle. Not
only will the rectangle disappear but the portion of the wave that it covered will also be gone.
 Figure 2-28 shows this process.

This figure illustrates an important feature of Flash’s merge mode drawing style. If you draw two
overlapping vector shapes that are the same color, they’ll become part of the same shape—just as the
two green rectangles did. If the shapes that overlap are different colors, they’ll also merge but remain
separate. You can select them as individual shapes, but if you delete the second shape you added, it
will cut a hole in the bottom shape like a cookie cutter. This is very useful for punching holes in solid
shapes or trimming edges, as you did in the previous steps.

This is a good demonstration of how merge mode works. However, there’s another much simpler way
to delete rectangular- shaped sections of your drawings. Use the Selection tool and draw a rectangular
selection area around the section you want to delete. Click the Delete key, and the area will disappear.
You can also remove parts of your drawings with the Eraser tool (also in the Tools toolbar).

51

MAKING OBJECTS

1. If the waves extend too far... 2. Draw a black rectangle that covers
the section that extends

3. Select the black rectangle with the
Selection tool

4. Delete the rectangle. The section of
water that it covered will also be deleted.

 Figure 2-28. Trim the blue water graphics.

Now let’s make the water transparent. You can do this by converting it into a graphic symbol and then
setting its alpha (transparency) property to 40%, as follows:

 1. Select the water with the Selection tool.

 2. Select Modify Convert to Symbol.

 3. The Convert to Symbol dialog box opens. Give the symbol the name Water and change its Type
to Graphic. Figure 2-29 shows an example of what this looks like.

 Figure 2-29. Convert the water to a graphic symbol.

52

CHAPTER 2

 4. Click the OK button. Two things happen:

 A new symbol appears in the Library called Water.

 The water shape that you selected and converted into a symbol becomes surrounded by
a blue rectangle. This rectangle is called a bounding box and indicates that the object
is a symbol.

 Figure 2-30 shows what your Library and workspace might now look like.

When you convert a drawing to a symbol it becomes surrounded by a blue bounding box and appears as an object in the Library.

 Figure 2-30. The Water symbol in the Library

Any object on the stage that is represented by a symbol in the Library is an instance of that symbol.
You’ll be coming across the term instance a lot in this book, so it’s worth remembering this. What
you’ve done in these steps is “create an instance of the symbol on the stage.”

Graphic symbols differ from Movie Clip symbols in two important ways. They take up slightly less stor-
age space in the FLA, but they can’t be accessed or targeted using programming code. If you don’t
think you’ll want to program any of your symbols later, you can create them as graphic symbols so
that your published SWF file is a little smaller.

Now that you’ve converted the water into a graphic symbol, it’s become a unified entity that you can
drag around the stage without having to worry about it merging with other shapes. Because it’s a sym-
bol, you can also drag more instances of it from the Library onto the stage if you need to.

53

MAKING OBJECTS

You can change graphic symbols into Movie Clip symbols later if you need to. To do
this, select the symbol in the Library. Click the Properties button, which is located at
the bottom of the Library panel and looks like a circle with an i in the center of it. This
will open the Symbol Properties window. Change the symbol Type to Movie Clip in the
 drop- down menu. You can change any symbol to any other type using this method.

You can also change a symbol’s type by selecting the instance on the stage and chang-
ing its type from the drop- down menu in the Properties panel.

If you need to make changes to the actual shape of the water itself, double- click it on the stage or
its icon in the Library. This will bring you into symbol editing mode, and you can make changes to the
lines, colors, and shapes of the drawing. All these changes are automatically saved and will be imme-
diately reflected in any instances of this symbol on the stage.

Now that the water is a graphic symbol, you can give it some transparency by setting its alpha prop-
erty. (Alpha is a graphic design term that simply refers to transparency.)

 1. Make sure that the Water symbol instance is still selected on the stage. You can tell that it’s
selected if you can see a blue bounding box surrounding it. Click it once with the Selection tool
if you need to select it.

 2. In the Properties panel, find the Color Effect section. It might be in its closed state, so none
of its options will be visible. Click the Color Effect heading once, and it will open to reveal
a drop- down menu. Select Alpha from the menu, as shown in Figure 2-31.

 Figure 2-31. Select Alpha from the Color
Effect section of the Properties panel.

54

CHAPTER 2

 3. Change the Alpha to 40%. You can do this either by moving the slider or entering 40 into the
text field next to it, as shown in Figure 2-32.

 Figure 2-32. Set the water’s alpha to 40%.

With the alpha at 40%, the background is visible through the water. In this example, the water will
appear to be a much lighter blue color.

Grouping objects
Flash’s drawing system allows you to group objects together so that you can move them around the
stage as a single unit. You’ll group the water and grassy hill to keep them separate from the objects
that you’ll add in later steps. Follow these steps:

 1. Select the Water instance if it’s not already selected.

 2. Hold down the Shift key on the keyboard. When you hold down the Shift key, Flash allows
you to select multiple objects. Select the grassy hill. Both the water and hill should now be
selected.

 3. Select Modify Group. As soon as you do this, a big blue bounding box surrounds both
objects. They’re now grouped.

Grouping objects allows you to treat multiple objects as a single unit so that you can move them
around the stage together. It also prevents the shapes of other objects merging with the grouped
shapes. Unlike creating a symbol, grouping objects doesn’t create a new Library item. This is great
if you’re working on a complex design but don’t want to clutter up the Library with too many extra
symbols.

55

MAKING OBJECTS

You can modify the shapes or instances inside a group by double- clicking the group with the Selection
tool. When you do, the effect is almost identical to entering symbol editing mode. The word Group
appears above the stage to show you that you’re now working inside the group, and the other objects
on the stage will dim. To exit this mode, double- click the outside edges of the stage, double- click
another object that’s not part of the group, or select the name of the symbol or scene that you’re
working in on the object name display bar above the stage.

If you ever need to separate the objects in the group again later, select the group and select
Modify Ungroup.

Adding some clouds
Next you’re going to create a graphic symbol and then drag a few instances of it onto the
scene.

 1. Select the Oval tool from the Tools toolbar. The Oval tool occupies the same button menu as
the Rectangle tool, so if you’ve just used the Rectangle tool, it won’t be visible. To find it, hold
the left mouse button down over the Rectangle tool. A menu will open allowing you to select
the Oval tool.

 2. Select a white fill color.

 3. Draw a few overlapping ovals in the sky to create something that looks like a cloud. Figure 2-33
shows what it might look like.

 Figure 2-33. Use the Oval tool to create a cloud.

 4. Click the cloud once with the Selection tool to select it.

 5. Select Modify Convert to Symbol.

 6. Give the new symbol the name Cloud and make sure that the Type is Graphic.

56

CHAPTER 2

 7. A Cloud graphic symbol appears in the Library. Drag five or six instances of it onto the stage, as
shown in Figure 2-34. This illustrates one of the best things about using symbols: once you’ve
made one, you can drag as many instances of it as like into your scene.

 Figure 2-34. Drag instances of the Cloud symbol onto the stage.

As you can see, some of the clouds overlap the hill, which looks rather awkward. It would look more
natural if the clouds were behind the hill. Ideally, you’d probably want to put these clouds on their
own layer between the background and foreground layers, but, in the interest of showing you a new
technique, you’ll arrange the depths of objects within a single layer. Do the following:

 1. Select one of the clouds that overlap the hill. (If more than one overlaps the hill, hold down
the Shift key on the keyboard and select both of them.)

 2. Select Modify Arrange Send Backward. The selected clouds will move behind the hill.
 Figure 2-35 shows how this will look.

 Figure 2-35. Use the Arrange menu to send the selected clouds backward.

57

MAKING OBJECTS

The order in which Flash arranges the depths of visual objects on the stage is called the stacking order.
If you select the Send Backward option, the selected objects will move back one place in the stacking
order. If you have three or four objects stacked on a layer, you can use the alternative Send to Back
option to move a selected object that’s at or near the top of the stack all the way to the very back.

When you drag a symbol from the Library onto the stage, you create an instance of
that object. If the symbol is a rubber stamp, the instance is like the ink impression
of that stamp.

You can also think of a symbol as a template or cookie cutter. In the same way that
you can eat a bag full of cookies but not the cookie cutter that made them, you can
use a symbol to make as many copies of that object as you want while still keeping
the original intact. That’s why even when you drag your cloud object from the Library
onto the stage, the cloud still sits in the Library, floating serenely without a care in the
world. And you can still use it to make as many more instances of that cloud in your
storybook as you want to.

The interesting thing about the relationship between the symbol and its instance is
that whenever you make a change to the symbol, all the instances of that symbol are
changed in exactly the same way. You can try this with your object. Open the

 symbol and make a small change to it, such as giving it a darker fill color. When
you then take a look at your symbol, you’ll notice that all the instance of
the cloud that you used there also acquired the same darker fill color. If you had used
1000 instances of your symbol somewhere in your storybook, all of them would
suddenly darken. All that from just making one small change in the symbol!

This is an extremely powerful aspect of the relationship between symbols to instances
and is an important concept to grasp before you go much further. AS3.0 programming
is completely based around this same model. In AS3.0, a class is analogous to a sym-
bol, and you can make as many instances of a single class as you need to in your pro-
grams. If you understand the relationship between symbols in the Library to instances
on the stage in the visual way that you’ve used it with the cloud, it will give you a huge
advantage to understanding the more abstract way this works in programming code.
It’s completely identical.

Creating some flowers
Flash’s drawing tools are not the only way to create vector graphics with Flash. Another very useful
technique is to make a graphic using a dingbat font. Dingbat fonts are fonts that contain graphic
images instead of letters or numbers. The Wingding and Webding dingbat fonts are installed on most
computers as part of the operating system, but there are thousands of others that specialize in cer-
tain character sets. Many dingbat fonts are free; you just need to download and install them on your
computer to use them.

Dingbat fonts are especially useful when you’re just getting started with game design because they will
save you the tedium of creating common graphic shapes from scratch. Lots of the little shapes that
you’ll need to make things like bullets, features for characters, and buttons you’ll find ready- made as
part of a dingbat font set. Flash allows you to convert fonts into ordinary vector graphics, so you have
complete control over the final look of graphics created from dingbats.

58

CHAPTER 2

You’ll add some flowers to the hilly scene with the help of a free dingbat font called saru’s Flower Ding
(a simple web search will turn up the download link if you look for it). Of course, you can use any
character from any dingbat font you choose.

 1. Select the Text tool from the toolbar. The Properties panel will fill with text options. Make
sure that Static Text is selected and choose an appropriate font, color, and font size. For this
example, a nice big font size such as 36 points will work well.

 2. Click the scene with the Text tool and type the key that corresponds to the dingbat symbol
you want to use (an uppercase E produces a playful flower character with saru’s Flower Ding).
 Figure 2-36 shows an example of what your text and the Properties panel might look like.

 Figure 2-36. Use a dingbat font to create a flower graphic.

 3. The next step is to convert the font into an ordinary vector graphic. Make sure that the text is
selected and select Modify Break Apart. This transforms the font into a vector shape. It’s now
just like any other vector shape you could draw or transform with Flash’s drawing tools.

 4. While the flower shape is still selected, convert it into a graphic symbol by selecting Modify
Convert to Symbol. Give the symbol the name Flower and click OK.

 5. You now have a symbol called Flower in the Library. Drag a few instances of it onto the grassy
hill, as shown in Figure 2-37.

59

MAKING OBJECTS

 Figure 2-37. Drag instances of the Flower symbol onto the hill.

The last little trick you’ll look at is how to automatically align objects. Looking at the design in
 Figure 2-37, it might be nice if the three flowers farthest on the right were aligned in a row. I could
struggle to do this by eye, but Flash’s Align feature makes this easy:

 1. Hold down Shift and select each of the three flowers. You’ll see black circles appear in the cen-
ter of the flowers, which represents the point by which they will be aligned.

 2. Select Modify Align Vertical Center. The three flowers align in a neat row. Figure 2-38 shows
what happens.

 Figure 2-38. Use Flash’s Align feature to align objects on the stage.

The Align menu has quite a few other nifty features that you should try out when designing graphics
with Flash. You can use Distribute Widths and Distribute Heights to space objects evenly. You can use
Make Same Width and Make Same Height to make two selected objects the same size. These are all big
 time- savers and very easy to use. Play around with them when you have the chance.

60

CHAPTER 2

Learning a few more techniques
There are a few more basic drawing tools in the Tools toolbar that you should be familiar with. All
these tools have many properties, including color, style, and stroke thickness, which can be set in the
Properties panel. Here’s a brief description of each:

 Line: Used to draw lines. You can curve the lines and reposition the start and endpoints with
the Selection tool.

 Brush: Used like a paintbrush, it paints wide areas of color known as fills. You can set the
brush’s color, line style, and thickness (known as stroke) in the Properties panel. To change
these properties, you need to make sure that the Object Drawing button is selected, which puts
Flash in object drawing mode. The Brush tool also has a number of different modes that allow
you to paint inside shapes, paint selected shapes, and paint behind shapes or fill areas. You can
access these different modes from the Brush Mode menu button near the left edge of the tool-
bar when the Brush tool is selected.

 Pencil: Simulates drawing with a pencil. The Pencil tool will also try and interpret basic shapes
such as circles, squares, and triangles (and creates them for you automatically if it thinks you’re
trying to draw them). Use this tool in conjunction with the Smooth and Straighten buttons on
the right side of the toolbar to make selected lines more or less smooth or straight.

 PolyStar: Allows you to create polygons or stars with multiple sides. You can set this by clicking
the Options button in the Tool Options section of the Properties panel.

 Rectangle Primitive: Like the Rectangle tool, but it also allows you to control the corner radius
of the rectangle by dragging its bounding box handles.

 Oval Primitive: Like the Oval tool, but with the additional feature of being able to set the start
and end angles of an oval, as well as its inner radius.

 Paint Bucket: Used to fill the inner areas of shapes. If you use it to fill areas that you’ve outlined
with the Brush, Pencil or Line tool, you can do that in conjunction with the Gap Size menu but-
ton (found at the right of the toolbar.) You can change the gap size option so that the Paint
Bucket will still fill areas that may not be completely closed by lines.

 Spray Brush: Used to simulate an airbrush or spray paint can effect. Great for splattering color
everywhere!

 Ink Bottle: Used to change the style and color of stroke borders.

 Eyedropper: Used to copy the fill and stroke of one object and apply it to another object. To
use it, click the fill or stroke of the object that you want to copy. Next, click the fill or stroke of
the object you want to apply it to. The tool will change to a Paint Bucket or Ink Bottle, depend-
ing on whether you click the second object’s fill or stroke area.

 Deco: A specialized tool that allows you to create three effects: Symmetry, Grid Fill, and Vine Fill.

 Pen: Used to create precise vector lines by adding and adjusting anchor points.

 Subselection: Especially useful for moving anchor points created with the Pen tool. It can also
be used to select and move points in any vector object, such as the corners of rectangles.

 Lasso: Used to draw a selection area around an object.

61

MAKING OBJECTS

Although you may use many of these tools infrequently, there are two tools that you’ll find yourself
using almost constantly:

 Free Transform: Use this tool to make selected objects bigger or smaller by dragging the black
squares (known as handles) on the edges and corners of the tool’s bounding box. If you want to
scale the object proportionately without distorting its height or width, hold down the Shift key on
the keyboard while you do this. You can rotate the object if you position the mouse pointer just
beyond one of the corner handles. A circular arrow icon will appear, which means you can rotate
the object by holding down the left mouse button and moving the mouse. The Free Transform
tool also allows you to skew an object. If you move the mouse pointer so that it intersects with
the bounding box, a double- arrow icon will appear to allow you to distort the object horizontally
or vertically. Figure 2-39 illustrates these features of the Free Transform tool.

Scale

Rotate Skew

 Figure 2-39. Use the Free Transform tool to scale, rotate, and skew objects.

 Zoom: When this tool is selected, you can click the stage to zoom in. You can also use it to drag
a selection square around a certain area to magnify it. When the Zoom tool is selected, two
additional buttons appear on the right side of the toolbar that allow you to increase or decrease
the magnification. A more convenient way to do this, however, is to use keyboard shortcut
keys. In OSX, hold down the Apple key and press the plus or minus key. In Windows, hold down
Ctrl and press the plus or minus key. This is a good shortcut to learn because it works with most
graphic design software, not just Flash. If you want to return to normal 100 percent magnifica-
tion, double- click the Zoom button.

62

CHAPTER 2

You can also adjust the magnification of the stage by selecting a magnification per-
centage in the Zoom option menu at the top- right corner of the stage.

The best way for you to learn how these tools work is just to start playing with them. Flash has the
most accessible and easy-to- use vector drawing system around, and you’ll soon see how much fun and
quick it is to create graphics for your games. You don’t need to be the world’s best designer to create
servicable graphics—rectangles and ovals can take you pretty far!

For much more detail on graphic design with Flash than I have space for in this book,
you might want to pick up a copy of Foundation Flash CS4 for Designers, by Tom
Green and David Stiller. It also includes a detailed discussion of the four more special-
ized tools (Bone, Bind, 3D Rotation, and 3D Translation), which I haven’t discussed here
but have great potential for use in games.

Creating a character
Let’s create a cat character for the storybook. You’ll create the character as a separate Movie Clip
symbol and then drag it into the scene from the Library. This will give you a lot more flexibility to
manipulate the character with AS3.0 code a little later in the project. Follow these steps:

 1. Select Insert New Symbol. The Create New Symbol dialog box opens. Give your new symbol
the name Cat. (Make sure to follow the naming convention for classes and use UpperCamelCase
for Movie Clip symbol names.) Select Movie Clip from the Type drop- down menu. Select the
Export for ActionScript option and click the OK button.

 2. Click the OK button when the class definition warning box appears.

 3. Flash opens symbol editing mode for your new symbol.

Before you design your character in Flash, make a quick sketch on a piece of paper to give you
a rough idea of how it might look. Remember that you’ll probably need to organize different features
of the cat onto different layers so that you can put certain features above or behind other features.
For example, you probably want to put the cat’s eyes on a layer that’s above the body. Create a layer
for each of these features and then use Flash’s drawing tools to draw the feature on the correspond-
ing layer. When you put all these individual features together, your character will appear fully formed
from all these parts. Refer to the section on layers if you’re still unsure about creating and using
them.

 4. The timeline has an option called Preview that shows you a small thumbnail image of each
layer directly in a frame. This is a great way to work when designing objects on layers like this
because you don’t need to remember exactly which graphics you drew on which layer—you
can see it directly. To turn on Preview, click the Timeline Option button at the top- right corner
of the timeline and select Preview, as shown in Figure 2-40. (The Timeline Option button is very
small and hard to locate, but don’t give up—you’ll find it eventually!)

63

MAKING OBJECTS

 Figure 2-40. Turn on the timeline’s Preview option.

 5. Try it! Use the drawing techniques you learned earlier in the chapter to create your cat charac-
ter. Figure 2-41 shows how I created my cat using simple geometric shapes and the same basic
drawing techniques that were just covered.

 You can create most of these shapes by using the Rectangle and Oval tools. Once you’ve got the
basic shape, use the Selection tool to bend the edges of rectangles and distort circles. You can
then use the Free Transform tool to scale and rotate the shapes, and the Eraser to trim away any
bits you don’t want.

 Figure 2-41. Create a cat character using layers.

64

CHAPTER 2

If you need to rearrange any of your layers, hold the left mouse button down over any
of the layer names and drag the layer up or down. While the mouse button is down,
a black bar will indicate the new position of the layer. When you release the mouse
button, the layer will snap to that position in the stack.

You might discover that it’s hard to focus on drawing a particular feature of your char-
acter with graphics from the other layers cluttering up your view. You can temporarily
switch the visibility of a layer on or off by clicking the dot in the column represented
by an eye icon. If you click the dot, a red X icon will appear next to the layer name,
and any graphics on that layer will be temporarily hidden. Click the X again to reveal
the layer.

Now that your character has been created, let’s add it to the symbol:

 1. Double-click the StartPage symbol in the Library to open its editing mode.

 2. Select the characters layer.

 3. Drag an instance of the Cat symbol from the Library onto the stage, as shown in Figure 2-42.
A black keyframe will appear in the characters layer to show you that an object has been added
to that layer.

 Figure 2-42. Drag an instance of the cat into the StartPage symbol.

65

MAKING OBJECTS

 4. If your cat object was anything like mine, it was probably too big or too small in comparison
with the other objects on the stage. To scale the cat proportionately without distorting it,
select the Free Transform tool and drag the corner handles while holding down the Shift key on
the keyboard. Figure 2-43 shows how I scaled my cat. Reposition your cat on the stage when
it’s the right size.

 Figure 2-43. Scale the cat instance with the
Free Transform tool.

 5. The last step is to give the cat an instance name. Instance names allow you to easily identify
and target objects with AS3.0 code. Instance names are usually written using lowerCamelCase,
so you can tell them apart from the symbol or class that they are derived from. Make sure that
the cat instance is still selected, and in the Properties panel, type the name cat in the Instance
name box. Figure 2-44 shows an example of this.

 Figure 2-44. Create an instance name in the Properties
panel (be sure to use lowerCamelCase).

Adding some more pages
The interactive storybook will be very short—only three pages long. Because it’s nonlinear, the pages
don’t have to be sequential. For my storybook, I decided to give readers the choice of guiding the cat
character up the hill to the left or into the pond on the right. That means you’ll need to create two
more Movie Clip symbols: and . Then you need to drag instances of the symbol
into both of these new pages. Make sure to assign the instance name cat in the Properties panel each
time you do this. Each new cat instance you drag onto a scene is a new and separate object, so it
needs its own name, even if the name is the same for all three.

Use the techniques covered so far in this chapter to create your two new pages. Remember to keep
the top- left corner of your page aligned to the center of the stage (the black crosshairs), and be

66

CHAPTER 2

precise with the spelling and case of the name you give them in the Create New Symbol dialog box—all
these things will soon become very important. Of course, you’re free to design your storybook pages
however you like, but Figure 2-45 shows what my three finished pages look like.

HillPage StartPage PondPage

 Figure 2-45. Three finished storybook pages

When you’re done, your Library should contain two new symbols and look something like
 Figure 2-46.

 Figure 2-46. Your new symbols in
the Library

Have fun designing, and I'll meet you at the next section when you’re done!

Using buttons
If interactive media were to pay a visit to the doctor’s office for its annual checkup, the GP would
probably be very surprised to hear the unnerving sounds “click, click, click” coming through the
stethoscope. For at the heart of interactive media (if not most of what we know as the modern
world) there lies the almighty click. But whether it’s via a mouse, a touch screen, or possible future
 brain- wave interface, it’s the lowly button that orders your books on Amazon, deletes your mail from
dispossessed overseas millionaires, and obliterates entire civilizations in Spore.

67

MAKING OBJECTS

And you can also use buttons to turn the pages of the children’s storybook. The art of creating and
programming buttons to control the display of information is such an important part of interactivity
that just the basic techniques that you’ll be learning over the next few pages will alone be enough to
fuel the design of Flash- based websites, interactive information kiosks, and point-and- click adventure
games. With nothing more than a button and a bit of imagination, a rich interactive experience is only
a click away.

The first step is to actually make the buttons. Buttons are just another type of symbol, and you can
create them as easily as you created your storybook pages. The only difference is that buttons have
their own timeline with some special keyframes that allow you to specify how the button will look
when it’s in its various states, such as being pressed or when the mouse is hovering over it.

Creating a button symbol
Let’s create two buttons for the storybook. You want to give the reader the option of guiding the cat
either up the hill, or down into the pond. So, to keep things simple, let’s call the two buttons HillButton
and PondButton. You’ll start with the HillButton.

 1. Select Insert New Symbol from the menu to open the Create New Symbol dialog box. Enter
HillButton as the button’s name and select Button as the Type. Select the Export for ActionScript
option, as you did when making scene symbols. (If you don’t see any of these options, click
the Advanced button to reveal them.) The Create New Symbol dialog box should look like
 Figure 2-47 when you are done.

 Figure 2-47. Use the Create New Symbol dialog box to create the
HillButton symbol.

68

CHAPTER 2

 2. Click OK and then click OK again when the class definition warning dialog box appears.

 3. Flash opens the HillButton symbol editing mode. You’ll notice that the timeline looks quite a bit
different from the timeline of Movie Clip symbols. Create a new layer and label your layers
background and foreground. Figure 2-48 shows what your timeline should look like.

 Figure 2-48. Create a background and foreground layer.

You’ll create a rectangular button with a gradient background fill. Gradients are color fills that gradu-
ally change from one color to another. They’re often used to create an illusion of shallow depth or
surface texture. Do the following:

 1. Select the Rectangle tool.

 2. Choose a stroke color, thickness, and line style from the Properties panel. For this example,
I chose a thickness of 2.0 and a Ragged line style.

 3. Click the Fill box. Select the white- black linear gradient swatch from the color palette. (Swatches
are color samples. The white- black gradient swatch is at the very bottom left of the color pal-
ette.) Figure 2-49 shows what this looks like.

 Figure 2-49. Select a gradient fill.

69

MAKING OBJECTS

 4. Draw a rectangle on the stage. Make sure that the rectangle is roughly centered over the
crosshairs that indicate the center point of the symbol.

 5. You want the button to be an appropriate size for the storybook pages. Double- click the but-
ton to completely select both the inside fill and outside stroke. (If you single- click it, only the
fill will be selected.) Have a look at the Properties panel. To the left of the W label is a button
that looks like a chain link. When the chain is unbroken, it means that Flash will proportion-
ately resize the selected object if you change its height or width value. So if you change the
height value, its width will automatically update to compensate and prevent the object from
becoming distorted. If the chain is broken, you can set the values for height and width indi-
vidually. You want to give the rectangle a specific width and height, so click the chain button to
display its broken state if isn’t that way already.

 6. In the Properties panel, give the rectangle a width (W) of 130 and a height (H) of 40. Figure 2-50
shows how the rectangle might now look.

 Figure 2-50. Size the rectangle and make sure it’s centered on the stage.

 7. You can now fine- tune the gradient fill. Select the Gradient Transform tool. (The Gradient
Transform tool shares a button menu with the Free Transform tool, so hold the left mouse but-
ton down over the Free Transform tool button to reveal it.)

 8. Click the rectangle’s center fill with the Gradient Transform tool. Three new handles will appear,
represented by icons that you can drag to change the gradient:

 A circular arrow at the top- right corner of the fill. Drag this arrow to rotate the gradient.

 A right- pointing arrow on the fill’s right edge. Drag this arrow to expand the size of the
gradient.

 A white dot in the center of the fill. Drag this dot to change the gradient’s center point.

70

CHAPTER 2

 9. Play around with these settings until you like the way the gradient looks. My gradient looks like
 Figure 2-51.

 Figure 2-51. Use the Gradient Transform tool to create
a subtle texture effect.

Now that the button’s background has been created, let’s add an arrow and some text to the
foreground.

 10. In the foreground layer, draw an arrow pointing to the left, as shown in Figure 2-52. You might
want to lock the background layer while you do this to prevent accidentally ruining the work
you did in the preceding steps.

 Figure 2-52. Lock the background and draw an arrow on the foreground layer.

 11. Select the Text tool in the Tools toolbar. In the text Properties panel, choose an appropriate
font and font size and make sure that Static Text is selected as the text type. Type the word Hill
next to the arrow on the foreground layer, as shown in Figure 2-53.

71

MAKING OBJECTS

 Figure 2-53. Choose a font and type some text.

You’re now ready to design the button’s Over and Down states.

Understanding button states
You’ll notice the words Up, Over, Down and Hit in the button’s timeline. They refer to what’s known as
the button’s state. Each state has its own frame.

Understanding a button’s state is really very simple. The Up state frame shows what the button looks like
when it is not being pressed while it is still waiting for the user to click it. The Over state frame shows
how the button looks when the mouse is hovering over it, just before the user clicks it. Usually button
designers will create some sort of highlighting effect in the Over state, almost as if the button were say-
ing, “Click me! Click me!” The Down state frame shows what the button looks like when the user actually
clicks it. Designers will often create an illusion of the button being actually physically pressed down to
create a sense of tactile feedback. You’ll see all of these button states in use very soon.

The odd one out here is the Hit state frame. The Hit frame defines the area of the but-
ton that is actually sensitive to the mouse. If you have a really small button, or one
made up of irregular shapes or plain text, you could give the button a large rectangu-
lar Hit state to make it easier for the user to click. Interestingly, whatever you draw in
the Hit state doesn’t display on the screen. That means that you can leave all the other
states blank and just create a Hit state to make an invisible button. Invisible buttons
have a lot of potential for certain types of point-and- click adventure games, in which
you might want to give certain areas of your scene button- like sensitivity, but not have
them look or behave like buttons. You won’t need to use the Hit state in any of the
examples in this book, but it’s important to keep in mind what it’s used for. If you don’t
define a Hit state, the button’s Up state is used as the area sensitive to the mouse.

72

CHAPTER 2

Creating the Over state
Now that you’ve learned about the Up state, you can use the graphics you’ve already drawn and
modify them just slightly to make the other states. You can do this by adding a new keyframe in the
state’s corresponding frame. The following steps show how to make the Over state:

 1. Select the Over frame of the background layer. (If you locked the background layer in the previ-
ous steps, unlock it first.) Select Insert Timeline Keyframe. (Alternatively, you can right- click
the frame and select Insert Keyframe from the option menu.) As soon as you do this, a black
keyframe will appear in the Over state, and all the graphics from the previous frame, the Up
state, will be copied into it. All you need to do now is make some small modifications to dif-
ferentiate the Over state from the Up state.

 2. Change the rectangle’s inner fill color to bright yellow, which will give the user a very clear
highlighting effect when the mouse hovers over the button. Figure 2-54 shows what the back-
ground layer of the Over state now looks like.

 Figure 2-54. Choose a bright color for a highlighting effect
in the button’s Over state.

 3. All that’s missing is the black arrow and the text. Select the foreground layer and right- click the
blank frame on the Over state. Choose Insert Keyframe from the menu. This automatically cop-
ies the contents of the keyframe from the previous frame and positions it in exactly the same
place. The Over state should now look like Figure 2-55.

 Figure 2-55. The button’s Over state

73

MAKING OBJECTS

The last state that you need to create is the button’s Down state.

Creating the Down state
To create the button’s Down state, you’ll simply copy all the graphics from the Over state and move
them slightly down and to the right. This is a very basic way to create the illusion that the button is
being pressed down when you click it. Follow these steps to create the Down state:

 1. Insert keyframes in both the background and foreground layers of the button’s Down state. This
will give you an exact copy of the Over state, as shown in Figure 2-56.

 Figure 2-56. Insert keyframes in the button’s Down state
to copy the text and graphics from the previous frame.

 2. Select all the graphics with the Selection tool. (You can do this by dragging a rectangular selec-
tion box around the graphics with the Selection tool.) Use the arrow keys on your keyboard to
move them slightly down and to the right. You just need to nudge it two or three pixels in each
direction. Figure 2-57 shows a slightly exaggerated example of this.

 Figure 2-57. Select all the text and graphics and nudge
them slightly down and to the right, creating the illusion
that the button is being physically pressed.

74

CHAPTER 2

Duplicating the button
You’ve now got the Hill button; all you need is a Pond button. You could always create one from
scratch, but because you just need to change the text and the direction of the arrow, the easiest way
to do it is to duplicate and modify the existing button.

 1. Right-click the HillButton symbol in the Library. Select Duplicate in the Duplicate Symbol dialog
box and give the new button the name PondButton. Remember to select Export for ActionScript
and click OK.

 2. Click OK when the class definition warning dialog box appears.

 3. Double-click the PondButton icon in the Library. The PondButton symbol editing mode opens.

 4. Change the arrow in each of the button state frames in the foreground layer so that it’s pointing
in the opposite direction. (The quickest way to do this is to select the arrow in the Up frame.
Select Modify Transform Flip Horizontal. Move the arrow to its new position on the oppo-
site side of the button. While it’s still selected, select Edit Copy. Next, delete the arrow in
both the Over and Down frames. Select Edit Paste in Place to paste the new arrow from the
Up frame into the Over and Down frames. Reposition the arrow slightly in your Down frame so
that it matches the slight left and down offset.)

 5. Change the text in all the frames so that it reads pond.

You now have two buttons, and the Library should start to look quite satisfyingly crowded. Figure 2-58
shows what mine looks like.

 Figure 2-58. The completed navigation buttons

75

MAKING OBJECTS

Organizing the Library
Depending on how organized you like to be, you might want to add some folders to your Library so
that you can keep related objects together. Looking at what I created in the Library so far, it might
make sense to create three folders called , , and . Follow these steps to create the
folders and organize the symbols into them.

 1. Click the New Folder button near the bottom- left corner of the Library to create a new folder.
Do this three times to have all the folders you need to organize your symbols.

 2. Name the folders Pages, Buttons, and Items.

 3. Drag the button symbols into the Buttons folder. Drag the StartPage, HillPage, and PondPage
symbols into the Pages folder. Drag the remaining symbols into the Items folder.

 Figure 2-59 shows what your Library might look like after it’s been reorganized using folders. You can
open or close folders to view or hide their content by clicking the triangle icons next to the folder
names.

 Figure 2-59. The full set of finished buttons in the Library

76

CHAPTER 2

Adding the buttons to your scene
The final step is to add the buttons to the symbol.

 1. Double-click the StartPage symbol in the Library to enter its symbol editing mode. Create a new
layer on the timeline called Buttons. Drag the Buttons layer to the very top of the layer stack.

 2. Drag instances of both the PondButton and HillButton symbols onto the stage. If a black key-
frame appears on the Buttons layer, you added them correctly.

 3. Select the instance of the HillButton symbol and assign it the name hillButton in the Instance
name field of the Properties panel. Remember to use lowerCamelCase for instance names.

 4. Select the instance of the PondButton symbol and give it the instance name pondButton in the
Instance name field of the Properties panel. The StartPage symbol might now look something
like Figure 2-60.

 Figure 2-60. Add instance names to the HillButton and PondButton instances in the StartPage symbol.

 5. Finally, save the file.

You’re now ready to start programming!

77

MAKING OBJECTS

Summary
If you’re new to Flash, I hope you enjoyed this chapter on how to draw basic objects and characters.
The Flash drawing tools give you a great deal of control and are very easy to use. For designing game
characters and environments, they’re ideal.

I covered quite a lot of new material very quickly, so if this is your first time using vector- drawing
tools, you might want to take a short break and experiment further. Create a new blank FLA file and
create a few objects and characters. You’ll soon become comfortable with it and, if you’re like me,
Flash will soon become your favorite drawing application.

In this chapter, you created objects. From a programming point of view, objects are things you can
control with programming code. In the next chapter you’ll bring these objects to life with a bit of
simple programming magic.

79

Chapter 3

In Chapter 2, you created button and Movie Clip objects, and this chapter shows
you how to use AS3.0 programming code to start programming those objects. You’ll
make them do something useful!

This chapter covers some very important AS3.0 programming concepts and
techniques:

Using the method to display objects from the Library on the stage

What variables are and how to use them

Variable types

Dot notation

Method calls and function definitions

Method arguments and parameters

Event listeners

After you finish the chapter, you’ll be surprised at how easy it is to program the but-
tons for your interactive storybook.

PROGRAMMING OBJECTS

80

CHAPTER 3

But I’m a bit scared of programming!
Although I’ll cover a lot of important programming theory in this chapter, the most important thing
you should come away with is how the programming code you type in the ActionScript editor window
changes the behavior of the objects on the stage. The theory is important, but don’t agonize too much
if you don’t understand it all right away. If you’re like me (and almost everyone else), it will take time
and quite a few more practical examples before it all sinks in and starts to make sense.

Just as having a general idea of how a car’s engine works is a good idea for any driver, you don’t need
to become a mechanical engineer if all you want to do is drive a car. You can always come back to
this theory later if you have some specific questions about how some detail of the code works. If you
generally understand how the code you type affects the objects on the stage and can use that code
with confidence in your projects, you’re more than halfway there.

Always remember that programming is a creative tool to help you express yourself, just as a paint-
brush is a creative tool for an artist. It can help create the painting, but is of no use at all without the
imagination of the artist—you!

Displaying the first page of the storybook
You’ll work on the interactive storybook from the previous chapter. All the objects are ready to go.
Your first job is to display the first page of the storybook.

To display the first page, you’ll use AS3.0 to do two things:

 Use the and keywords to create an instance of the symbol that you can
control with programming code.

 Use the method to visually display that new instance on the stage.

Remember that when you set up this project you created a file called . This is the ActionScript
file that will contain all the programming code for the storybook. The first thing you need to do is
open this file so that you can start programming into it. Follow these steps:

 1. Open the interactive storybook project from the previous chapter. If you created it as a Flash
project, you should be able to select it from the drop- down menu in the Project panel near the
 top- left corner of the Flash workspace.

 2. Double-click the Main.as file in the Project panel or select it from the tab menu above the
stage if it’s already open. A blank ActionScript editor window will open, allowing you to enter
programming code.

You might want to see what the project looks like before you add any programming code. Click the
Test Project button in the Project panel. Flash will generate a pop- up message: Exporting SWF Movie.
A few moments later, you’ll see a blank window with the name interactiveMovie.swf in the title bar. This
is the SWF file that will be your finished product. Why is it blank? What happened to all the hard work
you put into designing the buttons, the pages, and the poor little cat?

80

81

PROGRAMMING OBJECTS

All those elements were created as symbols in the Library. When you publish a SWF file, it will display
only what has been added to the FLA file’s main stage. So far, the main stage of the FLA is blank.
You can check this by opening and clicking the Scene 1 button at the
top of the stage. You’ll just see a blank white stage—there’s nothing there—which is what the SWF
displayed.

This illustrates an important concept. Symbols in the Library can’t be seen unless you create an instance
of them on the main stage. The first bit of code that you’ll add will do exactly that.

Let’s add the lines of code to see the first page of the storybook:

 3. Add the following to the file (your ActionScript editor window will look like Figure 3-1
when you’re done):

 Figure 3-1. Add the code to the Main.as file in the
ActionScript editor window.

 4. Save the file.

 5. Test the project. You should see the movie displayed with the first
page. You’ll even be able to click the buttons, although they won’t do anything just yet.

81

82

CHAPTER 3

In this book I use the phrase “test the project” to mean publishing a SWF while work-
ing on it. There are three ways to do this:

 Click the Test Project button in the Project panel.

 Select Control Test Movie.

 Use this useful Flash shortcut: in OSX, hold down the Apple key and press Enter. In
Windows, hold down the Ctrl key and press Enter.

All these techniques generate a SWF file in the project folder on your computer’s hard
drive and then run it immediately for you to see the result.

How did that work?
The format that you’ve used for the program so far is exactly the same as the format you used for the
Hello World program in Chapter 1. Refer to that chapter if there’s anything about the basic structure
of this code that you think you don’t quite understand. There are three new lines of code that you
haven’t seen before, and I’ll go into detail about how they work. I’ve highlighted the new code for
you here:

The first thing the code did was to create a new variable called . That’s what this line does
(the variable’s name is highlighted):

In programming terms, this directive is known as a variable declaration. It creates a variable called
 that you can use in the program and control with code.

 Figure 3-2 illustrates the structure of this variable declaration in detail. (Pay very close attention to
the two terms in the new code: and . They’re actually two completely different
objects, and the differences in their capitalization help to tell them apart. I’ll explain how in a bit.)

83

PROGRAMMING OBJECTS

This is the variable name, which
can be anything you choose. You
can now access the variable using
this name in the program.

This is the type of variable you're creating.
In this project, the variable will store a
reference to the StartPage symbol in the
Library, so it has the same name. The
variable will be a “type of StartPage.”

The var keyword tells
the program that
you're creating a
variable.

 Figure 3-2. The variable declaration

Whoa, that’s suddenly a lot to absorb very quickly! And what are variables, anyway? Let’s take a break
for a moment and find out what they are and how to use them.

Variables
You can think of variables as little boxes that store information. Every box has its own name and
stores different kinds of information.

 Figure 3-3 illustrates three imaginary variables called , , and . Each variable name is
associated with a box that contains information.

 Figure 3-3. Variables are like boxes that store information.

If you need to use the information inside the box, you just need to refer to the box’s name anywhere
in the program. For example, if you want to find out what the current score is, use the variable name

; the program will interpret it as . If you want to reference the dragon Movie Clip, use the
word .

You can also empty the box at any time and put new information into it. It’s variable!

That’s all variables are: storage containers with names.

84

CHAPTER 3

Variable types
If you’re organizing lots of little boxes filled with different types of things, it’s sometimes useful to
know what type of information each box should contain. Imagine that you have a sugar container and
you accidentally pour a bag of salt into it. That could be a problem when the aunties come to visit for
tea! You need to know that the container you fill is the sugar container.

In AS3.0, you can tell a variable what type of information it should store. To do this, use a colon and
the name of the type, like this:

If the kitchen existed in an AS3.0 universe, you could label the containers in the cupboards like this:

That labeling would prevent you from putting the wrong substance in the wrong container and spoil-
ing the tea parties. Mom would be proud!

 Figure 3-4 shows what the imaginary variables might look if like you assigned them types. This will
prevent you from putting the wrong type of thing into the wrong container. (In AS3.0, any information
made up of letters is referred to as a string, as in “string of letters or words.”)

Figure 3-4. Assign types to variables so that you don’t
put the wrong type of information or object into the
wrong container.

85

PROGRAMMING OBJECTS

Creating empty boxes
Let’s have a quick look at that first new line of code:

Is it making a little more sense to you now?

The directive is creating an empty storage container called that can be used to store
 objects.

What are objects? You made one—it’s sitting in the Library and
is the first page of the storybook. It’s the symbol.

When you created the symbol, you checked the Export for ActionScript
option. This option makes the symbol accessible by code. Technically speaking, AS3.0
isn’t accessing the symbol directly; it’s accessing a class that it created automatically
called , which is bound to the symbol. In Chapter 8, you’ll be tak-
ing a detailed look at this process. For now, this is a process that is pretty much invis-
ible to you, so you can think of the symbol and class as one and the same.

The line of code creates an empty storage container that you can use to store an instance of the
 symbol. Figure 3-5 illustrates visually what you just created.

This directive creates an empty variable
calledstartPage made to store instances
of the StartPage symbol

Only instances of the
StartPage symbol
can be stored in it

 Figure 3-5. The startPage variable declaration

86

CHAPTER 3

The variable has been created, but it’s empty. Let’s fill it with something!

I could have chosen any name for this variable, such as or
, but just to keep things organized in my own mind, I chose to give it

exactly the same name as the symbol in the Library that I want it to refer to. One
important difference between the name of the variable and the name of the type is
the choice of capitalization used. The variable name is written in lowerCamelCase.
The type is written in UpperCamelCase. This is the same reasoning I followed when
I named the instance on the stage as a lowerCamelCase version of its parent
symbol in the Library. It means that I can easily tell the difference between the class
and the instance just by looking at the capitalization. (This book follows the naming
convention of using lowerCamelCase with variable names; class and symbol names
use UpperCamelCase.)

Creating an instance
Previous chapters looked at how instances differ from the parent symbols that they come from. The

 character on the stage is an instance of the symbol in the Library. The clouds in the storybook
sky are all instances of their parent symbol. It’s very easy to see this relationship when you’re
working with Flash’s graphic design tools.

You can also create instances of symbols using AS3.0 programming code. Although it’s not so easy to
see this visually, the result is exactly the same as dragging an instance of a symbol from the Library
onto the stage.

So far, the code has created an empty variable called to store an instance. The next step
is to create an instance of the symbol and store it in that variable. That’s what the next
directive does:

The job of the keyword is to make instances. In this directive, it’s used to tell the program that
you’re creating a new instance of the symbol. The equal sign is used to copy a reference of
that instance into the variable.

In simpler terms, you took the empty variable and put an instance of the symbol
into it. The empty container is now full and ready to be used. Figure 3-6 illustrates what happened.

Now you have an instance of the symbol that you can access with programming code. The
next step is to actually display the instance on the stage so you can see it.

87

PROGRAMMING OBJECTS

This directive creates an instance of the StartPage symbol and stores a reference to it
in the startPage variable

The “new” operator
makes an instance of
the StartPage symbol

The equal sign copies a
reference to the instance
into the startPage variable

 Figure 3-6. Use the new keyword to create an instance of a class or symbol and store it in a variable.

Before you go much further, you should take a closer look at exactly what the purpose
of that equal sign is. In AS3.0, an equal sign is known as an assignment operator
because it is used to assign a value from whatever is to the right of it to a variable on
its left. This is very different from how an equal sign is used in mathematics, and this
difference often trips up novice programmers. In math, an equal sign means “is equal
to.” In programming, an equal sign means “gets the value of.”

Here’s a really simple example. Let’s say you have a variable that you want to use in
a game to keep track of the player’s score. Let’s call it . Suppose that
one player in the game gets a score of 12 points, and you want the game to remember
this number so you can figure out how well the player is doing. You can use the equal
sign to copy the number 12 into the variable, the same way you would
write an important number into a notebook for future reference. The code might look
something like this:

AS3.0 literally interprets this as follows: “The variable gets the value of
12.” Now whenever the AS3.0 program sees the variable, a little light
goes on and it thinks, “Aha! That means 12!”

88

CHAPTER 3

Displaying the instance on the stage
You now have a shiny new instance of the symbol stored as a reference in the
variable. This new instance exists as an object you can access with code. But it isn’t visible on the stage
yet. You first need to tell the program to actually display it. That’s exactly what this directive does:

 is one of AS3.0’s built- in methods. (The first built- in method you saw in Chapter 1 was ,
which displays information in the Output panel.) is a deliciously cute little method that
(besides its many other talents) displays instances of Movie Clip symbols on the stage. Any information
inside the parentheses of a method is known as the method’s argument. When you use the
method, it assumes that you want to display the instance you provided in the parentheses on the
stage. (You can also use to display instances inside other objects; you’ll see examples of how
to do this in later chapters.)

What has done in the program is take the instance and add it to something called
the display list. Any instances that are on the display list are visible on the stage.

With the first three directives that you’ve written in the program, you created a storage box, filled the
box with an instance, and then tipped the box over to display its contents on the stage. Figure 3-7 takes
you on a tour of how these three directives have worked together to display the instance.

addChild adds the
instance to the display
list. Instances on the
display list are displayed
on the stage.

The startPage variable is
decalared within the class
definition so that it can be used
in any of the class’s methods.

These directives are in the constuctor
method because they need to run as
soon as the Main class is instantiated.
Because the Main class was set as
the FLA’s document class, it will be
instantiated automatically when the
SWF runs. That means the startPage
instance is displayed immediately.

Constructor
Method

Class
Definition

1.

2.

3.

 Figure 3-7. The process of displaying an instance on the stage

89

PROGRAMMING OBJECTS

Recall from Chapter 1 that whatever code is in a class’s constructor method will run
immediately as soon as the class is instantiated. The class was assigned as the
FLA’s document class, so this happens as soon the SWF file runs.

Programming buttons
The next step in the interactive storybook project is to program the buttons so that you can see the
other pages in the storybook. But before I go into the specifics of how to do this, you need to take
a few steps back and look at some of the underlying principles behind the code you’re going to write.
It’s not difficult, but there will be a lot of new concepts to absorb quite quickly. You need to break
them down into manageable chunks and look at them one at a time.

So grab a cup of masala chai and make yourself comfortable on the sofa. You’ll take a short break
from programming to have a detailed look at the following topics:

 Dot notation

 Methods

 Event listeners

These three elements will be working together in the new code you’re going to write.

Using dot notation
You have two buttons in the storybook so far: and . You may recall that you
gave them these names in the Instance name field of the Properties panel after you dragged instances
of them into the symbol from the Library. (Refer to Figure 2-60 if you need a reminder.)
These buttons still exist with those names; the only difference is that now they’re contained within the

 instance that you created in the program.

You can refer to the buttons inside the instance
using these names:

The dot is used to show that these button objects live inside
the instance. This method of naming objects and
their properties hierarchically using dots is called dot nota-
tion. Figure 3-8 illustrates this.

The concepts behind dot notation are crucial to understand-
ing how to program with AS3.0. Let’s quickly have a look at
a very simple example. Figure 3-8. The button instances are contained

within the parent instance.

90

CHAPTER 3

My name is Rex. However, I’m not the only Rex in the world. There’s another Rex: my friend’s dog,
which lives in a very pretty little village just outside of Bangalore, India. So there are two Rex’s:

and

How can you tell the difference? Well, one of them wags his tail and barks. I’ll leave it up to you to
guess which one. But, apart from that, you know that they live in different places. I live in Canada, so
my proper object name might be this:

My friend’s dog lives in India, so his proper object name might be this:

This is another basic feature of dot notation. In front of the most basic bit of information, the object’s
name, you need to indicate where the object lives. You can add as much or as little information about
where the objects live as you need to. Because both India and Canada are on the Earth, you could go
one step further:

and

The objects are still the same, even though they’re described a little more clearly.

You can use this general model for naming objects with dot notation:

or

Once you know the name of the object, you can add or modify properties to change it in some way,
or you can invoke methods to allow it to run certain directives.

91

PROGRAMMING OBJECTS

Invoking methods
I’ve written a lot about methods so far in this book, but before you go much further you should take
a detailed look at exactly what they are and how they work.

Methods perform some kind of useful action in the program. They’re made up of two parts:

 Function definition: This part is a block statement that includes directives that do the tasks
you want the method to perform.

 Method call: This part is a word that activates the directives in the function definition.

Let’s have a closer look at these two elements.

Using method calls
You’ve seen two method calls already in this book so far: and .

Method calls trigger directives in the method’s function definition. (You’ll be looking at function defi-
nitions in a moment.) The nice thing about method calls is that you can use them without having to
know how the function definition is programmed.

Many methods require some extra information to do their job. In programming terminology, this extra
information is called an argument. Arguments in method calls are included in parentheses after the
method name.

Here’s an example of a method call:

The text in quotation marks inside the parentheses is the method call’s argument. You can use this
 method call to display the argument in the Output panel when the SWF runs. Here’s another

example:

No surprise. You saw this one before! is the method call, and is the method’s
argument. Any instance name supplied as the argument of the method is displayed on the
stage.

Some methods don’t need arguments to do their job. Method calls without arguments simply use
empty parentheses. Here’s an example:

Even though this method call has no arguments, you still need to provide empty parentheses.

92

CHAPTER 3

Using function definitions
With one exception, all the methods used in the book were built in to AS3.0. (The one exception is
the constructor method, which is a special kind of function definition used to initialize classes.) You’ve
been lucky because these built- in methods have been very useful and have saved you some work.
However, as a programmer you can create your own methods. If there’s any specific task that you
need your program to perform, you can create a method that is specialized to do that job.

To create your own method, you need to define it. Here’s the basic format for defining a method:

This is called a function definition. Function definitions are block statements. As discussed in Chapter 1,
block statements are sections of code that are structured using opening and closing braces. The
braces form a “block” of code. Any code that is inside the braces is part of that block. Programs are
structured by using many of these blocks together.

Function definitions start with the keyword , followed by the name of the method and then
the parentheses. If the method call doesn’t use any arguments, the parentheses are empty. If the
method call uses arguments, the parentheses have to include a parameter (you’ll be looking at how to
use method parameters in a moment).

After the parentheses comes the type declaration, which is a colon followed by a word that describes
the type of information the method might return to the rest of the program. You’ve seen types before.
Remember these?

Methods need to include types, too. However, many methods don’t need to return any information to
the program, so their type is irrelevant. To specify that a method doesn’t return any information, you
can specify a return type of . It looks like this:

Before you become overwhelmed by all this new information, spend a bit of time looking over
 Figure 3-9 and get comfortable with what method calls look like and how function definitions are
structured.

Here’s an example of a simple method, called , which will display some text in the Output
panel. The first thing you need to do is create the method’s function definition. Here’s what it looks like:

93

PROGRAMMING OBJECTS

 Figure 3-9. Methods: function definitions and method calls

Now that the method is defined, you can use it in the program with a method call:

This is text from the function definition displays in the Output panel.

94

CHAPTER 3

 Figure 3-10 illustrates how to write a simple program that uses this method. If you want to take
a closer look or experiment with it a bit on your own, you’ll find this sample program in the

 folder in the chapter source files.

When the program runs, the displayText method
is called by the Main class’s constructor.
This is the result in the Output panel.

This is the method call. When the
program encounters a method call
it checks the method’s function
definition to find out what it
should do.

This is the method’s function definition.
Whatever directives it contains are
run when the method is called.

Function definitions can contain calls
to other methods that help them perform
their tasks. This method uses AS3.0’s
built-in trace method to display text in
the Output panel.

 Figure 3-10. An example of a simple method in action

To use the source files in this book, do the following:

1. Make sure the Project panel is open. If it isn’t, select Window Other Panels Project.

2. In the Project panel, select Open Project from the drop-down menu.

3. Find the folder that contains the source files and select it.

4. Click the Choose button.

5. All the files required for the project will be loaded into the Project panel.

6. You now need to assign an FLA file as the default document. The default document is the
file that Flash uses to create the SWF file. If the project’s default document has already been
assigned, this will be indicated by a yellow star on the FLA file’s icon. If the default document
hasn’t been assigned, you need to assign it manually. To do this, right-click on the FLA file and
select “Make default document” from the context menu. (Sometimes this option won’t appear
the first time you select the file. If it doesn’t, try selecting the FLA again.)

7. Once the default document has been assigned, you can click the Test Project button to see the
result of the program. Double-click any of the files to open them to make changes.

Keep in mind that methods are a two- part system: you have to create a function definition to define
the method and then you need a method call to use it.

95

PROGRAMMING OBJECTS

Creating method arguments and parameters
The simple method works pretty well, but there’s a problem with it. The text it displays
always stays the same. Wouldn’t it be nice if you could write the method so that you could supply it
with new text to display every time it’s called?

Of course it would be! Here’s what the new method call might look like:

The method call now includes an argument. The argument is the text that you want to display.

To display this text, you need to rewrite the function definition with a parameter, which is a variable
that is used to store the new information. That variable can then be used anywhere in the function
definition to access the information that was sent by the method call.

It’s really easy to do. Have a look:

If you use this method in a program, the Output panel displays You can write any text you like here!

The beauty of this system is that you need to write the function definition only once. You can change
the text that the method displays just by changing the text in the method call’s argument. For example,
you can use any of these method calls, and the display in the Output panel will change to match it:

This makes the method very versatile. Here’s the key to understanding it:

 1. The text in the method call’s argument is sent to the function definition.

 2. The function definition stores that text in a variable. The name of the variable that it stores it in
is supplied in the parameter. In this case, the name of the variable is .

96

CHAPTER 3

 3. Whenever you use in the function definition, it’s replaced by the text
that was supplied in the method call’s argument. Figure 3-11 illustrates how all this works.

This is the variable’s
type. It has to match
the type of information
that the method call sends.

Whenever this variable is used in the method, it’s replaced by the text that was
supplied in the method call’s argument.

In this example, the Output panel will display “You can write any text you like here!”.

This text is stored
in this variable.

2. Function definition:

1. Method call:

 Figure 3-11. Using arguments and parameters

 Figure 3-12 shows how you can use this method in a program. You’ll find this sample program in the
folder in the chapter source files.

 Figure 3-12. Sample program illustrating how arguments and
parameters work

97

PROGRAMMING OBJECTS

Using multiple arguments and parameters
Methods can use more than one argument or parameter. A function definition that uses more than
one parameter looks like this:

The parameters are simply separated by a comma inside the parentheses.

If the function definition uses more than one parameter, the method call also needs to send it the
same number of arguments. Here’s what a method call with two arguments might look like:

All you need to do is separate the arguments with a comma. You can create methods with any number
of parameters in this same way.

At some point in your programming career you might need to use a method, but you
won’t know how many parameters you’ll need. Suppose that you have a method that
needs to track items from trips to the grocery store and you never know how many
items you’re going to buy. Today you might have three items, like this:

Tomorrow you might have five items, like this:

To avoid having to write two different function definitions, you can create one that
stores the arguments it receives in an array. I’ll be introducing arrays in Chapter 9, so
you’ll probably just want to file this information away for reference later. The function
definition will look like this:

All the arguments are stored as elements in an array called . The three dots
in front of the parameter name indicate that the parameter is an array, not a variable.
(For now, you can think of arrays as big filing cabinets that can store lots and lots of
variables.)

98

CHAPTER 3

If you’re new to programming, you’ll need a bit of practice using methods and looking at different
examples. Don’t worry! No one completely understands methods at first. Just keep this chapter at
hand and experiment with some of the sample programs included in this chapter’s source files. You’ll
see many concrete examples of methods at work in this book and you’ll gradually feel comfortable
using them.

Understanding events and event listeners
Events are things in a program that happen. You’ll be happy to let most things that happen in your
program, such as values being assigned to variables, take care of themselves without needing to be
bothered with the details. But you’ll want to know about some events, such as button clicks, so that
you can specify certain directives to run when they occur.

AS3.0 allows you to attach event listeners to objects. An event listener “listens” for things that hap-
pen in the program. When an event occurs, the listener triggers instructions for what to do. You can
think of an event listener as an extremely clever little dog that loves to bark. You’ve trained your little
dog not only to bark madly at burglars but also to dial the number of the police station while doing
so and then bark the address of your house to the officer on the other end of the phone. Clever little
dog! And that’s the kind of dog you have at your disposal with event listeners in AS3.0.

Creating event listeners is a three- step process. You need to do the following to set them up and use
them in the program:

 1. Import an event class from Flash’s package.

 2. Add an event listener to an object using a method call to AS3.0’s built- in
method. The method call includes a number of arguments, such as the kind of event to listen
for and what to do when the event occurs.

 3. Create an event handler, which is a specialized function definition that tells the program what
to do when the event occurs. It “handles” the event. The event handler includes a special
parameter that allows it to accept an event object, which provides quite a bit of information
about the event that took place. You can use this information in your program.

The best way to understand how event listeners work is to see one in action. In the chapter’s source
files you’ll find a folder called . Open the files inside as a project, following the steps
described earlier in the chapter. When you test the project, click the stage with the left mouse but-
ton. You’ll see You clicked on the stage displayed in the Output panel. Figure 3-13 illustrates what the
program looks like and the result in the Output panel.

Now that you’ve seen events in action, let’s look at a way to make them.

99

PROGRAMMING OBJECTS

If you click on the stage, you’ll see the
following in the Output window:

Registers an event that listens for
mouse clicks. The event listener is
attached to the stage. When the
mouse is clicked, the onClick
function definition is called.

The code inside this function
defintion runs when the stage is
clicked. The name of the function
defintion matches the second
parameter in the addEventListener
method call.

A function defintiion that
handles events is called
an “event handler.”

Imports the MouseEvent class. You
need to import one of AS3.0’s event
classes before you can listen for
events in your program.

 Figure 3-13. Add an event listener to the stage to “listen” for mouse clicks.

Importing an event class
To use an event listener, first import one of AS3.0’s event classes. In this book you’ll be using the

 and classes most frequently, although there are many others. The import
statement for the class looks like this:

Once it’s imported, you can use it to find out what the mouse is doing, such as clicking things or mov-
ing around the stage.

Adding an event listener
The next step is to add an event listener, which detects when the mouse is clicked (you used this direc-
tive in the example program in Figure 3-13):

Event listeners are usually added to objects. In this example, you added it to the object using
dot notation.

100

CHAPTER 3

Let’s break this directive down into smaller pieces. The most important thing is this method call:

It’s a method call to one of AS3.0’s built- in methods. It’s used to register the event so that the listener
can start its job.

At its most basic, the method call takes two parameters. In the example from
 Figure 3-13, the parameters look like this:

The first parameter is the kind of event you’re listening for. In this case, you’re listening for mouse
clicks. The format for describing the kind of event to listen for is to use the imported event class
name, followed by a dot and then the event you’re interested in:

The kind of event you want to listen for is the event. As I’m sure you can guess, it listens for
mouse clicks. (Events are always written in uppercase.)

The reason events are written in uppercase is because they’re actually a programming
element called a constant. Constants are always written in uppercase, which is the
naming convention they follow. (You’ll see how to use constants in Chapter 9.) The

 constant is built in to the AS3.0 class.

The second parameter is the function definition that you want to call when the event occurs. The
example used this one:

This is the name of the event handler. Its name must exactly match the name of the function definition
that contains the directives you want to run when the mouse button is clicked.

Using the event handler
This is what the event handler looks like in the example shown in Figure 3-13:

It’s exactly like the function definitions that you looked at earlier in the section on methods. However,
there are two unique things about event handlers that distinguish them from ordinary function
definitions.

101

PROGRAMMING OBJECTS

The first difference is the name. By convention, the names for event handlers always begin with the word
on. Programmers choose to give event handlers names like , , or so
that they’re easy to spot among the other function definitions. You’re free to give the event handler any
name you like, but you’ll make your life a little easier if you stick to this convention. I’ll be doing so for
the rest of this book.

The second difference is the function definition’s parameter:

Event handlers have to declare a special event variable, which also has to be the same type as the
event that occurred, such as .

What is this event variable? It’s actually an object that is automatically created by AS3.0 when the
event takes place. Here’s how it works:

Imagine clicking the stage with the mouse. As soon that happens, a event is triggered. The
 event is sent by AS3.0 to something called the event dispatcher. (You don’t need to know

much about the event dispatcher except that it’s a bit like a little software robot hanging around
your program listening for things.) As soon as it hears an event that you’ve told it to listen for, it takes
out a notebook and scribbles down quite a bit of information about the event. For example, if you
click a button, it can tell you the name of the button you clicked and where on the stage the click
took place. All this information is packaged together into an event object, which is sent to the event
handler (the function definition you programmed to run when the event occurs). However, the event
handler has to create a variable as one of its parameters to contain the event object. Even though you
may not actually need to use this event object in the function definition, AS3.0 requires that you cre-
ate a variable as a parameter to contain it.

So what kind of information does this event object contain? You can find out by using to dis-
play its contents in the Output panel. You can change the example function definition so that it looks
something like this:

Now if you save the file, test the project, and then click the stage, you’ll see something like this in the
Output panel:

That’s a lot of information! Some of it might actually be very useful, although certainly not for the
current needs. Later in the book you’ll look at how you can access this information and use it in your
games.

102

CHAPTER 3

You can access all this information using dot notation. All you need to do is use the name
of the event object, followed by a dot, and then followed by the property of the event
object that you need to access. Based on the preceding example, you could use the follow-
ing code to find out the x position of where the mouse clicked the stage:

If there are other objects on the stage, you can find out the name of the object that
was clicked by using the property. Using will give you the name
of the object you clicked:

If you use this in the example code, it will output the following:

That’s the .

Understanding other events
This example showed you how to use the event from the class. The
class contains many other events that you’re sure to find some use for. Table 3-1 shows the event
names and what they do.

 Table 3-1. Event names

Event name Triggers an event when . . .

 The left mouse button is pressed down and released

 The left mouse button is double- clicked

 The left mouse button is pressed down

 The mouse moves

 The mouse leaves the area of an object

 The mouse moves over an object

 The left mouse button is released

 The mouse wheel is moved

 The mouse moves over an object (or any of its subobjects)

 The mouse moves away from an object (or any of its subobjects)

103

PROGRAMMING OBJECTS

Many of these events don’t work with the object that you used in the example, but they all work
with button and Movie Clip objects. Here are some examples of how you might register these events
using :

 Figure 3-14 illustrates the basic model for creating an event listener and what happens when the event
occurs.

Optional name of the
object you want to
attach the event to.

Method call to AS3.0’s
built-in addEventListener
method.

The name of the event you want to
listen for. Follow this format:
event class, dot, event name.

The function definition that contains
the directives that you want to run
when the event takes place.

EVENT DISPATCHER

The event is registered with AS3.0’s “event dispatcher.”
It begins the job of “listening” for events.

If the event occurs, the event dispatcher does two things:

1. It calls the function
that was registered
with the listener.

2. It creates an event object and sends
it to the function. The function stores
the object as a variable that is declared
as one of its parameters. The event
object can be used in the function to find
out more information about the event.

Function definitions that handle events are known as event handlers.
By convention, the names of event handlers start with the word on.

 Figure 3-14. How event listeners work

As you did with methods, you’ll need a bit of practice and a few more practical examples before you
fully grasp how event listeners work. You’ll see lots of examples of event listeners in action over the
course of this book, so you’ll have lots of opportunities to experiment with them and see their effects
in different contexts. The nice thing about event listeners is that they all use exactly this same format.
You don’t have to absolutely understand every detail about how they work yet; you just need to know
how to use them to get the results you want for your game.

104

CHAPTER 3

In the example in this section, you attached the event listener directly to the
object. In the interactive storybook project, you’ll attach the listeners to buttons. If you
use without specifically attaching it to an object, the listener will
attach itself directly to the class that it was called in. You’ll see many examples of this
in action when you start working with multiple classes in Chapter 8.

Programming storybook buttons
Now that you know about dot notation, methods, and event listeners, you can use them to help you
program the buttons in the storybook. Follow these steps:

 1. Make sure that the project is open. Double- click the interactiveStorybook
Main.as file in the project window to open it in the ActionScript editor window.

 2. You need to add an directive to load AS3.0’s class into the program. Add
the following new code in bold:

From now on, follow the convention that new code to add to the program will be
highlighted with bold text.

 3. Next, you need to create variables to hold references to instances of the and
symbols. This is exactly the same process you followed to create the instance. The
only difference is that you don’t need to use to display them on the stage. You want
to create them in AS3.0’s memory so that they can be used later. (It’s like keeping a jar of sugar
stored in the cupboard to that it’s ready to use when the aunties come.)

105

PROGRAMMING OBJECTS

 4. The next step is to use dot notation to add event listeners to the buttons in the
instance:

106

CHAPTER 3

 5. Next, you need to create event handlers that tell the program what to do when the buttons are
clicked:

107

PROGRAMMING OBJECTS

 6. Save the file.

 7. Test the project. You can now click the buttons and view the pond and hill pages. You haven’t
added buttons back to the start page yet, so you have to quit the SWF and run it again to get
back to the start.

The folder in the chapter’s source files contains the files for the project so far.

This very simple little program is a great example of how variables, dot notation, methods, and event
listeners all work together.

Looking at the onHillButtonClick event handler
I’ve discussed the mechanics of much of these elements in quite a bit of detail, but it’s worth taking
a closer look at the event handlers that actually do the work of changing the storybook’s pages. Here’s
what the event handler looks like:

This event handler contains two directives: it displays the instance and then hides the
instance.

You’ve seen before. simply displays the instance on the
stage as simple as that. But when adds instances to the display list, it adds them on top of
other instances. That means that the instance is still actually on the stage; it’s just being
covered up by the instance, which is completely blocking it from view.

You could leave the instance there. I mean, it’s doing no harm and you can’t see it anyway.
But it’s generally not a good idea to leave things on the stage if they’re not needed because the Flash
Player still devotes some fraction of its precious resources to maintaining it in memory. Remember
that performance is everything to a game designer. If you’re not using something, don’t blink; just get
rid of it.

The evil twin sister of is a method called . Its job is to remove instances
from the stage so that they’re no longer visible. This removes the instance from the stage:

108

CHAPTER 3

Oh if it were it so simple! holds a dark secret. Even though it removes
instances from the stage, those objects still exist as objects in the Flash Player memory.
This is both a good and bad thing. It’s good because if you want display the object
using again at some later point in the program, you don’t have to go to
all the trouble of creating a new instance of it using the keyword. It’s bad because
objects that aren’t visible still consume some Flash Player resources.

If you’re certain that you won’t need an instance in the program again, you have to
give the variable that holds a reference to that instance the value of (a special
value that means “has no value”).

To give a variable a value, use a directive that looks like this:

For more information on how to completely clear an object from Flash’s memory,
check out the section on garbage collection in Chapter 8.

Using the onPondButtonClick event handler
Before the chapter ends, have a quick look at the event handler:

It’s identical to the method, except for one of its directives:

Instead of displaying the instance, it displays . Pretty easy, no?

Adding back buttons
That last thing you’ll do is create buttons that take you back to the . There are no new
techniques here, so you can think of this as a good test to see whether you’ve been paying attention
to what has been covered so far. I’m also going to keep the details pretty brief, so if you’re not entirely
sure about one of the steps, refer to the section in Chapter 2 on making buttons to clarify any uncer-
tainties. (The final program is in the chapter’s source files under the storybook folder if you
want to take a closer look.) Follow these steps:

 1. In the interactive file, right- click one of the buttons in the Library and chose
Duplicate from the Option menu.

 2. The Duplicate Symbol dialog box opens. Give the button the name BackToStartButton.

 3. Click OK.

109

PROGRAMMING OBJECTS

 4. Double-click the new symbol in the Library to enter symbol editing mode.
Modify it so that it looks similar to Figure 3-15. Remember to modify the button in all three
frames: Up, Over, and Down.

UP OVER DOWN

Figure 3-15. Create the BackToStartButton symbol.

 5. Double-click the symbol in the Library to enter symbol editing mode.

 6. Create a new layer called buttons.

 7. Make sure that the buttons layer is selected. Drag an instance of the onto
the stage and position it somewhere that seems appropriate.

 8. Give the button the instance name backToStartButton in the Instance name box of the Properties
panel.

 9. Double-click the symbol in the Library to enter symbol editing mode. Follow steps 6
to 8 to add the new button to the symbol.

 10. When you finish, the and symbols will look something like Figure 3-16.

HillPage Symbol PondPage Symbol

Give both buttons the instance name: backToStartButton

 Figure 3-16. The finished HillPage and PondPage symbols

 11. Open the file. Add the following new code to the program:

110

CHAPTER 3

111

PROGRAMMING OBJECTS

 12. Save the file.

 13. Test the project. You should now be able to click the back to start buttons in both pages to
return you to the first page of the storybook.

It should be fairly obvious by now what the new code does. You’ve added new event listeners to the
buttons in the and instances and then wrote event handlers that displayed and
removed the appropriate page.

Knowing when to use this model
As a model for creating your own interactive movies, the simple system you used here has a number
of advantages:

 It’s understandable: the relationship between the objects, event listeners, and methods is very
clear. You can play with this model while gradually acquiring more confidence as a programmer.
And when you’re ready to try something a little more daring, you can easily adapt it.

 Only minimal programming skill is required: if you understand what you’ve written in this
sample program, making a much larger interactive movie with dozens of pages and buttons is
simply a question of doing more of the same. You don’t need to know any more programming,
and what you lack in programming skill you can easily make up for in imagination. Copy/paste
will become your best friend!

 It’s easy to make changes to the program: if you want to change what the buttons do, you
just need to change the directives in the event handlers.

There is one glaring disadvantage, however. Imagine that you have hundreds of pages and hundreds of
buttons. You’ll have a program that is thousands and thousands of lines of code long, and managing
all that could become a horrendous job.

For really big projects, you need a different strategy. You’ll probably want to store information about
the pages and buttons in some sort of data storage system (such as in an array, which you’ll look at
in Chapter 9) and then write a small handful of short-but- sweet methods that switch pages based on
context. You’ll have much less code, and it would all be self- administrating. But you’ll have to actually
know how to do this, and the programming skill and experience required are quite considerable. It’s
a worthy project and it’s one that you’ll have the skills to attempt by the time you get to the end of
this book.

One word of advice: make sure that whatever you program, you actually understand what you’re
doing and why it works. A program that’s 100 lines long and understandable is better than a super-
efficient 10- line program that does the same thing but which you don’t understand. Don’t feel any
pressure to write the most compact and elegant code. That will happen naturally as your skills and
confidence grow . . . and they will!

112

CHAPTER 3

Summary
This chapter covered a lot of new concepts: variables, methods, events, and (programming) buttons.
These concepts are some of the most important in AS3.0, and you’ll see them in use in many contexts
throughout this book. Don’t worry too much if it hasn’t all sunk in yet; it will take time. You can think
of this chapter as a reference to turn back to if you need a refresher on any of these subjects.

If you’re a bit hazy on any of these new concepts, go back to the sample programs in the chapter’s
source files and make some small changes to them. Observing how your changes affect the output is
the best way to learn.

The most important thing is this: did you actually make your buttons work? You did? Good for you;
you’ve graduated to Chapter 4!

In Chapter 4, you’ll continue to build the interactive storybook. You’ll look at how to use properties
to control the position and size of objects on the screen, and how to use the timeline and frames to
change an object’s state.

“This page left intentionally blank.”

115

Chapter 4

A large part of game design with Flash is all about learning how to control Movie Clip
objects. In this chapter you’ll be looking at how you can control Movie Clip objects
in two important ways:

Use the class’s built- in properties to move, rotate, and scale an
object; and toggle its visibility.

Use code to control a Movie Clip object’s timeline, and learn how it can be
used to create a simple state machine.

You’ll also expand your repertoire of programming skills:

Use conditional statements with the keyword.

Remove event listeners you no longer need.

Use the class’s and events.

You’ll continue the storybook project from Chapter 2; by the end of this chapter,
you’ll have all the skills necessary to build your own completely interactive objects
and worlds.

CONTROLLING MOVIE CLIP OBJECTS

116

CHAPTER 4

The focus of this book is on making games with the class. If you don’t need
to use a timeline in any of your game objects, however, consider using the slightly
leaner class instead.

Movie Clip properties
Properties are the features of an object that you can control with code. What are these features?
They can be variables that are attached to objects that you create. Or they can be any of the built- in
properties that are part of the class. These built- in properties are of particular use to game
designers and will be the subject of the first part of this chapter.

The class has a huge number of properties that you can access, use, and sometimes modify.
Any Movie Clip object can make use of these properties. You can have a look at these properties by
opening up the AS3.0 language reference panel, which is on the left of the script window in which
you’ve been adding all of the programming code. (The language reference window might be closed;
if it is, you can open it by clicking the small arrow on the left side of the script window frame.) To
find the properties that are available to the class, navigate to flash.display MovieClip
Properties. You should see something like Figure 4-1.

 Figure 4-1. Some of the properties of the MovieClip class

Keep scrolling—that’s a lot of properties! Fortunately, most of them have specialized uses that you
won’t use very often.

But for the kind of basic interactivity that you’ll need in the storybook, as well as for most of the
games in this book, there are a few properties that you’ll be using very frequently. As a bonus, they’re
the really fun-to- use properties, too! Table 4-1 shows the “ Class Properties’ Greatest Hits.”

116

117

CONTROLLING MOVIE CLIP OBJECTS

 Table 4-1. MovieClip Class Properties

Property What it represents

Refers to the transparency of an object. You can assign it any value between zero (0)
and 1. Zero means that the object is completely transparent; 1 means that it’s com-
pletely opaque. The values in between, such as 0.5, make the object translucent. All
objects start out with a default value of 1.

The height of an object in pixels. If you assign it a value of 100, the object becomes
100 pixels tall. A pixel is an illuminated dot on the screen. One pixel is the smallest
possible size that a graphic can be. However, you can assign a fractional value (a value
with a decimal) if you need to, such as 7.8.

The width of an object in pixels.

The rotation of the object in degrees. A value from 0 to 180 represents a clockwise
rotation. Values from 0 to -180 represent a counterclockwise rotation.

The horizontal scale of an object. All objects start out with a value of 1. If you
change it to 2, the object will become twice as wide (200%). A value of 0.5 will make
the object 50% narrower. A value of 1.1 will make the object 10% wider.

 is similar to the property, except that it deals with percentages of scale
instead of fixed pixels.

Similar to , except that it refers to the vertical scale of the object.

Determines whether the display object is visible. The property can take two
values: or . True/false values are known in computer programming termi-
nology as Boolean values. The word Boolean refers to George Boole, the founder of
Boolean algebra, which is the basis of computer mathematics.

The horizontal position of an object on the stage in pixels. The leftmost position of
the stage is 0. If the stage is 550 pixels wide, and you want to position an object in the
center, you’d give the property a value of 275. To move it to a position 100 pixels
from the right side, you’d give it a value of 450.

The vertical position of an object on the stage. This is also a value in pixels. The very
top of the stage is position 0. As you work your way down, the numbers increase.
This means that if the stage is 400 pixels high, and you want to position an object 100
pixels from the top, you’d give its property a value of 100. To position it 100 pixels
from the bottom of the stage, you’d give the property a value of 300.

117

118

CHAPTER 4

Several additional properties are used for transforming an object in 3D space. You won’t be using
them in this book, but you should know that they exist and experiment with them when you have the
chance. Although their primary purpose is to be used as building blocks for creating 3D objects and
spaces, you might find uses for these properties for special effects in some of your games. Table 4-2
shows 3D properties you might want to get to know.

 Table 4-2. MovieClip Class’s 3D Properties

3D property What it represents

The depth of the object in 3D space. Higher numbers make the object appear
 farther away; lower numbers make it appear closer.

The scale (ratio of its original size) of the object in 3D space. The object is scaled
 from its center registration point.

The rotation of the object around the x axis.

The rotation of the object around the y axis.

The rotation of the object around the z axis.

You can have a lot of fun with these properties, and they’re very easy to use. In the next few sections,
you’ll use them in the storybook to turn the object into an interactive toy.

Setting up the project files
You’re welcome to continue working on the same project files from Chapter 2, but you can start work-
ing from the start files in the chapter’s source if you prefer. To do that, follow these steps:

 1. In Flash, select File Open.

 2. Navigate to the folder in the chapter’s source files.

 3. Select the FLA file called and click the Open button. The
FLA will open in Flash’s main workspace.

 4. In the Project panel, click the drop- down menu. Select Quick Project. The interactiveStorybook_
Part2.fla and Main.as files appear as project files.

To open any of these files in Flash’s workspace, just click the file’s name in the Project panel.

Going up and down
The first thing you’ll do is create an up button and a down button to move the cat up and down the
hill. There are a few ways to program these buttons. To demonstrate exactly how the and proper-
ties work, you’ll start with the simplest way and then modify the program a little so that the effect is
a bit more realistic.

119

CONTROLLING MOVIE CLIP OBJECTS

 1. Create a button called . You can either create it from scratch or duplicate one of
the existing buttons in the Library. If you’re creating one from scratch, remember to select
Export for ActionScript when you create the button symbol and make sure that the button con-
tains Up, Over, and Down states.

 2. Create another button called , following the same steps.

 3. Double-click the symbol in the Library to enter symbol editing mode.

 4. Click the symbol’s buttons layer once to select it.

 5. Drag an instance of the onto the stage. Make sure that it is added to the buttons
layer (you can confirm that this has happened if the buttons layer’s first frame contains a solid
black keyframe).

 6. Give the button you just added the instance name downButton.

 7. Drag an instance of the onto the symbol’s stage. Give it the instance name
upButton.

 8. Select the object. Give it the name cat in the Instance name box in the Properties panel, as
shown in Figure 4-2.

 Figure 4-2. Assign the instance name.

While the cat is still selected, have a look at the Position and Size pane of the Properties panel, an
example of which you can see in Figure 4-2. X: and Y: stand for the horizontal and vertical positions of
the object. All these values are given in pixels. H: and W: stand for height and width.

 9. Write down the number next to Y:. This is the current vertical position of the cat on the stage,
and you’ll need to use this number very soon in your program. My cat’s Y: position is 120, but
yours will almost certainly be different. Remember it!

120

CHAPTER 4

 10. When you finish, the symbol might look something like Figure 4-3.

 Figure 4-3. The new cat, upButton, and downButton instances

 11. Add or change the following code in bold to the file (you’ll be taking a look at exactly
how it works in the next section):

121

CONTROLLING MOVIE CLIP OBJECTS

 12. Save the file.

 13. Test the project.

122

CHAPTER 4

 14. Click the down button and then the up button. The cat should now be able to move up and
down the hill, as shown in Figure 4-4.

 Figure 4-4. Click the buttons to move the cat up and down the hill.

That’s amazing, isn’t it? Funny how such a simple little effect can be so satisfying to watch, especially
after all the effort you’ve put into the storybook so far.

You should recognize much of the new code from Chapter 2. You’ve simply added event listeners to
the two new buttons and created event handlers to run the appropriate directives. However, there is
one new line of code that might stand out:

Previously, that line read . Why was it changed? In this part of the chapter
you’ll be working with the hill page. It would have been a big bother if every time you tested the
program you needed to first click the hill button on the start page to get there. For testing purposes, it
makes sense to display the hill page right away. Later, when the program is finished and you’re happy
with the way everything is working, you can change it back to the way it was.

Let’s have a look at the directive in the event handler:

The object name of the cat is . The object is an instance inside the object,
so you need to write out its full name using dot notation. The stands for the property of the object.
The property represents its vertical position, in pixels, from the top of the stage. The equal sign is
used to assign it a value of . (The value you use might be different.) The original position of the cat
is , so when you click the button, the event handler moves the cat to the new position, creating the
illusion that it has moved down the hill.

123

CONTROLLING MOVIE CLIP OBJECTS

The directive that is triggered by the event handler is almost identical. Only the
 value is different.

The number (which will be different in your program) is the original position of the cat—that you
noted from the Position and Size panes in the Properties panel. All you did is move the cat back to that
original position when the up button is clicked.

Understanding x and y positions of objects
In Flash and AS3.0, the leftmost side of the stage has an x position number of zero. As you move to
the right, the numbers increase. The rightmost side of the stage in the storybook has an x position
number of 550.

The very top of the stage has a y position number of zero. As an object moves down the stage, its y posi-
tion number increases. The very bottom of the stage in the storybook has a y position number of 400.

The fact that the y position number increases as you move down the stage is an odd quirk in Flash and
AS3.0’s coordinate system that might take some getting used to. Figure 4-5 illustrates how to find the
x and y positions of objects on the stage.

0 100 200 300 400 500

100

200

300

400

y

x

 Figure 4-5. The cat in this illustration has an x position of 400 and a y posi-
tion of 200.

As you can see, to move an object down the stage, you need to increase its value.

124

CHAPTER 4

Moving incrementally
The buttons work: they move the cat up and down the hill. But wouldn’t it be nice if you could move
the cat down the hill gradually? That would be a much more realistic effect and make the cat toy
a little more fun to play with. Fortunately, this is very easy to do:

 1. Update the directives in the and event handlers with the
following new text in bold:

 2. Save the file and test the project.

Now each time you click the up or down button, the cat moves 15 pixels in either direction. Much
better!

But how did this work? The logic behind it is very simple once you get your head around it. Let’s have
a look at the directive:

This directive takes the current y position of the cat, adds 15 pixels to it, and then reassigns the new
total back to the cat’s current y position. Think of it this way: the cat’s new position is a combination
of its position before the button was clicked, plus 15 pixels. You want to move the cat down the stage,
so you need to increase its y position.

I know, this is a bit of a brain- twister! Let’s break it down a little more. The starting position of the cat
in my program is 120 pixels. Whenever the program sees , it interprets that to mean
“120 pixels.” You’ve set up the program so that every time the down button is clicked, 15 pixels are
added to the cat’s y position. That’s what this part of the directive in bold does:

It just adds 15 to the cat’s y position, so the cat’s new y position is 135. So you could actually write the
directive this way:

Pretty simple, really, isn’t it?

125

CONTROLLING MOVIE CLIP OBJECTS

The next time the button is clicked, exactly the same thing happens, except that now
starts with a value of 135 pixels. Fifteen pixels are added again, so the new value becomes 150. Each
new button click adds another 15 pixels to the position, and the result is that the cat looks like it’s
gradually moving down the hill.

Tracing the output
To help you come to grips with how this is working, add a directive to the event handlers in the
program:

 1. Add the following code in bold to the and event
handlers:

 2. Save the file and test the project.

Click the down button a few times. Each time you click it, you’ll see the
new value of the property displayed in the Output panel.
Although your numbers will be different, the effect will be similar to what
I see in my Output panel, as shown in Figure 4-6. You can see that the values
increase by 15 with each click.

Clicking the up button produces numbers in the opposite direction as the
cat moves up the stage.

Using a directive is a great way to help you figure out what your code
is doing, and you’ll be using it a lot to help test and debug the projects in
this book.

Figure 4-6. Trace displays the
value of the cat’s y property each
time you click the down button.

126

CHAPTER 4

Using increment and decrement operators
There’s a slightly more efficient way to write this code. Updating values incrementally, as you did before,
is such a common and useful thing that AS3.0 has specialized operators that do the work for you.

Operators are symbols such as =, -, + and *, which perform specialized tricks with
values, such as assigning, adding, or subtracting them.

The two new operators that you’ll use are called the increment and decrement operators. Update
the and event handlers so that they use these operators:

 1. Modify the and event handlers so that they reflect the
changes shown following. (I haven’t included the directives, and you can remove them if
you want to, but leaving them in is just fine, too! It won’t affect how the program runs.)

 2. Save the file and test the project.

The functionality of the program is exactly the same, but I simplified the code a bit by using the decre-
ment operator:

and the increment operator:

All these operators do is assign the new value back into the property on the left of the operator sign.
The -= operator subtracts the value, and the += operator adds it.

Incrementing and decrementing are a game designer’s staple, so get used to using them because you’ll
be seeing them a lot from now on.

127

CONTROLLING MOVIE CLIP OBJECTS

Limiting movement
You might have noticed that there’s no limit to how high or low the cat can go on the stage. In fact,
you can make the cat go all the way to the top of the stage and continue going beyond it endlessly.
There is a kind of existential appeal to being able to model such an abstract concept as infinity in such
a concrete way, but it doesn’t help your game!

You have to limit the cat’s range by using a conditional statement with the keyword. The condi-
tional statement checks to see whether the cat’s y position is in an allowable range; if not, it prevents
the directive in the event handler from running.

An statement is very easy to implement. It’s a block statement that you can drop anywhere in the
program to check whether a certain condition is . If the condition is , the directives inside
the block run. If they’re , they don’t run.

Here’s a plain English example of how an statement works:

Let’s use a real- world statement in the methods you’ve just written to test it:

 1. Add the following code in bold to the program (remember to replace and with what-
ever numbers you’ve been using):

 2. Save the file and test the project.

128

CHAPTER 4

Try clicking the up and down buttons. The cat is now prevented from moving beyond a certain dis-
tance. Exactly the effect you want to achieve!

Let’s look at how the statement works in the event handler:

The key to making it work is the conditional statement inside the parentheses:

Conditional statements are used to check whether a certain condition is or . The preceding
conditional statement is checking to see whether the y position of the cat is greater than or equal to
120. If the condition resolves as , the directive it contains inside the curly braces is executed.

Conditional statements use conditional operators to do their checking for them. The conditional
operator used in the statement is the greater-than-or-equal- to operator. It looks like this:

This operator checks whether the value on its left (the cat’s y position) is greater than or equal to the
value on its right. There are many conditional operators available to use with AS3.0, and Table 4-3
shows the most common ones.

 Table 4-3. Conditional Operators

Symbol Name What it does

== Equality operator. Literally means “is equal to.” Checks to see whether
two values are equal to one another.
10 == 10 returns a value of .
10 == 3 returns a value of .
Make sure that you don’t confuse the equality operator
(==) with the assignment operator (=). This is a com-
mon confusion! Remember that = means “gets the
value of” and is used to assign values to variables or
properties. == is used to compare values.
There is a strict version of the equality operator that
makes sure that the two values are of the same type
before the comparison is made. This can help avoid
certain kinds or errors that happen when trying to
compare incompatible value types, such as trying to
compare apples and oranges. The strict equality
operator looks like this:
===
You should know that this strict version exists, but you
won’t be using it in this book.

129

CONTROLLING MOVIE CLIP OBJECTS

Symbol Name What it does

!= Inequality operator. Literally means “is not equal to.” (The ! sign represents
the word not.) Checks to see whether two values are
not equal to one another.
10 != 15 returns a value of .
10 != 10 returns a value of .
You might be surprised at how useful the inequality
operator is. In many cases, it’s more useful to know if
a condition isn’t instead of whether it is. You’ll be
using this operator a lot in your game design projects.
The strict version of the inequality operator, which
prevents you from comparing incompatible types of
objects, looks like this:
!==
Again, you won’t be using this strict version in the
book.

< Less-than operator.

Checks to see whether the value on the left is less than
the value on the right.
10 < 15 returns a value of .
15 < 10 returns a value of .

> Greater-than operator. Checks to see whether the value on the left is greater
than the value on the right.
10 > 15 returns a value of .
15 > 10 returns a value of .

<= Less-than-or-equal-to
operator.

Similar to the less- than operator, but it also resolves as
 if the values are equal to one another, which is

a very useful thing to test for in many cases.
10 <= 15 returns a value of .
15 <= 10 returns a value of .
10 <= 10 returns a value of .

>=

Greater-than-or-equal-to
operator.

Similar to the greater- than operator, but, like its sister
operator, it also resolves as if the values are equal
to one another.
10 >= 15 returns a value of .
15 >= 10 returns a value of .
10 >= 10 returns a value of .

Keep this chart nearby because you’ll be using many of these operators very frequently in the projects
to come.

It’s not a bug, it’s a feature!
There’s one anomaly in the way statements were written in the program. It’s an extremely important
thing to look at because, as a game designer, you’ll be dealing with this sort of thing all the time. In fact,
finding techniques to avoid it will be the cornerstone around much of the code you’ll be writing in later

130

CHAPTER 4

chapters. If you understand the problem now, you’ll be miles ahead of the curve when you get into col-
lision detection and stage boundaries. What is it? Let’s do a bit of detective work and find out.

You set up the conditional statements so that the directives execute only if the cat’s y position is less
than 120 or greater than 220. But is that really what is happening? It is, but it’s not working in the way
you might have expected. Let’s use to make a quick test:

 1. Add the following two directives in bold to the and
event handlers:

 2. Save the file and test the project.

 3. Click the down button a few times and have a look at the Output panel. Do you see a number
greater than the maximum that you specified your cat should be allowed to go to?

 4. Click the up button a few times. Does the cat’s y position become less than the lowest position
that you specified in the conditional statement?

When I click the down button seven times in my storybook, I get this out-
put from the statement, as shown in Figure 4-7.

I set my conditional statement to limit the cat’s y position to 220, but the
trace clearly shows that the cat moves to a y of position of 225! What
happened?

It looks like a bug, but the code is actually working exactly as it should be.
Think about it carefully. Let’s say I clicked the down button six times. That
would give the cat a y position of 210. The next time I click the button, the
conditional statement runs:

At this stage in the program, you can interpret it to mean this:

 Figure 4-7. The cat’s y position
value is higher than the limit you
set in the if statement.

131

CONTROLLING MOVIE CLIP OBJECTS

In plain English, this statement is asking this question: is 210 less than or equal to 220? The answer is
yes, of course! The directives execute and move the cat an additional 15 pixels to its new y position of
225. The code is working perfectly!

“It’s not a bug; it’s a feature!” This phrase has been uttered by more than a few programmers in the
face of disgruntled clients who think a piece of software is buggy, even though code is working per-
fectly as written. Depending on the charm of the programmer, he or she might be able to convince
the client that the supposed bug is actually a good thing in some way and thus save a lot of time
reprogramming.

In most of your game projects, at least your first few, you’ll be your own client. So you need to ask
yourself whether you can accept the way the code is behaving, or whether you need to roll up your
sleeves and get down to the hard work of figuring out what’s wrong, why it’s wrong, and what you
have to do to fix it.

Let’s think about the current problem a little more. Is it okay for the cat to move as far as it does?
After all, pixel- perfect precision isn’t really important in this project, and if you click the button again,
the code continues to do its job and prevents the cat from moving any farther. You could shrug your
shoulders and move on.

But what if that weren’t okay? It’s an interesting problem to consider. Let’s see whether you can
 fine- tune the code a bit to prevent the cat from moving beyond the bounds you’ve set for it. There
are few ways to solve this, but I’ll discuss the most interesting solution because it will really help your
future understanding of later chapters.

First, is it possible for the cat to actually reach a y position of 220? No, it isn’t. Each button click moves
the cat 15 pixels at a time, so if it starts out at a y position of 120, it will “jump over” 220 on its way
from 210 to 225. The only way you can get it to stop at 220 is to actually force it back to that position
if it happens to go over (similar to a car that accidentally drives through a red light, screeches to a halt
in the middle of an intersection, and then sheepishly reverses back to the white line). That might work!
Maybe you just need a traffic cop to blow a whistle at the wayward code. You can actually program
a traffic cop with additional statements pretty easily. Let’s try it:

 1. Add and change the following code in bold to the and
event handlers. It’s considerably different from the first version, so make sure to update it
carefully. Replace and with the values you’ve been using in your own program.

132

CHAPTER 4

 2. Save the file and test the project.

 3. Click the up and down buttons and see what happens to the cat when it reaches the outer
bounds of its range. It will stay in range and never move beyond the two values you gave it. The
traffic cop is doing its job!

How does this work?

Let’s imagine that the cat is at y position 210. You click the button, and the first directive executes. It
assigns the cat a new y position of 225. But now you have an statement that runs immediately after
this one. Its job is to check to see whether the cat’s y position is greater than 220. Yes, 225 is definitely
over, so the conditional statement resolves as , and the directive in the statement runs. That
directive is a really simple one:

All it does is force the cat to a y position of 220. So even though the first directive produced a value
of 225, the statement corrected it, and that’s the result you see on the stage. The cat stops at a
y position of exactly 220 pixels. The traffic cop is doing its job!

The statement in the method does exactly the same thing by checking whether
the cat’s y position is less than 120 and then forcing it to position 120 if it is.

Bugs? Ha! You’ve got a real feature now!

This might all seem a little overly technical, but these kinds of bugs-that-aren’t-really-bugs-but-things-
that-could-be- better will probably end up taking up the majority of your programming time as you
refine how your games work. As another rule of thumb, about 30% of development time is spent get-
ting a game to work; the other 70% is spent getting it to work well.

The other reason why this is such an important issue to deal with early on is that you’ll be faced with
this exact same problem when you look at collision detection and stage boundaries—except that your
objects will be updating their positions 30 frames per second at speeds and in directions that you’ll
have no direct control over. Remember this solution because it will come to your rescue in a massive
way a few chapters from now.

133

CONTROLLING MOVIE CLIP OBJECTS

Making it bigger and smaller
There’s so much fun you can have playing around with Movie Clip properties. The next thing you’ll do
is tear a page out of Alice in Wonderland and use the and properties to make the cat
shrink and grow in size:

 1. Create a button called .

 2. Create another button called .

 3. Double-click the symbol in the Library to enter symbol editing mode.

 4. Select the buttons layer if it isn’t already selected.

 5. Drag an instance of the onto the symbol’s stage. Give it the instance
name growButton.

 6. Drag an instance of the onto the symbol’s stage. Give it the instance
name shrinkButton. The symbol might now look something like Figure 4-8.

 Figure 4-8. Add grow and shrink buttons to the HillPage symbol.

 7. Add the following code to the file:

134

CHAPTER 4

135

CONTROLLING MOVIE CLIP OBJECTS

136

CHAPTER 4

 8. Save the file and test the project. You can now click the grow and shrink buttons to
change the size of the cat, as shown in Figure 4-9.

 Figure 4-9. Click the grow and shrink buttons to change the size of the cat.

If you want the object to scale evenly on all sides, the graphics in the symbol
need to be centered over the symbol’s center point. The center point of a symbol is also
known as the registration point. It’s the black crosshairs that represents an x and y
position of 0. If you test the project and see that the cat is scaling in a slightly lopsided
way, it means that the graphics aren’t centered on the symbol’s registration point.

To center the graphics, open the symbol, select the cat entirely with the Selection
tool, and drag it so that it’s centered over the black crosshairs. Figure 4-10 illustrates
this process.

Centered over the
registration point

 Figure 4-10. Center the graphics over the registra-
tion point so that the object scales evenly on all sides.

137

CONTROLLING MOVIE CLIP OBJECTS

The basic functionality of the and event handlers is identi-
cal to that used for the up and down buttons. But instead of using the property, you’re using the

 and properties to scale the cat horizontally and vertically. You need to use both these
properties together to scale the cat evenly. If you use only one, say , the cat will become very
fat around the middle without growing in height at all. (Try it and see!)

In fact, now that you know you can change two properties simultaneously, you can
also try this with the and properties. To move the cat up and down the hill diago-
nally, you can change the event handlers for the up and down buttons so that they
look like this:

There is no limit on the cat’s x position, but it isn’t difficult to add one with another
statement. Can you see how it might be done? Try it!

The and properties use values that refer to a ratio of the object’s scale. That means
that all objects have a value of 1 at their original size. If you want to double the size of the object,
you need to give it a and value of 2. In the new code you’ve added, you’re increasing
or decreasing the cat’s scale by 0.1 each time the button is clicked, and that’s a change of 10% of its
original size.

138

CHAPTER 4

It’s interesting to contrast the and properties with the and properties.
They both modify the size of an object, but the and properties use pixel values. Let’s
make a few small changes to the and event handlers to
test it:

 1. Make the following changes to the and event handlers
by replacing the original code with the code in bold:

 2. Save the file and test the project.

Click both the grow and shrink buttons a few times, and you should see something interesting hap-
pen. The cat will grow in both directions, but unless the cat’s height in pixels is exactly the same as
its width, you’ll soon start to notice that it will begin to distort slightly. This is because the directives
are adding the same number of pixels evenly for both the height and width, even though the cat’s
dimensions weren’t even to begin with. and avoid this problem by scaling the object
proportionately in all dimensions.

It’s important to understand these subtle differences because sometimes using the and
properties is preferable to using and , and vice versa.

Vanishing!
The next little trick uses the property to make the cat disappear. The property is
a little different from the others you’ve looked at so far because it uses Boolean values. (As discussed,
Boolean values are values that can be only or .) This allows you to use a bit of programming
 sleight-of- hand to make a toggle button. You’ll be able to switch (or toggle) the cat’s visibility on and
off with only one button. But before you do that, let’s get the basic visibility button up and running.

 1. Create a button called in the same way you created the previous buttons.

 2. Open the symbol. Select the buttons layer if it isn’t already selected.

139

CONTROLLING MOVIE CLIP OBJECTS

 3. Drag an instance of the onto the symbol’s stage. Give it the instance
name visibilityButton. The symbol might now look something like Figure 4-11.

 Figure 4-11. Add a visibility button to the HillPage symbol.

 4. Add the following code in bold to the file:

140

CHAPTER 4

141

CONTROLLING MOVIE CLIP OBJECTS

 5. Save the file and test the project.

 6. Click the visibility button. The cat will vanish!

The directive that accomplished this disappearing act was this line in the
event handler:

Like the other properties you’ve seen, the property is simply attached to the object using
dot notation. Unlike them, however, this is the first property you’ve seen that uses the Boolean
value. This directive basically means, “No, the cat is not visible.” If you want to make the cat reappear
later, you can assign the value.

After you clicked the visibility button in the storybook, the little cat was not only gone, but gone for
good. No amount of clicking the button could bring it back. The cat is still actually on the stage as an
object you can program; you just can’t see it. How can you make the cat visible again?

There are two ways. One way is to create another button and program it with exactly the same code
as the visibility button, except that you give the property a value of . The second way is
a bit more fun: use a single button to make the cat both disappear and reappear.

If the two states that you’re toggling between can be defined with and values, AS3.0 allows
a very easy way to make a toggle button using the not operator, which is simply an exclamation mark,
like this:

142

CHAPTER 4

It literally means “not.” When used with Boolean values, it means “the opposite value of.” You can put
the operator in front of any Boolean value to read it as its opposite value. Let’s use the opera-
tor in the event handler to turn the visibility button into a toggle button:

 1. Modify the directive in the event handler so that it looks like the
following:

 2. Save the file and test the project.

 3. Click the visibility button a few times. You should see the cat appear and disappear each time
you click it.

The value that you’ve given the property in the previous directive is this:

It literally means “the opposite of the cat’s current visibility state.” If the cat’s current visibility state is
, the opposite state will be . And if it’s , the state will be read as .

When the program first runs, the cat is (obviously) visible. Its property is . When the
visibility button is clicked, the program therefore reads as . The second
time the button is clicked, the cat’s visibility is now , so the program reads
as .

The beauty of using the operator in this way is that you never need to know whether the cat’s
visibility property is or . The program keeps track of this for you. And you need only one
button to toggle between these two states.

You can use this feature of the not operator to toggle between two states with any variables or prop-
erties that accept Boolean values. Boolean values are extremely useful in game design for keeping
track of things such as whether enemies are dead or alive, whether items have been picked up or not,
and whether doors are locked or unlocked. Wherever you use Boolean values, you’ll probably find
a clever use for the not operator, like you’ve used it here.

Having a look
The next thing you’ll do is make a button that lets the cat look around at the bright and beautiful
world around it. But before you’re able to do this, you need to make sure that the object is set up
properly so that its eyes are independent objects that you can control with code:

 1. In the file, double- click the symbol in the Library to enter symbol editing
mode.

 2. Click one of the cat’s eyes and delete it. (The pupil and white of the cat’s eye are actually sepa-
rate shapes, so you’ll need to double- click the eye to select both shapes together.) You should
now have a one- eyed cat, as shown in Figure 4-12.

143

CONTROLLING MOVIE CLIP OBJECTS

 Figure 4-12. Delete one of the cat’s eyes.

 3. Double-click the remaining eye to select both its shapes (the inner black pupil and outer white
eyeball). Select Modify Convert to Symbol.

 4. The Convert to Symbol dialog box opens. Give the symbol the name Eye.

 5. The Type drop- down menu remembers the last type of symbol you created. If the last symbol
you made was a button, Button will appear as the selected symbol type. Change it to Movie Clip.

 6. The Convert to Symbol dialog box has an option called Registration,
which determines what point of the object should be used for its
center point. You want the new symbol’s registration point
to be directly in the center of the object. Click the center square
in the Registration box to set the center as the symbol’s registra-
tion point. Figure 4-13 shows what it should look like.

 7. Check Export for ActionScript and click the OK button.

 8. Click OK if the classpath warning window displays.

 9. Have a look in your Library. You now have a new symbol called . It will be
centered directly over the registration point, as shown in Figure 4-14.

 10. Double-click the symbol to enter symbol editing mode.

 11. Drag another instance of the symbol onto the cat to replace the missing
eye. You can use the keyboard’s arrow keys to precisely position the eye if
you’re having trouble aligning it with the mouse. You can also use Flash’s Align
feature (found in the Modify menu) to align the eyes precisely. Refer to Chapter 2
if you need a refresher on how to do this.

 12. Select the left eye. Give it the instance name leftEye.

 13. Select the right eye. Give it the instance name rightEye.

Figure 4-13. Choose the center as the
Eye’s registration point.

 Figure 4-14. The new
Eye symbol

144

CHAPTER 4

You now have a two- eyed cat that contains two independent eye instances: and .
You can now control these eyes with code. Figure 4-15 shows an example of what you created.

 Figure 4-15. Give the eyes instance names.

Next you need to create a Look button and add some new code to the program to make it work.

 1. Create a new button called .

 2. Drag an instance of the onto the buttons layer of the symbol. Give it the
instance name lookButton.

 3. Add or modify the following code in bold to the file:

145

CONTROLLING MOVIE CLIP OBJECTS

146

CHAPTER 4

 4. Save the file and test the project.

147

CONTROLLING MOVIE CLIP OBJECTS

 5. Click the look button. The cat now rolls its eyes, as shown in Figure 4-16.

 Figure 4-16. Click the look button, and the cat surveys the scene.

The code hasn’t done anything really new, but you haven’t yet seen all these things working in com-
bination like this before.

The code is targeting child objects of the :

The and are children (subobjects) of the , which itself is a child of .
You can easily create very complex interactive objects simply by adding more subobjects and targeting
their various properties.

The property works much like the other properties that you’ve looked at so far:

The property accepts values in degrees of a circle, so each object has 360 of them that you
can work with. Positive values rotate the object clockwise, and negative values rotate it counterclock-
wise. The center of the rotation is the object’s own center registration point. That was why it was
important to make sure that the eye graphic was centered on the symbol’s registration point for
the effect to look realistic.

148

CHAPTER 4

More properties?
There are two other important properties from the table at the beginning of this chapter that you
haven’t yet used in the little interactive cat toy:

 : controls the transparency of an object and accepts values from 0 (completely transpar-
ent) to 1 (completely opaque, or solid)

 : controls the horizontal position of an object, and like its partner-in- crime, the property,
accepts values in pixels

The functionality of these properties is very similar to the properties you already used. So, here’s
a little assignment for you. How about building a pair of buttons that move the cat left and right, and
another pair that gradually makes the cat disappear and reappear? I’m sure you can figure it out! Also
experiment with the 3D properties , , , , and .

Have fun, and I’ll meet you at the next section when you’re done.

Controlling Movie Clip timelines
Movie Clip properties give you a great deal of control over how objects behave, and even very basic
examples like these can hold a lot of appeal if they’re used in the right context. In the next section of
this chapter, you’ll look at how you can take your control of Movie Clip objects one step further by
controlling the timeline.

You’ll add another character to the storybook: a friendly frog who sits on an island in the pond. You’ll
set the interactive storybook up so that when the reader clicks the frog, the frog asks the cat
a question.

As with anything as complex as computer programming, there are many ways to do this. The approach
you’ll take with this example is to use the Movie Clip object’s timeline to define different states for
the frog. In fact, you’re going to be creating something that, in computer programming terminology,
is called a state machine.

By states I refer to “states of being.” If you think of something as simple as a light bulb, it has two
states: on or off. Think of something a little more complex: your little sister has a whole range of
states such as happy, bored, amused, frustrated, food- throwing, and so on. I’m sure you can think of
many more! A state machine is a list of all these states and a mechanism for getting from one state
to another.

State machines are a very complex topic in the field of computer science, and building them from
code is a highly skilled art. However, one huge bonus that Flash has as a game design and programming
platform is that it has an extremely usable state machine built right into it. It’s called the timeline.

If you’re new to Flash, the timeline is a long numbered strip of little boxes (called frames) that you
can see if you click the Timeline tab just below the stage. When it’s empty, it looks like Figure 4-17.

 Figure 4-17. An empty timeline

149

CONTROLLING MOVIE CLIP OBJECTS

The primary purpose of the timeline in Flash is as an animation tool. You can think of it as spool of
film, in which each frame represents a snapshot showing an object in a slightly different position than
in the previous frame. When the frames are played sequentially in quick succession, the illusion of
motion is created.

The timeline is a fantastic tool for animation, but I won’t delve too deeply into timeline animation in
this book (it’s discussed in Chapter 8, but it’s a topic worthy of a book in its own right). What you’ll
be looking at, however, is the wonderful and unplanned side effect of the timeline as a way of storing
object states.

You can think of each frame in the timeline as a little box that you can use to store some informa-
tion about an object. Suppose that you want to store some of your little sister’s states as information
on the timeline. In one frame, you could keep her happy state, in another frame you could keep her
sleeping state, and in a third you could keep her annoying state. If she were starting to annoy you too
much, you could just program a button to tell the timeline to go to the frame that stores her sleeping
state. Now that would be a great program!

Unfortunately, try as they might, programmers just can’t seem to get as much control over the emo-
tions of the people around them as they do over their code. But they have come up with a solution
for that: to program the people from scratch in code. That’s a pretty big project, and although it has
been attempted many times (try a web search for “alicebot” for one example), you’ll set your sights
somewhat lower. You’ll use the timeline to build a simple state machine for an interactive frog.

First, you need a frog Movie Clip symbol to get started:

 1. In the file, create a new Movie Clip symbol called . (Remember to check
Export for ActionScript when you do this.)

 2. Design your frog however you like. If you’re still getting your Flash graphic design feet wet,
refer to Chapter 2 and model your frog on the design of the cat character.

 If there are graphics on the frog that you expect will change in any of your states, they need
to be on separate layers. I put the frog’s eyes, body, and feet on different layers to help myself
stay a bit more organized, but you can keep this basic design of the frog on one layer if you
want to for this project. I also designed my frog with a closed mouth because you’ll be giving
it an open mouth in a later state. My frog looks like Figure 4-18.

 Figure 4-18. Design your frog.

150

CHAPTER 4

So far, so good. You have a basic design you can work with. You’ll create three different states for
the frog:

 Sitting complacently

 Mouth open

 Speaking

Each state will be represented by a frame on the timeline. You’ve already got the first state, sitting
complacently, on frame 1. You’ll design the next state, mouth open, on frame 2.

The first job is to extend the graphics from frame 1 into frame 2. You need to do this so that the frog
that you designed in frame 1 is still visible when you add new graphics to it in frame 2.

 1. Highlight frame 2 in all the layers that correspond to graphics from frame 1 that you want to
use in the frog’s second state, as shown in Figure 4-19. To do this, hold the left mouse button
down over frame 2 on the topmost layer and drag to the bottom layer.

 Figure 4-19. Highlight frame 2 in each layer.

The timeline examples in this chapter are illustrated using preview mode, which is
helpful because it displays a thumbnail image of every graphic in each keyframe. To
switch on preview mode, click the timeline’s option menu button at the top- right cor-
ner of the timeline and select Preview from the menu list items.

151

CONTROLLING MOVIE CLIP OBJECTS

 2. Select Insert Timeline Frame (you can also right- click the highlighted frames and select
Insert Frame from the option menu). The graphics from frame 1 will extend into frame 2. If you
see something like Figure 4-20, it worked!

 Figure 4-20. The graphics from frame 1 are extended into frame 2
with the Insert Frame command.

Great! You now have the frog graphics on frames 1 and 2.

152

CHAPTER 4

You chose to insert frames on frame 2 instead of keyframes. (Keyframes are represented by black dots
if you’re working in the timeline’s normal view mode and by thumbnail images of the actual graphics
if you’re using preview mode, as in these examples.) When you insert a frame, the graphics from the
previous keyframe are extended into the frames that you’ve highlighted, and those frames become
gray. You need to choose to insert keyframes only when you create new graphics on that frame or
when you want to make some changes to the graphics from the previous frame. Keyframes define
a point where the graphics change.

You’ll create the frog’s open mouth on frame 2, so this is exactly the kind of situation where you’ll
need to add a keyframe:

 1. Create a new layer called mouth.

 2. Click frame 2 of the mouth layer and select Insert Timeline Keyframe. (You can also
 right- click the highlighted frame and choose Insert Keyframe from the option menu.) Flash will
insert a keyframe, but because you don’t have any graphics on that layer yet, it will be repre-
sented by an empty square if it’s in preview mode or an empty dot if the timeline is in normal
view mode. The timeline should now look something like Figure 4-21.

 Figure 4-21. Create an empty keyframe on the second
frame of the mouth layer.

153

CONTROLLING MOVIE CLIP OBJECTS

 3. With the new keyframe on frame 2 still selected, use Flash’s drawing tools to draw an open
mouth on the frog. My frog and timeline now look like Figure 4-22. (If you’re working in the
timeline’s normal view, the keyframe in the timeline will turn solid black.)

 Figure 4-22. Draw an open mouth on the second frame
of the mouth layer.

154

CHAPTER 4

The frog now has two states, each represented in a separate frame. Let’s add the third final state.

 1. In frame 3, highlight all the frames from the layers that contain graphics that you want to
extend into the third frame. Select Insert Timeline Frame. You probably want to extend all
the graphics you’ve made so far, so the timeline might now look like Figure 4-23.

 Figure 4-23. Use the Insert Frame command to extend the
graphics into frame 3.

 2. Create a new layer called speech bubble.

 3. Click frame 3 of the speech bubble layer and select Insert Timeline Keyframe to insert an
empty keyframe on this new layer, as shown in Figure 4-24.

 Figure 4-24. Create a new keyframe on the speech bubble
layer.

 4. Make sure that the new keyframe you created on the speech bubble layer is still selected. Draw
a cartoon speech bubble and add some text. I’ll add the words, “Hello, my friend! Can you
swim?” Figure 4-25 shows what frame 3 of my frog looks like now.

155

CONTROLLING MOVIE CLIP OBJECTS

 Figure 4-25. Make the frog say something.

The frog now has its three states designed, and you’re ready to use it in the program.

 1. Double-click the symbol in the Library to enter symbol editing mode.

 2. Select the characters layer.

 3. Drag an instance of the symbol from the Library onto the stage. Position the frog
on the little island, as shown in Figure 4-26. Resize it using the Transform tool if you need to.

 Figure 4-26. Add the frog to the PondPage symbol.

156

CHAPTER 4

 4. Make sure that the instance is selected and give it the instance name frog in the Instance
name box in the Properties panel.

 5. Select the instance, and give it the instance name cat if it doesn’t already have that name.
(Remember that the cats in each of the three pages are completely separate objects. They need
to be given a new instance name inside each symbol: is a different object from

.)

 6. Open the file and add the following code in bold:

157

CONTROLLING MOVIE CLIP OBJECTS

158

CHAPTER 4

 7. Save the file and test the project. The storybook now starts at the pond page. Move
the mouse over the frog; its mouth opens. If you click the frog, the speech bubble and text
appear. Figure 4-27 shows what my pond page now looks like when I click the frog.

 Figure 4-27. Click the frog to make it speak.

159

CONTROLLING MOVIE CLIP OBJECTS

The first change that you made to the program was to display the instance right away when
the storybook starts. You did that with this directive:

You made this change purely for testing purposes, so you wouldn’t have to click
through to the pond page from the start page to see the effect of the new code. It just
saves a bit of time, and you can change it back to when the
storybook is finished and you’re done testing the code.

The next line of code might come as a bit of a surprise:

 is a special class method that can be used by any Movie Clip object. You may recall
that earlier I described the timeline as a spool of film. The timeline was originally developed so that
Movie Clip objects could play frames sequentially to create animations. By default, a Movie Clip’s
timeline is set to start playing all frames automatically when a Movie Clip object is on the stage. This
is very helpful for objects that are animated, but not if you’re using the timeline to store object states,
as you’re doing in this project.

The method stops the timeline dead in its tracks. This is exactly what you want: the frog’s time-
line to be stopped on frame 1. If you hadn’t used the method here, all three frames of the frog
movie clip would have flickered past in a never- ending loop on the stage.

If you ever want the Movie Clip objects to play a series of frames sequentially, you can
use the method. is very useful if you designed one of the object’s states
to be a short animation that spans several frames, such as a spaceship exploding.

The next two new lines of code add event listeners to the frog:

You’re adding two separate event listeners. The first one uses the event type, which trig-
gers the event when the mouse moves over the object. The second uses the even type, just like
the buttons do. You’ve added two event listeners instead of just one to add a little more surprise and
interest to the interactive frog.

The event handlers that are triggered by the listeners contain some new directives that you haven’t
seen before. Let’s first look at the event handler:

160

CHAPTER 4

The first directive uses the class’s method:

 is a method that is available to all Movie Clip objects. It’s used to tell the object to go
to and stop at a specific frame on the object’s timeline. The number in the parentheses is the frame
number that you want the timeline to go to. In this case, it’s frame 2, which is the frog’s open mouth
state. For a children’s storybook, this is a nice effect because when the reader examines the page, the
frog’s mouth opens when the mouse skims over it. This immediately signals that the frog is an interac-
tive object and it tempts the reader to click it.

Instead of using frame numbers, it’s also possible to use something called frame
labels. Frame labels are descriptive words or phrases that you can use to describe
frames in your timeline.

To create a frame label, create a new layer in the timeline of the FLA file called labels.
The labels layer is usually at the very top of the layer stack so that you can see the label
names clearly. You then insert a keyframe wherever you want to add a label, such as
at a new state. In the Properties panel you’ll see a pane called Label with a Name box
in which you can enter the label name. The name you enter appears on the timeline
at the keyframe where you assigned it, along with a tiny red flag that tells you that
it’s a frame label. Figure 4-28 shows an example of what a timeline with frame labels
might look like.

 Figure 4-28. Using frame labels in the timeline

To use the method with any frame label you create, include the name
of the frame, surrounded by quotes, as part of method’s argument, like this:

There’s nothing intrinsically wrong with using frame labels. In fact, they’re a really
nice feature, especially if you just use them as way of reminding yourself what state
each frame represents. But if you’re doing a lot of coding (and as a game designer, you
are!), you should avoid making your code dependent on them. Your programs will be
a little more bug- proof if you use frame numbers because they’re easier to manage,
easier to manipulate, and can’t be misspelled.

The next directive in the event handler is this line:

161

CONTROLLING MOVIE CLIP OBJECTS

What this directive does is use the method to remove the event listener that
you added earlier. Yes, that’s right, actually remove it. Why would you want to do that?

You want the frog to open its mouth when the mouse moves over it. But you want that to happen only
once—the first time. The easiest way to prevent it from happening again is to remove the listener that
called the method as soon as the frog arrives at frame 2. Once a listener is removed,
it’s gone for good and will never call the event handler again.

If you left the event listener running, it would move the frog back to frame 2 every time the mouse
moved over it. In a different context, that might have been just fine and dandy, but in this case it
would mean that the frog would jump back to frame 2 even after you’ve reached frame 3. It would
look a bit awkward. (If you like, you can see the effect of this by deleting the
directive, saving the file, and retesting the project.)

To remove an event listener, you use exactly the same syntax and arguments as you do to add one,
but use the method name instead. You should always make a habit of remov-
ing event listeners after you no longer need them because if you don’t, they’ll still be running in the
background listening for events and using up precious memory and processing resources.

The event handler is almost identical to , except for the specifics:

The directives tell the frog to move its timeline to frame 3 and then remove the event listener that was
listening for mouse clicks so that the reader can click the frog only once. Interestingly, by using the

 and events, you’ve effectively turned the frog movie clip into a button. And, there’s
actually nothing stopping you from creating any of the buttons in your games like this if you want to.

Voila! The beginnings of a promising children’s interactive storybook!

Using the timeline as a state machine
Using a timeline as a state machine is something that you’ll find all kinds of uses for in your game proj-
ects. For example, you could have a door object that appears open on frame 1 and closed on frame
2. You could use it to store the different states of your player character in a platform game, such as
“walking,” “running,” “jumping,” and “falling.” You could create an object called with
52 different symbols on 52 different frames, and then create a method that could shuffle the order of
the frames. You could even store all your game levels on different frames of one Movie Clip object,
and simply instruct it to advance by one frame each time the player reaches a new level.

Thanks to Flash’s timeline, all this is very quick and easy to accomplish.

162

CHAPTER 4

Taking it further
The storybook isn’t complete, of course, and I left it that way intentionally so that you can have the
fun of finishing it. There is a multitude of complex ways to combine the techniques that you’ve looked
at in this chapter, and I’m sure many ideas occurred to you while you were working through the
examples.

One of the great thrills of designing interactive media is that it frees you up from a universe that has
only one possible future or one possible outcome. Nonlinear storybooks like these can be a lot of fun
to design and are even more fun for the reader. Here are few suggestions on how you might want to
proceed with the project.

Now that the frog has asked the cat this perplexing question, what could happen next?

You could create a yes button and no button. You could then use in the
event handler to display them in the instance. Then you could use the and properties to
place the buttons in the correct position on the stage, as shown in Figure 4-29.

 Figure 4-29. Add a yes and no button to answer the frog’s question.

You can then program those buttons to change the outcome of the story, depending on what the
reader chooses. What kind of deviousness do you think the frog is up to? You could easily make this
the start of a long adventure comprising 20 or 30 pages, fill it with interesting puzzles and characters,
and have numerous branching outcomes. It’s the very basis of a role- playing or adventure game!

163

CONTROLLING MOVIE CLIP OBJECTS

Summary
Whether you know it yet or not, you now have a considerable arsenal of skills at your disposal to build
very rich interactive worlds. In this and the previous chapter, you looked at the very basic techniques
necessary to build these worlds—and you really don’t need many more. If you understand Movie Clip
properties and how to control object states using the timeline and event listeners, you have the basics
that will make up rest of the projects of this book.

In Chapter 5, you’ll build your first complete game, a number guessing game, which will expand your
programming skills considerably. You’ll learn how to analyze a player’s input to create a basic artificial
intelligence system, modularize your program using methods, and keep players guessing (literally!)
using random numbers.

165

Chapter 5

This chapter will be your first real look at designing a complete game. It’s a short,
simple game, but contains all the basic structural elements of game design that you’ll
be returning to again and again. Input and output, decision making, keeping score,
figuring out whether the player has won or lost, random numbers, and giving the
player a chance to play again—it’s all here. You’ll also be taking a much closer look
at variables and statements and you’ll learn how to modularize your program by
breaking down long segments of code into bite- sized methods. By the end of the
chapter, you’ll have all the skills necessary to build complex logic games based on
this simple model.

The game you’ll build is a simple number guessing game. The game asks you to guess
a number between 1 and 100. If you guess too high or too low, the game tells you
until you’ll be able to figure out what the mystery number is by deduction.

You’ll actually build this game in a few phases. You’ll start with the most basic ver-
sion of the game, and then gradually add more features such as limiting the num-
ber of guesses, giving the player more detailed information about the status of the
game, randomizing the mystery number, and then adding an option to play the game
again.

Sound like a lot? Each phase of the game is self- contained, so you can give yourself
a bit of a break to absorb and experiment with the new techniques before moving
on to the next phase. You’ll be surprised at how easy and simple it is when you put
all the pieces together.

DECISION MAKING

166

CHAPTER 5

Setting up the project files
The number guessing game, which you can now more formally inaugurate as “The Number Guessing
Game,” follows the same basic file and program structure that you’ve been using since Chapter 1. So
there’s really nothing new here except the details. If this seems a bit routine, give yourself a pat on the
back for overcoming a considerable hurdle to getting started with AS3.0 programming!

 1. Create a project folder called .

 2. Open Flash. Select File New and choose Flash File (ActionScript 3.0) from the New Document
dialog box.

 3. Click the OK button.

 4. Select File Save As.

 5. Give the new FLA file the name numberGuessingGame.fla.

 6. Navigate to the project folder that you created in step 1.

 7. Click the Save button to save the file.

 8. In the Project panel, click the drop- down menu. Select Quick Project. numberGuessingGame.fla
appears as a project file.

 9. In the Project panel, click the New File button, as shown in Figure 5-1.

 Figure 5-1. Create a new AS file in the Project panel.

 10. Enter Main.as in the File field.

166

167

DECISION MAKING

 11. Select ActionScript from the File type drop- down menu. If your Create File window looks like
 Figure 5-2, click the Create File button.

 Figure 5-2. Create a new AS file called Main.as in the Project panel.

 12. Flash will create and open the file.

Your project panel should now look like Figure 5-3.

 Figure 5-3. The Project panel with your new FLA and AS files

167

168

CHAPTER 5

 13. Finally, you need to assign the FLA file’s document class. Double- click the
 file in the Project panel.

 14. In the Properties panel. Enter Main in the Class field. Your Properties panel should now look like
 Figure 5-4. You’ve now assigned the document class.

 Figure 5-4. Create the document class in the Proper-
ties panel of the FLA file.

 15. Save the file.

You’re now ready to create the number guessing game.

Designing a GUI
GUI stands for graphical user interface. When programmers refer to a GUI, they’re talking about all
the buttons, text boxes, and windows that help a user actually interact with a piece of software. GUI
design is a highly specialized area of software development, and getting it right can be a tricky busi-
ness. GUI designers need to not only have a lot of in- depth knowledge about the inner workings of
a piece of software but also have to understand the psychology of the people using it. How people use
software and how to make software easy to use is an area of software design known as usability.

A well- designed GUI allows users to access as much or as little of the complexity of the software as
they need or want to, but also subtly teaches users how the software works while they’re using it. As
basic and commonsensical as a lot of this sounds, it’s not an easy task by any means. The GUI design
that has gone into sophisticated operating systems such as the latest versions of Windows or OS X
is the result of decades of research and refinement by thousands of developers, yet no one regards
either of them as perfect.

The most important thing about the GUI for a game is that it be as invisible as possible. That means
that the GUI shouldn’t come between the player and the experience of playing the game.

The best thing for you as a game designer is to think critically about the GUIs of games that you like,
and ask why they work and how you could make something similar work in your games. There are no
rules, the field is wide open for experimentation, and clever minds like the one reading this book will
set the standards for the new GUIs of the future.

169

DECISION MAKING

That said, here are two basic principles that you can consider when designing GUIs for your games:

 Keep it simple: Simplicity is often maddeningly difficult to achieve when you’re caught up in
the excitement and adrenaline rush of programming a complex game. If you don’t absolutely
need a button, menu option, or instruction in a game, don’t use any. Try and get away with
a GUI that’s as lean as possible by trimming away as much of the fat as you can—your players
will thank you for it. Find out the least amount of functionality or customization your game
needs to still remain fun and playable, and aim for that. You can always add more complexity
later if you really think it’s necessary. It usually isn’t. Remember that players don’t want to click
lots of buttons or read through complex directions; they just want to play your game.

 Make it obvious: If your GUI is well designed, players will know what they have to do just by
a glance at the visual layout of the GUI elements. Players want immediate results and don’t
want to have to search for what they’re looking for. If they have to click buttons, make them
easy to find, make sure that their functions are self- explanatory, and ensure that that their
effect is immediate. The best games are designed so players can discover the rules and how to
play the game while they’re playing it. If you feel you have to give players a lot of instructions
on how to play the game or what to do next, there’s almost certainly a problem with your GUI.
And if all this seems blindingly obvious, that’s just great!

One of the many advantages of Flash as a game design platform is that you can use its drawing tools
to literally draw your GUI on the stage. Most other programming environments require you to create
each button and text field out of code and then meticulously plot them on the screen with x and y
coordinates. It’s a very precise process, but it’s tedious and slow. You can do that with AS3.0, too, if
you really want to (and there are actually many instances in complex interactive GUI design in which
that might be preferable), but there’s no need to go to all that trouble when Flash’s built- in drawing
tools are so much fun and easy to use. For the quick little games you’ll be building in this book, they’re
perfect.

Inputting and outputting
In the number guessing game that you’ll build in this chapter, you need to process two kinds of
information:

 User input is the number that the player enters into the program to guess the mystery
number.

 Program output tells the player whether the guess is too high or too low, or whether the
player won or lost the game.

Input and output are the two most basic elements of communication in computer programs, and all
games use them to some degree. In the number guessing game, the input and output are in text form;
in other games you’ll be looking at, input and output take other forms. For example, the input might
be in the form of moving a player character around a dungeon, and the output might be being eaten
by a monster. The basic principles remain the same, however: if you understand how it works with
text, the rest will be much simpler to grasp.

170

CHAPTER 5

Adding some text fields
Text fields are boxes that display text. You create them in Flash using the Text Tool in the toolbar, and
you have a choice of three types to choose from:

 Static text is used for text that doesn’t change and is the type of text that you’ve been using
until now in the storybook project. Use static text for instructions, button labels, or titles that
you expect to remain the same throughout the program.

 Dynamic text is a text field that can be programmed so that the text it displays changes based
on what’s happening in the program. (In other words, it changes the text dynamically.) Dynamic
text is used to display the program’s output.

 Input text is a text field that allows the user to type in some text. The user can then enter that
text into the program, usually by clicking a button. Logically enough, input text is used for the
program’s input.

In the number guessing game, you’ll use a dynamic text field to display the game’s instructions and the
status of the game as it progresses. Just below the dynamic text field you’ll add a large input text field
to allow players to type in the number that they think might be the mystery number.

Creating dynamic text
Let’s first create the dynamic text field, which is the multiline text field. Multiline text fields are more
than one line of text high. As you develop the game in later steps, you’ll use the second line of the text
field to display game status information that will be useful for the player.

 1. Select the Text Tool in the toolbar.

 2. In the Properties panel, select Dynamic Text from the Text type drop- down menu.

 3. In the Character pane of the Properties panel, choose the font family, color, style, and size that
seem appropriate.

 4. In the Paragraph pane, click the Align left button from the Format options. (If it’s already selected,
you can leave it as is.)

 5. In the Behavior drop- down menu from the Paragraph pane, select Multiline no- wrap. Choosing
multiline is important so that the text field knows that it needs to display text on more than
one line. (Wrapping is what happens when text is automatically carried over to a new line when
it reaches the right- hand margin.) The no- wrap option tells the text field not to force text from
the first line onto the second line if the text from the first line is too long. You can definitely
experiment with the other option, Multiline (which does wrap text onto the next line), but it
sometimes has some quirky, unexpected results with long text that you don’t want to be con-
cerned with debugging in this project. You’ll just keep the text wrapping off and make sure that
the text field is long enough to display the maximum length of text.

171

DECISION MAKING

 6. Figure 5-5 shows what my Properties panel looks like.

 Figure 5-5. Dynamic text field properties

 7. With the Text Tool still selected, click somewhere near the upper middle of the stage and draw
a text field that’s about 300 pixels wide and high enough to accommodate two lines of text. If
you’re not sure exactly how high that is, you can temporarily type in two lines of sample text
to help you size it. Figure 5-6 shows you what my text field looks like.

 Figure 5-6. Draw a dynamic text field high enough for two lines of
sample text.

172

CHAPTER 5

 8. Finally, and very importantly, you need to give the text field an instance name. Without one,
you can’t target it with code in the program. Make sure that the text field is still selected and
enter the name output in the Instance name box at the top of the Properties panel. Don’t forget
this step; otherwise the game won’t work.

The ActionScript editor window provides text object code hinting if you add _txt to
the end of any text object names. If you give the dynamic text field the instance name
output_txt, code hinting will be activated for this object, which might be helpful when
you start entering your code in the editor.

Adding input text
You’ll add the input text field just below the dynamic text field you created in the previous steps:

 1. Make sure that the dynamic text field you just created is not selected. (Click away from it
on the empty stage if it is. If it’s still selected, and you make the changes to the text field
properties in the following steps, it will overwrite the properties you just set with these new
properties.)

 2. With the Text Tool still selected, select Input Text from the Text Tool drop- down menu in the
Properties panel.

 3. Choose an appropriate font family, style, color, and size from the Character pane. (Because the
player will be entering no more than three numbers, and I want to try and fulfill one of my
GUI design tenets to “make it obvious,” I gave the input text a font size of 36 points so that it’s
really obvious to the player where they’ll need to type, and the numbers will be nice and big
when they do.)

 4. You’ll create the input text field so that it has a border around it. This will again help your goal
to “make it obvious” by clearly indicating to the player where they have to enter the number.
To add a border around a text field, you need to select the Show border around text button in
the Character pane of the Properties panel. It’s a little hard to find, but Figure 5-7 shows you
where to look.

 Figure 5-7. Select the Show border around text button.

173

DECISION MAKING

 5. In the Paragraph pane, make sure that that the Align left button is still selected from the Format
button menu.

 6. Select Single line from the Behavior drop- down menu.

 7. Figure 5-8 shows what my input text Properties panel looks like.

 Figure 5-8. The input text field properties

 8. Just below the dynamic text field that you created on the stage, draw the input text field so that
it’s wide enough to accommodate a maximum of three numbers. (The game asks the player to
choose a number from 1 to 100, so 100, composed of three characters, is the longest number
they’ll be entering.) You can add some sample text, such as three zeros, to help you find the
right width. Figure 5-9 shows you what my input text field looks like with sample text.

 Figure 5-9. Enter some sample text to correctly size the input text field.

174

CHAPTER 5

 9. Finally, you need to give the input text field an instance name. Make sure that it’s still selected
and enter the name input in the Instance name box of the Properties panel. (Again, give this the
instance name input_txt if you want to activate code hinting in the ActionScript editor window.)

The last thing that you might want to do is delete the sample text that you used to size the fields cor-
rectly, but you don’t really have to do this. This sample text will be overwritten by new text that you’ll
create directly in the program.

Strangely enough, even though input text fields allow the users to input text, you can
actually insert text into them with programming code, just as you can with dynamic
text. You can, therefore, think of input text fields as dynamic text fields with the added
bonus that text can be entered into them if you need to. You’ll see how this works
when you start adding the code to the program in the pages ahead.

A little more about fonts and text fields
As you can see, there are an awful lot of other options you can add in the text Properties panel.
Feel free to experiment with them. There are a few though, that are particularly important for game
developers:

Anti-aliasing. The Anti- alias option is in the Character pane. When text characters curve, their edges
can appear blocky and jagged, which is an effect known as pixelation. Anti- aliasing is a style of ren-
dering text that smoothes out pixelated edges. The one big problem with anti- aliasing, however, is that
it takes a considerable amount of processing power to smooth out text.

Fonts are complex vector shapes, which are plotted mathematically by the CPU on the screen by draw-
ing lines between points. The smoother the font appears, the more vectors have to be plotted, and the
harder the CPU has to work. Any power that the CPU spends plotting vectors for fonts is less power it
has to make the animations, videos, and other effects in your games run smoothly. It detracts from the
almighty performance, which has the final say in game development. The Flash Player has improved
considerably in the text- rendering department over the years, but earlier versions of the Player were
notorious for expending up to half of the available CPU power just to render text. Game developers
are therefore very sensitive to this issue!

You probably won’t notice this performance hit in the little games you’ll be building initially, but if
you have anti- aliased text on the stage and you start piling on lots of complex animations, your games
will start to stutter and drag. The first thing you should do, then, is turn off text anti- aliasing. Flash
provides a few different options you can use to do this:

 Device fonts: These are fonts that are installed on your computer, which means that Flash
doesn’t have to do any work to draw them. It also means that it doesn’t need to include font
outlines as extra data in the SWF file, so file sizes will be smaller. (More on font outlines soon!)
Device fonts are also not anti- aliased, so they’re very fast for the CPU to display. The only draw-
back (and a potential deal breaker if you really care about how the fonts in your games look)
is that you’re limited to only three font styles: _sans, _serif, and _typewriter. (All device font
names are preceded with an underscore.) _sans is similar to Arial, _serif is similar to Times New

175

DECISION MAKING

Roman, and _typewriter is similar to Courier. Because the rendering of these fonts is done by
the user’s computer, they’ll look slightly different on different operating systems, so you won’t
have much control over their final appearance. Still, device fonts are fast and can save you a lot
of performance if you need it.

 Bitmap text: This option switches off all anti- aliasing. The fonts will still look like the fonts that
you chose, but they’ll have pixelated edges. Sometimes it can be a good thing: text that is very
small can appear blurry and hard to read with anti- aliasing on. By using bitmap text with small
text, you can greatly improve readability, and it often looks more appropriate than anti- aliased
text in many contexts. If used well, bitmap text can give you a performance boost and win you
some style points as well.

 Anti-alias for animation: This option switches off anti- aliasing when text is being animated,
and turns it on again when it stops moving. There might be some performance improvement
with this option if the text you are using isn’t too big or if it’s moving around a lot. But if your
text isn’t moving, you won’t see any performance improvement.

 Anti-alias for readability: Anti- aliased, all the time. It looks beautiful, but can slow your game
down considerably.

 Custom anti- alias: This one isn’t directly performance related and is more of a specialty
option. Custom anti- aliasing is used to tweak the anti- aliasing properties so that fonts can look
their best.

You can find all these options in the Anti- alias drop- down menu of the Character pane in the Properties
panel. Definitely keep them in mind when you’re building your games, and if you notice things starting
to slow to a crawl, play around with some of these options.

Embedded fonts. When you select a font to use in a text field, Flash is reading from the list of fonts
installed on your computer. It might look great to you on your computer, but if you view that same
FLA file or the published SWF file on a computer that doesn’t have that same font installed, it will
look completely different. If Flash or the Flash Player can’t find the font that you specified, it will try
to choose what it thinks is the next best thing. The choice might be okay or it might be awful, but it
will certainly be very different.

How then can you ensure that the fonts in the text fields you’re using will look the same on another
computer that doesn’t have that same font installed? Embedded fonts are a solution for this. When
you select the Character Embedding button in the Character pane of the Properties panel, a new win-
dow opens that allows you to select the font you want to use and embed it directly into the SWF file
when you publish the Flash movie.

What Flash does is to save what’s known as the font outline directly into the SWF file. The font outline
is a mathematical blueprint of what the font looks like so the Flash Player can reproduce it directly in
the SWF, even if the computer that the SWF file is being viewed on doesn’t have that font installed.
The only drawback is that the file size of the SWF increases to store this extra information. In most
cases, though (and especially for games, which you want to look their best), this will be a minor
consideration.

176

CHAPTER 5

Adding a button
You’ve got input and you’ve got output. Now you just need some way of getting the text from the
input text field into the program so that it can be processed. The lowly button comes to your rescue
again!

 1. Create a new button symbol called .

 2. Drag an instance of the symbol onto the stage next to the input text field.

 3. Make sure that the button is still selected, and give it the instance name guessButton in the
Instance name box in the Properties panel.

 4. The user interface for your game might now look something like Figure 5-10.

 Figure 5-10. Add the Guess button to the GUI.

Building a simple guessing game
You’ll build the number guessing game in three separate phases so that you can get a solid grasp of
the techniques before you add more complexity. The first phase is the most basic version, but it’s the
most important because it contains the very heart of the game.

The game starts by asking the player to guess a number from 1 to 100. It will tell the player whether
the guess is too high or too low, until eventually the correct number is found. In this version of the
game, the player gets an unlimited number of guesses, but you’ll fix that and add a few more interest-
ing features in phase 2.

Setting up the Main.as file
The file is set up using exactly the same structure as the previous projects, with one striking
difference. Can you spot it?

 1. Copy the following into your file:

177

DECISION MAKING

 2. Save the file and test the program. If everything is working properly, you should see
the words Hello, from the init method! displayed in the Output panel.

What’s going on here? Let’s have a closer look at the constructor method:

You might recall from Chapter 1 that the directives inside the constructor method are automatically
run when the class is instantiated. You have only one directive in the constructor method:

What is this? It’s a method call. Method calls trigger a method’s function definition to run its direc-
tives. The method being “called” here is the method. This means that as soon as the constructor
method runs, it immediately tells the method to perform whatever tasks you assigned to it. The

 method’s function definition is declared just below the constructor method:

 is programmer’s shorthand for initialize. (You could have easily called the method or
 if you had wanted to, but using the short form is another one of those “old program-

mer’s conventions” that won’t harm you to get used to because it’s widely used.) The function
definition is empty at the moment except for the directive, but all the directives that will be
used to initialize the program will eventually be inside it. In the previous examples, all the directives
that initialized the program were inside the constructor method. What’s the point of creating another
method to do this job now?

The biggest advantage is that whenever you need to reinitialize your program, all you have to do is call
the method again from anywhere in your program. Let’s pretend that you’re playing the number
guessing game and hopelessly lose the first time you play. If you want to play again, it would be nice
if the game would reset the number of guesses you have left to the maximum and choose a new
mystery number for you to guess. If you have all the game’s default settings conveniently tucked away
inside an method, you just need to call this method whenever you want to reset the game and
play again. (In fact, you’ll do this later in the chapter.)

178

CHAPTER 5

The other advantage is that if you make it a habit of creating an method for every class you cre-
ate, you’ll always know how to reset the objects to their default settings.

Did the spaceship you were flying in your latest galactic- shooter game get blown to smithereens? No
problem; just call the class’s method with a line of code that might look like this:

Did the frog in your road- crossing game get squashed by a car? No problem; you can easily reconsti-
tute it and place it safely back on the sidewalk by writing some code that might look like this:

A little later in the design of the number guessing game, you’ll see how useful moving all the games
initialization directives into a specialized method can be. For now, just realize that when the pro-
gram runs, it automatically calls the constructor method. , in turn, makes a method call to
the method, which runs whatever directives it contains.

Learning more about variables
The first job is to initialize some of the basic variables that you need in the game. The most important
is the mystery number that the player has to guess. You’ll also initialize the first message that the
player receives in the output text field. Both of these values are assigned using variables. To see this in
action, follow these steps:

 1. Enter the following text in bold to your program. (Delete the method that you added to
the function definition in the preceding steps.)

179

DECISION MAKING

 2. Save the file and test the program. You should see the words I am thinking of a number
between 1 and 100 appear in the output text field, and the input text field should be blank, as
shown in Figure 5-11.

 Figure 5-11. The text of the startMessage variable is
displayed in the output text field.

The first thing you did was to declare two variables in the class. You used variables in earlier
chapters, but there’s something new here—the variable types (which follow the colon):

What are these variable types?

You might recall from the previous chapter that when you created variables to hold references to
the Movie Clip objects, you declared their type to be the symbol in the Library from which they were
made. A line of code such as meant that the instance was a type
of the symbol in the Library.

The previous code does something very similar. The line means that the
 variable is a type of . The line means that the variable
 is a type of (which stands for unsigned integer).

Okay, that’s pretty meaningless, isn’t it? Don’t worry; it will become clear soon!

Let’s a take a step back. When you declare a variable, you need to tell the program what type of
information that variable will be holding. Will you be using the variable to store numbers or words?
If you’re using it to store numbers, what kind of numbers will they be? Hey, it might seem like more
detail than you need, but AS3.0 wants this information to make sure that you don’t start trying to mix
variables that contain words with variables that contain numbers or any of the other kinds of possibly
incompatible data types that variables can contain.

180

CHAPTER 5

So what kind of variable types are there? Here are all the data types that can be used by variables in
AS3.0:

 : Can take one of two values: or ; its default value is .

 : Any number, such as whole numbers (also known as integers) and numbers that
include decimal places (also known as floating point numbers).

 : An integer, which is a whole number without a decimal place. It can be positive or nega-
tive. Because the CPU doesn’t have to calculate any decimal places, using it speeds up the
program’s performance. It’s usually better to use the type over the type if you
know you won’t need to use decimals. The default value for the type is .

 : Stands for unsigned integer. is an integer that is only positive. This is an even
leaner version of the type, so it’s the fastest of them all. Use it whenever you can for the
best performance. has a default value of .

 : Letters, words, or phrases—any text at all. You can even use the type to store
numbers, but if you do, the numbers will be interpreted as text and you won’t be able to
manipulate them mathematically. The default value for the type is , which means
“no data of any kind.”

 : A general type. The class in AS3.0 is the base class for all other objects. The
 class also has a default value of .

 : A very specialized type that is used only for methods that don’t return values. It’s not
used for variables. It can contain only one value: . The value is very similar
to the value, except that it is used when the variable hasn’t yet been assigned a data type,
or if it contains numbers or Boolean values. All the methods so far have been declared with
a data type of .

 (asterisk): If you want to create a variable that has no specific type or you need it to be really
flexible to be able to contain different data types at different times, replace the type name
with an asterisk. For example, you might use a line of code like this:

 This variable now can hold any type of data. One suggestion regarding the use of the asterisk is
this: don’t use it! Unless you have an extremely good reason why you want your variables to be
able to contain more than one type of data, you’re opening up your program to a potential can
of worms. Forcing variables to a particular type is one of the great strengths of AS3.0 because
it prevents bugs and errors that are the result of the wrong type of data being stored in the
wrong type of variable. These kinds of errors can often be very difficult to debug.

The , , and data types start with a lowercase letter; the others all start
with uppercase letters.

You can file these data types away for later, but you’ll be using all of them over the course of this
book. From today’s menu, you have two of them on the plate: is a , and

 is a type. The first thing the method does is to assign values to these variables:

181

DECISION MAKING

The next thing that happens is that the text from the variable is copied into the output
text field’s special variable:

, of course, is the instance name of the dynamic text field on the stage. It’s followed by a dot,
and then the word . All text field objects have this special built- in variable called . Whatever
you assign to the variable is displayed on the stage by the text field.

You could have easily written this same line of code like this, and the result would have been
identical:

Why did you go to all that extra trouble of creating the extra variable when you could
have assigned the text directly?

First, you got some practice in creating variables—that’s not such a bad reason, is it? Second,
it’s sometimes useful to store all the text you’ll be using in your program in variables that you can
access in one spot. If you know that all the text in your program is assigned to variables in your
method, you don’t need to go hunting through your code to find it if you need to make changes to
it. This isn’t an important issue in small programs such as the number guessing game, but it could
become a real chore in bigger programs.

Finally, you want to make sure that the input text field is completely blank so players are free to type what-
ever they want into it. To clear a text field of any characters, assign it a pair of empty quotation marks:

Empty quotation marks are to string variables what 0 is to number variables: it just means that there’s
no text there yet.

Making it more obvious
The GUI is fine at the moment, but it’s actually hard for the player to know that the input text field is
not just a black rectangle sitting on the stage. You could add a static text field just above it with the
words Please enter your guess, but let’s see if you can do it by providing some visual cues. You can
improve the usability of the input field in a number of ways:

 Add a blinking cursor so that players know they can type numbers into it.

 Add a gray background color to differentiate it from the surrounding white of the stage.

 Restrict the player to entering only numbers. If the player is asked to guess a number from 1 to
100, it wouldn’t make sense if he or she entered something like green car, would it?

All these things are really easy to do with a few more lines of AS3.0 code:

 1. Modify the method by adding the following code:

182

CHAPTER 5

 2. Save the file and test the program. You should now see a much more easy-to- use
input text field with a gray background and a blinking cursor, as shown in Figure 5-12.

 Figure 5-12. The input text field has a gray background and
a blinking cursor. It prevents letters from being entered.

 3. Try entering some text other than numbers. Ha! You can’t do it, can you?

Text field objects belong to AS3.0’s class. You can actually create text fields out of pure
code as long as you import the class into your program, along with your other import
directives, like this:

The class is part of Flash’s package, which contains many useful text- related classes.
To import all the classes of a given package, use an asterisk instead of a specific class name. With all
classes in the package imported, you can create a text field object and then display, size, format,
and position it on the stage. All it takes are a few lines of code in your constructor or method
that might look something like this:

Interesting! But you didn’t do this in the program. Instead, you used Flash’s drawing tools to create,
format, and position the text fields; Flash automatically imported all the classes in the package
in the background. This is great because it means that the input and output text fields can use all the
formatting options available to these classes. In fact, all the options you assigned the text fields in

183

DECISION MAKING

the text Properties panel can be accessed and changed with code. But there are also lots more that can
be accessed only with code.

This book doesn’t go into these options in any depth, but if you’re curious about what’s
available, take a peek at the chapter “Working with Text” in Adobe’s Programming
Adobe ActionScript 3.0 manual (

). To whet your appetite a bit, I included a few of these options in the
program.

The first thing is to make the background of the input text field a light gray color:

 is a property of the class. The color is represented by a hexadecimal
color code, and is the hexadecimal code for light gray. As long as you know the hexadeci-
mal code, you can use any color you like. (A web search for “hexadecimal color chart” will bring up
many examples of colors and their matching hexadecimal codes.)

The next line uses the property to prevent the input text field from accepting any characters
other than numbers:

The property limits the characters you can enter to whatever letters or numbers are inside
the quotes. For example, if you want to restrict the text field to only the uppercase letters A, B, and C,
you can write a directive that looks like this:

You can restrict a range of numbers or letters by separating the first character in the range from the
last character with a dash. Here are some examples:

 To allow only the uppercase letters from M to O, use O”.

 To allow all uppercase letters, use Z”.

 To restrict input to just lowercase letters, use z”.

 To allow only uppercase and lowercase letters, use z”.

Your life as a programmer will often be improved by restricting certain types of input because if a user
enters something that your program doesn’t know how deal with, the whole program could stop
working.

The last thing is to create the blinking cursor in the input text field. Use the following line of code:

When an object on the stage, such as a button or a text field, has been selected by the user, it’s said to
have focus. When input text fields have focus, a blinking cursor appears, and whatever the user types
is automatically entered into it. is a property of the built- in class, which is at the root of

184

CHAPTER 5

the hierarchy for all display objects (all objects you can see on the stage). When the SWF file runs the
program, an instance of the class is automatically created (called, conveniently enough,).
To assign focus to a text field, all you need to do is assign the name of the text field object to the

 property, as you did here.

If you need to remove focus from a text field, you can give it a value, such as the following:

The GUI for the game is, of course, extremely simple, but all the important elements you’ll need to get
you thinking about GUIs are contained in this little example.

Making decisions
So far, the program doesn’t do anything useful. Enter a number, click the button, and wow . . . noth-
ing happens! What you need to do now is build the brains of the game so the program can figure out
what number the player has entered and whether it’s too high, too low, or correct.

You can do this by using an block statement. statements are very similar to the sim-
ple statements that you looked at in Chapter 3, except that they provide an extra course of action
if the condition being checked turns out to be .

Here’s an example of the basic kind of statement that you looked at in the previous chapter:

But what if the condition is not ? Obviously, the directive inside the statement won’t run. But
what if you what something else to happen instead? That’s where the addition of the keyword
comes in. Here’s an example of a simple statement:

If the condition turns out to be , the program will jump straight to the second directive enclosed
inside the braces of the block statement. This allows the program to make a choice between two
alternatives, and at least one of them will be chosen.

185

DECISION MAKING

You can take this system one step further and add a third or more possible choices by throwing an
additional statement into the mix. Have a look at how this works:

This statement checks each of the conditions in turn. If the first is , it skips to the sec-
ond. If the second is also , the final directive in the block statement is run as the default
value.

This format is perfect for the number guessing game, because you need the program it to check for
three possible conditions:

 If the player’s guess is less than the mystery number

 If the player’s guess is greater than the mystery number

 If the player correctly guesses the mystery number

To implement this decision making in the program, you need to first find a way of getting the number
from the input text field on the stage into the program so that it can be processed. It is pretty easy
to do:

 You need to create a new variable called to store the number the player enters
in the input text field. You’ll use this new variable to convert the text from the input text field
from a string to a number so an statement can process it.

 You need to add an event listener to the object and then create an event handler
called that is called when the button is clicked. This is exactly the same as
what you did in the previous two chapters to program the buttons.

 You need to create an block statement inside the method to
check for the three conditions listed previously.

Let’s get to work!

 1. Add the following code to your program:

186

CHAPTER 5

187

DECISION MAKING

 2. Save the file and test the program. The game will now tell you whether your guess is
too high, too low, or correct (see Figure 5-13).

 Figure 5-13. With an if/else statement, the game knows
whether the player’s guess is correct.

After you declared the variable, you then added an event listener to the
object and created a new event handler called that runs when the button is
clicked. It’s in that event handler where all the action is, so let’s a have a look at its directives in more
detail.

This is the first one:

What’s all that about? It copies the text from the input field in to the variable. But that’s
not all; it also converts the input data from plain text into a number.

When you enter text into an input text field, that text is stored in the field’s built- in variable as
a string. Strings are words or letters, and you can usually spot them because they’ll be surrounded by
quotes. Even if you type in numbers, those numbers are interpreted as characters in a line of text, not
something that can be processed mathematically. As far as strings are concerned, “789” is just another
word like “bike” or “elephant”. That’s bit of a problem because the game depends on the player enter-
ing numbers that can actually be understood as numbers.

What you need to do then is convert the data from the input field’s variable from a string to
a number. Because the numbers from 1 to 100 are all positive and don’t contain decimal values, it
makes sense that they should be interpreted as data with a type.

It’s very easy to convert data types in AS3.0. All you need to do is surround the data you want to con-
vert in parentheses and then add the name of the type you want to convert it to. That’s all that this
bit of code in bold does:

It converts the string from the input field’s variable into a number of the type. This process
of converting one type of data to another is called casting. You’ll be encountering casting a lot over
the course of the book. It’s often necessary for you to cast data or objects as a certain type to encour-
age AS3.0’s compiler to run the code correctly.

188

CHAPTER 5

An alternative way of casting variables is to use the keyword. You can write the
previous line of code like this:

This line is very readable, and the effect is exactly the same. It’s entirely up to you
which style of casting you prefer.

Now that you have a number in the variable, you can use the statement to
analyze it:

The logic behind this is really simple. If the variable is greater than the ,
That’s too high. displays in the output text field. If it’s less than the , That’s too low.
displays. If it’s neither too low nor too high, there has to be only one alternative left: the number is
correct. The output text field displays You got it!

Not so hard at all, is it? If you understand how this works, you might be pleased to know that writing
 statements will be at the very heart of the logic in your game design projects. It really doesn’t

get much more difficult than this.

Displaying the game status
The logic works well enough, but you can’t actually win or lose the game. The game gives you an end-
less number of guesses and even after you guess the mystery number correctly, you can keep playing
forever! Again, a fascinating glimpse into the nature of eternity and the fleeting and ephemeral nature
of life on earth, but not at all fun to play!

To limit the number of guesses, the program needs to know a little more about the status of the game
and then what to do when the conditions for winning or losing the game have been reached. You’ll
solve this in two parts, beginning with displaying the game status.

189

DECISION MAKING

To know whether the player has won or lost, the game first needs to know a few more things:

 How many guesses the player has remaining before the game finishes.

 How many guesses the player has made. This is actually optional information, but interesting to
implement so you’ll give it a whirl.

When a program “needs more information” about something, it usually means that you need to cre-
ate more variables to capture and store that information. That’s exactly what you’ll do in this case:
create two new variables called and . You’ll also create a third variable
called that will be used to display this new information in the output text field.

 1. Add the following code in bold to your program. The code that adds the new variables is pretty
straightforward, but be very careful when adding the new code to the
method because there are many new things going on there that you haven’t yet seen.

190

CHAPTER 5

 2. Save the file and test the program. The output text field now tells you how many
guesses you have remaining and how many you made. Figure 5-14 shows an example of what
your game might look like.

 Figure 5-14. The game keeps track of the number of
guesses remaining and the number of guesses made.

191

DECISION MAKING

Using postfix operators to change variable values by 1
The new code assigns the three new variables their initial values:

The total number of guesses the player gets before the game ends is stored in the
variable. You gave it an initial value of , but you can, of course, change it to make the game easier
or harder to play. You also want to count the number of guesses the player makes, so a
variable is created to store that information. When the game first starts, the player has obviously not
made any guesses, so the variable is set to . The variable is a string that will
be used to output this new information, and you’ll see how it does this in a moment. It contains no
text initially (it is assigned a pair of empty quotation marks).

Now take a look at the first two new directives in the event handler:

When you play the game, you’ll notice that Guesses Remaining in the output text field decreases by 1,
and the Guesses Made increases by 1. That’s all thanks to the two lines that use the extremely conve-
nient postfix operators.

Remember the discussion of increment and decrement operators from the previous chapter? If you
want to increase a value by 1, you can write some code that looks like this:

It turns out that increasing values by 1 is something programmers want their programs to do all the
time. So frequently, in fact, that AS3.0 has special shorthand for it: a double- plus sign, which is a spe-
cial kind of operator called a postfix operator. You can use it to rewrite the previous line of code like
this:

It will do exactly the same thing: add 1 to the value of the variable. You can use another postfix opera-
tor, the double- minus sign, to subtract 1 from the value of a variable in exactly the same way, like
this:

Postfix operators change the value of the variable by 1 each time the directive runs. The directives
in the event handler are run each time the Guess button is clicked, which, of
course, is each time the player makes a guess. Having the and vari-
ables update with each button click is therefore a perfect way to keep track of the number of guesses
the player has made.

192

CHAPTER 5

When the game starts, the variable is initialized to . On the first click of the guess
button, this directive is run:

It subtracts 1, making its new value . On the next click, the very same directive runs again, and 1 is
subtracted for the second time, leaving it with a value of . One will be subtracted every time the but-
ton is clicked for the rest of the game.

The variable does the same thing, but instead uses the double- plus sign to add 1 to its
value. When you test the game, you can clearly see how this is working by the way the values update
in the output text field.

Tying up strings
You created another new variable in the program called . You declared this variable as
a , which means that it will be used to store text. The first time it makes its appearance is in
this directive:

For the uninitiated, this is a potentially terrifying segment of code. What on earth does it do?

The first time you make a guess in the game, you’ll see the following text on the second line of the
output text field:

This text has to come from somewhere, and it’s the preceding directive that’s responsible for putting
it all together.

Think about it carefully: what are the values of the and variables the
first time you click the Guess button? (They’re and .)

Okay then, let’s imagine that you replace the variable names you used in the directive with the actual
numbers they represent: 9 and 1. It will look something like this:

Make sense, right? Great, now let’s pretend that the plus signs have disappeared and everything is
inside a single set of quotes:

Aha! Can you see how it’s all fitting together now? That’s exactly the text that is displayed in the out-
put text field. Figure 5-15 shows how the entire line of text is interpreted, from the initial directive to
being displayed in the output text field.

193

DECISION MAKING

 Figure 5-15. From the kitchen to the plate: string concatenation in action!

The directive uses plus signs to join all the separate elements together to make a single cohesive
string of text. This is something known in computer programming as string concatenation, which just
means “joining text together with plus signs.” It’s a very useful technique to use when you need to mix
text that doesn’t change with variables that do. Because the values of the variables change, the entire
string of text updates itself accordingly. It’s so simple, really, but a sort of magical thing to watch when
the program runs.

When you use plus signs to concatenate strings, they don’t have any mathematical meaning—they’re
just like stitches that are used to sew all the bits of text together into one long piece. In the program,
the final result of all this stitching is copied into the variable so you just need to use the

 variable whenever you need to display this text. And that’s exactly what the next bit of
code does.

194

CHAPTER 5

A small technical detail that you should be aware of is that the following directive
actually mixes and variables:

In the program, you declared the variable to be a type. That
means it can’t contain numbers, except in the form of numeric characters (which are
interpreted like letters or words). However, you declared both the
and variables as variables (which are interpreted as numbers). Both
of them are joined together with ordinary text and copied into the string
variable. Isn’t the purpose of assigning variables types to prevent this sort of mixing
and matching between strings and numbers? How is this possible?

In fact, you can use number variables with strings by joining them together with plus
signs, but when you do this, AS3.0 converts the values of the number variables into
strings. The data type in the and variables remains
unchanged as , but the values they contain are converted into a string when
they’re assigned to the variable. This is very useful for exactly the
purpose you’ve put it to: to display text with numbers that are updated by the pro-
gram. It’s such a common requirement in programs that AS3.0 does this type conver-
sion automatically. Thanks, Flash!

Now that you have the variable packed up and ready to go, you get lot of mileage out of
it in the statement. The new bits of code are highlighted in bold:

You’re using string concatenation to add the contents of the variable to the output text
field. But there’s something here that you haven’t seen before:

A backslash followed by the letter is known as a newline character. The newline character forces
whatever text that comes after it onto a “new line.” That’s why the game displays the game status
information just below the first bit of text.

195

DECISION MAKING

You can use the newline character in the middle of any string to break the text onto two lines or more.
Here’s an example:

It displays as follows:

In the program you added the newline character by joining it to the rest of the text using string con-
catenation. Here’s how it looks using the example text:

The result is exactly the same, but the code is a little easier to read because it’s visually very clear
where the line break falls.

Hey, why use the gameStatus variable, anyway?
There’s one last thing you should quickly look at, and a question that you might have had about how
you’ve written the code in the statement. You could have written the first two directives in
the statement to look like this:

Why then did you go to all the trouble of creating a special variable if you could easily
have done without it? Obviously, it’s a lot of code, it makes the statement more difficult to
read, and you’d have to write it all out twice.

The other reason might be less obvious: if you have that text neatly stored in the vari-
able and you need to make any changes to it, you have to change it only once. Any place you use the

 variable in the program is automatically updated with the new text. This might not be
such a big issue in a small program like this number guessing game, but in a bigger program, being
used 10 or 20 times in different places, it would be a lot of work to update.

196

CHAPTER 5

Whenever you find yourself using a lot of the same text over and over again in any of your programs,
try storing it in a variable: you’ll save yourself a lot of typing and a lot of trouble in the long run.

Using uint vs. int variables
Did you try making more than the ten guesses the game said you had remaining? If you did, you would
have noticed that the output text field displayed something like this: Guesses Remaining: 4294967295.
 Figure 5-16 shows an example.

 Figure 5-16. Make too many guesses, and you’ll see output like this.

At the moment. you haven’t programmed the game to end when the player has run out of guesses, so
the game keeps on subtracting 1 from the variable even after the 10 guesses are
used up. After it passes 0, it suddenly jumps to this crazy long number: 4294967295. No, your program
isn’t about to join a secret botnet of computers plotting to overthrow the human race; there is actu-
ally very interesting logic behind it.

You decided to declare the variable as a type. variables store whole
numbers that are only positive. They can never be negative. When a variable declared as a type
does try to become less than zero, exactly the opposite thing happens: it flips to the maximum pos-
sible number, which happens to be 4294967295.

This is very important to know because sometimes you need or want to know whether a number has
run into negative territory. In those cases, make sure that you declare the variable as an type. (As
mentioned before, stands for integer, which is a whole number that can be positive or negative.)

To see the effect that changing the variable to an type has on your program,
try it and see what happens!

 1. Change the line of code near the top of your program that declares the
variable so that its type is set to :

 2. Save the file and test the program.

 3. Click the Guess button more than ten times. You should see the Guesses Remaining become
negative, as shown in Figure 5-17.

197

DECISION MAKING

Keep this in mind whenever you decide what type to declare your variables.

 Figure 5-17. Declare variables as int if you need to
use negative values.

Winning and losing
The game now has enough information about what the player is doing to figure out whether the game
has been won or lost. All you need to do now is to find a way to say, “Hey, the game is over!” and tell
players how well they did.

To do this, add the following to the program:

 A (true/false) variable called that is set to if the game has been won and
 if it hasn’t.

 A method called that checks to see whether the player has enough guesses
remaining to continue playing.

 A method called that tells players whether they’ve won or lost.

An important aspect of this next bit of code is that it shows you an example of how you can use meth-
ods to help you modularize your code. In general terms, modular programming is way of breaking
down complex bits of code into smaller manageable pieces, or modules. Modules can really be any
pieces of code, such as classes or methods, which perform one specific helpful function. Have a look
at the two new methods added in the following code and see if you can figure out how they’re used
to modularize the program.

 1. Add the following code in bold text to your program:

198

CHAPTER 5

199

DECISION MAKING

 2. Delete the following directive from the statement in the event han-
dler. This text will be replaced by the new text from the method. There’s actually no
harm in leaving it in, but it’s redundant.

 3. Save the file and test the program. The game prevents you from guessing more than
ten times and tells you whether you’ve won or lost. Figure 5-18 shows what your game might
now look like if you guess correctly.

 Figure 5-18. The game can now be
won or lost.

The game needed to figure out whether the player used up all the guesses. Before you added the new
code, you could count the guesses, but the program didn’t know what to do with that information.
The new code solves that.

200

CHAPTER 5

The methods help modularize the program by breaking the steps down into manageable pieces. Let’s
go on a little tour of how all this new code fits together.

First, you need to help the game figure out whether the player can still continue playing. You add
the same directive to the first two blocks of the statement in the event
handler, highlighted in bold:

The two new directives are method calls to the method. So as soon as the program
reads one of these directives, it immediately jumps ahead to the method’s function
definition and runs whatever directives it contains.

This is what the function definition looks like:

The method checks to see how many guesses the player has remaining. If there are still enough, noth-
ing happens, and the game continues. But if is less than 1, the game is brought to
an end by calling the method:

201

DECISION MAKING

The method looks to see whether the game has been won or lost by checking whether the
 variable is or . It then displays the appropriate message. (Can you figure out how

string concatenation is being used to display these messages? Compare the code with what you see in
the game’s output text field. I’m sure you can do it!)

 statements work by running their directives if the condition in the parentheses is
. With variables, there are two ways to check whether they’re or
. You can use an equality operator (a double- equal sign) and compare it with

a or value, like this:

If is , this statement evaluates as , and the directives don’t run. If
 is , the statement evaluates as , and the directives run.

You should be familiar with that way of checking for or conditions from the
previous chapter. However, if the condition you’re checking happens to be the value of
a variable, it’s much more convenient and often makes your code easier to
read to use this shorthand:

Because the value of can be only or , it provides exactly the same
information as the first example.

You’ll be using this as the preferred way for checking the value of variables in
 statements throughout the book. is very close to the English phrase “If

the game is won.” Choose the names of your variables carefully to really help to make
your programs easier to read.

How does the program know whether the variable is or ?

You initialized to at the very top of the program. That means it will always be
unless you change it to somewhere in the game. You would change it to only if the player
actually meets the conditions for winning the game. In this game, there is only one way the player can
win: by guessing the correct number.

That makes things really easy because you know that if players still have enough guesses remaining,
and they’ve guessed the correct number, they must have won the game. So all you need to do is set
the variable to and call the method in the same block that checks
whether the player’s guess is correct. Easy!

202

CHAPTER 5

Don’t believe me? Check out the code in bold that shows the section of the
event handler’s statement that does this:

Think about the logic behind what the statement is saying. If players still have enough guesses
remaining, the game will continue. If the game is still continuing, and players have guessed the right
number, they must have won the game. The variable is then set to , and the directives in
the method are run. When the method runs, its conditional statement notices that

 is and displays the message telling the player they’ve won.

Modular programming with methods
Can you see how the and methods were used to help modularize the code? In
truth, you could have written this program without them by adding all the conditions they check for
in one extremely long statement. But if you’d done so, you’d have to write some of the same
code over twice, and it would all start to become very difficult to read and debug.

Modularizing specific tasks inside self- contained methods allows you to modify or debug those bits of
code in isolation without having to change (and possibly damage) other parts of the program that are
working. It also means that whenever you want to perform a certain task, you don’t need to duplicate
any of the code you’ve already written; you just have to call the method.

Using methods to modularize your code might take you a bit of practice, and you might find it a bit
of a brain- twister until you’ve seen a few more examples and experimented with using them in your
own projects. Have a look at how the game is working so far and see if you can figure out how the
interrelationships between methods and method calls are working. Figure 5-19 is a map of how it all
fits together.

203

DECISION MAKING

 Figure 5-19. Use methods to modularize specific tasks.

Polishing up
In the previous chapter, I mentioned that 30% of the time it takes to program a piece of software goes
into making it work, and the other 70% goes into making it work well. There’s no better example of
this principle at work than the number guessing game. It’s playable, but there’s a lot lacking that most
players would complain about.

Most glaringly, try clicking the Guess button after you’ve won the game; the game still keeps counting
your guesses! The other problem is that the only way to play the game again is by closing the SWF file
and then running it again. It would be great if there were a “play again” button that you could click.
And how about the mystery number? The game won’t have much replay value if it’s 50 every time you
play. Roll up your sleeves and see if you can fix these problems!

204

CHAPTER 5

Tackling random numbers
You’ll tackle the random number problem first because you’ll almost certainly find yourself needing to
use random numbers in most of your game projects. AS3.0 has a built- in class called that includes
quite a few methods that are useful for manipulating numbers. One of these is the method,
which generates a random number between 0 and 1. Here’s what it looks like:

You can assign this random number to a variable just as you assign other values to variables, as in this
example:

The fictitious is now assigned a random number between 0 and 1, with up to 16 deci-
mal places. So it could be anything; for example, 0.3669164208535294 or 0.5185672459021346.

What use is a random number between 0 and 1 with 16 decimal places, you ask? Well, practically none
whatsoever. Fortunately, you can do a bit of tweaking to get something more useful.

First, random numbers for games usually need to be integers—whole numbers. All those decimal
places have got to go! Can you imagine what a nightmare the guessing game would be to play if the
mystery number were something like 33.6093155708325684? If you chop off all those decimals, you’ll
have something useful, such as 33, which is within the realms of most human lifetimes to be able to
guess!

The class fortunately has a few built- in methods that can help us round decimals up or down:

 : Can be used to round numbers either up or down. For example,
returns a value of . returns . also returns .

 : Always rounds numbers down. returns . also
returns .

 : Always rounds numbers up. returns , and also
returns . (is short for ceiling. Ceilings are up; floors are down. Make sense?)

To use any of these methods along with the method, you need to use a format that looks
like this:

Think about what this is doing. generates a random number between 0 and 1 with loads
of decimals. So imagine that it came up with a deliciously useless number such as 0.6781340985784098.
You could pretend that the preceding line of code now looks like this:

How would you round that number? You’d round it up, and the result would be the following:

205

DECISION MAKING

But what would happen if the random number were lower, like this?

It would be rounded down to this:

This means that you can use the line of code, , to generate a random
number that has a 50% chance of being either 0 or 1. Not yet quite what you’re looking for in the
game, but not entirely useless, either. There will be many instances where calculating a 50% chance of
something happening will be really useful in your games, and you can use this little snippet of code
to do exactly that.

In fact, you can use the snippet to generate random (/) values.
Let’s pretend that you have a variable called . You could initialize
it with a value of :

Oh, if only that were true! So to make it a little more realistic, you can give it a 50%
chance of being either or . All you need to do is use the

 code snippet in an statement and compare it against a value of .
Here’s what the code might look like:

 has an exactly 50% chance of generating either the
number or . If it happens to be , the first directive runs and becomes

. If it’s , no rain today!

So a random number between 0 and 1 is slightly more useful, but not exactly what you’re looking for
in the game. How can you get a random number between 1 and 100? Here’s how:

The asterisk is AS3.0’s multiplication operator. means multiplied by 100. This line of code mul-
tiplies the random number by 100 and then uses to round it up so the lowest number it can
possibly be is 1. That gives a perfect random whole number that falls within the range of 1 to 100.

206

CHAPTER 5

Here’s another way of looking at it. Let’s say that the random number is 0.3378208608542148. That
would mean the code will look like this:

Multiplied by 100, the random number will then look like this:

The decimal point is just moved two spaces to the right, giving a nice big number to work with. But
you still have the problem of those infuriating decimals to deal with! Not to worry; comes
to the rescue by rounding the whole thing up. So the result is very satisfying:

Perfect for the number guessing game! Figure 5-20 shows an example of this process in action.

 Figure 5-20. From useless to useful: using Math.random and
Math.ceil to help generate random whole numbers within
a specific range

You can use this same format for any range of numbers simply by changing the number that you mul-
tiply the random number by. Here are some examples:

 generates a random number between 1 and 10.

 generates a random number between 1 and 27.

 generates a random number between 1 and 5.

The reason why using starts the range of random numbers with 1 is that any number less
than 1, such as 0.23, will be rounded up to 1.That saves you from having to deal with values of 0, which
are often not useful for the ranges of numbers you’ll be looking for in your games. If you do want 0 to

207

DECISION MAKING

be part of the range, however, use instead. will give
you a random number between 0 and 100.

What if you want to generate a random number within a range of numbers that starts
at something other than 1 or zero?

Let’s say you need a number between 10 and 25. That means that you have 15 possible
numbers that could be chosen: 10, 11, 12 . . . up to 25. All you need to do is generate
a random number between 0 and 15, and then add 10 to it push it up to within the
range you need. This is what the code will look like:

Think about it this way. The random number is between 0 and 15. Let’s say it’s 8. Then
you add 10 to it. You end up with 18. You’ve got a range of possible random numbers
between 10 and 25!

Now use what you learned about random numbers and apply it to the game:

 1. Modify the method with the new code in bold. In addition to randomizing the
 variable, you’ve added a directive for testing purposes so that you can

actually see what that number is in the Output panel. (Notice that string concatenation was
used in the directive so that the display in the Output panel is more readable.)

208

CHAPTER 5

 2. Save the file and test the program. The mystery number is now a random number
between 1 and 100. You’ll also see the text The mystery number is: ?? displayed in the output
window so that you can make sure everything is working as you expect it to. Figure 5-21 shows
an example of what your game might now look like.

 Figure 5-21. Randomizing the mystery
number

Disabling the Guess button
One quirky bug in the game so far is that if the player wins the game but continues clicking the Guess
button, the output text field still continues to count the guesses. If you think about how the program
is working, this makes perfect sense because the button itself has no way of knowing whether or not
the game is over; it just keeps on dutifully doing the jobs you assigned to it.

To fix this, you need to do three things when the game ends:

 1. Remove the event listener from the object.

 2. Disable the button so that it can’t be clicked.

 3. Dim the Guess button so that it’s obvious to the player that the button can’t be clicked. This is
an optional step, but anything you can do in your games to provide visual cues about how your
GUI works will really be appreciated by your players.

Three very straightforward lines of code are all you need.

 1. Add the following code in bold to the method:

209

DECISION MAKING

 2. Save the file and test the program. Play through the game. When it’s finished, the
Guess button will be dimmed, and you can’t click it. Figure 5-22 shows an example.

 Figure 5-22. Disable and dim the Guess button
at the end of the game.

All the new code was added inside the method’s function definition because its directives run
only when the game is finished.

The first new directive removes the event listener from the object:

Nothing happens when the Guess button is clicked, but all the button states still work. To prevent this,
you need to specifically disable the button using this line of code:

Buttons have a special property called that determines whether or not they’re clickable. The
 property accepts values (the default value is). To disable the button, simply

assign its property a value of .

The last new directive dims the button on the stage. Use the button’s property and set it to ,
which makes it semitransparent:

To help you keep things a bit more modular, you could actually move all these directives related to
disabling buttons into their own method, perhaps called . In such a small program as
the number guessing game, however, it would probably be more trouble than it’s worth. Modularize
your code wherever you can, but also use your judgment about when it’s appropriate or practical.

Playing again?
You’ve solved a bug, so let’s add a feature! A Play Again button!

 1. Create a new button symbol called .

 2. Drag an instance of the onto the stage next to the Guess button. Give it the
instance name playAgainButton.

210

CHAPTER 5

 3. Add the following code in bold to the method. These directives will initialize the buttons
for us when the game starts.

 4. You also need to add some more code to the method:

211

DECISION MAKING

 5. You need an event handler for the . Add the following code just below the
 method:

 6. Save the file and test the program. The Play Again button appears only at the end of
the game and disappears when you click it (see Figure 5-23). The Guess button is also fully
functional when the game starts again.

 Figure 5-23. Give the player the option to play again.

In the previous section, you disabled the Guess button when the game finished. Now that you can play
again, you need to make sure that it’s enabled and fully visible when the game starts. You also need
to make sure that the Play Again button isn’t visible when the game starts. The three new directives in
the method accomplish this:

You also added two new directives to the method:

These directives simply make the Play Again button visible and add its event listener,
:

212

CHAPTER 5

The first directive is a call to the method, which initializes all the elements of the game to their
starting values and assigns the random mystery number. Calling it again from the end of the game
completely resets the game. A new mystery number is also randomly chosen. Hey, it’s a new game;
you can play again!

You can see in this example why it made sense to move all the initialization directives into the
method. Whenever you want to reset the game, all you have to do is call it from anywhere in the
program.

The final directive removes the event listener from the :

It’s a good idea to remove event listeners from objects whenever you aren’t using them. If you don’t,
the Flash Player still runs them in the background. The Play Again button’s one and only function is to
reset the game, and once that job is over, it’s no longer needed. So as odd as it may seem, its next duty
is this somewhat paradoxical and semisuicidal directive: to remove its own event listener. You don’t
need it until the button makes its next appearance at the end of the game, so you might as well get
rid of it. Its listener will be reassigned to it the next time the game ends.

Seeing the final code
Hey, that’s amazing, the game is done! Just in case you need to double- check something, here’s what
the final code of the game looks like:

213

DECISION MAKING

214

CHAPTER 5

215

DECISION MAKING

Taking it farther
This is the first complete game in this book. But is it really done?

Game design is a funny thing. Games, being as complex as they are in so many ways, are never really
finished. Designers just stop working on them when they seem to play well enough, and no one com-
plains about them. There are usually many deep layers of complexity or added functionality that could
be added to games if the designer had enough time, patience, and imagination to do so. Patience and
imagination are things game designers seem to have in endless supply. It’s usually time that throws the
spanner in the works.

There’s quite a bit more that you could add to this game. Here are some ideas.

Tracking guesses
You set the game up to allow ten guesses, but some players in a hurry might not have the patience to
remember what some of their previous guesses were. You can add another text field that displays all
their previous guesses for them and adds the new guess when they make it.

To do this, you’ll need a new text field, perhaps called . You can create a new string vari-
able called that stores all the guesses as a string of text, with each number separated
by a blank space. Whenever the player makes a new guess, you can add it to the vari-
able and then update the text field. Here’s a sample of what the core of this code will
look like:

This line of code will work well in the event handler. Can you see how the code
in the first directive would separate each number with a blank space?

Adding a visual display
A “hangman”- style visual display of how well (or poorly!) the player is doing is an interesting enhance-
ment. (Chapter 4 discussed how to use Movie Clip frames to create object states.) For the number
guessing game, you can create a Movie Clip object with ten different states. Each state can incremen-
tally show the player how close they are to impeding peril, like the addition of limbs to the chalk
figure in game of hangman.

Once you have the hangman Movie Clip object designed, the code is very simple to implement.
You’re already using a variable called that tracks the number of times the player
has guessed. Each guess can be equal to a new frame in the hangman object, and you can use the

 variable to advance it to the next frame. All you need to do is drop a line of code in your
 method that looks something like this:

Every time the number of guesses is increased by 1, the hangman Movie Clip object advances to the
frame that matches that number.

216

CHAPTER 5

There are a few places in your game where you could add this code, but it might make the most sense
to add it in the method, outside of the statement.

Entering numbers with the Enter key
At the moment, you can enter numbers by clicking the Guess button. Wouldn’t it be nice if you could
also enter them by hitting the Enter key? Of course it would!

Capturing key presses will be discussed in detail in the next chapter, but here’s a sneak peek for the
adventurous among you.

It isn’t too difficult, but there’s one major modification you have to make to the structure of your
code. If you click the Guess button or press the Enter key, you’ll want the same directives to run, so
the Enter key and Guess button both need to call the same method. Create a new method called

 and have it contain all the directives that are currently in the event
handler. Then call the method from both and the new event handler
you create for your Guess button.

Up for a challenge? Try this modification and see whether you can make it work. (You can find the
complete final source code for this modification in the chapter’s source files in a folder called

.)

 1. To capture key presses with your program, you need to import the and
classes into your program. Add the following two directives in bold to the top of your
program:

 2. Add an event listener to the object that listens for key presses. Add the following code
in bold text to the method:

217

DECISION MAKING

 3. Modify the event handler to look like the following. Before you delete all
the directives however, copy and paste them into a text editor for safekeeping because you’ll
need them again in step 4.

 4. Add the following code. Notice that all the directives that were previously in the
 event handler are now in the new method:

218

CHAPTER 5

 5. Save the file and test the program. You should now be able to enter your guesses by
pressing the Enter key on the keyboard.

Don’t worry if you don’t understand all the new code just yet; all will be revealed in the next chapter!

Turning the tables
A more advanced project that’s fun to try is to change the game so that the computer needs to guess
a number that you’re thinking of. This will be a completely new program, but you currently have all
the skills you need to make it work.

Want to give it a try? Here’s a hint: to get this game working, you’ll need to use a division operator.
You’ve already seen the multiplication operator:

You used the multiplication operator to multiply the random number by 100. The division operator
looks like this:

It’s a simple forward slash. You can use it in any directive to divide two numbers:

This example gives a result of 50. You can then assign this calculation to variable in a directive. Here’s
an example:

Hey, can you see where you’re going with this? I’m not going to spoil your fun of figuring out the
rest!

219

DECISION MAKING

Summary
The number guessing game that you looked at in this chapter is extremely important for a few
reasons:

 It’s the first complete and “real” game in the book. It’s small in size, but it contains everything
that a fully working game should have. Even though you can and will build more complex
 larger- scale games, this number guessing game is a model for the kinds of problems your
games need to solve. If you understand the problems of game design and the solutions you
found for them here, you’ll be in a very strong position when you attempt something a bit
more ambitious.

 You now understand input and output, variables, methods, statements, button and
keyboard events, and modularizing programs. These topics represent the core concepts of
computer programming. You have a lot of programming power now at your disposal to build
a wide variety of logic- based games.

 To keep things as simple as possible, the focus of this chapter has been on the internal logic
and structure of games. There’s no reason, however, why you shouldn’t combine these tech-
niques with the techniques you looked at in the previous chapter for controlling visual objects
on the stage. In fact, you should definitely combine these techniques! With a bit of creativity,
you’ll be able to build complex puzzle and logic- based mystery adventure games that can be
completely visual.

Before you continue in the book, take a short break and try to create a game of your own based on
the techniques covered so far. There’s no better way to learn than by trying things out in your own
way, and it will give you a greater appreciation for some of the more advanced techniques you’ll be
looking at in the chapters ahead.

In Chapter 6, you’ll take a detailed look at how to control objects on the stage with the keyboard. It
will be the stepping stone you need to progress from designing games to designing video games.

221

Chapter 6

One of the first things your games must do is allow game players to move an object
around the stage. The object can be moved with either the mouse or the keyboard. In
this chapter, you’ll look at techniques for controlling an object with the keyboard.

This chapter covers the following topics:

Using the , , and events

Stopping the player character at the edges of the stage and screen wrapping

Scrolling: vertical, horizontal, and parallax scrolling

Setting up the project files
If you’ve worked through the projects in the previous chapters, you should by now
be very familiar with the format used to set up the project files:

1. Create a project folder called .

2. Open Flash. Select File New and choose Flash File (ActionScript 3.0) from the
New Document dialog box.

3. Click the OK button.

4. Select File Save As.

CONTROLLING A PLAYER CHARACTER

222

CHAPTER 6

 5. Give the new FLA file the name characterControl.fla.

 6. Find the project folder that you created in step 1.

 7. Click the Save button.

 8. In the Project panel, click the drop-down menu. Select Quick Project. The characterControl.fla file
will appear as a project file.

 9. In the Project panel, click the New File button.

 10. Enter Main_Character.as in the File field. In this project, you’ll start giving the Main classes
unique names. With a lot of projects using the same class names, you might become confused
by which Main belongs to which project. But it’s not just you; sometimes the Project panel isn’t
sure which Main you’re trying to access, either, and sometimes loads the wrong one. When you
see Main as part of a class or file name, you’ll know that it refers to the project’s document
class.

 11. Select ActionScript from the File type drop-down menu and click the Create File button.

 12. Flash will create and open the file.

 13. Double-click the file to make it visible again in the workspace.

 14. In the Properties panel, enter Main_Character in the Class field.

 15. Save the file.

And now you’re ready to play!

Controlling a player character with the keyboard
One of the most basic requirements of many games is being able to control a player character with
a keyboard. It’s not hard to do: it’s a technique that makes use of two of AS3.0’s built-in classes: the

 class and the class. To use them, you can simply import them into the top of
your program, along with your other imported classes:

Like the class that you used in earlier chapters, the and classes
contain methods and properties that you can use to help your players interact with your games using
the keyboard. And, like the class properties, you’ll be using all these new methods and
properties with your eyes closed in no time at all.

Controlling with the keyboard—the wrong way!
There are two ways to control an object with the keyboard: the right way and the wrong way. You’ll
actually begin by learning to do it the wrong way first.

Why would you learn the wrong way? Well, the nice thing about doing player keyboard control incor-
rectly is that it’s very straightforward and easy to understand. And, oh yeah, it kind of works, too. But
even if you never use it to control a player character in one of your games, you’ll find endless other uses
for it as a general technique for figuring out which keys your players are pressing on the keyboard. It’s

222

223

CONTROLLING A PLAYER CHARACTER

also the basis for understanding the right way to do keyboard control, which adds a few extra layers of
flexibility and polish to the same underlying system. If you understand how the wrong way works first,
you’ll be better able to understand and appreciate the right way to do things. But don’t worry, you’ll
take things a step at a time, and you’ll be surprised by how simple the process is when you put it all
together.

Creating a player character
The first job is creating a player character that you can move. To make things a little easier for myself
in the game design process, I decided to try and create it with the dimensions of: 50 pixels by 50 pix-
els. This doesn’t mean that the object will be completely square-shaped, but that those dimensions
will be its maximum height and width. There are some important reasons for this that I’ll discuss in
detail in the next chapter, but for now, just trust me when I tell you that it will make your life as a
game designer quite a bit easier a few more stations down the line.

Make sure that the player character is positioned in the exact center of the symbol editing window.
Many of the techniques covered in this chapter require you to calculate what the half-width and half-
height of the object is, and the numbers will be a little more consistent if the object is
exactly centered. The following steps show you how to do this.

So let’s create the player character!

 1. The first job is to make a grid visible so that you can design the character in it. Select View
Edit Grid.

 2. The Grid dialog box opens, which allows you to modify the properties of the grid. Select Show
grid. (You can also select the Snap to grid option if you want Flash to help you precisely align
your shapes and objects. It’s sometimes very helpful, but can also sometimes be very irritating,
so I’ll leave it up to you whether you want to select it.) Figure 6-1 shows an example of what
my Grid dialog box looks like.

Figure 6-1. Make a grid visible to help you design your player object.

 3. Click OK. You’ll see a 50-by-50 pixel grid of squares appear on the stage. This grid is visible only
while you work and won’t be visible in the published SWF file.

 4. Select Insert New Symbol. Give it the name Player and make sure that it’s a Movie Clip. Select
the Export for ActionScript option and click OK.

223

224

CHAPTER 6

 5. The symbol editing window will open. Select View Zoom In a few times so that one of the
gray grid squares is large in the editing window. Draw your player character. Mine looks like
Figure 6-2. Draw it within the confines of one of the grid squares so that it’s contained within
a 50-by-50 pixel square shape. (Refer to Chapter 2 if you need a refresher on how to design
characters.) You won’t be targeting any subobjects like the character’s eyes in this example, so
you don’t need to worry about creating any of your character’s features as separate Movie Clip
symbols if you don’t want to.

Figure 6-2. Draw your player character
inside one of the grid squares.

 6. Make sure that the player is centered in the middle of the editing window. Select Edit Select
All to select the entire character. Figure 6-3 shows what the character looks like when it’s com-
pletely selected.

Figure 6-3. Select your character completely.

 7. Now you need to center the character. You know that it’s exactly 50-by-50 pixels wide, so you
need to give it an position of -25 and a position of -25 to center it. This will place the char-
acter in the very center of the editing window. In the Position and Size pane of the Properties
panel, enter -25 in the X box and -25 in the Y box. Figure 6-4 shows what your character might
look like after it’s centered.

225

CONTROLLING A PLAYER CHARACTER

Figure 6-4. Center your character in the
middle of the symbol editing window.

 8. Click Scene 1 to return to the main stage, and drag an instance of the symbol onto the
stage. In the Properties panel, give it the instance name player. Figure 6-5 shows how your main
stage should now look.

Figure 6-5. Drag an instance of the Player symbol onto the main stage, and give
it the instance name player.

 9. Save the file.

226

CHAPTER 6

Adding keyboard control code
Next you’ll add the code to the file to make the character move. You’ll recognize
the format you’re using from other projects in the book, but some of the specifics are new. Add the
new code carefully! (If you don’t feel like typing out all this code, you’ll find the
file in the chapter’s source files in the subfolder.)

 1. Open the file and add the following code:

 2. Save the file and test the project.

227

CONTROLLING A PLAYER CHARACTER

 3. Use the keyboard arrow keys to move the object around the stage. It works! (If it
doesn’t, double-check to make sure that you assigned as the document class
and gave the player character the instance name .)

I’m sure you noticed some obvious problems with this player character control scheme already, but
before I show you the solution, let’s have a quick look at how it is working. The first thing you had to
do was import two new classes into the program:

The class’s primary job is to make it easier to figure out which keys the player of the game
is pressing. The class allows you to add an event listener to the stage to listen for key
presses. That’s exactly what this next bit of code in bold in the method does:

AS3.0 has a built-in class called . When you publish a SWF file by testing the project, AS3.0
automatically generates an instance of this class called (with a lowercase s,) and you can use
this object anywhere in your program. This object is very useful for attaching keyboard event
listeners, and that’s what you’ve done here.

You added an event listener to the object, which is triggered by the property of the
 class. The job of is to listen for key presses. Whenever it

“hears” the keyboard being pressed, it figures out exactly which key is pressed and assigns a key code
to it. The key code is a number (for example, 40 or 37) that corresponds to a specific key on the key-
board. Luckily you don’t need to know or remember what these key codes actually are. The
class contains convenient properties called , , , and that you can use in place of the
actual key code numbers.

Let’s have a look how to use this in the program.

You created a method called , whose job is to process this event. It looks like this:

228

CHAPTER 6

The key codes that AS3.0 uses are based on ASCII, which is a fixed standard for inter-
preting numbers as characters. For example, the ASCII number 65 refers to the upper-
case letter A. However, different operating systems don’t map these codes to the
keyboard keys in exactly the same ways. If you design and test a game using key codes
on a Windows computer and then run the SWF on another operating system such as
OS X, the key codes that you used might not match OS X’s keyboard mapping. For this
reason, it’s preferable to use the class’s built-in key properties (such as
and) instead of the actual key code numbers.

If you need to use a key that isn’t represented by these properties, you have to use a key
code number. Make sure that you test these key codes carefully on each operating sys-
tem your game will run on to ensure that it’s mapped to the correct keys on every one.

Some keys that you might use for your game won’t work while you’re building and
testing the game in the Flash development environment. Flash reserves some keys for
shortcuts (for example, Crtl and S to save a file). So if you used any of these keys or key
combinations in your game, you need to hold down Shift while testing the keys to over-
ride Flash’s own use of them. The keys will work fine in the published SWF.

Very simply, this is an statement that figures out which key is being pressed and then moves
the object left, right, down, or up by adding or subtracting 10 pixels from its or positions.
But there are a few new things here that might seem confusing at first glance, so I’ll try to clarify this
a bit.

Event listeners send a lot of information to the event handler in a special variable. All event
handlers have to include an event variable to store this information—it’s just part of the deal. Event
variables that contain keyboard information are typed as variables, like this:

They’re declared directly in the event handler, as this code in bold highlights:

You can access this variable at any time to use the information it contains. One piece of infor-
mation is the key code number for the key that’s being pressed. This number is stored in a property
of the variable called . You can access it like this:

229

CONTROLLING A PLAYER CHARACTER

It contains the key code number of the key being pressed. The left arrow key is , the right arrow is
, the down arrow is , and the up arrow is . You could in fact, have written the conditional state-

ments like this and they would have worked just fine:

And actually, if you want to write it this way, I won’t stop you! But AS3.0’s class contains
loads of predefined properties that already represent these numbers. So you don’t have to memorize
the number associated with each key on the keyboard. Instead, you just need to use the
class’s easy-to-read-and-remember keyboard properties:

In fact, the class contains a property for every key on the keyboard. If you want to
have a look at the whole list, point your web browser to

.

230

CHAPTER 6

Okay, so now that you know how this code is working, why is it working so badly? When you tested the
program, you might have noticed a few big problems:

 The movement of the object is jittery.

 When you press one of the arrow keys, there’s a slight delay before the object starts
moving.

 You can move the object in only one axis (or) at a time. You can move the
object left and right, or up and down, but not diagonally. Try pressing both the up arrow and
the left arrow at the same time; it just moves the object in the direction of whichever
key you pressed last. How can you move the object on the diagonal?

These problems are due to your computer keyboard’s key buffer. When you press a key on the
keyboard, the keyboard tells the computer that the key has been pressed down only once; it doesn’t
know whether the key is being held down. The computer’s operating system has a key repeat feature
built into it that resends the event at regular intervals, however. The key repeat is needed
for word processors, for example, so that you can hold down a key to repeat a character on the
screen. You don’t have any control over how the key repeat runs, and the result with a Flash game is
the jittery movement you see on the stage.

To solve this problem, you need to work around the key buffer so the keys don’t directly move the
object. You can use the keys to determine the object’s direction and speed, but you need to find
another way to actually move the object.

Controlling the keyboard—the right way!
Now that you know how AS3.0 can find out which keys you’re pressing, you can use this same basic
system to refine the keyboard control program.

There’s a lot of new stuff here, so don’t panic! I’ll break everything down step by step once you have
the program running to show you exactly how it works. But for now, here’s a quick summary of what
you need to do:

 You have to import AS3.0’s class so that you can use its property.

 You have to create two new variables: and . These variables will store the vertical and
horizontal velocities of the object.

 You’ll change the event handler so it no longer changes the position of the
object. Instead, it updates the and variables with the speed and direction that the object
should move in.

 You have to add an event handler called . Its job is to detect when the arrow keys are
released. When they are, it sets the object’s speed to .

 You’ll create a new event handler called that uses the and variables to
actually move the .

 Finally, you’ll set the FLA file’s frame rate to 30 frames per second so the object will
move smoothly.

231

CONTROLLING A PLAYER CHARACTER

If you entered the code from the last section in the file, you could try modifying
it with this new code, but it might be safer just to erase it all and start again. There are enough differ-
ences in the code to make it an almost completely new program. Let’s create a new class file for this
example:

 1. In the Project panel, click the New File button (you’ll find it in the bottom-right corner of the
panel). Make sure that ActionScript is selected as the file type.

 2. Enter Main_Character_Two in the File field.

 3. Click the Create button.

 4. The file opens as a blank document in a new ActionScript editor
window.

 5. You need to set as the FLA’s document class. Open the
 file and enter Main_Character_Two in the Class field.

 6. Save the file.

 7. Open the file.

 8. Add the following new code to the file (again, if you prefer not to
type it, you’ll find the finished file in the folder in this chapter’s source
files):

232

CHAPTER 6

 9. Save the file.

 10. Open the file. You’ll change the movie’s frames per second to 30. The
frames per second (fps) determines how many times per second the main stage is updated.
The higher the fps, the smoother the movement of the object or any other animations
in the game will be. Flash’s default fps is 12, but most people find that this is a little too choppy
for games. A higher fps rate produces smooth movement, but consumes more CPU power. A
rate of 30 fps tends to work well for games—it’s smooth and doesn’t affect performance too
badly—so that’s what you’ll use. I’ll discuss fps in more detail a little later in the chapter.

233

CONTROLLING A PLAYER CHARACTER

 11. Open the FLA’s properties by clicking anywhere on the main stage (except on the object).
In the Properties panel, change the FPS value to 30. Figure 6-6 shows what this looks like.

Figure 6-6. Change the movie’s fps to 30 for smoother
animation.

 12. Save the file.

 13. Test the project. Use the arrow keys to move the object around the stage. The move-
ment is now very smooth, and you can also move the character across the stage diagonally. Just
the kind of character control you’re looking for!

When you test the movie, you might see two warnings in the Output panel that read
something like this: Warning 1090: Migration issue. Earlier versions of ActionScript had
two methods, called and , which were built directly into the lan-
guage. They were dropped from AS3.0 when the language was overhauled, but they
are exactly the same method names that you used for the methods in the program.
The warnings tell you that if you want to use these methods, you need to create an
event handler for them because Flash will no longer do it for you. That’s exactly what
you’ve done, so you can safely ignore these warnings. (If you don’t want these sorts of
warnings displayed in future, you can switch them off in the Warnings section of Flash’s
Preferences.)

Let’s take a look at how this new program differs from the first one you wrote.

Moving with velocity
The first thing to notice are the two new integer variables, and , which store the object’s
speed—how fast it’s going. Actually, I need to be a little more accurate here. It’s not really the speed
of the object that you’re storing, but the velocity. That’s what the v stands for in the variable names:
velocity x and velocity y.

Velocity is speed, but it’s also direction. This is sometimes a confusing thing for beginners to grasp, so
it’s worth discussing in more detail. Have a look at this directive:

 refers to the velocity on the x (horizontal) axis. This actually tells you two things. First, 5 is the number
of pixels that you want the object to move each frame. You set the frame rate to 30 fps, which
means that the object will move 5 pixels each frame, or 150 pixels each second. So that’s the first thing:
its speed.

234

CHAPTER 6

Notice the negative sign:

What does it tell you? Remember that in Flash the very left edge of the stage has an value of . As
you move to the right, the value increases. If you move to the left, it decreases. That means that
those values that are negative are actually pointing to the left. Positive values point to the right. This
directive thus tells you the speed and direction, also known as velocity:

Here’s another example:

 refers to the velocity of the object on the y (vertical) axis. The very top of the stage has a value of
. As you move down the stage, the values increase. This directive says the following:

That’s its velocity! Not so hard at all, is it? Figure 6-7 is a diagram of how positive and negative values
can show direction.

x

y

Figure 6-7. You can find the direction of movement by determining whether the x or y
values are positive or negative.

If all this seems spectacularly underwhelming and blindingly obvious, good for you! It should be!

Now let’s see how all this talk of velocity fits in to what’s going on in the program.

235

CONTROLLING A PLAYER CHARACTER

The choice of the variable names and has become a programming convention
for variables that refer to horizontal and vertical velocities, so they’re used in this book.
Most programmers who see the variable names and immediately know what
they’re referring to. It’s just one of those unwritten programming rules that everyone
seems to follow, and no one knows why. Of course, you can give these variables any
name you like, such as and (which are much more descriptive
and might make your program easier to read). But, hey, conventions are sometimes a
hard thing to knock, so this book sticks with and .

Using the new onKeyDown event handler
The event handler has changed slightly from the first program:

The statement is no longer changing the object’s or properties directly. Instead, it’s
simply updating the and variables with the appropriate velocity. The job of actually moving the
object is delegated to the event handler. More on that in a moment, but first let’s take
a quick look at this other new event handler: .

Using the onKeyUp event handler
In the first simple keyboard control program, an event handler called that figures out which
keys are being pressed was added to the stage. The funny thing about the event handler is that
it only knows when keys are being pressed down, not when they’re released. It turns out that knowing that
a key is up is just as important for games as knowing that it’s down. AS3.0 therefore has a handy little prop-
erty of the class called that can tell you this information. In the method, you
used the property in an event listener that you attached to the object in this directive:

236

CHAPTER 6

This listener figures out which keys are being released and sends this information to the event
handler so that you can do something useful with it. But why would you want to know whether a key
is no longer being pressed? Think about it this way: you changed the event handler so
that when the player of the game presses one of the arrow keys, the velocity of the object is
changed by 5 pixels. That’s great because when you press one of the arrow keys, you obviously want
the object to move. But what about when you stop pressing one of the arrow keys? It would
make sense if the object also stopped. However, unless you specifically tell the program this,
it doesn’t know what you intend, and the object just continues moving endlessly, forever. This
wasn’t a problem in the simple keyboard control program in which the method was chang-
ing the object’s and properties directly, but now that you’re using velocities and delegating
the task of actual movement to the event handler, it becomes a big problem.

The job of the event handler is to check whether any of the arrow keys is released and then
set the object’s velocity to . That’s what this code does:

It should be pretty self explanatory, but there’s one thing that will be new to you: the operator. It
looks like this:

It’s made up of two pipe characters. The pipe character is a vertical line, and you’ll find it somewhere
on your keyboard near the brace or forward slash keys. Take a good look; it’s there somewhere!

The operator is used inside conditional statements to help you find out whether one thing or
another thing is true.

Have a look at this line of code:

It literally means this:

237

CONTROLLING A PLAYER CHARACTER

Releasing either the left or right arrow key sets the horizontal velocity to —the object stops mov-
ing left or right. Because both conditions have exactly the same result, it makes sense to combine them
into one statement with an operator. It very efficiently saved a few extra lines of redundant code.

Using the onEnterFrame event handler
The event handler is what actually makes the object move. It’s triggered by an
event listener that uses the property of the class. To use it, you first have to import
the class with this directive in the class definition:

You then set up the event listener in the method with this directive:

It follows the same format as the other two listeners, with one important difference: the listener isn’t
attached to the object. So what is it attached to? Adding an event listener without attaching
to an object means that the listener is attached directly to the actual class it’s in; in this case, the

 class. This won’t be of much relevance now, but it will become very important
when you start looking at building games using different classes in Chapter 8.

When the event listener is triggered, it calls the event handler:

What this event handler does is very simple: it takes the horizontal and vertical velocities in the and
variables and assigns them to the object’s and properties. That makes the object move. Yay!

But wait. What is the event that calls this handler? You know that other events in the program are triggered
by keys being pressed or released. and are pretty self-
explanatory in that regard, but what kind of event is ?

Put the kettle on and throw another log on the fire. Here’s a little story that might help explain what’s
going on. Flash was originally designed as a tool for doing animation, which is the art of creating the
illusion of motion from nonmoving objects. A lot of the concepts that Flash borrowed came from the
animation industry, which you might know used celluloid film to create this illusion. Here, briefly, is
how animation with film works:

Film is a long strip of celluloid (plastic) made up of a series of little squares called frames. Each
frame contains an image, and each image in a frame is just slightly different from the image that’s
in the frame that comes before it. If enough of these slightly different images are flashed in front of
a viewer’s eyes fast enough, the individual nonmoving images will appear to be a single image that
moves. This illusion of motion, which is the basis of all film, video, animation, and even game anima-
tion, is called persistence of vision.

238

CHAPTER 6

To create a believable illusion of motion, these slightly different images need to be flashed in front of
a viewer’s eyes at least 12 times per second. (This is what was discussed earlier as fps.) Most cartoon
animation is animated at 12 fps. For really fluid natural motion, you need to increase the frame rate
to about 24 fps. The 24 fps rate is the frame rate used by films shown in a cinema and high-quality
animated films. Video uses a frame rate of roughly 30 fps.

In this project, the fps is set to 30. This means that all the objects on the stage are updated 30 times
per second. Each time Flash does one of these updates, it “enters a frame.” So the program enters a
frame 30 times per second.

In a nutshell, that is what means. Every time the program enters a new frame, the
 event is triggered. So whatever directives you put inside an event handler called by an
 event runs 30 times per second. It runs for the entire duration of the program or until

you remove the event listener.

In the current program, these two directives are being run 30 times per second:

It makes the object appear as though it’s moving. Here’s how:

Let’s imagine that the object is at an position of 100. If the player of the game presses the
left arrow key, the variable is assigned the value . The next time the SWF “enters a new frame,”
-5 is added to the object’s current position. The object’s new position is now 95. On the next
frame, -5 is added to the object’s position again, so its new position becomes 90. If the left
arrow key is released, the variable is assigned a value of . Zero is then added to the object’s
 position (using the operator), so its position remains 90 and it stops moving.

Clever, huh?

These may seem like a lot of hoops to jump through just to get the object to move on the
screen. Hang on for a bit; the advantages of this approach will be very apparent a bit later in the book
when you look at natural motion using physics simulations. If you can calculate the velocity of the

 first, there are all kinds of fun things you can do with it before you use it to update the posi-
tion of the . Patience, my child; all shall be revealed!

The event is one of the most important of AS3.0’s events for game designers. It’s the
basis for moving objects with programming code in Flash. Most of the new techniques you’ll be look-
ing at will be triggered by the event, so you’ll find that the event handler
will become quite a busy, bustling little place from now on—soon to be full of new friends and cheer-
ful chitchat.

Setting screen boundaries
Now that you can move the little player character around the stage, notice that you can drive it com-
pletely off the edge and keep going on forever and ever if you want to. There are three main strate-
gies that game designers use to prevent this from happening:

239

CONTROLLING A PLAYER CHARACTER

 Blocking movement at the edge of the stage.

 Screen wrapping. This is what happens when the leaves the left side of the stage and
emerges from the right.

 Scrolling. When the object is in a very big environment, the background moves to
reveal unexplored areas.

You’ll have a look at each of these techniques one at a time.

Blocking movement at the stage edges
Like most programming problems, if you understand the logic behind what you’re trying to accom-
plish, all you need to do is figure out a way of representing that logic with programming code. Here’s
the logic behind what is accomplished with this bit of code:

Hmm. Easier said than done? Let’s see.

AS3.0 doesn’t have any way of representing “the edge of the screen” as a whole, but you can access the
built-in object. It contains and properties that tell you how big the stage is.
Maybe you can use those properties to figure out the top, bottom, left, and right boundaries of the stage
and then stop the object from moving if you discover that its or positions go beyond them?

Sound promising? Give it a whirl! Follow these steps:

 1. Add the following code to the event handler:

240

CHAPTER 6

 2. Save the file and test the project.

 3. Use the arrow keys to move the to the edges of the stage. The will stop moving
when its center point reaches the edge, as shown in Figure 6-8.

Figure 6-8. The player object stops moving when it
reaches the edge of the stage.

The leftmost side and very top of the stage are always represented by a value of . To find out what
the values of the rightmost side and bottom of the stage are, use the and

 properties. By default, Flash’s stage dimensions are 550 by 400 pixels, which is what
you’re using in this project. That means that the property has a value of , and
the property has a value of .

You can actually change the dimensions of the stage at any time if you decide that you want to make the
game screen bigger or smaller. One advantage of using the and
properties is that if you change the stage dimensions, you don’t have to tediously update the code by
hand with the new sizes. Using and means that they’ll update
automatically. But no matter the size of the stage, the top and left size of the stage will always be 0, so
they remain the same.

The statements work by checking to see whether the object’s or positions go
beyond the values that you defined as the edges of the stage. If they do, the object is forced
back to that position, which is the very edge. Even though the object does actually move
slightly beyond the stage boundaries that you set, you don’t ever see it do that; you see it only at the
point at which it’s been forced back. This is exactly the same situation as in Chapter 4, when you were
controlling the storybook cat’s position with buttons. Same problem; same solution. Remember, I
told you it would come back to haunt you at some point! But this time you’re completely prepared.
Problem solved!

Let’s have a quick look at the first conditional statement:

241

CONTROLLING A PLAYER CHARACTER

In plain English, this means the following:

If the player’s position is more than the stage’s maximum width (which is 550), move the player back
to an position of exactly 550.

The rest of the statement does exactly the same thing by checking the remaining three stage
edges and then repositioning the object if it needs to. It’s a trap that the object can’t
escape from! A pen for the poor little piggy, alas!

Building a better pigpen
So the code works, but can you make it work a little better? It actually looks rather awkward when half
of the object manages to squeeze past the edge before being stopped. Wouldn’t it be better
if you could stop the whole thing?

To do this, you need a little bit more information about the object. You need to know the
following:

 What half its width is

 What half its height is

After you know this data, you can add half of the object’s width to its position and half
its height to its position. You can then test these new values against the stage’s dimensions, which
should stop the object before it even manages to sneak as much as a trotter over the edge of
the stage.

You might be catching on to the fact that whenever I talk about “getting more information,” it usually
means that more variables are needed to store that information. In the next new section of code, you’ll
create two new variables, and , directly inside the event
handler. This is a way of creating variables you haven’t looked at before. When variables are declared
directly inside a function definition, they’re called local variables. More about that in a moment, but first
let’s fix up this code!

 1. Make the changes and additions to the event handler shown in bold text (the
two statements are considerably changed since the first attempt, so you might want to
rewrite them from scratch instead of trying to update them):

242

CHAPTER 6

 2. Save the file and test the project. You can now move the
object to the edges of the stage, and the entire object will be contained inside it. Figure 6-9
shows an example.

Figure 6-9. The entire player object is contained
within the stage by adding half its height and width
to the calculation.

The first thing is to declare and initialize the two new local variables:

These variables store a value representing half of the object’s width and height. You know that
the object is 50 pixels wide and 50 pixels high, so half that width and height is 25 and 25.

These variables are declared directly inside the event handler. That’s why they’re
referred to as local. They can be used only inside this event handler and nowhere else. If you try using

243

CONTROLLING A PLAYER CHARACTER

 and anywhere else in your program, the compiler will give you
an error message:

Access of undefined property

All the variables that you used in the programs until now are known as instance variables. They are
declared directly within the class definition (at the top of the program) and can be used anywhere
in the class by any method. Local variables can be used only inside the method in which they are
declared.

One thing you’ll notice about and is that you declared them as
 variable types and assigned them their initial value in the same directive. So instead of writing

two directives, like this:

you combined them into one directive, like this:

This is a perfectly valid way to create variables, and you can create any instance variable this same
way. By convention, however, instance variables separate these steps into two directives because if you
make an instance of a class, you’ll often want to assign a variable’s value only later in the program.
Don’t worry if this doesn’t make any sense to you now; it will a bit a later in the book when you look
at more practical examples.

One advantage you have by assigning a value to and variables
directly in the event handler is that if the object’s width or height ever changes
in the game, the values of those variables will immediately be updated. Suppose that I designed a
game in which my pig character eats a magical daisy that makes him double in size. Because the

 method is updated 30 times per second, the size change will affect any calculations
involving the size of the , such as figuring out screen boundaries or collisions with other objects.

Now that you know the object’s half-width and half-height, you can use this information to
confine it more precisely within the stage’s boundaries with these statements:

244

CHAPTER 6

The logic behind this is really simple, even though it looks like a bit of a rat’s nest of code to read
through. All the code does is check to see whether the left, right, top, or bottom edges of the
object are crossing the stage boundaries you set for them. It then forces the edges back if they’ve
gone over. To find out what the edges of the object are, all you need to do is add or subtract
half the height or width of the , depending on which edge you’re checking for.

Let’s take more detailed look at how this works with the first conditional statement:

This statement checks to see whether the right side of the object is crossing the right side of
the stage. You know that the stage is 550 pixels wide. Let’s pretend that at some point while moving
the object around the screen, it has an position of 530. If you add half its width, 25, to that
number, you end up with 555. 555 is a position that is definitely over the stage’s right boundary, so the
directive inside the statement is triggered. That directive moves the to a position that is the
same as the stage’s maximum width (550) minus half of the ’s width (25). That places it at a new
 position of 525. And because the object has 25 pixels of “fat” around its middle, it looks as if

it has stopped exactly at the edge of the screen. Figure 6-10 illustrates how this works.

Figure 6-10. Precise screen boundaries using the object’s half-width

The logic behind all the other conditional statements is exactly the same; only the values are different.
See if you can figure them out!

245

CONTROLLING A PLAYER CHARACTER

It turns out that knowing the half-width and half-height of objects is extremely important for doing
certain kinds of advanced collision detection. Remember the solution to this screen boundary problem
because you’ll use it to help solve a number of tricky problems throughout the course of this book.

You can find the completed version of this code in the file in this chap-
ter’s source files.

Screen wrapping
Screen wrapping happens when an object disappears from one side of the screen and then reemerges
from the opposite side. This is quite a fun effect and very easy to implement. In fact, the logic that’s
used to accomplish it is almost exactly the inverse of the logic you used to block movement at the
stage’s edges. Let’s try it out!

 1. Change the conditional statements inside the event handler to match the text in
bold:

246

CHAPTER 6

 2. Save the file and test the project.

 3. Use the arrow keys to move the object past the edges of the screen. Peek-a-boo! It
emerges from the opposite side.

After the detailed look at how to stop an object at the stage edges, I’m sure you can figure out what’s
going on in this code already. It’s almost exactly the same, except for being delightfully backward! It
uses the object’s half-width and half-height to figure out whether the object has completely disap-
peared off the edge of the stage. As soon as it detects that this is the case, it positions the object
on the opposite side of the stage, just beyond the visible boundary. This creates the illusion that the
object is trapped on the surface of some kind of cylindrical, never-ending plane. I usually complain
about these sorts of things in this book, but this time, it’s a blast! Have fun with it! Screen wrapping is,
of course, a staple of many Old-Skool games like Pacman and Asteroids, and now you know how to
do it if you ever need to.

You can find the complete code for this screen wrapping example in the file
in the chapter’s source files.

Scrolling
One thing that almost all 2D action and adventure games have in common is that most use an effect
called scrolling to allow a to move about in an environment that is much bigger than the
confines of the stage. Like an ancient Chinese scroll being unrolled over a long wooden table, the
background moves to allow the character to explore the space beyond the stage edges.

Although it’s hard to pick favorites, there’s probably very little to learn about game design that isn’t
in some way embodied in one or the other of the two greatest classic game series of all time: Super
Mario Bros. and The Legend of Zelda. Pretty much anything game designers need to consider about
good game design can be found in these two games, and scrolling is no exception.

Super Mario Bros. uses primarily what’s known as horizontal side-scrolling. That’s when the back-
ground moves left or right when the reaches the left or right edges of the screen. The per-
spective in horizontal side-scrolling games is usually designed so that it looks as if you’re viewing the
environment from the side. The Legend of Zelda uses overhead multi-axis scrolling. In overhead
scrolling, you view the environment from above, as if you were a bird flying in the sky and surveying
the scene below. With multi-axis scrolling, the character is free to move in any direction (up,
down, left, or right), and the environment scrolls to keep up. Figure 6-11 illustrates the differences
between these two related systems.

In truth, most games that use scrolling use a combination of these two systems. In this chapter, you’ll
look at the more complex of the two: multi-axis scrolling. Once you’re comfortable with the scrolling
techniques covered here, you’ll be able to implement any combination of these two systems.

247

CONTROLLING A PLAYER CHARACTER

Visible Area

Visible Area

Horizontal side-scrolling

The environment moves left or right when the player reaches the stage edges.

The environment moves up, down, left, or right when the player character reaches
the edge of the stage’s visible area.

Overhead multi-axis scrolling

Figure 6-11. Horizontal and multi-axis scrolling

Creating an environment
The first thing you need to implement in the scrolling system is some kind of background scene that is
much bigger than the stage. If you were designing a game, this would be a very big Movie Clip symbol
filled with all kinds of objects that the could interact with. In this example, you’ll use a very
large image.

 1. Find a very large image that you think might be suitable for your scrolling system. Any pic-
ture with a width and height greater than 1000 pixels should work well for this example. I
decided to give my hard-working little pig character a little holiday in space: a journey to one
of Mars’s moons, Phobos. Lucky for me, NASA maintains a large collection of copyright-free
photos, including extremely high-resolution images of Phobos, which I was able to download.
(To download your own high-resolution scenes from space, visit

. Any images labeled Full Resolution are big enough.)

248

CHAPTER 6

 2. Once you have your image, you need to import it into Flash. Open the characterControl.fla file if it’s
not already open. Select File Import Import to Library.

 3. Browse for the image and click the Import to Library button when you find it. You’ll then see the
image sitting in the Library.

 4. Create a new symbol called .

 5. Open the symbol’s editing window, and drag an instance of the photo you just
imported from the Library onto the first frame. Position it roughly in the middle of the stage.

 6. Click Scene 1 near the top-left corner of the symbol’s editing window to return to
the main stage.

 7. Create a new layer in the main timeline. Name this new layer background.

 8. Drag an instance of the symbol onto the stage. Check to make sure that it’s been
added on the new background layer you created in the previous step.

 9. With the instance still selected, give it the instance name background in the Properties panel.

 10. If you want to zoom out to see the entire image, click the zoom level menu at the top-right
corner of the stage, as shown in Figure 6-12. Choose Show All to see your entire scene (100%
will return the view of the stage to normal once you’re done).

Figure 6-12. Zoom out to view your entire scene.

 11. Rearrange the layers in the timeline so that the background layer is behind the layer that
the object is on. Your main stage might look something like Figure 6-13 when you’re
done.

249

CONTROLLING A PLAYER CHARACTER

Figure 6-13. A huge environment, ready for scrolling

Fine-tuning the player character
For its journey to Phobos, I gave my pig character a space capsule to fly around in. To add a little more
“realism” (if a journey to Phobos could be called that!), I’ll add a drop shadow, which is an effect that
makes an object appear as if it’s casting a shadow on the objects below it. Adding a drop shadow to
the space capsule makes it look as if it’s hovering slightly above the surface of the moon.

Adding a drop shadow
Follow these steps to add a drop shadow to the object:

 1. Select the object.

 2. In the Properties panel there’s a pane called Filters. If it isn’t already open, click it to open it.

 3. On the bottom of the Filters pane is the Add Filter button. It looks like a sheet of paper with the
bottom-left corner turned over. Click it once and select Drop Shadow from the option menu
that opens.

250

CHAPTER 6

 4. A Drop Shadow filter is added to the object, and the settings you can use to modify
it appear in the Filter pane. Play around with some of the settings until you find an effect you
like. The Filter pane, and the effect that those settings have on the object, are shown in
Figure 6-14.

Figure 6-14. Add a drop shadow to the player object.

The Blur X and Blur Y settings are numbers in pixels that refer to how fuzzy the shadow is around the
edges. More blur makes the shadow look softer.

Strength is the same as alpha, which is just another way of saying how more or less transparent the
shadow is. A Strength setting of 100% means that the shadow is completely opaque (solid), and it
becomes more transparent as the percentage falls toward zero. One of the most CPU-intensive tasks
that the Flash Player does is to calculate areas of alpha transparency, so you can give your games a
performance boost by avoiding transparent objects, transparent colors, or effects that use transpar-
ency. Of course, they look beautiful, so if you can get away with using some and your game doesn’t
slow down, go for it!

The Quality setting is quite important for games or any moving objects that will be using drop shadows.
Filter effects such as drop shadows make the Flash Player work quite a bit harder to draw the effect
on the screen, so you need to use them judiciously and do enough testing with your objects to make
sure that they don’t affect performance. For games, you’ll probably always want to use the Low set-
ting because the Flash Player does fewer calculations. In a game with fast-moving objects, no one will
notice the difference, anyway.

Angle is the direction from which the imaginary light that is casting the shadow is coming from.
Distance refers to the space between the object that is casting the shadow and the object below it, and
this is what gives objects with drop shadows the illusion that they’re occupying a shallow 3D space.
The Knockout, Inner shadow, and Hide object options are a little more specialized. Play around with
them to see what they do; you might find a use for them some day.

251

CONTROLLING A PLAYER CHARACTER

You can actually add drop shadows, or any of the other filters, to your objects by using
programming code. To do this, you need to import all the filters from Flash’s
package using this directive:

The asterisk means “all the filters.” It’s then a matter of a few more lines of code to
create a filter object and assign it to a or object. Although this is
a fairly advanced topic at this stage in your learning, you might someday need to
add a filter to some of your objects dynamically. For detailed instructions on how
to do this, visit Adobe’s online AS3.0 documentation at

. You’ll find the details in the chapter called
“Filtering display objects.” Chapter 10 of this book describes how to use these tech-
niques to create dynamic filters.

Scrolling basics
The key to scrolling is understanding that it’s not the object that moves; it’s the
object. The new object will become the new center of attention in the following code.

 1. Change the event handler to look like the following—the bold text indicates
the new code. (You’ll find the complete code in the folder of the chapter’s
source files. This example code is in the file.)

252

CHAPTER 6

 2. Save the file and test the project. Press the arrow keys and watch your
 character explore Phobos!

All you did is reverse a bit of the logic you were using to move the object. When you press
the arrow keys, they move the object in the direction opposite to the one you want the

 to move in. That’s why you should add a minus sign to the and variables with these two
lines:

This creates the illusion that the object is moving, when it’s actually the object
that’s moving in the opposite direction. Oh, the wily ways of the video game programmer!

The conditional statements stop the object from moving when its edges reach the stage
edges:

I’ll leave the mental gymnastics up to you to figure out why it works the way it does, but it’s simply one
more permutation of exactly the same logic that you used to stop the at the stage edges.

Better scrolling
This simple scrolling system can actually take you quite far, but there are a few problems that some
fine-tuning can help solve:

 When the scrollable area reaches its limit, the object is prevented from moving all the
way to the stage’s edge. Try holding down the right arrow key and see how far you get. At some

253

CONTROLLING A PLAYER CHARACTER

point, the will stop moving, but the won’t be able to travel all the way to
stage’s right side. This seems to be an artificial constraint that would be a frustrating limitation
for the in many action or adventure games. Figure 6-15 illustrates this problem.

When the background stops
scrolling, the player object
is unable to move all the
way to the edge of the stage.

Figure 6-15. When the background has reached the limit of its scrollable
area, the player can’t travel all the way to the stage’s edge.

 The other potential problem is that the scrolling background always scrolls. For many games,
it might make more sense if the scrolls only when the object is approach-
ing the edge of the stage. Otherwise, the object should explore freely without the

 moving.

Here’s how to solve these problems. You can set up a system that figures out whether the
object should move or the object should move, depending on where each is. If the

 object has reached the limit of its movement, the object should be free to travel to the
edge of the stage. Also, if the is not near any of the stage’s edges, it should be free to move
around without the object moving.

The trick of making this work is to set up an imaginary inner boundary, which is a rectangular area
inside the real stage that’s exactly half the stage’s height and width. The object will be free to
move around within the inner boundaries, and when it reaches the edge, it will stop moving, and the

 will start to scroll. When the reaches its scroll limit, the inner boundary that’s
been blocking the from going farther will extend to the limits of the real stage to allow the

 to move right to the edge.

The inner boundary that you’ll create isn’t a real object in the way that and are
objects. Instead, it’s just four numbers that define the top, bottom, left, and right of these boundaries.
In fact, the logic behind finding these numbers is exactly the same as the logic you used to set the real
stage boundaries; you just cut them down to half the size.

You’ll build this code in two stages so that you can see how it’s working. (For the complete final work-
ing version of this code, see the file in this chapter’s source files.)

254

CHAPTER 6

 1. Update the file with the following bold text:

255

CONTROLLING A PLAYER CHARACTER

256

CHAPTER 6

 2. Save the file. You can now move the object freely within the inner
boundaries of the stage. When it reaches the edge of the inner boundary, the
object starts scrolling. Figure 6-16 illustrates this.

The first thing the code did was to define the inner boundary with these four new variables:

Can you figure out how the boundaries were calculated? (Try it, it’s not that hard!) What you end up
with is an inner area that’s half the size of the stage.

257

CONTROLLING A PLAYER CHARACTER

All these variables were defined as instance variables, as part of the class definition, and they’re avail-
able throughout the entire class. The reason why is that in the next bit of code, you’ll temporarily
recalculate these boundaries under certain conditions. If you had defined these variables directly in
the method as local variables, they would have been reset to their initial values 30 times
per second, which would have immediately overwritten their recalculated values.

Inner Boundary

Inner Boundary

Figure 6-16. The player object is free to move within the inner boundary. When
it reaches one of the edges, the player object stops moving and the background
scrolls.

258

CHAPTER 6

The following is the new code that really makes this whole system work:

You can see that you’re back to moving the again. But it is allowed to move only while it’s
within the inner boundaries. Let’s have a look at how the first statement works:

The conditional statement checks to see whether the left edge of the is less than the left inner
boundary. If it is, the is forced back to that edge. This is exactly the same logic you used to stop
the object at the edges of the stage. But the next line is interesting:

The starts moving! And that’s really all there is to it. The code is quite simple, but the
effect it produces seems complex when the program runs.

259

CONTROLLING A PLAYER CHARACTER

Even better scrolling
You still have one more problem to solve. The object still can’t move all the way to the edges
of the stage when the scrolling has reached its limit. To do this, you need to temporar-
ily extend the boundaries and then move them back if the returns to the center of the stage
again. A few lines of very simple code in the right place are all you need to achieve this.

 1. Add the following lines in bold to the event handler:

260

CHAPTER 6

 2. Save the file and test the project. The object can now explore the
entire area, right up to the stage edges.

This code works by extending the inner boundaries to the stage edges when the object
has reached the limit of its movement. Let’s look at how this works with the first statement in the
code (the new code is highlighted in bold):

If you press the right arrow, the object moves until the conditional statement detects that
it has reached its limit. When that happens, it stops the object from moving and then
gives the variable a new value that is equivalent to the maximum width of the
stage. That allows the object to move all the way to the stage edge. Figure 6-17 illustrates how
this works.

Problem solved! But you just created another one. How can you move the boundary back to its origi-
nal position if the moves back to the center of the stage?

Think about it this way. Imagine that the object has traveled to the rightmost edge of the stage,
as shown in Figure 6-17. When it travels back to the center of the stage, you don’t have to start mov-
ing the object again until the object has reached the inner-left boundary. If it does,
you know that you can safely reset the inner-right boundary to its original position. That’s what this
new line of code in bold does:

261

CONTROLLING A PLAYER CHARACTER

Figure 6-18 illustrates what is happening.

Original Boundary

New Boundary

Figure 6-17. When the background object stops moving, the boundary is
extended to allow the player object to travel to the edge of the stage.

When the player object reaches the left
boundary, the right boundary resets to
its original position..

Figure 6-18. The inner right boundary resets to its original position when
the player object reaches the inner-left boundary.

262

CHAPTER 6

The other bits of new code that you added in this section follow exactly the same logic for each of the
three other boundaries.

You can find the entire working example of this code in the file in the
 folder in the chapter’s source files.

Taking it further
You’ll be able to get quite a bit of mileage out of these examples of scrolling for your games. Any type
of scrolling system you can dream up will use these same techniques in some kind of combination.
You’ve actually tackled the most difficult type of scrolling, combined vertical and horizontal scrolling,
so if you need to make a game that requires only horizontal scrolling, it should be a piece of cake. The
techniques are exactly the same; you just need half the amount of code because you’ll check boundar-
ies only on the x axis.

This is not the last word on scrolling; it’s really just the beginning. Have a look at some of your favorite
games and study very carefully how they’ve implemented scrolling. You’ll notice that many of them
modify how and when scrolling takes place in very subtle ways. The core of all this, however, is based
on the examples you looked at in this chapter.

Parallax scrolling
There’s one additional scrolling technique that you’ll look at very briefly here because it’s very widely
used and extremely effective: parallax scrolling.

Parallax is a visual effect in which the position of an object appears to change depending on the point
of view from which it’s being observed. The effect of parallax scrolling in games is used to create the
illusion of shallow depth. It’s a simple 3D effect in which distant background objects move at a slower
rate than closer foreground objects, creating the illusion that slower-moving objects are farther away.
Parallax scrolling can give even simple 2D games very strong visual impact.

It’s very to easy to do. So easy, in fact, that I won’t spoil the fun you’ll have by figuring it out on your
own. But let me at least give you a few hints about how to make parallax scrolling work.

First, you need at least two objects (they might have the instance names and
). The object is the one farther in the distance. Figure 6-19 shows what this

might look like in a horizontal scrolling game, in which the hilly meadow is the object, and
the sky scene is the object.

Now all you need to do is move the object at a slower rate than the object.
The directives might look like this:

Try it! It’s a mesmerizing effect. And there’s also nothing stopping you from adding a third element as
a distant background object moving at an even slower rate.

263

CONTROLLING A PLAYER CHARACTER

Background Object

Foreground Object

Figure 6-19. To implement parallax scrolling, create two separate objects to represent your background scene.

Summary
So, is that it? No way! This chapter gave a taste of setting up a player control scheme, but there’s so
much more refinement that can be done. Later in the book, you’ll learn how to modify these mod-
els to incorporate acceleration, friction, and gravity into the object’s movements. You’ll also
be looking at a player control scheme to allow the game to be played with a mouse instead of the
keyboard.

In this chapter, you solved some extremely important problems central to game design that you’ll see
popping up again and again in different contexts in the chapters that follow. Experiment a bit with
some of these techniques on your own, and I’ll meet you in Chapter 7 when you’re ready. I’ll show you
how to create an environment that your objects can interact with using collision detection.

265

Chapter 7

Welcome to a fun chapter! Over the next few pages, you’ll be building an interac-
tive playground of clever little game design techniques that you can use to build
completely interactive two- dimensional environments, better known as action and
adventure games! A whole grab bag of things from collision detection, building walls,
and picking up and dropping objects—they’re all here. With a little imagination,
you’ll able to use these very simple techniques to produce a richly varied number of
different kinds of games. Hey, congratulate yourself: you’ve come a long way since
page 1! All your hard work is about to pay off.

At the end of the chapter, I’ll introduce the class, which is a custom class
designed just for this book. It contains some specialized methods for handling com-
plex collisions between objects that you can use with any of your game projects.

Setting up the project files
By this stage in the book, you’ve probably become quite adept at setting up project
files. The examples in this chapter use the keyboard control model that you looked
at in the previous chapter as a starting point. If you want to follow along with these
examples, I created ready-to- go setup files for you in the chapter’s source files that
you can open as a project and use as a basis for these examples.

BUMPING INTO THINGS

266

CHAPTER 7

Here’s how to set these files up as a project:

 1. Open the chapter’s source files and find the file called . Open it in
Flash.

 2. In the Project panel, select Quick Project from the drop- down menu.

 3. will be opened as a project. A check mark next to interactivePlay-
ground.fla indicates that it’s the default document (it’s the FLA file that will be used to generate
the SWF). You’ll also notice that all the other files in the folder open as part of the project.

Take a moment to become familiar with the way is set up. It has a char-
acter on the main stage with the instance name . The document class is set as .
 Figure 7-1 illustrates this. You’ll also find some ready- made symbols in the Library that you can use
with the examples in this chapter if you don’t feel like making your own.

 Figure 7-1. The character’s instance name is player, and the document class is Main_Playground.

 4. Double-click the file in the Project panel to open it. It looks like this:

266

267

BUMPING INTO THINGS

267

268

CHAPTER 7

These are the files you’ll be using as the start point.

The chapter’s source files contain files called , ,
, and so on all the way up to . Each of these files

contains the completed code for every example that you’ll be looking at. If you don’t
feel like typing in the code manually, you can change the
document class to match the name of one of these files. The effect will be the same as if
you had typed in the code.

Ouch!
What makes most computer games fun to play is that they are, in their essence, a simplified simula-
tion of the real world. Like the real world, they contain objects that you can interact with in some
way. These objects might be walls that block your movement, friends who help you, or enemies who
harm you.

To create these sorts of interactive objects, you first need a way of finding out whether one object is
touching another object. In computer game programming, this is called collision detection. Collision
detection is just game programming jargon for “what happens when things bump into one another.”
AS3.0 has a very simple way of detecting collisions between objects: the method.

Using hitTestObject
The method can be used to check whether any two objects have bumped into one
another. Let’s say that you have a Movie Clip object called that the player can control. You also
have a Movie Clip object called . In your game, if the player’s car hits the wall, it should crash.

In plain English, you would want to write some computer code that looks something like this:

269

BUMPING INTO THINGS

You can translate it into ActionScript like this:

The method is attached to the end of the object with dot notation. It has an argu-
ment, , which contains the name of the object that you want to check for a collision. Figure 7-2
shows how this all fits together.

if(car.hitTestObject(wall))
{
 car.gotoAndStop(CRASH);
}

Add any directives you want
to run when the collision occurs
inside the if statement

The first
object

The hitTestObject
method

The second
object

 Figure 7-2. Use the hitTestObject method inside a conditional
statement to check for a collision between two objects.

Usually you use the method inside the conditional statement of an statement. If
the objects are touching, the method returns a Boolean value of , and the directives inside the
statement run. If it returns a value of (if the objects are not touching), the directives inside the

 statement don’t run.

It’s amazing what kind of power the method can give you. In the examples in the fol-
lowing pages, you’ll be looking at how you can use it to do the following:

 Change text in a dynamic text field

 Trigger a change of state

 Reduce a health meter

 Update a score

 Pick up and drop an object

 Create an environmental boundary (using)

 Block an object’s movement

With a little imagination, you’ll be able to use these techniques to produce a richly varied number of
different kinds of games.

270

CHAPTER 7

Changing a dynamic text field
In the following example, you’ll use to change the text of a dynamic text field.

 1. You already have a object that you can move around the screen. Create another object
that your object can interact with and give it the instance name enemy. I created an owl
character, which you can see in Figure 7-3.

 Figure 7-3. Create an object called enemy.

 2. Create a dynamic text field and give it the instance name messageDisplay. Figure 7-4 shows an
example.

 Figure 7-4. Create a dynamic text field called messageDisplay.

 3. Save the file.

271

BUMPING INTO THINGS

 4. In the file, add the following code in bold to the event
handler:

 5. Save the file and test the project.

 6. You’ll see the words No collision displayed in the dynamic text field.
Use the arrow keys to move the object into the object,
and the text field will display Ouch!! Figure 7-5 shows what this
looks like.

Not bad for a few simple lines of code, huh? If you move the object
away from the , the text field displays No collision again. (You’ll find
the complete code for this example in the chapter’s source files in

.)

It gets even better.

Triggering a change of state
You can put any directives you like inside the statement that checks for a collision. In this example,
you’ll use a method to change the state of the object.

You might recall from Chapter 3 that you can give Movie Clip objects new states by changing some-
thing about how they look on another frame. The first thing you need to do is modify the enemy
Movie Clip symbol. Mine is called , but yours might be called something else.

 1. Double-click the object in the Library to enter symbol editing mode.

 2. Add frames or keyframes wherever necessary to extend the graphics from frame 1 into frame 2.

Figure 7-5. The text changes
when the two objects touch.

272

CHAPTER 7

 3. Make some changes to the graphics in frame 2. You can see the changes I made to my owl in
 Figure 7-6. I changed it so the owl appears to flap its wings.

 Figure 7-6. Create a new state for the enemy object in frame 2.

 4. Save the file.

 5. Open the file.

 6. Now that you added a new frame to the object, you need to prevent it from loop-
ing back and forth between frames 1 and 2. Add the following directive in bold to the
method:

273

BUMPING INTO THINGS

 7. Add the following code in bold to the method:

 8. Save the file and test the project. Now when the
 object collides with the object, you might see some-

thing like Figure 7-7. The owl ruffles its feathers and looks perturbed.

Oh, what a pesky little pig! Maybe you can find some way for the owl to get
him back in the next section. (The file contains the
completed code for this section.)

Reducing a health meter
Many games use a health meter to determine when the game is over. When the player bumps into
bad things such as enemies, the health meter gradually shrinks in size. When the health meter disap-
pears, the game ends.

Implementing a health meter is very easy. It makes clever use of the Movie Clip class’s property.
Let’s create a health meter for the object.

 1. Create a new Movie Clip symbol called .

 2. The symbol’s editing window will open.

 Figure 7-7. The enemy object
stops at frame 2 when it collides
with the player object.

274

CHAPTER 7

 3. Select the Rectangle drawing tool from the toolbar and choose a stroke and fill color. The
stroke color is the color of the rectangle’s outline, and the fill color is the inside color. Just
below the color options is a slider labeled Stroke, which refers to the thickness of the rect-
angle’s outside line. You can either move the slider to change its thickness or type in a value
in pixels. For this example, you’ll see the effect more clearly if the stroke is a little thicker than
average, so I gave mine a value of 3 pixels. Figure 7-8 shows an example.

 Figure 7-8. Select the Rectangle tool and choose a fill
and stroke color.

 4. Draw a long rectangle on the stage. In the next few steps, you’ll convert the fill area into its
own symbol. It’s the property of this subobject that you’ll target with the code.

 5. Use the Selection tool to select the fill area of the rectangle by clicking it once. You can tell
that it’s been selected properly if the inner fill area has a dot pattern across it and the outside
stroke remains unchanged, as shown in Figure 7-9.

 Figure 7-9. Click the inner fill once to select it.

275

BUMPING INTO THINGS

 6. Select Modify Convert to Symbol.

 7. Give the new symbol the name Meter.

 8. Just below the Name box you’ll see a grid of six squares labeled Registration. This grid deter-
mines where the center point of the new symbol will be. You want the graphics for the
symbol to fall to the right of the center point. Click the leftmost square in the middle row, as
shown in Figure 7-10. This sets the left middle of the object as its center.

 Figure 7-10. Set the new symbol’s registration point.

 9. Click the OK button.

 10. The rectangle’s fill area is now selected as a separate object. It’s actually become an instance
of the new symbol that’s sitting in the Library. You turned the rectangle’s fill area into an
object that you can control with code.

 11. The next thing you need to do is to give the new meter object an instance name. Give it the
name meter in the Instance name field of the Properties panel.

 12. To make the effect appear a little neater, you’ll move the object onto a layer below the
black outline. Create a new layer in the symbol’s timeline.

 13. Click the object once to select it.

 14. Select Edit Cut.

 15. Select frame 1 of the new layer.

 16. Select Edit Paste in Place. The object will be pasted into the new layer in exactly the
same position that it was cut from.

 17. Move the new layer with the object so that it’s under the layer containing the black
outline. Figure 7-11 shows what your symbol should now look like.

 Figure 7-11. The finished Health symbol

276

CHAPTER 7

 18. Drag an instance of the symbol onto the main stage.

 19. Give it the instance name health. Figure 7-12 shows what the stage should now look like.

 Figure 7-12. Add a new object called health to the main stage.

If you open the symbol’s editing window, you’ll see that the rectangle’s blue fill area is exactly
to the right of the symbol’s center point. As Figure 7-13 shows, there should be nothing to the left of
the crosshairs that define the center of the symbol. This will be very important for the health meter
because you’ll be using the object’s property to reduce the size of the meter. Flash does this by
squeezing together the graphics on the left and right of the object’s center point. Because the
object has graphics only on the right, it will look like it’s gradually disappearing to nothing instead of
being squeezed from both sides. You’ll see this effect at work soon enough.

 Figure 7-13. The graphics for the meter object should extend from the right of the center crosshairs.

You now have an object called , which contains a subobject called . You can access the
 object with dot notation like this:

277

BUMPING INTO THINGS

Now all you need to do is program the health meter. As a bonus, the words Game Over! display in the
 text field when its width is reduced to zero.

 1. Modify the method so that it looks like the following. The bold text indicates the
new code, but notice that the two directives that displayed the words No collision and Ouch!!
have been removed. It was done to simplify the code a little so you won’t have a conflict with
the Game Over! message.

 2. Save the file and test the project. When the player touches the enemy, the
health meter decreases. When it disappears, the words Game Over! are displayed. Figure 7-14
shows an example of what you’ll see.

 Figure 7-14. Using a health meter to end the game

278

CHAPTER 7

Not bad for three lines of code!

The width of the object is decreased by 1 each frame, so if its width is 50 pixels, it will take
50 frames for the meter to reach zero. If you made a really long meter, it might take a bit of time
before it runs out. You can easily speed up or slow down the rate at which the meter decreases by
changing this line:

For example, if you change the line like this, it reduces the meter by 2 pixels each frame:

This doubles the speed by which the health meter is reduced. (The complete code is available in the
 file in the chapter’s source files.)

Using scaleX to scale the meter based on a percentage
You can also use the property to change the meter’s size. changes the size of an object
based on its ratio. You can use it to change the width of the meter based on a percentage instead of
a fixed pixel amount. This is often preferable because it means the meter is reduced at the same rate,
no matter how long or short it is.

A value of 1 means the object is full size. You can reduce a meter by 1% by subtracting 0.01
from the property each frame.

To duplicate the effect of this example using , you first need to add an additional statement
to make sure that the value is above zero. Without this check, the meter continues to scale
negatively beyond the left border, which would not look very good. Here’s the code to use:

A value of reduces the meter by 2% each frame, so the meter will reach 0 in 50 frames. To check
for the end of the game using , use this code:

Scaling by percentages is very useful because you can use meters to graph other data that might be
using percentages in your game.

279

BUMPING INTO THINGS

Updating a score
Most games keep track of whether a player has won or lost by updating a score, based on how well
the player is performing. The following example shows you how to update a score and end the game
when a certain score has been reached.

You’ll write this code in three parts. The first part gets the basic system running, but you’ll immediately
see a problem with it that will illustrate a valuable concept to keep in mind when dealing with collision
detection. You’ll solve the problem in the second part.

 1. You first need to create a new variable call to store the player’s score. Update the
 class definition and the method with the following new code in bold:

 2. Add the following new code to the method:

280

CHAPTER 7

 3. Save the file and test the project. When
the player touches the enemy, you’ll see the score increase in
the text field. Hey, what’s that!? It works, but
probably not the way you expected it to! Figure 7-15 shows
what happens when the two objects collide.

The score is increased, but it’s increased by one 30 times every sec-
ond! If you think about it, the code did exactly what you asked it to.

When the two objects collide, the following directives run:

The score is increased by 1 and then displayed as a string in the text field. But
remember that this is all happening inside the event handler, which is updated 30 times
per second. That means that every time it updates, it increases the score by 1 if the objects are touch-
ing. And so you end up with this dizzying rush of flashing numbers until the two objects are separated
again.

Sometimes this might be the way you want your games to keep score, but let’s try and refine it a little
more in this example.

How about this: Let’s try and set the program up so that the score is increased only on the first
occasion that the two objects collide. Even though the two objects might be touching for an entire
6 seconds, for example, the score should be updated by only 1, not 180. Sound a bit better?

Let’s take it a step farther. If the two objects are separated and then touch again, the score should
register this new collision, and update by 1 again, giving you a total of 2. This seems like a much more
logical way for the score system to work.

To put this in place, you need to use a new Boolean variable. In the program, you’ll give it the follow-
ing name:

 Figure 7-15. The score increases
when the two objects touch.

281

BUMPING INTO THINGS

You’ll initialize it to when the program starts and then set it to when a collision takes place.
That should work. Try it out!

 1. Add the code in bold to the class definition and method:

 2. Modify the event handler so that it looks like the following (the new code makes
use of the operator, which is an exclamation mark):

 You haven’t used the operator before, so look for it in the code and be careful to add it—
it’s easy to miss. I’ll explain the use of the operator in detail ahead.

282

CHAPTER 7

 3. Save the file and test the project. The
score now only updates by 1 each time the objects collide.
That’s much more manageable! Figure 7-16 shows an example
of what you should see after the second collision.

Let’s take a quick stroll through the logic of what’s going on here. First, the new
variable was initialized to in the function definition:

This might be stating the obvious, but it’s crucially important to keep in mind for the next bit of code
to make any sense. This is the new code inside the / statement in the event
handler:

 Figure 7-16. The score now
updates only once every
collision.

283

BUMPING INTO THINGS

What you did was to create a new statement inside the first statement. This is called a nested
 statement. Nested statements allow you to fine- tune the logic a bit to check for subcondi-

tions after the first condition has passed as . (It’s called a nested statement because it’s cozily
tucked inside the first one, like an egg in a nest. If you turn this page on its side and look at the code
horizontally, I’m sure you can imagine a crow or magpie making a perfectly comfortable nest in the
indentation created by the second statement.)

What you want the new statement to check for is whether the collision between the objects hasn’t
occurred. That’s right, you didn’t misread the previous sentence; you want to check to see whether the
collision has not happened. That’s what this line is doing:

It checks to see if the variable is . Usually, conditional statements check
to see whether certain conditions or variables are , but not this time. Instead, you used the
operator to check for a condition. The operator is an exclamation mark:

When it’s used in a conditional statement in front of a Boolean variable, it allows the directives inside
the statement to run if the Boolean value is .

So, is it ? You initialized to when the program started, so the first
time the collision occurs, it is , and all the directives inside the statement run:

This updates the score and the dynamic text field, but it also does something very important: it sets
the variable to .

Why is that so important? Because exactly 1/30th of a second later, this same statement will be
called upon a second time if the objects are still touching:

But hey, wait a minute! The variable was set to the first time it ran, and
the conditional statement will let it pass if it’s . That means none of the directives runs, and the
score and the text field are only updated once.

Perfect—just what you wanted!

But there’s another problem. You want the score to update again if the objects happen to collide
a second time at some future point in the game. This won’t happen if is still
set to . You have to find some way to reset it back to so you can update the score again.

284

CHAPTER 7

This is very simple; you just need to set it to when the objects are not colliding. And actually,
you’re already checking for that in the code, remember? It’s the second part of the / statement
that tells the object to return to frame 1. All you need to do is drop a line of code in that same
spot, which the code in bold shows:

Yes, I know, what you’re thinking. If you’re new to programming, this logic can seem a little on the
 mind- bending side! This is the most complex use of logical operators and statements you’ve seen
so far. Don’t feel too discouraged if you don’t understand it right away or don’t think you’ll be able
to write similarly complex code yourself any time soon. Look it over a few times, think about it while
lying in bed at night, come back to it in a few days, and try it with some of your own games. It will
gradually start to make sense—trust me! Seeing how others have solved problems and then trying out
those solutions in your own games is an extremely important part of learning how to program.

I made one more promise at the beginning of this section, which is that the score will also help you
figure out if the player has won the game.

 1. Add the following code in bold to the bottom of the method:

285

BUMPING INTO THINGS

 2. Save the file and test the project. If the
object is able to touch the enemy five times before the health meter
runs out, the words You won! display, as shown in Figure 7-17.

In effect you’ve turned this into a little minigame. Can you touch the owl five
times before the health meter runs out?

Yes, I know, it’s not a real game, more of an accidental game, but I’m sure you
can see where you can take it with only a little further refinement.

Of course, this game has some problems. With a little more playing, you can actually cheat and “win”
even if the health meter runs out. Can you think of a way to make what you’ve built a little more
 cheat- proof? (Hint: you’ll need another variable and another / statement!) You’ll encounter
these sorts of bugs-that-might-be-features-but-are-really- bugs in your games all the time, so now’s
a good time for a real- world challenge to sharpen your debugging skills. (The
file contains the complete code for this example.)

Picking up and dropping objects
It’s time for the pig and owl to put aside their differences and make peace! In the next example, you’ll
see how you can make the pig pick up an apple and carry it to the owl. This is very easy to implement
using the techniques discussed so far in this chapter and it reintroduces a method you haven’t seen
since Chapter 3, the cute-as-a- button method named .

 1. You first need an object that the player can carry. Create a new symbol called and design
a simple graphic of an apple. For this technique to be clearly visible, you might want to make
it smaller (half the size or smaller than the object).

 Figure 7-17. You can win the
game if you touch the enemy
five times before the health
meter runs out.

286

CHAPTER 7

 2. Drag an instance of the symbol onto the stage, and give it the instance name apple, as
shown in Figure 7-18.

 Figure 7-18. Add a new apple object to the main stage.

 3. You need a new Boolean variable called that will tell the program whether the
player is carrying the apple. You’ll initialize it to at the start of the program so that you
can set it to when the player picks it up later. Modify the class definition and the

 method with the following code shown in bold:

287

BUMPING INTO THINGS

 4. You might be forgiven for thinking that the event handler is now the star of the
show as far as making fun things happen in your games. After all, most of the new techniques
shown in the last 40- odd pages involved placing directives in it. But don’t forget that you have
a few other just-as-useful-if-somewhat- neglected methods waiting to do the bidding if you can
find some work for them. This time, it’s the turn of the event handler to shine in the
spotlight. Add the new code in bold to the event handler:

288

CHAPTER 7

 5. Save the file and test the project.

 6. Use the arrow keys to move the object so that it’s touching the object. Press the
spacebar on the keyboard. The object picks up the apple. Now move the object
so that it’s touching the object. Press the spacebar again; the player drops the apple and
the dynamic text field displays the word Thanks!! If you move the player away from the apple,
it stays where it is. Figure 7-19 shows what this looks like. You can pick up and drop the apple
as many times as you want to, anywhere on the stage. For the purpose of this example, you
haven’t disabled the health meter, but that’s easy to do if you want to.

 Figure 7-19. Friends at last! Use the spacebar to pick up the apple and carry it to the owl.

There are no new techniques here, but you’ve never seen all of these elements used together in this
combination before. Let’s take a tour of this code and how it works. First, initialize the
variable to in the method:

I’m sure you can see the logic of this. Obviously, the player doesn’t have the apple when the program
first starts, so it should be set to .

Next comes the new statement inside the event handler:

289

BUMPING INTO THINGS

To understand how this works, think about what conditions need to be met before the object
can either pick up or drop the apple:

 The game player needs to press the spacebar. You can check for this condition with a condi-
tional statement that looks like this: .

 The object needs to be touching the apple. You can check for this condition using
a conditional statement that looks like this: .

If those two things happen at the same time, you know that the player is either trying to pick up or
drop the apple. But the key is that both conditions need to be true at exactly the same time. Why? Well,
obviously it wouldn’t make sense if the object could pick up the apple if it weren’t touching it,
and the game also needs to know that the player wants to pick up the object. In this example, you tell
the game that you want to pick up or drop the apple by pressing the spacebar.

To check whether two conditions are at the same time, you can combine them into a single con-
ditional statement using the operator. You looked at the operator briefly in Chapter 4, but you
haven’t really seen it in action until now. The operator is a double ampersand that looks like this:

It’s used in the first new statement in this line of code:

Great! In one line of code, you can check whether both the conditions for picking up or dropping
objects have been met. But which one is it? Picking up or dropping?

That’s pretty easy to figure out. If those two conditions are , and the player doesn’t already have
the apple, you know that the apple needs to be picked up. If the player already has the apple, you
know the apple should be dropped. All it requires is an additional nested / statement that
checks whether the variable is . Here’s a simplified version of this logic:

290

CHAPTER 7

Keep that in mind because this is what the actual code looks like:

Is that making a little more sense now?

But how is the code actually picking up and dropping the object? First, let’s look at the directives that
pick up the apple:

You used the method to make the a child object of the object. So like a baby
duckling, wherever the goes, the is sure to follow.

You then set the and position of the apple to . Because the is now a child of the
object, it uses the object’s coordinate system. An and position of positions it in the very
center of the object. For your purposes, this happens to be very conveniently on the tip of the
pig’s nose.

291

BUMPING INTO THINGS

The last thing is to set the variable to , which prevents the program from trying
to pick the apple up again if the object already has it. The directives that drop the apple are
just as straightforward:

You first use the method to make the object a child of the object, which frees
it from bondage to the pig. Remember that the object is the parent object of all objects on the
stage, including the and objects. Objects that are children of the stage are at the top of
the food chain and are footloose and fancy free. The object now no longer has to mindlessly
follow the object around and can get into any of its own trouble that it wants to.

The next thing was to give the object the same and positions as the object. This fixes
it on the stage at its current position, which looks like it’s being “dropped.” The vari-
able was set to , which allows the player to pick the apple up again later.

The last thing you did was actually a bit of a bonus. You added the following nested statement:

It checks to see whether the object is touching the object. If it is, Thanks!! is displayed in
the dynamic text field. Awww . . . friends at last! (You can find the complete code for this example in
the file.)

Learning the bad news about hitTestObject
First, let me just say that I love the method! You can see from these examples what
incredible power it can give you with just a few lines of code, a little imagination, and a bit of simple
logic. I’m sure your head must be swimming with ideas for games already. If you have any doubts, let
me just confirm to you right now: yes, you have all the skills you need already to start making them!
I won’t stop you; go ahead, take a break from this chapter and start building them if you feel inspired.
A whole universe of possibilities exists!

But before you do go any further, take a closer look at just what makes tick. This must
be said, dear reader: holds a deep, dark secret that will cripple your games if you don’t
understand it.

292

CHAPTER 7

Detecting collisions with the bounding box
How does Flash actually know that two objects are touching? All display objects (objects you can see
on the stage) are surrounded by imaginary rectangular boxes called bounding boxes. The bounding
box defines the area of the object that checks for a collision. The bounding box is usu-
ally invisible, but you can see it when you select an object on the stage by clicking it once, as shown
in Figure 7-20.

Figure 7-20. Examples of bounding boxes

A collision is detected whenever any portion of the bounding box intersects with any portion of
another object’s bounding box. Figure 7-21 shows some examples.

Figure 7-21. Collisions are detected when bounding boxes touch or intersect.

This is all fine if the objects are square- ish or rectangular, but what if they’re not? Remember the cat
from Chapters 2, 3, and 4? It heard about all the apples you were giving away and wanted to get in on
the action. Funny thing about this cat, though—it has terribly long ears.

293

BUMPING INTO THINGS

Take a look at Figure 7-22 as the cat approaches the apple. The cat’s ears are so long that they push
the edges of the bounding box well past something that defines the main part of the object. Yet

, which uses these bounding boxes, regards it as a collision. The cat will get away scot
free with the apple, although it appears to be nowhere close to it. The pig and the owl would desper-
ately complain, and if you tried to get away with using this collision detection in a game, your players
would think something was seriously flawed—and they’d be right.

 Figure 7-22. hitTestObject registers this as a collision. Even though the
objects are nowhere near one another, their bounding boxes intersect.

To be fair, this is not a problem with ; its job is to check for collisions between the
bounding boxes of two objects. If it’s not working for you, you need to decide whether you want to
modify the structure of your game and objects so that it starts working or find another way of doing
collision detection.

You’ll be looking at a few other ways to do collision detection in this book, but before you give up
hope on , let’s look at some of the advantages it has over more- complex methods and
how you can make it work in your games.

Two great things about make it the favored first choice for doing collision detection:
it is easy to implement and puts very little strain on the CPU or Flash Player. In game design, in which
performance considerations can dictate many design decisions, this last reason alone is enough to
spur you on to see how much mileage you can wring out of the humble .

So, here goes. How can you use and still make it work reasonably well for irregularly
shaped objects?

Let’s take a look at a few solutions.

294

CHAPTER 7

Learning to live with it
The first solution, which is not really a solution at all, is to design your game according to the con-
straints that imposes on you. Limitations can be an enormous strength (in the same
way that writing poetry according to the rules of a sonnet can be a strength). They can help you focus
and streamline your design—just ask Shakespeare!

If you know that works best with square or rectangular objects, design your objects
accordingly.

Have a look at the owl and pig characters that you used in this chapter. They’re both square shaped,
but you wouldn’t know that unless you actually saw a square outline traced around them. They’ve
been designed so that most of the edges and corners meet the edges of the grid square in which they
were designed. This means that there are very few places in which the shape of the character doesn’t
fill the bounding box, so the shapes of the objects almost always overlap when a collision occurs.

However, there are a few spots on both of these objects where a collision will be detected even if the
shapes don’t overlap. Figure 7-23 shows an example.

 Figure 7-23. The bounding boxes overlap,
even if the shapes don’t.

Isn’t this the fatal Achilles heel in the whole system? Not if the objects are moving fast enough, and
in most games they will be. The empty gap between the edge of the bounding box and the owl’s wing
isn’t more than about 5 pixels at its maximum. Remember that the object in these examples is
moving at the rate of 5 pixels every 1/30 of a second. That’s really fast. It’s so fast, and the gap is so
small, that no one playing the game would ever notice that the collision wasn’t accurate.

Of course, if the objects were moving slower, you’d have a problem. But the point of this section is
this: design your game so that it’s not a problem. Make your objects short and stout, and make them
move reasonably quickly. If you can do that, will be all you’ll ever need.

Have a look some of your favorite 2D games. Isn’t it funny that all the characters and objects seem to
be sort of plump and square- ish? You got it, baby! They’re dealing with exactly the same constraints
you’re dealing with here. Welcome to the video game designer’s club!

295

BUMPING INTO THINGS

Creating subobjects
The simplest way to improve collision detection using is to create subobjects inside
the main object and use them to check for a collision.

Let’s stick with the problem of the long- eared cat and the apple for a moment. You could greatly
improve the collision detection between them if you created a smaller rectangular object inside the
object that defined the collision area. You could give this subobject the instance name .
You could then access it with dot notation like this:

If you used it with in an statement, it might look something like this:

Of course, you have to set the alpha of the subobject to so it is completely transpar-
ent. (To make an object completely transparent, select it, and then give it an alpha value of in the
Color Effect pane of the Properties panel. Alpha is one of the options in the Style menu.)

 Figure 7-24 shows how using a subobject can greatly improve the collision detection between the cat
and the apple. In the figure, a. shows what this would look like if the subobject were
visible, and b. shows how it would probably be used, completely transparently, in a real project.

 Figure 7-24. Use subobjects to improve collision
detection.

296

CHAPTER 7

That’s much better, isn’t it? Some of you might still see
a problem, however, which is now almost the opposite of
the problem you were facing before. now
won’t register a collision if the apple is touching an area of
the cat that isn’t covered by the subobject.
 Figure 7-25 shows some examples.

But is this really a problem? In many games, it isn’t. In
 fast- moving games, it can actually look more natural to have
a slight overlap between two objects before a collision is
registered than if the collision detection were too precise.
Here’s why:

 A slight overlap occurring between two objects gives
a 2D game a very subtle feeling of shallow depth that
will seem very natural to players. The human mind
instinctively tries to impose depth onto flat surfaces,
so overlapping objects will be thought to be occupy-
ing slightly different planes.

 When players play a game, the mind creates a kind of
texture for the game that is almost tactile. When peo-
ple talk about the “feel” of a game or a player control
scheme, this is what they mean. Overly precise collision detection can make the texture of the
game feel harsh and rough to the player. A little leniency in collision detection can give your
game a softer, spongier feel to it that might be more enjoyable to play.

Take a good look at the collision detection going on in some of your favorite 2D games, and you’ll
notice that you can often touch an enemy just slightly and get away with it without a collision being
registered. I can’t count the number of times I’ve been saved by this “fuzzy” collision detection when
jumping over barrels in Donkey Kong or evading Koopa shells in Super Mario Bros., and it never
seemed like there was something wrong with the game.

This boils down to very carefully thinking about the collision detection in your game and deciding which
kinds of collisions are important and which aren’t. Let’s have another look at the cat and apple prob-
lem. Would it really make sense to have the cat pick the apple up if the apple were touching its ears? It
definitely wouldn’t, and if it did happen it would certainly look wrong. Is it okay for the apple to overlap
with the cat’s stomach a bit and not register a collision? Probably—because as soon as the cat touches
the apple with the part of its body that includes its paws, the collision will occur. This would make sense
to the player. The slight overlap would be accounted for as the shallow depth discussed previously (or
maybe the cat’s fur), and the player wouldn’t notice there was anything wrong with it.

However, if you tested this and discovered that it actually did look really awkward, you could start
adding more rectangular subobjects in areas of the cat to improve or fine- tune the collision accuracy.
You could name them like this:

You could add as many of these additional subobjects as you need. The only drawback is that you’ll
have to write more code to check for these collisions. And if you have a huge number of them, they

 Figure 7-25. Even though the apple is
touching the cat, neither registers as
a collision because the apple’s bounding
box is not intersecting with the collision-
Area subobject.

297

BUMPING INTO THINGS

might start to slow down your game. Still, it’s a great solution, and there are very few collision detec-
tion problems you won’t be able to solve by doing this judiciously.

All this is an art, not a science, and if you get the balance right you’ll have an amazingly comfortable
and natural collision- detection system. Hooray for !

Using hitTestPoint
Another method you can use for collision detection, , allows you to see whether a single
point is touching the shape of another object. This time, I mean its actual shape, not just its bounding
box.

The best way to see how works is by trying it out in a practical example. In the next few
steps, you’ll design a hilly background for the characters and use to prevent the
object from moving off of it.

 1. In the file, create a new layer in the timeline called background.
Position it in the layer stack so that it’s below the layer on which you’ve designed your other
objects.

 2. Use Flash’s drawing tools to draw a curved hill behind your , and objects.
Mine looks like Figure 7-26 (the daisies are optional!).

 Figure 7-26. Design a hilly background for your characters.

298

CHAPTER 7

 3. Convert the hill into a symbol. Select the graphic with the Selection Tool and then select Modify
Convert to Symbol. Give the new symbol the class name .

 4. Give the new hill object the instance name hill in the Instance name box of the Properties
panel.

 5. You’ll add a new dynamic text field to test how is working. Create a new dynamic
text field in the upper part of the stage and give it the instance name collisionDisplay. Figure 7-27
shows how I set mine up.

 Figure 7-27. Add a new dynamic text field called collisionDisplay.

 6. Save the file.

 7. Open the file. Add the following code in bold to the event
handler:

299

BUMPING INTO THINGS

 8. Save the file and test the project. The
dynamic text field tells you whether the player is on or off
the hill. But look closely. Can you tell at which point the
program detects that the player is on the hill? It’s actu-
ally using the absolute middle point of the object.
When the center point of the object is touching any
part of the surface area of the object, the collision is
detected. Figure 7-28 illustrates this a little more clearly.

This is pretty amazing. Absolutely precise collision detection
without bounding boxes! Just like , you attach

 to any object that you want to check for a collision
using dot notation. That first object is the one whose shape you
want to use in the collision. You used in the previous code:

 Figure 7-28. Use hitTestPoint to check
whether a single point in an object is touch-
ing the actual shape of another object.

300

CHAPTER 7

But what about all that stuff in the argument?

These values define the point that you want to use to check for a collision. You can find any single
point by giving two values: an position and a position. In this example, you used the center point
of the object as the point you want to use in the collision. The third argument, , just
means “yes, you want to check for a collision using a point and a shape.” (The last argument is called
the shapeflag in the AS3.0 documentation. If you set the shapeflag to , will just
go back to checking for a collision with the objects’ bounding boxes, just as does.)
 Figure 7-29 illustrates how all the elements of collision detection using fit together.

Add any directives you want to run when
the collision occurs inside the if statement

The object whose
shape you want
to check for
a collision

The hitTestObject
method

The x and y coordinates
of a single point you want
to compare against the
object’s shape

This just means,
“Yes, let’s compare
this point against the
object’s shape.”

 Figure 7-29. How hitTestPoint works

So what is useful for? Let’s go back to the cat with the long ears. Suppose that you
designed a game in which it’s absolutely crucial to know whether something is touching the tips of the
cat’s ears. All you need to do is figure out the and coordinates of the points that define those ear
tips, and then use them in a conditional statement using .

For example, you know that the tips of the cat’s ears are at the very left and right side of the
object, and about 3 pixels from the top. First, you need to define these points, and even though you
could do this directly in the arguments of the method, it will make the code a little
more readable if you define them as variables first. You can use some code that looks like this:

 Figure 7-30 illustrates these positions.

Now all you need to do is use these points to write two statements using (you need
one for each ear tip):

301

BUMPING INTO THINGS

If the shape of the object now comes into contact with either of these points, a collision is
detected. I’m sure you can see how you could use this alongside to really fine- tune
your collision- detection system.

 Figure 7-30. Calculate the points that you want to use in the collision.

Using hitTestPoint to create an environmental boundary
Let me show you a neat little trick using that you’ll almost certainly find useful in some
of your games. Have a look at the scene that you built in . You can make
the object move all over the stage. However, if this were a realistic scenario, the pig should not
be able to move off the hill into the sky. (I could make a little comment here about “when pigs fly,”
but good taste got the better of me this time!) Wouldn’t it be nice if you could just confine its range
of movement to the area of the hill? You can, with a little help from .

 1. Make sure that your object is within the area of the object. If its center and
position is not on the hill, you won’t be able to move it when you test the project.

 2. Add the following code to the event handler (note that the / statement
from the previous example was removed to make sure that the effect of this new code is as
clear as possible):

302

CHAPTER 7

 3. Save the file and test the project. Try and move the object off the
hill. You can’t do it, can you? As soon as its center point attempts to leave the area of the hill,
its movement is blocked. Figure 7-31 shows what you’ll see.

 Figure 7-31. The player’s movement is blocked when its
center x and y point attempts to leave the hill.

303

BUMPING INTO THINGS

The first thing that this bit of code did was to figure out if the player object is not on the hill:

Notice the use of the not () operator. It can help you figure out whether a collision is not occurring,
which is often just as important as knowing whether one is occurring.

The real magic lies in these two directives:

They don’t look like much, so what are they doing? It’s very simple. They’re subtracting the and
velocity from object’s current position. That forces the object back to the position it
was before the collision was detected. This effectively blocks the object from moving.

The logic behind this is exactly the same as the logic you used to prevent the object from
moving beyond the stage boundaries. Remember that if the code detects that the object has
moved farther than the edges of the stage, it pushes the object back so it’s right at the stage edge.

The previous code does exactly the same thing, with one crucial difference: you know where the
boundaries of the stage are, but you don’t know where the boundaries of the object are. However
there are two important things that you do know:

 (with a operator) can tell you when the player is no longer touching the
 object. (This is the equivalent of figuring out whether the player has moved beyond the

edge of the stage.)

 All these directives are running within the event handler, which means they run
each time the Flash Player “enters a new frame,” 30 times per second. You know that if

 tells you that the player is no longer touching the object, the player must
have been touching it in the previous frame. This means that all you have to do is to move the

 object back to where it was in the previous frame to prevent it from moving forward.
You don’t know where the player was, but (thanks to the and variables) you know exactly
how fast it was moving. If you subtract the and values from the player’s current and
position, it will be back in the spot it was in before it left the hill. Neat trick, huh?

Let’s make a small improvement to this example by allowing the
object to move a little farther up the hill before its movement is blocked.
You’ll define the bottom- center point of the object as the point you’ll
use in the collision. Figure 7-32 shows where this point is.

The position hasn’t changed; only the position has. You can define the
new coordinate with this simple calculation:

 Figure 7-32. Define the bot-
tom center point of the player
object.

304

CHAPTER 7

All you need to do is update the code with this new position:

 1. Add the following code in bold text to the statement you just wrote:

 2. Save the file and test the
project. You’ll now be able to move the
object up to the very top of the hill, as shown in
 Figure 7-33.

This is an illustration of an approach you can use for
 shape- based collision detection, but it will almost cer-
tainly require a bit more fine- tuning before you use it
in any of your games. Each game you work on will pres-
ent its own set of problems, but I outlined the starting
points to solving many of them in these simple examples.
(You can find the complete code for this section in the

 file.)

The one flaw in this technique is that it’s not pixel- perfect. You don’t have a way to figure out
exactly where the boundary of the hill lies. You only know that it’s somewhere within the range of
5 pixels that’s defined by the object’s velocity. If you need greater precision, you’ll have to
investigate some more- advanced techniques that are just outside the scope of this book. For the
adventurous among you, here are some strategies you can try.

You can use a loop and some vector math to test each point along the player’s trajectory to find
the edge of the shape and move the player to that spot. This technique is called multisampling.

A simpler way is to use a loop to push the object back by one pixel until it’s touching
the hill. The basic code for using a loop in the context of the present example looks like this:

This will work if the player is moving in one direction: up. You can make it work for all directions if you
combine it with some of the techniques you’ll be looking at toward the end of this chapter. (I’ll cover

 and loops in detail in the chapters ahead. Come back to this section of the chapter when
you think you are ready for the challenge.)

 Figure 7-33. The player object is now free to
move all the way to the top of the hill.

305

BUMPING INTO THINGS

Creating objects that block movement
You can use the same technique of reversing an object’s velocity to create an object that blocks the
movement of other objects. Here’s how:

 1. Create a new symbol called .

 2. In the symbol’s editing window, use Flash’s drawing tools to design a 50-by- 50 pixel
square stone block.

 3. Drag an instance of the symbol onto the main stage and give it the instance name wall.
The stage in my file now looks like Figure 7-34.

 Figure 7-34. Add a wall object to the scene.

 4. Add the following code in bold text to the bottom of the event handler. (The
complete code is in the file in the chapter’s source files.)

306

CHAPTER 7

 5. Save the file and test the project. Try to move the object through
the wall. You can’t; it blocks you in each direction.

The logic behind this is exactly the same as the logic you used to prevent the object moving
off the hill. But you might have noticed something important: it works, but it doesn’t work well. The
reason it doesn’t work well is extremely important to understand.

Move the object to each side of the object and look carefully at how close the two
objects come to one another. There’s probably either a small gap or a large gap. If you’re really lucky,
they might meet almost exactly. None of the gaps will be consistent. Figure 7-35 shows an example of
how this looks in my program.

307

BUMPING INTO THINGS

 Figure 7-35. The wall pushes the player back to inconsis-
tent positions.

Here’s why it doesn’t work well. Let’s say that the right edge of the object is at an position
of 97, and the left edge of the wall is at an position of 100. You know that the object moves
5 pixels each frame. If you press the right arrow, 5 pixels will be added to the object’s position and
it will attempt to move to an position of 102. However, it won’t get that far because will
detect a collision and push the object back 5 pixels. That leaves the object back where
it started, with its right edge at an position of 97 and a gap of 3 pixels between the object and
the wall.

You can see then from this example that you don’t really want to push the player back 5 pixels; you
want to push it back only 2 pixels, which is the depth with which it is penetrating the wall. You could
easily do that, except that you never know what the depth of the penetration will be. If the
object started from an position of 96, the depth would be 1 pixel; if it started from an position of
99, the depth would be 4 pixels.

The problem is that you have no way of knowing by how many pixels the objects will overlap, and
 has no way of telling you that. There is actually a very precise, bulletproof way to

figure it out, but to do this you need to ditch and say hello to axis- based collision
detection.

308

CHAPTER 7

Working with axis- based collision detection
Axis-based collision detection not only tells you whether two objects are touching but also by
exactly how much they’re overlapping. If you know what the overlap is, you can separate them with
 knife- edge precision. Axis- based collision detection works in the following way:

First, it finds out how far apart two objects are. Next, it finds out the half- widths (and half- heights) of
those objects. If the combined total of half- widths (or half- heights) is more than the distance between
them, the two objects must be colliding. You can work out exactly by how much the two objects are
overlapping by subtracting their distance from their combined total widths or heights. Figure 7-36
illustrates how this works.

 Figure 7-36. Axis- based collision detection

When you know by how much the objects are overlapping, you can then force them apart by the same
amount.

309

BUMPING INTO THINGS

Programming with the Collision class
If you understand this basic concept, all you need to do is figure out how to represent this logic in
code. You’ll do that in a moment, but you’ll be doing it very differently to any of the other code
you’ve added to the program so far in this book. You’ll actually use this code as part of a completely
separate class. The class is called , and you’ll find it in the chapter’s source files.

Up until now, all the programming that you’ve done has been inside a class called . That’s been
great for learning purposes and the short programs you’ve been building, but as your games increase
in complexity you’ll find that it’s vastly more efficient to break components of your games up into
separate classes. How to do this will comprise much of the substance of the rest of the book, so don’t
panic if this seems daunting at the moment! You’ll take everything in small, manageable steps.

The reason why you should put all this new axis- based collision code into a new class is because it will
be so useful that you’ll almost certainly want to use it in all your games from now on. Instead of having
to write it over and over again each time you design a new game, if it’s in its own class you can write
the code once and then use the class in any game that might need it. That’s one of the great things
about using classes; you can easily reuse code you’ve written for other projects.

Using static methods
Inside the new class is a method called that blocks the object’s movement.
Unlike any of the methods created in previous chapters, the method is a special kind of method
called a static method.

Static methods are usually designed to perform a general task that can be of use at many different times
and in many different contexts in your program. Maybe you’ll find that in your game you don’t only want
walls to block the player’s movement you also want trees, locked doors, or even enemies. Instead of writ-
ing separate (and almost identical) methods to do this for each object, it’s much better to write a single
general method that all these objects can use if they want to. Static methods allow you to do just that.

To use a static method in your program, simply give the name of the class that the method belongs to,
followed by a dot, and then the method name. Here’s an example:

You’ve seen static methods before; you just weren’t aware that it’s what they were called. In Chapter 5,
you used one of AS3.0’s special built- in methods:

Look familiar? Yes, it’s a static method! is a method that is part of AS3.0’s class. It does
the specialized job of giving you a random number between 0 and 1, and you can use it anywhere in
the program inside any other class. Static methods used like this are often called utilities. They do
a useful little job for you in your program, and you don’t need to worry about how they work as long
as they provide the result you need.

You can use the method inside the class, anywhere in the program, like this:

You just need to make sure that the file is in the same folder as the class that’s using it.
You’ll soon see how easy it is to use.

310

CHAPTER 7

Using the method parameters
The method is different in one other way from the methods you’ve written so far: it uses
parameters, which are extra bits of information that a method uses to help it do its job. Parameters
were discussed in Chapter 3, but let’s review them again briefly before you continue.

Let’s look at a concrete example of how to use parameters. Imagine that you want to write a method
that has the task of displaying the names of fruit. Let’s call the method . You want to be
able to give it the names of any fruit, and the method should then accept those names and display
them in the output window.

The method doesn’t know what the names of the fruit will be; you could send it any fruit imaginable. All
it knows is that you’ll be giving it two names. You could write some code that looks something like this:

The names of the fruit are provided inside the parentheses that follow the name of the method,
which is known as the argument. You supplied the names of the fruit as strings (words surrounded by
quotes), and separated them with a comma. Now it’s the job of the method’s function definition to do
something useful with this information.

Here’s what the method’s function definition looks like:

If you run this code in the program, the display in the Output panel is the following:

You can change the method call at any time in the program to display different fruit. For example,
you might decide that you’re tired of apples and oranges, and write this line of code a little later in
the program:

The Output panel then displays the following:

You didn’t change the method in any way; all you did was change the arguments in the method call.
When the arguments are sent to the method’s function definition, they’re copied into the parameters,
which are highlighted here:

311

BUMPING INTO THINGS

The parameters are just local variables that can be used anywhere in the function definition. Because
you’re expecting them to accept string values, you’ve set their variable type as the same way
you would for any other variables.

The values of the two parameters contain whatever values are passed to them in the method call. That
means that whenever the method uses the variable names and , it will
replace them with the values and or and —or whatever else you choose
to send it.

The beauty of this system is that you can reuse the method for many different related tasks, without
having to know the specific values of the variables it will be dealing with.

Here’s another example. Let’s create a method that adds three numbers and displays the result. Here’s
what it might look like:

You can then use this method with a method call that might look like this:

It displays this in the Output panel:

Any three numbers you supply will give you a different result. I’m sure you can start to see how useful
this can be.

You’ll use the method in the same way. In the interactive playground that you cre-
ated in this chapter, you want to stop the object from walking through the object. You
can write the method call so that it looks like this:

It might work for this program, but what if you’ve got another game where you want to prevent
a mouse from crossing a stream? Without changing anything in the method’s function definition, you
can just use this line of code:

The method is written in general way so that it doesn’t need to know know specifically which objects
it will be asked to block, just that they’ll be two objects of some sort. It means you can reuse exactly
the same code anywhere in any context.

312

CHAPTER 7

Using the Collision.block method
Using the new method is simplicity in itself:

 1. Open the file. Enter the new code in bold at the bottom of the
 event handler. (You’ll find this code in the source files as .)

313

BUMPING INTO THINGS

 2. Save the file and test the project. Try moving the object through
the wall. The wall blocks its movement, and there’s no gap between the objects. Figure 7-37
shows an example.

 Figure 7-37. Axis- based collision detections allow for knife-
edge precision.

Pushing objects
Surprise! I have one more little trick up my sleeve. Do the following:

 1. Change the method call in the file so it looks as it does
here (the only difference is that the order of the object names has been reversed):

 2. Save the file and test the project. Move the object to the wall.
You can push the wall around the stage!

How is this possible? By changing the order of the arguments, the effect of the code is on the
object, not the object. The only difference is that because the object is moving, the

 object has to continuously reposition itself in front of the direction the object is trav-
eling in to prevent the two objects from overlapping. (You can find this complete code in the file

.)

Taking a closer look at the Collision.block method
If you are just happy that the new code works and aren’t really too worried about the fine details,
feel free to skip to the next chapter. The main thing is that you have a great little tool you can use
in any of your games. If you now have a general idea of how axis- based collision detection works,
why you might need to use it, and how to use a static method with parameters in a custom class, that’s all
you need to know. Like , it’s a utility that you can use whenever you want to, and you
don’t need to know how it works.

314

CHAPTER 7

But if you are a code junkie, read on! Flip back a few pages to Figure 7-36 and try to become familiar
with the problem you need to solve. If you understand the problem and the logic used to solve it, all
the new code does is to turn that logic into AS3.0 code. In fact, the problem you face is exactly the
same as the problem you faced in Chapter 6 when you were figuring out screen boundaries. The only
difference is that the calculations that you need to make to figure out how far these boundaries have
been breached are a little more complex.

Let’s walk the through the class and have a look at what’s new and how it works:

 1. Double-click the Collision.as file in the Project panel to open it.

 2. You’ll notice quite a lot of code there that you won’t understand (you’ll look at most of it in
later chapters). All you’re interested in now is the function definition, which is the first
function definition in the class. Here’s what the class and the function defini-
tion look like:

315

BUMPING INTO THINGS

This is the most complex code that you’ve come across in the book so far, but I’ll break it apart
and you’ll look at one little piece at a time. The first odd thing is the class’s constructor
method:

Remember that a class has to have a constructor method, and the constructor method name always
has to be the same name as the class name. Any directives inside the constructor method run imme-
diately when the class is instantiated.

This constructor method is completely empty, which might seem strange. But the reason is that you
won’t create an instance of the class and you have no initialization directives that
you want to run. It’s perfectly fine to have a constructor method that’s empty like this. In fact, you can
even leave out the entire constructor method if you want to, although it’s generally considered bad

316

CHAPTER 7

programming form to do so. (If you do leave it out, AS3.0 will add it automatically when it compiles
the program.)

Next is the function definition:

The keyword means that you can use this method directly in any other class, in the format
, without having to make an instance of the class first. (If that’s not too clear right

now, it will make a little more sense later in the book when you work more closely with instances of
classes.) For now, just know that it makes it very easy to use this method anywhere in the program.

The other important things about this function definition are its parameters:

These are local variables that are defined with the type . In the file,
you used this line of code to call the method:

Both and are objects, so it makes sense that and should
be typed as objects, too. When the method is called, a reference to the object is
copied into the variable, and a reference to the object is copied into the vari-
able. Whenever you see and in the body of the method, you can replace them with

 and in your mind if that helps you better understand how the code is working.

To allow the player to push the wall, the order of the objects in the method call is reversed like this:

The object was referenced by the variable. The roles were reversed, and the object
was forced to reposition itself to avoid overlapping with the moving object, creating the push-
ing effect.

The first few lines of code inside the function definition initialize the method’s local variables:

If you’re this far into the book, you’re pretty much an expert on half- widths and half- heights! But the
last two lines deserve a good look. Let’s start with this one:

317

BUMPING INTO THINGS

Remember that for this collision detection system to work, you need to find out two things:

 The distance between the objects

 The amount that they’re overlapping

The previous line tells how far apart they are and copies that information into a variable called .
Technically, the d in stands for delta, but I’ll let you off the hook and allow you to think it stands
for distance, which is a much more concrete concept to grasp. So is the distance between the two
objects on the x axis.

To find out the distance between the two objects, all you need to do is subtract the position of
from the position of . Sounds too easy to be true? Figure 7-38 explains how this works.

 Figure 7-38. Subtract objectA’s position from objectB’s position to find the
distance between them.

318

CHAPTER 7

The variable that’s used to figure out the distance between the objects on the y axis is used a little
later in the code.

Now that you know the distance between the objects and their combined total half- widths, you can
find out whether the objects are overlapping on the x axis with this line of code:

This is the formula for figuring out whether there’s any overlap. Refer to Figure 7-36 for an illustration
of how this works. The variable name is shorthand for “overlap on the x axis.”

One new thing in this directive is this:

 is one of AS3.0’s built- in methods. (And, yes, it’s a static method!) Its job is to find out what
the absolute value of a number is. Absolute values can only be positive; negative numbers that are
forced to be absolute have their sign dropped. Let’s imagine that you use in a line of code
that looks like this:

It would return this:

Why is this useful for you? If has a lower position value than , the value of will
be negative. The negative value would overly complicate the code because you’d need an additional

 statement to check for it. It’s simpler for you just to deal with positive values.

The next bit of code is a long nested / statement:

319

BUMPING INTO THINGS

Briefly, this is what’s happening:

 1. The code first checks to see whether there’s an overlap on the x axis.

 2. If there is, it checks for an overlap on the y axis.

 3. If there’s an overlap on both axes, a collision must be occurring.

That’s the key to how this system works.

If you know a collision is occurring, the next step is to find out where the collision is happening. If, for
example, the player is colliding with the wall, you need to know whether the collision is happening on
the top, bottom, left, or right side of the wall. If the overlap is happening on the left side of the wall,
you need to subtract the amount of overlap from the player’s position to push it back toward the
left. If the overlap is happening on the right side of the wall, you need to add the amount of overlap to
the player’s position to push it to the right. If a collision is occurring on the top or bottom, you need
to do the same kind of repositioning. All this depends on knowing the direction of the collision.

320

CHAPTER 7

To figure this out, the code compares the and variables against zero to find out whether the
overlap is happening on the top, bottom, left, or right. Figure 7-39 is a line-by- line explanation.

If the overlap on the x axis (ox) is more than zero, a collision might be occurring,
so it would be a good idea to check for an overlap on the y axis, too.

 Figure out the distance between the objects on the y axis (dy).
 Figure out the overlap on the y axis (oy).

 Check whether the y overlap is greater than zero.
If it is, a collision is definitely occurring, and you need to figure out on which side.

 If the x overlap is less than the y overlap, then the collision
 is happening on the x axis.

 If the distance between the objects on the x axis
 is less than zero, then the collision is happening on the right.

Because this is an x axis collision,
you can ignore the y overlap by setting it to zero.

 (The x overlap will remain positive to push the object to the right.)

If the distance between the objects on the x axis
 is greater than zero, then the collision is happening on the left.

You need to multiply the x overlap by -1 to push the object to the left.
 You can again ignore the y overlap by setting it to zero.

 If the x overlap is greater than the y overlap, then the collision
 is happening on the y axis.

 If the distance between the objects on the y axis
 is less than zero, then the collision is happening on the top.

 Because this is a y axis collision, you can ignore the x overlap by setting it to zero.

 You need to multiply the y overlap by -1 to push the object up.

 If the distance between the objects on the y axis
 is greater than zero, then the collision is happening on the bottom.

 We can again ignore the x overlap by setting it to zero.

(The y overlap will remain positive to push the object down.)

 Assign the newly calculated x overlap to the object’s x position.
 Assign the newly calculated y overlap to the object’s y position.

Right

Left

Top

Bottom

Although this code may seem complex at first glance, all it does is figure out which side the collision
is happening on. It then assigns the correct overlap value to the object’s x and y position to move it out
of the collision. The overlap values, “ox” and “oy,” can have only one of four possible combinations.

A collision is occuring
on the x axis.

A collision is occuring
on the y axis.

 Figure 7-39. Axis- based collision detection

This code repositions the object with deadly accuracy and it also works for 3D objects. All you need
to do is one further check on the z axis, and apply the same logic. I don’t discuss 3D in this book, but
if you do go on to build any 3D games in AS3.0 in future, you have all the makings of a 3D collision
system right here. Axis- based collision is the keystone to understanding advanced collision detection
in games.

321

BUMPING INTO THINGS

Detecting bitmap collisions
As a final word, you should be aware of one other collision- detection system that’s not discussed in
the book: bitmap collision detection. Bitmap collision detection allows you to detect a collision
between two objects based on their exact shapes.

Using it requires a relatively advanced understanding of AS3.0, which is a bit beyond the scope of this
introductory book. It’s also very processor- intensive, so it can really slow your games down if it’s not
used judiciously. And even though precise shape versus shape collision detection sounds great in the-
ory, in practice you’ll find that are actually few collision- detection scenarios that can’t be adequately
handled with careful application of the techniques covered in this chapter and refined in the rest of
the book.

Still, there are some cases in which bitmap collision detection is essential. Imagine a game like Worms,
in which you can use a variety of weapons to destroy irregularly shaped patches of an opponent’s
environment. Bounding boxes won’t help you there; you need some way of changing individual pixels.
Or imagine a game in which you need to navigate a spaceship through an underground lunar cave full
of irregularly shaped jagged rocks. Bitmap collision detection is perfect for those kinds of situations.

When you’re ready for another challenge, a web search will turn up quite a bit of information of how
to do bitmap collision detection with AS3.0. Keith Peters’s excellent book, AdvancED ActionScript 3.0
Animation (friends of ED, 2009), devotes part of a chapter to this subject.

Summary
Collision detection is quite a big subject in game design, and hopefully the introductory taste you’ve
had of it here is enough whet your appetite for what’s to come.

But before you jump ahead to the next chapter you might want to take short break to make a game.
Hey, don’t be scared; you can do it! And that’s what this book is all about, after all. If you combine the
 collision- detection techniques from this chapter with the player- control techniques from the last one
(along with the logical analysis you looked at in the number guessing game), you have all the tools you
need to make some pretty sophisticated games.

In the next chapter, you’ll combine all your new skills and learn a few fun new ones to create a game
called Dungeon Maze Adventure. And unlike any of the previous games in this book, it will be pro-
grammed in a completely object- oriented way. What do I mean by that? Turn the page to find out!

323

Chapter 8

In this book, I’ve described AS3.0 as an object- oriented programming language,
which means that objects are at the very center of the programming universe. If that
still sounds hopelessly vague, don’t worry; by the end of this chapter, you’ll know
exactly what this means and the power it can give you as a game designer.

Up until this point in the book, all the programming has been done inside one class:
. You set the FLA’s document class in the field of the movie’s Properties

panel. This means that the class runs automatically when the SWF file runs. This
style of programming is known as procedural programming. Procedural programs
are composed using methods to build the program modularly. Each method does
a specific job or solves a specific problem, and the program is built by all these
methods working together. The number guessing game from Chapter 5 is a classic
example of a procedural program.

Procedural programming is quick, convenient, and a great way to write programs and
small games. In many cases, a procedural solution is a better solution to a program-
ming problem than an object- oriented solution. The only problem is that sooner or
later the complexity of your games will increase, so trying to cram them all into one
class file, or even a few related ActionScript files, becomes really impractical. That’s
the point at which taking a look at the object- oriented way of doing things will make
a lot of sense.

OBJECT-ORIENTED GAME DESIGN

324

CHAPTER 8

In Chapter 7, you looked at how to use a static method in an external class called . This was
helpful because you could keep the rather complex collision code from getting tangled up with the
main part of the program. It made your program much easier to read, but you could still use the col-
lision code whenever you wanted to with just one simple directive.

In this chapter, you’ll go one step farther: all the important objects in the game will be programmed
in their own classes. You’ll also see how to use a special manager class to coordinate the behavior of
these objects.

Introducing object- oriented programming
Before you get to the case study at the heart of this chapter, you’ll take a quick break from program-
ming to look at some basic object- oriented programming techniques and concepts:

 Binding classes to symbols

 Using properties and methods

 Using private properties and encapsulation

 Communicating between classes using getters and setters

There are some new concepts to grasp in the pages ahead, but you’ll soon see how easy it all is to put
into practice.

Binding classes to symbols
It’s possible to create a symbol in the Library and then bind it to a class. The class is a self- contained
file that contains the programming code to control all instances of that symbol.

Here’s how it’s done. Remember that when you create a new symbol, the Create New Symbol dialog
box allows you to select Export for ActionScript as an option in the Linkage section. The Class field
allows you to provide the name of the class that you want to link to that symbol. It automatically sup-
plies the symbol name as the class name.

What this means is that whenever you use an instance of the symbol in your game, the class file that
you supplied in the Class field is automatically loaded and attached to the object. Figure 8-1 shows an
example. If your symbol is called and you also used the class name , Flash will look
for a class file called and attach whatever programming code it contains to any
objects on the stage.

 Figure 8-1. Flash looks for a file called Giraffe.as if you specify Giraffe as the
class name.

324

325

OBJECT-ORIENTED GAME DESIGN

To create the class, simply create a new ActionScript file with the name . (Flash automati-
cally and invisibly creates a file like this in the background if you don’t create one yourself.)

Using properties and methods
Let’s take a look at what this imaginary class might look like (you’ll notice a few new things in
this class that you haven’t yet seen before, including the keyword ; I’ll discuss them shortly):

A class is essentially a description of an object. I’m sure you can get a pretty good idea of what the life
of the poor giraffe is like by looking at the preceding class! A class describes an object in two ways:

 Properties: The “things that it is”

 Methods: The “things that it does”

Properties is just another name for variables such as these:

Yes, they’re just plain old variables—as simple as that! (I’ll explain the underscore in front of
their names in a moment.) Properties also refer to all the built- in Movie Clip properties (such as , ,

, and) that you’ve been using all along.

325

326

CHAPTER 8

Methods? Of course you know what methods are by now! Here are the giraffe’s methods:

By using properties and methods together, you can create a model of an object. If you understand that,
that’s what 50% of what object- oriented programming is all about. The other 50% is coming up next.

Private properties and methods
In the previous code the properties and methods were declared as :

Private means that those properties and methods can be used only within the class they’re defined.
They can be used in the class and nowhere else. No other class (an class, for exam-
ple) can stick its nose into the giraffe’s business and find out whether or not it was hungry or what its
favorite activity is. Those matters are entirely private.

If you don’t use the keyword when you declare a property or method, AS3.0
assumes that they’re public. Public properties can be accessed freely by any other classes.
You can use the keyword to make this explicit in your code if you need to.

Why should you declare a property as private? Imagine that your house is a class, and your oven is
one of the class’s properties. Your oven is having trouble switching on, so you call a repairman to take
a look at it. But you’re really busy and can’t be home when the repairman comes, so you leave the
door unlocked and trust that all will be well. Best- case scenario: you come home to find that your
oven works, but a vase is lying broken on the floor, an empty pizza box is on the sofa, and a bill arrives
at the end of the month for all kinds of pay-per- view movies you know you never watched. Worst- case
scenario: you come home to find your house a smoldering ruin and all the other houses in the neigh-
borhood up in flames. If only you could have been there to tell the repairman (who was standing
ready with his 10,000- volt charge- jumper), “It’s a gas stove, not electric!”

In a very small game with only a few classes, you could probably get away with directly accessing
another class’s public properties and methods. In a larger game, however, you’d be opening yourself
up to a potential debugging nightmare scenario. So, except for a few exceptions that you’ll be looking

327

OBJECT-ORIENTED GAME DESIGN

at soon, keep all your class’s properties and methods private. It might not be entirely obvious to you
this early in your programming career, but (like wearing seatbelts in car) the weight of programming
experience says it’s a good idea. When things do go wrong, they go very, very wrong, and you’ll be
glad you did it.

Using private properties to lock down a class in this way is an aspect of object- oriented
programming called encapsulation. Encapsulation means that your class is com-
pletely sealed off from tampering by other classes and is as self- contained as possible.
If other classes want to access or modify any properties in an encapsulated class, they
have to follow very strict rules about doing so.

Using an underscore character to highlight private properties
Both of the class’s private properties begin with an underscore character:

This is a naming convention that is entirely optional, but one that you’ll be using in this book. Preceding
the names of private variables with underscore characters helps you tell at a glance which properties
are private, which makes your code more readable.

When you start using getters and setters (more on them soon!), the underscore also
helps you distinguish between the private property and publicly accessible getter and
setter methods. By keeping the names exactly the same, with the exception of drop-
ping the underscore, you can create getter and setter methods that logically share the
same names as the private properties that they access or modify.

Communicating between classes using getters and setters
Classes often need to communicate with one another. But if all their methods and properties are pri-
vate, how can they do this? The trick is to create special public methods called getters and setters,
which carefully negotiate communication between classes.

Using getters
Let’s create a scenario in which you have a bank full of money and a bank client who wants to access
that money. Let’s start with an imaginary class called :

328

CHAPTER 8

Wow, I hope that’s not my bank! Now let’s create an imaginary client who wants to access as much of
that many as she can:

The client has just robbed the bank! What? You missed it? Look again:

Even though the client had no money in her account, and the bank was instructed not to give her
any, there was nothing stopping her from taking as much as she wanted with this one simple directive.
 Figure 8-2 illustrates how this works.

The Bank class

The Client class

Figure 8-2. Because the bank’s giveMoneyToClient variable is public, the client can change it to true on a whim,
and the bank has no way of stopping it.

You want to avoid objects directly accessing the properties of other objects because you could acci-
dentally write some code that could destroy the economy of your video game world. Even though it’s
a little more effort, there is a much safer way to write the code for these two objects.

Let’s try again, starting with the class:

329

OBJECT-ORIENTED GAME DESIGN

In the preceding example, the variable is declared as but
also . If you declare a variable as , you can access that variable from any
other class using this format:

Methods can also be declared as . In the previous chapter, the method of
the class was declared as , so you could access the method from the

 class in this way:

You would not typically define methods as , but I’ve done so here to make
the examples a littler clearer.

The properties are now private. But this directive is the most important change:

It’s no longer directly changing one of the bank’s properties. Instead, it’s accessing a method in the
 class called . It doesn’t make any presumptions about whether the response

from the bank will be or ; it simply requests this information from the bank. Whatever it
finds will be referenced in the client’s property. It will be if the client has money and

 if there’s no money.

This is what the new class looks like, featuring the ’s method:

330

CHAPTER 8

As soon as the requests information from the method, the method
first runs an statement to check which value should be returned: or . (Using an
statement is optional, but this sort of checking makes using methods particularly useful). The

 statement checks whether the client has any money in her account, and returns the appropriate value.

 Figure 8-3 illustrates the new improved relationship between the and the .

The Client Class

The Bank Class

1. The Client sends the
Bank a request for money.

2.The Bank figures out
whether the Client has
money, which in this
case is false.

3. The Bank sends false back to the Client. The Client’s
_hasMoney property now has the value of false.

 Figure 8-3. Using a getter allows the Bank to check the request and send back only the correct information.

 methods look and behave like variables, but they can be programmed with conditions attached.
They look like ordinary function definitions, but include the keyword after the keyword .
Here’s a general format for using them:

They can include any code but always return a single value (they send some information back to what-
ever object was requesting it).

Although the other methods and properties in the class are , methods are always defined
as so that other classes can access them.

The keyword is used to send the value back. This sends back to the class:

This sends back to the class:

331

OBJECT-ORIENTED GAME DESIGN

In the previous example, is , so the method returns . The
poor client’s property then also gets a value of . and are Boolean values,
so you need to include this information as part of the function definition:

The result of all this is bad for the client, but great for the bank, and actually reflects the reality of the
situation. Using the method prevented the client from directly changing one of the bank’s prop-
erties and the bank from being robbed. It’s this kind of careful programming that that will save your
games from strange bugs that might be extremely difficult to trace or track down.

As you might have guessed, methods are affectionately known as getters.

Using setters
Getters have partners in crime called setters. Setters use the keyword and are used by an object
to receive information from another object.

Hooray! The client just a received a check in the mail for a Flash game she designed! Let’s have a look
at how you could use a setter to help the impoverished client put this money into the bank:

Here’s what the class looks like, featuring a setter called :

332

CHAPTER 8

In this example, the client is sending the bank’s setter the value of its (which is
). The setter first checks to make sure that it’s actually being sent a value that would be appropri-

ate to deposit. (Hey, these clients are sneaky, it has to check everything!) If it seems okay, the value
is deposited into the bank’s property. Like getters, setters are also defined as

.

 Figure 8-4 illustrates this relationship.

The Client Class
The Bank Class

1. The Client sends the
Bank’s setter the value
of _checkValue, which
is 100.

2.The Bank temporarily
stores 100 in a local
variable called money.

3. If the amount seems acceptable, the
Bank stores it in a private property called
_clientAccountValue. Its value is now 100.

 Figure 8-4. Setters allow classes to receive information from other classes and use that information to change
their properties if the conditions seem fair.

The wonderful thing about using getters and setters is that objects can communicate without having
to directly access or change each other’s properties. This helps with encapsulation, which means that
the classes are completely sealed off from one another. If they have to communicate, they do so only
under strict conditions. If you use getters and setters in your own classes, as in these examples, you’re
far less likely to encounter bugs that come from objects not being able to make sense of information
they weren’t programmed to deal with.

Getting started with the object- oriented approach
All you really need to know to get started using object- oriented programming are the techniques and
concepts discussed over the last few pages:

 Think of each class as a model of an object. Describe the object using properties and
methods.

 Make all your properties and methods private. If tries to directly change or access the
properties in , you’ll begin to weave a tangled web of dependencies that could be very
difficult to debug if things go wrong.

 Your classes should communicate with each other using getters and setters.

333

OBJECT-ORIENTED GAME DESIGN

Object-oriented programming can become quite a big topic, but it doesn’t have to be. Start small by
using these simple techniques. In the next section, you’ll look at a very practical example of these new
 object- oriented techniques in a game design project.

Case study: Dungeon Maze Adventure
The game you’ll build is a very simple adventure game called Dungeon Maze Adventure. It’s a tiny
game, but don’t be fooled—all the elements that go into building a complex, large- scale adventure
game are contained in this example.

The best thing to do first is actually play the game, which you’ll find as in the chapter’s
source files. Figure 8-5 is a map of the game and the objectives the player has to achieve to win.

 Figure 8-5. Dungeon Maze Adventure map

334

CHAPTER 8

Here’s how the game is played:

 1. The player starts at the bottom- right corner of the stage and has to find its way up to the key in
the top- left chamber. A dragon is stalking the corridor; if the player touches it, the blue health
meter decreases. If the health meter falls to zero during the game, a screen is displayed with
the words Game Over, You Lost!

 2. When the player touches the key, the player can carry it to the first door. If the player tries to
go through the door without the key, the player’s movement is blocked. The door opens only
with the key, and the player can then move to the right side of the dungeon. When the door is
unlocked, a sound plays, and the key disappears.

 3. The player’s task is to find the star weapon, which can be picked up when it’s touched. Pressing
the spacebar fires stars, and if the player manages to hit the dragons with five stars each, they
disappear from the stage.

 4. When both dragons are vanquished, the second door at the top right of the stage opens, and
the player can move to the big red arrow. When the player touches the arrow, the screen dis-
plays the words Game Over, You Won!

Once you know the rules of a game, it’s a reasonably straightforward job to translate them into code.

Setting up the game
Unlike many of the other projects in this book, I won’t walk you through the entire process of building
this one from scratch. This code represents a very specific solution to the very specific problems pre-
sented by the game, and every game you design will challenge you with its own set of problems that
you’ll have to find creative solutions for. There’s a lot of code, and you can find it all in the chapter’s
source files if you need to take a closer look or modify it to test some of your own ideas.

What is of great importance, however, is that you understand how these problems are solved using
 object- oriented programming techniques. Most of the details of how to solve these problems involve
code that you’ve seen before, but the context is quite different. Treat this case study as a tour of how
this game was made, but keep in mind how you can use these techniques to realize that game idea
that might be buzzing around in the back of your brain.

I’ll cover a number of important technical issues that are crucial to be aware of to make fully devel-
oped games with Flash and AS3.0. You don’t need to memorize any of them, but you do need to know
what the problems are and how to overcome them. There are some classic problems and solutions
related to Flash game design that I’ll cover in the pages ahead, and you need to know them to take
your skills to the next level.

Here’s how to make Dungeon Maze Adventure!

335

OBJECT-ORIENTED GAME DESIGN

Gathering project files and objects
The files are contained in the chapter’s source files. Follow these steps:

 1. In Flash, open the file called .

 2. Select Quick Project from the Project panel’s drop- down menu. Your project panel will look like
 Figure 8-6.

 Figure 8-6. Dungeon Maze Adventure’s project files

Important objects in the game have their own classes. Also included is the class from the
previous chapter, which will be very helpful in this game. One conspicuous absence is the file.
Although you could use a document class in this project, it’s not necessary. It will be interesting to see
how you get by without one. I’ll explain how all these files work together in detail.

336

CHAPTER 8

Entering the dungeon!
If it’s not already open, double- click the file in the Project panel to open it in the
Flash workspace. Let’s go on a quick tour of how the game has been built.

Dungeon Maze Adventure has been designed entirely within one symbol: . This game was
planned as a multilevel game, and it’s much easier to add more levels later if each level is contained
within its own symbol. The first thing you see on the stage is an instance of the symbol,
as illustrated by Figure 8-7.

 Figure 8-7. The game is contained entirely inside the DungeonOne symbol, which is on the main stage.

Double-click in the Library to open it. It contains all the objects in the game. Like the
storybook pages from earlier chapters, the symbol’s registration point is at the top- left corner of
the stage. Figure 8-8 shows how has been laid out and the instance names of the all
objects.

Let’s take a quick tour of how has been designed.

337

OBJECT-ORIENTED GAME DESIGN

Figure 8-8. Instance names of objects inside the DungeonOne symbol

Laying out the level
The objects and level layout of Dungeon Maze Adventure are designed within a 50-by- 50 pixel grid.
To switch on the grid view in Flash, select View Grid Edit Grid and chose your grid size. Make
sure that Show Grid and (optionally) Snap to Grid are selected. Designing levels for your games is often
much easier if you work within a grid layout.

All the objects that require collision detection, such as the player, enemies, and walls are centered in
the middle of their symbol editing windows. This makes calculating their half- widths and half- heights
much easier.

It can sometimes be easier to create a game level layout if you switch on pixel snapping, which forces
Flash’s vector objects to conform to fixed pixel widths. Without pixel snapping, objects could have irregular
widths and heights, such as 55.3 or 12.1. The problem with this is that when the objects are rendered in the
SWF file, these fractional widths and heights will be rounded off to the nearest pixel, which means that an
object might end up being wider or narrower by one pixel than you thought it was when you designed it.
Switching on pixel snapping solves this problem by forcing vector objects to fixed, whole pixel sizes when
you design them. You can switch on pixel snapping by selecting View Snapping Snap to Pixels.

338

CHAPTER 8

The objects in the game
There are lots of objects on the stage. Some have their own classes, but most don’t need
them. Table 8-1 lists the objects on the stage with their symbol name, instance name, and class file, if
they have one.

 Table 8-1. Objects used in the game

Object Name and file What it does

Symbol name:

Instance name:

Class file:

The symbol is a container for all objects in
the dungeon. It’s like one of the pages of the interac-
tive storybook from Chapters 2, 3, and 4. All other
objects are inside it. has been planned as
the first level of a multilevel game. If you want to cre-
ate a game that switches levels, it makes sense to keep
each level as a separate symbol. This makes it easy to
use and to add the next level
and remove the previous one, just as you switched
pages in your interactive storybook.

The symbol is bound to the

 class. This class contains all the game’s logic,
such as figuring out whether the player has achieved
goals such as winning and losing.

Symbol name:

Instance name:

Class file:

The class uses the keyboard control system
from the previous chapters to move the hero around
the dungeon. It also keeps track of whether the key has
been picked up.

Symbol name:

Instance name:
Assigned dynamically
Class file:

There are many instances of the symbol in the
game. The game never needs to make a specific refer-
ence to any of them, so they don’t need instance names.
They are all bound to the same class. The
class blocks the movement of the player character.

Symbol name:

Instance name:
,

Class file:

There are two instances of the symbol on the
stage. The class keeps track of whether the doors
are open or closed.

339

OBJECT-ORIENTED GAME DESIGN

Object Name and file What it does

Symbol name:

Instance name:

Class file:
None

The object can be picked up by the player to
unlock the first door.

Symbol name:

Instance name:

Class file:
None

The symbol contains a subobject called
that keeps track of the enemy’s health (it is the red bar
between the enemy’s horns). When the enemy is hit
by a bullet five times, its meter drops to zero and it’s
removed from the stage.

The enemy uses motion tween animation to move
around the stage.

Symbol name:

Instance name:

Class file:
None

The same as , except that it follows a different
motion path.

Symbol name:

Instance name:

Class file:

When the player touches the weapon, the weapon
becomes “armed.” The class then allows the
player to fire bullets by pressing the spacebar.

Symbol name:

Instance name:

Class file:

When bullets are created by the weapon, they move
up the stage. The class checks for collisions
with enemy objects and reduces their health meters
by 10 pixels each time they hit.

Symbol name:

Instance name:

Class file:
none

When the player touches this object, the GameOver
screen is displayed and tells the player that the game
has been won.

Continued

340

CHAPTER 8

 Table 8-1. Continued

Object Name and file What it does

Symbol name:

Instance name:

Class file:
None

This is the player’s health meter. It’s reduced by one
each time the player touches one of the enemies.
When it falls below one, the GameOver screen is
displayed and tells the player that the game has
been lost.

Symbol name:

Instance name:
,

Class file:
None

The symbol is a 550-by- 400 white rectangle
with a dynamic text field called . It’s
displayed at the end of the game and tells the player
whether the game has been won or lost.

Symbol name:

Instance name:

Class file:
None

The Library also contains a symbol called DungeonTwo.
It exists to show you how you can add a new level to
the game if you continue building it. Later in the chap-
ter I’ll show you how to do this.

Animating with the timeline
Before you start looking at the code for this game, you’ll learn how the enemy objects were made. The
enemy objects are animated using the timeline. Flash was originally designed as animation software,
and there’s no reason why you shouldn’t use some of its excellent built- in tools to easily add anima-
tion to the game. Although it’s often preferable to animate game objects using pure AS3.0 code, you’ll
find that doing the animation manually is often a more straightforward approach.

In this next section, I’ll give you step-by- step directions for creating these enemies. If you want to cre-
ate animated objects for your own games, you can use these instructions as a general model.

Creating the enemies
Before you can start animating, you need to make sure that the enemy objects are set up properly.
The first thing you need to understand is that the animation is happening in the timeline of the enemy
objects themselves. The objects are not being animated on the timeline.

For this to work properly, the and symbols need to be containers for two other
symbols: and . These two subobjects will contain the actual
graphic design of your enemies and will be animated inside the and Movie Clip
symbols. When that’s done, you can drag instances of and into , along
with the rest of your objects.

341

OBJECT-ORIENTED GAME DESIGN

Here are the steps for creating the object (the steps for creating are exactly the
same except for the names):

 1. Create a new Movie Clip symbol called . Design the enemy any way you
like.

 2. Design a health meter inside . A long rectangle without a border works
just fine. Convert it to a Movie Clip symbol and give it the instance name .

 3. Create a new Movie Clip symbol called . Drag an instance of
into it and give it the instance name . This is the symbol in which you’ll be doing the
animation. Make sure that it has only one layer.

 4. Drag an instance of into the symbol.

 Figure 8-9 illustrates these steps.

1. Create a Movie Clip symbol
called EnemyOne_SubObject
that contains a subobject
named meter.

3. Drag an instance of the
EnemyOne symbol into the
DungeonOne symbol. Give it
the instance name enemyOne.

2. Create a Movie Clip
symbol called EnemyOne
and drag an instance of
the EnemyOne_SubObject
into it. Give it the instance
name subObject.

 Figure 8-9. Create the enemyOne object.

342

CHAPTER 8

You can follow exactly the same steps to create ; just change the names accordingly.

Animating the object
You’ll animate the object inside the symbol. The animation technique you’ll use
is called motion tweening. It works by specifying the frame where the motion starts and then an
ending frame where the motion stops. Flash calculates the position of the object for all the frames in
between. That’s where the tween comes from: between.

If you’ve used previous versions of Flash, you’ll be happy to know that Adobe has completely rede-
signed motion tweening for Flash CS4. Surprisingly for an animation tool, Flash always had a very
weak animation system: it was finicky and unintuitive, and the fact that every tween had to be
between different instances of an object often meant that any associated ActionScript code went
haywire if the instance names changed in the middle of a complex tweening sequence. Thankfully,
Adobe has remodeled the Flash version 10 animation system on the great- grandfather of all mul-
timedia authoring software: Director. Although predating Flash by eight years, it's much superior
animation system was based on motion paths, and they have now been incorporated into and
supercharged in Flash 10.

Motion tweening is really easy to do, but you have a small problem you need to solve first. You want
to animate the instance inside the symbol. However, this animation will be show-
cased in the symbol, so you need to know what the floor plan of looks like for
the animation to look appropriate. You don’t want to accidentally animate the object through walls or
outside the edges of the stage. Fortunately, Flash gives you a way to open a symbol’s editing window
so that you can still see its context if it’s part of another symbol. Here’s how:

 1. Open the symbol editing window.

 2. Double-click the object on the stage that you created in the preceding steps. The
 symbol editing window will open, yet you can still see in the background,

which is dimmed slightly (see Figure 8-10). This is perfect for you because you can do the ani-
mation inside the symbol with the layout of to guide you.

Figure 8-10. Double- click the enemyOne instance to open
EnemyOne’s symbol editing window with DungeonOne still visible
in the background.

343

OBJECT-ORIENTED GAME DESIGN

Now you’re ready to animate:

 1. In the symbol, select layer 1 in the timeline. (If the timeline is not visible, select
Window Timeline.)

 2. Select Insert Motion Tween. You’ll notice that the frames extend to frame 30 and are colored
blue, seen as gray in Figure 8-11.

 Figure 8-11. Insert a motion tween.

 3. Drag the blue bar that represents the motion tween to frame 180.

 4. Select frame 90.

 5. Move the object to a new position on the stage. You’ll notice two things:

 A tiny diamond- shaped dot appears in the timeline. This is called a property keyframe.
Property keyframes are a special type of keyframe that indicates that the and (or even
) position of an object in an animation has changed. Unlike ordinary keyframes, they don’t

create new instances of the object. You can add property keyframes simply by highlighting
the frame you want your object to move to and dragging it there with the mouse.

 A motion path appears on the stage, which shows the path that the object has taken. You
can actually select this path to bring up the motion path Properties panel, which allows
you to apply some extra options such as rotation or easing. (Easing refers to how gently the
object “eases into” its movement. Play around with it—it’s fun!) You can also change
the shape of the motion path so the object takes a curved route to its destination. You can
select a motion path to delete it as well, and when you do so, its associated property key-
frame also disappears.

344

CHAPTER 8

 Figure 8-12 shows what the property keyframe and motion path look like.

 Figure 8-12. The property keyframe and motion path

 6. The last step is to highlight frame 180 and move the object back to its start position.
(If you centered the object precisely when you added it to , its original and posi-
tions are and .)

There you have it. The object moves back and forth along the motion path when the game runs.

EnemyTwo
The is animated in a very similar way. Open in the Library
and take a look. Its motion path is circular, and its start point and endpoint are at the same spot.

It uses four property keyframes (at frames 60, 120, 180, and 240) to create four connected motion
paths. Each motion path has been curved using the Selection Tool so that the object moves in an
organic and unpredictable way. Figure 8-13 shows the path that the takes. To
make sure that the animation loops smoothly, the and positions of the object on frame 240 are
the same as on frame 1.

345

OBJECT-ORIENTED GAME DESIGN

 Figure 8-13. The EnemyTwo’s subobject follows four connected motion paths.

For fine control over how objects are animated, you can use the Flash Motion Editor. To open the
Motion Editor, highlight any layer that uses a motion tween and then select Window Motion Editor.
Many more details of how the object behaves when it moves across the motion path can be controlled
from this window.

One of the great things about working with Flash as a game- design platform is how accessible and fun
it is to animate objects. I won’t discuss Flash’s timeline animation capabilities in much more detail than
I’ve done here, so if you’re new to Flash, you might want to take a short break from this chapter and
do a little more experimenting on your own. Animation is quite a big topic, deserving of a whole book
in its own right, but the best way to learn is to dive right in and start playing.

Controlling timeline animations with code
In Chapter 9 and Chapter 10, you’ll be looking at techniques for animating objects using pure AS3.0
programming code. However, AS3.0 has quite a few built- in methods and properties that you can
use to control objects that are animated on a timeline. With a bit of ingenuity, you can build a quite
complex game just using timeline animation and a few of these methods and properties. Table 8-2
describes how to use these methods and properties.

346

CHAPTER 8

Table 8-2. Methods and properties of Movie Clips animated on the timeline

Method What it does

Starts the animation.

Stops the animation.

Tells the object to move to a specific frame and then play from that point
 forward. For example, moves the timeline’s playhead to
 frame number 23 and starts playing from there. If you use frame labels in your
 animation, you can insert the frame label name. For example,

 starts the animation playing from a frame labeled
 .

Stops the animation at a specific frame. stop the animation at
 frame 23.

Property What it does

Tells you the number of the frame where your animated object is.

Gives you a number that is the total number of frames of your animation.

To use these methods and properties with an animated object, you need to know where the object
is in its hierarchy of objects and subobjects. Let’s say you want to control one of the enemy objects
directly inside . You can just add a line of code like this, and the enemy’s animation will
stop:

If in this game you were using a document class (such as the class you used in previous chap-
ters) and want to access inside , you might use code that looks like this:

If you want to make an object’s animation play and are programming directly inside that object’s class,
you can use code that looks like this:

Timeline animation is often the best way to make your game objects move. Lucky for you, Flash hap-
pens to be great at doing animation. Have fun with this!

347

OBJECT-ORIENTED GAME DESIGN

Adding and removing objects from the stage
Before you look at the code of the game, I need to explain the new way in which classes are being ini-
tialized. Dungeon Maze Adventure has been planned as a multilevel game. If you want to add another
level, it means that you have to remove from the stage and add . This gets you
into a tricky technical situation regarding how AS3.0 initializes objects in the Flash Player when the
game runs. It’s an extremely important issue to be aware of because it will plague the development of
your Flash games and give you countless sleepless nights if you don’t understand why it happens and
how to solve it.

Let’s take a look a look at this problem. When the published SWF of the game runs, it does two things
(in this order):

 1. It initializes all the objects by running the constructor methods in their classes.

 2. It displays the objects on the stage. (It displays them one by one in the order in which they
were dragged to the stage from the Library when you designed the game in the FLA.)

Here’s the issue: if the class’s constructor method includes a reference to the or an object that
is on the stage that hasn’t yet been displayed, you’ll get an error message saying this:

If you’re adding objects to the game, there’s a good chance that many of those objects have to access
the stage as soon as they’re created. They might need to do this to set stage boundaries or access the
properties of other objects that are also on the stage. If they can’t find the stage object because they
haven’t been added to the stage yet, AS3.0’s compiler will “throw its hands in the air” and you’ll see
the preceding error message.

To solve this problem, you need to initialize objects only when they they’ve been added to the stage,
not before.

ADDED_TO_STAGE event
In earlier chapters, you initialized the classes like this:

348

CHAPTER 8

This doesn’t ensure that the object is on the stage before it’s initialized. To do that, you need to use
an event called . You can put an event listener in the constructor
method. When the object is actually added to the stage, the event handler is triggered and you can
use it to initialize the class.

Here’s a format you can use:

In this example, the event handler does the same job as the method you used
in previous chapters. The only difference is that the directives it contains are run only when the object
is displayed on the stage.

If you need to be absolutely certain that all the objects are on the stage before you initialize
a class, consider using the event, which runs only after all the objects have
been displayed on the stage. Similar to , it’s triggered in every frame.

If you want to use it to initialize a class, you’ll probably only want to run once. You can do this by
removing the event after the first time it runs. You can use this format:

If your class needs to access an object on the stage as part of its initialization,
guarantees that it can to find it. (If you want to run every frame, you can
leave out the directive from the preceding example.)

349

OBJECT-ORIENTED GAME DESIGN

REMOVED_FROM_STAGE event
The event has a companion event called . The
event fires when an object is “removed from the stage.” This is very useful in a game because objects
(like enemies who are hit by bullets) are frequently removed. It allows the object to perform some final
tasks, such as updating a score or spawning a new object just before they flicker out of existence.

Also, very importantly, the event allows you to remove any event listeners that
might be attached to the object. This is particularly important for events. One of AS3.0’s
little quirks is that even after objects are taken off the stage using , their
events will still run silently in the background. If an event is running and trying to reference
objects that no longer exist, it will generate a torrent of error messages in Flash’s Compile Errors pane.
To prevent this, you can use the event to remove the object’s event
listener when the object itself is removed.

Although manually removing events is required, removing other event
listeners manually is optional. Flash still deletes objects even if they have listeners on
in most cases. However, just to make sure, it’s considered best practice to manually
remove them so you know with absolute certainty that that there won’t be any linger-
ing code running in the background after the object is gone.

In Dungeon Maze Adventure, I used and with all the classes.
Using them together is a bulletproof way to make sure that objects initialize properly and don’t leave
lingering code running in the background when they’re removed. Here’s the format that all the classes
in Dungeon Maze Adventure use:

350

CHAPTER 8

All the classes follow this same basic structure. Figure 8-14 explains how all these pieces fit together.

When the object’s constructor
method runs, a listener waits for
the object to be added to the stage.

When the object has been added
to the stage, its properties can be
initialized and other listeners
can be added.

When the object is removed from the
stage, its listeners are also removed.
ENTER_FRAME events should always
be removed so that they don’t continue
to run in the background. Other event
listeners also need to be removed
so that the object can be completely
cleared from the Flash player’s memory.
Any other tasks that you want the object
to perform when it’s removed can also
be included here.

 Figure 8-14. Using the ADDED_TO_STAGE and REMOVED_FROM_STAGE event listeners

Optionally, to make sure that an object isn’t reinitialized if it’s accidentally added to
the stage again, remove the event listener in the
event handler itself:

351

OBJECT-ORIENTED GAME DESIGN

I know what you’re thinking: it looks like a big mess of code! Unfortunately, it’s an essential little tech-
nical hoop you need to jump through to safely add and remove objects from your game. If you break
it down piece by piece, you’ll see that it’s not so bad. You can pretty much just copy/paste this code
to use with all your classes.

How Dungeon Maze Adventure works
The logic of the game is programmed in the class. In large- scale games, you’ll
find that it’s usually useful to have one or more classes exclusively handle game logic. Game events
such as collision, picking up items, and winning and losing are all handled best if they’re kept in
a single “manager” class. If all the game’s logic is in one place, it makes it easy for you to change
and update the code because you don’t have to hunt through all your classes to find out where, for
example, you added the code that changes the player’s health meter. In earlier projects in this book,
this was handled by the class. is now taking over that role,

The class is bound to the symbol. That means that whenever an
instance of is on the stage, the class also runs. Binding the class to
the symbol was done in the Properties by assigning in the Class field.
You can open the Properties to see this yourself by the selecting the symbol in
the Library and clicking the small Properties button on the Library’s bottom menu bar. (The Properties
button looks like an i enclosed in a circle.) Figure 8-15 shows what you will see.

 Figure 8-15. You can bind a class to a symbol in the Symbol Properties window.

352

CHAPTER 8

There are other specialized classes that are working simultaneously with :

 : Contains the player’s keyboard control system. It also keeps track of whether the key
has been picked up.

 : Sends references of all the instances to the class to help with
collision detection between the walls and the player.

 : Keeps track of whether the doors are open or closed. It also plays a sound when the door
is opened.

 : Lets the player fire bullets. It creates new instances of the class and adds them
to the stage.

 : Controls the bullets’ movement.

As long as all the classes are in the same project folder, they can communicate with each other.

Let’s take a look at the class. It’s a very long class, but don’t let that scare you.
Most of the game logic is in the event handler, and I numbered and highlighted each
important section with code comments. You’ll see that you can break each of the major occurrences
in the game down into very manageable and almost mundane / statements.

A good way to read the code is while you’re playing the game. When you complete a specific task in
the game, such as picking up the key, see if you can figure out how code actually makes it work. I used
numbered comments in the code to walk you through it. You’ll recognize most of this code immedi-
ately from other chapters. I’ll explain the all- new code, and how this code integrates with the other
classes, in the pages ahead.

DungeonOne_Manager class

353

OBJECT-ORIENTED GAME DESIGN

354

CHAPTER 8

355

OBJECT-ORIENTED GAME DESIGN

356

CHAPTER 8

Let’s take a walk through the events of the game, starting with how to make the object move.

Moving the player
Control of the object is delegated to the class. It’s almost identical to code that you
looked at in Chapters 6 and 7, except for one important detail. In the previous versions of this code,
the properties were referred to like this:

In this code, it’s referred to just like this:

All the code in this class is bound directly to the symbol in the Library. That means that it’s run-
ning inside the object itself. Because of that, and refer directly to the object. This is
also the same for all the other properties in the class, such as and .

You can also use the keyword to make it clear. The properties in the class can also be
written like so, making it obvious that you’re talking about this object:

Whenever you see the keyword , remind yourself that it refers to the object the class is bound
to: this object.

357

OBJECT-ORIENTED GAME DESIGN

Have a quick look back at the class and you’ll notice that you still use
and in this game. That’s because the object is inside the symbol, which
the class is bound to. Figure 8-16 illustrates this.

DungeonOne_Manager Class

player.x
player.y

Player Class

x
y

or this.x
this.y

 Figure 8-16. The Player class is written from a first- person perspective,
so it doesn’t need the qualifier “player” to refer to its own properties.
The dungeon needs to know which of the many objects it contains you’re
refering to, so you need to add the object name in front of the property
you’re targeting.

The other difference is that all properties and methods of the class are now . Here’s
the class in its entirety:

358

CHAPTER 8

359

OBJECT-ORIENTED GAME DESIGN

This class also has a getter and setter used for keeping track of whether the key has been picked up.
You’ll look at how it works next.

360

CHAPTER 8

Picking up the key
You’ll see how simple the code of the game really is when you break it up piece by piece. The player’s
first task is to pick up the key. The class uses to check for this:

If the object touches the key, the key becomes a child object of the by using ,
which allows the to carry it around.

To center the object over the , you have to set its and positions to . Because it’s
now a child of the , refers to position on the object, not the stage. The sym-
bol’s center and point is . The key’s rotation is set to , which is just a simple effect to highlight
that it’s been picked up.

A very important thing that this code does is set the player’s setter to , which will be
needed when the player tries to open a door. Figure 8-17 illustrates how the setter is set.

DungeonOne_Manager Class

Player Class

The player’s _hasKey
property is set to true.

 Figure 8-17. The DungeonOne_Manager class sets the player’s _hasKey property to true using the Player class’s
hasKey setter.

361

OBJECT-ORIENTED GAME DESIGN

Let’s now look at how the door is opened.

Opening the first door
If the object touches and doesn’t have the key, its movement is blocked. If it does
have the key, ’s setter is set to , and the key becomes invisible:

 Figure 8-18 shows how the class checks the class’s getter to find out what
the value of is.

DungeonOne_Manager Class
Player Class

 Figure 8-18. The DungeonOne_Manager class checks the Player class’s hasKey getter. The getter returns whatever
the value of the private _hasKey variable is. It’s a Boolean variable, so it will be either true or false.

362

CHAPTER 8

If the object’s property is , three things happen:

 1. The code checks to see whether the door is closed. It checks the value of the
getter. If it returns , the door is closed. It checks for a value by using the ()
operator.

 2. If the door is closed, the setter is sent the value of , which “opens the
door.” The door becomes invisible, and the chimes sound plays. Figure 8-19 illustrates how this
works. I’ll explain how the sound works in the section ahead, and you’ll find the full class
listed as follows.

DungeonOne_Manager Class

Door Class isOpen setter

Door Class isOpen getter

 Figure 8-19. The DungeonOne_Manager class finds out whether the door is open by checking the Door
class’s getter. It opens the door by using a setter to set the Door class’s _isOpen property to true.

 3. The ’s property is set to , so it seems to disappear. is bound to
the class:

363

OBJECT-ORIENTED GAME DESIGN

364

CHAPTER 8

Both and are instances of the class, so they both share this code. The code
is general; it doesn’t make any reference to any other object and doesn’t get involved in the game
logic—it’s very well encapsulated. You can see here how the class attempts to be a model of a real
door. Real doors can be either opened or closed, and they also make sounds. You should be able to
use this code equally well with any other door objects in the game you might create, and it will work
just fine.

In this game, both and are instances of the same class, so it’s easy for
them to share the same code. What would you do, however, if you had two different
symbols that needed to share the same class?

In the Symbol Properties, assign each symbol a unique class in the Class field, such as
 and . Just below the Class field is a field called Base Class. In the

Base Class field, assign the common class that you want them to share (for example,
). You can then control instances of both symbols using this one class.

Next, I’ll show you how to play a sound when the doors open.

Adding sound to the game
To use sound in a game, you need to import the sound file into the Library. Here’s how to add the
chime sound of the door opening to Dungeon Maze Adventure:

 1. Open the game’s FLA file.

 2. Select File Import Import to Library.

 3. Find the sound file you want to use and click the Import to Library button. The sound will now
appear as a symbol in the Library.

 4. Select the sound in the Library by clicking it once. Click the Properties button at the bottom of
the Library pane. The Sound Properties window opens.

 5. In the Sound Properties window, change the name of the sound so that it doesn’t include the
file extension. For example, if the sound is called Chimes.mp3, change it so that it’s named
Chimes.

 6. Select Export for ActionScript.

 7. Change the name in the Class field so that it matches the name you gave it previously, such as
Chimes. Figure 8-20 shows what the Sound Properties of the Chimes sound in Dungeon Maze
Adventure looks like.

Any classes that use sounds need to also import the and classes:

365

OBJECT-ORIENTED GAME DESIGN

 Figure 8-20. The Sound Properties window lets you change the properties of sounds
imported into the Library.

Creating the Sound and SoundChannel objects
Creating and playing sounds is a two- step process. That’s not as hard as it sounds, but it’s potentially
a bit confusing. You need to keep in mind that in AS3.0 creating sounds and playing sounds are two
separate steps, controlled by two separate objects:

 You first need to create a object. This is the actual sound that you want to play. In this
game, it’s the sound that I imported into the Library.

 You then need to create a object to actually play the sound. You can think of
this as a “sound player” that actually does the work of playing the sound. You can’t play the
sound without this object.

366

CHAPTER 8

Here’s how the and objects work together to play the Chimes sound.

 1. First, you have to declare the object. In the class, the object is called ,
and is declared at the beginning of the class definition:

 This refers to the actual sound file that you imported into the Library. Its type matches its sym-
bol name: .

 2. Next, you have to declare the object. In the class, it’s called
.

 It’s the job of the object to actually play the sound.

 3. Create the and objects. Like any other objects, you create them with the
 operator:

 4. Play the sounds. You do this by assigning the object to the object, like
this:

 The object’s method plays the sound. You can use this directive anywhere in the
class when you want the sound to play.

In the class, the chimes play when the property becomes :

This has been a brief introduction to using sound in games, but it’s by no means the end of it. For
much more information on using sound, visit Adobe’s online documentation at

 and see the chapter “Working with Sound.”

367

OBJECT-ORIENTED GAME DESIGN

Colliding with the enemies
If the player touches any of the enemies, the health meter at the top- left corner of the stage is
reduced, as shown in Figure 8-21.

 Figure 8-21. When an enemy touches the player, the health meter is reduced.

This is the code in the that causes it to happen:

Before the meter can be reduced, the code has to check whether the enemy objects are actually on
the stage. You can find out if an object exists by checking whether it has a value like this:

The code needs to find out whether the object exists because if it makes a reference to
an object that doesn’t actually exist, the compiler will generate a deluge of errors when the program
runs. The enemy objects can be removed from the game by being shot by the player’s bullets, so
there’s a chance they might not actually exist at some point. You can’t take the chance that the code
might not be able to find them.

368

CHAPTER 8

How does the object get a value? It’s given one when it’s removed from the game by being hit by
a bullet in the method:

You’ll see how this works ahead. There’s also a lot more information on removing objects at the end
of the chapter in the section called “Removing objects from the game.”

Losing the game
When the health meter reaches zero, the Game Over screen is displayed with this message: Game Over,
You Lost!

The code creates the object, which is an instance of the symbol.

The symbol contains a dynamic text field called , which is used to display
the message:

Next, the object is displayed on the stage:

I want the Game Over screen to be added directly to the main stage. refers to the main stage,
so I can use the keyword to add the Game Over screen to the main stage. Figure 8-22 illustrates
what the code does.

Finally, itself is removed:

 again refers to the stage, and refers to this object, which is . Why is the
property asked to remove the object?

AS3.0 doesn’t permit objects to add or remove themselves. Only an object’s container can remove it.
This is logical because think how awkward it would be in a real- life situation if your socks removed
themselves from your sock drawer instead of removing them yourself?

369

OBJECT-ORIENTED GAME DESIGN

 Figure 8-22. gameOverLost replaces dungeonOne on the main stage.

AS3.0 often tries to model these real- life scenarios. exists as an object on the .
The is the container—its object. can’t remove itself, so it asks its

 to do it. (Besides this change of perspective, the process of adding and removing game screens
is exactly the same as the way you added and removed pages in your interactive storybook in Chapters 2,
3, and 4.)

One nice feature of the keyword is that objects don’t need to know the exact
names of their parent containers. That means that if the parent object
ever changes, you won’t need to rewrite this code. By using keywords such as and

, you keep your code general, flexible, and portable.

370

CHAPTER 8

This code is a little bit confusing because it’s being run from inside the object. It’s almost
as if one of your socks were calling out to you from the drawer, “Hey, it’s dark in here, take me out!”
Ideally, you wouldn’t want objects to be responsible for adding or removing themselves like this, just
as you wouldn’t want your socks telling you what to do. It’s much better to have the actual object
that’s doing the adding or removing do it directly itself. That way, the control of the game is more
centralized, which can help when you need to make changes.

With a bit more programming, you can create a document class and remove directly, like
this:

This works because the document class is attached to the that contains . You’ll find
more information on how to add a document class to manage the game near the end of the chapter.

Picking up the star weapon
When the player touches the star weapon, the weapon’s property is positioned on the left side of
the player, so it looks like it is being carried:

This code demonstrates another way you can have the player carry an object—without using .
The weapon’s and properties match the player’s.

When the weapon’s property is , the player can fire bullets. Here’s the entire class
(I’ll show you how it is used to fire bullets next):

371

OBJECT-ORIENTED GAME DESIGN

372

CHAPTER 8

Firing bullets
The and classes work together to fire bullets. When the player presses the spacebar,
the class’s method is called:

If is , the directive that creates the bullets is run:

This adds a new instance of the class to the container of the class: .
The object is created without an instance name.

This is the first time you’ve seen an object created without an instance name. The format for creating
objects that you’re more familiar with is this one:

With this format, you can use to refer to the bullet object you just created. With the for-
mat used in the class, the object is created but it isn’t given a name. If these objects aren’t
assigned instance names, what happens to them when they’re added to ? They actually
have instance names, but these names are assigned automatically by AS3.0. That’s just fine because
you don’t need to reference any of the bullet objects specifically in the code.

If you want to find out the instance names to which AS3.0 assigns the bullets, drop this
directive into the class’s event handler:

When you start firing bullets, you’ll see something like this in the Output panel:

AS3.0 assigns these names automatically. Interesting!

 Figure 8-23 illustrates how the class fires bullets.

373

OBJECT-ORIENTED GAME DESIGN

Weapon Class

 Figure 8-23. Press the spacebar to trigger the shootBullet method and add a bullet to the stage.

You’ll see how the bullets actually work next.

Using bullet objects
All the bullet objects use the class—it positions the bullets on the stage and makes them
move. It also sends references of the bullet objects back to the class so they can
be checked for collisions with enemies.

It’s important to remember that a new instance of this class is created every time a bullet is added to
the stage. This one class is shared by countless bullet instances:

374

CHAPTER 8

When a new bullet is added to the stage, it is assigned a start position that is the same as the weapon’s
position:

 is in , which is the bullet’s . You can refer to from the
class like this:

375

OBJECT-ORIENTED GAME DESIGN

 is a Movie Clip object. Sometimes AS3.0’s compiler needs your help to tell it exactly what
kind of thing an object is. You need to force it to interpret as a Movie Clip object by using the
previous format. This procedure is called type casting.

If you ever need to access the document class directly from any other class, you can
use this:

It allows you to access the main timeline, the main stage, any objects on the main
stage, and properties of the document class.

By using to refer to , you can actually access any object in the game
from within the class like this:

If you ever need to refer to an object in a parent container, use this format.

As useful as this technique is, it’s actually not a good idea to use it too often in your
own projects. It makes the class completely dependent on instances inside another
class. If those instance names change or the object no longer exists, the code won’t
work. This is known as tight coupling and it breaks a class’s encapsulation. As a gen-
eral rule, try not to program your classes so that they refer to specific objects inside
other classes. It will be harder for you to debug and change your game if you do. I’ve
done so here as an example of how to do it if you need to, but in later chapters the
code will avoid this.

Of course, the most important thing the bullets do is help the player defeat the enemies. Let’s look at
how this works next.

Bullets vs. enemy collisions
The class and the class work together to check whether the bullets are
hitting the enemies.

First, the bullet objects need to tell that they exist. One directive in the
class does this:

It might look confusing at first glance, but don’t let it scare you. In plain English, it reads as follows:

376

CHAPTER 8

 is a method in , which is the bullet’s . It takes
one parameter, which is the bullet object itself: .

 from the class becomes when it’s sent to the
method. Figure 8-24 illustrates how it fits together.

Bullet Class

DungeonOne_Manager Class

Figure 8-24. The bullet objects send references of themselves to the
checkCollisionWithEnemies method. The method can now refer to them
by using the variable name bullet, which is assigned in its parameter.

Here’s the entire method from the class:

377

OBJECT-ORIENTED GAME DESIGN

This method is called every time a new bullet is created, which is every time the player presses the
spacebar. It’s so that outside classes such as can access it. The actual instance names
of the bullets will be different, but that doesn’t matter because the method refers to them all as

. The great thing about this system is that it all happens without you needing to know the actual
instance names of the bullets themselves. You could have one bullet or 1000, and the code remains
the same.

The collision- detection code is very straightforward. When the bullets hit the enemies, they’re removed
from the stage, and the width of the enemies’ health meters are reduced by ten pixels. If the width of
the meters becomes less than one pixel, the enemies are removed from the stage.

After the enemy and bullet objects are removed from the stage, the references to them are also
assigned a value, like this:

Assigning a value to variables that reference objects ensures that Flash will remove the object
from the Flash Player’s memory.

As it did before, the code needs to first check whether and actually exist on the
stage by using this check:

The code generates errors if the enemy has already been removed and the code can’t find it.

378

CHAPTER 8

If you think you might use an object again at some point in your game, use
without assigning a value. You can then see whether the object is on the stage by
checking whether the object’s is . Here are two simple examples:

If the object doesn’t have a parent container, then it’s not on the stage, and vice
versa.

If you don’t assign the variable that references the object a value, that object
still exists in Flash’s memory. You can add it back to the stage again at any time using

.

Player vs. wall collisions
Exactly the same technique is used to check for collisions between the wall objects and the player:

Here’s the class:

379

OBJECT-ORIENTED GAME DESIGN

Despite all the code, the class does only one important thing: it sends a reference of itself to the
 method of the :

There are 19 wall objects in the game, and this class is attached to each of them. Every one of
those wall objects runs this directive. Because it’s in an event, it means that the

 method of the is called 19 times each frame.

 Figure 8-25 illustrates how the wall objects use this method.

DungeonOne_Manager Class

Wall Class

X 19

 Figure 8-25. Each of the game’s 19 wall instances checks for
a collision with the player on every frame (30 times per second).

380

CHAPTER 8

Synchronizing ENTER_FRAME events
There’s one extremely important technical detail you need to be aware of for the player vs. wall col-
lision system to work accurately. In this game, there are many events running on many
different objects. AS3.0 doesn’t run them all at the same time. It runs them in the order in which the
objects were added to the stage—either by you dragging them from the Library or adding them with
code using . That means if the object were added to the stage before the wall objects,
all its code, including its event, would run before the code in the wall objects does.

Why is this important to be aware of? If the wall objects
run their code first and call the method
before the player’s event runs, the player’s

 and values will be those from the previous frame.
Yes, the previous frame! This will throw the accuracy of the
collision detection off by one frame, and the player will
appear to overlap with the walls slightly when it touches
them. Figure 8-26 illustrates how this looks.

Because the is a moving object, its
event needs to run before the walls’ events
for the collision detection to be accurate. In Dungeon Maze
Adventure, I made sure that the ’s code runs first by
dragging the object onto the stage before adding
any of the wall objects. This is a very primitive but effective
way of making sure it updates its velocity before the walls
call .

You will invariably run into this problem in your own games at some point. You’ll notice that the col-
lision detection is maddeningly off by one frame and you won’t know why. Well, now you do! Adding
objects to the game in the order you want their code to run is one solution.

Another is this: use only one event in your game in a manager class such as
. Use that event to call methods in other classes that behave like events, but

aren’t.

Here’s an example. In the manager class, use code that looks like this:

Figure 8-26. If the collision- detection
code runs before the object’s positions
have been updated, the acccuracy will
be off by one frame.

381

OBJECT-ORIENTED GAME DESIGN

In the object classes, use a method that looks like this:

It’s an ordinary function definition, but it behaves like an event because it’s called from
inside the manager class’s event. This means that you have only one event
running for all the objects in the game. You can use it to precisely control the order in which the sub-
object’s frame events run. If you want the frame events to run before those of , you
can change the order like this:

This system allows you to fine- tune the accuracy of the collision- detection system of your game and
avoid off-by- one errors. Remember this solution! It could become a life- saver in some of your own
game design projects. For games requiring accurate collision detection, it’s essential.

This was a bit of a detour, but an important one. Now let’s get back to Dungeon Maze Adventure!

Winning the game
When both enemies are defeated, opens:

382

CHAPTER 8

The can then reach the object, and the Game Over screen is displayed, announcing that
the game has been won:

And there you have it; Dungeon Maze Adventure is solved!

Modifying the game
Dungeon Maze Adventure is designed as a model to introduce you to some basic object- oriented pro-
gramming techniques and get you thinking about how to distribute the tasks of your game to different
classes. You can take some of the ideas from this chapter and run with them in your own projects.

There’s a great deal more you can do. To get you started, there are some advanced modifications you
can make:

 Add a new level.

 Create a class to manage all the levels in the game.

 Fire bullets in four directions.

Let’s take a look!

Adding a new level
It’s easy to add a new level to the game. The Library already contains a symbol called .
The following steps describe how to use it to add a new level when the has reached the

’s exit:

 1. Modify the last code in the previous section so that it looks like this:

 2. Save the file and test the project.

383

OBJECT-ORIENTED GAME DESIGN

 3. Play the game to the end. When the player reaches the exit, appears. Figure 8-27
illustrates what you’ll see.

 Figure 8-27. Add a second level.

This is just an example of how the new level can be added. I’ll leave the design of the new level up to
you.

The problem of dependency
Unfortunately, one more thing you’ll see when the new level is added is a runtime error in the Output
panel:

It looks like Figure 8-28.

 Figure 8-28. A runtime error

384

CHAPTER 8

Runtime errors happen when the code looks for something that it can’t find while the program is run-
ning. There’s a very good reason for why this runtime error occurs: dependency.

The error tells you that the class is looking for a method called and can’t
find it. Just to refresh your memory, this is the directive in the class that looks for that method:

It’s looking for this method in the object: . contains the
class. When the game switched levels, it removed . The class is bound to

, so it was also removed. The walls are all looking for the method
in the class and, of course, can’t find it.

The class depends on the method. This is not a good thing!

At this stage in your learning, using dependencies like this helps you understand how classes commu-
nicate and allows you to achieve a complex technique such as multiple object collision with minimal
code. In Chapter 10, I’ll show you how you can use events to avoid this.

For now however, dependency is isn’t too bad if you manage it carefully. There are a few ways you can
solve the runtime error you received:

 1. Create a class called and bind it to the symbol. Make sure
that it contains a method called The wall objects in
still look for the parent object, but they then find the code they’re looking for in

 As long as the name of the method hasn’t changed, it works. If you’ll create a second
level of the game, you’ll need a class anyway, so this solution makes
sense.

 2. Create a third class, maybe called , that isn’t bound to any objects and is
just used for checking collisions in the game. Game objects send references of themselves to
this new class. The next section makes one suggestion about how to do this.

This is just a very general description to get you thinking about the problem of code dependency.
When you design your classes, avoid any code that depends on other classes if you can. It’s impossible
to completely remove dependency from your games and programs, but with careful planning you can
minimize its impact.

If you get a runtime error in any of your games, you can find out where the problem is
by selecting Debug Debug Movie. Flash’s debugger starts its work and points to the
line in your code where the error is. You still have to figure out exactly why the error is
occurring, but as least you know where to start looking.

385

OBJECT-ORIENTED GAME DESIGN

Creating a game manager
In Dungeon Maze Adventure, all the game logic is attached to in the
class. If you have more than one level in your game, however, it makes sense to have some code that
exists outside of the dungeon objects so that you that can manage them (a kind of “Dungeon Master”
that isn’t removed when the levels are removed).

Hey, you already know how to do this! It’s called the document class! Dungeon Maze Adventure
doesn’t use a document class, but why not? Go ahead and make one; it will open up all sorts of
possibilities.

You can put any properties or methods that all the dungeons can use in the document class, which
will save you having to write the same method over more than once if that method is used in more
than one level. And you can use it as a way to keep track of global values, such as a score that persists
between levels.

You can use public static methods to do this. You can define a static method using this format:

Other classes can then access the method like this:

Be careful when using public methods because they can break a class’s encapsulation
and open you up to some of the dependency problems you looked at in the previous
section.

You can also create getters and setters in this game manager class to allow the dungeons or the
objects in them to communicate with it. One of the dungeon objects can access the game’s score with
a getter like this:

And set the score like this:

You can also access the document class from any other class using the format .

You can easily access all the dungeons and objects in them from the document class like this:

You already know how to do this, so go for it!

386

CHAPTER 8

Firing bullets in four directions
In the project files, you’ll find two classes: and . You
can use them so that the player can shoot bullets in four directions. Here’s how to make them work:

 1. Open the file.

 2. Select the symbol in the Library and open its Symbol Properties window.

 3. Enter Weapon_FourDirections in the Class field and click the OK button.

 4. Select the symbol in the Library and open its Symbol Properties window.

 5. Enter Bullet_FourDirections in the Class field and click the OK button.

 6. Save the file.

 7. Test the project. You can now fire bullets in any of four directions, depending on which arrow
key you press. Figure 8-29 illustrates this.

 Figure 8-29. Use the arrow keys to shoot bullets in four directions.

The code is provided as follows, and I’ll go into some aspects of it in a bit of detail, but here’s an
overview of how it works.

The class has a new property called that is assigned the value
, , , or , depending on which arrow key is pressed. The bullets need to know

which direction they need to travel, so the property is passed to them directly as a param-
eter when they’re created. (Have a quick look back at Chapters 3 and 7 if you’re a bit hazy on what
method parameters are and how they work). The bullets then use that direction to assign the correct
horizontal and vertical velocity. The two classes work together to produce the effect you see on the
stage. Figure 8-30 illustrates the process, and I’ll explain it in detail ahead.

387

OBJECT-ORIENTED GAME DESIGN

Weapon_FourDirections Class

Bullet_FourDirections Class

1. The player presses
the left arrow key on
the keyboard.

2. The Weapon class’s
_direction property is
given the value “left”.

3. The Weapon class creates
a new bullet object and
includes the _direction value
(“left”) in the argument.

4. When the bullet object is
created, its weaponDirection
parameter has the value
“left”. It copies this
value into the bullet’s
own_direction property.

5. The bullet’s _vx
property gets a value
of -10 if the value of
_direction is “left”.
-10 makes the bullet
move ten pixels to the
left of each frame.

6. The player’s position
is updated.

 Figure 8-30. How to make the bullets fire in the right direction

Here’s the entire class:

388

CHAPTER 8

389

OBJECT-ORIENTED GAME DESIGN

The most important new directive is this one:

It sends the value of the property directly to the class. That class then
uses it (, , , or) when it creates the bullet instances to initialize its direction.

For this to work, you need to make an important addition to the class. It needs a construc-
tor parameter so the value can be accepted and used in the class. Here’s the

 class. The constructor parameter has been highlighted—see if you can figure out how
it uses that information in the code:

390

CHAPTER 8

391

OBJECT-ORIENTED GAME DESIGN

Let’s take a closer look at the constructor method:

Its parameter is called When the bullet is created, contains exactly
the same value of the variable that was passed to it by the weapon. It has a value of ,

, , or . (The weapon’s variable was a string, so
needs to be typed as as well.)

Any parameters that are used in the constructor method are local to the constructor method, so the
 variable can’t be used anywhere else in the class. The first job is to copy its value

over into a variable that can be used in the entire class. The class has its
own property called that is used to store this information. When new bullet instances
are created, they use this new property to figure out in which direction they should be
traveling.

Now that bullet objects know the direction they have to travel, their velocity is simply assigned using
the property.

Accessing the stage outside of the document class
There’s an extremely important oddity that you might have noticed in the
class: these two lines of code in the event handler:

392

CHAPTER 8

You need to know the stage’s height and width to calculate the stage boundaries. But why were those
properties copied into variables instead of being accessed directly? It’s related to a problem that will
cause a lot of frustration if you don’t understand it properly.

Here’s the problem. Only the document class (for example, , which was used in earlier chapters)
has direct access to the object. If you try to access the object in any other class that isn’t
directly referenced by the document class, that class can’t “see” the stage. If you make a reference
to the object in one of these classes, you’ll get an error message: Cannot access a property or
method of a null object reference.

There are a few ways to get around this:

 An object that uses an event listener attached to the object doesn’t have this problem
because the object is actively involved in that class. Here’s an example:

 Objects that use code like this have no trouble making references to the stage directly.

 An object doesn’t know that the stage exists until it’s been added to the stage. That’s one of the
reasons you’ve been using the event. When the event han-
dler runs, you can freely access the object in the class.

 Even though you can access the object directly in the event handler,
you might not be able to access it anywhere else in the class. This could be very important if
your game relies on and to define stage boundaries.
The way around this is to create a property in the event handler, which makes
a reference to the object. You can then use that property anywhere in the class, and it
will behave as if you were accessing the object directly.

It’s this third scenario that you’re dealing with in the class. You have to
copy the stage’s and properties into the class’s own and

 variables so those values can be used elsewhere in the class.

Have a look at the class again and see if you can find the spot where these properties are being used
to define stage boundaries. And remember these solutions because this problem is one of the biggest
pitfalls programmers new to AS3.0 fall into when they begin game design.

Removing objects from the game
Let’s take a more detailed look at what happens when objects are removed from the game. Most of
the objects are removed using , like this:

To completely clear the object from memory, give any variables that refer to the object a value,
like this:

393

OBJECT-ORIENTED GAME DESIGN

What actually happens to the object when it’s removed? AS3.0 has a garbage collector to do the job.
You can think of the garbage collector as a little software robot that runs around your game looking
for objects and properties that aren’t being used or don’t have any value, and deletes them for good.
This saves memory and processing power—thanks, Flash! One of the jobs of the garbage collector is to
find objects that have been removed with , and wipe them from Flash Player’s memory.
However, the garbage collector is a bit of a finicky fellow, and very picky about what it chooses to
completely delete:

 The garbage collector doesn’t delete objects that have an event running. These
objects make the garbage collector a bit squeamish, so you have to manually remove the

 event with , as you did with the event han-
dlers. Although objects remove their own event listeners (such as and

) it’s considered best practice to also remove them manually.

 The garbage collector doesn’t like Movie Clip objects that are animated using a timeline, such
as the two enemy objects. It doesn’t touch them unless the animation is stopped by using the

 method.

 If any objects have timers running using the class (more on timers in Chapter 10), the
garbage collector doesn’t delete them.

 The garbage collector doesn’t delete an object if there’s more than one variable in the game that
makes a reference to it. For example, imagine that you have two variables, and

, which both contain a reference to the object:

 Imagine that in your program you try and remove the object like this:

 The object is removed from the stage, but the garbage collector doesn’t delete it from
memory because the variable still contains a reference to it.

 The only way to coerce the garbage collector to completely delete the object is if every
variable that holds a reference to it is assigned a value of (which is a value used with
Movie Clip objects to wipe them clean of all data). It’s not hard to do, and a directive like this
will do the trick:

 One more thing: you have to make sure that every reference to the object in every class
that might have made one also sets those variables to . Only then does the garbage col-
lector come back with his broom and finish the job. And if that’s the case, the object is
then completely deleted.

I went into quite a bit of detail into this issue because if you spend any time working with Flash (which
you will!) you’ll inevitably come across issues in your games where quirky things start to happen
because of objects still actually existing, or running listeners or animations in the background, when
you think they’re gone.

394

CHAPTER 8

Using isn’t the only way (or even the best way) to take your objects out of the game.
A more low- tech but equally effective method is to set an object’s property to . This is
how the object in Dungeon Maze Adventure was removed from the game:

The nice thing about this technique is that the objects still actually exist on the stage the entire time.
If you have a game in which you hide and show the same objects over and over again, this is the way
to do it.

Finally, I should explain how other objects know that an object is no longer in the game. If you’re using
the property to remove the object, you could use code that looks like this:

If you use to get rid of an object, things are a bit more subtle. When you remove an
object from the stage with , the object’s property is set to . Think about it this
way, if the object is removed from , it no longer has a Movie Clip container.
In a nutshell, its is .

Here’s what the code that informs other objects that the object has been removed from the
game using might look like:

If you use a document class and are trying to figure out whether an object has been
removed, you can check to see whether its property is . For example:

But using alone isn’t enough to make sure that the object is completely deleted from
memory. You also have to remove all references to that object. This is done by assigning another value
to any variables that refer to it. You can assign any other value, but it often makes sense to assign
a value, like this:

395

OBJECT-ORIENTED GAME DESIGN

Once that’s done, you can check whether or not an object exists in the game using this format:

This is the process used in Dungeon Maze Adventure to remove objects.

These are all very important technical details to keep in mind when designing your games.

Summary
This was a big chapter! There was a lot of code and many new concepts to absorb. Everything cov-
ered here, however, is absolutely essential to gaining a solid foundation in Flash game design. You’ll
have to deal with all these issues sooner or later in your game design career. If you didn’t understand
everything the first time, though, break the chapter down into smaller chunks and work through each
section carefully until it makes sense. Compare what you see happening while you play the game with
the code that makes it work. The best way to understand this chapter is to create your own version
of Dungeon Maze Adventure. You definitely have the skills to do it, and the steps you go through will
reinforce all the concepts covered here.

I hope this chapter got you thinking about how to start using classes to help build games. The model
you used here can take you quite far if you use it carefully. Just keep in mind the potential risks of
code dependency and try to avoid it wherever you can. In Chapter 10, you’ll see how you can solve the
problem of dependency by having objects communicate by dispatching events.

Until then, have fun with some of the new techniques you looked at in this chapter. How about com-
ing up with a game that combines them with some of the other techniques you learned in earlier
chapters? For example, what about a dungeon or space game with huge scrolling levels? That would
be amazing! And how about incorporating some puzzle solving using input text, such as the number
guessing game from Chapter 5? Don’t forget about random numbers—they can give your game a lot
of variety. Even at this stage in the book, you have some real game- coding power at your fingertips.
The best way to learn is to dive in there and start making a game.

In the next chapter, you’ll look at a completely different game genre: a platform game. You’ll learn
how to make objects move using physics simulations and how to store and analyze data using arrays.

Have fun designing your next great game, and I’ll meet you in Chapter 9 when you’re done!

397

Chapter 9

One of the most popular genres of video game is the platform game, which also
poses some very interesting programming and design challenges. From a programming
point of view, if you can program a platform game, you’ve reached a benchmark in
your development as a game designer.

The game you’ll create in this chapter is called Bug Catcher, and you’ll find the fin-
ished SWF file in the chapter’s source files. You’ll use it to take a detailed look at
some core video game design techniques:

Natural motion using physics simulations

Complex player character behavior

Collisions with accurate bounce and friction

Converting a subobject’s local coordinates to global coordinates

Display list and object stacking order

Rotating an object toward another object

Random motion

Artificial intelligence (AI)

Arrays

You’ll look at these techniques within a practical, real- world context so that you’ll
have a clear idea of how to apply them to your own games.

PLATFORM GAME: PHYSICS
AND DATA MANAGEMENT

398

CHAPTER 9

Natural motion using physics
When you bump into a wall, what happens? If you are a character in Dungeon Maze Adventure from
the previous chapter, absolutely nothing—you just stop moving and that’s the end of the story. In real
life, things are much more complicated. A bouncy rubber ball traveling at high speed bounces back at
an angle. Something heavier, such as a rock, falls with a thud. Here’s another example: when you step
on a car’s accelerator, the car gradually increases in speed and takes a bit of time to slow down after
you hit the brakes. These sorts of physical reactions are part of what makes real- world games such as
tennis and car racing so much fun.

Over the next few pages, you’ll take the venerable class from Chapter 8 and modify it a step at
a time to illustrate the following kinds of motion that simulate real- world physics:

 Acceleration: Gradually speeding up

 Friction: Gradually slowing down

 Bouncing: Changing the direction of motion when the object hits the edge of the stage

 Gravity: Adding a force that pulls the object to the bottom of the stage

 Jumping: One of the most required abilities for video game characters

Applying physics to games is easy to do. Most of the techniques boil down to a simple calculation
that’s applied to the and properties. Although the calculations are simple, it’s sometimes far
from obvious how they can be used in a practical way. It’s exactly this practical application that you’ll
examine.

In this book, most of the physics calculations that you’ll apply are based on Euler inte-
gration (its popular name is “easy video game physics”). Video game physics appear
to be absolutely precise in the context of a video game, but are actually only approxi-
mations of the real thing. You’ll use game physics because the CPU power required
to process them are far, far less than if you used calculations from a physics text-
book. If you need to do precise physical simulations of the real world, Keith Peters’s
ActionScript 3.0 Animation: Making Things Move and AdvanceED ActionScript 3.0
Animation go into detail on this subject.

Setting up the project files
In the chapter source files, you’ll find an FLA file called in a folder called . You’ll
open it as a project:

 1. In Flash, select File Open.

 2. Find the file in the Chapter 8 folder. Click the Open button.

 3. Select Quick Project in the Project panel’s drop- down menu.

 4. The project is created. Your stage and the Project panel should now look something
like Figure 9-1.

398

399

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

 Figure 9-1. The physics project

You’ll notice that the project contains five classes: , ,
, , and . The Library contains a symbol called , which is the

player character. You’ll see the use of physics in motion by binding the cat symbol to these different
classes.

Let’s start with the simplest of these types of motion: acceleration.

Acceleration
Acceleration means to gradually increase velocity, just as your car does when you give it some gas. To
gradually speed up game objects, you need to add a value to your object’s or properties in an

 event. You might recall from Chapter 6 that refers to “velocity on the x axis” and
refers to “velocity on the y axis.” In a nutshell, these properties represent an object’s speed, traveling
either horizontally or vertically.

In AS3.0, if you gradually want to increase an object’s velocity on the x axis, you need to use an addi-
tion assignment operator () to add the value of the acceleration to the property. Your code might
look something like this:

On the y axis, your code might look like this:

Where did come from? That’s the value of acceleration. Exactly what the number is depends
entirely on you and how quickly or slowly you want the object to speed up. A larger number such as

 makes the object accelerate faster, and a lower number such as makes it accelerate much
more slowly. Choosing the right number is just a matter of trial and error and observing the effect it
has on the object.

399

400

CHAPTER 9

Let’s see this effect on the object on the stage:

 1. Make sure that the class is bound to the symbol. To do that, select
the symbol in the Library and click the Properties button. The Symbol Properties window
opens.

 2. Make sure that the Class field contains the value Player_Acceleration, as shown in Figure 9-2. If
it doesn’t, change it so that it does.

 Figure 9-2. Bind the Player_Acceleration class to the Cat symbol.

 3. Click the OK button.

 4. Move the object around the stage with the arrow keys. It gradually speeds up before
reaching its maximum speed of 5 pixels per frame.

401

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

Player_Acceleration class
This is what the class looks like:

402

CHAPTER 9

403

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

Despite the length of the code, it’s nothing more than the run-of- the mill class from Dungeon
Maze Adventure that’s been adapted to handle acceleration. I’m sure you recognize most of it. Let’s
look at what’s new and see how acceleration works.

To keep the code as simple as possible, none of the classes in this chapter is initialized
using an method or event handler. They’re all initialized in the
constructor method, which is also a perfectly valid way to initialize objects.

404

CHAPTER 9

The code contains three variables to store the new acceleration data, which are initialized by the con-
structor method:

The and variables store the value that determines by how much
the object accelerates. Because you don’t want the object to move when it first appears on the stage,

 and are initialized to zero. is the maximum speed that
you want the object to travel. A value of means that the object will travel a maximum of no more
than 5 pixels per frame.

Just below the variable initialization is a directive that reads . The
 symbol contains an animated subobject called , which you don’t want to play

for now. You’ll see this in action soon enough.

The work of assigning a value to the and variables is done by the
 event handler:

If has a positive value, the object moves to the right. A negative value makes it move
left. A positive value makes the object move down, and a negative value makes it
move up.

405

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

When any of the arrow keys is pressed, these new values are assigned. All you need to do to make
the object move is to assign these values to the object’s and properties. You can do this easily
enough with two lines of code:

However, if you leave things as is, the acceleration values are added to the object’s velocity on every
frame, without any limit to how fast the object can go. This means that the object eventually moves so
fast that it will be nothing more than a blur on the stage. This won’t be of much use in most games,
so it’s usually a good idea to assign a speed limit, which is what this section of code does:

The acceleration values are added to the object’s velocity only if the and properties are within
the speed limit, which is in this case. This means that the object will accelerate up to 5 pixels per
frame and then travel at a constant rate. The logic behind this is exactly the same logic used to set
stage boundaries.

The next step is to add these new velocity values to the object’s and positions. That’s done with
some venerable old friends—the same directives you’ve been using since Chapter 6:

In fact, these two directives are all you will ever need to move the objects, even though the phys-
ics involved in making them move become quite complex. All the physics calculations are applied
to the and variables; they are then simply assigned to the object’s and properties to make
the object move.

406

CHAPTER 9

So how does this actually work to accelerate the object? Let’s trace the output and find out:

 1. Add the following directive to the class in the event
handler:

 2. Save the file.

 3. Test the project.

 4. Press the right arrow key and check the trace in the Output window. When the object starts
moving, you’ll see something that looks like this:

These are the first 5 frames of movement, but this pattern continues until reaches a maximum
value of , which is what the property is set to.

The numbers with the large number of decimal places are a byproduct of the way the CPU’s binary
number system stores fractions. For all practical purposes, you can ignore the strings of zeros and
round off to two decimal places.

The smallest unit into which Flash can divide a pixel is 0.05. This unit is known by the
whimsical name twip (20 twips equal 1 pixel). That’s why all the and values you see
in the output are multiples of 0.05.

407

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

On the second frame, the initial value of 0.2 is added to the object’s current position,
resulting in a new value of . Because the right arrow key is still being held down, this code is
then run:

It adds an additional 0.2 to the value, giving it a new value of . (You can see this new value
reflected in the third trace.) 0.4 is then added to the object’s position, resulting in a new position
of .

Strange! 275.55 doesn’t equal 272.2 plus 0.4, so logically the new value should be 275.6. But why is
it 0.05 less? This again has to do with the way binary systems deal with fractional numbers. Behind
the scenes, the CPU actually represents 272.2 plus 0.4 as 275.59999999999997. Almost 275.6, but not
quite. Flash therefore decides to round this down to the nearest multiple of 0.05, which is 275.55. It’s
not completely accurate, but remember that I’m talking about 1/20 of a pixel here! The difference is
so small that it’s absolutely imperceptible when the object moves across the stage.

You can see from this trace that the value continues to compound by adding 0.2 to
its value each frame until it finally reaches 5, and the object is clipping along at quite a quick pace. All
this adds up to a very neat illusion that the object is accelerating.

The last thing that the code does is stop the object, which is handled by the event handler:

This sets the object’s acceleration and velocity to zero when the appropriate keys are released.

408

CHAPTER 9

Friction
Friction is the exact opposite of acceleration: it causes the object to gradually slow down. Let’s see
how it works with the cat:

 1. Select the symbol in the Library and click the Properties button. Change the Class field to
Player_Friction and click the OK button.

 2. Test the project.

 3. Move the cat around the screen with the arrow keys. You can move it in delightfully smooth
swoops and arcs, as if it were floating.

The class is almost identical to except for a few small addi-
tions. Double- click it in the Project panel to open it and take a look.

First, is the new variable, , which is initialized to :

A value of amounts to “no friction,” so anything less than 1 gradually slows the object down. Values
from to apply friction very gradually, for very fluid movement. Values such as or
slow the object very quickly.

All you need to do now is add the value to the and properties:

It multiplies the velocities by a number less than , which gradually reduces them. It’s very simple and
very effective. There’s one technical detail you have to fix, however.

Here’s the scenario. Imagine that the object’s velocity is . Its friction is . The object needs a veloc-
ity of zero to stop completely. You apply some friction every frame, multiplying the velocity by ,
hoping to finally reach zero. Here’s what the first five frames might look like.

5 * 0.6 = 3

3 * 0.6 = 1.8

1.8 * 0.6 = 1.08

1.08 * 0.6 = 0.648

0.648 * 0.6 = 0.3888

But you’re not at zero yet. How long do you think it will take before you get there? Well, you can keep
going all day—you never will!

409

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

This is an effect known as Xeno’s paradox. It goes something like this. Let’s say you have a slice of
cake, which you cut in half. You cut one of those slices in half once more. Then do the same to the
third slice. The pieces of cake keep getting thinner and thinner. How many times can you slice them
until there’s nothing left to slice? Xeno’s paradox is that you never reach an end—the pieces of cake
just become infinitely thin, and you can go on slicing them forever. Crazy as it sounds, the math actu-
ally backs this up, and even more crazily, you have to deal with it in AS3.0!

This means that when you apply friction, and never reach zero. The object will never stop
completely. What you need to do then is force a value of zero when and fall below a certain
threshold. This is what this next bit of new code does:

If and fall below an absolute value of , it forces them a value of , thus halting Xeno in his
tracks. is low enough that it won’t have any observable effect on the motion of the object and the
object appears to stop very naturally, even at low friction values such as . Without this code, your
objects will creep slightly up and to the left on the stage, and never actually stop.

As a quick refresher, forces the value in its argument to be positive (“abso-
lute”). It simplifies the code because you don’t have to check for negative values.

One final small change to the code is that now no longer sets and to zero. That job is
left for the friction calculation to do. All needs to do is stop the object’s acceleration:

And that’s it for friction!

410

CHAPTER 9

Bouncing
After acceleration and friction happen, bouncing is a piece of cake (the un- infinite kind!).

Bind the symbol to the class using the same steps you followed earlier. Move the
cat around the stage with the arrow keys and you’ll notice that you can bounce it off the stage edges,
as shown in Figure 9-3.

 Figure 9-3. Bounce the cat off the edges of the stage.

Double-click the class in the Project panel to open it. You’ll notice that it’s remarkably
similar to , except for the addition of a new variable and few other small
changes.

The variable is declared with a value of :

411

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

The bounce value has to be negative because bouncing works by reversing the object’s velocity. You’ll
see how this happens in a moment. A value of creates the effect of a moderate bounce. A value
of makes the object super bouncy. A value of makes the object completely bounce- less. Any
value less than makes the object look like it’s hitting an extremely springy surface, such as a tram-
poline. This is important to keep in mind if you want to make a springing platform in a game.

The variable doesn’t make a further appearance until the section of code that handles stage
boundaries:

All that’s happening is that the object’s velocity is being multiplied by the value, which is
negative. If you reverse an object’s velocity, it looks as if it is bouncing!

Gravity
Gravity is just as easy to implement as the other physical forces. All you need to do is create one more
value and add it to the object’s velocity.

To see gravity at work, bind the class to the symbol. Test the project. The cat
drops to the bottom of the stage. If you press the up arrow key, the cat moves up. When the up arrow
is released again, the cat falls to the ground. When the cat reaches its maximum speed, terminal velocity
displays in the Output panel.

412

CHAPTER 9

The cat’s ears now also flap when it moves. At last, a use for those long ears—the cat can fly! Figure 9-4
illustrates what you’ll see.

 Figure 9-4. Use the arrow keys to make the cat fly.

Double-click the class to take a quick look at it. Even though the code is very simple,
the result is a very convincing simulation of the real world. In fact, it’s almost scarily realistic! Let’s see
how it works.

The new variable is nothing special:

Like the other values, is just one that came about through trial and error, and it looks natural in
this context. A higher number increases gravity, and a lower number decreases it.

413

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

Applying gravity to the object is simply a matter of adding it to the value, which this directive
does:

That’s it! That’s all you need to do to implement gravity.

The class goes a little bit further, however. You want to allow the player to make the
cat move up when the up arrow is pressed. There is actually more than one way to do this, and this
class represents the slightly more complex way.

The way this works is that when the player presses the up arrow key, is set to in the
 event handler:

This allows the object to move up the stage freely and also triggers its subobject to start its
animation. The ears are animated using a simple motion tween. Have a look at the symbol in the
Library to take a closer look at how this works. (Notice that there’s also no code for the down arrow
key. You don’t need it—gravity takes care of moving the object down.)

When the keys are released, the variable is set back to its original value of .

The ears are also stopped and returned to their starting frame. You can create this same effect by
just giving a positive value when you need gravity applied. (A positive value pulls
the object to the bottom of the stage.) It means that you could dispense with having to create the

 variable altogether, and the class would contain a bit less code. However, the nice thing

414

CHAPTER 9

about using a separate variable is that it makes the code easier to understand, and it keeps
your options open for mixing and matching the force with other physical forces that you
might add later.

There are two other bits of fine- tuning done to this code. I want the object to fall at a faster rate than
it ascends. I modified the speed limit in the statement that checks to see how fast the object is
moving down the stage:

Multiplying it by makes it fall twice as fast as it climbs. It also displays terminal velocity when it reaches
its maximum speed. You could use this in a Lunar Lander–type game to figure out whether the space-
craft is going too fast when it hits the planet surface.

The other small change is that friction isn’t added to the property—gravity takes care of that
as well.

Jumping
Probably half of all video games ever made use jumping as a primary character action. All it boils down
to is a temporary increase in the object’s velocity. Once you understand how acceleration, friction,
and gravity work, jumping is not at all difficult to implement. However, there are a few additional
things to keep in mind that make it a little more complex:

 You want your object to be able to jump when it’s on the ground, and only on the ground. But
how will your object know that it’s on the ground? And what is the ground, anyway? The code
has to be able to figure these things out.

 You need to prevent the jump keys from triggering a jump more than once if they’re held
down.

Let’s look at an example of jumping in action and how to solve these problems. Bind the
class to the symbol. Test the project. The left and right arrow keys move the cat horizontally, and
pressing the up arrow key or the spacebar makes it jump. While the cat is moving up, its ears flap, but
they stop flapping when it’s moving down toward the ground. Figure 9-5 illustrates this.

415

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

 Figure 9-5. Press the spacebar or up arrow key to make the cat jump.

To implement jumping, you need two new variables:

 is a Boolean value that tells the class whether the object is on the ground. It’s initialized
as because you might not always know whether the object will be on the ground when the
game starts.

416

CHAPTER 9

 is the force with which the object will jump. It needs to project upward toward the top
of the stage, so it has a negative value. The actual value that you give it is again a matter of trial and
error. You’ll need to make sure that its value is enough to counteract gravity and any other forces that
might be acting on the object.

How does the object know whether it’s on the ground? This is something that could become quite com-
plex, depending on the game you’re designing, so you’ll need to think about this carefully when you start
any project that uses jumping. In this simple example, the object is on the ground when it’s at the
bottom of the stage. So all you need to do is set to in the same section of code that
checks for the bottom stage boundary:

That’s pretty straightforward. In most games that use jumping, game characters also need to know
when they’re standing on platforms. That makes detecting the ground a little more complex, but you’ll
be looking at a solution in the Bug Catcher game that you’ll build later in the chapter.

Making the object actually jump happens in the event handler:

417

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

If the spacebar or up arrow key is pressed, the code checks to see whether the object is on the
ground. If it is, it adds the jump force value to the vertical acceleration. It also sets the
variable to . In this example, it also makes the cat’s ears flap.

The last little technical issue that you need to solve is that after the preceding code sets
 to -10, it remains that way until the jump keys are released. That means that if the keys are

held down, will remain at -10, and the object will keep jumping. To fix this, you
need to give a value of zero if the object is not on the ground. This section of code in the

 event handler accomplishes this:

One more little detail prevents the cat’s ears from flapping when it descends from the apex of the
jump. This is easy to do:

The animation stops if the cat’s vertical velocity is less than , which means it’s moving toward the
bottom of the stage.

Finally, there’s no speed limit set if the object ascends because that would conflict with the value of
.

Stage boundaries and subobjects
There’s another feature in the class that will get you thinking about some of the other
issues you’ll be looking at in the example Bug Catcher game, coming up next. If you move the cat to
the left or right side of the stage, its ears extend beyond the stage boundaries. It is, in fact, the cat’s
body that’s being blocked at the edges.

This happens because the cat has a subobject called . It’s a round black circle that defines the
main area of the cat. It seemed to me that it looked more natural to use it as the cat’s collision area
instead of using its overlong ears. The ears are great for flying, but seem to get in the way of every-
thing else!

418

CHAPTER 9

To use the cat’s to define the player’s collision area, all I needed to do was modify the variables
that describe the player’s dimensions to specify the as the primary object:

The keyword is optional, but it does help to clarify “the body of this object.”

 Figure 9-6 illustrates the effect of using the cat’s subobject as the collision area for stage bound-
aries. This is important to note because in the upcoming example game, you’ll be taking a detailed
look at how to properly use and target subobjects in your games.

 Figure 9-6. The cat’s body subobject is used as the collision area for checking stage boundaries.

419

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

Case study: Bug Catcher
I’m sure you have quite a few ideas about how you can use some of these new techniques in your
games. You’ll take a look at how you can use them to build a simple game called Bug Catcher. In the

 folder of the chapter’s source files is a file called ,
which looks something like Figure 9-7 when it runs.

 Figure 9-7. Bug Catcher

The objective of Bug Catcher is to catch three bugs and bring them to the frog. (But the frog doesn’t
like mice, so be careful not to catch him one of those!) Bug Catcher is a platform game, one of the
most popular genres of video game. Platform games feature characters that run and jump across sur-
faces on different planes known as platforms.

The game will use every detail of motion physics that you’ve looked over the first part of this chapter.
It will introduce an advanced collision detection utility that you can use to bounce a object off
a platform. You’ll also use scripted animation, arrays, artificial intelligence, and a bit of trigonometry.
Oh yes, and did I also mention it was going to be a very easy game to create? You’ll be surprised!

The object of this project is to illustrate specific techniques that you can use to build your own plat-
form game. Feel free to follow along, step by step, but I’m treating this project more as a discussion of
how the game was made instead of something you should copy outright. Many of the problems you’ll
solve by building this game are absolutely central to video game design, so you have to learn about
them. And the best way to learn is to dive in and start experimenting with these new techniques in
your own way.

A good approach for completing this chapter is to follow along and use these techniques to build
a similar game of your own, in parallel with my explanation.

420

CHAPTER 9

Setting up the project files
To get you started, you’ll find a basic setup file called in the
folder of the Chapter 9 source files. In the same folder are three other classes: ,

, and . You’ll need all these files as a starting point for this project.

Let’s create the project. Follow these steps:

 1. Select File Open.

 2. Navigate to the file in the Chapter 9 folder. Click the Open
button.

 3. Select Quick Project in the Project panel’s drop- down menu.

 4. The project is created. The stage, Library, and Project panel should now look some-
thing like Figure 9-8.

 Figure 9-8. Bug Catcher project

 5. Test the project. When the SWF file runs, the cat drops to the ground, and you can use the
arrow keys to make it move and jump. The cat bounces slightly when it hits the ground. (In this
class, the ground is actually defined as a point 10 pixels above the bottom of the stage. I did
this so I can add a 10-pixel- high solid ground graphic a little later in the project.)

421

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

If this process doesn’t work, double- check that the symbol is bound to the
 class by selecting the symbol in the Library and clicking the Properties

button. Also, check that is set as the document
class.

This puts you at a starting point that’s just about where you left off with the class. The
 object is now bound to the class, which is extremely similar to .

Let’s take a closer look at it.

Using the Player_Platform class
This class is long, but it is almost functionally identical to . The biggest difference is
a string of getters and setters at the end of the class that allow it to communicate with other classes
and objects. There are also a few modifications, such as the and variables that you
need for the object to interact with the platforms. The class also introduces a new concept:
constants. You’ll look at all of this in detail.

For now, this is what the class looks like. It’s long, but you’ve seen most of it before:

422

CHAPTER 9

423

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

424

CHAPTER 9

425

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

426

CHAPTER 9

Constants
The first thing you’ll probably notice about this class is the use of words that are fully capitalized, such
as and . They are called constants, which are used exactly like variables, except that
their values never change. Their values are constant.

Constants are declared and initialized in the class definition using the keyword . Here are the
constants used in the class:

After the values of constants are assigned, they can never be changed. This is helpful because it means
that your program will be free of errors that result from values being accidentally overwritten by other
values when your program depends on them to remain unchanged.

Constants also make it easy to quickly change the functioning of the program. By changing the values
of the constants at the top of the class, you can completely change the physical forces that affect
the player character, from the strength of gravity to the height of each jump. It makes the class very
customizable by just changing a few simple values.

By convention, constants are always written in full uppercase characters, which make them easy to
spot in your code. If the name of a constant is made up of two or more words, the convention is
to separate the words with an underscore character, like this: TWO_WORDS. Like variables, constants
are also referred to as properties.

One small change to this code is the use of the variable, which is used as the value of fric-
tion on the x axis. Because in this game the object moves only left and right along the ground,
you don’t need to account for friction on the y axis. This is just a slightly more specific way of dealing
with friction than in the previous examples, but the effect is exactly the same.

Player friction
The other slight modification is that friction on the x axis is completely removed when the keys are
pressed. You can see this at the beginning of the event handler:

A value of means the value of is multiplied by 1, so the value doesn’t change. Friction is returned
to its initial value (the value of the constant, which is) when the keys are released.

427

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

I included this bit of fine- tuning in the class because if no friction is being applied while the charac-
ter is moving, its movement is a little more fluid and a little more responsive. It’s entirely up to you
whether you’ll feel the same way about the characters in the games you’ll be designing.

Bounce variables
There are two new variables in this class that you haven’t used before: and . These
variables are used to accept bounce values that will be sent to the class by the platforms that the

 object will be jumping on. Without these values available, the object can’t bounce on
platforms. You’ll use a special collision utility to control how the player interacts with platforms (dis-
cussed later).

The variables and are unrelated to the constant. The constant is
used to define the “bounciness” of the object. In the game that you’ll be designing, the
constant is used only to define by how much the object will bounce when it hits the bottom
of the stage.

Notice that the bottom of the stage is offset by 10 pixels, which gives you some space to add the
 10-pixel- high ground graphic. This offset is defined by the constant, which is defined
at the beginning of the class definition.

Player collision area
Another small but important change is that the cat’s subobject, which will be used as the colli-
sion area, is now assigned to a variable.

This is important because the code will access this property to check which part of the object
should be checked for collisions with platforms.

428

CHAPTER 9

Adding Platforms
Cats love to jump, so let’s give the cat character something to jump on!

 1. Create a 50-by- 50 pixel square symbol in the Library. (Feel free to create your own
graphics and symbols for this game, but if you’re feeling a bit lazy, you’ll find all the symbols
for the original Bug Catcher game in the folder in the Library.)

 2. Drag as many instances of the symbol onto the stage as you like, in any arrangement
that you think will be fun to jump on. You can also use the free- transform tool to stretch these
platform instances to any rectangular shape that you like. The platform collision code that
you’ll be adding can handle rectangular- shaped platforms of any size.

 3. Give all your platforms instance names. Name them in this format: , ,
, , and so on. It’s very important to give them all the same root name, such

as platform, and start the numbering at zero (you’ll see why very soon). My arrangement of
platforms looks like Figure 9-9.

 Figure 9-9. Give your platforms instance names in the format platform0, platform1,
platform2, and so on.

429

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

Beveling
In this example, the platforms have a slight 3D effect, as if they extend up above the surface of the
stage. This effect is called beveling. Bevel is one of the filters that can be assigned to an object in the
Filters section of the Properties panel.

To bevel an object, select it, and choose Bevel from the Add filter button at the bottom of the panel.
There are many settings that you can adjust until the object looks the way you want it to. Figure 9-10
shows the setting used for the platforms in Bug Catcher.

Figure 9-10. Bevel objects for a shallow 3D raised- surface
effect.

Filters are a quick and easy way to add surface texture to games. The cat and frog use slight drop- shadow
filters, which contrast well with the beveled platforms.

Tinting
The Properties panel has a section called Color Effect. One of the effects that you can choose from its
Style drop- down menu is called Tint. Tinting an object allows you to change the color of an instance
without affecting the color of its parent symbol. This process is very useful because it means that you
can have many instances of the same symbol, each with a unique color or tint, without having to cre-
ate a new symbol to accommodate for it.

430

CHAPTER 9

In the Bug Catcher game, I used the Tint color effect to make the platform on the bottom- left corner
of the stage a darker shade of green than the other platforms. To tint an object, select it, choose Tint
from the Style drop- down menu, and play with the options until you find a color that you’re happy
with. Figure 9-11 shows the settings used to tint the bottom- left platform.

 Figure 9-11. Tinting allows you to give instances a unique color without changing the color of
the parent symbol.

Now that the platforms have been plotted on the screen, you can put them to work.

Detecting platform collisions
In the Project panel, you’ll find the class. This is the same class used in previous chapters,
but in this chapter you’ll use one of its methods: . Like the method, it pre-
vents two rectangular objects from intersecting. However, it’s been upgraded with some fancy new
features that allow it to handle physics. When two rectangular objects collide, you can specify whether
the first object bounces back when it hits. You can also specify whether it loses some additional
momentum when it does so, by adding some extra friction into the mix.

The method requires four arguments:

 The first object, which is the object

 The second object, which is the

 The amount you want the to bounce when it hits the platform

 The amount of friction, which is lost momentum when the object hits

431

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

Here’s the basic model for using it:

Let’s say you want to set up a collision between the object and . You want to give
the collision a bounce value of and a bit of friction. Friction is calculated in a different way in this
method, so a low friction would be a value of . The method might look something like this:

To use the method with your games, you need to be aware of the
following:

 The class must be in the same directory as the rest of the code or imported into a
class using the import statement.

 The first object in the argument, , has to have and properties that are accessible
by getters and setters called and . Have a look at the class to see how it
is implemented. If the object doesn’t have these properties assigned, the method will try to
create them dynamically, although you won’t have much control over how the collision behaves.
It’s usually better to plan for this and establish the and properties in the object’s class,
like you have in .

 If you want the to bounce when the collision occurs, it needs to have properties called
 and that are accessible by getters and setters called and .

If your object doesn’t have these properties, the blocking feature of the method still works, but
the bounce effect doesn’t. This is implemented in the class, so check out the
code if you’re unsure about how to do this.

 You can assign a subobject to be used as the collision area. If the contains a property
called that’s accessible by a getter called , that object will be
used as the collision object. If you don’t have a property assigned, the entire
object is used in the collision detection.

The method has been written as an easy-to- use utility that you’ll find a use for in countless game
projects. As such, you don’t need to know how it works; just how to implement in your games. For the
curious, however, you’ll be taking a detailed look at its inner workings at the end of this chapter. Take
a sneak peek if you want to!

But without much further ado, let’s put this new collision method to work for you in the game-to- be:

 1. Open the project’s class by double- clicking it in the Project panel. When it
opens, you’ll see that the basic framework of the class has already been written for you, so you
can quickly get to the fun part of actually programming the game.

 2. You need to check for a collision between the object and each of the new
objects using the new method. This means writing out almost
the same directive for as many times as you have objects and changing the name of
the object for each new line. You’ll give the collision a mild bounce, for which a value
of works pretty well. The friction value is additional friction to the friction that you’ve
already assigned in the class. You don’t really need it in this game, so you’ll
give it a value of zero. Change the file by adding the following code to

432

CHAPTER 9

the event handler (if you added more or fewer objects in your own
project, make sure that the number and names match what you created):

 3. Save the file.

 4. Check to make sure that is set as the document class in the
file.

 5. Check to make sure that the cat on the main stage has the instance name .

 6. Save the file.

 7. Test the project. Wow, the cat can now hop around the stage from platform to platform!
 Figure 9-12 illustrates this.

433

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

If the process didn’t work, make sure that you named the platform instances correctly
and also used the correct instance names in the previous code. With so many similar
instance names, it’s very easy to make a small mistake here.

 Figure 9-12. The cat can jump from platform to platform.

The cat’s subobject is being used for collision, as
 Figure 9-13 illustrates. This is another feature of the

 method. The subobject that is specified
in the property of the is used as the
object in the collision detection. You’ll look at exactly how this
works at the end of the chapter.

If you added the platforms on the same layer as the object,
the cat’s ears are behind the platform, which looks a little awk-
ward. Don’t worry; you’ll be fixing this in the pages ahead.

 Figure 9-13. Finally, the cat’s long ears
don’t get in the way!

434

CHAPTER 9

To finish off the platforms, let’s create some ground for the cat to walk on. For the Bug Catcher game,
I decided to make the ground a shallow pond:

 1. Use the Rectangle tool to draw a 10-pixel- high blue rectangle across the bottom of the stage.
You might want to put it on a layer behind the foreground objects.

 2. Above this blue rectangle, create a blue, 20-pixel- high drawing of waves. Convert it to a Movie
Clip symbol and give it an alpha of 40 in the Color Effect section of the Properties panel. (You’ll
find a symbol called in the
folder in the Library if you don’t feel like making the
waves yourself.) I gave it the instance name .

 3. Test the project and try out the new ground you’ve cre-
ated. Figure 9-14 shows what this might look like.

A little later in the project, you’ll use some code to make the
transparent waves appear in front of the cat, which will make
the cat look like it’s actually sitting in the pond.

Using for loops
If you’re like me, you probably found that writing out or copying/pasting those ten lines of repetitive
code a terrible chore. Aren’t computers supposed to be miraculous time- saving devices designed to
spare you this sort of drudge work? Yes they are, and yes there is a better way.

Those ten directives were exactly the same in every way, except for one thing: the number of the plat-
form instance. Could you make some kind of basic template of the directive and tell AS3.0 to repeat
it ten times, just inserting the correct number? Yes, you guessed it, you can! It’s a programming device
called a loop.

Loops are used to repeat a section of code a specific number of times. There are quite a few different
kinds of loops you can create in AS3.0, and even though they all do almost the same thing, some are
slightly more appropriate in different situations than others. Far and away the most commonly used
loop is the loop, which is a block statement that begins with the keyword (meaning for this
many number of times). Any directives inside the loop are repeated as many times as the loop
specifies—from once to hundreds or thousands of times.

The structure of the loop might look weird and confusing at first because its arguments actually
contain three separate statements:

 A variable that’s used to track the number of times the loop has repeated. This is known as the
loop index variable, which is usually represented by the letter i (it stands for index).

 A conditional statement that tells the loop when it should stop.

 A statement that adds 1 to the index variable every time the loop repeats. (Although 1 is
usually added, you can add or subtract numbers in many different ways to fine- tune the loop
if you need to.) Each of these statements is separated by a semicolon.

 Figure 9-14. Some ground for the cat
to walk on

435

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

Here’s an example of a loop that displays the numbers from 0 to 4 in the Output panel.

If you use this code in the class’s constructor method, you’ll see this in the Output panel when you
publish the SWF:

In the chapter’s source files you’ll find a file called in the folder. Open it in Flash
and choose Quick Project from the Project panel’s drop- down menu. Double- click the

 file to view the code. Test the project; you’ll see the same result as shown previously.

It’s easy to understand how a loop works if you break down what it does into smaller parts. The
first thing it does is declare the variable that will be used to count the number of loops:

This creates a local integer variable called , which is initialized to . The next statement tells the loop
how many times it should repeat:

This is a conditional statement. It tells the loop to repeat “while the index variable is less than 5.” In
this example, the index variable is initialized to zero, so the loop will repeat until it reaches 4. You can
use any kind of conditional statement you want here.

The last statement increases the index variable by 1 each time the directives in the loop are run:

The first time the loop runs, starts with its initialized value, which is zero. The next time it repeats, the
 operator adds a value of 1. That means that then equals (because 0 plus 1 equals 1, of course).

The next time the loop repeats, 1 is added to again, which results in a value of . This repeats while
 is less than 5. As soon as it gets a value of , the loop stops dead in its tracks.

Although is the most common way to increase the value of the index variable, you can use any
statement you like to increase or decrease it. For example, will increase the index variable by
2 each time the loop repeats. will decrease it by 1 if you want your loop to count backward.

436

CHAPTER 9

If you opened the project, experiment with a few different values and conditional statements
and see what the output looks like when you test it. You can initialize to any number you like, and
use any condition to quit the loop. Here’s another example: is initialized to , and the loop repeats
until it becomes :

This produces the following output:

Initializing the index variable to 1 and quitting the loop on 5 is particularly useful because it makes it
very clear where the loop starts and ends.

You’ll look at a few different ways to use loops over the course of this chapter. Figure 9-15 is
a quick- reference diagram of the way loops work.

The for keyword tells
AS3.0 that you’re
creating a loop.

Declare and initialize the index variable,
usually i. The number that it’s initialized to
is the number at which the loop will start.

The loop will run any
directives it contains while
this condition is true.

Each time the loop repeats,
1 is added to the value of
the index variable.

Whenever the index variable, i, is used in any of the loop’s
directives, it is replaced by whatever its current value is.

This loop will produce the following in the
Output panel:

 Figure 9-15. The for loop in detail

437

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

Although the loop is a perennial favorite, AS3.0 allows you to create loops in a few other ways
as well. You can also create a loop or a loop. They all do the same things as the
loop, although they have nuances that might be useful in certain situations.

The loop can be particularly useful for games. It looks like this:

The loops don’t run for a set number of times; they run as many times as they need to until the
condition becomes . When you use loops in your programs, you have to make sure that
the condition eventually will become . If it doesn’t, the loop will run “forever” and the Flash
Player might hang. The Flash Player usually quits the loop itself if it runs for 15 seconds without end-
ing, but sometimes it doesn’t! Use loops with caution and always save your work before you
test them.

I won’t be covering and loops in detail in this book, but it’s worth doing a bit of
further research into them just to see what they’re capable of. For more information, see the sec-
tion titled “Looping” in the chapter “ActionScript Language and Syntax,” from Adobe’s online docu-
ment, Programming Adobe ActionScript 3.0 for Adobe Flash (

).

Looping through platforms
The platforms all share the same instance name, except for the number that appears at the end of
their name. You can make the platform collision detection code much more efficient by putting one
directive inside a loop and then repeating that directive for as many times as there are platform
instances. All you need to do is replace the number in the instance name with the loop’s index
variable.

If that sounds confusing, it’s actually much easier to understand when you see it put into practice:

 1. In the file, change the event handler so it looks like this:

 2. Save the file and test the project. The cat can still jump across every plat-
form, but the code is much more efficient.

438

CHAPTER 9

Before you look at how this is working, let’s first examine the result of the directive. This is what
it looks like:

And this is what it displays in the Output panel:

As you can see, the string has the value of the loop’s index variable, , appended to it.
 starts with a value of zero the very first time the loop runs, but it’s increased by 1 every time the

loop repeats. This allows you to dynamically create the names of all the platform instances, from
 to .

The code that actually checks for a collision between the player and the platform instances works in
exactly the same way as the directive:

The key to making it work is this section of code:

The name of the instance is created by taking the base name, , adding the current value of
the index variable to it, and surrounding the whole thing in square brackets. You use because the
platform instances are a property of “this class.”

Because is the document class, you can read to mean “in this object.” When
the SWF runs, it creates an instance of the class, which is an object just like any
other in your game. Any objects that are on the stage become internal properties of the document
class. You can refer to any of the class’s internal properties with the keyword. The and

 objects are all properties of the class, so they can be referred to as and
, for example.

This is also the first time you’ve used square brackets in the code:

439

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

Square brackets are called an array access operator, which has a few different uses. One use is to
refer to instance or property names dynamically, as in the previous code. It also refers to elements in
an array. You haven’t seen this second use yet, but will very soon. Stay tuned!

Finding the global x and y position of a subobject
The Bug Catcher game includes a frog character that sits on the platform in the bottom- left corner
of the stage. If you look at the frog closely while you’re playing the game, you’ll notice that its eyes
follow the cat wherever it goes.

To implement this little trick, you need to know the exact and position of the frog’s and
 subobjects, and then rotate the eyes so that they point in the correct direction.

There’s one big problem, however. Flash and AS3.0 interpret the and positions of subobjects
according to the subobject’s local coordinates. It doesn’t know what the and coordinates are that
they occupy on the stage. The stage’s coordinates are known as the global coordinates. Before you
can make the frog’s eyes rotate correctly, you need to know what their global and positions are.

Let’s first take a closer look at the problem, and then how you can solve it. The symbol has two
Movie Clip subobjects: and . If you double- click the symbol in the Library and
then click the instance, you’ll notice that the Properties panel says it has an position of
18.8. Figure 9-16 illustrates this. This is the eye’s local coordinate. Keep this in mind!

 Figure 9-16. The frog’s rightEye subobject has a local x coordinate of 18.8.

440

CHAPTER 9

Let’s add the object to the stage and find out what its position is:

 1. Drag an instance of the symbol onto the stage and give it the instance name .

 2. Select the instance and check its position in the Properties panel. My frog’s position is
, which you can see in Figure 9-17.

 Figure 9-17. The frog’s global x position is 50.

Okay, that’s interesting. That must mean that the frog’s right eye should have a global position of
around 68.8 (or 68.75 to account for binary rounding). Adding 50 to 18.8 equals 68.8, which should be
its global position on the stage.

Does it actually have that value? You can find out:

 1. Add the following statement to the class’s constructor method:

 2. Save the file and test the project. You’ll see this displayed in the Output
panel:

 That’s its local position! So if you refer to the right eye’s position using the format
, AS3.0 can only tell you where it is in relation to its parent object. If you want the

eye to interact in any useful way with the objects on the stage, you need its global position—
and you can’t access it.

441

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

AS3.0 has a system for converting local coordinates to global coordinates. As a game designer, this is
something you’ll find yourself needing to do all the time. Strangely, however, AS3.0 doesn’t make this
easy, and converting local to global coordinates is something that has stumped even very experienced
developers new to AS3.0. To make matters worse, Adobe’s documentation on this is far from clear,
especially in the practical usage that you need to put it to in everyday situations such as these.

You won’t like this system; it’s cumbersome and convoluted. But it’s the only way of converting coor-
dinates, it works, and you have to learn to live with it. Don’t worry, though; just bookmark this page
and refer to these directions every time you need to do this. It’s actually not so bad once you get used
to it!

Here’s the process you need to follow to convert local coordinates to global coordinates (don’t let this
long list scare you; you’ll soon see that it’s not quite as hard to implement as it might seem):

 1. Import AS3.0’s class with the import directive . This import
directive should be part of the class definition, along with all the other import directives.

 2. Create a new object to store the and positions of the subobject whose local coor-
dinates you want to convert to stage coordinates. In this example, the line of code might look
like this:

 objects contain two built- in properties: and . The and coordinates
of the object that you specify in the arguments when you create the object are copied into
the object’s own and properties. (Don’t worry if this is confusing! You’ll look at this
in more detail in a moment.)

 3. Use AS3.0’s built- in method to convert the new object’s local coordi-
nates to global coordinates. is a method of the class, so it needs to
be called by a Movie Clip object. Usually, the object that calls it is the parent of the subobject.
In the example, the parent is the object. So to convert the coordinate, you can use some
code that looks like this:

 4. You need to store this new global coordinate in yet another variable so that you can put it to
some practical use in the program. You can convert the object’s coordinate and store
it in a new variable with a single line of code that looks like this:

 5. After all that trouble, you have a variable called . It contains the global coor-
dinate of the subobject’s position. That’s the variable you use if you want to refer to the right
eye’s global position.

 6. Hey, not so fast! You’re not done yet! You’ve only converted the position’s coordinate. Repeat
steps 3 to 5 to convert the position as well. Rinse thoroughly and blow dry.

442

CHAPTER 9

Apart from the fact that I do believe a letter is in order to Adobe before they let AS4.0 pass without
simplifying this, let’s not let this get you down. You can do it!

Let’s try and implement this system in the program so far to see if you can actually find the value of
68.75 that you’re looking for:

 1. Enter the following code into the class’s constructor method (delete the
 statement from the earlier steps if you added it):

 2. Save the file and test the project. You’ll see the following displayed in the
Output panel:

! That’s it! That’s the global coordinate you need! Any place in the code in which you need to
refer to the global and position of the frog’s left and right eyes, you can use these two new vari-
ables: and .

Remember that to use this code, you had to create a object. objects can
be created only if you import Flash’s class with an
directive. This class was added to the file for you when it was
set up, but you need to remember to do it if you want this code to work in your own
projects.

The process of converting local to global coordinates like this is neither obvious nor intuitive. Just
a glance at the code involved is enough to stun an ox. The one saving grace is that you don’t need to
memorize any of this. That’s what this book is for!

443

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

 Figure 9-18 takes you on a tour of how to convert a subobject’s local to global coordinates.

1. Import the Point class.

2. Create a new Point object.

The x position of the subobject The y position of the subobject

This is a new Point object
called pointObject.

Point objects are used to store points.
They contain their own x and y properties
that you can refer to like this:

These x and y properties contain the values of whatever points
were specified in the argument when you created the Point object.

3. Create new variables to store the global coordinates for these points.

Variables to store the global points. Use the parent object’s localToGlobal method to convert
the pointObject’s x and y properties to global coordinates.

You can now use globalPoint_X and globalPoint_Y
to access the subobject’s global x and y position.

Convert Local Coordinates to Global Coordinates

 Figure 9-18. Convert local x and y coordinates to global x and y coordinates.

Now that you can access the global coordinates of the frog’s left and right eyes, you can use these
values to rotate them.

Rotating toward an object
You’ll make the frog’s eyes follow the object as it moves around the stage. To do this, you need
to apply a bit of trigonometry to the eyes’ properties.

If you’re a mathophobe, rest assured that you don’t need to necessarily understand the trigonometry
you’ll look at to be able to use it. If fact, you won’t even see it. AS3.0 does the math for you—you
just need to give it the correct numbers. And once you see it in use, you’ll see how easy it is to apply
whenever you need to rotate an object toward another object. It’s a walk in the park compared with
converting coordinate systems.

444

CHAPTER 9

AS3.0 has a built- in method called that will give you the correct angle of rotation between
two objects. One little technical detail you need to deal with, though, is that returns the
value of the angle in radians, and Movie Clip (and Sprite) objects in AS3.0 don’t use radians for their
rotation values; they use degrees. So once you’ve got the value in radians, you need to apply a very
simple calculation to convert it into degrees. When you have that value, you can rotate the object.

Let me show you just how easy this all is. Figure 9-19 is a grid showing the positions of two objects on
the stage.

0 1 2 3 4 5 6

1

2

3

4

5

X

Y

 Figure 9-19. Find the angle of rotation between two objects.

Here’s how to find out the angle of rotation, from the point of view of the frog:

 1. Find the positions of the objects:

 2. Subtract the and positions of the target object, from the and position of the object that
will be doing the rotating:

 3. Plug these numbers into the function. Very importantly, the value has to come
first:

445

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

This returns a number in radians. Unfortunately, this is not useful for rotating Movie Clip objects.
You need to convert this number to degrees, which is the type of value expected by the
property.

To convert radians to degrees, you can use a simple calculation: multiply the value in radians by 180
divided by Pi (3.14). AS3.0 has a built- in function called that returns the value of Pi, just to
make things easier for you. Here’s what the final line of code might look like:

This gives you a rounded- off value in degrees:

 Figure 9-20 shows what this looks like in the example.

0 1 2 3 4 5 6

1

2

3

4

5

X

Y

0

90
143 degrees

180

270
 Figure 9-20. Use AS3.0’s built- in Math.atan2 function to find the angle of rotation.

Great! You now have a number you can use to rotate the frog. You can use it in a directive like this:

446

CHAPTER 9

Whenever you need to rotate an object toward another object, this is formula you need to use. It’s
probably about 50% of the trigonometry you’ll ever need to know for your games, and you didn’t
actually have to do the math yourself! In Chapter 10, you’ll look at a few more of AS3.0’s trigonometry
functions.

Rotating the frog’s eyes toward the player object
Of course, you don’t want to rotate the frog; you want to rotate its eyes, which are subobjects. You
need to put together the rotation code with the earlier code to convert an object’s local coordinates
to global coordinates. Here’s how:

 1. Add an event handler to the object in the constructor method:

 2. Create the event handler to rotate the eyes:

 3. Save the file and test the project. The frog’s eyes now follow the cat as it
jumps around the stage.

This is an incredibly common requirement in games. File this one away for safekeeping; you’ll be
returning to it again and again.

447

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

Changing the stacking order
You might have noticed that the cat appears behind the frog and
that its ears appear behind the platforms, as shown in Figure 9-21.
In this game, it will appear more natural for the cat to appear above
these objects. You can add a simple line of code to fix it.

When objects are added to the stage by dragging them from the
Library or by using , AS3.0 adds them to something called
the display list, which is just a list of all the objects on the stage.
The first objects on the list appear behind objects that are added
after them. Because the cat was one of the first objects added to
the stage in this game, the platforms and the frog appear in front
of it.

To make the cat appear in front of all the other objects, it
needs to be the last item on the display list. The number of
objects on the stage is stored in a built- in property called

. If you add the following directive in the constructor
method, it will actually tell you the number of objects on the stage:

This displays for me at this point of the project. There are 15 objects, but the display list starts num-
bering objects from , which means that the last object on the list is actually object number .

You can find out the number of any object on the list by using another built- in method called .
I know that my object happens to be number on the list (which actually means it’s the fourth object,
if you start counting from zero). I can use a method called to make sure:

In my game, this displays as follows:

 is the class that the cat belongs to. You can append the property to
to find out the object’s actual instance name. For example, has the value of .

 Figure 9-21. The cat is one of the
first objects on the display list,
so it appears behind the other
objects.

448

CHAPTER 9

Let’s combine this with inside a loop to view the instance names of all the objects
on the stage:

 1. Add the following code to the constructor method:

 2. Save the file and test the project. This loop runs for as many times as
there are objects in the display list, which is the number provided by . You’ll see
something that looks similar to this in the Output panel:

You can see from this list that in order to get the to appear above the other objects, you need to
move it to the end of the list, to position . Another built- in method called can do
this for you.

To move the to the end of the display list, you can use to give it a position number
that is one less than the number provided by (it has to be one less to compensate for the
fact that the list starts at zero). takes two arguments: the name of the object and
the position you want to move it to.

 1. Add the following to the constructor method:

449

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

 2. Save the file and test the project. The cat will now be the last item on the
list in the Output panel. The cat now appears above the frog and the platforms on the stage.

One last thing in the stacking order that I want to fix is to make the cat appear behind the transpar-
ent water graphic so it looks like it’s standing in water when it’s on the ground. To do this, I’ll give the

 object a position index number of and the object a position number of
 2.

 1. Update the constructor method:

 2. Save the file and test the project. The cat now appears in front of all the
other objects, but behind the object, as shown in Figure 9-22.

 Figure 9-22. The cat appears in front of the frog but behind the water.

The appearance of objects being in front of or behind other objects has nothing to do with which
layer they were created on in the FLA. Once their position on the display list is altered, that position
takes precedence over the layer position in the FLA. You can make an object from a bottom layer
appear above all other objects just by changing its position on the display list.

450

CHAPTER 9

Another of AS3.0’s built- in methods that you’ll certainly find use for in your games is .
You can swap the position of two objects in the display list by using a line of code that looks like
this:

This code makes the two objects change places in the list. You’re not using in this game,
but it’s important to keep it in mind. It’s always useful when you need to make one object appear
above or below another object without having to know their actual positions in the list.

Adding some bugs to the code—literally!
Now that you have a fun environment to play in, let’s start to turn this into a real game. In my Bug
Catcher game, I created three little bug Movie Clip symbols: , , and . These symbols
are all exactly the same except for their colors. They each contain a one- frame animation that flaps
their wings. I added them to the stage and gave them the instance names , , and .

In the Dungeon Maze Adventure game from Chapter 8, all the important game objects had their
own class. Although that’s probably a preferable approach to take for most games because it really
does help to break down complexity into manageable chunks, it can be overkill for a very small game
such as Bug Catcher. In Bug Catcher, all the objects, except from the , are programmed in the

 class. There are a few reasons for this:

 You need to see how this can be done. It’s often quicker and easier to work through ideas with
all the code in one big class, such as . Once you understand how some of the code is work-
ing, you can then break it down into classes. It’s a good experimental lab.

 You’re learning a few new techniques, and their effects will be clearer if all the code is in one
place.

 Truth be told, this is a better way to work for very small games. It’s much less code and it can
be easier to make quick changes than working with many classes. The chance of bugs occurring
(programming bugs!) because of code dependency is mitigated by the fact that the game is so
small.

When you’re designing your games, you’ll need to decide whether you want to take a more
 object- oriented route, as with Dungeon Maze Adventure, or a more procedural route, as with Bug
Catcher. If Bug Catcher were even just slightly bigger, I would have broken it down into smaller
classes.

Here’s how to program the bugs in the game:

 Dynamically create and properties for each of the bugs, directly in the constructor
method.

 Attach an event to each bug to control the bug’s movement and artificial
intelligence.

Let’s first add the bugs to the stage, create the properties, and add the event listeners:

 1. Add instances of the three bugs to the stage and give them the instance names , , and
.

451

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

 2. Add the following code to the constructor method:

 3. Add the event handler just below :

452

CHAPTER 9

 4. Save the file and test the project. The three bugs flutter randomly around
the stage and bounce off the edges very realistically (like flies bumping into windows).

There’s no magic to any of this. You just combined a few things that you already know how to do in
ways you haven’t seen before.

Dynamic instance variables
In the constructor method, you declared and initialized and variables for the bugs and added

 event listeners like this:

The and variables were created dynamically (they’re called dynamic instance variables). All
that means is that you needed these variables, so you created them on the spot without checking with
the object’s class whether it was okay to do so. In fact, the bug objects don’t belong to any special
class, except the general class.

453

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

The class is a dynamic class, which means that new properties added to objects that are
descended from the class don’t have to be declared within the class itself. You can create
them anywhere in any class that references these objects.

If a class is not declared as dynamic, you can’t create variables on objects like this; you
need to do it within the object’s own class. To make a class dynamic, declare it with the

 keyword. Here’s an example:

Being able to create properties dynamically on objects like this is very convenient. It saves you the
trouble of having to create an entire class around an object. However, it comes with the same dan-
ger of breaking encapsulation that public properties pose. (Encapsulation, as you might recall from
Chapter 8, is the programming practice of striving to keep objects as self- contained as possible so
they’re not dependent on other objects.) If you’re not careful, you might create properties that are
assigned values that the object doesn’t know how to deal with, and this could cause weird things to
happen in your code that might be very difficult to debug. So my advice is that when you use dynamic
instance variables, do so only in very small games such as Bug Catcher, and keep a careful eye on the
values you assign them. If you can do that, they’re a big time- saver.

You might have noticed that and properties are named without being preceded
by an underscore character. That is because they’re technically public properties. In the
naming conventions that you’re following in this book, public property names aren’t
preceded with an underscore.

You’ll also notice that all three bug objects share exactly the same event handler. You’ll
see how you’re able to do this next.

Multiple objects sharing one event handler
One great feature of the AS3.0 event listeners is that when events are created, an awful lot of infor-
mation about that event is stored in a special event object. (Refer to Chapter 3 if you need a quick
refresher on this topic.) One of the properties of the event object is called . The prop-
erty stores a reference to the object that called the event. That means that you can access these
objects in the event handler with code that looks like this:

That‘s really useful for you in the current situation. Each of the bugs in the game uses the same event
handler, , but they call the event handler at different times. By using the
property you can find out which bug object is currently calling the event and store this object in
a local variable. That’s what the first line of code in the event handler does:

Whichever object is currently calling the event is referenced in this local variable. You can now
use the variable to refer to whichever bug object is running the event at the moment. This saves

454

CHAPTER 9

you the trouble of having to write three identical event handlers for each bug. They all do exactly the
same thing, so this is just fine.

The only little technical detail you have to be aware of is that you need to use to tell
AS3.0, “Yes, don’t worry, you know what you’re doing, this is a Movie Clip object.” The event sends
the property as a , so you need to cast it as a to be able to access the actual
object it refers to.

Making the bugs move
You want the bugs to move like bugs, so some kind of random motion might be a good idea. There
is a formula for random motion that makes objects dither about in no particular direction called
Brownian motion. The formula for Brownian motion looks like this:

It uses the method to generate a random number between -0.1 and 0.1 (Refer to Chapter 5
if you need a refresher on how to generate random numbers.) This number is too small to be much
use for moving an object on the stage, so you need to multiply it by another number to amplify the
effect. Through trial and error, I noticed that multiplying it by 15 looked good for my bugs.

This new formula is then added to the bugs’ and properties:

Add a bit of friction and then add the and velocities to the bugs’ and properties.

This amazingly mundane code is all that’s needed to make the bug object move like a real bug. Makes
you think!

Brownian motion is great if you want to make objects that move in a way that mimic
the organic randomness of insects, dust particles, or snow. Experiment with the friction
value and change the multiplier from to something like or .

455

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

The next section of code simply sets the stage boundaries. It uses the simple bounce formula you
looked at earlier in the chapter to bounce the bugs off the stage edges when they get too close, like
this:

Another very simple bit of code that results in surprising complexity! The last thing you did was set up
the collision detection code for the platforms:

This is the same as the code you used to detect a collision between the platforms and the ,
except that there has been no bounce value assigned.

Artificial intelligence
The next step is to make the bugs aware of their environment. Bugs don’t like frogs, so let’s make
them fly away if they come within 50 pixels of the frog.

The collision detection follows the same logic that you used in the original collision detection code
from Chapter 7. It checks whether a bug is within 50 pixels of the frog on the x axis. If it is, it checks
whether the bug is within 50 pixels of the frog on the y axis. If that’s true as well, the bug is too close
to the frog, and it changes its direction.

 1. Add the following code to the event handler:

456

CHAPTER 9

 2. Save the file and test the project. When the bugs come within 50 pixels
of the frog, they fly away quickly and display the word Frog! in the Output window, as shown in
 Figure 9-23.

 Figure 9-23. The bugs reverse direction if they come within 50 pixels of the frog.

The code pushes the bug out of the collision area and then reverses its velocity using the bounce
formula. Again, this is simple code, but the effect is startlingly realistic.

The way that the bugs interact with the cat is only slightly more complex. The bugs have two different
behaviors, depending on whether the cat is moving or not moving. When the cat’s velocity is less than
 on either axis, the bugs have the same behavior as they have with the frog. When the cat is moving,

however, the bugs enter panic mode. They add the player’s velocity to their own and multiply their
random motion by , which makes their movement much more erratic.

457

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

 1. Add the following code just below the preceding code you added:

 2. Save the file and test the project. The bugs will flee wildly from the cat if
it chases them, and bob around it complacently if it sits still.

All this adds up to very realistic bug behavior. In fact, the bugs almost seem to have some kind of intel-
ligence. That’s why this kind of programming is called artificial intelligence, known as AI for short.

As you can see, there’s nothing too special about his code, and there’s certainly no magic formula
for writing it. I wrote this code with a vague idea of how I wanted the bugs to behave and spent an
hour or so playing around with a few different combinations of directives until I found something
I was happy with. To say that there are as many different ways the code could be written as there are
readers of the book is an understatement. There are millions of ways this code could have been writ-
ten, and the example I present here is just one possibility I dreamed up on a snowy afternoon. When
you’re programming objects that need some sort of awareness of the environment they inhabit, try
and break down their behavior into small steps. Solve one step and build from there. With just a few
lines of code and a few simple statements you can create something that appears alive and truly
intelligent. It’s really not hard; try it!

Although it works well enough for me, there’s one weakness in this code that you’ll discover if you
play the game long enough. Because the bugs add the exact value of the cat’s velocity to their own,
they always outrun the player. The only way you can catch one of the bugs is to trap it in a corner. To
make the game a little more realistic, you could add an extra bit of randomness, more or less, to the
value of the velocity obtained from the object. But I’ll leave that for you to figure out!

Using arrays
The next phase in the game is to actually catch the bugs. You need some kind of container to store
them in, such as a collection jar. In AS3.0, a collection jar for objects is known as an array.

458

CHAPTER 9

Arrays can actually be used to store anything: variables, numbers, strings, objects, methods, or even
other arrays. You can think of arrays as big storage containers in which everything inside is indexed
with a number. You’ll take a look at some practical examples of how this works.

Before you can use an array, you need to instantiate it using the keyword. If you want to create an
empty collection jar for the cat to collect bugs with, you can create one like this:

Arrays contain their objects using square brackets (the array access operator) that you looked at ear-
lier in the chapter. A pair of empty brackets means that the array is empty.

You can initialize the array so that it’s already filled with objects:

All objects in an array are numbered sequentially, starting with zero. These numbers are called index
numbers. In the preceding example, has an index number of , has an index number of
, and has an index number of .

You can find out which object is at which index number using the array access operator. Here’s an
example:

This has the value of because has an index number of .

It’s really very simple. An array is just a numbered list of things known as elements. Figure 9-24 illus-
trates an empty array compared with an array with three elements.

A. An empty array B. An array with three elements

Use the array access operator to access the elements
in an array.

 Figure 9-24. Arrays and array elements

459

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

There are several ways to put elements into arrays. In the previous example, three elements were
added to the array when it was initialized. You’ll usually start with an empty array and add elements
to it as you need to.

One way to put elements into an array is to assign elements directly to a position in the array’s index:

So whenever your code sees it returns the value of .

Let’s look at a slightly more concrete example. The chapter source files include a folder called
, which contains an FLA file called . Open it is as a project and have a look at the

 file:

If you test this, the displays this:

460

CHAPTER 9

In this example, , , and are stored in the array as strings, not
objects.

Pushing elements into an array
Another very common way to get elements into an array is to use an array’s built- in method. You
can use to literally “push” an element into an array by using this format:

When you push an object into an array, it gets an index number that’s one higher than the last ele-
ment added. This means that if the last element has an index number of , the object that you push
into it will have an index number of .

Using is really helpful because you don’t need to worry about which index number to add the
element to. The array figures this out for you.

The chapter source files include a folder called that contains an FLA called .
Open it as a project and have a look at . It’s identical to the first example, except
that it uses to add the elements to the array:

The output is exactly the same as the first example. The fact that you don’t need to worry about
the index numbers is very convenient.

To remove an element from an array, you can use the array’s method. The following
code uses to remove the last element from an array and assign it to a variable:

If the last element was , has the value of . It also means
that now contains only two elements: and .

You can also add and remove elements to an array using the method. I’ll cover
it in detail in the next chapter.

461

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

Looping arrays
You might have noticed something familiar: arrays look an awful lot like the display list discussed ear-
lier. This is no accident; the display list is an array!

You used a loop to display the contents of the display list and you can use one to display the con-
tents of any array in this way. In fact, arrays and loops tend to go hand in hand.

Arrays have a built- in property called , which tells you how many elements the array has. You
can access an array’s property like this:

It is the same as the display list’s .

Just like , the numbering starts at zero. doesn’t give you the last
element in the array; it gives you the total number of elements. To find the index num-
ber of the last element you would need to use this:

You can use an array’s property to control the number of times a loop repeats. Here’s
a basic example of the format you can use:

This code displays all the elements in the array, starting with element and running through all the
way to the end of the array, however long it happens to be.

The chapter’s source files include a folder called that contains a file called .
It contains an example of how to use a loop to list the contents of an array. Open it as a project
and test it to see the effect. The file of looks like this:

462

CHAPTER 9

This displays the following in the Output panel:

Searching arrays
Another interesting feature of this system is that you can create basic search functionality by throw-
ing an statement into the mix. It’s really simple; you just check to see whether an array element in
the loop matches a certain search term. If you have a match, the element you’re looking for has been
found.

Here’s the basic format for searching an array:

One new thing here is the keyword , which is used to stop a loop immediately without waiting
for it to complete. When you use loops to search through arrays, you’re often looking for only one
item. Once that item has been found, it doesn’t make sense to continue the loop, so you can use

 to stop it early. Because your program doesn’t have to do any unnecessary checking, your game
will run faster.

463

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

You’ll find a file called in the folder of the chapter’s source files. Open
it as a project and take a look at its file. It uses an statement inside a
loop to check whether the array contains an element called . Once the statement finds
the correct element, a directive runs to stop the loop from continuing:

If you test it, you’ll see this output:

Because you include a directive, the loop stops at that point. It never checks element , which
is a good thing. The loop has found what it’s looking for, so it doesn’t need to check. Using loops
to search arrays is a basic programming technique that you’ll be using frequently from now on.

You’ll need a bit of practice with arrays before you start to feel comfortable using them in your own
code. Spend a bit of time with these example files, make some changes, and follow the way your
changes affect the output.

464

CHAPTER 9

Collecting bugs
Now that you know how to use arrays, let’s collect some bugs!

 1. Create a dynamic text field named to display the game’s instructions.

 2. Create some boxes to visually display the bugs you collect. Give the boxes these instance
names: , , and .

 3. Add a object to the stage. The mouse doesn’t actually do anything in the game; it’s
added as an obstacle for the player. If the player collects the mouse, the game is lost. The frog
doesn’t like mice! Figure 9-25 shows what these new objects look like.

 4. Save the file.

instructions

mouse

itemBox0
itemBox1
itemBox2

 Figure 9-25. Add the instructions dynamic text field, item boxes, and mouse.

 5. You need to declare an array to collect the bugs and a variable to tell you whether the mouse
has been collected. Add the following declarations at the top of the class definition:

 6. Initialize the array, variable, and dynamic text field in the constructor method:

465

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

 7. Add an event listener to the , , , and objects in
the constructor method (these objects all share the same event listener):

 8. Add the event handler:

466

CHAPTER 9

 9. Save the file and test the project. Chase the bugs around the stage.
When you catch them, they’ll appear in the item boxes on the top- right corner, as shown in
 Figure 9-26. The game allows you to catch only three objects.

 Figure 9-26. Catch the bugs (and maybe a mouse, too)!

The job of collecting the bugs falls to the event handler. The first thing it
does is create a local variable to store a reference to the object that’s calling the event:

Remember that there are four objects that are calling this event: the , ,
, and . The code in applies to all of them.

The code then checks to see whether the collection jar is full. Because you want to allow the player to
collect only 3 items, the code should run only if the of the array is less than :

If the jar isn’t full yet, the code checks whether the object is colliding with the :

467

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

If it passes this second test, the main part of the event handler is allowed to run. The first thing that
happens is that the object is made a child of the first next available item box. This places the object
into one of the item boxes at the top- right corner of the stage:

Let’s break this down into two smaller parts. First, there’s this bit of code:

It figures out which item box is free by finding out how long the array currently is.
If no objects have yet been collected, the array’s property is zero. This means that the item
box that is used to store the object is . + equals . is the first
box.

Let’s look at another example. If 2 objects have already been collected, then the of the
 array is . Because you started naming the item boxes at zero (), is the last box,

the third one. That means that + equals , which is the third box.

I know; it’s confusing! But run it through a few times in your head or on a piece of paper, and it will
start to make sense.

An important thing to keep in mind is that this bit of code uses square brackets, , to dynamically
create the name of the item box that you want to move the collected object to. When two bugs have
been collected, for example, the code interprets this:

to mean this:

Make sense?

Once you have the name of the object, you can trigger one of that object’s methods. That’s what the
second bit of code is:

It adds the collected object as its child, which causes the object to attach itself to the item box. You
can see this happening visually on the stage when one of the bugs is caught.

To make a bit more sense of this, imagine that the object called this event and happened to be the
second object collected. The entire directive would be interpreted like this:

The next job is to center the object in the item box. That’s the work of these two lines:

468

CHAPTER 9

Why are you setting the object to an and position of zero? Remember that the object is now
a child of one of the item boxes. The coordinates it uses no longer refer to coordinates on the main
stage. is a local coordinate: the center of the item box.

Next, you push the object into the array:

The last job is to remove the event listeners. You have a small problem because the bugs all use the
 event listener, but the doesn’t. is what makes the bugs move and also

includes their artificial intelligence. Remember, the doesn’t do anything; it’s just an obstacle
for the to avoid. You have to be careful not to try to remove the listener from the

; otherwise, the code will generate an error.

An easy way around this is just to run the code if the object that’s called the
event is not a mouse. A simple statement takes care of that:

Finally, you have to remove the event itself:

Now that you can collect bugs, you need to find out how to end the game.

Winning and losing conditions
The best place to check for the end of the game is in the event handler.

 1. Add the following code just before the directives that remove the event listeners:

 If the of the is , all the objects have been collected, and the
 event listener is added.

469

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

 2. Create the event handler. Add it below :

 3. Save the file and test the project. Now when you collect three items, you
can visit the frog. (The frog will you whether he’s happy with what you caught.)

 implements the array search system that you looked at earlier. As soon as the
touches the , these lines of code are run:

This code is almost identical to the code that you looked at earlier. If turns up as an element
in the array, the variable is set to , and the loop quits. Depending on the value
of , a different message is displayed. Finally, the listener is removed, and the
game finishes.

470

CHAPTER 9

Complete Main_BugCatcher class
In case you need to double- check anything, here’s the complete class:

471

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

472

CHAPTER 9

473

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

474

CHAPTER 9

New Collision.playerAndPlatform utility
You’ll take a look at the collision utility that you used for platform
collisions. Make sure that you are familiar with (refer to Chapter 7). The basic logic
is exactly the same, but it’s a bit more detailed because it’s been designed to handle bounce and
friction.

 does the job of checking for collisions between two rectangles. When
it finds a collision, it separates the objects and applies bounce and friction forces.

playerAndPlatform method
This code is pretty complex, so don’t feel you have to understand exactly how it works any time soon.
It’s the most complex code in the entire book. I included it as a useful extra that you might find help-
ful in some of your own games. This is definitely not code that you need to understand at this stage
in your learning.

475

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

In fact, you can even skip this section of the chapter and simply go on using the
 method as a utility without ever worrying about how it works. It’s presented only

so that you can see the underlying collision system involved. Also, this code is tailored specifically for
this project, so feel free to change it as much as you like for your own games. With time, you might
want to revisit this code when you understand it a bit better and then rewrite it so it’s more general
and easier to adapt to a wider range of situations. In fact, I hope you’ll eventually do this. General
code tends to be very complex, so the present version is written as a learning tool to be as simple as
possible while still retaining a good degree of flexibility for many different kinds of games.

To use this code in your games, you need the following:

 1. The first object involved in the collision, , needs publicly accessible and proper-
ties. The and getters and setters in the class accommodate for this.

 2. The object optionally needs publicly accessible and properties if you
want it to be able to bounce off platforms.

 3. If the object has a subobject assigned through a publicly accessible
property, that subobject is used as the collision object. In Bug Catcher, the cat’s subobject
was assigned to the property. It’s available to the code through the

 class’s getter.

 4. If you’re programming a platform game and need to know whether the is on top of any
of the platforms, the code will look for a publicly accessible property called and
set it to .

I won’t discuss this code in detail, but I’ll give you a general map of how it works. Each section of the
code contains comments that explain what it does. I’ll leave it up to you to check the specifics on
the code and put all the pieces together. You won’t understand all the code immediately, but it’s some-
thing you can come back to as your programming experience increases over the weeks and months
ahead. If you feel a bit overwhelmed when you first look at it, don’t let it scare you. It’s a lot of code, but
you’ve actually seen all of it in different contexts before. The only really new things are the three formu-
las used to calculate bounce and friction, and you’ll be looking at them in the pages ahead.

Here’s how the method works:

 It accepts four parameters:

 The first object involved in the collision (the object)

 The second object (the)

 A bounce value

 A friction value

 If the object has a subobject assigned, its and are used to
define the collision area. Its and coordinates are also converted to global coordi-
nates using the method.

 The code checks for a collision on each axis; if it finds one, it determines which side of the
 the collision is occurring on. This is exactly the same system used in the

 method. After it finishes, it separates the from the collision with the
and applies bounce and friction forces.

476

CHAPTER 9

Here’s what looks like:

477

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

478

CHAPTER 9

479

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

Platform bounce and friction
Although finding out on which side of the a collision is occurring is reasonably straightfor-
ward, applying the right physics is a little a bit more complex. You need to find out in what direction
the object is traveling so that it can bounce away at the correct angle.

Lucky for you, you can borrow some formulas used in a branch of mathematics called vector math
to help you sort this out.

To apply the correct bounce and friction when the hits the platforms, you need to know three
things:

 The direction the is traveling in. You can figure this out by using a vector math formula
that calculates a value known as a dot product:

 The new direction the needs to travel in when it bounces on the platform. In vector
math, this is called the projection:

 The ’s speed, in the direction that it’s bouncing. This is known as the tangent velocity
and it’s used to calculate the platform’s friction.

480

CHAPTER 9

 Figure 9-27 illustrates a simple example of how these three values can describe an object bouncing
on a surface.

Platform

Direction (dot product)

New Direction (projection)

Tangent Velocity

 Figure 9-27. Use some vector math to help with bounce and fricition.

These formulas will work no matter which side and from which direction the is hitting the
. Vector math is very helpful for these sorts of physics calculations in games. If you go on to

do much more game design outside the pages of this book, consider studying a bit of vector math in
more detail.

Now that you have those values, you can multiply them with the and values that
were supplied to the method as parameters. An important thing about the next bit of code is that it
applies the forces only if the is moving into a collision with the platform. Without this check,
the player will appear to be fixed to the platform with glue when it lands on it:

481

PLATFORM GAME: PHYSICS AND DATA MANAGEMENT

When the bounce and friction forces are calculated, they can be applied to the object:

Remember that and are the amount by which the player overlaps the platform when the colli-
sion occurs. The player is separated from the platform by that amount.

Detecting the top of the platform
There’s one other detail I need to point out. The class needs to know when the

 is on the ground so that it can be permitted to jump. It contains a private Boolean variable
called that’s accessed by a getter and setter called . When the is on
the bottom of the stage, is set to , and the player can jump.

The needs to be able to jump not only when it’s on the bottom of the stage but also when it’s
on top of a platform. Fortunately, the collision code is able to tell you which side of the platform the

 is colliding with. All you need to do is set to when the code detects a hit with
the top side of a platform:

482

CHAPTER 9

Summary
I covered a number of new techniques in this chapter, all of which you’ll find a use for in your own
game projects. The specific game logic that you use to solve the conditions for winning and losing, as
well as artificial intelligence for your game characters, will be different with every project. But hope-
fully this chapter has shown you some approaches to tackling these issues and some of the things that
you’ll need to think about to solve these problems in your own games.

This has been a basic introduction to platform games, but you’ll find all the building blocks here to
start you off building a game that could become quite complex with a bit of planning and imagination.
Add a bit of the puzzle solving and task completion that you looked at in Dungeon Maze Adventure,
and maybe a few animated enemies, and you’ll be well on your way to building a really fun game. You
could also add a weapon, some sound, and even some scrolling so the player could explore a large
area. What about items that give the player some special abilities, or maybe some vehicles to drive?

One bonus of the collision code that you’re using is that it tells you which side of the platform the
player is hitting. You can adapt it for enemy collisions to find out whether the player was jumping on
an enemy’s head, which is the classic way of vanquishing enemies in platform games. You can also
adapt the physics code to create a flight- based action game such as Joust; or a flight rescue or explora-
tion game such as Lunar Lander, Choplifter, or Defender. Actually, just about any 2D platform game is
within your reach. And what about moving platforms? It could be interesting!

In the next chapter, you’ll take a closer look at enemy artificial intelligence and scripted motion.
I’ll show you player control schemes that use the mouse, how to move objects and fire bullets in
360 degrees, and one of the most useful programming techniques in a game designer’s arsenal:
dispatching events.

“This page left intentionally blank.”

485

Chapter 10

In this final chapter of the book, I’ll show you a wide variety of useful techniques you’ll
need to know to get started on your own professional- level game design projects:

Dragging and dropping objects with the mouse

Using easing for smooth motion

Controlling game characters with the mouse

Moving objects in the direction of their rotation

Firing bullets in all directions

Using dynamic filters

Making objects with the statement and the simple factory system

Learning basic enemy artificial intelligence (AI): following, running away, and
firing bullets in the direction of the player

Using a timer

Using keyboard- driven spaceship and mouse- driven platform game controls

Dispatching events

This is quite a big and dense chapter, so don’t feel you need to absorb all these techniques
at one sitting. This chapter has been designed as a toolbox for you to delve into when
you’re trying to solve a particular problem in your own game design projects. Take it one
small bite at a time and try to apply the techniques to your projects as much as possible.

ADVANCED OBJECT AND
CHARACTER CONTROL

486

CHAPTER 10

The one must- read section, however, is the “Dispatching events” section at the end of the chapter. Learning
to dispatch events is such a useful skill for a game designer that it could become the primary technique
that you use for structuring your games from now on, no matter what kind of game you’re designing.

So, without further ado, on with the game!

Dragging and dropping objects
To create any kind of game that involves matching objects, such as puzzle or board games, you need
to create objects that can be dragged and dropped with the mouse. Lucky for you, any objects that
inherit AS3.0’s class, such as Movie Clip objects, have some built- in properties and methods
that are specialized for drag-and- drop interfaces:

 : Makes an object dragable

 : Stops dragging

 : Tells you which object is under the mouse when an object is being dragged

You’ll take a look at two contrasting examples of how to program a basic drag-and- drop game:
a procedural approach and an object- oriented approach. Highlighting the differences between these
approaches will illustrate some important aspects about drag-and- drop objects and be an interesting
look at the way procedural programs differ from object- oriented ones.

Dragging and dropping the procedural way
Let’s have a look at a simple example of a drag-and- drop interface.

 1. In this chapter’s source files, you’ll find a folder called . Open this folder as
a project in the Project panel.

 2. Test the project. You can drag the red and blue squares around the stage. When you release
them over the corresponding empty red or blue squares, they snap into place. If you release
the left mouse button over an object, the name of the object is displayed in the Output panel.

The file contains four objects: , , , and
(see Figure 10-1).

 Figure 10-1. Drag-and- drop objects

486

487

ADVANCED OBJECT AND CHARACTER CONTROL

The code that makes all this work is in the file:

487

488

CHAPTER 10

Much of this code is quite familiar to you by now, but there are a few new things here that require
some explanation.

The class uses a Boolean variable called to keep track of whether you are dragging any
objects. You need this variable to prevent the squares from snapping to their targets before the mouse
button is actually released.

At the heart of the program, however, are the and events. This program again
illustrates how two or more objects can share the same event handler. When the program is initialized,
both the and objects add the very same event listener:

When the mouse button is pressed down over either of these objects, the event handler
is called:

489

ADVANCED OBJECT AND CHARACTER CONTROL

This event handler does a number of interesting things:

 It figures out which object has been clicked by accessing the event’s prop-
erty and assigning it to a variable called (more on the property
ahead):

 It then invokes the method of the object. This starts the object dragging, with the
effect you can clearly see on the stage:

 You want the object that you’re dragging to be above all the other objects on the stage. This
creates the illusion that it’s being picked up. To do this, you need to move it to the highest
position in the display list. takes care of
that quite nicely:

 It sets the variable to :

 It adds the listener to the object. You could have easily added this event to the
object in the constructor method, but, for performance reasons it’s generally a good idea to
create listeners only when you need them. You don’t need to listen for a event
before the event is triggered, so it makes sense to add it here:

Now that you can happily drag the object around the stage, what happens when the mouse is released?
The event handler is called:

This event listener uses the target object’s method to stop the drag effect. It sets
to and then removes itself after completing the job.

490

CHAPTER 10

Using target or currentTarget properties
In previous chapters, the target of an event using the event object’s property was referred to
like this:

The object is the object that triggered the event. In the Bug Catcher game from the previ-
ous chapter, for example, you used to find out which bug was currently calling the

 event.

In this drag-and- drop example, a property called is used to find which object the
mouse is clicking:

What’s the difference between and ?

 Figure 10-2 illustrates an example. Imagine that you have an object called that contains a sub-
object called . You registered the event listener with the object like this:

 refers to the object that the event is registered with. In this example, it’s the
object. If you click and drag anywhere on the object, the whole object moves, includ-
ing the subobject.

 refers to the actual object that the mouse clicked. If you click the subobject, you
can drag only the ; the parent doesn’t move. (If you click an area of the that
doesn’t include the triangle, however, the two objects move together).

a. b.

 Figure 10-2. Using target and currentTarget

491

ADVANCED OBJECT AND CHARACTER CONTROL

Using dropTarget
The last thing the code does is to display the name of the object that the mouse is released over by
using the property. If you test the project, you’ll notice that when you release the mouse,
the name of the object that is directly under the tip of the mouse pointer is displayed in the Output
panel. This doesn’t have any functional purpose in the program except to illustrate how the
property works.

This is the line of code that displays the name of the object that references:

Have a look at the object path:

Do you notice something odd there? Why do you need to access the property? If you’re any-
thing like me, you might have thought that the path should have more logically read something like
this:

But it doesn’t. An extra has been slipped in there just to keep you on your toes. The reason
why is worth explaining—if you ever use the property in any of your games, you’ll have
a few sleepless nights if you don’t understand it.

 is a property of the class. gives you the name of the object
that the mouse is over inside that Movie Clip object. However, in almost any drag-and- drop scenario
imaginable, you don’t need to know the name of that object (which will usually be a drawing shape
from the class or a Movie Clip subobject). What’s important to know is the name of the object
that the mouse is over in the parent container.

In this case, the parent container is an object that’s on the main stage. The stage is at the root of the
hierarchy for display objects, so it’s also the parent container for any object on the main stage, includ-
ing the object in this case. Only when your dragable object doesn’t contain any other
subobjects (or even drawing shapes) can you get by without referencing the parent object.

Remember this if you ever have problems with code that depends on being able to access the
object. More than one experienced Flash game designer has been tripped up by this! A very useful strategy
to follow while building drag-and- drop games is to set a for both the and prop-
erties. This will help you keep things straight in your own mind while negotiating this little minefield.

A further word of caution about using : it returns only the name of the object that the
mouse is currently directly over. If part of the object that you’re dragging is touching another object
when you release the mouse, but the tip of the mouse pointer isn’t, doesn’t register
that object. This is a limitation that could scuttle its use in many drag-and- drop games. Figure 10-3
illustrates some cases in which doesn’t return any value, even though the object being
dragged is clearly over another object.

492

CHAPTER 10

dropTarget returns
a value.

dropTarget doesn’t
return a value.

 Figure 10-3. dropTarget returns only a reference to the
object that mouse is directly over.

Because of this limitation, you might find yourself using infrequently, and it might be little
or no use at all for sophisticated drag-and- drop games. Instead, you might want to consider using

 to find the names of the objects that the drag object is passing over. This will be a bit
more work to set up because you need to store the names of all possible targets in an array and loop
through each frame to check whether they’re colliding with the drag object. You don’t quite have the
skills to do this yet, but you will by the end of this chapter.

Snapping the object to the target
The code that actually snaps the drag objects to their targets sits in an event handler:

493

ADVANCED OBJECT AND CHARACTER CONTROL

The code uses to check whether the object is over its target. If it is, it then checks
to see whether the object is currently being dragged. You need to check for this so that the object
doesn’t snap to the target before the mouse button is released. If it all seems fine, the dragable
objects are assigned the exact same and positions as the . The result is that the objects
appear to snap into place.

Centering the drag object to the mouse
The method has two optional parameters that give you a little more fine control over how
your dragable objects behave.

The first parameter is called . It’s a Boolean value that tells AS3.0 whether the object
should be centered over the mouse. To use it, just add as an argument in the method,
like this:

Try it in the example and you’ll notice that the object snaps to the mouse center when you click it.

Confining the drag area
You might find in some circumstances that you want to contain dragging to a certain area of the stage.
The method has a second optional parameter called that accepts a
object as an argument. The object defines the area that the object will be confined to.

First, however, you need to actually make a object, which is an abstract bit of code that
defines an area of a rectangle. Creating one is about as easy or difficult as it is to create a object
(pretty easy!):

 1. Import the class with the following statement:

 2. Next, declare a object in your class (you can give this variable any name you like;
you don’t have to call it):

 3. Define the rectangle by specifying , , , and values (you can do this anywhere in
your program, but it probably makes sense to do it in the constructor method):

 4. After the variable is defined, you can use it as the second argument in the
 method, like this:

494

CHAPTER 10

Because you have to specify the rectangle as the second argument, you also have
to supply a first argument, which is where comes from. refers to the

 parameter that you looked at in the previous section. Setting it to
tells the program that you don’t want the object to snap to the mouse’s center point.
You can set it to if you want to; it’s entirely up to you.

After you follow those steps, you’ll have an invisible rectangle that you can’t drag your object out of. If
you create a object the same size as the stage, the object will be confined within the stage
boundaries.

Dragging and dropping the object- oriented way
When you design drag-and- drop environments and interfaces, you’ll almost certainly find the
 object- oriented way a little more flexible, easier to code, and easier to manage than the procedural
approach you just looked at. I could have left you on your own after the first example, but there are
some important quirks regarding AS3.0’s drag-and- drop system that you need to know in order to
get an object- oriented drag-and- drop system working in the way that you might expect it to. I’m also
going to show you how you can use some of the techniques you looked at earlier, such as using an

 event, to put you on the path to creating quite complex drag-and- drop objects if you
need to.

 1. In this chapter’s source files, you’ll find a folder called . Open it as a project
in the Project panel.

 2. Test the project. It works exactly the same as the first example except for two improvements:

 The objects ease gently into position over the targets.

 The objects are prevented from moving beyond the edges of the stage.

In this example, both the and objects have been bound to the same class:
. You can check this by doing the following:

 1. Open the file.

 2. Select either the or symbol in the Library.

 3. Click the small button at the bottom of the Library panel.

 4. You’ll see a window open that looks something like Figure 10-4. Both symbols have
 as their base class, which allows both objects to use the same class.

495

ADVANCED OBJECT AND CHARACTER CONTROL

 Figure 10-4. Both blueSquare and redSquare share the same base class:
DragableObject.

DragableObject class
The code that makes both objects work is the class:

496

CHAPTER 10

497

ADVANCED OBJECT AND CHARACTER CONTROL

As you can see, all the drag-and- drop functionality has been pushed into this class. The
variable is accessed with a getter so it can be used by the class to find out whether the object is
being dragged.

The class also uses an event that prevents the object from moving past the edges of the
stage. I used it in this simple example just to show you how it can be done, but there’s no reason for
you to stop here. You can use any other code you like here (including code for friction, acceleration,
and gravity) and also build in a collision detection system if you need to.

One very important thing to understand is that when you drag objects using , the object’s
position on the stage is not updated by an event. In fact, it even updates at a different
rate from the movie’s frame rate. This means that any physics simulations you might want to imple-
ment won’t work while the object is being dragged. This might not be a problem for you, but if it is,
you’ll be looking at some techniques in the following pages that will help you build your own custom
 drag-and- drop engine if you need to.

A drag-and- drop engine? Engines are what programmers like to call self- contained
systems that perform a specialized job. Phrases such as “collision detection engine” or
 “drag-and- drop engine” have nothing to do with exhaust pipes and fan belts. It’s just
another way of saying “integrated system.”

Releasing the mouse outside the stage area
There is an extremely important detail that you need to make note of in this code. The
listener is added directly to the object, but the listener is added to the object. If you
don’t add the listener to the , your drag-and- drop programs will encounter a pecu-
liar glitch that is due to the way the Flash Player interacts with the rest of your computer’s operating
system.

For “security reasons” (which means to prevent someone using Flash and AS3.0 to write a destructive
virus or worm that could damage your computer), the Flash Player does not allow anything that goes
on within the confines of the SWF to interact with the rest of the computer’s operating system, includ-
ing the position of the mouse on the screen. If the computer mouse is interacting with objects inside
the Flash Player or web browser window, everything works the way you expect it to. However, as soon
as the mouse moves away from the player window, the player can no longer receive instructions from
the mouse.

This is a problem for drag-and- drop games. What happens if the player clicks an object, drags it to the
edge of the screen, and then releases the mouse button outside the Flash Player window? The Flash
Player isn’t informed that the button was released and still thinks that the object is being dragged. This

498

CHAPTER 10

translates to an annoying glitch where the dragable object appears hopelessly stuck to the mouse, and
only clicking another drag-and- drop object will set it free. So the Flash Player allows for one special cir-
cumstance where it allows you to track mouse activity that happens outside the boundaries of the stage.
However, it works only if the mouse listener is added to the object. If you design a drag-and- drop
game, you’re sure to encounter this problem, so bookmark this page in case you do!

Main_DragAndDrop2 class
The class takes care of the program’s administrative work, which amounts to mak-
ing sure the right object lands on the right target:

499

ADVANCED OBJECT AND CHARACTER CONTROL

The program figures out whether the object is being dragged by accessing the object’s getter.
 is when the object “is being dragged” and when it isn’t.

You should also see the great advantage of using object- oriented programming: the work of the pro-
gram is distributed between two classes. Each class is responsible for handling only those tasks that
directly relate to it. Although the overall structure is more complex because you’re dealing with two
classes rather than just one, the individual complexity of those classes is much less. In the long run,
this saves you much more time when it comes to changing features and debugging.

Easing
Another little trick introduced in this example is a scripted motion technique called easing, which is
the effect that you can see as objects gently “ease” into position over the targets.

Easing is very easy to implement using a simple formula inside an event:

You can make the animation happen faster or slower by changing the easing value. In the program,
this value is stored in a variable called and has a value of . Changing it to a higher num-
ber, such as 0.5, makes the easing effect happen much more quickly. Changing it to a lower number,
such as 0.1, creates a much slower effect. The code that makes the objects ease into position over the
target looks like this:

The code adds the easing formula to the and positions of the object to make it move to the new
position. Easing is a basic technique in game design to move objects, and you’ll be looking at many
more examples throughout this chapter.

An alternative to inheritance: Composition
Up until now, you’ve been creating objects using inheritance. You might recall that inheritance is the
system of extending a class to create a new class. All the classes so far have been created by extend-
ing the class. When you see the keyword in the class definition, you know that
inheritance is at work:

This allows the new class to “inherit” all the properties and methods of the class it extends. The new
class can then use all those properties and methods in addition to any new properties and methods
that the new class defines. Inheritance is a quick, easy, and flexible way to make new objects based
on old ones.

There is an alternative way to creating objects using classes called composition. To get more insight
into object- oriented programming, you’ll take a brief look at how composition works.

In the example drag-and- drop program you just examined, both the and
objects share the same class. Although binding symbols to a common base class is usually the simplest
way for symbols to share a class, you can also do it directly with code using composition.

500

CHAPTER 10

Composition allows many objects to share the same class. The great thing is that you don’t need to
 hard- code the class you want them to use into the symbol’s properties. You can decide when you
write the program which object should use which class, and even switch the class it uses at any time
you like. Composition requires a bit more code and a bit more structural planning than inheritance,
but ultimately gives you a greater flexibility when you build your games.

Let’s look at a very simple example. You could create a very basic class called that
accepts one parameter: the name of any Movie Clip instance that wants to use the class. The class
might look like this:

Imagine that you have an object on the stage called that you want to make dragable. In your
 document class, you then create the dragable object like this:

In the document class you can then access the actual object you want to drag through the
 class’s getter, like this:

You can access any of the object’s properties like this:

 Figure 10-5 illustrates this simple example of how composition works.

501

ADVANCED OBJECT AND CHARACTER CONTROL

Document class

Document class

1. The stage contains an object called square. 2. Send the DragableObject class a reference to
the square object. Assign the new dragable object
that it creates to a private property called _square.

DragableObject class

Access the square anywhere
in this class by using the
_dragableObject property.

The dragObject getter allows
other classes to access
this object.

3. In the document class, you can now access the
square and its properties through the dragObject getter:

 Figure 10-5. Composition allows any object to acquire the properties and methods of any other class.

You could make your code a little more readable by adding another getter in the
class that returns any of the dragable object’s properties, such as the property:

In the document class, you could access the object’s property like this:

This is a bit more code to write in the class, but it makes your code much more read-
able because it mimics the way you would normally access an object’s properties. If your objects need
a reference to the (to set stage boundaries, for example), you need to pass the
class a reference to the object as one of its parameters when you instantiate the object. You
need to do this because the class itself is never added to the stage, so it has no other
way to access the stage’s properties. To do this, you can change the constructor
method so that it looks like this:

502

CHAPTER 10

The object has to be typed as and not Because the class isn’t on
the stage, it can’t access the class, even if the class is just needed to assign the object’s
type.

In the document class, you then create the dragable object with two arguments, like
this:

This includes the as one of the arguments.

If you want to take a look at how the little drag-and- drop sample looks written entirely using com-
position, open up the folder in this chapter’s source files. It’s very
interesting to compare how it works with the previous two examples.

Composition is a very powerful object- oriented technique because any objects can share a class at
any time in your program without having to hard- code the class into the symbol properties. This also
means that if you decide, for example, that you want any of your enemy objects to suddenly take on
all the qualities of the player’s class in the middle of a game, you can just feed them into that class
using composition. Another not-so- obvious advantage is that the class your objects use can extend any
class they choose (or none at all). They don’t have to extend the class of the containing object, such
as . This gives your classes more flexibility to extend whatever other classes they please. All
this helps to whittle away at the problem of code dependency discussed in Chapter 8. Composition
rocks!

This has been an extremely brief and very condensed introduction to composition, so don’t worry too
much if you don’t understand it thoroughly right away. Spend a bit of time looking at the example in
the source files, mull over them a bit and do a bit of experimenting on your own. You’ll soon get an
appreciation for the beauty of this system.

Moving objects with the mouse
The AS3.0 drag-and- drop system is very convenient, but it has some limitations. Because the object’s
position is updated independently of the movie’s frame rate, all the little bells and whistles (such as
physics simulations and collision detection) that you expect to be able to apply to an object while it’s
being dragged won’t work. Because of this, many developers of drag-and- drop games end up building
their own drag-and- drop engines using the AS3.0 and classes.

But aside from drag-and- drop interfaces, games that use the mouse are just so much fun to play! In
fact, if you start designing Flash games professionally, your clients will probably expect that the game
controls rely on the mouse instead of the keyboard, and if you can design game controls using the
mouse exclusively, you’re only a small step away from designing games for touch screen interface
devices, such as the iPhone or Nintendo DS. One of the most sophisticated 2D games ever designed,
The Phantom Hourglass for the Nintendo DS uses what amounts to just a simple point-and- click

503

ADVANCED OBJECT AND CHARACTER CONTROL

interface for its entire control scheme. With thoughtful and clever design of your games, you can
completely eliminate reliance on the keyboard, and your players will thank you for it.

So let’s take a step-by- step look at how to control objects with the mouse.

Fixing an object to the mouse’s position
Let’s start by fixing an object to the mouse’s and positions using the class. In the chapter’s
source files is a folder called . Open it as a project and test it. You’ll see that you can
control the up-and- coming star of this chapter, Button Fairy, just by moving the mouse around the
stage. Figure 10-6 illustrates what you will see.

 Figure 10-6. Move the mouse to make Button Fairy fly around the stage.

When you move the mouse, the mouse pointer disappears, but the object remains fixed to the exact
position where it would be. This is a technique that you can use to create a custom mouse pointer for
any of your games.

The code also adds a dynamic drop- shadow filter to Button Fairy, which I’ll discuss in a bit. All the
code is in the class:

504

CHAPTER 10

This code relies on the use of the class, so the first thing you need to do is import it into the
program:

The Library contains a symbol called . The program creates an instance of the class
called and adds it to the stage:

It then hides the mouse using the class’s method:

505

ADVANCED OBJECT AND CHARACTER CONTROL

Finally, it fixes the object’s position to the now invisible mouse by using the stage’s
and properties:

And there you have a custom mouse pointer!

Because and are properties of the stage, you need to preface them
with if you use them in any class that isn’t the document class (for example, you
would need to use and).

Adding a dynamic filter
Button Fairy casts a slight shadow, as shown in Figure 10-7. This is a drop shadow filter that is added
dynamically by the code. Filters allow you to apply a special visual effect to Movie Clip objects. In pre-
vious chapters, you learned how to add filters to selected objects on the stage by using the Filters pane
in the Properties panel. In many of your games, you’ll be adding objects to the stage using ,
so you can’t add filters to them in this way. AS3.0 allows you to create and apply filters using code, so
you can add them to an object in your game any time you like.

To use a filter, you need to first import the package and then the filter class you need to use.
Here’s how the class was imported:

Optionally, if you want to control the quality of the filter, you need to import the
class:

Being able to control the quality of the filter is very important for games. High- quality filters consume
more of the Flash Player’s resources to produce, so you generally want the filter’s quality setting to be
low, especially for any objects that are moving.

 Figure 10-7. A drop shadow filter was added
dynamically.

506

CHAPTER 10

Filters are independent objects, just like any other objects you create in AS3.0. To use a filter, you first
need to create the filter object, set its properties, and then add it to the object that you want to apply
the filter to. Here are the steps to create and apply the drop shadow filter:

 1. To use a filter, you need to declare a variable to contain the new filter object:

 2. Create the filter object with the operator:

 3. Set any of the filter’s properties. Most of the properties for most filters match those that you
can set in the Filters pane of the Properties panel. You can set as many or as few of these prop-
erties as you need to:

 4. Set the optional quality property of the filter by applying , , or from the
 class:

 5. Every Movie Clip object has a special property called . Unlike any other property you’ve
looked at before, the property is actually an array. You apply a filter to an object by
adding the filter as an element to the array (which is the same way elements were
added to an array in Chapter 9). In this example, I want the shadow to be applied only to the

 object’s subobject:

Adding filters as array elements is very useful because it means that you can apply more than one
filter to an object at a time. If you want to also add a bevel or glow filter to the same object, you can
create those filter objects and add them to the array, like this:

To remove all the filters from an object, give the filters array a value, like this:

 Table 10-1 lists the basic filter classes and their uses.

507

ADVANCED OBJECT AND CHARACTER CONTROL

 Table 10-1. Basic filters classes available

Filter class What it does

 Creates a shallow 3D raised surface effect.

 Blurs the object slightly, giving the impression that it’s out of focus or
 moving quickly.

 Casts a shadow.

 Makes it appear as if a light is being cast from underneath the object.

 An enhanced bevel effect that improves its 3D appearance by allowing you
 to add a gradient color to the bevel.

 An enhanced glow effect that allows you to add a gradient glow to the
 edges of an object. This filter optionally requires that you import the
 class so you can specify where on the object to apply
 the filter.

This has been a very brief introduction to AS3.0 filters, but it’s enough to get you
started. All the filters have a great number of properties that can be set. You can find
them all, including more specific information on these filters, in the chapter “Filtering
Display Objects” in Adobe’s online document, Programming ActionScript 3.0 (

). Also, there are some
specific issues that you need to be aware of if you want to change an object’s filter or
make specialized adjustments to it while the SWF is running. The “Potential Issues for
Working with Filters” subchapter from the “Filtering Display Objects” chapter outlines
some of these problems and how to overcome them.

Other advanced filters that have more specialized uses: the color matrix filter, convolu-
tion filter, displacement map filter, and shader filter. I won’t be discussing these filters
in this book, but you should know that they allow for very fine control over color and
alpha effects.

508

CHAPTER 10

Moving an object with easing
It’s likely that in a game scenario you will want your player character to move with a little more grace
than simply staying fixed to the mouse position exactly. Using the simple easing formula discussed
earlier, you can create some very elegant systems to move objects.

In this chapter’s source files, you’ll find a folder called . Open it as a project and
test it. If you click anywhere on the stage, Button Fairy serenely flutters to that spot, gradually easing
into position (see Figure 10-8).

 Figure 10-8. Click anywhere on the stage, and
Button Fairy eases to that position.

When Button Fairy has reached her destination point, you’ll see the words Player reached target dis-
played in the Output panel.

Here’s the code that makes this happen:

509

ADVANCED OBJECT AND CHARACTER CONTROL

When the player clicks anywhere on the stage with the mouse, the event handler
is called. It stores the mouse’s position in two variables: and . It also adds the

 event listeners. (This is another example of the listener not being added until it’s
needed.)

510

CHAPTER 10

It then becomes the job of to move the object. Don’t worry too much about the
 complex- looking code that it contains. Most of that code is there to solve a small technical problem
that you have to deal with whenever you use easing. The essence of the event handler,
the code that actually makes the object move, is in these two lines:

These directives use exactly the same formula as that in the drag-and- drop example. In fact, if these
were the only two lines in the event handler, the class would still work perfectly well.

What is the rest of the code for? The easing formula invokes another example of Xeno’s Paradox, which
I discussed in the previous chapter. The object slows down gradually as it approaches its target, but
although it appears to eventually stop moving, the numbers in the background still try to calculate
 ever- smaller divisions of a pixel for it to move toward. As far as AS3.0 is concerned, the final destination
is never actually reached. You might think that this might not matter because you can’t see the effect
of it on the stage, but it’s not a good idea to allow mathematical processes like that running in the
background—they consume precious CPU power that could used to improve the performance of other
aspects of the game. Preventing this from happening is like sealing a window in a drafty old house.

A good solution is to find out whether the object is less than 1 pixel from its destination. If it is, you
know that the object is close enough, and you can quit the easing motion. One pixel is the smallest
amount visible on the stage, so even if the easing formula is still calculating farther smaller fractions
of a pixel, stopping it at this point won’t matter.

But how can you calculate how far the object is from the target destination? You could compare the
absolute values of the and positions of the object and its target, as you did in the Bug Catcher
game, to find out how close the bugs were from the cat. However, there’s another way:

 1. Calculate the distances between the object and the target on the x and y axes, and store these
values as variables called and (you saw this approach in the collision detection code used
in the class):

 2. Apply a simple formula, the Pythagorean Theorem, and copy the result into a variable called
:

The Pythagorean Theorem states that “the square of the hypotenuse of a right triangle is equal to the
sum of the squares on the other two sides.” Translated into practical AS3.0 code, this means you need
to use the built- in function to find the square root of the sum of the and values,
which are then multiplied by each other. Luckily for you, Pythagoras was right! Whenever you need to
find the distance between two points, use his formula. It will become a regular in your arsenal of game
design tricks, and you’ll be using it a lot in this chapter.

511

ADVANCED OBJECT AND CHARACTER CONTROL

Now that the program knows what the distance is between the two points, you simply need to set up
an / statement to move the object when the distance is greater than 1 pixel, and stop moving
it by removing the event listener if it’s less than 1 pixel:

Easy easing!

Following the mouse with a bit of delay
Another little twist to the code will give you an object that follows the mouse with a slight bit of drag,
as if it’s being pulled by a spring. In the chapter’s source files, find the folder called and
open it as a project. Test it to see the effect.

The code is very similar to the previous example, except that the and target variables
are updated directly in the event handler. This makes the object update its destination
every time the mouse moves. It’s a very organic and pleasing effect, and you’re sure to find this useful
for the basis of many games:

512

CHAPTER 10

A slight modification is that the easing is applied to the and variables. This gives you a bit
more flexibility because it means that you can easily add physical forces or collision detection to the
code if you need to. I hope you’ll find this a useful starting point for your own customized character
control scheme or drag-and- drop engine.

One pitfall is that the is one of the most CPU- intensive math functions you can call. If you
can avoid using it, you’ll save a great deal of processing power. In the case study ahead, you’ll look at
a way to optimize this code so that it achieves the same thing without using .

513

ADVANCED OBJECT AND CHARACTER CONTROL

Easing—advanced
In the previous examples, the object moved by speeding up really quickly and then gradually
coming to a stop. This is a nice effect and is probably the most common easing effect you’ll use in
your games, but what if you need something a little more complex? Wouldn’t it be nice if the object
could gradually speed up when it starts moving and then gradually come to a stop as it approaches
its destination?

Easing effects like that can be achieved very easily using the AS3.0 class. The class allows
you to create a special “tween object” that will animate an object based on specific information that
you supply.

Let’s take a look at a very simple example of the class at work. In this chapter’s source files, you’ll
find a folder called . Open it as a project and test it. It features Button Fairy’s arch- nemesis:
Bucket Robot. You’ll see the robot at the left side of the stage gradually speed up, reach a maximum
speed, and then slowly come to a stop at the right side of the stage. The object is using the

 method from the package. Figure 10-9 illustrates what you’ll see.

speeds up... ... reaches peak speed... ... slows down

 Figure 10-9. The robot object gradually speeds up and slows down using the the Regular.easeInOut method of
the Tween class.

The code that makes this work is in the file:

514

CHAPTER 10

To use the class, you need to import some new packages and classes into the
class. The class and the package that contains the formulas create the easing effects:

You might be wondering what the asterisk is doing after the dot in the directive that imports the
 package. It instructs the program to import every class in the package. Normally you

would not want to do this. For matters of clarity, it’s usually best just to import the classes you need,
but in this case, there are a lot of classes in the package that you’ll want to experiment with,
so it saves you a bit of trouble of having to import them one at a time.

In the preceding class, an instance of the class called was created. You need to provide
the class with six parameters when you create a new instance:

As you can see, it’s packed with information. It might look a bit disorienting at first glance, but it’s
pretty straightforward if you break down the arguments it contains one piece at a time. Figure 10-10
is a diagram that explains what the information in the arguments represents.

Name of the
Tween object.

The object you
want to animate.

The object’s property that
you want to animate.

The effect that you want to
use to animate the object.

The object’s
start position.

The object’s
final position.

The duration of the
animation in frames
or seconds.

Whether to use frames
or seconds for the
animation’s duration. If
false, the duration will
be in frames.

 Figure 10-10. The arguments you need to supply to create a new Tween instance

As you can see, it’s really just a detailed list of information that the object needs to create the
animation.

515

ADVANCED OBJECT AND CHARACTER CONTROL

Properties and methods of the Tween class
Each argument also represents a property in the class. Table 10-2 is a plain- English breakdown
of what the arguments are, what they tell the object, and which class properties that
they refer to.

 Table 10-2. Tween class properties

Argument What it tells the Tween
object

Tween class
property it
represents

Kind of information it can
contain

Use the object on the
stage for the animation.

Any object—it does not just
have to be a display object.
You can even use the
class to “animate” numerical
data if you want to.

You want to animate the
robot’s property.

The string that represents the
property you want to animate.
It can be any property at all; it
doesn’t just have to be an or
 property.

The formula that you’ll use to
animate the robot is

, which is part of
the package you
imported earlier.

The easing formula used to
animate the object.

The starting position for the
robot is the robot’s position.

The value where you want
to start the animation. This
should be a .

The finish position on the
stage is position number 450.
Because you’re animating the
object’s position, this refers
to an value of .

Where you want the anima-
tion to end; it should also be
a .

The duration of the anima-
tion: 60 frames.

A number that indicates how
long the animation lasts. It can
represent seconds or frames.

Tells the object that the
duration should be in frames,
not seconds.

A Boolean value that deter-
mines whether the duration
should be measured in frames
or seconds. If , seconds
are used; if , frames are
used.

516

CHAPTER 10

As you can see, it’s very compact information, but it all relates very clearly to things you can see
happening on the stage when the animation plays.

After you create a object, you can still access its properties anywhere in the class and change
them if you need to. For example, if you want to change the duration of the animation, you can
change it like this:

If you need to change the endpoint of the animation, you can change it like this:

To find out the name of the object that is being animated (in this case), you can use this:

Being able to access and change all these properties means that you can change the animation after
you create it, change it while it’s running, or access any of the object’s properties for use in
other parts of your program. This is the same as the way you can change properties of filter objects
that you looked at in the previous section.

 objects also contain many more properties that you can change and access. Table 10-3 lists
them and explains what they do.

 Table 10-3. Additional Tween class properties

Tween property What it does

The frames per second (fps) at which the animation takes place. This is the
same fps as the main movie’s frame rate by default, but you can change it to
a higher or lower frame rate without affecting the frame rate of the rest of
the movie. This is really useful for games because you can set lower- priority
animations (such as background animations) to a lower frame rate. That might
give your game a performance boost because it means that there’s more pro-
cessing power available to animate important foreground objects.

Returns or , depending on whether the animation is currently
playing.

Set this to to make the animation loop infinitely. A value of stops
the loop.

Tells you the current value of the property that is being animated. For
example, if you use the following line of code in an event in
the current example program, it displays the position of the every
frame:

Allows you to get or set the current time that has elapsed since the animation
started. The value it uses is related to the property.

517

ADVANCED OBJECT AND CHARACTER CONTROL

Hey, is that not enough for you? You’re far from done yet! The class also has many methods
that you can use to control the animation in exactly the same way you can control an animation in the
timeline. Table 10-4 shows methods you can use with your objects.

 Table 10-4. Tween class methods

Tween method name What it does

Stops the animation at its current position.

Starts the animation from its beginning point.

Tells the animation to continue from its current position to a new finish
point with a new duration.
Takes two arguments: the new finish point and the new duration. You
could use it like this:

You can use to alter the direction and duration of an anima-
tion after it has started.

Fast forwards the animation directly to the end.

Plays the previous frame in the animation.

Resumes the animation after it’s been stopped using the method.

If the animation is playing, rewinds it to the beginning and starts it playing
once more. If the animation has been stopped, the animation is rewound
to the beginning but not restarted.

Plays the animation back in reverse. It’s usually used in conjunction with
the event from the class.

You can use any of these methods the same way you use methods in other classes, like this:

I won’t go into any of these properties or methods in any detail, but there’s quite a treasure trove of
material here to keep a creative programmer busy for a long, long time. And you’ll soon see that using
properties and methods from the class is often easier and quicker than creating animations
manually on the timeline.

518

CHAPTER 10

Easing package classes and methods
The property that actually does the job of animating the object is the property. In the example,
this is . It’s highlighted in bold in the following code:

, a class in the package, contains a method called . eases the
object into the animation and then eases it to a gradual stop.

The class contains two more methods:

 : Accelerates the object and stops it abruptly

 : Starts the object abruptly and gradually slows it down

The best way to understand how this works is to see its actual effect on the stage:

 1. Open the folder as a project if it isn’t already open.

 2. Double-click the file so it opens in the workspace.

 3. Change the constructor method so that it looks like this:

 4. Save the file and test the project. The robot starts quickly and gradually
slows down.

 5. Change the code again so it looks like this:

 6. Save the file and test the project. The robot gradually speeds up and
stops suddenly.

The motion isn’t dependent on an event. Although the animation hap-
pens within the context of the movie’s frame rate, it’s completely orchestrated by the

 object. This is helpful because you can initialize different objects con-
taining different animations, stop them with the method, and trigger them with
a method whenever you need them in your program.

519

ADVANCED OBJECT AND CHARACTER CONTROL

In addition to the class, the easing package contains five other classes. Table 10-5 describes
all these classes, the methods they contain, and the effect they have on the object that’s being
animated.

 Table 10-5. Easing classes

Easing class name Methods it contains How it behaves

The object reverses when it eases into the motion
and slightly overshoots the target when it eases
out.

The object appears to bounce toward the target
when it eases in and bounces against it when it
eases out.

The object wobbles back and forth around the
begin and finish points of the animation.

Surprise! No easing! If you don’t want any easing,
use . The object simply moves
from the start to finish point without changing its
speed at all. The class also contains
and methods, but they have the same
effect: none! Why then are they there? They were
added by Adobe engineers for consistency with
the other classes.

The standard easing effect.

Very similar to , except that the effect is
slightly exaggerated.

All the methods of these classes— , , and —can be supplied
with additional arguments to fine- tune how they behave. Check Adobe’s online docu-
mentation at

 for more information if you need it.

520

CHAPTER 10

Try out some of these classes and methods in the example program:

It’s like being nine years old again!

Tween events
 objects come with their own sets of events. Let’s take a look at practical example of how you

can use the event along with the delightful method.

Open the folder from the chapter’s source files as a project. Test it and you’ll see that the
robot now oscillates back and forth across the screen like a yoyo! Here’s what the
file looks like that makes this happen:

521

ADVANCED OBJECT AND CHARACTER CONTROL

This code relies on the class, so it needs to be imported with this directive:

The code adds a event to the object:

 is one of the events from the class. It’s triggered when the animation is
finished. In this case, it’s set up to call the event handler:

 refers to the object, not the object that’s being animated. This is important to
remember. The method tells the object to play its animation in reverse. Because this
event handler is called every time the animation finishes, the direction is reversed each time. Very easy
to implement, and it’s a great effect.

There are six events in the class that you can use with objects (see Table 10-6).

 Table 10-6. TweenEvent class events

TweenEvent class events It’s triggered when . . .

The object being animated moves.

The animation is finished.

The animation is started from the beginning again.

The animation is started after having been stopped.

The animation stops playing.

The animation starts playing.

As you can see, with a bit of imagination there’s quite a bit of untapped power here at your disposal to
build very sophisticated scripted animation environments for games. You can use these events to start,
stop, and change an object’s animation based on any conditions in your game.

522

CHAPTER 10

Easing to random positions and calculating velocity
Let’s look at another practical example. In the chapter source files, open the folder as
a project and test it. The object eases to random positions on the stage. In addition, a dynamic
text field displays the robot’s and velocities. Figure 10-11 illustrates what you’ll see.

 Figure 10-11. The robot eases to a random position on the stage, and a
dynamic text field displays its velocity.

Here’s the code that makes it work. Except for the robot’s velocity calculation, there’s nothing really
new here. Read through the comments in the code, and see if you can match the way it’s working with
what you see on the stage when the SWF runs:

523

ADVANCED OBJECT AND CHARACTER CONTROL

524

CHAPTER 10

The code uses a lot of the little techniques you’ve been looking at over the last few pages. class
methods, properties, and class events—they’re all in here, playing their little parts.

Notice that there are separate objects for each axis: and . They also each have
their own listeners. (I could have used a bit of programming gymnastics to make them use one lis-
tener, but I kept them separate for the sake of clarity.)

The and are called when the object completes its animation
sequence. Let’s take a quick look at because it’s making use of the object’s
properties in a way that you haven’t yet seen:

Remember that the object is the object, so it needs to be cast as a using
the operator:

This is the first time you’ve seen an object being cast as a type other than .

The event handler assigns the object a new and point and
then starts the animation again based on those new values:

 1. It sets the object’s property as the robot’s current position. That’s the position
where the last animation ended. So it makes sense that the animation should begin again from
that point:

 2. Next, you need to assign a new random finish point to the property:

525

ADVANCED OBJECT AND CHARACTER CONTROL

 3. Finally, you need to restart the animation using the method:

There’s a bit of a conceptual leap you have to make here because you need to keep in mind that
the entirety of the robot’s animation is contained with the objects as abstract code. There’s
no timeline, Movie Clip, or loop that is making the animation happen. The animation is
completely created and runs within the object itself.

This is actually very convenient because it takes the responsibility of managing the animation away
from the rest of the code. You can create as many objects as you like and then just let them lose
to do their thing. The code that actually makes the animation work is neatly hidden from you in the
inner workings of the class.

Calculating velocity
There’s one weakness in this system that you might have already noticed. In the previous chapter, all
the physics and collision detection code were dependent on knowing the objects’ vertical and hori-
zontal velocities: and . It’s easy to calculate velocity in the context on an event.
But there are no and properties you can access on objects. This means that if you want
to change something about the game based on how quickly the object is moving or have it react to
a collision with another object, you can’t do that directly.

The solution is to create an event handler that tracks the object being animated and
calculates its velocity. You can use a very simple system to calculate the object’s velocity. Here’s a sim-
plified version of what these calculations look like:

You’ll see how this is used and why it works in a moment.

In the example code, you created all the variables you need to do this directly in the object as
dynamic instance variables:

As discussed in the previous chapter, dynamic instance variables are properties that
can be created on objects as you need them. To be able to do this, the class that the
object extends needs to be declared as . The class is a dynamic
class, so you can create dynamic instance variables on all Movie Clip objects. It’s gen-
erally considered risky programming, but it is undoubtedly convenient in small pro-
grams like this one.

526

CHAPTER 10

The event handler is responsible for using these variables to calculate velocity:

It might look a little convoluted, but what’s happening is really very mundane:

 1. The object’s velocity is calculated by comparing its current position with the position that it
was at in the previous frame. and store the object’s previous position. For example,
if the object was at position 100 in the previous frame and at 105 in the current frame, its
velocity would be 5.

 2. You need to store the object’s current position in the and variables so that you can
access these values in the next frame. The object’s current position becomes its old position
when the frame advances:

With this system, you can capture an animated object’s velocity and use it for any other calculations
or collision detection that your game might need to do.

Although this system for calculating velocity will hold you in good stead in a situation like this, you
might work on a game in which you need to calculate velocity and update the player’s position at the
same time. In that case, you need to use additional variables that temporarily store the current and
 values. This is necessary so that current x and y values aren’t lost when the new velocity is added to

the object’s position.

527

ADVANCED OBJECT AND CHARACTER CONTROL

Implementing a chase feature
With just a very small change to the code, you can implement the basis of a simple but very effective
enemy artificial intelligence system. In the code you’re using, a random and position were assigned
for the animation’s new point. But what if you assigned a value that isn’t random? You can give
the the appearance of intelligently moving around the stage:

 1. Make the following changes to the and event handlers:

 2. Save the file and test the project. The robot sets its destination to the
mouse’s position each time the animation restarts and it chases the mouse around the stage
(see Figure 10-12).

 Figure 10-12. Each time the robot starts its
new animation sequence, the mouse’s position
becomes the new finish point.

528

CHAPTER 10

You can substitute the mouse’s position for the position of any object in a game, such as the player’s
position. Using the class and its related methods, properties, and events, you have the basis of
an effective enemy AI system without an / statement in sight. (Remember to use
and if you use this technique in a class other than the document class.)

You’ve only just scratched the surface of what you can do with objects in your games. I hope
this will inspire you to push the boundaries even farther. There’s a rich vein of untapped potential here
that can be put to some fantastic use in games. Go forth and conquer!

Case study: Complex mouse- driven player control
To round off this discussion of mouse- driven player control systems, you’ll look at a real- world exam-
ple that takes into account the kind of complexity some of your games will demand.

Many of the games you’ll be designing won’t need this level of detail in player control; you can get
by just fine using some of the systems discussed earlier in the chapter. For those games that require
subtle detail in the way the player character is controlled, however, you’ll need to put on your think-
ing cap and work out how you can use a combination of the techniques you’ve been looking at in the
past two chapters.

When you’re just learning programming and game design, it won’t be obvious at all. So, to make the
process a little easier for you, you’ll take a detailed look at a player control system that’s very much
an everything-but-the-kitchen- sink example. I’ll throw in as many techniques as can fit, and I’ll leave it
up to you to deconstruct the examples to make them work the way you might need them to in your
own games.

The example you’ll look at is a control system for Button Fairy. It implements a classic spaceship- style
control scheme using a mouse- based control system instead of a keyboard- based one. You’ll also
implement a system to allow you to fire bullets in all directions by using some new class func-
tions, which isn’t necessarily the best way for this control scheme to be built. But it’s a good starting
point for you to create your own control systems by giving you an inside look at how it’s been done.

Player.as
Take a look at how this control scheme works. Find the folder in the chapter’s
source files, open it as a project, and take Button Fairy for a test drive. You can fly her around the
stage by moving the mouse. The mouse also controls the position of a yellow “wand.” If you click the
left mouse button, the wand fires red stars in the direction of the mouse.

Button Fairy can be tricky to control at first because her movements are not based on easing. She
uses acceleration and friction (discussed in the previous chapter) to regulate her speed. If the mouse
is greater than 75 pixels from Button Fairy’s center position, she’ll accelerate toward it. If the mouse is
less than 75 pixels away, acceleration stops and friction kicks in. With a bit of practice, you’ll find you
can have quite a bit of subtle control. Figure 10-13 illustrates how Button Fairy behaves.

529

ADVANCED OBJECT AND CHARACTER CONTROL

 Figure 10-13. Steer Button Fairy with the mouse and
click the left mouse button to fire stars in any direction.

Here’s the code that makes Button Fairy work:

530

CHAPTER 10

531

ADVANCED OBJECT AND CHARACTER CONTROL

You’ll look at each aspect of the code one bit at a time.

Moving the player
Button Fairy moves by accelerating toward the mouse. So the first thing the code needs to do is find
out where the mouse is. In the event handler, the first directive finds the direction from
the object to the mouse, using the same formula used in Bug Catcher to rotate the frog’s eyes:

This is a number in radians, which is the system AS3.0’s trigonometry functions use to measure angles.
One radian equals about 57.2958 degrees.

If you need to use an angle to rotate an object in your game, you need to convert the
value in radians to a value in degrees. The Movie Clip property only under-
stands values in degrees.

To convert radians to degrees, multiply the value in radians by 180 divided by PI, like this:

If you want the variable in this example code to contain a value in degrees, the
directive looks like this:

532

CHAPTER 10

Once you have that value, you can use it with the and functions, which are two
specialized trigonometry functions that return the ratio of two sides of the triangle formed by the
measurement of the angle in the preceding step. If you multiply these numbers by an acceleration
value, you can apply the resulting number to the and variables:

These two variables are the basis of what you need to start moving the object in the right direction.
You just need to apply them to the and variables, which in turn are applied to the and
positions:

The code does one more thing. You want the object to move only if the mouse is farther than
75 pixels from Button Fairy’s center point. To do this, you first need to find out the distance of her center
point from the mouse. You can calculate it using the same formula you used earlier in the chapter:

Once you’ve got the distance, the rest is easy. You just need to find out whether the distance is greater
than or equal to 75. If it is, you can accelerate the object. If it’s less, you can cut the acceleration to
zero and put on the brakes with a bit of friction (remember that a friction value of means that no
friction is being applied):

And that’s all there is to making Button Fairy move around the stage. To keep the code simple in this
example, I haven’t implemented any speed limit checks, but you could easily do that based on the
examples from the previous chapter.

533

ADVANCED OBJECT AND CHARACTER CONTROL

I mentioned earlier that is one of the most processor- intensive of AS3.0’s
math functions, so if you can avoid using it in your code, you’ll give your games
a noticeable performance boost.

How can you avoid it? By exchanging CPU power for brain power: use a hand- held
calculator and precalculate the value yourself!

Here’s how to change the code in this example to avoid using :

Where does come from? It’s 75 times 75 (75 squared). By calculating the value
yourself, you can drop , and the effect will be exactly the same, except that
you’ll probably notice that your object moves a little more smoothly across the stage.

Of course, is not really a very understandable number to work with, especially
while you’re designing and testing a game, but you should always consider optimizing
any code that uses like this in the final stages of polishing up.

Rotating the wand
Button Fairy’s wand is the yellow dot that fires stars in the direction of rotation. It’s a separate subobject
called in the symbol. It’s centered at an and position of zero, directly in the center of the
symbol, so it’s easy for you to make it move around the center of the object. To do this, you first
need to define the radius of the imaginary circle that you want the to move in:

I gave it a negative value so the wand will point in the direction of the mouse instead of away from it.

The wand’s and position is obtained by multiplying the radius by the same angle ratios obtained
using and that you looked at earlier. The work of calculating the angle has already
been done for you earlier in the code, so you can just reuse the same variable here:

The result is exactly as you see it on the stage.

Firing bullets in 360 degrees
The system you’re using to fire bullets (or stars) is the same as the system you used in Dungeon Maze
Adventure. The class creates new instances of the class. The only real difference is that
because you want the bullets to fire in 360 degrees, you need to supply the class with extra
information as parameters. I also added a feature that lets the player fire star- shaped bullets, round
bullets, or squares.

534

CHAPTER 10

Clicking the left mouse button fires the bullets:

The variable keeps track of whether a shot has been fired. This prevents a bullet from being
fired more than once each time the left mouse button is clicked. You could actually have left out this check,
and the code would have worked pretty well, but occasionally a mouse click results in more than one bullet
being fired. Using a Boolean variable to limit bullets to one per mouse click is a fail- safe system.

The method actually does the work of firing the bullet:

First, its velocity is calculated:

These directives reuse the variable that you calculated earlier. and are used
to find the ratio of two sides of the triangle formed by the angle, the same way you used them to help
move Button Fairy. These numbers are then multiplied by -10, which is the effective velocity of the
bullets: 10 pixels per frame. These numbers need to be negative so the bullets move in the right direc-
tion. The results of these calculations are stored in and . You’ll soon be passing
these variables to the class, which uses this information to help make the bullets.

535

ADVANCED OBJECT AND CHARACTER CONTROL

Now that you’ve found out the bullet’s velocity, the next thing you need to do is find out what its
starting position on the stage should be. This is just a slight modification to the same calculations that
you used to find the position of the wand. That’s because you want the bullets to appear in exactly the
same spot on the stage as the wand.

The values for the bullet’s starting and position are stored in the and the
 variables. The only difference between these calculations and the ones you used to set

the position of the wand is that you need to add the and position of the object into the
mix. They represent the center of the imaginary circle that you’re describing with these calculations.
(The is a subobject of the and shares the same center and position as the
object, so you didn’t need to specify this extra information when you calculated its position.)

You can now use all this information, the bullet’s start position and velocity, to create the bullet:

You can see that all the variables you’ve just created are arguments used to create the bullet. But
there’s an odd one out: .

I created this player control system so that the player has the choice of firing three types of bullets:
stars, circles, or squares. You can see this in effect by changing the previous directive so it looks like
this:

If you save the file and test the project with this change, you’ll see something like
 Figure 10-14. Button Fairy can now fire blue circles.

 Figure 10-14. Change “star” to “circle” to make Button
Fairy fire blue circles.

536

CHAPTER 10

Button Fairy can fire green squares if you change the directive to look like this:

 Figure 10-15 illustrates this. You’ll take a detailed look at how this works in the next section.

 Figure 10-15. Use “square” as an argument to enable
Button Fairy to fire rotating green squares.

Bullet.as
Here’s the class in its entirety:

537

ADVANCED OBJECT AND CHARACTER CONTROL

538

CHAPTER 10

539

ADVANCED OBJECT AND CHARACTER CONTROL

Much of this code you will recognize from previous examples, so if you’re unsure about how the
 and events are working, refer to Dungeon Maze Adventure, in

which you took an in- depth look at these events and why you need to use them. What’s very impor-
tant here, however, is the system of “manufacturing” bullets.

The class is bound to the symbol in the Library. The symbol is made up of three
frames: on the first frame is a graphic of a red star, on the second is a blue circle, and on the third is
a green square (see Figure 10-16).

 Figure 10-16. The three frames of the Bullet symbol

In the class, these three frames are represented by constants:

These constants simply represent numbers that relate to the frames on the bullet’s timeline: 1, 2, and
3. I could have easily dropped these constants from the class and just used the frame numbers directly
in the code. The code would have worked just fine. But you’ll soon see how using constants like this
makes the code much more readable and easier to understand.

The class creates bullets by accepting the values that you supplied it in the class. Do
you remember this directive from the class?

Those variables from the class are sent to the class. They appear as parameters in the
 class’s constructor method:

The parameters are local variables that the class can use. They contain the same values that were
passed to it when the bullets were created in the class. The class needs the values of
these variables to make bullets. I could have used the same variable names, but I changed their names
to stress the point that they are new variables that are being created in the class.

These are the values you need, but there’s a snag. Those variables in the parameters are available only
to be used in the constructor method; they can’t be used anywhere else in the class. To get around
this, you can copy their values into instance variables. Instance variables are available everywhere in
the class.

540

CHAPTER 10

As a quick refresher, instance variables are the variables that you declared at the
beginning of the class definition, such as and . They can be used by all methods
in the class.

In a nutshell, if you want to use the values from the parameters anywhere else in the class, you need
to immediately copy their values into other variables that can be accessed across the entire class.
That’s fine. I declared and variables in the class to capture the bullet’s velocity when
it’s created. You can assign the bullet’s start position directly to its and properties. All you need to
do is assign the variables from the constructor method’s parameters like this:

I prefaced the bullet’s properties with to help you distinguish between the properties of “this
bullet object” and the variables being assigned from the parameters. It’s helpful to do this sometimes
because these situations can become very confusing. Are you referring to variables in the bullet object
or to the variables from the parameters that were sent from the class? If the variable names
are very similar (and in this case), it can become pretty confusing pretty quickly! Using
clarifies that you’re referring to the properties in “this class.”

Now the bullet’s velocities and start position are copied into variables that are accessible everywhere
in the class. Happy days!

Using a bevel filter
The bullets use a dynamic bevel filter to give them a slight 3D look. Here’s how the bevel effect is
created:

 1. Import the and classes:

 2. Declare the bevel object:

 3. Create the bevel object and assign its properties:

 4. Add the bevel object to the array:

These steps are identical to adding a dynamic drop shadow filter.

541

ADVANCED OBJECT AND CHARACTER CONTROL

Bullet factory: Using switch
The class now knows the velocities it needs to make bullets fly in the right direction, but
there’s still the question of that mysterious fifth parameter in the constructor method:

This is a variable called . It contains whatever you supplied as the fifth argument in
the directive that created the bullet (it can be , , or). It tells the class
what kind of bullet you want to create.

The class needs to do something with this information. It needs to match the name of the shape to the
correct frame in the timeline shown in Figure 10-16.

There is more than one way to do this. The “lazy” way is to use an / statement. The slightly bet-
ter way is to use a statement, which works by selecting (or “switching between”) one option
from many, depending on a value supplied to it. Although the syntax is different, the state-
ment has exactly the same function as an / statement.

Here’s the statement that finds out what the value of is and moves the timeline to
the frame that displays the correct bullet shape:

The keyword accepts one argument, which in this example is :

You know that can have three possible values: , , or . In a
statement, the value is known as a , and each can have a different outcome. Let’s look at
the first case, :

542

CHAPTER 10

Any directives that come after the colon are the actions the program should take. In this case, the bul-
let Movie Clip object should stop at frame 1. (Remember that the constant has the value of .)

The last thing the case does is run a directive:

This stops the statement from continuing. It’s found what it’s looking for, so it doesn’t need to
check any of the other cases. If isn’t , however, the statement continues
to run and checks the remaining cases.

The next two cases do exactly the same thing, but check for different values:

If happens not to be , , or , the statement can implement
a backup plan:

The keyword tells the statement that if it doesn’t find what it’s looking for, it should
just run whatever this last directive is. In this case, it stops the playhead at frame 2 in the timeline.

In this example, , , and happen to be strings, so they’re sur-
rounded by quotation marks. If you were using values that were not strings, such as
numbers or other variables that represent object names, you would not surround them
with quotation marks.

 Figure 10-17 illustrates how all the values in statements fit together. You should be able to
see that the statement is just another way of writing a long / statement. In fact, you
can actually replace the entire statement with an / statement, and the result would be
exactly the same. Here’s what it might look like:

543

ADVANCED OBJECT AND CHARACTER CONTROL

If there are no matches,
an optional default
directive can be run.

Any directives you want
to run if the value matches
the property in the argument.
You can add as many
directives as you like, each
on a different line.

A possible value of the
property in the argument.
It can be a string, number,
or variable. It’s followed
by a colon.

The property you want to check.
The switch statement will produce a
different result, depending on its value.

Start with the
switch keyword.A pair of curly

braces contains
the cases in the
switch statement.

The case keyword
preceeds the name
of the variable you
want to check for.

If the case matches
the value in the
switch statement’s
argument, break
prevents the switch
statement from
running further.

 Figure 10-17. The switch statement

If there is no functional benefit to using a statement, why bother using one? It’s purely a stylis-
tic difference— statements are a little easier to read. They clearly stand out in your code, and
you don’t need to navigate through a tangle of disorienting curly braces to clearly see which condi-
tions result in which outcomes. If you have more than two conditions that you’re checking for, try to
implement a statement.

Object factories
The kind of system you’ve just implemented is a very common one in computer programming. It’s
a very basic example of what’s known as a . The class represents one type of object:
a bullet. But it can actually manufacture many different types of bullets, depending on the value that’s
supplied to it as a parameter. It’s a bullet factory!

544

CHAPTER 10

You’ll find many uses for factories in your games. You can, for example, store all the enemies in one
 symbol, each on a different frame on the timeline. You can bind them to an class and

manufacture them in a factory, as is done here with the bullets.

You can also go much further. Instead of just displaying different graphics, you can give your enemies
completely different behaviors by attaching different event handlers to them when the
class creates them. Can you see where this is heading?

When you start to become really confident as a programmer, you’ll be able to use this system to actu-
ally create completely new instances of classes a specialized factory class. In the chapter’s
source files, you’ll find an example of how this is done in the folder called .

A simple factory (also known as a parameterized factory) is a system for creating objects with the
help of a factory class. Although this is a rather advanced example, I’m mentioning it at this stage in
the book because you’ll invariably need a flexible system to create lots of different objects and still
keep your code manageable. I’ll briefly explain how the example project works, but I’ll leave it up to
you to try implementing it in your own games a little further down the road when your programming
confidence grows. Keep this in mind and come back to this section in the chapter when you feel
ready.

The folder contains six files:

 , , and : Represent the products that the factory produces.

 : The factory class. Its job is to make the shapes.

 : The document class, which is known as the client. It uses the
class to make shapes.

 : The FLA that produces the SWF. is its document class.

You’ll take a quick look at these classes and how they all work together to make the shape objects.

Product classes
The product classes are the “things” that are made. To keep this example as simple as possible, the
product classes don’t do anything except display a statement, which tells you which shape
they are. I’ll leave it up to you to make these classes actually display shapes on the stage if you want
them to. All three product classes are exactly the same except for their names and the messages they
display.

Here’s the class:

545

ADVANCED OBJECT AND CHARACTER CONTROL

Here’s the class:

And here’s the class:

Factory class
 is the class that produces the shape objects. It contains a method called

. takes one parameter: a that represents the shape you want to make.
Because the method is , you can access this method from any other class using this format:

This is the same way you access methods in the class that you’ve been using, which also
contains methods.

Here’s the class:

546

CHAPTER 10

The class’s only job is to create instances of the product classes. Depending on the param-
eter supplied to the method, it uses a statement to find out what kind of shape
it should make. It then uses the keyword to “return” the instance back to whatever class
requested it. The instance of the shape classes is created using the keyword. Here’s an example:

 creates a new instance of the class, and sends that instance back to the class that
requested it.

For to be able to send the instance back successfully, the method needs a return
type. You looked at this before, but just as a refresher, the return type is specified by the “type” name
after the method’s parameters. In this example, the return type is :

, , and all extend the class, which is why it is the return type used.

547

ADVANCED OBJECT AND CHARACTER CONTROL

Client class
The client class is any class that uses these classes to do something useful. In this example, it’s the

 class. Here’s what the class looks like:

To see what this actually does, test the project. The Output panel displays the following:

The object is now an instance of the class, and the first statement is being produced
directly by the class. The second statement comes from the class. Can you see how
it all fits together? The class is an intermediary that helps the class create the kind
of object it needs.

If you change the argument in the method from to , you’ll
see the following output:

The advantage of using the simple factory system is that the client class has a common interface
for creating any type of shape. It also doesn’t need to know anything about the details of how the
shapes are made or how they work to be able to make them. This responsibility is offloaded to the

 class and the product classes.

File all this away for later because you’re certainly going to need a system like this to manage the
production of objects later in your game design career. The simple factory that you just looked at
is actually a very lightweight introduction to an area of object- oriented programming called design
patterns, which are systems of organizing classes to help build complex applications. There has been
a great deal written on design patterns in AS3.0, and you’ll want to take a closer look at this topic
as your programming skills increase and your projects become more ambitious. The combination of
a factory to produce objects, with a design pattern called a singleton to manage them, can form the
basis of a very solid system for managing and maintaining games of all kinds.

548

CHAPTER 10

From a technical point of view, the simple factory that you’ve looked at here is not
regarded as a full- blown design pattern in the strictest sense. It’s certainly very helpful
and will help train you to get used to using helper classes in your programs. However,
for a truly bullet- proof elaboration of this system, do a bit of research into the “factory
pattern” or “factory method.” Although similar to a simple factory, the factory pattern
has a few more checks and balances that make it much more robust. The trade- off, of
course, is added complexity. You’ll need to decide for yourself whether it’s a fair trade
based on the project you’re working on.

Enemy AI systems
You might be surprised to learn that if you can create an object that follows the mouse, you’ve already
got the basis of an artificial intelligence (AI) system that you can modify for use in a wide variety of
game situations. All you need to do is mix and match some of the techniques you learned about in this
chapter, and you can design enemies that do the following:

 Follow the player

 Run away from the player

 Aim and fire bullets at the player

You’ll find the source files for these examples in a folder called .

In the Library of the file is a symbol called . I’ll demonstrate the three AI exam-
ples by asking you to bind the following classes to the symbol as you need them:

These classes contain the logic that the robot will need.

Following the player
Open the file. Select the symbol in the Library and bind it to the
class.

Test the project. You’ll see that the robot follows the player around the stage if the player is within
a 200- pixel range. Figure 10-18 illustrates what you will see.

549

ADVANCED OBJECT AND CHARACTER CONTROL

 Figure 10-18. The robot rotates toward Button Fairy and
follows her around the stage.

Here’s the class:

550

CHAPTER 10

The constants declared at the top of the class contain the values that the code needs to make the
robot move. You can fine- tune how the robot moves just by making small adjustments to these
constants.

551

ADVANCED OBJECT AND CHARACTER CONTROL

The root property
The robot needs to know what it should follow. The following directive in the event
handler assigns the object as its target:

This is something you haven’t seen before. The directive uses the object.

As you know, represents the main stage of the Flash movie. However, AS3.0 also allows you to
access the movie’s main timeline. You can access the timeline by using the keyword . The
object is a property of the stage, but it’s also a property of the main timeline. That means you can
access the object using the dot notation, like this:

For the AS3.0 compiler to be happy with this, however, you have to cast as a . So all
you need to do is force its type, like this:

Using this format, you can access any object on the main stage. It’s important to remember, how-
ever, that this works only for objects that are on the main stage. If the object is a child of
another Movie Clip object, such as , using won’t work. You’ll need to use

 like this:

The preceding directive also works in the current code.

 also refers to the document class. If you want to access your document class from
another class, target it as . If you don’t have a document class, AS3.0
automatically creates one for you called . You don’t need to worry much
about this, but it’s interesting to know that it happens behind the scenes.

Moving the object
Once the robot knows what its target is, it calculates the distance between itself and the target using
the formula you looked at earlier in the chapter. If the distance is less than the value (which is

), the robot moves.

It moves using a variation of the easing formula discussed earlier in the chapter. It’s a little more com-
plex, however, because you want to limit the robot’s speed and the rate at which it turns. Here are the
steps the code takes and the formulas it uses to accomplish each task:

 1. The code finds out how far to move the object and assigns these values to and
variables:

552

CHAPTER 10

 2. The values of these new variables are used to modify the velocity:

 3. Use these new and values to help you find the total distance required to move:

 4. You can use this new distance value along with the constant to find the correct
velocity:

 5. Finally, you can rotate the object toward the target. This is the same formula you’ve been using
for rotation throughout the book. The addition of + 90 is there to offset the rotation of the
robot object by 90 degrees. Without that, the leading edge of the robot would be its right side
because of the way the object was drawn in the symbol (with its “front” being the cone on the
robot’s head). Any objects you use with this code might be oriented differently, so you’ll prob-
ably want to adjust to another number that you can figure out by trial and error when you
see the direction toward which your object rotates:

If the object is not within the robot’s range, these directives kick in, which gradually slow it down by
using friction:

A bit of simple logic, a few careful adjustments to the easing formula, and you have a very effective
following behavior.

Running away from the player
It’s very easy to create the exact opposite behavior: make the robot run away from the player. To see
this at work, bind the symbol to the class. Test the project and you’ll see the robot
flee from the player, as illustrated in Figure 10-19.

When I say that this is an opposite behavior, I mean that in the most literal sense imaginable. The
 class is exactly the same as , except that three plus signs have been made

negative.

The rotation is negative so that the robot points in the opposite direction:

553

ADVANCED OBJECT AND CHARACTER CONTROL

And the velocity is negative:

That’s it!

 Figure 10-19. Get too close and the robot
flies away.

Rotating and shooting toward the player
In the final AI system, the robot turns and fires bullets toward the player if the player is within range.
Bind the class to the to see this work. The robot fires bullets in one- second
intervals. Figure 10-20 illustrates what you will see when you test the project.

 Figure 10-20. The robot rotates and fires bullets at the player.

You’ll be happy to know that you already know 90% of the code in this class. In fact, everything from
how the object rotates to the method that fires bullets is virtually identical to the code in the
class. The only really new thing is the introduction of AS3.0’s built- in class, which is used to time
the firing of the bullets. You’ll look at how the class works in detail ahead.

554

CHAPTER 10

Here’s the entire class:

555

ADVANCED OBJECT AND CHARACTER CONTROL

As you can see, it’s pretty familiar. But what’s up with all that timer stuff?

Timer and TimerEvent classes
In the chapter’s source files, you’ll find a folder called . Open it as a project to see a simple
example of how the and classes work. When you test the project, you’ll see a num-
ber counter that updates by one each second. Here’s the code that makes it work:

556

CHAPTER 10

To use timers in your class, you need to import the and classes:

Timers are objects, so you need to create them in the same way you create other objects, such as
, and objects, by using the keyword:

The class requires one argument, which is a number that represents milliseconds. (One mil-
lisecond represents 1/1000th of a second. One thousand milliseconds, as in this example, equals
1 second.)

Timers in AS3.0 work by triggering an event at regular intervals. In this example, you want to trigger
an event to fire every second. The event’s job is to update the dynamic text field on the stage by one.
To set this in place, however, you need to add a event listener to the new object
that you just created:

Next, you need to use the class’s method to actually start the timer working:

557

ADVANCED OBJECT AND CHARACTER CONTROL

The object now triggers the event handler every second:

 objects have a property called that tells you how many times the timer event has
fired since it started. The event copies the value of to the
dynamic text field on the stage:

You can use as done here: to display the number of times the event has been triggered.
The statement uses to check whether ten seconds have elapsed; if they have, it calls
the class’s and methods:

 stops the timer and also resets to zero. To start the timer again, you need to use
the method once more. (If you need to stop the timer completely in any of your games, you can
use the method. stops the timer without resetting .)

When you create a object, you can add a second argument, which is known as .
This is a number that tells the timer how many times it should repeat. You can see the effect of using

 by updating the directive that creates the object so that it looks like this:

If you test the project, you’ll see that the numbers count up to five. After that, the event is no longer
called.

There are a few more class properties that you should know about. If you need to change the
interval between events, you can use the property. For example, if you want the timer event to
be triggered every one- half second, you can set the delay to 500 milliseconds, like this:

If you need to know whether a timer is currently running, you can use the property.
returns when the timer is running and when it isn’t.

558

CHAPTER 10

Finally, you can use the class’s property to trigger an event when the
timer finishes:

This is a very basic introduction to how timers work, but I’m sure you can see that they are used often
in games. You can use a object to create a countdown timer, make an object mover intermit-
tently, or calculate a player’s score based on how long it takes to complete a task.

Using a timer to fire bullets
Now that you know how a timer works, it should be quite obvious how one has been used in the

 class. The object has been set up to trigger an event every second. However, it’s
not started when the class is initialized. Instead, it waits until the target object is within range (which
is 250 pixels).

The event that the timer calls is the bullet event. It’s identical to the
method from the class, except that is provided as an argument instead of . It’s
no more difficult than that!

Shooting at random intervals
There’s one small modification you can make that will make the robot’s shooting behavior much more
realistic. As it’s been coded, the robot shoots right on cue every 1000 milliseconds. You can use the

 class’s property to randomize this. Add the following code to the event
handler to see the effect:

559

ADVANCED OBJECT AND CHARACTER CONTROL

The robot now fires randomly between 200 and 1200 milliseconds.

Using other player control systems
When I introduced the example of Button Fairy’s mouse control scheme, I mentioned that it was an
 everything-but-the-kitchen- sink example. You can rip it apart, take what you need, and build your own
system to meet the needs of whatever kind of game you’re designing.

However, it might not always be that obvious as to how to go about making a control scheme that’s
more specialized, especially if you’re new to programming. To help you out, in the chapter’s source
files I included two more complete examples of player control systems that you’re free to use and
modify for the basis of any of your games:

 Keyboard-controlled spaceship is in a folder called . It uses the basic techniques
outlined in this chapter to control a spaceship. Use the left and right arrow keys to turn, the up
arrow keys for thrust, and the spacebar to shoot. Figure 10-21 shows an example. With very
little work, you can also turn this into a control scheme for an overhead car driving game.

 Figure 10-21. Keyboard controlled spacehip

560

CHAPTER 10

 Mouse-controlled platform game character is in a folder called .
Although platform game characters are traditionally controlled with a keyboard or keypad,
why not implement a mouse- based control scheme? I modified the cat character’s control
scheme from Bug Catcher so that it’s entirely mouse- based (see Figure 10-22). Move the mouse
left and right to move the cat left and right. (Cats usually follow mice, so this makes perfect
sense!) Press the left mouse button to make the cat jump when the mouse is above it. Feel free
to modify this as much as you like so that it works the way you want it to for your games.

 Figure 10-22. A mouse- controlled platform game character

Dispatching events
Dispatching events is one of most useful things you can learn how to do as a game programmer. Just
because this topic happens to be the last section of the last chapter of the book, I want to dispel any
notion that you might have that this is an “advanced” technique. It’s not; for a game designer, it’s as
basic as fresh air and sunshine. Dispatching events is so useful that you’ll want to use it with every
game you design from now on.

You’ve seen events used in almost every chapter in this book. Button clicks, frames, timers—almost
every important thing in an AS3.0 program seems to happen because of an event.

So far, all the events that you’ve used have been built into AS3.0. Did you know that you can create
your own events and then trigger them whenever anything important happens in your game?

For example, imagine that you’re making an adventure game in which the hero or heroine needs to
steal a magical gingerbread cookie from a sleeping witch. As soon as the cookie has been stolen, it
might be very useful for other objects in the game to know that this has happened. You could inform
a game manager to update a score, you could inform the player to update its inventory, and you could
even inform the sleeping witch who may well wake up if the player isn’t tip- toeing quietly enough.
Instead of informing each of these objects individually, however, the gingerbread cookie needs to
broadcast only one event to the entire game: “I’ve been picked up!” This known as dispatching an
event. Other objects can then choose whether they want to listen to this event or take any action if it
concerns them.

The elegance of this system is that the event isn’t dispatched to a specific object, and the objects that
are listening for the event don’t need to know anything about the object that sent the event.

561

ADVANCED OBJECT AND CHARACTER CONTROL

Here’s a quick- start guide to dispatching events:

 1. Import the class:

 2. When something happens that any objects in your game might be interested in, create an
event for it using the method. The basic format for creating an event looks like
this:

 This directive broadcasts to the rest of your program that an event has occurred. You can give
the event any name you like, such as , as in this example.

 3. Any other class can now listen to this event by adding an event listener, like this:

 In your games, you’ll probably want to add the event listener to the for reasons I’ll
explain ahead. You can attach event listeners to any object, however.

 4. You then need to create the event handler to make something happen when the event occurs:

 In the event handler, you can use the event object’s to access the object that called the
event and all its properties. If you want to access the object with which the event was regis-
tered, such as the in this example, use the property.

 5. Wait for the event to occur.

You can create events for anything in your game that you think other objects should know about, such
as a door opening, an enemy being destroyed, or a variable changing its value. Any objects can then
choose to listen to those events if they want to, and take actions based on them.

By using events, objects can communicate without having to use setters (and sometimes even getters)
in most cases. You can create classes that are completely encapsulated and don’t depend on other
classes to function properly. They can listen for events that interest them and change their own private
properties internally.

Let’s take a closer look at how dispatching events works.

Event “bubbling”
When events are dispatched, they travel through three different states: capture, target, and bub-
bling. The state that I’ll explain in detail is the bubbling state, which is most useful in the kinds of
game design scenarios that you’ve seen at work in this book.

When an object dispatches an event, the object broadcasts the event like a radio station broadcasts
a news item. Other objects can then “tune in” to the event if they want to listen to it.

562

CHAPTER 10

Events aren’t broadcast to every object in the program at the same time, however. They either travel
up or down through the hierarchy of objects. You can listen to events at any point in this journey.

If an event is set to bubble, it means that the event travels up through the hierarchy. It starts with the
child object and then informs the parent object. If other objects want to listen to that event, they have
to do it by attaching their event listeners to the parent object. Often, that object will be , which
is the common parent of all display objects. Figure 10-23 illustrates a simple example.

Robot Class Cat Class Fairy Class

1. An object dispatches an event.

4. Listening objects can create an event handler
to perform actions when the event happens. They
can access the object that called the event by using
the event’s target property.

2. Events bubble up to
the parent container.

3. Objects can listen to
events by attaching a
listener to the parent
container.

 Figure 10-23. Objects can listen to bubbling events from other objects by attaching event listeners to a common
parent object, such as the stage.

The method has one argument, which is called the event constructor:

The event constructor creates the event. Events can be made to bubble by setting the second argu-
ment in the event constructor to :

If you change it to or leave it out entirely, the event doesn’t bubble.

563

ADVANCED OBJECT AND CHARACTER CONTROL

Let’s look at a practical example of how to dispatch events in a game.

Case study: Space Shooter
The chapter’s source files contain a folder called . Open it as a project and test it. It’s
a very simple prototype of a space- shooter game. Figure 10-24 shows what the Space Shooter game
looks like.

 Figure 10-24. Space Shooter prototype

The player can fly around the screen and shoot the robot. The robot rotates toward and then follows
the player; and fires bullets. The scoreboards at the top of the stage keep track of the number of hits
each has achieved. The number of bullets on the stage is also displayed.

The class uses a control scheme that is based on the easing system you looked at earlier in the
chapter. In this system, the fairy’s wand is used as the point that follows the mouse.

The class makes the robot follow the player and also rotate toward and shoot at it. This is one
more combination of the two techniques discussed earlier in the chapter.

Take a look at both these classes to see how they work. In both cases, they use no new techniques.
What is new in this game, however, is the way events are used.

The most important thing about this game is how the bullet objects are being managed with the use
of events. Let’s take a detailed look at how this works.

564

CHAPTER 10

Game structure
The game is made up of four classes:

 : The document class that handles all the game logic. It stores all the bullet
objects in an array and checks whether any of them are hitting the player or robot. It updates
the scores and removes bullets when they hit either object. It also removes the bullets if they
reach the stage boundary.

 : The player’s class. It’s completely self- contained but uses the class to fire
bullets.

 : Self- contained, but also uses the class to fire bullets.

 : When a new bullet is created, it dispatches an event to tell the game, “Hey, I’ve been
created!” The document class listens to these events and uses them to add the new bullets to
an array.

 Figure 10-25 illustrates how these classes work together.

Robot Class Player ClassBullet Class

Moves the robot.

Requests circle bullets.

Moves the player.

Requests star bullets.

Main_SpaceShooter (Document Class)

Adds bullets to an array when they’re created.

It uses the bullet objects in the array to check for
collisions with the player and robot. It removes them
from the stage when they hit an object or reach the
stage boundary.

Makes star and circle bullets.

Dispatches an event when a
bullet has been created.

 Figure 10-25. Space Shooter game structure

There are quite a few ways that this game could have been structured. The version presented here is
not the best for keeping the classes entirely encapsulated or for code efficiency, but it’s the clearest
demonstration of how dispatching events works with the simplest code. I intentionally opted for some
redundant code so that you can clearly see what’s happening. Once you see how it works, I’m sure
you’ll have some clever ideas for improving the code even further.

565

ADVANCED OBJECT AND CHARACTER CONTROL

In Chapter 8, I described the bullet firing system used in Dungeon Maze Adventure as having a few
weaknesses. The biggest weakness was that the class and game manager classes were com-
pletely dependent on one another. What’s most important about this game is that, unlike Dungeon
Maze Adventure, the bullet objects don’t know or care what happens to them after they’re created.
And the document class that manages the game doesn’t depend on them because of the use of events
for communication.

Let’s look at how dispatching events works to manage the bullets on the stage.

Creating bullets
Here’s how new bullets are added to the stage:

 1. When new bullets are added to the stage, the class dispatches a event:

 2. The document class has a listener that listens for a event:

 3. When the event occurs, the document calls its event handler. It copies a ref-
erence to the bullet that triggered the event into an array called :

The array keeps a list of all the bullets currently on the stage. Figure 10-26 illustrates this
process.

Bullet Class

3. The document class listens
for the event. When it hears it,
it pushes a reference to the bullet
that triggered it ("event.target")
into the _bullets array.

Main_SpaceShooter (Document Class)

2. bulletCreated event bubbles
up to the stage.

4. The _bullets array
keeps track of all the bullets
currently on the stage.

1. When a new bullet is created,
the bullet class dispatches a
bulletCreated event.

_bullets Array

 Figure 10-26. When bullets are created, they’re added to the _bullets array.

566

CHAPTER 10

When the game runs, the number of bullets on the stage is displayed in the bottom- right corner of
the stage. The number comes from the array’s property. This is the line of code in the
document class’s event that produces it:

Now that you have a list of all the bullets on the stage, you can check whether they’re colliding with
any other objects.

Checking for bullet collisions with objects
The document class checks for collisions between bullets, player, and robot in the
event. Here’s the entire code (I’ll explain how each part works ahead):

567

ADVANCED OBJECT AND CHARACTER CONTROL

A loop checks whether any of the bullets in the array are colliding with either the player or
robot:

Similar to the examples from Chapter 9, the loop uses the array’s property to find out how
many times it should loop. If there are four bullets in the array, this loop will run four times each
frame—once for each bullet.

Inside the loop is a statement that finds what type of bullet is currently being checked. It can
be or . The class has a getter called that provides this informa-
tion. The statement uses it to switch between the two cases:

If the case is , it means that it’s one of the robot’s bullets. In that case, the code has to check
for a collision between the bullet and the player:

568

CHAPTER 10

It should be pretty obvious what this code does. But there’s something new here that you haven’t seen
before:

 is used to remove an element from an array. It uses two arguments: the first is the index num-
ber of the element to remove, and the second is the number of elements it should remove from that
point onward.

In this case, you want to remove the current bullet, which is at index number . If the loop is in its
third repetition, that would be element number . (Remember, array elements are numbered starting
at zero.)

In the second argument, is the number of elements to remove. In this case, you want to remove only
one element.

What does in this program is to remove the bullet from the array so the program no longer
has to check it for a collision. Without it, the array will just get bigger and bigger, and the program
will start to generate errors because it would check for collisions with bullets that have been removed
from the stage with .

You can also use to insert elements into an array. For example, if you want to
add an object called to an array as the third element, you can use a line of code
that looks like this:

This adds the object at index position . means that you didn’t delete the ele-
ment that was originally at position . That object will be pushed up to position , and
any objects that come after it would also be renumbered.

If you want to insert an object into an array and replace the existing element, you can
use this format:

The object will now be inserted at position , but indicates that one element
should be deleted from the array. That would be the original element at position num-
ber . It’s now gone for good, replaced by , and the rest of the elements in the array
won’t be renumbered.

 is a very versatile method to use with arrays, and you’ll certainly find many occasions when it
will help manage game objects.

569

ADVANCED OBJECT AND CHARACTER CONTROL

An important thing to know is that if you remove an element from an array in the middle of a loop,
you also need to subtract from the counter variable, . If you don’t do this, it throws the counter off
by one and the loop will skip the next item. That’s what this directive does:

The rest of the code in the statement checks for collisions between bullets and the
player. It’s almost identical to the code you just looked at.

Removing bullets at the stage boundaries
The last thing the document class does is remove the bullets when they reach the stage boundaries.
I added this code in the class because I want the document class to be entirely
responsible for removing objects from the game. It makes it easier to manage the array.

This code is also in the event handler, and like the collision detection code, it runs inside
a loop. It checks each bullet in the array, one at time, to see whether it’s crossed the
stage boundaries. (The loop counter variable is to avoid conflicting with in the previous loop.)

570

CHAPTER 10

If a bullet crosses a boundary, it’s removed from the stage and then from the array.

Classes and events
This was a very condensed explanation of how the Space Shooter game works, so make sure that you
check out the complete code in the source files to see all this code in its proper context.

Space Shooter is a good model for you to base your game projects on because it shows quite clearly
how you can distribute different kinds of tasks among classes. The game logic and important game
actions, such as removing objects and updating scores, is handled by the document class. (It could
also be a manager class, as in Dungeon Maze Adventure.) The object classes don’t know much about
what’s going on in the game, but when something important happens to them, they can announce it
to the game by dispatching an event. Other objects can then decide whether that event is important
to them or whether they should ignore it. The key thing is that the no other objects are dependent on
those events or the objects that are dispatching them to function correctly, and this goes a long way
to solving the problem of tight coupling, discussed in Chapter 8.

There’s one very important thing you should keep in mind when you design classes: make the classes
do as much work with the information they have instead of requesting more information from other
classes. Try to keep getters and setters to a minimum or avoid them altogether if you can, and use
events to notify objects of things that happen in your game.

With this in mind, the structure of the Space Shooter game could be fine- tuned much more. Instead of
registering the bullets in an array in the document class, you could design the game so that the
class registers circle bullets and checks for collisions with them itself. The player could then notify the
rest of the game by dispatching an event if a collision occurs. This would take much of the work off
the shoulders of the document class, which would then only have to update the score and do general
game administration. Figure 10-23 is a good map to help you design a game structured like this.

Summary
Hey, is the book finished already? It is, but it seemed like the all the fun was only just starting! If you’ve
reached this last page in the book, congratulate yourself: You’re a game designer! With the skills
you’ve acquired over these ten chapters, there are few game design scenarios that you won’t be able
to approach with confidence.

But if you’re like everyone else who’s ever started learning game design, you’ll find that the desire to
learn more is insatiable. Although you’ve accomplished so much already, there’s a great universe of
learning ahead of you. Here’s a quick roundup of some of the areas you might want to explore:

 Adobe’s online help documentation: Adobe maintains excellent online documents detailing
most aspects of Flash CS4 and AS3.0 programming. You can access these documents by select-
ing Help Flash Help in Flash, or pointing your web browser to

. I’ve made numerous references to sections of these docu-
ments throughout this book, and they remain the most comprehensive primary source for all
things Flash and AS3.0. Although many of the topics they deal with and the approaches they
take are reasonably advanced, they should match your current level of ability. Spend some
time going through some of the hundreds of articles and you’re sure to find great food to fuel
your developing programming skills.

571

ADVANCED OBJECT AND CHARACTER CONTROL

 3D: Flash is getting better and better at producing interactive 3D environments. There are
a few competing systems for implementing 3D in Flash. They all require that you import spe-
cialized 3D classes and learn how to use them. If you have a thorough understanding of how
AS3.0 works and how to structure programs using classes, you won’t find it difficult. However,
you’ll need to commit to learning how these 3D classes work. Here are the current 3D class
packages for AS3.0: Papervision (and PapervisionX), Alternativa3D, Away3D, Sandy 3D Engine,
and FIVe3D.

 Physics: There are some excellent packages of classes available for doing precise physics simu-
lations with AS3.0. They include Box2D, Motor2, APE, Foam, and Glaze.

 Tile-based games: A style of game design in which all objects on the stage are assigned to
squares in a grid. The code then creates an abstract model of the game behind the scenes in
arrays, and that model is used to update the objects on the stage. Board games, strategy
games, and certain puzzle games really benefit from the tile- based approach. Tile- based games
run very efficiently, use relatively little CPU power and memory, and are easy to extend if you
want to add new game levels. Because of this, the tile- based approach also works well for plat-
form and adventure games.

 Vector math and geometry: If you’ll create games that involve some degree of physics simu-
lation, it is really beneficial to spend a bit of time learning some vector math and 2D geometry.
Even if you don’t think you’re good at math, give it a try—you might just surprise yourself. You
can immediately apply what you learn to your games.

 Saving game data: If you want to save some data in your game (such as a score or a game
level) so the player can quit the game and continue it later, you need to create a shared
object. This is covered in detail in the subchapter “Storing local data” in the chapter
“Networking and Communication” from Adobe’s online document Programming ActionScript
3.0 for Flash.

 Multiplayer games: It’s always more fun to play games with friends. To make multiplayer
games you need to store game data on a server on the Web so that other players can access
that data to update their own game screens. There are quite a few ways you can do this, but all
require some research into additional “server- side technologies.” Your Flash games will be able
to communicate with these server- side technologies, but to implement most of them you’ll
need to learn new programming languages such as PHP or Java. Do a bit of research into Java
socket servers such as SmartFoxServer, ElectroServer, and Pulse, among many others. (Java is
very closely related to AS3.0, so you won’t find it completely unfamiliar.) You can create
a high- score list for your games using PHP, and you can store game data using a MySQL data-
base. You can avoid Java and PHP directly by storing game data in a content management sys-
tem (CMS) and accessing the data in Flash using XML. Adobe also provides its own Flash Media
Servers. The Media Development Server is free, and although limited, is a great way to get your
feet wet with multiplayer technologies in a familiar environment. As you can see, there’s a lot
to learn! But it’s all well worth the time you’ll put into it.

As every game designer knows, making games is much more fun than playing them. Like an artist
who’s just learned how to mix paints and sketch out a few simple scenes, a bit of practice is all you’ll
need, and you’ll be well on your way to creating that masterpiece. You’ve now got a solid foundation
in game design with Flash and AS3.0—go and make some great games!

573

_accelerationY variable, 404, 532
action games, collision detection and, 265
ActionScript, 3, 5, 571

dot notation and, 89, 102
Flash preferences and, 10
garbage collector and, 393
naming conventions and, 29
object-oriented programming and, 323

addChild() method, 80, 88, 285–291
arguments and, 91
instances on stage and, 107

ADDED_TO_STAGE event, 347, 539
addEventListener method, 100, 103
addition assignment operator (+=), 399
Adobe Flash. See entries at Flash
adventure games, 162, 265
AI (artificial intelligence), 455, 548–559
algebra, game programming and, 6
aligning objects, 59
Align menu, 59
alpha property, 51, 53, 117, 148

drop shadows and, 250
subobjects and, 295

Angle setting, 250
_angle variable, 531, 533, 534
animations, 340–346

anti-aliasing and, 175
film animation and, 237
motion tweening and, 342

Apple key
+ Enter, 82
+ Z, 45

arguments, 88, 91, 95, 310
array access operator, 439
arrays, 457–463, 568
artificial intelligence (AI), 455, 548–559
ASCII numbers, key codes and, 228
AS files, 8
as keyword, 188
assets, 8, 37
assignment operators, 87
asterisk (*), data types and, 180
Auto Format button (ActionScript), 16
axis-based collision detection, 308–321

INDEX

Numbers
2D games, 7, 482
3D games, 7, 320, 571
3D properties, 118
3D Rotation tool, 62
3D Translation tool, 62
450 position number, 515

Symbols
+= addition assignment operator, 399
* asterisk, data type and, 180
: colon, 84, 92
{ } curly braces, 11, 16
-= decrement operator, 126
/ division operator, 218
. dot, 20
= = equality operator, 128
= equal sign, 87
// forward slashes, 21
> greater-than operator, 129
>= greater-than-or-equal-to operator, 129
+= increment operator, 126, 191
/* */, indicating multiline comments, 21
!= inequality operator, 129
< less-than operator, 129
<= less-than-or-equal-to operator, 129
* multiplication operator, 205
! not operator, 141, 281, 303
() parentheses, 15
-- postfix operator, 191
++ postfix operator, 191
; semicolon, 17
[] square brackets, 439
|| two pipe characters, 236
_ underscore, 327, 426

A
abs() method, 318
absolute values, 318
acceleration motion, 399–407

Button Fairy character and, 528–533
friction motion and, 408

_accelerationX variable, 404, 532

573

INDEX

574

B
back buttons, 108
Back class, 519
background layer, 44, 56

buttons and, 68, 70
scrolling and, 248, 251

bee character, in Bug Catcher game, 458–468
begin property, 524
bevel effect, 429, 540
Bind tool, 62
bitmap collision detection, 321
BitmapFilterQuality class, 505
BitmapFilterType class, 507
bitmap text, 175
blocking movement, 305
block() method, 309, 312–320
block statements, 12

code alignment and, 16
function definitions and, 92

blur, 250
BlurFilter class, 507
board games, 486
body, for cat character, 417
Bone tool, 62
Boolean values, 117, 180

if statements and, 201
toggle buttons and, 138, 142

BOTTOM_OF_STAGE constant, 427
Bounce class, 519
BOUNCE constant, 426, 427
bounce motion, platform collisions and, 479
_bounce variable, 410
_bounceX variable, 427
_bounceY variable, 421, 427
bouncing motion, 410
bounding boxes, 52, 292
bounds parameter, 493
break keyword, 462
Brownian motion, 454
Brush tool, 60
bubbling state, events and, 561
Bucket Robot character, 513
Bug Catcher game (sample), 397, 419–481

bug characters for, 450–457, 464–474
code for, 470–474

bug characters (Bug Catcher sample game), 450–457
collecting, 464–474
event handlers and, 453
making them move, 454

bulletCreated event, 565
bullets

collision detection and, 566
creating, 535, 565

Dungeon Maze Adventure game and, 339, 372–378,
386–391

firing, 528, 533–543
object factories and, 543
removing at stage boundaries, 569
space shooter sample game and, 563–570
starting position of, 535
timers for, 558
types of, 535, 541, 567
velocity of, 534

Button Fairy character
easing and, 508
mouse-driven control for, 503, 528–533
rotating her wand, 533, 528

buttons, 66–76
back buttons and, 108
converting to Movie Clip objects, 161
creating, 67
duplicating, 74
enabled property and, 209
incremental object movements and, 124–132
for input text, 176
invisible, 71
programming, 89–111
StartPage and (interactive storybook sample website),

76
states of, 71
text for, 70
toggle, 138–142
up/down, for interactive storybook cat character,

118–123

C
camel case, 28, 65, 86
capture state, events and, 561
capturing key presses, 216
case sensitivity. See naming conventions
casting, 187
cat character (Bug Catcher game), 560

body for, 417
ears and, 404, 412, 413
illustrating natural motion and, 399

cat character (interactive storybook sample website), 65,
86

3D properties and, 118
eye movements of, 142–148
frog character and, 148, 156
making interactive, 118–123
moving incrementally, 124–132
size of, changing, 133–138
subobjects and, 295
visibility of, changing, 138–142

center point, 136

INDEX

575

child objects, 147, 290, 360
children’s storybook. See interactive storybook
Choplifter game, 482
circles

Circle class and, 544
fired from Button Fairy character’s wand, 535

class definition, 13
classes

binding to symbols, 324
composition and, 500
creating, 12
dependencies and, 384
design patterns and, 547
dynamic, 453
encapsulated, 327
extending, 18, 20
inheritance and, 18
object factories and, 544
properties/methods and, 325

class keyword, 14
CLICK event, 100, 102, 159, 161
client classes, object factories and, 544, 547
code. See programming
code hinting, text objects and, 172
_collisionArea variable, 427
Collision class, 309–321, 430
collision detection, 265–321

artificial intelligence and, 455
axis-based, 308–321
bitmap collision detection and, 321
bounding boxes and, 292
Bug Catcher game bug characters and, 455
dependencies and, 384
Dungeon Maze Adventure game and, 337, 367,

375–379
ENTER_FRAME event synchronization and, 380
object overlap and, 296, 307
platforms and, 430–434
playerAndPlatform() method and, 474–481
space shooter sample game and, 566
subobjects and, 295

colon (:), type declaration and, 84, 92
Color Effect section, alpha property and, 53
color matrix filter, 507
colors

fill/stroke color and, 39
swatches, color palette and, 68

comments, adding to code, 21
Compiler Errors window (Flash), 24
compilers, 24, 27
composition, as an alternative to inheritance, 499
computer programs, 5
conditional operators, 128
conditional statements, 127–132

constants, 100, 426
const keyword, 426
constructor methods, 14, 389
continueTo() method, 517
converting data types, 187
convolution filter, 507
coordinates

converting local to global, 441
finding for subobjects, 439

cos function, 532, 533, 534
creating

buttons, 67
classes, 8
event listeners, 98
game managers, 385–392
instances, 86
methods, 92
objects, 31–77
player characters, 223
subobjects, 295
symbols, 35

Ctrl key
+ Enter, 82
+ Z, 45

curly braces ({ }), 11, 16
currentCount property, 557
currentDragObject property, 489
currentFrame property, 346
currentTarget property, 489, 490, 561

D
data types

converting, 187
types of, 180

debugging, 25
decision making, number guessing game and, 184–203
Deco tool, 60
decrement operator (-=), 126
default document, 26
default keyword, switch statement and, 542
Defender game, 482
degrees, rotating to radians, 531
delay property, timers and, 557
Delete key, 50
dependencies, 383
design patterns, 547
developers, 10
Developer workspace

restoring, 37
setting up, 10

device fonts, 174
dingbat fonts, 57
direction, 233

INDEX

576

directives, 17
dispatchEvent() method, 561
dispatching events, 560
displacement map filter, 507
display list, of objects on the stage, 447
display package, 20
Distance setting, 250
Distribute Heights feature, 59
Distribute Widths feature, 59
division operator (/), 218
document classes, 22, 570

accessing the stage and, 391
Dungeon Maze Adventure game and, 385
for interactive storybook, 34

Donkey Kong game, object overlap and, 296
door key object, Dungeon Maze Adventure game and,

339, 360
door object, Dungeon Maze Adventure game and, 338,

361–364, 381
dot (.), directory structure and, 20
dot notation, 89, 102
dot product, 479
DOUBLE_CLICK event, 102
down button

incremental object movements and, 124–132
interactive storybook cat character and, 118–123

downloading Flash CS4, 4
DOWN property, 227
Down state, buttons and, 71, 73
DragableObject class, 495, 500, 502
dragging/dropping objects

fine-tuning and, 493, 486–502
object-oriented approach to, 494–499
preventing, 493
procedural approach to, 486–494

drawing modes, 48
dropping objects, by player characters, 285–291
DropShadowFilter class, 505
drop-shadow filter, 505
drop shadows, 249
dropTarget() method, 486
dropTarget property, 491
Dungeon Maze Adventure game (sample), 333–395

adding features to, 382–392
adding/removing objects, stage and, 347–351
DungeonOne_Manager class and, 352–382
DungeonOne symbol and, 336, 351
enemy objects in, 340–346
how it works, 351
objects used in, 338–340
playing, 333, 352

DungeonOne_Manager class, 351
duration property, 516
_dx variable, 317, 320

dynamic classes, 453, 525
dynamic filters

bevel, 540
drop-shadow, 505

dynamic instance variables, 452
dynamic keyword, 453
dynamic text, 170, 181, 270
_dy variable, 318, 320

E
ears, of cat character, 404, 412, 413
easeIn() method, 518
easeInOut() method, 513, 515, 518
easeOut() method, 518
easing, 343, 499

advanced use of, 513–528
artificial intelligence systems and, 551
Button Fairy character and, 528
Easing package and, 518
via the mouse, 508
random positions and, 522–528
velocity calculations and, 522–528

_easing variable, 499
“easy video game physics”, 398
Elastic class, 519
elements, comprising arrays, 458
else keyword, 184. See also if/else statement
embedded assets, 8
embedded fonts, 175
enabled property, 209
encapsulation, 327
enemy object

artificial intelligence systems and, 548–559
Dungeon Maze Adventure game and, 339, 367
object factories and, 544

engines, 497
ENTER_FRAME event, 348, 379

calculating velocity and, 525
dragging/dropping objects and, 494
easing and, 499
synchronization and, 380
vx/vy properties and, 399, 452

ENTER FRAME property, 237
Enter key, Guess button and, 216
environmental boundaries, 301
equality operator (= =), 128
equal sign (=), 87
Eraser tool, 50
error messages

dependencies and, 383
displayed in Compiler Errors window (Flash), 24
events and, 349
migration issue warning and, 233

INDEX

577

Euler integration, 398
Event class, 230, 237
event classes, 99
event constructor, 562
event dispatcher, 101
event handlers, 98

dispatching events and, 560
for interactive storybook sample website, 107
multiple objects sharing on, 453
removing, 161
up/down buttons and, 122

event listeners, 98–104
creating, 98
up/down buttons and, 122

event objects, 98
events, 98–104

dispatching, 560
space shooter sample game illustrating, 563–570

event variables, 101, 228
exit object, Dungeon Maze Adventure game and, 339, 382
Export for ActionScript option, 85
extended boundaries, 259
extending classes, 18, 20
extend keyword, 20
extends keyword, 499
Eyedropper tool, 60
eye movements, 142–148
eyes, of frog character, 439–446

F
factories, 543–548
factory classes, object factories and, 544, 545
false value, animation duration and, 515
fforward() method, 517
files, 8

naming conventions and, 28
Project panel (Flash) and, 26

fill color, 39
film, 237
film animation, 237
filter effects, 250
filters

classes and, 507
dynamic, 505, 540
removing from objects, 506

filters array, 506
finish point, 527
finish property, 524
firing

bullets, 528, 533–543, 553
circles, 535
squares, 536
stars, 528, 533–543, 553

FLA files, 8, 32
Flash, 3

motion tweening and, 342
preferences for, setting up, 10
resources for further reading, 570

Flash CS4, 4
Flash Developer workspace, 10
flash folder, 20
Flash Library, 19, 37, 75
Flash movie files, 8
Flash Player, 27, 174
floating point numbers, 180
fly character, in Bug Catcher game, 450, 458–468
focus, text fields and, 183
focus property, 183
folders

Library (Flash) and, 75
Project panel (Flash) and, 26

font outlines, 174
fonts

anti-aliasing and, 174
embedded, 175

foreground layer, 44, 56, 68
foreground objects, 45–54
for loop, 304, 434

arrays and, 461
break keyword and, 463
collision detection and, 567
removing bullets at stage boundaries and, 569
stage display list and, 448

forward slashes (//), indicating comments, 21
fps (frames per second), 232, 516
FPS property, 516
FRAME_CONSTRUCTED event, 348
frame labels, 160
frame numbers, 160
frames, 148, 150, 237

playhead and, 43
playing series of sequentially, 159

frames duration, 515
frames per second (fps), 232, 516
Free Transform tool, 61, 63
friction motion, 408, 426

Button Fairy character and, 528
platform collisions and, 479

_friction variable, 408
_frictionX variable, 426
frog character

in Bug Catcher game, 439–446, 455
in interactive storybook sample website, 148–162

function definitions, 92
function keyword, 15, 92, 330

INDEX

578

G
game data, saving, 571
game design, 570

film animation and, 237
GUIs and, 169
hitTestObject() method and, 294
number guessing game and, 165–219
object-oriented, 323–395
physics and, 398–418
programming foundations for, 3–29
scrolling and, 262
text-rendering and, 174

game levels, for Dungeon Maze Adventure game, 337,
338, 347, 382

game managers, creating, 385–392
game over

Dungeon Maze Adventure game and, 340, 368, 381
health meters for. See health meters

games
Bug Catcher, 397, 419–481
Dungeon Maze Adventure, 333–395
multiplayer, 571
number guessing game, 165–219
Phantom Hourglass, 502
space shooter, 563–570
testing, 8, 22, 26, 82
tile-based, 571
types of, 7

game won, 284
garbage collector, 393
geometry, 571
getChildAt() method, 447
get keyword, 330
get methods (getters), 327–331
GlowFilter class, 507
gotoAndPlay() method, 346
gotoAndStop() method, 271, 346
Go to Source button (Flash), 24
GradientBevelFilter class, 507
GradientGlowFilter class, 507
gradients, 68
Gradient Transform tool, 69
graphical user interface (GUI), for number guessing game,

168–176
graphic symbols, Movie Clip symbols and, 52
GRAVITY constant, 426
gravity motion, 411
gravity variable, 412
greater-than operator (>), 129
greater-than-or-equal-to operator (>=), 129
grouping objects, 54
Guess button, for number guessing game, 176, 208, 216
GUI (graphical user interface), for number guessing game,

168–176

H
handles, on objects, 61
Hand tool, 42
hangman visual display, number guessing game and, 215
health meters

creating, 274
Dungeon Maze Adventure game and, 334, 340, 341,

367
reducing, 273–285

height of objects, adjusting, 59
height property, 117, 138
“Hello World!” sample program, 8–22
hide() method, computer mouse and, 504
Hide object setting, 250
HillPage

for interactive storybook sample website, 46, 65
onHillButtonClick event handler and, 107

Hit state, buttons and, 71
hitTestObject() method, 268, 297–304, 360

collision detection and, 291–297
features used for, 269
object overlap and, 296, 307
snapping objects to targets and, 493
text fields, changing via, 270
using instead of dropTarget property, 492

horizontal side-scrolling, 246
horizontal velocity, 235
humpBackNotation, 28

I
identifiers, 11
if/else statement, 184–202, 352

easing and, 511
key presses and, 228
nested, 289
player character control and, 235, 240–245
random numbers and, 205
vs. switch statement, 541

if statement, 127–132, 184
Boolean variables in, 201
collision detection and, 269
currentCount property and, 557
nested, 283
searching arrays via, 462

images, 237
importing classes, 18
import keyword, 20
increment operator (+=), 126, 191
indenting code, 12
index numbers, 458
inequality operator (!=), 129
inheritance, 18, 20, 499
initializing/reinitializing programs, 177

INDEX

579

init() method, 177
Ink Bottle tool, 60
inner boundaries, 253–262
Inner shadow setting, 250
input, 169, 170

restrict property and, 183
button for, 176

instance names, 65, 372
instances, 13, 52

creating, 86
displaying on Flash stage, 88
naming, 65
symbols and, 57, 86

instance variables, 243, 539
instantiating classes, 13
int data type, 180, 196
integers, 180
interactiveMovie.swf file, 80
interactiveStorybook.fla file, 81
interactive storybook (sample website), 32–77

adding features to, 162
background for, 39
buttons for, 104–111
cat character and. See cat character
event handlers for, 107
frog character and. See frog character
HillPage for, 46, 65
PondPage for, 49, 65
StartPage for, 36–65, 80–89

internal class, 14
interpreted programming languages, 27
invisible buttons, 71
iPhone, 502
isBeingDragged() method, 499
_isDragging variable, 488, 489, 497
_isOnGround variable, 475, 481
isPlaying property, 516

J
Joust game, 482
_jumbForce variable, 416
jumping motion, 414–418

K
keyboard-based control schemes, 502, 559
Keyboard class, 222, 227, 229
keyboard control, for player characters, 222–238
KeyboardEvent class, 99, 222, 227
key buffer, 230
key codes, 227
KEY DOWN property, 227
keyframes, 43, 152

key object, Dungeon Maze Adventure game and, 339, 360
key presses, 216
KEY UP property, 235
keywords, 11, 12
Knockout setting, 250

L
Lasso tool, 60
layers

creating/organizing, 43
rearranging, 64
stage display list and, 449

LEFT property, 227
Legend of Zelda, overhead multi-axis scrolling and, 246
length property, 461, 566, 567
less-than operator (<), 129
less-than-or-equal-to operator (<=), 129
levels. See game levels
Library (Flash), 19, 37, 75
Line tool, 60
local variables, 242, 539
lockCenter parameter, 493
loop index variable (i), 434
looping property, 516
looping through platforms, 437
lowerCamelCase, 29, 86
Low setting, 250
Lunar Lander game, 482

M
Main.as file, 9, 14

for Dungeon Maze Adventure game, 335
for interactive storybook, 33, 80
for number guessing game, 176

Main_BasicTween class, 514
Main_BugCatcher class, 431, 438

code for, 470–474
objects in, 450

Main_Character_Two class, 237
Main constructor method, 177, 178
Main_DragAndDrop2 class, 498
Make Same Height feature, 59
Make Same Width feature, 59
makeShape() method, 545
manager classes, 324

Dungeon Maze Adventure game and, 351, 385
ENTER_FRAME event and, 380

math, game programming and, 6
Math.atan2() method, 444
Math class, 204–208
Math.random() method, 454
merge mode, 48, 50

INDEX

580

messageDisplay text field
game over and, 277
scores and, 280

method calls, 91, 177
method parameters, 310
methods

creating, 92
invoking, 91–98
modular programming and, 197–203
private, 326
pubic, 327
static, 309, 329

modular programming, 197–203
mosquito character, in Bug Catcher game, 450, 458–468
motion, 398–418

artificial intelligence systems and, 548–559
Brownian, 454
Bug Catcher game bug characters and, 454

MOTION_FINISH event, 517, 520, 521
MOTION_LOOP event, 521
motion paths, 343
MOTION_RESUME event, 521
MOTION_START event, 521
MOTION_STOP event, 521
motion tweening, 342, 513, 520
mouse character, in Bug Catcher game, 464, 468
Mouse class, 502, 504
mouse (computer)

Button Fairy character control and, 528–543
fixing objects to mouse’s x/y positions, 503
mouse-based control schemes and, 560
moving objects via, 502–512
objects following with slight delay, 511
releasing outside of stage area, 497

MOUSE_DOWN event, 102
MouseEvent class, 99, 102, 502
mouse events, 102
MOUSE_MOVE event, 102
MOUSE_OUT event, 102
MOUSE_OVER event, 102, 159, 161
mouse pointer, custom, 503
MOUSE_UP event, 102
MOUSE_WHEEL event, 102
mouseX property, 505
mouseY property, 505
MovieClip class, 18

built-in properties of, 116
as dynamic class, 453, 525
vs. Sprite class, 116

Movie Clip objects, 115–163
accessing objects and, 375, 385
background scenes and, 247
converting to buttons, 161
properties and, 116–148

timelines and, 148–162
Movie Clip symbols, 38, 52
moving objects

blocking movement and, 305
eye movements and, 142–148
incrementally, 124–132
limiting movement and, 127
via the mouse, 502–512
pushing objects and, 313, 316

multi-axis scrolling, 246
multiline comments, 21
multiline text fields, 170
multiplayer games, 571
multiplication operator (*), 205
multisampling, 304

N
\n (newline character), 194
naming conventions, 28

ActionScript and, 9, 29
for class names, 14, 86
for constants, 426
for event handlers, 101
for events, 100
for files, 9, 28
for private properties, 327
for public property names, 453
for symbols, 86
for variables/variable types, 86

negative integers, 180, 196, 234
nested statements

if/else statements and, 289
if statements and, 283

new keyword, 80, 86
arrays and, 458
ShapeMaker class and, 546

newline character (\n), 194
Nintendo DS, 502
None class, 519
not operator (!), 141, 281, 303
null value, 108
Number data type, 180
number guessing game (sample), 165–219

adding features to, 215–218
decision making for, 184–203
displaying status of, 188–197
final code for, 212
fine-tuning, 203–214
Guess button for, 208, 216
GUI for, 168–176
Main.as file for, 176
variation of, 218
winning/losing and, 197

numChildren property, 447

INDEX

581

O
Object data type, 180
Object Drawing button, 48, 50
object drawing mode, 48, 50
object-oriented game design, 323–395
object-oriented programming, 324–333
object overlap

axis-based collision detection and, 308–321
collision detection and, 296, 307

objects, 32–38
adding/removing, stage and, 347–351
aligning automatically, 59
animations and, 340–346
beveling, 429
child objects and, 147
classes and, 332
composition and, 500
creating, 31–77
dot notation and, 89, 102
dragging/dropping, 486–502
dropped, by player characters, 285–291
event handlers, sharing, 453
event listeners, adding to, 99
factories for, 543–548
filters, removing from, 506
fixing to computer mouse’s x/y positions, 503
following computer mouse with slight delay, 511
foreground, 45–54
grouping, 54
incremental movements and, 124–132
initializing, stage and, 347
moving. See moving objects
organizing in Library folders, 75
picking up, 285–291
programming, 79–112
pushing, 313, 316
root property and, 551
rotating toward, 443
scaling/resizing, 61, 63
size of, changing, 133–138
snapping to targets, 492
spacing evenly, 59
stacking order of, 57, 447
states and, 148
tinting, 429
ungrouping, 55
visibility of, changing, 138–142
without instance name, 372

_oldX variable, 526
_oldY variable, 526
onAddedToStage event handler, 348, 372, 391
onBulletCreated event handler, 565
onCollisionWithPlayer event listener, 465–469
onEnterFrame event handler, 237, 303, 349, 352

blocking movement and, 305
calculating velocity and, 526
collision detection and, 298
easing and, 509
health meters and, 277–285
movement and, 531
objects following computer mouse with slight delay

and, 511
removing bullets at stage boundaries and, 569
updating scores and, 279–284

onHillButtonClick event handler, 107
onKeyDown event handler, 230, 235

acceleration and, 404
friction motion and, 426
gravity motion and, 413
jumping motion and, 416
picking up/dropping objects and, 287

onKeyUp event handler, 230, 235
acceleration motion and, 407
friction movement and, 409

onKeyUp/onKeyDown methods (deprecated), 233
onMotionFinish event handler, 521
onMotionFinishX event handler, 524, 527
onMotionFinishY event handler, 524, 527
onMouseDown event handler, 488, 509
onMouseUp event handler, 488, 489
onPondButtonClick event handler, 108
onShootBullet event handler, 558
onUpdateTime event handler, 557
Open Project option, 26
operators

assignment, 87
conditional, 128
incremental/decremental, 126

or operator, 236
output, 169
Output window, 17
Oval Primitive tool, 60
ovals, 55, 63
overhead multi-axis scrolling, 246
overlapping. See object overlap
Over state, buttons and, 71, 72
owl character (interactive storybook sample website), 270,

285, 288
_ox variable, 318, 481
_oy variable, 481

P
package keyword, 11, 12
packages, 11
pages, drawing, 38–62
Paint Bucket tool, 39, 60
panels, 37

INDEX

582

parallax scrolling, 262
parameterized factories, 544
parameters, 15, 95, 310
parent containers, 369–375, 378, 491
parentheses (()), in method names, 15
parent keyword, 368
parent property, 491
Pencil tool, 60
Pen tool, 60
performance, 19

anti-aliasing and, 174
frames per second and, 232
hitTestObject() method and, 293
interpreted programming languages and, 27

persistence of vision, 237
Phantom Hourglass game, 502
physics

natural motion and, 398–418
resources for using, 571

picking up objects, 285–291
pig character (interactive storybook sample website), 247,

285, 288
pipe characters (||), 236
pixels, 41
pixel snapping, 337
pixilation, anti-aliasing and, 174
platform games, 397–482
platforms, 419, 428–439

collision detection and, 430–434, 474–481
detecting top of, 481
looping through, 437

Player_Acceleration class, 399, 401–407
playerAndPlatform() method, 430–433, 474–481
Player_Bounce class, 399, 410
player character control, 221–263, 528–571, 559

via the keyboard, 222–238
via the mouse, 528–533
steps for refining, 230

player characters
collision detection and, 566
_collisionArea variable and, 427
controlling, 221–263, 485–571
creating, 223
Dungeon Maze Adventure game and, 338, 356–359,

378, 382
moving, 237
space shooter sample game and, 563–570

Player class
acceleration and, 403
mouse-driven control and, 504

players, multiplayer games and, 571
Player_Friction class, 399, 408
Player_Gravity class, 399, 411
Player_Jump class, 399, 414

Player_Platform class, 421–427, 481
playhead, 43
play() method, 159, 346
PolyStar tool, 60
PondPage

interactive storybook sample website and, 49, 65
onPondButtonClick event handler and, 108

pop() method, 460
position

interactive storybook cat character and, 119, 123
of objects, 123
random positions and, 522–528

position property, 516
postfix operators, 191
preFrame() method, 517
preview mode, timelines and, 150
Preview option (timeline), 62
private keyword, 325
private methods, 326
private properties, 326, 329
procedural programming, 323
product classes, object factories and, 544
programmers, 10
programming, 80

basics of, 3–29
buttons, 89–111
code alignment and, 16
code dependency and, 384
comments, adding to code, 21
compiling code and, 24
dot notation and, 89, 102
indenting code and, 12
modular, 197–203
objects, 79–112
Projet Panel (Flash) and, 26
source files for this book, 94
testing programs and, 8, 22, 26, 82
writing your first program, 11–22

programming languages, 3, 27
programs, 5
projection, 479
Project panel (Flash), 26
properties, 90

changing two simultaneously, 137
Movie Clip objects and, 116–148
private, 326, 329

Properties panel, 34, 41, 53
property keyframes, 343
public class, 12, 14
public keyword, 15
public methods, 327
public properties, naming conventions for, 453
publishing SWF files, 22, 27
Publish option (Flash), 23

INDEX

583

pushing objects, 313, 316
push() method, 460
puzzle games, 486
Pythagorean theorem, 510

Q
Quality setting, 250
Quick Project option, 26

R
radians, 444, 531
random() method, 204–208, 309
random numbers, 204–208
random positions, easing and, 522–528
Rectangle class, 493
rectangles, 40, 63, 493
Rectangle tool, 60
rectangular-shaped sections, deleting, 50
registration point, 41, 136
Regular class, easing and, 518, 519
removeChild() method

instances on stage and, 107, 349, 377
removing objects from games and, 391

REMOVED_FROM_STAGE event, 349, 539
removeEventListener() method, 161
repeatCount property, 557
reserved words, 12
reset() method, 557
resizing objects, 61, 63, 133–138
resources for further reading, 570

ActionScript, 6, 398
bitmap collision detection, 321
easing in/out, 519
filters, 251, 507
Flash, 4, 6
graphic design with Flash, 62
sounds, 366
text, working with, 183
while/do-while loops, 437

responsiveness, 19
restrict property, 183
resume() method, 517
return keyword, 330, 546
return type, 546
rewind() method, 517
RIGHT property, 227
robot object, 515

artificial intelligence systems and, 548–559
collision detection and, 566
easing and, 513
random positions and, 522–528
space shooter sample game and, 563–568

velocity calculations and, 522–528
yoyo motion and, 520

robot.x position, 515
ROLL_OUT event, 102
ROLL_OVER event, 102
root property, 551
rotating toward objects, 443, 531, 553
rotation property, 117, 147

converting radians to degrees, 531
rotating toward an object and, 443

rotationX 3D property, 118, 148
rotationY 3D property, 148
rotationZ 3D property, 148
running property, timers and, 557

S
samples

Bug Catcher game, 397, 419–481
Button Fairy character. See Button Fairy character
Dungeon Maze Adventure. See Dungeon Maze Adven-

ture game
“Hello World!” program, 8–22
interactive storybook. See interactive storybook
number guessing game. See number guessing game
space shooter, 563–570

scaleX property, 117, 133–138, 278
scaleY property, 117, 133–138
scaleZ 3D property, 118, 148
scaling

health meters, 278
objects, 61, 63, 133–138

scores, updating, 279–285
screen boundaries

extending boundaries and, 259
inner boundaries and, 253–262
player characters and, 238–246

screen wrapping, 245
scrolling

fine-tuning, 252–262
horizontal side-scrolling and, 246
how it works, 251
overhead multi-axis scrolling and, 246
parallax scrolling and, 262
player characters and, 246–262

scrubber, 43
Selection tool, 40
Selector tool, vector shapes and, 47
semicolon (;), ending directives, 17
Send Backward option, 57
Send to Back option, 57
setChildIndex() method, 448
set keyword, 331
set methods (setters), 331

INDEX

584

shader filter, 507
shapeflag, 300
ShapeMaker class, 544, 545, 547
shape object, 544, 547
shapes, editing, 53
shared objects, 571
shootBullet() method, 534
_shotFired variable, 534
sin function, 532, 533, 534
singletons, 547
slowing down. See entries at friction
snapping, 45
Snap to Objects option, 45
sounds, adding to games, 364
source files for this book, 94
spaceship-style control schemes, 559
space shooter (sample game), 563–570
special effects. See also easing, advanced use of

beveling, 540
spring effect and, 511

speed, 233
_speedLimit variable, 404, 406
splice method, 460
splice() method, 568
Spray tool, 60
spring effect, 511
Sprite class, 18, 19

dragging/dropping objects and, 486
vs. MovieClip class, 116

sqrt function, 510, 512, 533
square brackets ([]), 439
squares

fired from Button Fairy character’s wand, 536
Square class and, 545

stacking order, of objects, 57, 447
stage, 38

accessing, document classes and, 391
adding/removing objects and, 347–351
composition and, 501
display list of objects on, 447
event listeners and, 227
releasing mouse outside of, 497
root property and, 551
screen boundaries and, 238–246, 253–262, 417

stage boundaries
Bug Catcher game bug characters and, 455
removing bullets at, 569
subobjects and, 417

Stage class, 183, 227, 502
stage (Flash), 11

displaying instances on, 88
symbols and, 81

stageHeight property, 239

stage property, 394
stageWidth property, 239
star weapon object, Dungeon Maze Adventure game and,

339, 370
stars. See also bullets

fired from Button Fairy character’s wand, 528, 533–543
Start class and, 545

startDrag() method, 486, 489
fine-tuning dragging/dropping via, 493
object-oriented dragging/dropping approach and, 497

start() method
Timer class, 556
Tween class, 517, 525

StartPage, for interactive storybook sample website,
36–38, 76

displaying, 80–89
timeline and, 43

_startPage variable, 82
state machines

frog character and, 149
timelines used as, 161

statements, conditional, 127–132. See also if statements;
if/else statements

states, 148
of buttons, 71
of frog character, 150
triggering change of, 271

static keyword, 316
static methods, 309, 329
static text, 170
stopDrag() method, 486, 489
stop() method, 346, 517
storybook. See interactive storybook
Strength setting. See alpha property
string concatenation, 193
String data type, 180
strings, 84
stroke color, 39
Strong class, easing and, 519
subobjects

collision detection and, 295
finding coordinates of, 439
stage boundaries and, 417

Subselection tool, 60
Super Mario Bros. game

horizontal side-scrolling and, 246
object overlap and, 296

swapChildren() method, 450
swatches, color palette and, 68
SWF files, 8, 22, 27
switch statement, 541, 546, 567
symbol editing mode, 38, 53
Symbol Properties window, 53

INDEX

585

symbols
binding classes to, 324
creating, 35, 324
Flash stage and, 81
instances and, 57, 86

T
tangent velocity, 479
target property, 453, 490
target state, events and, 561
testing programs, 8, 22, 26, 82
Test Movie option (Flash), 23
Test Project button, 26, 82
text

buttons and, 70
multiline, 170
repetitive, storing in a variable, 195
wrapping, 170

TextField class, 182
text fields, 170–176

dynamic, changing, 270
enhancing, 181

text package, 182
text-rendering, game performance and, 174
text variable, 181, 187
this keyword, 356, 376, 540
tile-based games, 571
timeline, 18, 43, 148

animations and, 340, 345
Movie Clip objects and, 148–162
playing frames and, 159
using as state machines, 161

time property, 516
Timer class, 555
TIMER_COMPLETE property, 558
TimerEvent class, 555
timers, 555
tinting, 429
toggle buttons, 138–142
Tools toolbar

Eraser tool, 50
Fill Color box, 39
Hand tool, 42

touch screen interface devices, 502
trace() method, 91, 125
tracing output, 125
transparency. See alpha property
trigonometry, 6

radians and, 531
rotating toward objects and, 443

troubleshooting programming errors, 25
Tween class, 513, 515, 524

TweenEvent class, 517, 521, 524
_txt suffix, 172
type casting, 375
type declaration, 82, 92

U
uint data type, 179, 187

combining variables in one directive via, 243
vs. int data type, 196

underscore (_)
with constants, 426
prefixing private properties, 327

undoing mistakes, 45
ungrouping objects, 55
unsigned integers, 179
up button

incremental object movements and, 124–132
interactive storybook cat character and, 118–123

UP property, 227
Up state, buttons and, 71
UpperCamelCase, 29, 86
usability, 168
utilities, 309. See also static methods

V
variables, 83

instance, 243
local, 242
number guessing game and, 178–184

variable types, 84
var keyword, 80
vector-drawing tools, 38–50, 57
vector lines, 47
vector math, 479, 571
vector path, 304
vector shapes

merging, 47
overlapping, 47, 50

velocity, 233
acceleration motion and, 399, 534
calculating, 522–528
friction motion and, 408

vertical velocity, 235
visible property, 117, 138–142
visual effects, dynamic filters and, 505
void data type, 180
vx property, 398, 399, 452
_vx variable, 532
vy property, 398, 399, 452
_vy variable, 532

INDEX

586

W
wall object, Dungeon Maze Adventure game and, 338, 378
wand object (of Button Fairy character), 528, 533
warnings, 233. See also error messages
weapon object, Dungeon Maze Adventure game and, 339,

370
Webding font, 57
while loop, 304, 437
whole numbers, 180
width of objects, adjusting, 59
width property, 117

health meters and, 273
vs. scaleX property, 138

Wingding font, 57
workspace. See Developer workspace
workspaces, 10
wrapping text, 170

X
Xeno’s paradox, 409, 510
x position, 123

acceleration and, 405, 532
finding for coordinates, 439

x property, 117, 137, 148, 515

Y
yoyo() method, 517, 520
y position, 123

acceleration and, 405
finding for coordinates, 439

y property, 117, 137

Z
z 3D property, 118, 148
Zoom tool, 61

	CONTENTS
	About the Author
	About the Technical Reviewer
	About the Cover Image Designer
	Introduction
	Chapter 1: Programming Foundations: How to Make a Video Game
	Basics you need to have
	Things you need to know
	And the things you don't need to know
	It's all about programming
	Programming? But I'm terrible at math!
	I already know how to program!
	What kind of games can I make?
	Learning some new terms

	Laying the foundation
	Files you'll need
	Setting up the work environment
	Setting up the Flash Developer workspace
	Setting up the ActionScript code format preferences

	Writing your first program
	I'll take that to go!
	Don't skip class!
	Using the constructor method
	Aligning code
	What's your directive?
	Importing and extending the MovieClip class
	Adding comments to your code

	Publishing the SWF file
	It didn't work?

	Project Panel
	little more about AS3.0 and the Flash Player
	A little more about AS3.0 and the Flash Player
	Naming conventions
	Summary

	Chapter 2: Making Objects
	Understanding Interactive Objects
	Setting up the work environment
	Creating the first page

	Drawing the first page
	Drawing the background
	Organizing layers and the timeline
	Drawing the foreground objects
	Grouping objects
	Adding some clouds
	Creating some flowers
	Learning a few more techniques

	Creating a character
	Adding some more pages

	Using buttons
	Creating a button symbol
	Understanding button states
	Creating the Over state
	Creating the Down state
	Duplicating the button
	Organizing the Library
	Adding the buttons to your scene

	Summary

	Chapter 3: Programming Objects
	But I'm a bit scared of programming!
	Displaying the first page of the storybook
	How did that work?

	Programming buttons
	Using dot notation
	Invoking methods

	Understanding events and event listeners
	Programming storybook buttons
	Looking at the onHillButtonClick event handler
	Using the onPondButtonClick event handler
	Adding back buttons
	Knowing when to use this model

	Summary

	Chapter 4: Controlling Movie Clip Objects
	Movie Clip properties
	Setting up the project files
	Going up and down
	Understanding x and y positions of objects
	Moving incrementally

	Making it bigger and smaller
	Vanishing!
	Having a look
	Controlling Movie Clip timelines
	Taking it further

	Summary

	Chapter 5: Decision Making
	Setting up the project files
	Designing a GUI
	Inputting and outputting
	Adding some text fields

	Building a simple guessing game
	Setting up the Main.as file

	Learning more about variables
	Making it more obvious

	Making decisions
	Displaying the game status
	Winning and losing
	Modular programming with methods

	Polishing up
	Tackling random numbers
	Disabling the Guess button
	Playing again?
	Seeing the final code

	Taking it farther
	Tracking guesses
	Adding a visual dis
	Entering numbers with the Enter key
	Turning the tables

	Summary

	Chapter 6: Controlling a Player Character
	Setting up the project files
	Controlling a player character with the keyboard
	Controlling with the keyboard—the wrong way!
	Controlling the keyboard—the right way!

	Setting screen boundaries
	Blocking movement at the stage edges
	Building a better pigpen
	Screen wrapping

	Scrolling
	Creating an environment
	Fine-tuning the player character
	Scrolling basics
	Better scrolling
	Even better scrolling

	Taking it further
	Parallax scrolling

	Summary

	Chapter 7: Bumping into Things
	Setting up the project files
	Ouch!
	Using hitTestObject

	Changing a dynamic text field
	Triggering a change of state
	Reducing a health meter
	Updating a score
	Picking up and dropping objects
	Learning the bad news about hitTestObject
	Detecting collisions with the bounding box
	Learning to live with it
	Creating subobjects

	Using hitTestPoint
	Using hitTestPoint to create an environmental boundary

	Creating objects that block movement
	Working with axis- based collision detection
	Programming with the Collision class

	Summary

	Chapter 8: Object-Oriented Game Design
	Introducing object- oriented programming
	Binding classes to symbols
	Using properties and methods
	Private properties and methods
	Communicating between classes using getters and setters
	Getting started with the object- oriented approach

	Case study: Dungeon Maze Adventure
	Setting up the game
	Gathering project files and objects
	Entering the dungeon!
	Laying out the level
	The objects in the game
	Animating with the timeline
	Animating the object
	Adding and removing objects from the stage
	How Dungeon Maze Adventure works
	DungeonOne_Manager class

	Modifying the game
	Adding a new level
	Creating a game manager

	Removing objects from the game
	Summary

	Chapter 9: Platform Game: Physics and Data Management
	Natural motion using physics
	Setting up the project files
	Acceleration
	Friction
	Bouncing
	Gravity
	Jumping

	Case study: Bug Catcher
	Setting up the project files
	Using the Player_Platform class
	Adding Platforms
	Detecting platform collisions
	Using for loops
	Looping through platforms
	Finding the global x and y position of a subobject
	Rotating toward an object
	Rotating the frog's eyes toward the player object
	Changing the stacking order
	Adding some bugs to the code—literally!
	Using arrays
	Collecting bugs
	Complete Main_BugCatcher class

	New Collision.playerAndPlatform utility
	playerAndPlatform method

	Summary

	Chapter 10: Advanced Object and Character Control
	Dragging and dropping objects
	Dragging and dropping the procedural way
	Dragging and dropping the object- oriented way
	An alternative to inheritance: Composition

	Moving objects with the mouse
	Fixing an object to the mouse's position
	Adding a dynamic filter
	Moving an object with easing
	Following the mouse with a bit of delay

	Easing—advanced
	Properties and methods of the Tween class
	Easing package classes and methods
	Tween events
	Easing to random positions and calculating velocity

	Case study: Complex mouse- driven player control
	Player.as
	Moving the player
	Rotating the wand
	Firing bullets in 360 degrees
	Bullet.as

	Object factories
	Product classes
	Factory class
	Client class

	Enemy AI systems
	Following the player
	Running away from the player
	Rotating and shooting toward the player

	Using other player control systems
	Dispatching events
	Event "bubbling"

	Case study: Space Shooter
	Game structure
	Creating bullets
	Checking for bullet collisions with objects
	Removing bullets at the stage boundaries
	Classes and events

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

