
Table of Contents

i

Java Database Programming Bible

by John O'Donahue ISBN:0764549243

John Wiley & Sons © 2002 (702 pages)

Packed with lucid explanations and lots of real-world examples, this comprehensive guide gives you

everything you need to master Java database programming techniques.

Companion Web Site

Table of Contents

 Java Database Programming Bible

 Preface

 Part I - Introduction to Databases, SQL, and JDBC

 Chapter 1 - Relational Databases

 Chapter 2 - Designing a Database

 Chapter 3 - SQL Basics

 Chapter 4 - Introduction to JDBC

 Part II - Using JDBC and SQL in a Two-Tier Client/Server Application

 Chapter 5 - Creating a Table withJDBC and SQL

 Chapter 6 - Inserting, Updating,and Deleting Data

 Chapter 7 - Retrieving Data withSQL Queries

 Chapter 8 - Organizing Search Results and Using Indexes

 Chapter 9 - Joins and Compound Queries

 Chapter 10 - Building a Client/Server Application

 Part III - A Three-Tier Web Site with JDBC

 Chapter 11 - Building a Membership Web Site

 Chapter 12 - Using JDBC DataSources with Servlets and Java Server Pages

 Chapter 13 - Using PreparedStatements and CallableStatements

 Chapter 14 - Using Blobs and Clobs to Manage Images and Documents

 Chapter 15 - Using JSPs, XSL, and Scrollable ResultSets to Display Data

 Chapter 16 - Using the JavaMail API with JDBC

 Part IV - Using Databases, JDBC,and XML

 Chapter 17 - The XML Document Object Mo del and JDBC

 Chapter 18 - Using Rowsets to Display Data

 Chapter 19 - Accessing XML Documents Using SQL

 Part V - EJBs, Databases, and Persistence

 Chapter 20 - Enterprise JavaBeans

 Chapter 21 - Bean-Managed Persistence

TE
AM
FL
Y

Team-Fly®

Table of Contents

ii

 Chapter 22 - Container-Managed Persistence

 Chapter 23 - Java Data Objects and Transparent Persistence

 Part VI - Database Administration

 Chapter 24 - User Management and Database Security

 Chapter 25 - Tuning for Performance

 Appendix A - A Brief Guide to SQL Syntax

 Appendix B - Installing Apache and Tomcat

 Index

 List of Figures

 List of Tables

 List of Listings

 List of Sidebars

Preface

-1 -

Preface
Welcome to Java Database Programming Bible. This book is for readers who are already
familiar with Java, and who want to know more about working with databases. The JDBC
Application Programming Interface has made database programming an important
aspect of Java development, particularly where Web applications are concerned.

The ease with which Java enables you to develop database applications is one of the
main reasons for Java's success as a server-side development language. Database
programming is perhaps the key element in developing server-side applications, as it
enables such diverse applications as auction sites, XML-based Web services,
shipment-tracking systems, and search engines.

What this Book Aims to Do

The aims of this book are to give you a good understanding of what a relational database
is, how to design a relational database, how to create and query a relational database
using SQL, and how to write database-centric applications in Java. There are many
books that cover individual aspects of the aforementioned topics, such as SQL or JDBC.
The intention of this book is to provide a single source of information and application
examples covering the entire subject of relational databases.

When I first started to develop database-driven applications in Java, I was working with a
database administrator who was responsible for the database side of the project. This is a
fairly common approach to managing larger database-driven applications, since it places
responsibility for the database in the hands of a database expert and allows the Java
programmer to concentrate on his or her own area of expertise. The disadvantages of this
approach only became apparent when some of my code proved to be unacceptably slow
because of database design considerations that failed to take into account the needs of
the business logic.

Working on subsequent smaller projects enabled me to manage my own databases and
develop an understanding of how to design databases that work with the business logic. I
also learned about the tradeoffs involved in using indexes and the importance of
normalization in designing a database. Perhaps the most important thing I learned was
that, thanks to the design of the JDBC API and the universality of the SQL language,
much of what you learn from working with one database-management system is directly
applicable to another.

Although this book aims to give you a good overall understanding of Java database
programming and, in particular, to cover the JDBC API thoroughly, it is impossible to
cover either all of the different JDBC drivers currently available or all the variations of the

Preface

-2-

SQL language in a book of this nature. The examples in this book were developed using a
number of different JDBC drivers and RDBMS systems; Part II of the book addresses the
ease with which you can use the same code with different drivers and different
database-management systems.

You will find, as you work with a variety of different Relational Database Management
Systems, that the SQL standards are really just guidelines. SQL has as many different
dialects as there are relational database management systems. So although the
examples in this book should work with only minor changes on virtually any RDBMS, you
would be well advised to read a copy of the documentation for your own
database-management system.

Who Should Read this Book

This book is aimed at all levels of programmers, including those with no prior database
experience. However, you should already have some experience with Java basics and
Swing, so no attempt has been made to explain this book's examples at that level. The
server-side applications are introduced with a brief discussion of servlets and Java Server
Pages, supported by the information in Appendix B on downloading and installing the
Apache HTTP server and the Tomcat servlet and JSP eengine. If you are looking for a
beginner-level Java book, consider Java 2 Enterprise Edition Bible (ISBN 0-7645-0882-2)
by Justin Couch and Daniel H. Steinberg. For the beginning- to-intermediate-level
programmer, Java Database Programming Bible introduces all the various technologies
available to you as a J2EE programmer. If you have never used J2EE before, this book
will show you where to start and the order in which to approach your learning.

For the more advanced-level programmer, this book serves as a guide to expanding your
horizons to include the more concentrated areas of programming. Use this book as a
guide to exploring more possibilities within the area that you have already been working
on or to find new ways to address a problem. Finally, you can use this book to learn about
new areas that you may have not heard of before. Because of the breadth of J2EE, it is
always possible that new topics exist that you haven't heard of. Even after six-plus years
of Java programming experience, I am constantly finding new items popping up that I
want to learn about.

How to Use this Book

This book is divided into a number of parts. Each part covers a different aspect of the
technology, while the chapters focus on individual elements. The examples in the various
chapters are intended to provide a set of practical applications that you can modify to suit
your own needs.

Preface

-3-

The depth of coverage of each aspect of the technology is sufficient for you to be able to
understand and apply Java database programming in most of the situations you will
encounter. However, this book assumes that you are comfortable downloading and
working with the Javadocs to ferret out the details of an API. Unlike some books, Java
Database Programming Bible does not reproduce the Javadocs within its covers.

This book's approach is to present the different aspects of the technology in the context of
a set of real-world examples, many of which may be useful as they are, although some
may form the foundation of your own applications. For example, the book presents JDBC
core API in the context of a simple Swing application for the desktop, while the extension
API is covered in a series of server-side Web applications.

Since I have never read a programming book from cover to cover, I don't expect you to,
either. Individual chapters and even examples within chapters are intended to stand by
themselves. This necessarily means that there is a certain amount of repetition of key
concepts, with cross-references to other parts of the book that provide more detail.

If you don't have much of an understanding of database technology, I do recommend that
you read Part I, which introduces the basic concepts. If you know something about the
JDBC core API, but you are not familiar with the extension API, you might want to read
just the JDBC chapter in Part I to see how it all fits together.

This book is made up of six parts that can be summarized as follows.

Part I: Introduction to Databases, SQL, and JDBC

The introductory chapters discuss what a relational database is and how to create and
work with one. This part is concerned mainly with the big picture, presenting overviews of
the technology in such a way that you can see how the parts fit together. This part
contains an overview of the SQL language, as well as an explanation of JDBC as a
whole.

Part II: Using JDBC and SQL in a Two-Tier Client/Server Application

Part II presents the JDBC core API and SQL in the context of a series of desktop
applications. These applications are combined in the final chapter of this part to form a
Swing GUI that can be used as a control panel for any database system. A key concept
presented in this part of the book is the way that JDBC can be used with any RDBMS
system by simply plugging in the appropriate drivers.

Part III: A Three-Tier Web Site with JDBC

One of the most common Java database applications is the creation of dynamic Web
sites using servlets, JSPs, and databases. This part discusses the JDBC extension API in
the context of developing a Web application. It also talks about using JDBC and SQL to

Preface

-4-

insert large objects such as images into a database, and retrieving them for display on a
Web page.

Part IV: Using Databases, JDBC, and XML

Another big application area for Java and database technologies is the use of XML. This
part introduces XML and the Document Object Model, and it presents different ways to
work with Java, databases, and XML. This part also discusses the design of a simple
JDBC driver and a SQL engine to create and query XML documents.

Part V: EJBs, Databases, and Persistence

Applications using Enterprise Java Beans are another significant area where Java and
databases come together. This part introduces EJBs and persistence, and it compares
bean-managed persistence with container-managed persistence.

Part VI: Database Administration

The final major topics we discuss are often overlooked in books about database
programming: database administration, and tuning. This oversight might be
understandable if all databases had a dedicated administrator, but in practice it frequently
falls to the Java developer to handle this task, particularly where smaller systems are
involved.

Appendixes

The appendixes are a comparison of some major SQL dialects and a guide to installing
Apache and Tomcat.

Companion Web Site

Be sure to visit the companion Web site, where you can download all of the code listings
and program examples covered in the chapters. The URL for the website is:
http://www.wiley.com/extras.

Conventions Used in this Book

This book uses special fonts to highlight code listings and commands and other terms
used in code. For example:

This is what a code listing looks like.

In regular text, monospace font is used to indicate items that would normally appear in
code.

Preface

-5-

This book also uses the following icons to highlight important points:

 Note The Note icon provides extra information to which you need to pay
special attention.

 Tip The Tip icon shows a special way of performing a particular task.
 Caution The Caution icon alerts you to take care when performing certain

tasks and procedures.
 Cross-Reference The Cross-Reference icon refers you to another part of the book or

another source for more information on a topic.

Acknowledgments

Writing a book is both challenging and rewarding. Sometimes, it can also be very
frustrating. However, like any other project, it is the people you work with who make it an
enjoyable experience. I would like to thank Grace Buechlein for her patience and
encouragement, and my co-authors, Kunal Mittal, who also acted as the technical editor,
and Andrew Yang, the EJB guru, for their contributions.

Chapter 1:Relational Databases

-6-

Chapter 1: Relational Databases

In This Chapter

The purpose of this chapter is to lay the groundwork for the rest of the book by explaining
the underlying concepts of Relational Database Management Systems. Understanding
these concepts is the key to successful Java database programming. In my experience,
just understanding how to handle the Java side of the problem is not enough. It is
important to understand how relational databases work and to have a reasonable
command of Structured Query Language (SQL) before you can do any serious Java
database programming.

Understanding Relational Database Management Systems

A database is a structured collection of meaningful information stored over a period of
time in machine-readable form for subsequent retrieval. This definition is fairly
intuitive and says nothing about structure or methodology. By this definition, any file
or collection of files can be considered a database. However, to be useful in practical
terms, a database must form part of a system that provides for the management of
the data it contains. Seen from this perspective, a database must be more than a
mere collection of files. It must be a complete system.

A practical database management system combines the physical storage of data with
the capability to manage and interact with the data. Such a system must support the
following tasks:

§ Creation and management of a logical data structure

§ Data entry and retrieval

§ Manipulation of the data in a logical and consistent manner

§ Storage of data reliably over a significant period of time

Prior to the development of modern relational databases, a number of different
approaches were tried. In many cases, these were simple, proprietary data-storage
systems designed around a specific application. However, large corporations, notably
IBM, were marketing more general solutions.

The Relational Model

The big step forward in database technology was the development of the relational
database model. The relational database derives from work done in the late 1960s by
E.F. Codd, a mathematician at IBM. His model is based on the mathematics of set
theory and predicate logic. In fact, the term relational has its roots in the mathematical

Chapter 1:Relational Databases

-7 -

terminology of Codd's paper entitled "A relational model of data for large shared data
banks," which was published in Communications of the ACM, Vol. 13, No. 6, June
1970, pp. 377-387. In this paper, Codd uses the terms relation, attribute , and tuple
where more common programming usage refers to table, column, and row,
respectively.

The importance of Codd's ideas is such that the term "database" generally refers to a
relational database. Similarly, in common usage, a Database Management System,
or DBMS, generally means a Relational Database Management System. The terms
are used interchangeably in this chapter, and throughout the book.

Codd's model covers the three primary requirements of a relational database:
structure, integrity, and data manipulation. The fundamentals of the relational model
are as follows:

§ A relational database consists of a number of unordered tables.

§ The structure of these tables is independent of the physical storage medium used to store the

data.

§ The contents of the tables can be manipulated using nonprocedural operations that return tables.

The implementation of Codd's relational model means that a user does not need to
understand the physical structure of the data in order to access and manage data in
the database. Rather than accessing data by referring to files or using pointers, the
user accesses data through a common tabular architecture. The relational model
maintains a clear distinction between the logical views of the data presented to the
user and the physical structure of the data stored in the system.

Codd based his model on a simple tabular structure, though his term for a table was a
relation. Each table is made up of one or more rows (or tuples). Each row contains a
number of fields, corresponding to the columns or attributes of the table.

Throughout the rest of this book, the more common programming terms are used:
table, column, and row. Generally, only database theorists use Codd's original
terminology; in that context, you are most likely to see references to relations,
attributes, and tuples.

The tabular structure Codd defines is simple and relatively easy for the user to
understand. It is also sufficiently general to be capable of representing most types of
data in virtually any kind of structure. An additional advantage of a tabular structure is
that tables are amenable to manipulation by a clearly defined set of mathematical
operations that generate results that are also in the form of tables. These
mathematical operations lend themselves readily to implementation in a high-level
language. In fact, Codd's rules require that a high level language be incorporated in
the RDBMS for just this purpose. That language has evolved into the Structured
Query Language, SQL, discussed in subsequent chapters.

Chapter 1:Relational Databases

-8-

The use of a high-level language to manipulate the data at the logical level is an
important feature, providing a level of abstraction which lets the user insert or retrieve
data from the tables based on attributes of the data rather than its physical structure.
For example, rather than requiring the user to retrieve a number stored in a certain
location on disk, the use of a high-level query language allows the user to request the
checking balance of a particular customer's account by account number or customer
name.

A further advantage of this approach is that, while the user defines his or her requests
in logical terms, the database management system (DBMS) can implement them in a
highly optimized manner with respect to the physical implementation of the storage
system. By decoupling the logical operations from the physical operations, the DBMS
can achieve a combination of user friendliness and efficiency that would not
otherwise be possible.

Codd's Rules

When Codd initially presented his paper, the meaning of the relational model he
described was not widely understood. To clarify his ideas, Codd published his famous
Fidelity Rules, which are summarized in Table 1-1. In theory, a RDBMS must conform
to these rules. As it turns out, some of these rules are extremely difficult to implement
in practice, so no existing RDBMS complies fully.

Table 1-1: Codd's Rules

Rule Name Description

0 Foundation Rule A RDBMS must use its relational facilities exclusively to

manage the database.

1 Information Rule All data in a relational database must be explicitly

represented at the logical level as values in tables and in

no other way.

2 Guaranteed Access Rule Every data element must be logically accessible through

the use of a combination of its primary key name,

primary key value, table name, and column name.

3 Systematic Nulls Rule The RDBMS is required to support a representation of

missing and inapplicable information that is systematic,

distinct from all regular values, and independent of data

type.

4 Dynamic Catalog Rule The database description or catalog must also be stored

at the logical level as tabular values. The relational

language must be able to act on the database design in

the same manner in which it acts on data stored in the

Chapter 1:Relational Databases

-9-

Table 1-1: Codd's Rules

Rule Name Description

structure.

5 Sub Language Rule An RDBMS must support a clearly defined

data-manipulation language that comprehensively

supports data manipulation and definition, view

definition, integrity constraints, transactional boundaries,

and authorization.

6 View Update Rule Data can be presented to the user in different logical

combinations called views. All views must support the

same range of data-manipulation capabilities as are

available for tables.

7 High Level Language

Rule

An RDBMS must be able to retrieve relational data sets.

It has to be capable of inserting, updating, retrieving, and

deleting data as a relational set.

8 Physical Data

Independence Rule

Data must be physically independent of application

programs.

9 Logical Data

Independence Rule

Applications software must be independent of changes

made to the base tables.

10 Integrity Independence

Rule

Integrity constraints must be specified separately from

application programs and stored in the catalog. It must

be possible to change such constraints when

appropriate without unnecessarily affecting existing

applications.

11 Distribution Independence

Rule

Existing applications should continue to operate

successfully when a distributed version of the DBMS is

introduced or when existing distributed data is

redistributed around the system.

12 Non Subversion Rule If an RDBMS has a low-level (record-at-a-time) interface,

that interface cannot be used to subvert the system or to

bypass a relational security or integrity constraint.

Rather than explaining Codd's Rules in the order in which they are tabulated, it is
much easier to explain the practical implementation of a RDBMS and to refer to the
relevant rules in the course of the explanation. For example, Rule 1, the Information
Rule, requires that a ll data be represented as values in tables; it is important to
understand the idea of tables before moving on to discuss Rule 0, which requires that
the database be managed in accordance with its own rules for managing data.

TE
AM
FL
Y

Team-Fly®

Chapter 1:Relational Databases

-10-

Tables, Rows, Columns, and Keys

Codd's Information Rule (Rule 1) states that all data in a relational database must be
explicitly represented at the logical level as values in tables and in no other way. In
other words, tables are the basis of any RDBMS. Tables in the relational model are
used to represent collections of objects or events in the real world. A single table
should represent a collection of a single type of object, such as customers or
inventory items.

All relational databases rely on the following design concepts:

§ All data in a relational database is explicitly represented at the logical level as values in tables.

§ Each cell of a table contains the value of a single data item.

§ Cells in the same column are members of a set of similar items.

§ Cells in the same row are members of a group of related items.

§ Each table defines a key made up of one or more columns that uniquely identify each row.

The preceding ideas are illustrated in Table 1-2, which shows a typical table of names
and addresses from a relational database. Each row in the table contains a set of
related data about a specific customer. Each column contains data of the same kind,
such as First Names, or Middle Initials, and each cell contains a unique piece of
information of a given type about a given customer.

Table 1-2: Customers Table

ID FIRST_NAME MI LAST_NAME STREET CITY ST ZIP

100 Michael A Corleone 123 Pine New York NY 10006

101 Fredo V Corleone 19 Main New York NY 10007

103 Francis X Corleone 17 Main New York NY 10005

106 Kay K Adams 109

Maple

Newark NJ 12345

107 Francis F Coppola 123

Sunset

Hollywood CA 23456

108 Mario S Puzo 124 Vine Hollywood CA 23456

The ID column is a little different from the other columns in that, rather than
containing information specific to a given customer, it contains a unique, system
assigned identifier for the customer. This identifier is called the primary key. The
importance of the primary key is discussed in Chapter 2 .

This simple table illustrates two of the most significant requirements of a relational
database, which are as follows:

Chapter 1:Relational Databases

-11-

§ All data in a relational database is explicitly represented at the logical level as values in tables.

§ Every data element is logically accessible through the use of a combination of its primary key

name, primary key value, table name, and column name.

It is also apparent from the example that the order of the rows is not significant. Each
row contains the same information regardless of whether the rows are ordered
alphabetically, ordered by state, or, as in the example, ordered by ID.

Codd's Foundation Rule (Rule 0) states that a RDBMS must use its relational facilities
exclusively to manage the database; his Dynamic Catalog Rule (Rule 4) states that
the database description or catalog must also be stored at the logical level as tabular
values and that the relational language must be able to act on the database design in
the same manner in which it acts on data stored in the structure.

These rules are implemented in most RDBMS systems through a set of system tables.
These tables can be accessed using the same database management tools used to
access a user database. Figure 1-1 shows a SQL Server display of the tables in the
Customers database discussed in this book. The system tables are normally
displayed in lower case in SQL Server, so I usually use upper case names for my own
application specific tables. The table syscolumns, for example, is SQL Server's table
of all the columns in all the tables in this database. If you open it, you will find entries
for each of the columns specified in the Customers Table shown above, as well as
every other column used anywhere in the database.

Figure 1-1: SQL Server creates application tables (uppercase) and system tables (lowercase) to

manage databases.

Chapter 1:Relational Databases

-12-

Codd's Physical Data Independence Rule (Rule 8), which states that data must be
physically independent of application programs, is also clearly implemented through
the tabular structure of an RDBMS. All application programs interface with the tables
at a logical level, independent of the structure of both the table and of the underlying
storage mechanisms.

Nulls

In a practical database, situations arise in which you either don't know the value of a
data element or don't have an applicable value. For example, in Table 1-2, what if you
don't know the value of a particular data item? What if, for example, Francis Xavier
Corleone changed his name to just plain Francis Corleone, with no middle initial?
Does that blow away the whole table? The answer lies in the concept of systematic
nulls.

Codd's Systematic Nulls Rule (Rule 3) states that the RDBMS is required to support a
representation of missing and inapplicable information that is systematic, distinct from
all regular values, and independent of data type. In other words, a relational database
must allow the user to insert a NULL when the value for a field is unknown or not
applicable. This results in something like the example in Table 1-3.

Table 1-3: Inserting NULLs into a Table

ID FIRST_NAME MI LAST_NAME STREET CITY ST ZIP

103 Francis <NULL> Corleone 17 Main New

York

NY 10005

Clearly, the requirement to support NULLS means that the RDBMS must be able to
handle NULL values in the course of normal operations in a systematic way. This is
managed through the ability to insert, retrieve, and test for NULLS and to specify
NULLS as valid or invalid column va lues.

Primary Keys

Codd's Guaranteed Access Rule (Rule 2) states that every data element must be
logically accessible through the use of a combination of its primary key name, primary
key value, table name, and column name. This is guaranteed by designating a
primary key that contains a unique value for each row in the table. Each table can
have only one primary key, which can be any column or group of columns in the table
having a unique value for each row.

It is worth noting that, while most relational database management systems will let
you create a table without a primary key, the usability of the table will be
compromised if you fail to assign a primary key. The reason for this is that one of the
strengths of a relational database is the ability to link tables to each other. These links

Chapter 1:Relational Databases

-13 -

between tables rely on using the primary key as a linking mechanism, as discussed in
Chapter 2 .

Primary keys can be simple or composite. A simple key is a key made up of one
column, whereas a composite key is made up of two or more columns. Although there
is no absolute rule as to how you select a column or group of columns for use as a
primary key, the decision should usually be based upon common sense. In other
words, you should base your choice of a primary key upon the following factors:

§ Use the smallest number columns necessary, to make key access efficient.

§ Use columns or groups of columns that are unlikely to change, since changes will break links

between tables.

§ Use columns or groups of columns that are both simple and understandable to users.

In practice, the most common type of key is a column of unique integers specifically
created for use as the primary key. The unique integer serves as a row identifier or ID
for each row in the table. Oracle, in fact, defines a special ROW_ID pseudo column,
and Access has an AutoNumber data type commonly used for this purpose. You can
see how this works in Table 1-2.

Another good reason to use a unique integer as a primary key is that integer
comparisons are far more efficient than string comparisons. This means that
accessing data using a single integer as a key is faster than using a string or, in the
case of a multiple column key, several integers or strings.

Note Since primary keys are used as unique row identifiers, they can never

have a NULL value. The NOT NULL integrity constraint must be applied to
a column designated as a primary key. Many Relational database
Management Systems apply the NOT NULL constraint to primary keys
automatically.

Foreign Keys

A foreign key is a column in a table used to refe rence a primary key in another table.
If your database contains only one table, or a number of unrelated tables, you won't
have much use for your primary key. The primary key becomes important when you
need to work with multiple tables. For example, in addition to the Customers Table
(Table 1-2), your business application would probably include an Inventory Table, an
Orders Table, and an Ordered Items Table. The Inventory Table is shown in Table
1-4.

Table 1-4: Inventory Table

Item_Number Name Description Qty Cost

1001 Corn Flakes Cereal 178 1.95

Chapter 1:Relational Databases

-14-

Table 1-4: Inventory Table

Item_Number Name Description Qty Cost

1002 Rice Krispies Cereal 97 1.87

1003 Shredded Wheat Cereal 103 2.05

1004 Oatmeal Cereal 15 0.98

1005 Chocolate Chip Cookies 217 1.26

1006 Fig Bar Cookies 162 1.57

1007 Sugar Cookies Cookies 276 1.03

1008 Cola Soda 144 0.61

1009 Lemon Soda 96 0.57

1010 Orange Soda 84 0.71

Notice that the Inventory Table includes an Item_Number column, which is the
primary key for this table.

When a customer places an order, two additional tables come into use. The first of
these is the Ordered Items Table, which lists the inventory items and quantities in
each order. This is shown in Table 1-5.

Table 1-5: Ordered Items Table

ID Order_Number Item_Number Qty

5000 2 1001 2

5001 2 1004 1

5002 2 1005 4

5003 2 1010 6

5004 3 1006 4

5005 3 1009 2

5006 4 1002 5

5007 4 1003 2

5008 5 1006 3

5009 5 1007 1

5010 5 1008 2

Chapter 1:Relational Databases

-15-

In addition to its primary key, the Ordered Items Table contains two foreign keys. In
this case, they are the Item_Number, from the Inventory Table, and the
Order_Number, from the Orders Table. The Orders Table is shown in Table 1-6.

Table 1-6: Orders Table

Order_Number Customer_ID Order_Date Ship_Date

2 101 12/8/01 12/10/01

3 103 12/9/01 12/11/01

4 104 12/9/01 12/11/01

6 120 12/12/01 12/14/10

5 106 12/10/01 12/12/01

7 121 12/14/01 12/16/01

The Orders Table contains all the information defining the customer's order. Its
primary key is the Order_Number column, and it contains the foreign key column
Customer_ID, pointing to the Customers table, to identify the customer placing the
order.

Notice that the way these tables have been designed eliminates redundancy. No item
of information is saved in more than one place, and each piece of information is
saved as a single row in the appropriate table.

Cross-Reference Eliminating redundancy is an important aspect of database

design. By ensuring that information is stored in only one
place, the problems resulting from discrepancies between
different copies of the same data item are eliminated.

It is easy to understand how the keys are used if you analyze one of the orders. For
example, you can find out all about the customer who placed order 4 by looking up
customer 104 in the Customers Table. Similarly, by referring to the Ordered_Items
Table, you can see that the items ordered on order 4 were 5 of inventory item 1002
and 2 of inventory item 1003. Looking these numbers up in the Inventory Table tells
you that inventory item number 1002 refers to Rice Krispies, while inventory item
number 1003 refers to Shredded Wheat.

By combining the information in these tables, you can see that order 4 was placed by
customer 104, Vito Corleone, on 12/9/01, and that he ordered 5 boxes of Rice
Krispies and 2 boxes of Shredded Wheat, inventory numbers 1002 and 1003,
respectively, for shipment on 12/11/01. This information is obtained by matching up
the various keys, using a SQL statement such as the following:

Chapter 1:Relational Databases

-16-

SELECT c.First_Name, c.Last_Name, i.Name, oi.Qty

FROM CUSTOMERS c, ORDERS o, ORDERED_ITEMS oi,

 INVENTORY i

WHERE o.Order_Number = 4 AND

 c.Customer_Id = o.Customer_Id AND

 i.Item_Number = oi.Item_Number AND

 o.Order_Number = oi.Order_Number;

SQL commands such as the SELECT command shown above are reviewed briefly
later in this chapter and are discussed in considerable detail in subsequent chapters.

Relationships

As illustrated in the preceding discussions of primary and foreign keys, they are
defined to model the relationships among the different tables in a database. These
tables can be related in one of three ways:

§ One-to-one

§ One-to-many

§ Many-to-many

One-to-one relationships

In a one-to-one relationship, every row in the first table has a corresponding row in
the second table. This type of relationship is often created to separate different types
of data for security reasons. For example, you might want to keep confidential
information such as credit-card data separate from less restricted information.

Another common reason for creating tables with a one-to-one relationship is to
simplify implementation. For example, if you are creating a Web application involving
several forms, you might want to use a separate table for each form.

Other reasons for breaking a table into smaller parts with one-to-one relationships
between them are to improve performance or to overcome inherent restrictions such
as the maximum column count that a database system supports.

Tables related in a one-to-one relationship should always have the same primary key.
This is used to perform joins when the related tables are queried together.

One-to-many relationships

In a one-to-many relationship, every row in the first table can have zero, one, or many
corresponding rows in the second table. But for every row in the second table, there
is exactly one row in the first table. For example, there is a one-to-many relationship
between the Orders Table and the Ordered_Items Table reviewed previously.

Chapter 1:Relational Databases

-17-

One-to-many relationships are also sometimes called parent-child or master-detail
relationships because they are commonly used for lookup tables. The relationship
between the Orders Table and the Ordered_Items Table is an example of a
one-to-many relationship, where a single order corresponds to multiple ordered
items.

Many-to-many relationships

In a many-to-many relationship, every row in the first table can have many
corresponding rows in the second table, and every row in the second table can have
many corresponding rows in the first table. Many-to-many relationships can't be
directly modeled in a relational database. They must be broken into multiple
one-to-many relationships.

The Ordered_Items Table illustrates how a many-to-many relationship can be broken
into multiple one-to-many relationships. In the customer orders example illustrated by
Tables 1-4 through 1-6, orders and inventory are related in a many-to-many
relationship; multiple inventory items can correspond to a single order, and a single
inventory item can appear on multiple orders. The Ordered_Items Table is used to
implement a one-to-many mapping of inventory items to orders.

Views

Codd's View Update Rule (Rule 6) states that data can be presented to the user in
different logical combinations, called views. All views must support the same range of
data-manipulation capabilities as are available for a table.

Views are implemented in a relational database system by allowing the user to select
data from the database to create temporary tables, known as views. These views are
usually saved by name along with the selection command used to create them. They
can be accessed in exactly the same way as normal tables.

Frequently, views are used to create a table that is a subset of an existing table.
Table 1-7 is a typical example, showing rows from Table 1-2 (where Last_Name =
'Corleone', and City = 'New York').

Table 1-7: View of New York Corleones

ID FIRST_NAME MI LAST_NAME STREET CITY ST ZIP

100 Michael A Corleone 123 Pine New York NY 10006

101 Fredo X Corleone 19 Main New York NY 10007

103 Francis X Corleone 17 Main New York NY 10005

Chapter 1:Relational Databases

-18-

Normalization

Normalization is the process of organizing the data in a database by making it
conform to a set of rules known as the normal forms. The normal forms are a set of
design guidelines that are designed to eliminate redundancies and to ensure
consistent dependencies. Apart from wasting space, redundant data creates
maintenance problems. For example, if you save a customer's address in two
locations, you need to be absolutely certain to make any required changes in both
locations.

It is important to ensure that data dependencies are consistent so that you can
access and manipulate data in a logical and consistent manner. A glance at the
examples shown in Tables 1-2 and 1-4 through 1-6 reveals how related data items
are stored in the same table, separate from unrelated items.

Although normalization enhances the integrity of the data by minimizing redundancy
and inconsistency, it does so at the cost of some impact on performance.
Data-retrieval efficiency can be reduced, since applying the normalization rules can
result in data being redistributed across multiple records. This can be seen from the
examples shown in Tables 1-2 and 1-4 through 1-6, where information pertaining to a
single order is distributed across four separate tables.

A database that conforms to the normalization rules is said to be in normal form. If the
database conforms to the first rule, the database is said to be in first normal form,
abbreviated as 1NF. If it conforms to the first four rules, the database is considered to
be in fourth normal form (4NF).

First normal form

The requirements of the first normal form are as follows:

§ All records have the same number of fields.

§ All fields contain only a single data item.

§ There must be no repeated fields.

The first of these requirements, that all occurrences of a record type must contain the
same number of fields, is a built-in feature of all database systems.

The second requirement, that all fields contain only one data item, ensures that you
can retrieve data items individually. This requirement is also known as the atomicity
requirement. Requiring that each data item be stored in only one field in a record is
important to ensure data integrity.

Finally, each row in the table must be identified using a unique column or set of
columns. This unique identifier is the primary key.

Chapter 1:Relational Databases

-19-

Second normal form

The requirements of the second normal form are as follows:

§ The table must be in first normal form.

§ The table cannot contain fields that do not contain information related to the whole of the key.

The second normal form is only relevant when a table has a multipart key. In the
example shown in table 1-8, which shows inventory for each warehouse, the primary
key, which is the unique means of identifying a row, consists of two fields, the Name
field and the Warehouse field.

Second normal form requires that a table should only contain data related to one
entity, and that entity should be described by its primary key. The Warehouse
Inventory table is intended to describe inventory items in a given warehouse, so all
the data describing the inventory item itself is related to the primary key.

In the example of Table 1-8, the second row shows that there are 97 cases of Rice
Krispies in warehouse #2, purchased at a unit cost of $1.95, and 103 cases of Rice
Krispies in warehouse #7, purchased at a unit cost of $2.05. The warehouse address,
however, describes only part of the key, namely, the warehouse, so it does not
belong in the table. If this information is stored with every inventory item, there is a
potential risk of discrepancies between the address saved for a given warehouse in
different rows, since there is no clearly defined master reference. In addition, of
course, storing the same data item in multiple locations is very inefficient in terms of
space, and requires that any change to the data item be made to all rows containing
the data item, rather than to a single master reference.

Table 1-8: Warehouse Inventory Table

Name Warehouse Address Description Qty Cost

Corn Flakes Warehouse #2 123 Pine Cereal 178 1.95

Rice Krispies Warehouse #2 123 Pine Cereal 97 1.95

Rice Krispies Warehouse #7 24 Holly Cereal 103 2.05

Oatmeal Warehouse #7 24 Holly Cereal 15 0.98

The solution is to move the warehouse address to a Warehouse table linked to the
Inventory table by a foreign key. The resulting tables would look like Tables 1-9 and
1-10. These tables are in the second normal form.

Table 1-9: Inventory Table in 2NF

Name Warehouse Description Qty Cost

TE
AM
FL
Y

Team-Fly®

Chapter 1:Relational Databases

-2 0-

Table 1-9: Inventory Table in 2NF

Name Warehouse Description Qty Cost

Corn Flakes Warehouse #2 Cereal 178 1.95

Rice Krispies Warehouse #2 Cereal 97 1.95

Rice Krispies Warehouse #7 Cereal 103 2.05

Oatmeal Warehouse #7 Cereal 15 0.98

Table 1-10: Warehouse Table in 2NF

Warehouse Address

Warehouse #2 123 Pine

Warehouse #7 24 Holly

In summary, the second normal form requires that any data that is not directly related
to the entire key should be removed and placed in a separate table or tables. These
new tables should be linked to the original table using foreign keys. In the example of
Tables 1-9 and 1-10, the Warehouse column is both part of the primary key of Table
1-9, and the foreign key pointing to Table 1-10.

Third normal form

The requirements of the third normal form are as follows:

§ The table must be in second normal form.

§ The table cannot contain fields that are not related to the primary key.

Third normal form is very similar to second normal form, with the exception that it
covers situations involving simple keys rather than compound keys. In the example
used to explain the second normal form, a compound key was used because
inventory items of the same type, such as Rice Krispies, could have different
attributes such as Warehouse number. If you are tracking unique items, such as
employees, you can have a similar situation, but with a simple key, as shown in Table
1-11:

Table 1-11: Employee Table

Name Department Location

Jones Sales 43 Elm

Smith Production 17 Main

Williams Shipping 123 Pine

Chapter 1:Relational Databases

-21 -

In the example of Table 1-11, the Location column describes the location of the
Department. The employee is located there because he or she belongs to that
department. As in the example for the second normal form, columns that do not
contain data describing the primary key should be removed to a separate table. In this
instance, that means that you should create a separate Departments table,
containing the Department name and location, using the Department column in the
Employees table as a foreign key to point to the Departments table. The resulting
tables are shown in Tables 1-12 and 1-13.

Table 1-12: Normalised Employee Table

Name Department

Jones Sales

Smith Production

Williams Shipping

Table 1-13: Departments Table

Department Location

Sales 43 Elm

Production 17 Main

Shipping 123 Pine

Fourth normal form

The requirements of the fourth normal form are as follows:

§ The table must be in third normal form.

§ The table cannot contain two or more independent multivalued facts about an entity.

For example, if you wanted to keep track of customer phone numbers, you could
create a new table containing a Customer_ID number column, a phone number
column, a fax number column, and a cell-phone number column. As long as a
customer has only one of each listed in the table, there is no problem. However, if a
customer has two land line phones, a fax, and two cell phones, you might be tempted
to enter the numbers as shown in Table 1-14.

Table 1-14: Phone Numbers Table which violates 4NF

CUSTOMER_ID PHONE FAX CELL

100 123-234-3456 123-234-3460 121-345-5678

100 123-234-3457 <NULL> 121-345-5679

Chapter 1:Relational Databases

-22-

Since there is no relationship between the different phone numbers in a given row,
this table violates the fourth normal form, in that there are two or more independent
multivalued facts (or phone numbers) for the customer on each row. The
combinations of land line, fax, and cell phone numbers on a given row are not
meaningful.

The main problem with violating the fourth normal form is that there is no obvious way
to maintain the data. If, for example, the customer decides to give up the cell phone
listed in the first row, should the cell phone number in the second row be moved to
the first row, or left where it is? If he or she gives up the land line phone in the second
row and the cell phone in the first row, should all the phone numbers be consolidated
into one row? Clearly, the maintenance of this database could become very
complicated.

The solution is to design around this problem by deleting the phone, fax, and cell
columns from the original table, and creating an additional table containing
Customer_ID as a foreign key, and phone number and type as data fields (see Table
1-15). This will allow you to handle several phone numbers of different types for each
customer without violating the fourth normal form.

Table 1-15: Phone Numbers Table

CUSTOMER_ID NUMBER TYPE

100 123-234-3456 PHONE

100 123-234-3457 PHONE

100 123-234-3460 FAX

100 121-345-5678 CELL

100 121-345-5679 CELL

Fifth normal form

The requirements of the fifth normal form are as follows:

§ The table must be in fourth normal form.

§ It must be impossible to break down a table into smaller tables unless those tables logically have

the same primary key as the original table.

The fifth normal form is similar to the fourth normal form, except that where the fourth
normal form deals with independent multivalued facts, the fifth normal form deals with
interdependent multivalued facts. Consider, for example, a dealership handling
several similar product lines from different vendors. Before selling any product, a
salesperson must be trained on the product. Table 1-16 summarizes the situation.

Chapter 1:Relational Databases

-23-

Table 1-16: SalesPersons

Salesperson Vendor Product

Jones Acme Widget Printer

Jones Acme Widget Copier

Jones Zeta Products Printer

Jones Zeta Products Copier

This table contains a certain amount of redundancy, which can be removed by
converting the data to the fifth normal form. Conversion to the fifth normal form is
achieved breaking the table down into smaller tables, as shown in Tables 1-17, 1-18,
and 1-19.

Table 1-17: SalesPersons by Vendor

Salesperson Vendor

Jones Acme Widget

Jones Zeta Products

Table 1-18: SalesPersons by Product

Salesperson Product

Jones Printer

Jones Copier

Table 1-19: Products by Vendor

Vendor Product

Acme Widget Printer

Acme Widget Copier

Zeta Products Printer

Zeta Products Copier

Boyce-Codd normal form

Boyce-Codd normal form (BCNF) is a more rigorous version of the third normal form
designed to deal with tables containing the following items:

§ Multiple candidate keys

§ Composite candidate keys

§ Candidate keys that overlap

Chapter 1:Relational Databases

-24-

A relational table is in BCNF only if every column on which some of the columns are
fully functionally dependent is a candidate key. In other words, if the table has a
number of columns or groups of columns which could be used as the primary key
(so-called candidate keys), then to be in BCNF, the table must be in third normal form
for each of those candidate keys.

Normalization in Practice

Most databases can be considered to be adequately normalized when they are in the
fifth normal form. In the fifth normal form, a database has the following important
properties:

§ All records have the same number of fields.

§ All fields contain only a single data item.

§ There are no repeated fields.

§ All fields contain data related to the whole of the primary key.

§ The table does not contain two or more independent multivalued facts about the key.

§ The table does not contain two or more interdependent multivalued facts about the key.

Additional normal forms address situations that only apply in special situations. For
example, Boyce-Codd normal form requires that a table be in third normal form for
every column or group of columns which has the properties which could qualify it for
use as the primary key. In practice, the database designer will usually designate a
primary key, so the Boyce-Codd normal form will not be relevant, as other candidate
keys will not be used, so the third normal form is adequate.

High Level Language

Codd's Sub Language Rule (Rule 5) and his High Level Language Rule (Rule 7)
concern the availability of a language for use with the database. Descriptions of these
rules are restated here:

§ Sub Language Rule — An RDBMS must support a clearly defined data-manipulation language

that comprehensively supports data manipulation and definition, view definition, integrity

constraints, transactional boundaries, and authorization.

§ High Level Language Rule — An RDBMS must be able to retrieve relational data sets. It has to

be capable of insert, update, retrieve and delete data as a relational set.

The main features of this language are that it must have a linear syntax and must
support the following functions:

§ Data-definition operations (including view definitions)

§ Data update and retrieval operations

§ Data-integrity constraints

§ Transaction management

Chapter 1:Relational Databases

-2 5-

§ Data-security constraints

The standard implementation of these rules is the Structured Query Language (SQL).

Structured Query Language

The Structured Query Language (SQL) was first developed by IBM in the 1970s and
was later the subject of several ANSI standards. As a result of the way that the
requirements for a high-level database language are defined, SQL is usually
considered to be composed of a number of sublanguages. These sublanguages are
as follows:

§ Data Definition Language (DDL) is used to create, alter, and drop tables and indexes.

§ Data Manipulation Language (DML) is used to insert, update, and delete data.

§ Data Query Language (DQL) is used to query the database using the SELECT command.

§ Transaction Control Commands are used to start, commit, or rollback transactions.

§ Data Control Language (DCL) is used to grant and revoke user privileges and to change

passwords.

Despite the conventional division of SQL into a number of sublanguages, statements
from any of these constituent sublanguages can be used together. The convention is
really just a reflection of the way Codd's rules define the requirement for a high level
language, with sublanguages for different functions.

The next three sections provide a brief outline of the sublanguages used to perform
the basic database functions of creating databases and tables, populating the tables
with data, and retrieving the data. These functions are performed by the DDL, the
DML, and the DQL sublanguages.

Data Definition Language

Data definition operations are handled by SQL's Data Definition Language, which is
used to create and modify a database. The SQL2 standard refers to DDL statements
as "SQL Schema Statements." The SQL standard defines a Schema as a high level
abstraction of a container object which contains other database objects.

A good example of the use of the DDL is the creation of a table. When a table is
created, various parameters are set for each column. These include the following:

§ Data types. These include CHARACTER,INTEGER, FLOAT, and so on.

§ Data constraints.These include such restrictions as whether NULLS are permitted.

§ Default values. Default values can be assigned for each column.

The basic form of the CREATE TABLE command is:

Chapter 1:Relational Databases

-26-

CREATE TABLE tableName

 (columnName dataType[(size)] [constraints] [default value],...);

Integrity constraints and triggers

It is obvious from the earlier discussion of primary and foreign keys that the idea of
linking tables through the use of keys can go completely haywire if a primary key has
either a NULL value or a value that is not unique. Problems like this are handled using
constraints. The main types of constraint are as follows:

§ NULL or NOT NULL constraint specifies whether a field is required to contain valid data or

whether it can be left empty.

§ The UNIQUE constraint specifies that no two records can have the same value in a particular

column.

§ The PRIMARY KEY constraint specifies that this column is the primary key for the table.

In addition to defining constraints, the SQL language allows the user to specify
security rules that are applied when specified operations are performed on a table.
These rules are known as triggers, and work like stored procedures, with the
exception that, instead of being called by name, they are triggered automatically by
the occurrence of a database event such as updating a table.

A typical use of a trigger might be to check the validity of an update to an inventory
table. The following code snippet shows a trigger that automatically rolls back or
voids an attempt to increase the cost of an item in inventory by more than 15 percent:

CREATE TRIGGER FifteenPctRule ON INVENTORY FOR INSERT, UPDATE AS

DECLARE @NewCost money

DECLARE @OldCost money

SELECT @NewCost = cost FROM Inserted

SELECT @OldCost = cost FROM Deleted

IF @NewCost > (@OldCost * 1.15)

ROLLBACK Transaction

Transaction management and the SQL ROLLBACK command are discussed later in
this chapter and in more detail in subsequent chapters.

Data Manipulation Language

The Data Manipulation Language comprises the SQL commands used to insert data
into a table and to update or delete data. SQL provides the following three statements
you can use to manipulate data within a database:

§ INSERT

§ UPDATE

Chapter 1:Relational Databases

-27 -

§ DELETE

The INSERT statement is used to insert data into a table, one row or record at a time.
It can also be used in combination with a SELECT statement to perform bulk inserts
of multiple selected rows from another table or tables.

The UPDATE command is used to modify the contents of individual columns within a
set of rows. The UPDATE command is normally used with a WHERE clause, which is
used to select the rows to be updated.

The DELETE command is used to delete selected rows from a table. Again, row
selection is based on the result of an optional WHERE clause.

Data Query Language

The Data Query Language is the portion of SQL used to retrieve data from a
database in response to a query. The SELECT statement is the heart of a SQL query.
In addition to its use in returning data in a query, it can be used in combination with
other SQL commands to select data for a variety of other operations, such as
modifying specific records using the UPDATE command.

The most common way to use SELECT, however, is as the basis of data retrieval
commands, or queries, to the database. The basic form of a simple query specifies
the names of the columns to be returned and the name of the table they can be found
in. A basic SELECT command looks like this:

SELECT columnName1, columnName2,.. FROM tableName;

In addition to this specific form, where the names of all the fields you want returned
are specified in the query, SQL supports a wild-card form. In the wild-card form, an
asterisk (*) is substituted for the column list, as shown here:

SELECT * FROM tableName;

The wild card tells the database management system to return the values for all
columns.

The real power of the SELECT command comes from the use of the WHERE clause.
The WHERE clause allows you to restrict the query to return the requested fields from
only records that match some specific criteria. For example, you can query the
Customers Table shown in Table 1-2 by using this statement:

SELECT * FROM Contact_Info WHERE Last_Name = 'Corleone';

Chapter 1:Relational Databases

-28-

The result of this query is to return all columns from any row containing the
Last_Name "Corleone". The order in which the columns are returned is the order in
which they are stored in the database; the row order is arbitrary.

Comparison operators

In addition to the equality operator used in the preceding example, SQL supports a
full range of standard comparison operators, including special operators used to test
for the presence or absence of a NULL value in a column:

§ Equality (=)

§ Inequality (<>)

§ Greater Than (>) and Greater Than or Equal To (>=)

§ Less Than (<) and Less Than or Equal To (<=)

§ IS NULL

§ IS NOT NULL

Comparison operations can be combined using the basic logical operators: AND, OR
and NOT.

Another way of combining operations is to nest subqueries. The syntax for nesting
subqueries uses parentheses to indicate nesting levels as shown below:

SELECT *

FROM Tables

WHERE

 (SUBQUERY

 (SUBQUERY

 (SUBQUERY)));

Sorting the results of a query

A common requirement when retrieving data from an RDBMS by using the SELECT
statement is to sort the results of the query in alphabetical or numeric order on one or
more of the columns. Sorting result is done using the ORDER BY clause in a
statement like this:

SELECT First_Name, Last_Name, City, State

FROM CUSTOMERS

WHERE Last_Name = 'Corleone'

ORDER BY First_Name;

Joining tables

Chapter 1:Relational Databases

-29-

The information in a practical database is usually distributed across several tables,
each of which contains sets of logically related data. A typical example of such a
database is shown in Tables 1-2 and 1-4 through 1-6.

When a customer places an order, an entry is made in the Orders Table, assigning an
order number and containing the Customer number and the order date. Then entries
are added to the Ordered_Items Table, recording the order number, item number,
and quantity.

One of the most powerful features of SQL is its ability to combine data from several
tables by using JOINS. For example, the following SQL statement performs a JOIN
on the ORDERS, CUSTOMERS, ORDERED_ITEMS and INVENTORY Tables to
total the purchases each customer makes:

SELECT LAST_NAME + ',' + FIRST_NAME AS NAME,

 SUM(oi.QTY * COST * 1.6) AS PURCHASES

FROM ORDERS o, CUSTOMERS c, ORDERED_ITEMS oi,

 INVENTORY i

WHERE O.CUSTOMER_NUMBER = C.CUSTOMER_NUMBER AND

 O.ORDER_NUMBER = OI.ORDER_NUMBER AND

 OI.ITEM_NUMBER = I.ITEM_NUMBER

GROUP BY LAST_NAME + ',' + FIRST_NAME;

Here are the results of this query:

NAME PURCHASES

Adams,Kay 11.14

Corleone,Francis 11.87

Corleone,Fredo 22.69

Corleone,Vito 21.52

This example also illustrates the use of aliases both for column names and for tables,
as well as SQL's ability to perform arithmetic and String computations. Here the alias
NAME has been assigned to the concatenation of the Last_Name and First_Name
fields, and the alias PURCHASES to the calculated product of quantity, cost, and the
1.6 markup through the use of the expression:

SELECT LAST_NAME + ',' + FIRST_NAME AS NAME,

 SUM(oi.QTY * COST * 1.6) AS PURCHASES

The use of aliases and SQL's mathematical capabilities are discussed thoroughly in
subsequent chapters.

TE
AM
FL
Y

Team-Fly®

Chapter 1:Relational Databases

-30-

Reporting functions

SQL supports a number of aggregation functions that can be used to provide
statistical or summary information about groups of data elements. The standard
aggregation functions include the following:

§ Sum and Count

§ Average and Standard Deviation

§ Maximum and Minimum

Note Different SQL dialects expand on this basic set of aggregate functions.

You are advised to refer to the documentation provided by the supplier of
your particular RDBMS for details of the aggregate functions provided.

A good practical example of the use of aggregate functions is the creation of a simple
sales report. The following query creates a result set that lists states and the total cost
of goods sold and sales by state:

SELECT STATE, SUM(oi.QTY * COST) AS TOTAL,

 SUM(oi.QTY * COST * 1.6) AS SALES

FROM ORDERS o, CUSTOMERS c, ORDERED_ITEMS oi,

 INVENTORY i

WHERE O.CUSTOMER_NUMBER = C.CUSTOMER_NUMBER AND

 O.ORDER_NUMBER = OI.ORDER_NUMBER AND

 OI.ITEM_NUMBER = I.ITEM_NUMBER

GROUP BY STATE;

The resulting table looks like this:

STATE TOTAL SALES

NJ 20.41 32.65

NY 21.6 34.56

The last three sections have presented a brief discussion of creating databases and
tables, populating the tables with data, and retrieving the data. For the very simplest
of database operations, these capabilities may be sufficient. However, in real world
applications, more complex situations arise in two main areas:

§ In many practical applications, a complete operation cannot be expressed in a single SQL

statement, so a means of handling multiple interdependent statements is required.

§ There is frequently a need, particularly in larger installations, to provide some means of ensuring

the security of an application.

Chapter 1:Relational Databases

-31 -

These requirements are handled by the Transaction Control Commands and the Data
Control Language, respectively. Since these topics require some explanation, the
respective sublanguages are reviewed in the appropriate sections below.

Transaction Management and the Transaction Control Commands

Transaction management refers to the capability of an RDBMS to execute database
commands in groups, known as transactions . A transaction is a group or sequence of
commands, all of which must be executed in order and all of which must completed
successfully.

The Transaction Control Commands are used to control transactions.

The ACID Test

A commonly used expression in data processing is the ACID test. The ACID test
defines a set of properties that a database management system must have in order to
be adequate for handling transactions. These properties are as follows:

§ Atomicity

§ Consistency

§ Isolation

§ Durability

A discussion of the preceding properties follows.

Atomicity

Transactions must be atomic. Specifically, a transaction must be executed in its
entirety and committed as a whole or rolled back as a whole, so that either all
changes that constitute a transaction take effect or none of them take effect. A classic
example of an atomic transaction is a transfer of funds from a checking account to a
savings account. Clearly, you want both the deduction from savings and the addition
to checking to take place, failing which, neither should take place. When atomicity is
not guaranteed, you have an accounting nightmare.

Consistency

The consistency requirement defines a transaction as legal only if it obeys
user-defined integrity cons traints. Essentially, these constraints define legal database
states and proscribe transactions that cause transitions from a legal state to an illegal
state. For example, if you are making a transfer of funds from a checking account to a
savings account and your business rules require that such a transfer be logged to
another table, any problems updating that table will violate the integrity constraint and
will require that the entire transaction be rolled back.

Chapter 1:Relational Databases

-32-

Isolation

Isolation means that the effects of a transaction must be invisible to other
transactions until the current transaction is complete. For example, if you are making
a transfer of funds from a checking account to a savings account, the intermediate
balances after savings have been debited, but before checking has been credited,
must not be available to an outside transaction. If the intermediate balances are
available to an outside transaction, you might, for example, generate an insufficient
funds warning, since the funds will show up in neither account.

Durability

The durability requirement demands that, once committed, the results of a transaction
be preserved in some form of long term storage. In other words, once a funds transfer
has been made from savings to checking, the DBMS must save it to persistent
storage.

Transaction Management in SQL

If anything goes wrong during the transaction, the database management system
allows the entire transaction to be cancelled, or "Rolled Back." If, on the other hand, it
completes successfully, the transaction can be saved to the database, or
"Committed."

A transaction typically involves several related commands, as in the case of a bank
transfer. If a client orders a transfer of funds from his savings account to his checking
account, at least these two database-access commands must be executed:

§ The savings account must be debited.

§ The checking account must be credited.

If one of these commands is executed and the other is not, the funds will either vanish
from the savings account without appearing in the checking account, or the funds will
be credited to the checking account without being withdrawn from the savings
account.

The solution is to combine logically related commands into groups that are committed
as a single transaction. If a problem arises, the entire transaction can be rolled back,
and the problem can be fixed without serious adverse impact on business operations.

SQL supports this requirement through the COMMIT and ROLLBACK commands.
The COMMIT command commits changes made from the beginning of the
transaction to the point at which the command is issued, and the ROLLBACK
command undoes them.

Chapter 1:Relational Databases

-33-

In addition, most databases support the AUTOCOMMIT option, which tells the
database management system to commit all commands individually as they are
executed. This option can be turned on or off with the SET command. By default, the
AUTOCOMMIT option is usually on.

Cross-Reference Chapter 3 provides a comprehensive overview of SQL;

Chapters 5 through 9 give detailed examples of the use of SQL
in the context of the JDBC Core API. Appendix A provides a
comparison of common SQL dialects.

Database Security and the Data Control Language

Databases generally represent a significant investment of time and effort and are
frequently a major corporate asset. As such, ensuring the security of a database is an
important administrative consideration. The most important aspects of database
security are as follows:

§ Ensuring that database access is restricted to authorised and qualified personnel, generally by

some extension of the password principle

§ Ensuring the consistency of the database where many users are accessing and up-dating it

simultaneously

§ Ensuring the physical integrity of the database. At the very least, this involves making provision

for back up and reloading.

Most database management systems incorporate proprietary tools to manage
database security. In general, the access-control mechanisms are similar and use the
SQL language.

Managing Database Users

A user, in database terms, is anyone who has access to the database. Most database
management systems provide the capability of defining different users and groups of
users with different access privileges and different operational roles. When a
database is created, its creator has owner privileges. These allow the user to create
the database and any of its components. After creation, the database may also be
accessed by users who are assigned lower privileges. Data entry clerks, for example,
may only have sufficient privileges to enter limited data into specific tables.

Creating a user

To add individual users to a database, the database administrator must create
database users. This is done using the CREATE USER command. When you create
a user, you can assign a password, certain basic permissions, and an expiration date,
all in one command. You can also add the user to an existing user group.

Altering or dropping a user

Chapter 1:Relational Databases

-34-

During the lifetime of a database user, you may need to make modifications to his or
her password or access expiration date. Similarly, you may want to modify a user's
privileges. These functions are handled using the ALTER USER command.

Ultimately, you may need to remove an individual's access to the database entirely.
This is done using the DROP USER command.

User Privileges

Database management systems define sets of privileges that can be assigned to
users. These privileges correspond to actions that can be performed on objects in the
database. This approach provides a fine degree of control of database access,
allowing the database administrator to do anything he or she may need to do, while
restricting clerical personnel to a lower and potentially less damaging level of access.

When a new database is created, the default owner of the database is the user who
executes the CREATE command. To allow other users to work with the database,
you need to assign them the privileges to do so. Privileges can be assigned either to
individual users or to groups of users.

User privilege levels

User privileges can be assigned at two different levels. Users can be restricted both
at the level of the types of actions they can perform, such as READ, MODIFY, or
WRITE, and at the level of the types of database objects they can access.

Access level privileges can generally be assigned at the following levels:

§ Global level access to all databases on a given server

§ Database level access to all tables in a given database

§ Table level access to all columns in a given table

§ Column level access to single columns in a given table

It is obvious from the range of different access privileges provided that security is a
major consideration in database implementation. Normally, the management of user
privileges is an administrative function, handled by the database administrator.

Granting and revoking user privileges

The SQL GRANT command is used to grant users the necessary access privileges to
perform various operations on the database. In addition to granting a user specified
access privileges, the GRANT command can be used to allow the user to grant a
privilege to other users. There is also an option allowing the user to grant privileges
on all subtables and related tables.

Chapter 1:Relational Databases

-35-

The REVOKE command is used to revoke privileges granted to a user. Like the
GRANT command, REVOKE can be applied at various levels.

Users Groups and Roles

In addition to defining individual users, many systems also allow the database
administrator to organize users into logical groups with the same privileges. Like
users, user groups and roles are managed using SQL commands.

A database role defines what operations a user or group can do on the database,
such as "Create Databases," "Backup Databases," and so on. In other words, roles
are simply predefined sets of user privileges.

Creating, altering and dropping groups

Groups are created in much the same way as individual users. Groups are also
similar to individual users in that groups can be made part of other groups. When a
group is made a part of another group, it inherits the permissions of that group, along
with its own. In this way, you can create an entire hierarchy of groups and users and
manipulate them in accordance with your system needs.

When a group is altered or dropped, only the group is affected. Any users in a group
that is dropped simply lose their membership in the group. The users are otherwise
unaffected. Similarly, when a group is altered by dropping a user, only the group is
affected. The user simply loses his or her membership in the group but is otherwise
unaffected.

Creating roles

User roles are simply a predefined set of user privileges. Most RDBMS systems
support the following roles or their equivalents:

§ Owner – A user who can read or write data and create, modify, and delete the database or its

components

§ Writer – A user allowed to read or write data

§ Reader – Someone allowed to read data but not write to the database

§ Public – The lowest possible status in terms of privileges

User roles are a neat administrative feature designed to save time for database
administrators. Like groups, roles can be defined by the database administrator as
required.

Database Architectures

Chapter 1:Relational Databases

-36-

Codd's Distribution Independence Rule (Rule 11) states that existing applications
should continue to operate successfully when a distributed version of the DBMS is
introduced or when existing distributed data is redistributed around the system. The
need for distributed systems was seen even in the early days of computing.

In modern systems, distribution is accomplished in several different ways. The type of
distribution Codd was talking about would now be considered internal to the RDBMS,
so a database might be distributed across a sizeable cluster of systems and yet its
distribution would be transparent to the Java database programmer, who would
access it as a single RDBMS. From the perspective of the Java database
programmer, a multitier architecture is a far more common form of distribution.

The system architectures that are most common in database applications are the
two-tier and three-tier models. In other words, the Java application either accesses
the database directly or as part of a middle tier server application. A new variation,
which might be called single tier, is the Java Data Objects (JDO) based application, in
which JDO supplies persistence, with no specific persistence code being written by
the Java programmer. Container managed persistence in Enterprise JavaBeans
Applications also abstracts the persistence code, though in a fundamentally different
way, and as part of a multi-tier architecture.

Java Data Objects

In Java, as in any other object-oriented language, the programmer is accustomed to
working primarily with objects. Relational databases, on the other hand, are
organized around smaller data items, which might be considered similar to object
attributes. For example, a customer object in Java might have a number of attributes
such as firstName and lastName, stored individually in separate columns in a
database record.

The JDO architecture supports the concept of transparent persistence, which is
intended to hide the details of the underlying persistence mechanism from the
application. The Java business logic is simply developed in the customary way. The
business logic classes are then enhanced at the byte-code level to generate a
persistence-capable version of the class. Almost all user-defined classes can be
made persistent in this way.

Once the business logic classes have been compiled and enhanced, the application
that uses the enhanced business classes can be developed. The persistence
management of the business objects is transparent. In other words, the application
developer never needs to fetch and store objects or their attributes at the JDBC/SQL
level.

Note Although a JDO application looks and behaves like a single-tier

application, the underlying persistence mechanism can be implemented

Chapter 1:Relational Databases

-37 -

using a local RDBMS or a multitier EJB based architecture. In either case,
completely transparent persistence is achieved.

Two-Tier Model

In the two-tier model, a Java application is designed to interact directly with a
database. Application functionality is divided into these two layers:

§ Application layer, including the JDBC driver, business logic, and user interface

§ Database layer, including the RDBMS

The interface to the database is handled by a Java Database Connectivity (JDBC)
Driver appropriate to the particular database management system being accessed.
The JDBC Driver passes SQL statements to the database and returns the results of
those statements to the application.

A client/server configuration like the one shown in Figure 1-2 is a special case of the
two-tier model, where the database is located on another machine, referred to as the
server. The application runs on the client machine, which is connected to the server
over a network. Commonly, the network is an intranet, using dedicated database
servers to support multiple clients, but it can just as easily be the Internet.

Figure 1-2: A two-tier client/server configuration is typical of office applications.

Part II of this book illustrates the use of basic JDBC and SQL functionality in the
context of a basic two-tier application. That application uses simple Swing
components to create a generic RDBMS graphical user interface (GUI). The inherent
flexibility of a Java/JDBC approach to developing database applications enables you
to access a wide range of RDBMS systems, including Oracle, Sybase, SQL Server,
and MySQL, as well as MS Office applications, using this GUI.

Three-Tier Model

In the three-tier model, the client typically sends requests to an application server,
forming the middle tier. The application server interprets these requests, and formats
the necessary SQL statements to fulfill these requests, and sends them to the
database. The database processes the SQL statements and sends the results back
to the application server, which then sends them to the client.

Chapter 1:Relational Databases

-38-

These are some advantages of a three-tier architecture:

§ Performance can be improved by separating the application server and database server.

§ Business logic is clearly separated from the database.

§ Client applications can use a simple protocol such as CGI to access services.

The three-tier model shown in Figure 1-3 is common in Web applications. In this
scenario, the client tier is frequently implemented in a browser on a client machine;
the middle tier is implemented in a Web server with a servlet engine; and the
database management system runs on a dedicated database server.

Figure 1-3: The three-tier model is typical of Web applications.

These are the main components of a three-tier architecture:

§ Client tier — Typically, this is a thin presentation layer that may be implemented using a Web

browser.

§ Middle tier — This tier handles the business or application logic. This may be implemented

using a servlet engine such as Tomcat or an application server such as JBOSS. The JDBC driver

also resides in this layer.

§ Data source layer — This component includes the RDBMS.

Part III of this book illustrates additional capabilities of the JDBC API. It provides a
three-tier application that uses a Web browser as the client, an Apache/Tomcat
server as the middle tier, and a relational database management system as the
database tier.

Summary

This chapter has given an overview of how Relational Database Management
Systems work. The key building blocks of relational databases have been introduced,
and will be reviewed in more detail in subsequent chapters. The following key topics
have been discussed:

§ Creating and normalising databases and their constituent tables.

§ Using primary and foreign keys to link tables

§ Using the Structured Query Language

§ Understanding transactions and transaction management

Chapter 1:Relational Databases

-39-

In addition, this chapter explored the underlying theory of relational databases
developed by E.F. Codd, and summarized in Codd's rules and the ACID test.
Although these specific topics are not discussed again, they are important in
understanding why relational databases work the way they do.

Chapter 2 explores the design of a simple, but non-trivial database for an XML based
application presented in Part IV . The design is derived from a specification for a legal
invoicing system which uses XML to transmit invoices from legal firms to large
corporate clients. The central topics discussed are the practical design of the tables
required, and of the primary and foreign keys used to link them. Particular attention is
also given to database integrity.

TE
AM
FL
Y

Team-Fly®

Chapter 2:Designing a Database

-40-

Chapter 2: Designing a Database

In This Chapter

Like most of the chapters in this book, this one is built around an example. In this
case, the example is a time and materials tracking and billing system. The objective is
to build a system capable of handling time and materials tracking and invoicing in
accordance with the Legal Electronic Data Exchange Standard (LEDES). Being a
published business, this is a good benchmark for a practical commercial application.

A primary consideration that went into defining the document structure was its
compatibility with existing legacy systems. LEDES mimics the existing paper process,
reflecting current time and materials invoicing practices in the legal profession.

Note Although the LEDES terminology derives from the legal profession, the

system is recognizable as a special case of a time and materials billing
system capable of handling multiple projects or matters within a single
invoice.

Database Design Considerations

The most important consideration in designing a database is the application and its
requirements. For instance, the examples discussed in Chapter 1 refer to a
Customers Table, containing the names, addresses, and phone numbers of individual
customers. This is a good approach when all the customers have unique addresses.
However, when an application needs to store information about individuals at a
corporation, many of those individuals work at the same location, so they have the
same address. In this case, it makes sense to have separate tables for contacts and
locations.

Like most organizations using time and materials billing, the legal profession focuses
a lot of effort on tracking the hours expended on a given project. Although lawyers
use slightly different terminology, and charge much higher rates, the process is much
like billing for contract programming. Usually, lawyers bill on a project basis, though
they call a project a matter. The legal term for tracking hours expended on a project is
capturing time. Members of a law firm whose time is billable are referred to as
timekeepers. Their time is billable at various predefined levels, ranging from partner
to clerk.

On of the most important aspects of any kind of system engineering is identifying the
needs of the users. In this application, the primary users are as follows:

§ Lawyers capturing time

§ Book keepers generating invoices

Chapter 2:Designing a Database

-41 -

§ Management tracking projects

In addition, there is a database-management requirement involving the addition of
new clients and overall database maintenance. In other words, this is a fairly typical
time and materials billing system.

The next step is to identify the underlying purpose of the application, since you can
generally work out the rest of the application once you understand its underlying
purpose. In this case, the underlying purpose is the generation of invoices for billable
hours.

The Project Specification

Ideally, any application is designed in response to a detailed specification. Although it
does not describe the entire accounting process in a typical law firm, the LEDES 2000
specification is a great help here, as it defines exactly what is required in an electronic
invoice and how the invoice should be formatted. Originally, Price Waterhouse
Coopers developed LEDES as an ASCII-based electronic billing standard. In its
current form, LEDES 2000 defines an XML file format intended to serve as a standard
file format that the legal industry can use for the electronic exchange of information.
Initially, the focus is on billing information.

LEDES 2000 defines the following major data-content elements:

§ Generating firm

§ Destination client

§ Alternative fee arrangements (time & expense, flat fee, contingency, and staged billing)

§ Fee sharing

§ Discount schedules

§ Taxes

§ Electronic funds transfer reference support

§ Multiple clients

§ Multiple matters within an invoice

The core of the LEDES specification is captured in the XML invoice document it
specifies. Listing 2-1 is a slightly simplified example of a LEDES 2000 invoice. The full
LEDES specification can be accessed at http://www.ledes.org/.

Listing 2-1: LEDES 2000 sample invoice

<?xml version="1.0"?>

<!DOCTYPE ledesxml SYSTEM "ledes2000.dtd">

<ledesxml>

Chapter 2:Designing a Database

-42-

 <!-- Law firm originating invoice -->

 <firm>

 <lf_tax_id>12-3456789</lf_tax_id>

 <lf_id>100001</lf_id>

 <lf_name>Dewey, Cheatham & Howe</lf_name>

 <lf_address>

 <address_info>

 <address_1>101 Penny Lane</address_1>

 <city>Philadelphia</city>

 <state_province>PA</state_province>

 <zip_postal_code>12345</zip_postal_code>

 <phone>123-456-7890</phone>

 <fax>123-456-7899</fax>

 </address_info>

 </lf_address>

 <lf_remit_address>

 </lf_remit_address>

 <lf_billing_contact_lname>Dewey</lf_billing_contact_lname>

 <lf_billing_contact_fname>Oliver</lf_billing_contact_fname>

 <lf_billing_contact_id>cont005</lf_billing_contact_id>

 <lf_billing_contact_phone>123-456-7891</lf_billing_contact_phone>

 <lf_billing_contact_fax>123-456-7899</lf_billing_contact_fax>

 <lf_billing_contact_email>

 Dewey@HoweDeweyCheatham.com

 </lf_billing_contact_email>

 </firm>

 <!-- Client receiving invoice -->

 <client>

 <cl_id>cl0536</cl_id>

 <cl_name>Acme Insurance</cl_name>

 <cl_address>

 <address_info>

 <address_1>303 North Market Blvd</address_1>

 <city> Philadelphia </city>

 <state_province>PA</state_province>

 <zip_postal_code>12346</zip_postal_code>

 <phone>123-456-8000</phone>

 <fax>123-456-8009</fax>

 </address_info>

 </cl_address>

 <cl_tax_id>45-6789012</cl_tax_id>

Chapter 2:Designing a Database

-43-

 <!-- Invoice Proper -->

 <invoice>

 <!-- Invoice header -->

 <inv_id>i200011</inv_id>

 <inv_date>19990915</inv_date>

 <inv_due_date>19991015</inv_due_date>

 <inv_currency>USD</inv_currency>

 <inv_start_date>19990814</inv_start_date>

 <inv_end_date>19990914</inv_end_date>

 <inv_desc>Legal services August - September 1999</inv_desc>

 <inv_payment_terms>10/50</inv_payment_terms>

 <inv_generic_discount>0.10</inv_generic_discount>

 <inv_total_net_due>998.64</inv_total_net_due>

 <!-- Subject of Invoice -->

 <matter>

 <cl_matter_id>clm345690</cl_matter_id>

 <lf_matter_id>lfm439878</lf_matter_id>

 <matter_name>Kiwi Electronics vs. Mary Replogle</matter_name>

 <lf_managing_contact_lname>Cheatham</lf_managing_contact_lname>

 <lf_managing_contact_fname>Igor</lf_managing_contact_fname>

 <lf_contact_id>lfct00</lf_contact_id>

 <lf_contact_phone>415-123-4569</lf_contact_phone>

 <lf_contact_email>

 Cheatham@HoweDeweyCheatham.com

 </lf_contact_email>

 <cl_contact_lname>Norian</cl_contact_lname>

 <cl_contact_fname>Mike</cl_contact_fname>

 <cl_contact_id>clct01</cl_contact_id>

 <cl_contact_phone>916-921-4511</cl_contact_phone>

 <cl_contact_email>mnoy@acmeins.com</cl_contact_email>

 <eft_agreement_number>eft8746186</eft_agreement_number>

 <matter_billing_type>hour</matter_billing_type>

 <matter_final_bill>N</matter_final_bill>

 <matter_total_detail_fees>950.00</matter_total_detail_fees>

 <matter_total_detail_exp>48.64</matter_total_detail_exp>

 <matter_tax_on_fees>0.00</matter_tax_on_fees>

 <matter_tax_on_exp>0.00</matter_tax_on_exp>

 <matter_adj_on_fees>0.00</matter_adj_on_fees>

 <matter_adj_on_exp>0.00</matter_adj_on_exp>

 <matter_perc_shar_fees>0.35</matter_perc_shar_fees>

 <matter_perc_shar_exp>0.35</matter_perc_shar_exp>

 <matter_net_fees>950.00</matter_net_fees>

Chapter 2:Designing a Database

-44-

 <matter_net_exp>48.64</matter_net_exp>

 <matter_total_due>998.64</matter_total_due>

 <!-- Individual Timekeeper Billing Summary -->

 <tksum>

 <tk_id>tk002</tk_id>

 <tk_lname>Cheatham</tk_lname>

 <tk_fname>Igor</tk_fname>

 <tk_level>partner</tk_level>

 <tk_rate>400.00</tk_rate>

 <tk_hours>2.5</tk_hours>

 <tk_cost>1000.00</tk_cost>

 </tksum>

 <!-- Individual Timekeeper Billing Summary -->

 <tksum>

 <tk_id>tk001</tk_id>

 <tk_lname>Dewey</tk_lname>

 <tk_fname>Oliver</tk_fname>

 <tk_level>partner</tk_level>

 <tk_rate>450.00</tk_rate>

 <tk_hours>0.2</tk_hours>

 <tk_cost>90.00</tk_cost>

 </tksum>

 <!-- Itemised Fees Section (can contain several items) -->

 <fee>

 <charge_date>19990823</charge_date>

 <tk_id>tk002</tk_id>

 <charge_desc>Review and study file for hearing.</charge_desc>

 <acca_task>L230</acca_task>

 <acca_activity>A101</acca_activity>

 <cl_code_1>clc888</cl_code_1>

 <charge_type>U</charge_type>

 <units>1.0</units>

 <rate>400.00</rate>

 <base_amount>400.00</base_amount>

 <discount_type>Percent</discount_type>

 <discount_amount>0.00</discount_amount>

 <discount_percent>10</discount_percent>

 <total_amount>360.00</total_amount>

 </fee>

 <!-- Itemised Expense Section(can contain several items) -->

Chapter 2:Designing a Database

-45-

 <expense>

 <charge_date>19990910</charge_date>

 <tk_id>tk002</tk_id>

 <charge_desc>special photocopy expense.</charge_desc>

 <acca_expense>e101</acca_expense>

 <charge_type>U</charge_type>

 <units>608</units>

 <rate>0.08</rate>

 <base_amount>48.64</base_amount>

 <total_amount>48.64</total_amount>

 </expense>

 </matter>

 </invoice>

 </client>

</ledesxml>

From the comments in Listing 2-1, it is easy to identify the main constituents of a
LEDES 2000 invoice, which are as follows:

§ Originating law firm data

§ Client data

§ Invoice header data, including information on:

§ Alternative fee arrangements (time & expense, flat fee, contingency, and staged billing)

§ Fee sharing

§ Discount schedules

§ Taxes

§ Electronic funds transfer reference support

§ Matter invoiced

§ Summary of timekeeper fees

§ Itemized fees and expenses

In addition, you can see that the format can support multiple clients and multiple
matters if required. All in all, LEDES 2000 is a flexible eXtensible Markup Language
(XML) specification for electronic billing. The only simplification made in Listing 2-1 is
to drop the XML element that defines the software vendor and version information,
which would probably not be saved as a database item anyway.

Cross-Reference In Chapter 17, which is about using JDBC and XML together,

you will find a more detailed discussion of the eXtensible
Markup Language.

Designing the Tables

Chapter 2:Designing a Database

-46-

According to a widely quoted remark commonly attributed to C.J. Date, one of the
gurus of the relational database world, the primary principles of database design are
"nothing more than formalized common sense." Or, as David Adams and Dan Beckett
express it in their book Programming 4th Dimension: The Ultimate Guide: "The
purpose of formal normalization is to ensure that your common sense and intuition
are applied consistently to the entire database design." Since Chapter 1 discusses
database design from a theoretical viewpoint, this chapter uses a common-sense
approach and ties the results back to the rules of normalization.

Cross-Reference See Chapter 1 for a discussion of normalization.

Client and contact data

The obvious first step is to design a Client Table. At first glance, it looks as if you can
do this by simply mapping the relevant portion of the XML of Listing 2-1 to a table.
However, bear in mind the following considerations:

§ The client is frequently a corporation, represented by an individual or individuals involved in a

specific matter.

§ The client company may often assign different employees to handle different aspects of a given

matter.

§ Each individual may have a different phone number, mail drop, or cell phone, but all may have

the same mailing address.

§ A corporation may operate out of a number of different locations.

Since one of the guiding principles of database design is to avoid storing the same
item of information in two or more places, these considerations mean that the
information about a client has to be divided into a number of different tables. The best
place to start is with the lowest level of data, in this case the address. Addresses are
stored in a table by themselves, separate from, but linked to, the clients or individuals
by a foreign key in the Client or Contact Tables (see Table 2-1).

Table 2-1: Address_Info Table

id address_1 city state zip country phone fax

1004 123 Penny

Lane

New

York

NY 1006 USA 555 - 123

- 4670

555 - 123

- 4690

1005 711 Quarter

St

New

York

NY 1007 USA 555 - 119

- 3232

555 - 119

- 3239

The next level of information concerning a client is the contact person. This table uses
a foreign key, address_id, to link to an address. It also contains individual phone
numbers and e-mail addresses.

Chapter 2:Designing a Database

-47 -

Table 2-2 raises the question of handling data items that may also be stored
elsewhere. For example, the partners may have their own fax lines, although other
employees do not. An obvious way to handle this is to add a fax column to the
Contacts Table. However, you should use this column only for personal fax numbers
and should set it to NULL for employees who do not have their own fax numbers. You
can then write your queries to return the shared fax number if no personal fax number
is found. If you fail to do this and you insert the common fax number for each
employee, you will be duplicating data.

Table 2-2: Contacts Table

id fname lname company_i
d

address
_ id

email phone cell

100
1

Oliver Dewey 1001 1004 o.dewey@dsh.com 555-123-456
7

444-123-333
3

100
2

Ichabo
d

Cheat-ha
m

1001 1004 i.cheatham@dsh.co
m

555-123-456
8

444-123-333
4

100
3

Anne Howe 1001 1004 a.howe@dsh.com 555-123-456
9

444-123-333
5

Having dealt with the lower levels of client data, you are now ready to create the
Client Table itself. This has now become rather simple, since all it needs to contain is
the client name, tax id, and address id, as illustrated in Table 2-3.

Table 2-3: Client Table

ID FIRM_ID NAME ADDRESS_ID TAX_ID

2001 cl0536 Acme Insurance 1001 45-6789012

2002 cl7324 Clark Plumbing 1002 52-6783716

The Firm_ID column is shown her to illustrate the kinds of apparently extraneous
information you can expect to find when working with any legacy system. LEDES
includes the Firm_ID field as a concession to legacy accounting systems their
members are using. Many of these systems contain data fields which may not be
pertinent to the needs of the LEDES system, but which are significant to the member
firm.

The relationships among these tables is shown in Figure 2-1. The address_id
columns in the Client and Contact Tables are foreign keys linking them to the primary
key in Address_info.

Chapter 2:Designing a Database

-48-

Figure 2-1: Foreign keys link the Client and Contacts Tables to the primary key of the

Address_Info table.

The tables conform to the requirements of the first normal form discussed in Chapter
1, for the following reasons:

§ All records in any one table have the same number of fields.

§ All fields contain only a single data item.

§ There are no repeated fields.

Finally, each row in the table is identified using a unique column or set of columns.
This unique identifier is the primary key.

The tables conform to the requirements of the second and third normal forms, which
are as follows:

§ The tables are in first normal form.

§ The tables cannot contain fields that are not related to the primary key.

§ The tables contain no fields that do not contain information related to the whole of the key.

Since the second normal form applies to tables that have a multipart key, and none of
these tables do, conformity is by default. However, multipart keys are not common.

Boyce-Codd normal form is a more rigorous version of the third normal form designed
to deal with tables containing:

§ Multiple candidate keys

§ Composite candidate keys

§ Candidate keys that ove rlap

As it turns out, the Client Table, with its Firm_ID and Tax_ID columns, has multiple
candidate keys. Assuming that the legacy Firm_ID column is unique, and knowing
that tax id codes should be unique, the Boyce-Codd normal form applies to this table.

Chapter 2:Designing a Database

-49-

In practice, you are unlikely to encounter a problem with BCNF, since the purpose of
assigning a unique ID column rather than relying on supposedly unique legacy data is
to prevent problems of this sort.

Law firm data

Having created the tables required to manage the clients, you can move on to setting
up the tables for the law firm itself. However, after a moment's thought, you will
probably realize that the tables you have created will handle all the data for the law
firm, too.

Billable items

In a time and materials invoicing system, there are two kinds of billable items: fees
and expenses. Fees are charged in a number of different ways, the most common of
which is hourly. Expenses are simply charged on a unit basis, as in the case of photo
copies, which are billed per page copied. In either case, the id of the law firm
employee, or timekeeper, making the charge is provided.

The first table required for billable items, then, is the Timekeeper Table. This table
includes a foreign key identifying the individual in the Contacts Table, as well as
columns for level and hourly rate. The LEDES specification defines the following
levels:

§ Partner

§ Associate

§ Paralegal

§ Legal Assistant

§ Secretary

§ Clerk

§ Other

These levels are best stored in a Lookup Table of billing levels , accessed by a foreign
key in the Timekeeper Table. Hourly rates, too, should be stored in a Lookup Table,
to allow for increases. These two tables contain only an id column and a
corresponding level or billing rate, so they are not shown here. The resulting
Timekeeper Table might look like Table 2-4.

Table 2-4: Timekeeper Table

id contact_id level_code default_rate_code

1000 2001 1 1

1001 2002 1 2

1002 2007 5 9

TE
AM
FL
Y

Team-Fly®

Chapter 2:Designing a Database

-50-

Notice how this structure allows for two partners to bill at different rates. It is also
intended that the rate code be overridden if the terms of a contract require it.

The billable items are stored in a table that contains the date, a reference to the
matter or project, and the id of the timekeeper, as well as information about the
specific activity being billed. I have called the table Billable Items, as it is structured
such that expense items can be inserted as easily as billable hours.

The Billable_Items Table shown in Table 2-5 contains foreign keys linking it to the
Timekeeper Table and the Client_Matter table, as shown in Figure 2-2.

Figure 2-2: The Billable_Items table is linked to the Client_Matter and Timekeeper tables.

Table 2-5: Billable Items Table

id date matter_id tk_id task_code activity_code units rate_code description

1 4/12/02 7001 2002 L530 E112 300 0 Court fees

2 4/12/02 7001 2002 L110 A101 2.5 1 Review File

The task and activity columns refer to the industry standard Litigation Code Set
developed by the American Bar Association, the American Corporate Counsel
Association, and a sponsoring group of major corporate law departments. A copy of
the Litigation Code Set can be purchased from the ABA Member Services
Department, or viewed on line at:

http://http://www.abanet.org/litigation/litnews/practice/utbms.pdf

In the example of Table 2-5, E112 is the Litigation Code Set code for court fees, while
the rate code 0 is used to handle fixed-cost items, as opposed to items billed on a
per-unit basis. This permits the merging of unit billings with fixed cost billings without
introducing additional columns to handle them separately.

If you add an extra column to handle fixed-cost billings, you introduce a possible
ambiguity, because it becomes possible to enter both fixed and unit billings in a single
row. This violates the requirements of the fourth normal form because it creates

Chapter 2:Designing a Database

-51 -

nonmeaningful combinations of column values. By handling the situation through the
rate code, you can use just one table, conforming to the requirements of the fourth
normal form.

The tables also meet the requirements of the fifth normal form, which are as fo llows:

§ The table must be in fourth normal form.

§ It must be impossible to break down a table into smaller tables unless those tables logically have

the same primary key as the original.

By separating address information into a table separate from the Contacts and
Clients tables, you can see that if this separation is necessary to conform to the fifth
normal form. The addresses do not logically share the same primary key as either
contacts or clients.

Matter or Project Tables

Having designed the simpler tables, it is time to move on to handling the Client Matter,
or Project, Tables. These tables encapsulate the information specific to the service
the law firm is performing for the client. As such, they contain the following:

§ Matter Data

§ Name

§ Client reference number

§ Law firm reference number

§ Law firm managing contact

§ Law firm billing contact

§ Client primary contact

§ Billing Data

§ Billing type

§ Electronic funds transfer agreement number

§ Tax rate information

§ Fee sharing information

§ Discount agreements information

§ Invoice currency and payment terms

§ Invoice Data

§ Date

§ Due date

§ Amount

§ Staffing

The Matter Table and Billing Rates Table are separate; in an ongoing relationship
with a client, a law firm may establish a billing agreement that applies to a number of
individual matters, so billing data is not strictly specific to a single matter. Conversely,
a billing agreement may be renegotiated during the life of a matter.

Chapter 2:Designing a Database

-52 -

The Client Matter Table illustrated in Table 2-6 contains the columns billing_cid and
client_cid, which are foreign keys pointing to entries in the contacts table, and are
labeled with a _cid suffix to denote contact_id in order to avoid confusion with
client_id.

Table 2-6: Client Matter Table

id client_i

d

client_re

f

nam

e

billing_rat

e

manager_i

d

billing_ci

d

client_ci

d

1000

1

1201 ref -3711 Jones

v

Biddle

2 1004 1007 2001

1000

2

1296 b7997 Jones

v

Biddle

1 1001 1007 2093

The Billing Rates Table shown in Table 2-7 includes a type code that simply points to
a Lookup Table of billing types, including the following:

§ Time and Materials

§ Flat Fee

§ Contingency

§ Fee Sharing

Table 2-7: Billing Rates Table

id type_code discount_type discount tax_rate_fees tax_rate_exp terms

1 1 1 15 5 5 1

2 1 1 12.5 5 5 3

Discount types is also a reference to a Lookup Table containing the entries FLAT and
PERCENT. Based on the selected discount type, the discount contains either a flat
discount amount or a percentage discount rate. The terms column contains another
lookup code pointing to a table of payment terms such as 10/30, which means that
the billing firm accepts a 10 percent discount if the invoice is paid in full within 30
days.

Generating an Invoice

Generating an invoice involves retrieving a list of all open matters and summarizing
the billable items outstanding against each open matter. For the purposes of this
example, a Dedicated Billings Table will be created. This table has a one-to-one
relationship with the Client Matter Table, as shown in Figure 2-4.

Chapter 2:Designing a Database

-53 -

The process involved in creating an invoice is to scan the Billings Table for matters
where the status indicates that the matter is still open. (When a client matter has been
resolved, and the final invoice paid, the status is set to indicate that the matter is
closed.) The links between the tables are shown in Figure 2-3.

Figure 2-3: Invoices are generated by creating a list of billable items which have not been

previously invoiced.

The next step is to compare the Invoiced_Items Table against the Billable_Items
Table to find items associated with an open Client_Matter that have not been invoiced.
Items that have not been invoiced are added to the Invoiced_Items Table, with their
Invoice_ID set to indicate which invoice they were billed on. The Invoiced_Items
Table is shown in Table 2-8.

Table 2-8: Invoiced Items Table

id matter_id item_id invoice_id

10001 2006 2031 1007

10007 2119 2047 1063

Another way to handle this is to add an Invoice_Id column to the Billable_Items Table.
The Invoice_Id is then updated when the item is invoiced. The advantage of this
approach is that you are not adding a new table with a one-to-one relationship with an
existing table. The disadvantage is that updating a table can be slow compared to
adding a new row.

Table 2-9 shows the Invoice Table. The Invoice Number column provides a legacy
system compatible invoice number, and the start date and end date columns identify
the billing period covered by the invoice. The Billing Rate Id column is a foreign key

Chapter 2:Designing a Database

-54-

pointing to the Billing Rate Table holding information about payment terms, discounts,
and so forth.

Table 2-9: Invoice Table

id invoice_number date start_date end_date billing_rate_id description

1 2001 4/14/02 3/1/02 3/31/02 1021 Services,

March 2002

2 2002 4/14/02 3/1/02 3/31/02 1021 Services,

March 2002

Invoices are generated by creating a list of billable items which have not been
previously invoiced. Billable items which have not been previously invoiced are
identified using the links between the tables shown in Figure 2-3.

The relationships between the main tables used to create an invoice are shown in
Figure 2-4. Notice the one to one relationship between the Billings and Client_Matter
tables mentioned earlier.

Figure 2-4: These tables are used to create the invoice header.

By combining the data from all these tables, you can generate an invoice containing
all the information in Listing 2-1. In addition to itemizing the individual fee and
expense items, the LEDES 2000 invoice format requires that fees be summarized by
timekeeper. This is done by using the foreign key tk_id in the Billable Items Table.

The final step is to create the invoice header using data from the Clients and Contacts
Tables. The procedure to create the invoice header is straightforward, and follows the
same basic steps as have been outlined in describing the detail sections of the
invoice.

Chapter 2:Designing a Database

-55-

This completes the table definitions required to implement the requirements of the
LEDES specification. The next step is to ensure that the referential integrity
requirements of the database have been met.

Referential Integrity

In addition to the definitions of the normal forms, the relational model defines certain
integrity rules that are a necessary part of any relational database. There are two
types of integrity rules: general and database-specific.

General Integrity Rules

The relational model specifies these two general integrity rules that apply to all
databases:

§ Entity integrity rule

§ Referential integrity rule

The entity integrity rule states that primary keys cannot contain NULLs. Obviously,
you can't use a NULL to uniquely reference a row, so this is just common sense. It's
important to note that, if you use composite keys, this rule requires that none of the
individual columns making up the composite key contain NULLs. Most databases
enforce this rule automatically when a primary key is declared.

The referential integrity rule states that the database must not contain any unmatched
foreign-key values. In other words, all references through foreign keys must point to
primary keys identifying rows that actually exist.

The referential integrity rule also means that corrective action must be taken to
prevent changes or deletions to a row referenced by a foreign key leaving that foreign
key with no primary key to reference. This can be handled in the following ways:

§ Such changes can be disallowed.

§ Changes can be cascaded, so that deleting a row containing a referenced primary key results in

deleting all linked rows in dependent tables.

§ The dependent foreign-key values are set to NULL.

The specific action you take depends on the circumstances. Many relational
database systems support the automatic implementation of one or more of these
ways of handling attempted violations of the referential integrity rule. For example, an
attempt to insert a row with a foreign key that cannot be found in the appropriate table
results in a SQL exception message such as the following:

INSERT statement conflicted with COLUMN FOREIGN_KEY constraint

'FK_CONTACTS_ADDRESS_INFO'. The conflict occurred in database 'LEDES',

Chapter 2:Designing a Database

-56-

table 'ADDRESS_INFO', column 'id'.

Database-Specific Integrity Rules

Database-specific integrity rules are all other integrity constraints on a specific
database. They are handled by the business logic of the application. In the case of
the LEDES application discussed in this chapter, they include the following:

§ The extensive use of lookup tables to manage such matters as billing and discount schedules

§ Validation rules on time captured by employees of the law firm

Many of the integrity constraints can be handled by SQL Triggers, but some are be
handled by the Java business logic. Triggers are SQL procedures triggered by events
such as insertions or changes to the database.

Cross-Reference Triggers are discussed in Chapter 3.

Summary

This chapter has illustrated a common-sense application of the normal forms to the
design of a database. The main topics covered are the following:

§ Using primary and foreign keys to link tables

§ Applying the normalization rules

§ Explaining general and database-specific integrity rules

Chapter 3 presents an overview of the SQL language, which you use to work with
your relational database.

Chapter 3:SQL Basics

-57 -

Chapter 3: SQL Basics

In This Chapter

As discussed in Chapter 1, a clearly defined data-manipulation language is an
important part of any Relational Database Management System. Codd defined the
requirements of the language to include comprehensive support of data manipulation
and definition, view definition, integrity constraints, transactional boundaries, and
authorization. He also specified that the language must have the capability to insert,
update, retrieve and delete data as a relational set.

The language that has been adopted across virtually the entire database world is the
Structured Query Language (SQL). The purpose of this chapter is to provide a
comprehensive overview of the Structured Query Language.

The SQL Language

Structured Query Language (SQL) is a development of an IBM product of the 1970s
called Structured English Query Language (SEQUEL). Despite its name, SQL is far
more than a simple query tool.

As discussed in Chapter 1, in addition to being used to query a database, SQL is
used to control the entire functionality of a database system. To support these
different functions, SQL can be thought of as a set of the following sublanguages:

§ Data Definition Language (DDL)

§ Data Manipulation Language (DML)

§ Data Query Language (DQL)

§ Data Control Language (DCL)

Unlike Java and most other computer languages, SQL is declarative rather than
procedural. In other words, instead of writing a class to perform some task, in SQL
you issue a statement that updates a table or returns a group of records.

The American National Standards Institute (ANSI) has published a series of SQL
standards, notably SQL92 and SQL99 (also known as SQL-2 and SQL-3). These
standards define several levels of conformance. SQL92 defines entry level,
intermediate, and full; SQL99 defines Core SQL99 and Enhanced SQL99.You can
get a copy of the ANSI SQL standard from the American National Standards
Institute's Web store:

http://webstore.ansi.org/ansidocstore/dept.asp

The pertinent documents are:

Chapter 3:SQL Basics

-58-

§ ANSI/ISO/IEC 9075-1-1999 Information Technology - Database Language - SQL Part 1:

Framework (SQL/Framework)

§ ANSI/ISO/IEC 9075-2-1999 Information Technology - Database languages - SQL - Part 2:

Foundation (SQL/Foundation)

§ ANSI/ISO/IEC 9075-3-1999 Information Technology - Database Languages - SQL - Part 3:

Call-level Interface (SQL/CLI)

§ ANSI/ISO/IEC 9075-4-1999 Information Technology - Database languages - SQL - Part 4:

Persistent Stored Modules (SQL/PSM)

§ ANSI/ISO/IEC 9075-5-1999 Information Technology - Database Languages - SQL - Part 5: Host

Language Bindings (SQL/Bindings)

One of the difficulties you encounter when working with SQL is that each provider
uses a slightly different dialect of the language. In the main, these differences amount
to enhancements, in that they add to the functionality of SQL. However, they do mean
that your SQL statements may not be entirely portable from one implementation to
another.

Cross-Reference Chapters 5 through 10 provide detailed examples of the use of

SQL in the context of the Java Database Connectivity (JDBC)
Core API. Appendix A provides a guide to common SQL
commands.

SQL Data Types

SQL supports a variety of different data types that are listed in Table 3-1, together
with JDBC data types to which they are mapped. It is important to realize that
different SQL dialects support these data types in different ways, so you should read
your documentation regarding maximum string lengths, or numeric values, and which
data type to use for large-object storage.

Table 3-1: Standard SQL Data Types with Their Java Equivalents

SQL type Java Type Description

BINARY byte[] Byte array. Used for binary large objects.

BIT boolean Boolean 0 / 1 value

CHAR String Fixed-length character string. For a CHAR

type of length n, the DBMS invariably

assignd n characters of storage, padding

unused space.

DATETIME java.sql.Date Date and Time as: yyyy-mm-dd hh:mm:ss

DECIMAL java.math.BigDecimal Arbitrary-precision signed decimal numbers.

These can be retrieved using either

BigDecimal or String.

Chapter 3:SQL Basics

-59-

Table 3-1: Standard SQL Data Types with Their Java Equivalents

SQL type Java Type Description

FLOAT double Floating-point number, mapped to double

INTEGER int 32-bit integer values

LONGVARBINARY byte[] Variable-length character string. JDBC

allows retrieval of a LONGVARBINARY as a

Java input stream.

LONGVARCHAR String Variable-length character string. JDBC

allows retrieval of a LONGVARCHAR as a

Java input stream.

NCHAR String National Character Unicode fixed-length

character string

NUMERIC java.math.BigDecimal Arbitrary-precision signed decimal numbers.

Can be retrieved using either BigDecimal or

String.

NTEXT String Large string variables. Used for character

large objects.

NVARCHAR String National Character Unicode variable-length

character string

REAL float Floating-point number, mapped to float

SMALLINT short 16-bit integer values

TIME java.sql.Time Thin wrapper around java.util.Date

TIMESTAMP java.sql.Timestamp Composite of a java.util.Date and a separate

nanosecond value

VARBINARY byte[] Byte array

VARCHAR String Variable-length character string. For a

VARCHAR of length n, the DBMS assigns

upto n charcters of storage, as required.

Many SQL dialects also support additional data types, such as a MONEY or
CURRENCY type. These are handled in Java using the most appropriate getter and
setter methods.

Data of any SQL data type can be retrieved using the getObject() method. This is
particularly useful if you don't know the data type, and can derive it elsewhere in the
application. In addition, data of many types can be retrieved using getString(), and

TE
AM
FL
Y

Team-Fly®

Chapter 3:SQL Basics

-60-

various other getter methods you might not expect to work, since JDBC will attempt to
perform the required data type

Data Definition Language

SQL's Data Definition Language (DDL) is used to create and modify a database. In
other words, the DDL is concerned with changing the structure of a database. The
SQL2 standard refers to DDL statements as "SQL Schema Statements" and specifies
only aspects of the DDL that are independent of the underlying operating system and
physical-storage media. In p ractice, all commercial RDBMS systems contain
proprietary extensions to handle these aspects of the implementation.

The main commands in the DDL are CREATE, ALTER, and DROP. These
commands, together with the database elements they can work with, are shown in
Table 3-2.

Table 3-2: DDL Commands

COMMAND DATA-BASE TABLE VIEW INDEX FUNC-TION PROCE-DURE TRIGGER

CREATE YES YES YES YES YES YES YES

ALTER NO YES YES NO NO NO NO

DROP YES YES YES YES YES YES YES

Creating, Dropping, and Altering Databases and Tables

The basic SQL command used to create a database is straightforward, as you can
see here:

CREATE DATABASE CONTACTS;

Most RDBMS systems support extended versions of the command, allowing you to
specify the files or file groups to be used, as well as a number of other parameters
such as log-file names. If you plan to use more than the basic command, refer to the
documentation for your specific RDBMS.

The SQL command used to remove a database is as simple as the CREATE
DATABASE command. The SQL DROP command is used:

DROP DATABASE CONTACTS;

Relational databases store data in tables. Most databases may contain a number of
different tables, each containing different types of data, depending on the application.
Tables are intended to store logically related data items together, so a database may
contain one table for business contacts, another for projects, and so on.

Chapter 3:SQL Basics

-61 -

A table is a set of data records, arranged as rows, each of which contains individual
data elements or fields, arranged as columns. All the data in one column must be of
the same type, such as integer, decimal, character string, or date.

In many ways, a table is like a spreadsheet. Each row contains a single record. Unlike
the rows in a spreadsheet, however, the rows in a database have no implicit order.
Table 3-3 illustrates the way tables are designed to contain rows of related,
unordered data elements.

Table 3-3: Part of a Database Table

Contact_ID First_Name MI Last_Name Street City State Zip

1 Alex M Baldwin 123 Pine
St

Washington DC 12345

2 Michael Q Cordell 1701 York
Rd

Columbia MD 21144

It is immediately obvious that all fields within a given column have a number of
features in common:

§ They are similar in type.

§ They form part of a column that has a name.

§ All fields in a column may be subject to one or more constraints.

When a table is created, data types and field lengths are set for each column. These
assignments are set using a statement of the following form:

CREATE TABLE tableName

 (columnName dataType[(size)] [constraints] [default value],...);

Note The table and column names must start with a letter and can be followed

by letters, numbers, or underscores.

Integrity constraints

In addition to selecting data type and length, there are various constraints that may
have to be applied to the data stored in a column. These constraints are called
integrity constraints because they are used to ensure the consistency and accuracy
of the data. They are as follows:

§ NULL or NOT NULL

§ UNIQUE

§ PRIMARY KEY

§ FOREIGN KEY

NULL or NOT NULL

Chapter 3:SQL Basics

-62-

Unlike most languages, SQL makes specific provision for empty data fields by
allowing you to set them to NULL. A SQL NULL is defined to be a representation of
missing or inapplicable data that is systematic and distinct from all regular values and
independent of data type. This means you can insert a NULL when the value for a
field is unknown or not applicable without any risk that the NULL will be
misinterpreted as a zero or a space. The NULL or NOT NULL constraint lets you
specify whether a field is required to contain valid data or whether it can be left empty.
Keys fields, for example, can never be NULL.

UNIQUE

The UNIQUE constraint is used to specify that all the values in a given column must
be unique. It is used primarily when defining columns that are to be used as keys.

PRIMARY KEY

The primary key is used by the database-management systems as a unique identifier
for a row. For example, a sales order management system might use the
Customer_ID as the primary key in a table of customer names and addresses. This
Customer_ID is inserted into the Orders Table as a foreign key, linking customer
billing and shipping information to the order.

FOREIGN KEY

The DBMS uses the foreign key to link two tables. For example, when you create a
table of customers, you might, for marketing reasons, wish to create a table of their
spouses or significant others. The SQL command you use to do this is shown in the
second listing under the next section, "Creating a Table."

Creating a table

Listing 3-1 displays the CREATE TABLE statement used to create the table shown in
Table 3-3. The statement defines the table name, followed in parentheses by a series
of column definitions. Column definitions simply list the column or field name,
followed by the data type and the optional constraints. Column definitions are
separated by commas, as shown in the example of Listing 3-1.

Listing 3-1: CREATE TABLE Statement

CREATE TABLE CONTACT_INFO

(CONTACT_ID INTEGER NOT NULL PRIMARY KEY,

 FIRST_NAME VARCHAR(20) NOT NULL,

 MI CHAR(1) NULL,

 LAST_NAME VARCHAR(30) NOT NULL,

 STREET VARCHAR(50) NOT NULL,

Chapter 3:SQL Basics

-63-

 CITY VARCHAR(30) NOT NULL,

 STATE CHAR(2) NOT NULL,

 ZIP VARCHAR(10) NOT NULL);

The example of Listing 3-2 illustrates the creation of a foreign key. The column
defined as a foreign key, SIGNIFICANT_OTHER, is used to link separate entries in
the customers table.

Listing 3-2: Creating a table containing a foreign key

CREATE TABLE SIGNIFICANT_OTHERS(CUSTOMER_NUMBER INT NOT

 NULL PRIMARY KEY, SIGNIFICANT_OTHER INT,

 FOREIGN KEY (SIGNIFICANT_OTHER) REFERENCES CUSTOMERS);

Cross-Reference The use of Primary Keys and Foreign Keys to link tables was

discussed in Chapter 1. Linking tables in JOINS is an
important aspect of the use of SQL to retrieve data. Chapter 9
discusses JOINS in more detail.

Altering a table

The ALTER TABLE command is primarily used to add, alter, or drop columns. For
example, to add a column for FAX numbers to the Customers Table, you can use the
following command:

ALTER TABLE CUSTOMERS ADD FAX VARCHAR(20);

To change the column width, use this command:

ALTER TABLE CUSTOMERS ALTER COLUMN FAX VARCHAR(30);

Finally, to drop the column completely, use this command:

ALTER TABLE CUSTOMERS DROP COLUMN FAX;

Dropping a table

You remove a table from the database completely by using the DROP command. To
drop the Customers Table, use the following command:

DROP TABLE CUSTOMERS;

Creating, Altering, and Dropping a View

A view is very similar to a table. Like a table, it has a name that can be used to access
it in other queries. In fact, views are sometimes called temporary tables.

Chapter 3:SQL Basics

-64-

Creating a view

Rather than being created as a fundamental part of the underlying database, a view is
created using a query, as shown here:

CREATE VIEW ViewCorleones AS

 SELECT *

 FROM CUSTOMERS

 WHERE Last_Name = 'Corleone'

Now you can execute a query just as if this view were a normal table:

SELECT *

FROM ViewCorleones

WHERE State = 'NJ'

This query would return this result set:

FIRST_NAME MI LAST_NAME STREET CITY STATE ZIP

Sonny A Corleone 123 Walnut Newark NJ 12346

Vito G Corleone 23 Oak St Newark NJ 12345

Since a view is really nothing more than a named result set, you can create a view by
joining multiple tables. One way to retrieve data from multiple tables is to use an
INNER JOIN. The following code snippet shows how to use an INNER JOIN to create
a view called "Orders_by_Name":

CREATE VIEW Orders_by_Name AS

SELECT c.LAST_NAME + ', ' + c.FIRST_NAME AS Name,

 COUNT(i.Item_Number) AS Items, SUM(oi.Qty * i.Cost)

 AS Total

FROM ORDERS o INNER JOIN

 ORDERED_ITEMS oi ON

 o.Order_Number = oi.Order_Number INNER JOIN

 INVENTORY i ON

 oi.Item_Number = i.Item_Number INNER JOIN

 CUSTOMERS c ON

 o.Customer_Number = c.CUSTOMER_NUMBER

GROUP BY c.LAST_NAME + ', ' + c.FIRST_NAME

In effect, any result set returned that a SELECT statement returns can be used to
create a view. That means you can use nested queries, JOINS, or UNIONS as well
as simple SELECTS.

Chapter 3:SQL Basics

-65-

Cross-Reference in depth later in this chapter. There are also extensive

examples in subsequent chapters, particularly in Chapter 7.

Altering a view

Since a view is created using a SELECT command, views are altered using the
ALTER command to issue a new SELECT command. For example, to alter the view
you have just created, use the following command:

ALTER VIEW ViewCorleones AS

 SELECT FIRST_NAME,LAST_NAME

 FROM CUSTOMERS

 WHERE Last_Name = 'Corleone'

You can use a view for updating or deleting rows, as well as for retrieving data. Since
the view is not a table in its own right, but merely a way of looking at a table, rows
updated or deleted in the view are updated or deleted in the original table.

For example, you can use the view created earlier in this chapter to change Vito
Corleone's street address, using this SQL statement:

UPDATE ViewCorleones

SET Street = '19 Main'

WHERE First_Name = 'Vito'

This example illustrates one of the advantages of using a view. A lot of the filtering
required to identify the target row is done in the view, so the SQL code is simpler and
more maintainable. In a nontrivial example, this can be a worthwhile improvement.

Note Views are, in a sense, queries that you can save by name, because

database management systems generally save views by associating the
SELECT statement used to create the view with the name of the view and
execute the SELECT when you want to access the view. The downside is
that this obviously adds some overhead each time you use a view.

Data Manipulation Language

The Data Manipulation Language (DML) is used to insert data into a table and, when
necessary, to modify or delete data. SQL provides the three following statements you
can use to manipulate data within a database:

§ INSERT

§ UPDATE

§ DELETE

These statements are discussed in the following sections.

Chapter 3:SQL Basics

-66-

The INSERT Statement

The INSERT statement, in its simplest form, is used to insert data into a table, one
row or record at a time. It can also be used in combination with a SELECT statement
to perform bulk inserts of multiple selected rows from another table or tables. INSERT
can only be used to insert entire rows into a table, not to insert individual fields directly
into a row.

The basic form of the INSERT statement looks like this:

INSERT INTO tableName (colName1, colName2, ...) VALUES (value1, value2, ...);

To insert name and address information into the Customers Table, use an INSERT
statement like this:

INSERT INTO Customers

(First_Name, MI, Last_Name, Street,City, State, ZIP, Phone)

VALUES

('Michael','X','Corleone','123 Green','New York','NY','12345','111-222-3333');

Notice how the field names have been specified in the order in which you plan to
insert the data. You can also use a shorthand form, such as the following, if you know
the column order of the table:

INSERT INTO Customers VALUES

('Michael','X','Corleone','123 Green','New York','NY','12345','111-222-3333');

When the Customers Table is defined, the MI field is defined as NULLABLE. The
correct way to insert a NULL is like this:

INSERT INTO Contact_Info

(FName, MI, LName, Email)

VALUES

('Michael',NULL,'Corleone','offers@cosa_nostra.com');

Note String data is specified in quotes ('), as shown in the examples. Numeric

values are specified without quotes.

There are some rules you need to follow when inserting data into a table with the
INSERT statement:

§ Column names you use must match the names defined for the column. Case is not significant.

§ Values you insert must match the data type defined for the column they are being inserted into.

§ Data size must not exceed the column width.

§ Data you insert into a column must comply with the column's data constraints.

Chapter 3:SQL Basics

-67 -

These rules are obvious, but breaking them accounts for a lot of SQL exceptions,
particularly when you save data in the wrong field order. Another common error is to
try and insert the wrong number of data fields.

Using INSERT ... SELECT

Another common use of the INSERT statement is to copy subsets of data from one
table to another. In this case, the INSERT statement is combined with a SELECT
statement, which queries the source table for the desired records. The advantage of
this approach is that the whole process is carried out within the RDBMS, avoiding the
overhead of retrieving records and reinserting them externally.

An example of a situation where you might use INSERT...SELECT is the creation of a
table containing only the first and last names from the Customers Table. To insert the
names from the original Customers Table, use a SQL INSERT...SELECT command
to select the desired fields and insert them into the new Names Table. Here's an
example:

INSERT INTO Names

SELECT First_Name, Last_Name FROM Customers;

Essentially, This command tells the database management system to perform two
separate operations internally:

1. A SELECT to query the Customers Table for the FName and LName fields from all records

2. An INSERT to input the resulting record set into the new Names Table

By performing these operations within the RDBMS, the use of the INSERT...SELECT
command eliminates the overhead of retrieving the records and reinserting them.

Using the WHERE clause with INSERT ... SELECT

The optional WHERE clause allows you to make conditional queries. For example,
you can get all records in which the last name is "Corleone" and insert them into the
Names Table with the following statement:

INSERT INTO Names

SELECT First_Name, Last_Name FROM Customers WHERE Last_Name =

'Corleone';

The UPDATE Statement

The UPDATE command is used to modify the contents of individual columns within a
set of rows. The UPDATE command is normally used with a WHERE clause, which is
used to select the rows to be updated.

Chapter 3:SQL Basics

-68-

A frequent requirement in database applications is the need to update records. For
example, when a contact moves, you need to change his or her address. The way to
do this is with the SQL UPDATE statement, using a WHERE clause to identify the
record you want to change. Here's an example:

UPDATE Customers

SET Street = '55 Broadway', ZIP = '10006'

WHERE First_Name = 'Michael' AND Last_Name = 'Corleone';

This statement first evaluates the WHERE clause to find all records with matching
First_Name and Last_Name. It then makes the address change to all of those
records.

Caution If you omit the WHERE clause from the UPDATE statement, all records

in the given table are updated.

Using calculated values with UPDATE

You can use the UPDATE statement to update columns with calculated values. For
example, if you add stock to your inventory, instead of setting the Qty column to an
absolute value, you can simply add the appropriate number of units with a calculated
UPDATE statement like the following:

UPDATE Inventory

SET Qty = QTY + 24

WHERE Name = 'Corn Flakes';

When you use a calculated UPDATE statement like this, you need to make sure that
you observe the rules for INSERTS and UPDATES mentioned earlier. In particular,
ensure that the data type of the calculated value is the same as the data type of the
field you are modifying, as well as being short enough to fit in the field.

Using Triggers to Validate UPDATES

In addition to defining constraints, the SQL language allows you to specify security
rules that are applied when specified operations are performed on a table. These
rules are known as triggers, as they are triggered automatically by the occurrence of
a database event such as updating a table.

A typical use of a trigger might be to check the validity of an update to an inventory
table. The following code snippet shows a trigger that automatically rolls back or
voids an attempt to increase the cost of an item in inventory by more than 15 percent.

CREATE TRIGGER FifteenPctRule ON INVENTORY FOR INSERT, UPDATE AS

DECLARE @NewCost money

DECLARE @OldCost money

Chapter 3:SQL Basics

-69-

SELECT @NewCost = cost FROM Inserted

SELECT @OldCost = cost FROM Deleted

IF @NewCost > (@OldCost * 1.15)

ROLLBACK Transaction;

The SQL ROLLBACK command used in this code snippet is one of the Transaction
Management commands. Transaction management and the SQL ROLLBACK
command are discussed in the next section.

Using transaction management commands with UPDATE

Transaction management refers to the capability of a relational database
management system to execute database commands in groups, known as
transactions . A transaction is a group or sequence of commands, all of which must be
executed in order and all of which must complete successfully. If anything goes
wrong during the transaction, the database management system allows the entire
transaction to be cancelled or "rolled back." If, on the other hand, it completes
successfully, the transaction can be saved to the database or "committed."

In the SQL code snippet below, there are two update commands. The first attempts to
set the cost of Corn Flakes to $3.05, and the cost of Shredded Wheat to $2.15. Prior
to attempting the update, the cost of Corn Flakes is $2.05, so the update clearly
violates the FifteenPctRule trigger defined above. Since both updates are contained
within a single transaction, the ROLLBACK command in the FifteenPctRule trigger
will execute, and neither update will take effect.

BEGIN transaction;

UPDATE Inventory

 SET Cost = 3.05

 WHERE Name = 'Corn Flakes';

UPDATE Inventory

 SET Cost = 2.15

 WHERE Name = 'Shredded Wheat';

COMMIT transaction;

Although all SQL commands are executed in the context of a transaction, the
transaction itself is usually transparent to the user unless the AUTOCOMMIT option is
turned off. Most databases support the AUTOCOMMIT option, which tells the
RDBMS to commit all commands individually as they are executed. This option can
be used with the SET command:

SET AUTOCOMMIT [ON | OFF] ;

By default, the SET AUTOCOMMIT ON command is executed at startup, telling the
RDBMS to commit all statements automatically as they are executed. When you start

TE
AM
FL
Y

Team-Fly®

Chapter 3:SQL Basics

-70-

to work with a transaction, turn Autocommit off; then issue the commands required by
the transaction. Assuming that everything executes correctly, the transaction will be
committed when the COMMIT command executes, as illustrated above. If any
problems arise during the transaction, the entire transaction is cancelled by the
ROLLBACK command.

Cross-Reference Transaction management and the ACID test are discussed in

Chapter 1 . The examples in Chapter 6 illustrate the use of the
COMMIT and ROLLBACK commands.

Using UPDATE on Indexed Tables

When a table is indexed for rapid data retrieval, and particularly when a clustered
index is used for this purpose, updates can be very slow unless you understand and
use the indexes correctly. The reason for this is that the purpose of an index is to
provide rapid and efficient access to a table. In most situations, speed of data
retrieval is considered to be of paramount performance, so tables are indexed to
enhance the efficiency of data retrieval.

A limiting factor in retrieving data rapidly and efficiently is the performance of the
physical storage medium. Performance can be optimized for a specific index by tying
the layout of the rows on the physical storage medium to that index. The index for
which the row layout is optimized is commonly known as the clustered index.

If you fail to take advantage of indexes, and in particular, of the clustered index, when
planning your update strategy, your updates may be very slow. Conversely, if your
updates are slow, you would be well advised to add an index specifically to handle
updates, or to modify your update strategy in light of the existing indexes.

The DELETE Statement

The last DML command is the DELETE command, which is used for deleting entire
records or groups of records. Again, when using the DELETE command, you use a
WHERE clause to identify the records to be deleted.

Using the DELETE command is very straightforward. For example, this is the
command you use to delete records containing the First_Name: "Michael" and the
Last_Name: "Corleone":

DELETE FROM Customers

WHERE First_Name = 'Michael' AND Last_Name = 'Corleone';

Without the WHERE clause, all rows throughout the entire table will be deleted. If you
are using a complicated WHERE clause, it is a good idea to test it in a SELECT
statement before using it in a DELETE command.

Chapter 3:SQL Basics

-71-

Caution INSERT, DELETE and UPDATE, can cause problems with other

tables, as well as significant problems within the table you are working
on. Delete with care.

Data Query Language

Probably the most important function of any database application is the ability to
search for specific records or groups of records and return them in the desired form.
In SQL, this capability is provided by the Data Query Language (DQL). The process
of finding and returning formatted records is known as querying the database.

The SELECT Statement

The SELECT statement is the basis of data retrieval commands, or queries, to the
database. In addition to its use in returning data in a query, the SELECT statement
can be used in combination with other SQL commands to select data for a variety of
other operations, such as modifying specific records using the UPDATE command.

The basic form of a simple query specifies the names of the columns to be returned
and the name of the table or tables in which they can be found. A basic SELECT
command looks like this:

SELECT columnName1, columnName2,.. FROM tableName;

Using this query format, you can retrieve the first name and last name of each entry in
the Customers Table by using the following SQL command:

SELECT First_Name, Last_Name FROM Customers;

In addition to this form of the command, where the names of all the fields you want
returned are specified in the query, SQL supports this wild card form:

SELECT * FROM tableName;

The wild card, "*", tells the database management system to return the values for all
columns.

The WHERE Clause

Under normal circumstances, you probably do not want to return every row from a
table. A practical query needs to be more restrictive, returning the requested fields
from only records that match some specific criteria.

To make specific queries, use the WHERE clause. The WHERE clause was
introduced earlier in this chapter under the section "Data Manipulation Language."

Chapter 3:SQL Basics

-72-

This clause lets you retrieve, for example, the records of all customers living in New
York from the Customers Table shown in Table 3-4.

Table 3-4: The CUSTOMERS Table

FIRST_NAME MI LAST_NAME STREET CITY STATE ZIP

Michael A Corleone 123 Pine New York NY 10006

Fredo X Corleone 17 Main New York NY 10007

Sonny A Corleone 123 Walnut Newark NJ 12346

Francis X Corleone 17 Main New York NY 10005

Vito G Corleone 23 Oak St Newark NJ 12345

Tom B Hagen 37 Chestnut Newark NJ 12345

Kay K Adams 109 Maple Newark NJ 12345

Francis F Coppola 123 Sunset Hollywood CA 23456

Mario S Puzo 124 Vine Hollywood CA 23456

The SQL query you use to retrieve the records of all customers living in New York is
as follows:

SELECT * FROM Customers WHERE City = 'New York';

The result of this query returns all columns from any row with the CITY column
containing "New York." The order in which the columns are returned is the order in
which they are stored in the database; the row order is arbitrary.

To retrieve columns in a specific order, the column names must be specified in the
desired order in your query. For example, to get the data in First_Name, Last_Name
order, issue this query:

SELECT First_Name, Last_Name FROM Customers WHERE Last_Name = 'Corleone';

To get the order reversed, use this query:

SELECT Last_Name, First_Name FROM Customers WHERE Last_Name = 'Corleone';

Note Unlike rows in a spreadsheet, records in a database table have no implicit

order. Any ordering you need has to be specified explicitly, using the SQL
ORDER BY command.

SQL Operators

Chapter 3:SQL Basics

-73-

The queries discussed so far have been very simple, but in practice you will
frequently be using queries that depend on the values of a number of fields in various
combinations. SQL provides a number of operators to enable you to create complex
queries based on value comparisons.

Operators are used in expressions to define how to combine the conditions specified
in a WHERE clause to retrieve data or to modify data returned from a query. SQL has
several types of operators:

For convenience, SQL operators can be separated into these five main categories:

§ Comparison operators

§ Logical operators

§ Arithmetic operators

§ Set operators

§ Special-purpose operators

Comparison operators

One of the most important uses for operators in SQL is to define the tests used in
WHERE clauses. SQL supports the following standard-comparison operators, as well
as a special IS NULL operator, and its complement, IS NOT NULL, used to test for a
NULL value in a column:

§ Equality (=)

§ Inequality (<>)

§ Greater Than (>) and Greater Than or Equal To (>=)

§ Less Than (<) and Less Than or Equal To (<=)

§ IS NULL

§ IS NOT NULL

Numeric and character comparisons

All the comparison operators in SQL work equally well on both numeric and character
variables. This means that you can compare character variables using an equality
test in exactly the same way as you test a numeric value. The query:

SELECT * FROM Customers WHERE Last_Name = 'Corleone';

is every bit as valid as the query:

SELECT * FROM Inventory WHERE Part_Number = 1903;

If you use the greater-than or less-than operators for comparisons of CHAR or
VARCHAR values, the comparison is performed lexically. For example, to find

Chapter 3:SQL Basics

-74-

customers named "Michael," or whose names come after "Michael" in the alphabet,
you can use this query:

SELECT *

FROM CUSTOMERS

WHERE first_name >= 'Michael';

This query returns a result set like the one shown in Table 3-5.

Table 3-5: Results of a Lexical String Comparison

ID FIRST_NAME MI LAST_NAME STREET CITY STATE ZIP

100 Michael A Corleone 123 Pine New

York

NY 10006

102 Sonny A Corleone 123

Walnut

Newark NJ 12346

104 Vito G Corleone 23 Oak St Newark NJ 12345

105 Tom B Hagen 37

Chestnut

Newark NJ 12345

Using the IS NULL operator

SQL's special NULL value represents an absence of data, so it can't be evaluated
using the comparison operators. SQL provides special IS NULL and IS NOT NULL
operators to test for NULL. If, for example, you add a column to the Customers Table
for FAX numbers, leaving it NULL when a contact doesn't have a fax number, you can
query the table for contacts with faxes as follows:

SELECT * FROM Customers WHERE FAX IS NOT NULL;

Using the LIKE and NOT LIKE operators

In addition to the comparison operators, SQL adds these dedicated operators for
testing for a substring within CHAR and VARCHAR variables:

§ LIKE

§ NOT LIKE

The LIKE operator, and its negation, the NOT LIKE operator, combined with
wildcards provide a very powerful tool for String comparison. The wildcards are as
follows:

§ Underscore (_), the single character wild card

§ Percent (%), the multicharacter wild card

Chapter 3:SQL Basics

-75-

For example, to find all records in the Customers Table with last names starting with
"C," write a query using LIKE as follows:

SELECT * FROM Customers WHERE Last_Name LIKE 'C%';

Similarly, to find all records where the last name contains the letter "o" in the second
place, the query looks like this:

SELECT * FROM Customers WHERE Last_Name LIKE '_o%';

NOT LIKE works in much the same way as LIKE. For example, to find all records in
the Customers Table with the last name NOT starting with the letter "C," write a query
using NOT LIKE such as the following:

SELECT * FROM Customers WHERE Last_Name NOT LIKE 'C%';

Using the concatenation operator

The concatenation operator (+ or ||) is used to append one string to another string.
For example, to return the last name, followed by the first name and separated by
commas, use this query:

SELECT Last_Name + ', ' + First_Name AS NAME FROM Customers;

Caution The concatenation operator is one of the SQL features that vary from

one flavor of SQL to another. SQL Server, MS Access, and Sybase, fo r
example, accept '+', whereas Oracle accepts '||'.

Logical operators

It is frequently necessary to combine two or more comparisons in a WHERE clause.
SQL provides these standard logical operators for this purpose:

§ AND

§ OR

§ NOT

Using the AND operator

The AND operator is used to combine two or more comparisons, all of which must
evaluate to TRUE for the comparison to be valid. If either expression is false, AND
returns FALSE. For example, to find all records in the Customers Table with a last
name of Corleone who live in New York, use this query:

SELECT * FROM Customers WHERE Last_Name = 'Corleone' AND City = 'New York';

Using the OR operator

Chapter 3:SQL Basics

-76-

The OR operator is used to combine two or more comparisons, any one of which can
evaluate to TRUE for the comparison to be valid. For example, to find all records in
the Customers Table who live in New York City or in New Jersey, use this query:

SELECT * FROM Customers WHERE City = 'New York' OR State = 'NJ';

Using the NOT operator

The NOT operator is used to invert the result of a comparison. For example, the
previous example can be modified as follows to find all to find all customers with a last
name of Corleone who do not live in New York City or in New Jersey:

SELECT * FROM Customers

WHERE Last_Name = 'Corleone' AND NOT (City = 'New York' OR State = 'NJ');

Combining logical operators using parentheses

Logical operators can be combined using parentheses (()). For example, the queries
shown in the preceding two code snippets that use the AND and OR operators can be
combined to form a query that returns all records in the Customers Table with a last
name of Corleone who live in New York City or New Jersey:

SELECT * FROM Customers

WHERE Last_Name = 'Corleone' AND (City = 'New York' OR State = 'NJ');

Arithmetic operators

SQL supports the common arithmetic operators for addition (+), subtraction (-),
multiplication (*), and division (/). In addition, SQL supports the modulo operator (%),
which returns the remainder of the division of one integer by another.

Using arithmetic operators in the WHERE clause

The first and most obvious use of arithmetic operators is in the WHERE clause. The
following example uses the LESS THAN operator to identify items in the inventory
shown in Table 3-6 with a Qty below 24:

SELECT *

FROM INVENTORY

WHERE Qty < 24;

Table 3-6: Inventory

ID Name Description Qty Cost

1001 Corn Flakes Cereal 130 1.95

1002 Rice Krispies Cereal 97 1.87

Chapter 3:SQL Basics

-77-

Table 3-6: Inventory

ID Name Description Qty Cost

1003 Shredded Wheat Cereal 103 2.05

1004 Oatmeal Cereal 15 0.98

1005 Chocolate Chip Cookies 217 1.26

1006 Fig Bar Cookies 162 1.57

1007 Sugar Cookies Cookies 276 1.03

1008 Cola Soda 144 0.61

1009 Lemon Soda Soda 96 0.57

1010 Orange Soda Soda 84 0.71

This query returns the following result:

ID Name Description Qty Cost

1004 Oatmeal Cereal 15 0.98

You can also perform a calculation in a WHERE clause. For example, if you normally
mark up the cost of an item by 60% to get the sales price, you can perform this
calculation in the WHERE clause. To list only items whose retail price is below 100.00,
use this format:

SELECT Name,Description,Cost,Cost*1.6 AS Retail

FROM Inventory

WHERE Cost * 1.6 < 100;

Creating calculated result columns

Arithmetic operators are also very useful for creating a calculated result field. For
example, you can calculate a retail price by marking up a cost as follows:

SELECT ID,Name,Description,Cost,Cost*1.6 AS Retail

FROM Inventory;

This query returns the additional column "Retail," as shown in Table 3-7.

Table 3-7: Calculated Result Fields

ID Name Description Cost Retail

1001 Corn Flakes Cereal 1.95 3.12

Chapter 3:SQL Basics

-78-

Table 3-7: Calculated Result Fields

ID Name Description Cost Retail

1002 Rice Krispies Cereal 1.87 2.99

1003 Shredded Wheat Cereal 2.05 3.28

1004 Oatmeal Cereal 0.98 1.57

1005 Chocolate Chip Cookies 1.26 2.02

1006 Fig Bar Cookies 1.57 2.51

1007 Sugar Cookies Cookies 1.03 1.65

1008 Cola Soda 0.61 0.98

1009 Lemon Soda 0.57 0.91

1010 Orange Soda 0.71 1.14

Caution When you create a calculated field in a result, you should always use

AS to assign a name to the field, because there is no defined naming
convention for calculated fields in SQL. Different variants of SQL
assign different arbitrary names.

Using Aliases

In the preceding example, the key word AS was used in the expression command.
Using the optional AS clause lets you assign a meaningful name to an expression,
which makes referring back to the expression easier. An alias can be used as a
normal column name when you need to refer to the column elsewhere in a
statement, as you will see in further examples in future chapters. In this example,
AS assigns the name, or alias, "Retail" to the calculated value column.

When assigning and using an alias, you must bear in mind the order in which SQL
processes the various clauses constituting the command, since the output of one
clause is the input to the next one. The order in which the subclauses of a SQL
command are processed is shown in the following list:

§FROM clause

§WHERE clause

§GROUP BY clause

§HAVING clause

§SELECT clause

§ORDER BY clause

Since you use AS to assign an alias in the SELECT clause, the alias can't be used
as part of the WHERE clause, since that has already been executed by the time

Chapter 3:SQL Basics

-79-

you get to the SELECT. It can, however, be used in an ORDER BY. For example,
you can order the inventory table by retail as follows:

SELECT ID,Name,Description,Cost,Cost*1.6 AS Retail

FROM Inventory ORDER BY Retail;

Set operators

Set operators allow you to combine ResultSets returned by different queries into a
single ResultSet. The main set operators are as follows:

§ UNION and UNION ALL return the combined results of two queries.

§ INTERSECT returns only the rows that both queries find.

§ EXCEPT returns the rows from the first query that are not present in the second.

Using UNION and UNION ALL

UNION ALL returns the results of two queries; while UNION does the same thing, but
it removes duplicate results. For example, you can use a UNION to combine the
results of a query for all customers with the last name "Adams" with a query for all
customers in New York with the last name "Corleone." Here's an example:

SELECT *

FROM Customers

WHERE Last_Name = 'Corleone' AND City = 'New York'

UNION

SELECT *

FROM Customers

WHERE Last_Name = 'Adams';

UNION, used by itself, returns the results of the two queries without any repetitions.
UNION ALL, on the other hand, returns the results of the two queries including all
repetitions.

Using INTERSECT and EXCEPT

The INTERSECT and EXCEPT operators adhere to the same syntax as the UNION
operator. You should check with the documentation for the DBMS you are using to
ensure that these operators are supported before using one of them.

Special-purpose operators

SQL also provides a number of operators to perform functions which, in most other
languages, require special procedural code. Since SQL is not a procedural language,
these are particularly useful features of the language.

TE
AM
FL
Y

Team-Fly®

Chapter 3:SQL Basics

-80-

The IN operator

The IN operator is a powerful way of comparing fields against a list. For example, to
find contacts in New York State or New Jersey, you can use this query:

SELECT *

FROM Customers

WHERE State IN ('NY', 'NJ');

IN also works with numbers. If you want to select items from the Inventory Table by ID,
use this query:

SELECT *

FROM Inventory

WHERE ID IN (1001, 1003, 1004);

The BETWEEN operator

The BETWEEN operator is used to select fields with values between specified limits.
Referring again to the Inventory Table, you can query for items with costs in the $1.03
to $1.95 range using this query:

SELECT *

FROM Inventory

WHERE Cost BETWEEN 1.03 AND 1.95;

Note BETWEEN returns values within its defined range inclusive of the limits,

so if you try the query against the Inventory Table, it will return rows with
costs of 1.03 and 1.95.

The DISTINCT operator

A basic SELECT statement tells the database management system to return all
records matching the query in the ResultSet. For example, you cab request all
Last_Names from customers using this query:

SELECT Last_Name

FROM Customers;

Using the data shown in Table 3-4, this gives you five repetitions of "Corleone."

The DISTINCT operator tells the database management system not to return
duplicate records in a ResultSet. For example, to return all Last_Names from the
Customers Table with no duplicates, use this query:

SELECT DISTINCT Last_Name

FROM Customers;

Chapter 3:SQL Basics

-81 -

When this operator is applied to the results, you see only the last name "Corleone"
once, despite the fact that there are several different Corleones in the table.

Note There is also a keyword ALL, as in SELECT ALL, but since ALL is implied

unless DISTINCT is used, the expression SELECT ALL is rarely, if ever,
used.

The TOP operator

The TOP operator specifies that only the first n rows are to be output from the query
result set, or, optionally, the top n percent of the rows. When specified with
PERCENT, n must be an integer between 0 and 100:

SELECT TOP 25 PERCENT *

FROM Inventory;

The result set from this query is shown in Table 3-8.

Table 3-8: Top n Records

ID Name Description Qty Cost

1001 Corn Flakes Cereal 130 1.95

1002 Rice Krispies Cereal 97 1.87

1003 Shredded Wheat Cereal 103 2.05

If the query includes an ORDER BY clause, the first n rows (or n percent of rows)
ordered by the ORDER BY clause are output. If the query has no ORDER BY clause,
the order of the rows is arbitrary.

Escape Sequences

Escape sequences are used to handle situations where a character has a
particular meaning to SQL, and you want to use it in a different way. A typical
example is the use of the apostrophe ('). A problem that arises frequently in
normal free-form text is the use of the apostrophe. Since the apostrophe is, in
effect, a single quote, SQL reads it as a CHAR or VARCHAR terminator and
throws a SQL error when it tries to handle the rest of the String.

The solution is simple: simply double up the apostrophe. These two other
characters sometimes need to be escaped:

§% percent

§_ underscore

Chapter 3:SQL Basics

-82-

They are handled by defining an escape character at the end of the query in which
the characters are used. The escape character is defined in curly braces ({}) using
the keyword escape:

{escape 'escape-character'}

For example, the following query finds names that begin with an underscore. It
uses the backslash (\) character as an escape character:

SELECT name

FROM variables

WHERE Id LIKE \̀_%' {escape '\'};

Using Subqueries

The use of queries is not limited to situations where you want to return a result set to
the user. It is frequently useful to create a result set so that you can use it within
another SQL statement. A subquery is used as part of another SQL statement.

Subqueries can be nested inside any of the following types of SQL statements:

§ SELECT or SELECT...INTO

§ INSERT...INTO

§ DELETE

§ UPDATE

§ Inside another query or subquery

Subqueries are used to provide an intermediate result set to be operated on by
another part of the SQL statement. For instance, you can use a subquery to return
cost data about all the cookies in your inventory and then use this cost data with a
comparison operator in another query. In this case, you use a SELECT statement to
provide a set of values to be evaluated in the WHERE or HAVING clause of the main
statement.

Subqueries can be used in WHERE or HAVING clauses as the right-hand side of the
following comparison and expressions:

§ Comparisons using ANY, ALL or SOME

§ Expressions using IN or NOT IN

§ Expressions using EXISTS or NOT EXISTS

Using the ANY, SOME, and ALL operators

Chapter 3:SQL Basics

-83 -

In many cases, a subquery used in a comparison returns more than one value, so
special predicates are required to operate on the results of the subquery before
making the comparison.

For example, if you want to find out which inventory items cost more than cookies,
you can use a subquery like this:

 (SELECT cost FROM inventory

 WHERE Description = 'Cookies');

The result of this subquery is several rows of cookie costs, so you need to select
which cost you want to use. The ANY or SOME predicates, which are synonymous,
can be used to retrieve records in the main query that satisfy the comparison with any
records retrieved in this subquery:

SELECT * FROM INVENTORY

WHERE cost >= ANY

 (SELECT cost FROM inventory

 WHERE Description = 'Cookies');

This query returns all inventory items with a cost greater than or equal to the
lowest-cost cookies in the Inventory Table, as shown here:

Item_Number Name Description Qty Cost

1001 Corn Flakes Cereal 178 1.95

1002 Rice Krispies Cereal 97 2

1003 Shredded Wheat Cereal 103 2.05

1005 Chocolate Chip Cookies 217 1.26

1006 Fig Bar Cookies 162 1.57

1007 Sugar Cookies Cookies 276 1.03

The ALL predicate can be used to retrieve only records in the main query that satisfy
the comparison with all records retrieved in the subquery. If you change ANY to ALL
in the preceding example, the query returns only those inventory items that cost more
than all cookies:

Item_Number Name Description Qty Cost

1001 Corn Flakes Cereal 178 1.95

1002 Rice Krispies Cereal 97 2

Chapter 3:SQL Basics

-84-

Item_Number Name Description Qty Cost

1003 Shredded Wheat Cereal 103 2.05

1006 Fig Bar Cookies 162 1.57

Using the IN and NOT IN operators

As you recall from the section on operators earlier in this chapter, the IN predicate is
used to compare values against a list. For example, to return all customers in either
NY or NJ, you can use the IN predicate to check the customer's state against a list
containing 'NY' and 'NJ'. Here's an example:

SELECT * FROM CUSTOMERS

WHERE STATE IN ('NY','NJ');

Also, you can use the IN predicate with a subquery to populate the list. The following
code snippet uses a subquery to create a list of item numbers from the Orderd_Items
Table and uses the IN predicate to return the corresponding inventory data:

SELECT *

FROM INVENTORY

WHERE Item_Number IN

 (SELECT Item_Number

 FROM Ordered_Items

 WHERE Order_Number = 2);

The result set this query returns looks like this:

Item_Number Name Description Qty Cost

1001 Corn Flakes Cereal 178 1.95

1004 Oatmeal Cereal 15 0.98

1005 Chocolate Chip Cookies 217 1.26

1010 Orange Soda 84 0.71

In addition, you can use the IN predicate with the NOT operator to select all inventory
items that are not included in the select list. Note that you can only specify one
SELECT list item when using the IN predicate, since the list is returned for
comparison with a single item.

Using the EXISTS and NOT EXISTS predicates

Chapter 3:SQL Basics

-85-

EXISTS and NOT EXISTS are predicates. That is, they return true or false. They are
used in true/false comparisons to determine whether the subquery returns any
records. For example, you can use a subquery to return a result set of Ordered Items
matched up by Order Number and Customer Number to the customer who has
ordered them. Then you can find out what kinds of cookies he or she has ordered
using the comparison Description = 'Cookies' with the EXISTS predicate, as shown
here:

SELECT DISTINCT Name

FROM Inventory

WHERE Description = 'Cookies' AND EXISTS

 (SELECT *

 FROM Customers c, Ordered_Items oi, Orders o, Inventory i

 WHERE c.Customer_Number = o.Customer_Number AND

 oi.Order_Number = o.Order_Number AND

 oi.Item_Number = i.Item_Number);

This query returns this result set:

Name

Chocolate Chip

Fig Bar

Sugar Cookies

Notice the use of the asterisk (*) as the SELECT list for the subquery. Conventionally,
you use an asterisk with the EXISTS predicate because EXISTS only returns true or
false, so there is nothing to be gained by being more specific.

Note The EXISTS predicate stops the search as soon as it finds a single match

and is therefore much faster and more efficient than a query that
continues to check for additional rows that match.

Correlated subqueries

As a rule, the main FROM list should only contain tables that are referenced in the
main SELECT. In this case, the main SELECT clause includes only inventory. You
can also use table name aliases in a subquery to refer to tables listed in a FROM
clause outside the subquery, as in the following example. This usage is known as a
correlated subquery:

SELECT c.First_Name, c.Last_Name, o.Order_Number, i.Item_Number, i.Name

FROM Customers c, Inventory i, Orders o

WHERE i.Description = 'Cookies' AND EXISTS

Chapter 3:SQL Basics

-86-

 (SELECT *

 FROM Ordered_Items oi

 WHERE c.Customer_Number = o.Customer_Number AND

 oi.Order_Number = o.Order_Number AND

 oi.Item_Number = i.Item_Number);

In this example, most of the tables the subquery accesses are defined in the main
query. This query returns the following result set:

First_Name Last_Name Order_Number Item_Number Name

Fredo Corleone 2 1005 Chocolate Chip

Francis Corleone 3 1006 Fig Bar

Kay Adams 5 1006 Fig Bar

Kay Adams 5 1007 Sugar Cookies

Correlated subqueries depend on a value in the outer query. A reference to a table in
the outer query is called a correlated reference. Correlated queries are executed
repeatedly, once for each row of the table identified in the outer-level query, so they
can be extremely inefficient. It is frequently worth rewriting correlated queries as joins
where possible, though in some cases the SQL engine may be able to optimize the
correlated subquery.

Nesting subqueries

Just as you can use a subquery within a query, you can also use a subquery within
another subquery. Subqueries can be nested as deeply as your implementation of
SQL allows. The syntax for nesting subqueries looks like this:

SELECT *

FROM Tables

WHERE

 (SUBQUERY

 (SUBQUERY

 (SUBQUERY)));

Additional uses of subqueries

Just as you can use calculated values, or even literals, in place of simple data-field
values in the SELECT clause of a query, you can also use the results subqueries
return. This can be useful if you want to create a summary comparing the cost of an
item against another value retrieved from the table, such as an average cost of all
similar items. Here's an example:

Chapter 3:SQL Basics

-87 -

SELECT Name, Cost,

 (SELECT AVG(Cost) FROM Inventory WHERE Description = 'soda') AS Average

FROM Inventory WHERE Description = 'soda';

Notice how the entire subquery replaces the column name, so that the AS clause
used to name the column appears outside the parentheses defining the subquery.
The results of this query look like this:

Name Cost Average

Cola 0.61 0.63

Lemon 0.57 0.63

Orange 0.71 0.63

Using a subquery with the INSERT command

You can use subqueries in the INSERT command just as easily as you can in a
SELECT command. Consider an example where you might want to insert selected
records from one table into another. One way to do this is to use a subquery to select
the desired subset from the source table.

In the following example, a subquery is used to select the Customer_Numbers of
customers from New Jersey. Then the appropriate fields are selected from customers
with the selected Customer_Numbers, and inserted into the Employees Table:

INSERT INTO Employees (Employee_ID, First_Name, Last_Name)

 SELECT Customer_Number, First_Name, Last_Name

 FROM Customers

 WHERE Customer_Number IN

 (SELECT Customer_Number

 FROM Customers

 WHERE State = 'NJ');

Using a subquery with the UPDATE command

A more common usage of a subquery is with the UPDATE command. This example
uses a subquery to select the Customer_Number of the customer to be updated from
the Customers Table. You then use this customer number in the WHERE clause of
the UPDATE command as shown here:

UPDATE Employees

 SET First_Name = 'Alfie'

 WHERE Employee_ID IN

 (SELECT Customer_Number

Chapter 3:SQL Basics

-88-

 FROM Customers

 WHERE First_Name = 'Sonny');

One advantage of using a subquery is that you can easily test the subquery by itself
to make sure you are getting the correct data set. Then, once it checks out OK, you
can plug the subquery into the actual update command.

Using a subquery with the DELETE command

Finally, here's an example of the use of a subquery with DELETE. This example uses
a subquery to select the Employee_IDs of all employees so that they can be deleted
from the Customers Table:

DELETE FROM Customers

WHERE Customer_Number IN

 (SELECT Employee_ID FROM Employees);

Sorting the Results of a Query

A common requirement when retrieving data from a database is to sort the results of
the query in alphabetic or numeric order on one or more of the columns. Results are
sorted using the ORDER BY clause in a statement like this:

SELECT First_Name, Last_Name, City, State

FROM CUSTOMERS

WHERE Last_Name = 'Corleone'

ORDER BY First_Name;

This gives you a list of all the Corleones sorted in ascending order by first name, as
shown in Table 3-9.

Table 3-9: Records Sorted Using ORDER BY

First_Name Last_Name City State

Francis Corleone New York NY

Fredo Corleone New York NY

Michael Corleone New York NY

Sonny Corleone Newark NJ

Vito Corleone Newark NJ

The default sort order is ascending. This can be changed to descending by adding
the DESC keyword as shown here:

Chapter 3:SQL Basics

-89-

SELECT *

FROM CUSTOMERS

WHERE Last_Name = 'Corleone'

ORDER BY First_Name DESC;

Sorting on multiple columns is also easy to do by using a sort list. For example, to sort
the data in ascending order based on Last_Name and then sort duplicates using the
First_Name in descending order, the SQL statement is as follows:

SELECT First_Name, MI, Last_Name, Street, City, State, Zip

FROM CUSTOMERS

ORDER BY Last_Name, First_Name DESC;

Note When no ORDER BY clause is used, the order of the output of a query is

undefined.

The rules for using ORDER BY are as follows:

§ The ORDER BY clause must be the last clause in the SELECT statement.

§ Default sort order is ascending.

§ You can specify ascending order with the keyword ASC.

§ You can specify descending order with the keyword DESC.

§ You can use column names or expressions in the ORDER BY clause.

§ The column names in the ORDER BY clause do not have to be specified in the select list.

§ NULLS usually occur first in the sort order.

Summarizing the Results of a Query

Another common reporting requirement is to break down the data a query returns into
various groups so that it can be summarized in some way. The GROUP BY clause
enables you to combine database records to perform calculations such as averages
or counts on groups of records.

The GROUP BY clause combines records with identical values in a specified field into
a single record for this purpose, as shown in the following example:

SELECT Description, COUNT(Description) AS 'Count', AVG(Cost) AS 'Average

Cost'

FROM Inventory

GROUP BY Description;

The results of this query will be as follows:

Description Count Average Cost

Cereal 4 1.745

TE
AM
FL
Y

Team-Fly®

Chapter 3:SQL Basics

-90-

Description Count Average Cost

Cookies 3 1.2866

Soda 3 0.63

Notice that the name given to the "Count" column was quoted, since COUNT is a
SQL keyword.

Because the GROUP BY clause combines all records with identical values in one
column into a single record, each of the column names in the SELECT clause must
be either a column specified in the GROUP BY clause or a column function such as
COUNT() or AVG(). This means that you can't SELECT a list of individual customers
by name and then count them as a group using GROUP BY. However, you can group
on more than one column, just as you can use more than one column with the
ORDER BY clause.

Every column name specified in the SELECT statement must also be mentioned in
the GROUP BY clause. Not mentioning the column names in both places gives you
an error. The GROUP BY clause returns a row for each unique combination column
in the GROUP BY clause.

Aggregate Functions

Aggregate functions return a single value from an operation on a column of data. This
differentiates them from the arithmetic, logical, and character operators discussed
earlier in this chapter, which operate on individual data elements.

Most Relational Database Management Systems support the following aggregate
functions:

§ SUM Sum of column values

§ AVG Average of column values

§ STDEV Standard deviation of column values

§ COUNT Count of rows in column

§ MAX Maximum value in column

§ MIN Minimum value in column

Aggregate functions are used to provide statistical or summary information about
groups of data elements. These groups may be created specifically using the
GROUP BY clause, or the aggregate functions may be applied to the default group,
which is the entire result set.

Here's a good practical example of the use of most of the common aggregate
functions:

Chapter 3:SQL Basics

-91 -

SELECT DESCRIPTION, COUNT(DESCRIPTION) AS 'COUNT', AVG(COST)

 AS 'AVERAGE COST', MIN(COST) AS 'LOWEST COST', MAX(COST)

 AS 'HIGHEST COST'

FROM INVENTORY

GROUP BY DESCRIPTION;

This query generates the following results:

Description Count Average Cost Lowest Cost Highest Cost

Cereal 4 1.745 0.98 2.05

Cookies 3 1.2866 1.03 1.57

Soda 3 0.63 0.57 0.71

Note The fundamental difference between aggregate functions and standard

functions is that the former use the entire column of data as their input and
produce a single output.

Using the HAVING Clause to Filter Groups

There are going to be situations where you'll want to filter the groups themselves in
much the same way as you filter records using the WHERE clause. For example, you
may want to analyze your sales by state, but ignore states with a limited number of
customers.

To filter groups, apply a HAVING clause after the GROUP BY clause. The HAVING
clause lets you apply a qualifying condition to groups so that the RDBMS returns a
result only for the groups that satisfy the condition.

HAVING clauses can contain one or more predicates connected by ANDs and ORs.
Each predicate compares a property of the group (such as COUNT(State)) with either
another property of the group or a constant.

The following example shows the use of the HAVING clause to compute a count of
customers by state, filtering out results from states with only one customer:

SELECT DESCRIPTION, STATE, COUNT(STATE) AS 'COUNT',

 SUM(oi.QTY * i.COST) AS TOTAL

FROM CUSTOMERS c, ORDERS o, ORDERED_ITEMS oi,

 INVENTORY i

WHERE c.CUSTOMER_NUMBER = o.CUSTOMER_NUMBER AND

 o.ORDER_NUMBER = oi.ORDER_NUMBER AND

 i.ITEM_NUMBER = oi.ITEM_NUMBER

GROUP BY STATE, DESCRIPTION

HAVING COUNT(STATE) > 1;

Chapter 3:SQL Basics

-92-

This query yields a result set that looks like this:

DESCRIPTION STATE COUNT TOTAL

Cereal NJ 2 14.1

Cereal NY 2 4.88

Cookies NJ 2 5.74

Cookies NY 2 11.32

Soda NY 2 5.4

You can also apply a HAVING clause to the entire result set by omitting the GROUP
BY clause. In this case, the DBMS treats the entire table as one group, so there is at
most one result row. If the HAVING condition is not true for the table as a whole, no
rows will be returned.

HAVING enables you to use aggregate functions in a comparison statement,
providing for aggregate functions what WHERE provides for individual rows.

Using Indexes to Improve the Efficiency of SQL Queries

You can improve database performance significantly by using indexes. An index is a
structure that provides a quick way to look up specific items in a table or view. In
effect, an index is an ordered array of pointers to the rows in a table or view.

When you assign a unique id to each row as a key, you are predefining an index for
that table. This makes it much faster for the DBMS to look up items by id, which is
commonly required when you are doing joins on the id column.

SQL's CREATE INDEX statement allows you to add an index for any desired column
or group of columns. If you need to do a search by customer name, for example, the
fact that the table has a built-in index on the primary key doesn't help, so the DBMS
has to do a brute force search of the entire table to find all customer names matching
your query. If you plan on doing a lot of queries by customer name, it obviously
makes sense to add an index to the customer name column or columns. Otherwise,
the task is like looking up names in a phone list that hasn't been alphabetized.

The SQL command to add an index uses the CREATE INDEX key word, specifying a
name for the index and defining the table name and the column list to index. Here's
an example:

CREATE INDEX STATE_INDEX ON MEMBER_PROFILES(STATE);

To remove the index, use the DROP INDEX command as follows:

Chapter 3:SQL Basics

-93-

DROP INDEX MEMBER_PROFILES.STATE_INDEX;

Notice how the name of the index has to be fully defined by prefixing it with the name
of the table to which it applies.

Formatting SQL Commands

The SQL engine ignores excess whitespace, so you can and should insert line breaks
for clarity. Conventionally major clauses such as the FROM clause and the WHERE
clause are placed on their own lines, unless the command is so brief as to be trivial. A
good basic approach when you are not quite sure how to format a command is to go
for readability.

Key words, table names, and column names are not case-sensitive, but the contents
of the records within a table are case-sensitive. This means that with a little thought,
you can use case to help make your SQL statements more readable.

Caution Although SQL ignores case in commands, table names, column

names, and so on, case can matter when you are using a name in a
WHERE clause, so 'Corleone' and 'CORLEONE' are not necessarily
the same.

Using SQL Joins

Recall that the information in a practical database is usually distributed across several
different tables, each of which contains sets of logically related data. The example
introduced in Chapter 1 represents a typical database containing the four following
tables:

§ Customers contains customer number, name, shipping address, and billing information.

§ Inventory contains item number, name, description, cost, and quantity on hand.

§ Orders contains order number, customer number, order date, and ship date.

§ Ordered_Items contains order number, item number, and quantity.

When a customer places an order, an entry is made in the Orders Table, assigning an
order number and containing the customer number and the order date. Then entries
are added to the Ordered_Items Table, recording order number, item number and
quantity. To fill a customer order, combine the necessary information from each of
these tables.

A few rows of each of these tables are shown in Tables 3-10 through 3-13.

Table 3-10: Customer Table

Customer_Number First_Name MI Last_Name Street City State Zip

Chapter 3:SQL Basics

-94-

Table 3-10: Customer Table

Customer_Number First_Name MI Last_Name Street City State Zip

100 Michael A Corleone 123 Pine New York NY 10006

101 Fredo X Corleone 17 Main New York NY 10007

102 Sonny A Corleone 123 Walnut Newark NJ 12346

Table 3-11: Inventory Table

Item_Number Name Description Qty Cost

1001 Corn Flakes Cereal 130 1.95

1002 Rice Krispies Cereal 97 1.87

1005 Chocolate Chip Cookies 217 1.26

1006 Fig Bar Cookies 162 1.57

1008 Cola Soda 144 0.61

1010 Orange Soda Soda 84 0.71

Table 3-12: Orders Table

Order_Number Customer_Number Order_Date Ship_Date

2 101 12/8/01 12/10/01

3 103 12/9/01 12/11/01

Table 3-13: Ordered Items Table

ID Order_Number Item_Number Qty

5000 2 1001 2

5001 2 1004 1

5004 3 1006 4

5005 3 1009 2

One of the most powerful features of SQL is its ability to combine data from several
different tables using the JOIN statement. Using JOINS, you are able to produce a
detailed invoice showing the customer name, shipping address, and billing
information, with a detailed list of the items ordered, including description, quantity,
unit price, and extended price (unit price * quantity).

Using keys in a JOIN

Chapter 3:SQL Basics

-95-

The most important thing to understand when discussing SQL JOINS is the use of
primary and foreign keys. Database-management systems use the two following
kinds of keys:

§ Primary keys

§ Foreign keys

In each of the four tables in the sample database, there is an identifier such as
customer number or item number. These identifiers are the primary keys and are
used to provide a unique reference to a given record. A primary key is a column that
uniquely identifies the rest of the data in any given row. For example, in the
Customers Table, the Customer_Number column uniquely identifies that customer.
For this to work, no two rows can have the same key or, in this instance,
Customer_Number.

A foreign key is a column in a table where that column is a primary key of another
table. For example, the Orders Table contains one column for Order_Number, which
is the primary key for the Orders Table, and another column for the
Customer_Number, which is a foreign key. In effect, the foreign key acts as a pointer
to a row in the Customers Table.

The purpose of these keys is to establish relationships across tables, without having
to repeat data in every table. This concept encapsulates the power of relational
databases.

Accessing data from multiple tables with Equi-Joins

SQL Joins work by matching up equivalent columns in different tables by comparing
keys. The most common type of Join is an Equi-Join, where you look for items in one
table which have the same item number as items in another.

Writing SQL JOIN Commands

There are two ways to write SQL JOIN statements. The first is through the specific
use of the key word JOIN:

SELECT First_Name, Last_Name, Order_Number

FROM CUSTOMERS c INNER JOIN

 ORDERS o ON c.Customer_Number = o.Customer_Number;

This statement will return exactly the same results as the short form:

SELECT First_Name, Last_Name, Order_Number

FROM CUSTOMERS c, ORDERS o

WHERE c.Customer_Number = o.Customer_Number;

Chapter 3:SQL Basics

-96-

The result set which will be returned by either statement is:

First_Name Last_Name Order_Number

Fredo Corleone 2

Francis Corleone 3

Vito Corleone 4

Kay Adams 5

For example, the Ordered Items Table provides a link between the order number and
the items in the Inventory Table. To get a detailed list of the inventory items
corresponding to order number 2, you can write the following SQL JOIN command:

SELECT Orders.Order_number, Ordered_Items.Item_number,

 Ordered_Items.Qty, Inventory.Name,

 Inventory.Description

FROM Orders, Ordered_Items, Inventory

WHERE Orders.order_number = Ordered_Items.order_number AND

 Inventory.Item_Number = Ordered_Items.Item_Number AND

 Orders.order_number = 2;

Notice how the columns used in the WHERE clause comparison are the key columns
of the various tables. This yields the following ResultSet:

Order_number Item_number Qty Name Description

2 1001 2 Corn Flakes Cereal

2 1004 1 Oatmeal Cereal

Non-Equi-Joins

In addition to Equi-Joins, you can do Non-Equi-Joins, Joins where the relationship is
not equal, though they are not very common. For example, since there are only two
orders in the Orders Table, you can get the other order using the Non-Equi-Join, as
shown here:

SELECT c.Last_Name + ', ' + c.First_Name AS Customer, oi.Qty,

 i.Name, i.Description, i.Cost * 1.6 AS Price_Each,

 i.Cost * 1.6 * oi.Qty AS Price

FROM Orders o, Customers c, Ordered_Items oi, Inventory i

WHERE o.Order_number = oi.Order_number AND

 c.Customer_Number = o.Customer_Number AND

 i.Item_Number = oi.Item_Number AND o.Order_number <> 2;

Chapter 3:SQL Basics

-97 -

Inner and Outer Joins

The Joins discussed so far have been Inner Joins . An Inner Join exists between two
tables and includes only rows with matching rows in the both tables. The easiest way
to understand the terminology of Inner and Outer Joins is to look at Figure 3-1, where
the Customer_Number columns in the Customers and Orders Tables have been
overlapped or "Joined."

Figure 3-1: Tables joined on customer number

The two tables are shown in the rounded boxes; the joined fields are shaded.

Using an Inner Join, as shown in the last example, you can only list customers who
have placed an order, so their customer numbers fall into the shaded area of
Figure3-1. If you want a list of all customers, together with the dates of any orders
they have placed, you can't get there with an Inner Join.

An Outer Join can include not only records that are inside the union of the sets or
tables but records that are outside the union of the sets. In other words, in addition to
the set members that share customer numbers, you can get customers in the lower,
or "Outer," part of the joined tables.

These are the three different types of Outer Joins:

§ LEFT OUTER JOIN (*=)

§ RIGHT OUTER JOIN (=*)

§ FULL OUTER JOIN

The terms LEFT, RIGHT, and FULL describe which of the tables' unmatched columns
to include in the Join relative to the order in which the tables appear in the JOIN
command.

LEFT OUTER JOIN

The LEFT OUTER JOIN operator includes all rows from the left side of the join. This
includes all the customers who have not placed any orders, as shown here:

SELECT c.Last_Name, c.First_Name, o.Order_Date

FROM Customers c LEFT OUTER JOIN

Chapter 3:SQL Basics

-98-

 Orders o ON c.Customer_number = o.Customer_Number;

The result set this query generates is shown in Table 3-14. Note the NULLs listed
under order date where the customer hasn't actually placed an order.

Table 3-14: Results of Left Outer Join

Last_Name First_Name Order_Date

Corleone Michael <NULL>

Corleone Fredo 12/8/01

Corleone Sonny <NULL>

Corleone Francis 12/9/01

Corleone Vito 12/9/01

Hagen Tom <NULL>

Adams Kay 12/10/01

Coppola Francis <NULL>

Puzo Mario <NULL>

RIGHT OUTER JOIN

It is important to note that "left" and "right" are completely dependent on the order of
the tables in the SQL sta tement, so you can turn this into a RIGHT OUTER JOIN by
reversing the order of the tables in the JOIN command. Here's an example:

SELECT c.Last_Name + ', ' + c.First_Name AS Customer,

 o.Order_Date

FROM ORDERS o RIGHT OUTER JOIN

 CUSTOMERS c ON c.customer_number = o.customer_number;

OUTER JOIN commands can also be written in a shorthand similar to the form we
use for our INNER JOIN. The form for the LEFT OUTER JOIN uses the "*=" operator,
as shown here:

SELECT c.Last_Name + ', ' + c.First_Name AS Customer,

 o.Order_Date

FROM CUSTOMERS c, ORDERS o

WHERE c.customer_number *= o.customer_number;

The form for the RIGHT OUTER JOIN uses the "=*" operator as follows:

SELECT c.Last_Name + ', ' + c.First_Name AS Customer,

Chapter 3:SQL Basics

-99-

 o.Order_Date

FROM ORDERS o, CUSTOMERS c

WHERE o.customer_number =* c.customer_number;

Note In the shorthand version, the type of JOIN depends on both the order of

the tables in the FROM clause and the position of the asterisk in the *=
operator.

FULL OUTER JOIN

A "full outer join" includes all unmatched rows from both tables in the result. For
example, to find any orders in the Orders Table with customer numbers that do not
match any entries in our Customers Table, you can execute a Full Outer Join to show
all the entries in both tables. Here's an example:

SELECT c.Last_Name, c.First_Name, o.Order_Date

FROM Customers c FULL OUTER JOIN

 Orders o ON c.Customer_number = o.Customer_Number;

The result set generated by this join is the same as the results shown in Table 3-14,
since all orders have a corresponding customer. However, if, for some reason, an
order placed on 12/12/01existed in the Orders Table with no corresponding entry in
the Customers Table, the additional row shown at the bottom of Table 3-15 would be
generated.

Table 3-15: Results of FULL OUTER JOIN

Last_Name First_Name Order_Date

Corleone Michael <NULL>

Corleone Fredo 12/8/01

Corleone Sonny <NULL>

Corleone Francis 12/9/01

Corleone Vito 12/9/01

Hagen Tom <NULL>

Adams Kay 12/10/01

Coppola Francis <NULL>

Puzo Mario <NULL>

<NULL> <NULL> 12/12/01

Using NOT EXISTS

TE
AM
FL
Y

Team-Fly®

Chapter 3:SQL Basics

-100-

Now you know how to use INNER JOINS to find records from two tables with
matching fields, and how to use OUTER JOINS to find all records, matching or
nonmatching. Next, consider a case in which you want to find records from one table
that don't have corresponding records in another.

Using the Customers and Orders Tables again, find all the customers who have not
placed an order. The way to do this is to find customer records with customer
numbers that do not exist in the Orders Table. This is done using NOT EXISTS:

SELECT c.Last_Name + ', ' + c.First_Name AS Customer

FROM CUSTOMERS c

WHERE NOT EXISTS

 (SELECT *

 FROM orders o

 WHERE o.customer_number = c.customer_number);

Self-joins

A self-join is simply a normal SQL join that joins a table to itself. You use a self-join
when rows in a table contain references to other rows in the same table. An example
of this situation is a table of employees, where each record contains a reference to
the employee's supervisor by Employee_ID. Since the supervisor is also an
employee, information about the supervisor is stored in the Employees Table, as
shown in Table 3-16, so you use a self-join to access it.

Table 3-16: Employees Table

EMPLOYEE_ID FIRST_NAME LAST_NAME SUPERVISOR

100 Michael Corleone 104

101 Fredo Corleone 100

102 Sonny Corleone 100

103 Francis Corleone 100

104 Vito Corleone 99

105 Tom Hagen 100

106 Kay Adams 100

107 Francis Coppola 100

108 Mario Puzo 100

Since a join implicitly requires two table names, identifying the tables to be joined, you
can create a self-join by using table-name aliases to give each reference to the table
a separate name. To get a list of employees and their supervisors, create a self-join

Chapter 3:SQL Basics

-101 -

by creating two separate references to the Employees Table, using two different
aliases:

SELECT e.Last_Name, e.First_Name,

 boss.Last_Name + ', ' + boss.First_Name AS Boss

FROM EMPLOYEES e, EMPLOYEES boss

WHERE e.supervisor = boss.employee_id

The preceding SQL code is effectively creating what looks like two identical tables, E
and Boss, and joining them using an Inner Join. This approach allows you to get the
employee information from one reference to the table and supervisor information from
the other, as shown here:

Last_Name First_Name Boss

Corleone Michael Corleone, Vito

Corleone Fredo Corleone, Michael

Corleone Sonny Corleone, Michael

Corleone Francis Corleone, Michael

Hagen Tom Corleone, Michael

Adams Kay Corleone, Michael

Coppola Francis Corleone, Michael

You can turn this into an Outer Self-Join very easily, as follows:

SELECT e.last_name, e.first_name,

 boss.last_name + ', ' + boss.first_name AS Boss

FROM EMPLOYEES e, employees boss

WHERE e.supervisor *= boss.employee_id;

This returns one additional row, since the Employee_ID of Vito's supervisor does not
appear in the Employees Table. His boss appears as <NULL>, as shown here:

Last_Name First_Name Boss

Corleone Michael Corleone, Vito

Corleone Fredo Corleone, Michael

Corleone Sonny Corleone, Michael

Corleone Francis Corleone, Michael

Chapter 3:SQL Basics

-102 -

Last_Name First_Name Boss

Corleone Vito <NULL>

Hagen Tom Corleone, Michael

Adams Kay Corleone, Michael

Coppola Francis Corleone, Michael

Cartesian Products

Cartesian products, or cross products, are something you normally want to avoid.
The Cartesian product of a Join occurs when every record in one table is joined on
every record of the other, so the Cartesian product of two tables 100-rows long is
10,000 rows.

Cartesian products are normally an error, caused by a bad or nonexistent WHERE
clause. In the case of a small table like the ones in our examples, this is not a
major problem; but on a large database, the time taken to generate cross products
of thousands of rows can be significant.

Using the UNION Operator to Combine Queries

Another way to combine data from two separate sources is to use the UNION
operator. The default action of the UNION operator is to combine the results of two or
more queries into a single query and to eliminate any duplicate rows. When ALL is
used with UNION, duplicate rows are not eliminated.

In the following example, the first query returns the names and addresses of all the
Corleones; the second returns all customers in New Jersey. The UNION operator
combines the results, removing the duplicate records that are generated for
Corleones in New Jersey:

SELECT First_Name, Last_Name, Street, City, State

FROM Customers

WHERE Last_Name = 'Corleone'

UNION

SELECT First_Name, Last_Name, Street, City, State

FROM Customers

WHERE State = 'NJ'

ORDER BY Last_Name, First_Name;

Chapter 3:SQL Basics

-103 -

You can use ORDER BY, as shown, to sort the combined answer set by adding the
ORDER BY clause after the last query. Here is the result:

First_Name Last_Name Street City State

Kay Adams 109 Maple Newark NJ

Francis Corleone 17 Main New York NY

Fredo Corleone 19 Main New York NY

Michael Corleone 123 Pine New York NY

Sonny Corleone 123 Walnut Newark NJ

Vito Corleone 23 Oak St Newark NJ

Tom Hagen 37 Chestnut Newark NJ

You do not have to use the same columns in each query. Only the column counts and
column types need to match. However, if you create a UNION of two result sets with
different columns, you have to apply the ORDER BY clause using the column
number.

EXCEPT operator

The EXCEPT operator creates a result set by including all rows that the first query
returns but not rows that the second query returns. The default version eliminates all
duplicate rows; EXCEPT ALL does not. The following statement will return the names
and addresses of all Corleones except those living in New Jersey:

SELECT First_Name, Last_Name, Street, City, State

FROM Customers

WHERE Last_Name = 'Corleone'

EXCEPT

SELECT First_Name, Last_Name, Street, City, State

FROM Customers

WHERE State = 'NJ'

INTERSECT operator

The INTERSECT operator creates a result set by including only rows that exist in
both queries and eliminating all duplicate rows. When you use ALL with INTERSECT,
the duplicate rows are not eliminated. The following statement will return the names
and addresses of Corleones living in New Jersey:

SELECT First_Name, Last_Name, Street, City, State

FROM Customers

Chapter 3:SQL Basics

-104 -

WHERE Last_Name = 'Corleone'

INTERSECT

SELECT First_Name, Last_Name, Street, City, State

FROM Customers

WHERE State = 'NJ';

Data Control Language

The Data Control Language (DCL) provides the tools to manage the database and
control such aspects as user-access privileges. Since a database usually represents
a significant investment in time and effort, managing users is an important aspect of
database management.

A user is anyone who has access to the database. Users can be granted different
privileges, ranging from read-only access to a limited portion of the database, all the
way up to unlimited access to the entire RDBMS.

Managing Users

To add individual users to a database, the database administrator must create
database users. This is done using the CREATE USER command. When you create
a user, you can assign a password, certain basic permissions and an expiration date,
all in one command. You can also add the user to an existing user group.

After creating a user, you may need to modify his or her privileges, perhaps to add the
right to modify or delete certain tables or to change the user's password. These
functions are handled using the ALTER USER command.

Finally, you may need to remove an individual's access to the database entirely. This
is done using the DROP USER command.

User privileges

Relational Database Management Systems define sets of privileges that can be
assigned to users. These privileges correspond to actions that can be performed on
objects in the database. User privileges can be assigned at two different levels. Users
can be restricted both at the level of the types o f actions they can perform, such as
READ, MODIFY, or WRITE, and at the level of the types of database objects they can
access.

Access-level privileges can generally be assigned at the following levels:

§ Global level access to all databases on a given server

§ Database level access to all tables in a given database

§ Table-level access to all columns in a given table

Chapter 3:SQL Basics

-105-

§ Column-level access to single columns in a given table

Normally, the management of user privileges is an administrative function that the
database administrator handles.

Frequently, user privileges are assigned by defining a user's role. Database roles are
simply predefined sets of user privileges. Like users, user groups and roles are
managed using SQL commands. Most RDBMSes support the following roles or their
equivalents:

§ Owner – A user who can read or write data and create, modify, and delete the database or its

components

§ Writer – A user who is allowed to read or write data

§ Reader – Someone who is allowed to read data but not write to the database

§ Public – The lowest possible in terms of privileges

User roles are a neat administrative feature designed to save time for the database
administrator. Like groups, roles can be defined by the database administrator as
required.

Managing user groups

In addition to defining individual users, many systems allow the database
administrator to organize users into logical groups with the same privileges. Groups
are created in much the same way as individual users. The general syntax for
CREATE GROUP is as follows:

CREATE GROUP group_name WITH USER user1, user2

Like users, groups are dropped using the DROP command, as shown here:

DROP GROUP group_name

To add a user to a group, use the ALTER GROUP ADD command; to delete users,
use the ALTER GROUP DROP command, as shown here:

ALTER GROUP group_name ADD USER username [, ...]

ALTER GROUP group_name DROP USER username [, ...]

A significant difference between adding and dropping groups as opposed to adding
and dropping individual users is that when a group is a ltered or dropped, only the
group is affected. Any users in a group that is dropped simply lose their membership
in the group. The users are otherwise unaffected. Similarly, when a group is altered
by dropping a user, only the group is affected. The user simply loses his or her
membership in the group but is otherwise unaffected.

Chapter 3:SQL Basics

-106 -

Granting and revoking user privileges

The SQL GRANT command is used to grant users the necessary access privileges to
perform various operations on the database. In addition to granting a user specified
access privileges, the GRANT command can be used to allow the user to grant a
privilege to other users. There is also an option allowing the user to grant privileges
on all subtables and related tables. These two versions of the GRANT command look
like this:

GRANT privilege ON table_name TO user_name;

GRANT SELECT ON PRODUCTS WITH GRANT OPTION TO jdoe;

The REVOKE command is used to revoke privileges granted to a user. Like the
GRANT command, this command can be applied at various levels.

The REVOKE command is used to revoke privileges from users so that they cannot
do certain tasks on the database. Just like the GRANT command, this command can
be applied at various levels. It is important to note that the exact syntax of this
command might differ as per your database. For example, the following command
revokes the SELECT privileges from John Doe, on the Products Table.

REVOKE SELECT ON PRODUCTS FROM jdoe

Creating and Using Stored Procedures

A stored procedure is a saved collection o f SQL statements that can take and return
user-supplied parameters. You can think of a stored procedure as a method or
function, written in SQL. There are obviously a number of advantages to using stored
procedures, including:

§ Stored procedures are precompiled, so they will execute fast.

§ Stored procedures provide a standardised way of performing common tasks.

Almost any SQL statement can be used as a stored procedure. All that is required is
to provide a procedure name and a list of variables:

CREATE PROCEDURE procedure_name

 @parameter data_type,

 @parameter data_type = default_value,

 @parameter data_type OUTPUT

AS

 sql_statement [...n]

Variable names are specified using an at sign @ as the first character. Otherwise the
name must conform to the rules for identifiers. Variable names cannot be used in

Chapter 3:SQL Basics

-107 -

place of table names, column names, or the names of other database objects. They
can only be used to pass values to and from the stored procedure.

In addition to the variable name, you must specify a data type. All data types can be
used as a parameter for a stored procedure. You can also specify a default value for
the variable, as shown in the example.

If you want to return a value to the caller, you must specify the variable used for the
return value using the OUTPUT keyword. You can then set this value in the body of
the stored procedure.

The AS keyword is used to identify the start of the SQL statement forming the body of
the stored procedure. A very simple stored procedure with no parameter variables
might look like:

CREATE PROCEDURE LIST_ORDERS_BY_STATE

AS

SELECT

 o.Order_Number,

 c.Last_Name + ', ' + c.First_Name AS Name,

 c.State

FROM Customers c,Orders o

 WHERE c.Customer_Number = o.Customer_Number

 ORDER BY c.State,c.Last_Name;

To execute this stored procedure, you simply invoke it by name. The following code
snippet shows how:

LIST_ORDERS_BY_STATE;

The stored procedure will return a result set which looks like:

Order_Number Name State

5 Adams, Kay NJ

4 Corleone, Vito NJ

2 Corleone, Fredo NY

3 Corleone, Francis NY

Using Input Parameters in a Stored Procedure

The following code snippet shows how you can use input parameters in a stored
procedure. This particular store procedure was designed to handle the input from an

Chapter 3:SQL Basics

-108-

HTML form. Notice that the variable names are not required to be the same as the
column names:

CREATE PROCEDURE INSERT_CONTACT_INFO

@FName VARCHAR(20), @MI CHAR(1), @LName VARCHAR(30),

@Street VARCHAR(50), @City VARCHAR(30), @ST CHAR(2),

@ZIP VARCHAR(10), @Phone VARCHAR(20), @Email VARCHAR(50)

AS

INSERT INTO CONTACT_INFO

 (First_Name, MI, Last_Name,

 Street, City, State, ZIP, Phone, Email)

VALUES

 (@FName, @MI, @LName,

 @Street, @City, @ST, @ZIP, @Phone, @Email);

The SQL statement used to call this procedure is very similar to the statement shown
in the previous example. The only difference is the use of the input parameters
obtained from the HTML form:

INSERT_CONTACT_INFO 'Charles', 'F', 'Boyer', '172 Michelin',

'Detroit', 'MI', '76543', '900-555-1234', 'charles@boyer.net'

Using Output Parameters in a Stored Procedure

Creating a stored procedure which uses output parameters is also quite
straightforward. The example shows a stored procedure which returns a validation
message when a UserName, Password pair is checked against a table:

CREATE PROCEDURE CHECK_USER_NAME

 @UserName varchar(30),

 @Password varchar(20),

 @PassFail varchar(20) OUTPUT

AS

 IF EXISTS(Select * From Customers

 WHERE Last_Name = @UserName

 AND

 First_Name = @Password)

 BEGIN

 SELECT @PassFail = "PASS"

 END

 ELSE

 BEGIN

 SELECT @PassFail = "FAIL"

 END

Chapter 3:SQL Basics

-109 -

You can check the output from this stored procedure by declaring a variable such as
@PFValue and passing it to the stored procedure as an OUTPUT, as shown below.
In this example, the result is stored to a new table, PWCHECK:

DECLARE @PFValue VARCHAR(20)

EXECUTE CHECK_USER_NAME 'Corleone', 'Michael', @PFValue OUTPUT

INSERT INTO PWCHECK

 VALUES ('Corleone', 'Michael', @PFValue)

Summary

This chapter provides a brief but fairly comprehensive overview of SQL. You should
now be able to create and populate a database and to use SQL to perform fairly
complex queries.

Specifically, you learn about using SQL when:

§ Creating and populating databases and tables

§ Querying a database

§ Using primary and foreign keys to join tables

§ Managing database security

Chapter 4 discusses Java Database Connectivity (JDBC), which enables you to use
your knowledge of SQL in a Java application. Much of the rest of the book explains
how to do this in the context of a variety of practical applications.

TE
AM
FL
Y

Team-Fly®

Chapter 4:Introduction to JDBC

-110-

Chapter 4: Introduction to JDBC

In This Chapter
§ Understanding DriverManager and different types of JDBC drivers

§ Using JDBC DataSources for simple, pooled, and distributed connections

§ Using Statements, PreparedStatements, and CallableStatements

§ Using transactions, isolation levels, and SavePoints

§ Using ResultSets and Rowsets

§ Using MetaData

§ Mapping of SQL data types in JDBC

JDBC is a Java Database Connectivity API that lets you access virtually any tabular
data source from a Java application. In addition to providing connectivity to a wide
range of SQL databases, JDBC allows you to access other tabular data sources such
as spreadsheets or flat files. Although JDBC is often thought of as an acronym for
Java Database Connectivity, the trademarked API name is actually JDBC.

What Is JDBC?

JDBC is a Java Database Connectivity API that lets you access virtually any tabular
data source from a Java application. In addition to providing connectivity to a wide
range of SQL databases, JDBC allows you to access other tabular data sources such
as spreadsheets or flat files. Although JDBC is often thought of as an acronym for
Java Database Connectivity, the trademarked API name is actually JDBC.

JDBC defines a low-level API designed to support basic SQL functionality
independently of any specific SQL implementation. This means the focus is on
executing raw SQL statements and retrieving their results. JDBC is based on the
X/Open SQL Call Level Interface, an international standard for programming access
to SQL databases, which is also the basis for Microsoft's ODBC interface.

The JDBC 2.0 API includes two packages: java.sql, known as the JDBC 2.0 core API;
and javax.sql, known as the JDBC Standard Extension. Together, they contain the
necessary classes to develop database applications using Java. As a core of the
Java 2 Platform, the JDBC is available on any platform running Java.

The JDBC 3.0 Specification, released in October 2001, introduces several features,
including extensions to the support of various data types, additional MetaData
capabilities, and enhancements to a number of interfaces.

The JDBC Extension Package (javax.sql) was introduced to contain the parts of the
JDBC API that are closely related to other pieces of the Java platform that are
themselves optional packages, such as the Java Naming and Directory Interface
(JNDI) and the Java Transaction Service (JTS). In addition, some advanced features

Chapter 4:Introduction to JDBC

-111-

that are easily separable from the core JDBC API, such as connection pooling and
rowsets, have been added to javax.sql. Putting these advanced facilities into an
optional package instead of into the JDBC 2.0 core API helps to keep the core JDBC
API small and focused.

The main strength of JDBC is that it is designed to work in exactly the same way with
any relational database. In other words, it isn't necessary to write one program to
access an Oracle database, another to access a Sybase database, another for SQL
Server, and so on. JDBC provides a uniform interface on top of a variety of different
database-connectivity modules. As you will see in Part II of this book, a single
program written using JDBC can be used to create a SQL interface to virtually any
relational database. The three main functions of JDBC are as follows:

§ Establishing a connection with a database or other tabular data source

§ Sending SQL commands to the database

§ Processing the results

Listing 4-1 provides a simple example of the code required to access an Inventory
database containing a table called Stock, which contains the names, descriptions,
quantities, and costs of various items. The three steps required to use JDBC to
access data are clearly illustrated in the code.

Listing 4-1: Simple example of JDBC functionality

package java_databases.ch04;

import java.sql.*; // imports the JDBC core package

public class JdbcDemo{

 public static void main(String args[]){

 int qty;

 float cost;

 String name;

 String desc;

 // SQL Query string

 String query = "SELECT Name,Description,Qty,Cost FROM Stock";

 try {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); // load the JDBC driver

 Connection con = DriverManager.getConnection ("jdbc:odbc:Inventory");

 // get a connection

 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery(query); // execute query

 while (rs.next()) { // parse the results

 name = rs.getString("Name");

Chapter 4:Introduction to JDBC

-112-

 desc = rs.getString("Description");

 qty = rs.getInt("Qty");

 cost = rs.getFloat("Cost");

 System.out.println(name+", "+desc+"\t: "+qty+"\t@ $"+cost);

 }

 con.close();

 }

 catch(ClassNotFoundException e){

 e.printStackTrace();

 }

 catch(SQLException e){

 e.printStackTrace();

 }

 }

}

The example illustrates the following main steps required to access a database and
retrieve data from a ResultSet using the JDBC API:

§ Load a JDBC driver.

§ Get a connection to the database.

§ Create a statement.

§ Execute a SQL query.

§ Retrieve data from the ResultSet.

The ResultSet provides the methods necessary to loop through the results and get
the individual database fields using methods appropriate to their respective types.
Here's an example:

Steiner 10 x 50 Binoculars 10 $799.95

Steiner 8 x 30 Binoculars 30 $299.95

PYGMY-2 Night Vision Monocular 20 $199.95

The JDBC API defines standard mappings between SQL data types and Java/JDBC
data types, including support for SQL99 advanced data types such as BLOBs and
CLOBs, ARRAYs, REFs, and STRUCTs.

Note This example uses the JDBC.ODBC bridge. JDBC supports a wide range

of different drivers of four distinctly different types. These are discussed in
the section on driver types later in this chapter.

Chapter 4:Introduction to JDBC

-113 -

The JDBC API can be used directly from your application or as part of a multi-tier
server application as shown in the next section.

Two-Tier and Three-Tier Models

The JDBC API supports both two-tier and three-tier models for database access. In
other words, JDBC can either be used directly from your application or as part of a
middle-tier server application.

Two-Tier Model

In the two-tier model, a Java application interacts directly with the database.
Functionality is divided into these two layers:

§ Application layer, including the JDBC driver, business logic, and user interface

§ Database layer, including the RDBMS

The interface to the database is handled by a JDBC driver appropriate to the
particular database management system being accessed. The JDBC driver passes
SQL statements to the database and returns the results of those statements to the
application.

Figure 4-1: Two-tier client/server configuration

A client/server configuration is a special case of the two-tier model, where the
database is located on another machine, referred to as the server. The application
runs on the client machine, which is connected to the server over a network.
Commonly, the network is an intranet, using dedicated database servers to support
multiple clients, but it can just as easily be the Internet.

Part II of this book illustrates the use of basic JDBC and SQL functionality in the
context of a basic two-tier application using simple Swing components to create a
generic RDBMS GUI. The inherent flexibility of a Java/JDBC approach to developing
database applications enables you to access a wide range of RDBMS systems,
including Oracle, Sybase, SQL Server, and MySQL as well as MS Office applications,
using this GUI.

Chapter 4:Introduction to JDBC

-114-

Three-tier Model

In the three-tier model illustrated in Figure 4-2, commands are sent to an application
server, forming the middle tier. The application server then sends SQL statements to
the database. The database processes the SQL statements and sends the results
back to the application server, which then sends them to the client.

Figure 4-2: Three-tier model typical of Web applications

These are some advantages of three-tier architecture:

§ Performance can be improved by separating the application server and database server.

§ Business logic is clearly separated from the database.

§ Client applications can use a simple protocol such as CGI to access services.

The three-tier model is common in Web applications, where the client tier is
frequently implemented in a browser on a client machine, the middle tier is
implemented in a Web server with a servlet engine, and the database management
system runs on a dedicated database server.

The main components of a three-tier architecture are as follows:

§ Client tier, typically a thin presentation layer that may be implemented using a Web browser

§ Middle tier, which handles the business logic or application logic. This may be implemented

using a servlet engine such as Tomcat or an application server such as JBOSS. The JDBC driver

also resides in this layer.

§ Data-source layer, including the RDBMS

Part III of this book illustrates additional capabilities of the JDBC API in a three-tier
application that uses a Web browser as the client, an Apache/Tomcat server as the
middle tier, and a relational database management system as the database tier.

SQL Conformance

Although SQL is the standard language for accessing relational databases, different
RDBMS systems support a large number of different dialects of SQL. These
differences range from such minor details as whether a SQL statement needs a
closing semicolon to major variations such as the absence of support for stored
procedures or some types of joins in some database systems.

Chapter 4:Introduction to JDBC

-115-

Another major difference is that many database management systems offer a lot of
advanced functionality that SQL standards do not cover. These advanced features
may be implemented in ways that are not consistent across different database
systems. A very important design requirement of the JDBC API is that it must support
SQL as it is rather than as the standards define it.

One way the JDBC API deals with this problem is by allowing any SQL String to be
passed to an underlying DBMS driver. This feature means that an application is free
to use whatever functionality a given DBMS might offer. The corollary is that some
database management systems return an error response to some commands.

The JDBC API supports this ability to pass any SQL String to a database
management system through an escape mechanism that provides a standard JDBC
syntax for several of the more common areas of SQL divergence. For example, there
are escapes for date literals and for stored procedure calls.

An additional support mechanism is provided by way of the DatabaseMetaData
interface, which provides descriptive information about the DBMS. This is especially
useful in cross-platform applications, where it can help you to adapt your application
to the requirements and capabilities of different database management systems.

Just as there are variations in the implementation of the SQL standard, there can be
variations in the level of a JDBC driver's compliance to the definition of the API. The
concept of JDBC compliance is discussed in the next section.

JDBC Compliance

Sun created the "JDBC COMPLIANTTM" designation to indicate that you can rely on a
vendor's JDBC implementation to conform to a standard level of JDBC functionality.
Before a vendor can use this designation, the vendor's driver must pass Sun's JDBC
conformance tests. These conformance tests check for the existence of all of the
classes and methods defined in the JDBC API, and, as far as possible, they check
that the SQL Entry Level functionality is available.

The java.sql.Driver method jdbcCompliant() reports whether the driver is JDBC
Compliant. A driver may only report "true" when this method is called if it passes the
JDBC compliance tests; otherwise, it is required to return false. This method is not
intended to encourage the development of non-JDBC compliant drivers. It exists
merely in recognition of the fact that some vendors are interested in using the JDBC
API and framework for lightweight databases that do not support full database
functionality or for special databases such as document-information retrieval, where a
SQL implementation may not be feasible.

Sun defines the three following levels of JDBC compliance:

Chapter 4:Introduction to JDBC

-116-

§ JDBC 1.0 API Compliance, which requires implementation of the following interfaces:

§ java.sql.Driver

§ java.sql.DatabaseMetaData (excluding those portions defined in the JDBC 2.0 and 3.0

extensions)

§ java.sql.ResultSetMetaData (excluding portions defined in the JDBC 2.0 and 3.0

extensions)

§ java.sql.Connection

§ java.sql.Statement

§ java.sql.CallableStatement

§ java.sql.PreparedStatement

§ java.sql.ResultSet

§ JDBC 2.0 API Compliance, which requires:

§ JDBC 1.0 API Compliance

§ Full implementation of the DatabaseMetaData interface extensions defined in JDBC 2.0

§ Implementation of additional JDBC 2.0 ResultSet methods

§ JDBC 3.0 API Compliance, which requires:

§ JDBC 2.0 API Compliance

§ Implementation of java.sql.ParameterMetaData

§ Implementation of java.sql.Savepoint

§ Full implementation of the DatabaseMetaData interface extensions defined in JDBC 3.0

Driver developers can ascertain that their drivers meet the JDBC Compliance
standards by using the test suite available with the JDBC API.

Having discussed how variations in SQL implementations, and variations in JDBC
compliance are handled, it is time to move on to the actual workings of the JDBC API.
The next section discusses how JBC actually works.

How Does JDBC Work?

The key interfaces in the JDBC Core API are as follows:

§ java.sql.DriverManager. In addition to loading JDBC drivers, the DriverManager is responsible

for returning a connection to the appropriate driver. When getConnection() is called, the

DriverManager attempts to locate a suitable driver for the URL provided in the call by polling the

registered drivers.

§ java.sql.Driver. The Driver object implements the acceptsURL(String url)method, confirming its

ability to connect to the URL the DriverManager passes.

§ java.sql.Connection. The Connection object provides the connection between the JDBC API and

the database management system the URL specifies. A Connection represents a session with a

specific database.

§ java.sql.Statement. The Statement object acts as a container for executing a SQL statement on

a given Connection.

Chapter 4:Introduction to JDBC

-117-

§ java.sql.ResultSet. The ResultSet object controls access to the results of a given Statement in a

structure that can be traversed by moving a cursor and from which data can be accessed using a

family of getter methods.

The DriverManager

The java.sql.DriverManager provides basic services fo r managing JDBC drivers.
During initialization, the DriverManager attempts to load the driver classes referenced
in the "jdbc.drivers" system property. Alternatively, a program can explicitly load
JDBC drivers at any time using Class.forName(). This allows a user to customize the
JDBC drivers their applications use.

A newly loaded driver class should call registerDriver() to make itself known to the
DriverManager. Usually, the driver does this internally.

When getConnection() is called, the DriverManager attempts to locate a suitable
driver from among those loaded at initialization and those loaded explicitly using the
same classloader as the current applet or application. It does this by polling all
registered drivers, passing the URL of the database to the drivers' acceptsURL()
method.

There are three forms of the getConnection() method, allowing the user to pass
additional arguments in addition to the URL of the database:

public static synchronized Connection getConnection(String url) throws

SQLException

public static synchronized Connection getConnection(String url,

 String user,

 String password)

throws SQLException

public static synchronized Connection getConnection(String url,

 Properties info)

throws SQLException

Note When searching for a driver, JDBC uses the first driver it finds that can

successfully connect to the given URL. It starts with the drivers specified
in the sql.drivers list, in the order given. It then tries the loaded drivers in
the order in which they are loaded.

JDBC drivers

To connect with individual databases, JDBC requires a driver for each database.
JDBC drivers come in these four basic varieties.

§ Types 1 and 2 are intended for programmers writing applications.

Chapter 4:Introduction to JDBC

-118-

§ Types 3 and 4 are typically used by vendors of middleware or databases.

A more detailed description of the different types of drivers follows.

JDBC driver types

The four structurally different types of JDBC drivers are as follows:

§ Type 1: JDBC-ODBC bridge plus ODBC driver

§ Type 2: Native-API partly Java driver

§ Type 3:JDBC-Net pure Java driver

§ Type 4: Native-protocol pure Java driver

These types are discussed in the following sections.

Type 1: JDBC-ODBC bridge plus ODBC driver

The JDBC-ODBC bridge product provides JDBC access via ODBC drivers. ODBC
(Open Database Connectivity) predates JDBC and is widely used to connect to
databases in a non-Java environment. ODBC is probably the most widely available
programming interface for accessing relational databases.

The main advantages of the JDBC-ODBC bridge are as follows:

§ It offers the ability to connect to almost all databases on almost all platforms.

§ It may be the only way to gain access to some low-end desktop databases and applications.

Its primary disadvantages are as follows:

§ ODBC drivers must also be loaded on the target machine.

§ Translation between JDBC and ODBC affects performance.

Type 2: Native-API partly Java driver

Type 2 drivers use a native API to communicate with a database system. Java native
methods are used to invoke the API functions that perform database operations.

A big advantage of Type 2 drivers is that they are generally faster than Type 1 drivers.
The primary disadvantages of Type 2 drivers are as follows:

§ Type 2 drivers require native code on the target machine.

§ The Java Native Interface on which they depend is not consistently implemented amongdifferent

vendors of Java virtual machines.

Type 3:JDBC-Net pure Java driver

Chapter 4:Introduction to JDBC

-119-

Type 3 drivers translate JDBC calls into a DBMS independent net protocol that is then
translated to a DBMS protocol by a server.

Advantages of Type 3 drivers are the following:

§ Type 3 drivers do not require any native binary code on the client.

§ Type 3 drivers do not need client installation.

§ Type 3 drivers support several networking options, such as HTTP tunneling.

A major drawback of Type 3 drivers is that they can be difficult to set up since the
architecture is complicated by the network interface.

Type 4: Native-protocol pure Java driver

The Type 4 driver is a native protocol, 100-percent Java driver. This allows direct
calls from a Java client to a DBMS server. Because the Type 4 driver is written in
100-percent Java, it requires no configuration on the client machine other than telling
your application where to find the driver. This allows a direct call from the client
machine to the DBMS server. Many of these protocols are proprietary, so these
drivers are provided by the database vendors themselves.

Native protocol pure Java drivers can be significantly faster than the JDBC ODBC
bridge. In Part II of this book, performance of the Opta2000 driver from I-Net is
compared with the performance of the JDBC-ODBC bridge in a simple SQL Server
application. Although this comparison is not intended to be anything more than a
trivial indicator of the difference between the two, the Opta2000 driver's performance
is clearly faster.

Cross-Reference To learn more about available drivers, you can visit the Web

site Sun maintains at:

http://java.sun.com/products/jdbc/industry.html

This Web site provides an up-to-date listing of JDBC-driver
vendors.

JDBC DataSource

The DataSource interface, introduced in the JDBC 2.0 Standard Extension API, is
now, according to Sun, the preferred alternative to the DriverManager class for
making a connection to a particular source of data. This source can be anything from
a relational database to a spreadsheet or a file in tabular format.

A DataSource object can be implemented in these three significantly different ways,
adding important and useful capabilities to the JDBC API:

TE
AM
FL
Y

Team-Fly®

Chapter 4:Introduction to JDBC

-120-

§ The basic DataSource that produces standard Connection objects that are not pooled or used in

a distributed transaction

§ A DataSource that supports connection pooling. Pooled connections are returned to a pool for

reuse by another transaction.

§ A DataSource that supports distributed transactions accessing two or more DBMS servers

With connection pooling, connections can be used over and over again, avoiding the
overhead of creating a new connection for every database access. Reusing
connections in this way can improve performance dramatically, since the overhead
involved in creating new connections is substantial.

Distributed transactions are discussed later in this chapter. They involve tables on
more than one database server. The JDBC DataSource can be implemented to
produce connections for distributed transactions. This kind of DataSource
implementation is almost always implemented to produce connections that are
pooled as well.

DataSource objects combine portability and ease of maintenance with the ability to
provide connection pooling and distributed transactions. These features make
DataSource objects the preferred means of getting a connection to a data source.

DataSources and the Java Naming and Directory Interface

A DataSource object is normally registered with a Java Naming and Directory
Interface (JNDI) naming service. This means an application can retrieve a
DataSource object by name from the naming service independently of the system
configuration.

JNDI provides naming and directory functionality to Java applications. It is defined to
be independent of any specific directory-service implementation so that a variety of
directories can be accessed in a common way.

The JNDI naming services are analogous to a file directory that allows you to find and
work with files by name. In this case, the JNDI naming service is used to find the
DataSource using the logical name assigned to it when it is registered with the JNDI
naming service.

The association of a name with an object is called a binding. In a file directory, for
example, a file name is bound to a file. The core JNDI interface for looking up, binding,
unbinding, renaming objects, and creating and destroying subcontexts is the Context
interface.

Context interface methods include the following:

§ bind(String name,Object obj) — Binds a name to an object

Chapter 4:Introduction to JDBC

-121-

§ listBindings(String name)— Enumerates the names bound in the named context, along with the

objects bound to them.

§ lookup(String name)— Retrieves the named object

Obviously, using JNDI improves the portability of an application by removing the need
to hard code a driver name and database name, in much the same way as a file
directory improves file access by overcoming the need to reference disk cylinders and
sectors.

Deploying and Using a Basic Implementation of DataSource

A JDBC DataSource maintains information about how to locate the data as a set of
properties, such as the data-source name, the server name on which it resides, and
the port number.

Deploying a DataSource object consists of three tasks:

§ Creating an instance of the DataSource class

§ Setting its properties

§ Registering it with a JNDI naming service

The first step is to create the BasicDataSource object and set the ServerName,
DatabaseName, and Description properties:

com.dbaccess.BasicDataSource ds = new com.dbaccess.BasicDataSource();

ds.setServerName("jupiter");

ds.setDatabaseName("CUSTOMERS");

ds.setDescription("Customer database");

The BasicDataSource object is now ready to be registered with a JNDI naming
service. The JNDI API is used in the following way to create an InitialContext object
and to bind the BasicDataSource object ds to the logical name jdbc/customerDB:

Context ctx = new InitialContext();

ctx.bind("jdbc/customerDB", ds);

The prefix jdbc is a JNDI subcontext under the initial context, much like a subdirectory
under the root directory. The subcontext jdbc is reserved for logical names to be
bound to DataSource objects, so jdbc is always the first part of a logical name for a
data source.

To get a connection using a DataSource, simply create a JNDI Context, and supply
the name of the DataSource object to its lookup() method. The lookup() method
returns the DataSource object bound to that name, which can then be used to get a
Connection:

Chapter 4:Introduction to JDBC

-122 -

Context ctx = new InitialContext();

DataSource ds = (DataSource)ctx.lookup("jdbc/customerDB");

Connection con = ds.getConnection("myUserName", "myPassword");

Note The BasicDataSource object described repesents a vendor's

implementation of the basic DataSource, which may have a vendor
specific name. The Opta2000 driver, for example, calls it a
TdsDataSource. The Connection object that the basic implementation of
the DataSource.getConnection method returns is identical to a
Connection object that the DriverManager.getConnection method returns.

Using a DataSource object is optional unless you are writing applications that include
connection pooling or distributed transactions. In such cases, as discussed in the
next few paragraphs, the use of a DataSource object with built-in connection pooling
or distributed-transaction capabilities offers obvious advantages.

Connection Pooling

Creating and destroying resources frequently involves significant overhead and
reduces the efficiency of an application. Resource pooling is a common way of
minimizing the overhead of creating a new resource for an operation and discarding it
as soon as the operation is terminated. When resource pooling is used, a resource
that is no longer needed after a task is completed is not destroyed but is added to a
resource pool instead, making it available when required for a subsequent operation.

Because establishing a connection is expensive, reusing connections in this way can
improve performance dramatically by cutting down on the number of new connections
that need to be created.

The JDBC 2.0 API introduces the ConnectionPoolDataSource interface. This object is
a factory for PooledConnection objects. Connection objects that implement this
interface are typically registered with a JNDI service.

To deploy a DataSource object to produce pooled connections, you must first deploy
a ConnectionPoolDataSource object, setting its properties appropriately for the data
source to which it produces connections:

 ConnectionPoolDataSource cpds = new ConnectionPoolDataSource();

 cpds.setServerName("Jupiter");

 cpds.setDatabaseName("CUSTOMERS ");

 cpds.setPortNumber(9001);

 cpds.setDescription("Customer database");

The ConnectionPoolDataSource object is then registered with the JNDI naming
service:

Chapter 4:Introduction to JDBC

-123-

 Context ctx = new InitialContext();

 ctx.bind("jdbc/pool/customerDB ", cpds);

Note The logical name associated with cpds has the subcontext pool added

under the subcontext jdbc, which is similar to adding a subdirectory to
another subdirectory in a hierarchical file system.

After the ConnectionPoolDataSource object has been registered with a JNDI naming
service, deploy a DataSource object implemented to work with it.

Only two properties need to be set for the DataSource object, since the information
required for connection has already been set in the ConnectionPoolDataSource
object. These are as follows:

§ dataSourceName

§ description

The dataSourceName is then set to the logical name of the
ConnectionPoolDataSource, as shown here:

 PooledDataSource ds = new PooledDataSource();

 ds.setDescription("Customer database pooled connection source");

 ds.setDataSourceName("jdbc/pool/customerDB ");

 Context ctx = new InitialContext();

 ctx.bind("jdbc/customerDB", ds);

You have now deployed a DataSource object that an application can use to get
pooled connections to the database.

Caution It is especially important to close pooled connections in a finally block,

so that even if a method throws an exception, the connection will be
closed and put back into the connection pool.

Another situation in which using a DataSource object is required is when you need to
implement distributed transactions. In such cases, as discussed in the next few
paragraphs, the use of a DataSource object with built-in distributed-transaction
capabilities is the best solution.

Distributed Transactions

In a three-tier architecture, it is sometimes necessary to access data from more than
one database server in a distributed transaction. This situation can be handled very
effectively using a DataSource implemented to produce connections for distributed
transactions in the middle tier.

As with connection pooling, two classes must be deployed:

Chapter 4:Introduction to JDBC

-124 -

§ An XADataSource, which produces XAConnections supporting distributed transactions

§ A DataSource object that is implemented to work with it

DataSources implemented to produce connections for distributed transactions are
almost always implemented to produce connections that are pooled as well. The
XAConnection interface, in fact, extends the PooledConnection interface.

The XADataSource object needs to be deployed first. This is done by creating an
instance of XATransactionalDS and setting its properties, as shown here:

 XATransactionalDS xads = new XATransactionalDS();

 xads.setServerName("Jupiter");

 xads.setDatabaseName("CUSTOMERS");

 xads.setPortNumber(9001);

 xads.setDescription("Customer database");

Next, the XATransctionDS needs to be registered with the JNDI naming service, as
shown here:

 Context ctx = new InitialContext();

 ctx.bind("jdbc/xa/CustomerDB", xads);

Note The logical name associated with xads has the subcontext xa added

under the subcontext jdbc, in the same way as the subcontext pool is
added in the connection-pooling example.

Finally, the DataSource object is implemented to interact with xads, and other
XADataSource objects are deployed:

 TransactionalDS ds = new TransactionalDS();

 ds.setDescription("Customers distributed transaction connections

source");

 ds.setDataSourceName("jdbc/xa/CustomerDB ");

 Context ctx = new InitialContext();

 ctx.bind("jdbc/CustomerDB", ds);

Now that instances of the TransactionalDS and XATransactionalDS classes have
been deployed, an application can use the DataSource to get a connection to the
CUSTOMERS database. This connection can then be used in distributed
transactions. The following code to get the connection is very similar to the code to
get a pooled connection:

 Context ctx = new InitialContext();

 DataSource ds = (DataSource)ctx.lookup("jdbc/CustomerDB");

 Connection con = ds.getConnection("myUserName", "myPassword");

Chapter 4:Introduction to JDBC

-125-

Distributed Transaction Management

The primary difference between using a regular connection and using a connection
intended for distributed transactions is that all distributed transactions are committed
or rolled back by a separate transaction manager in the middle tier. So the application
should not do anything that can interfere with what the transaction manager is doing.
This means that application code should never call these methods:

§ Connection.commit

§ Connection.rollback

§ Connection.setAutoCommit(true)

A connection created for distributed transactions can, of course, also be used for
nondistributed transactions, in which case these restrictions do not apply.

Note A Connection object that can be used for distributed transactions has its

auto-commit mode turned off by default, unlike a regular connection for
which the default is to have its auto-commit mode turned on.

Connection

A Connection object represents a connection with a database. A connection session
includes the SQL statements that are executed and the results that are returned over
that connection. A single application can have one or more connections with a single
database, or it can have connections with many different databases.

Opening a connection

The standard way to establish a connection with a database is to call the method
getConnection() on either a DataSource or a DriverManager. The Driver method
connect uses this URL to establish the connection.

A user can bypass the JDBC management layer and call Driver methods directly.
This can be useful in the rare case that two drivers can connect to a database and the
user wants explicitly to select a particular driver. Usually, however, it is much easier to
just let the DataSource class or the DriverManager class open a connection.

Database URLs

A URL (Uniform Resource Locator) is an identifier for locating a resource on the
Internet. It can be thought of as an address. A JDBC URL is a flexible way of
identifying a database so that the appropriate driver recognizes it and establishes a
connection with it. JDBC URLs allow different drivers to use different schemes for
naming databases. The odbc subprotocol, for example, lets the URL contain attribute
values.

Chapter 4:Introduction to JDBC

-126 -

The standard syntax for JDBC URLs is shown here:

jdbc:<subprotocol>:<subname>

The three parts of a JDBC URL are broken down as follows:

§ Jdbc — The protocol. The protocol in a JDBC URL is always jdbc.

§ <subprotocol> — The name of the driver or connectivity mechanism, which may be supported by

one or more drivers

§ <subname> — A unique identifier for the database

For example, this is the URL to access the contacts database through the
JDBC-ODBC bridge:

 jdbc:odbc:contacts

The odbc subprotocol

The odbc subprotocol has the special feature of allowing any number of attribute
values to be specified after the database name, as shown here:

 jdbc:odbc:<data-source-name>[;<attribute-name>=<attribute-value>]*

Attributes passed in this way may include user id and password, for example.

Having established a connection to the database, you are now in a position to
execute a SQL statement. The next section discusses SQL statements.

SQL Statements

Once a connection is established, it is used to pass SQL statements to the database.
Since there are no restrictions imposed on the kinds of SQL statements that may be
sent to a DBMS using JDBC, the user has a great deal of flexibility to use
database-specific statements or even non-SQL statements.

The JDBC core API provides these three classes for sending SQL statements to the
database:

§ Statement. A Statement object is used for sending simple SQL statements. Statements are

created by the method createStatement().

§ PreparedStatement. A PreparedStatement is a SQL statement that is precompiled and stored in

a PreparedStatement object. This object can then be used to execute this statement multiple

times.

§ CallableStatement. CallableStatement is used to execute SQL stored procedures.

CallableStatements are created by the method prepareCall().

Chapter 4:Introduction to JDBC

-127 -

Statement

A Statement object is used for executing a static SQL statement and obtaining the
results it produces. Statement defines these three methods for executing SQL
statements, which handle SQL commands returning different kinds of results:

§ executeUpdate(String sql): Execute a SQL INSERT, UPDATE, or DELETE statement, which

returns either a count of rows affected or zero.

§ executeQuery(String sql): Execute a SQL statement that returns a single ResultSet.

§ execute(String sql): Execute a SQL statement that may return multiple results.

The executeUpdate method is used for SQL commands such as INSERT, UPDATE,
and DELETE, which return a count of rows affected rather than a ResultSet; or for
DDL commands such as CREATE TABLE, which returns nothing, in which case the
return value is zero.

The executeQuery method is used for SQL queries returning a single ResultSet. The
ResultSet object is discussed in detail later in this chapter.

A significant difference introduced in JDBC 3.0 is the ability for a Statement to have
more than one ResultSet open. If you are using a driver that does not implement
JDBC 3.0, a Statement can have only one ResultSet open at a time; if you need to
interleave data from different ResultSets, each must be generated by a different
Statement; otherwise, any execute method closes the current ResultSet prior to
executing.

The execute method is used to execute a SQL statement that may return multiple
results. In some situations, a single SQL statement may return multiple ResultSets
and/or update counts. The execute method returns boolean true if the SQL statement
returns a ResultSet and false if the return is an update count. The Statement object
defines the following supporting methods:

§ getMoreResults

§ getResultSet

§ getUpdateCount

These methods let you navigate through multiple results. You can use getResultSet()
or getUpdateCount() to retrieve the result and getMoreResults() to move to any
subsequent results.

An example of the use of a simple statement is shown in Listing 4-1.

PreparedStatement

Chapter 4:Introduction to JDBC

-128-

PreparedStatements are nothing more than statements that are precompiled.
Precompilation means that these statements can be executed more efficiently than
simple statements, particularly in situations where a Statement is executed
repeatedly in a loop.

PreparedStatements can contain placeholders for variables known as IN parameters,
which are set using setter methods. A typical setter method looks like this:

public void setObject(int parameterIndex, Object x) throws SQLException

An example of this is the following line, which sets integer parameter #1 equal to 2:

pstmt.setInt(1, 2);

Use of PreparedStatements is fairly intuitive, as shown in Listing 4-2.

Listing 4-2: Using a PreparedStatement

package java_databases.ch04;

import java.sql.*;

public class PreparedStmt{

 public static void main(String args[]){

 int qty;

 float cost;

 String name;

 String desc;

 String query = ("SELECT * FROM Stock WHERE Item_Number = ?";

 try {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 Connection con =

 DriverManager.getConnection ("jdbc:odbc:Inventory");

 PreparedStatement pstmt = con.prepareStatement(query);

 pstmt.setInt(1, 2);

 ResultSet rs = pstmt.executeQuery();

 while (rs.next()) {

 name = rs.getString("Name");

 desc = rs.getString("Description");

 qty = rs.getInt("Qty");

 cost = rs.getFloat("Cost");

 System.out.println(name+", "+desc+"\t: "+qty+"\t@ $"+cost);

 }

 }

 catch(ClassNotFoundException e){

 e.printStackTrace();

Chapter 4:Introduction to JDBC

-129 -

 }

 catch(SQLException e){

 e.printStackTrace();

 }

 }

}

The JDBC PreparedStatement provides setter methods for all SQL data types. The
setter methods used for setting IN parameter values must specify types that are
compatible with the defined SQL type of the input parameter.

You can explicitly convert an input parameter to a particular JDBC type by using the
method setObject. This method can take a third argument, which specifies the target
JDBC type. The driver converts the Java Object to the specified JDBC type before
sending it to the database. If no JDBC type is given, the driver will simply map the
Java Object to its default JDBC type. This allows an application to be generic,
accepting input for a parameter at run time.

The methods setBytes and setString are capable of sending unlimited amounts of
data. You can also handle large amounts of data by setting an IN parameter to a Java
input stream.

JDBC provides these three methods for setting IN parameters to input streams:

§ setBinaryStream(for streams containing uninterpreted bytes)

§ setAsciiStream (for streams containing ASCII characters)

§ setUnicodeStream (for streams containing Unicode characters)

When the statement is executed, the JDBC driver makes repeated calls to the input
stream, reading its contents and sending them to the database as the actual
parameter value.

The setNull method allows you to send a NULL value to the database as an IN
parameter. You can also send a NULL to the database by passing a Java null value
to a setXXX method.

CallableStatement

The CallableStatement object allows you to call a database stored procedure from a
Java application. A CallableStatement object contains a call to a stored procedure; it
does not contain the stored procedure itself, as the stored procedure is stored in the
database. In the example of Listing 4-3, we create and use a stored procedure.

Listing 4-3: Creating and using a stored procedure

package java_databases.ch04;

TE
AM
FL
Y

Team-Fly®

Chapter 4:Introduction to JDBC

-130-

import java.sql.*;

public class CallableStmt{

 public static void main(String args[]){

 int orderNo;

 String name;

 String storedProc = "create procedure SHOW_ORDERS_BY_STATE "+

 "@State CHAR (2) "+

 "as "+

 "select c.Last_Name+', '+c.First_Name AS Name,"+

 "o.Order_Number "+

 "from CUSTOMERS c, ORDERS o "+

 "where c.Customer_Number = o.Customer_Number "+

 "AND c.State = @State "+

 "order by c.Last_Name;";

 try {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 Connection con = DriverManager.getConnection ("jdbc:odbc:Customers");

 Statement stmt = con.createStatement();

 stmt.executeUpdate(storedProc);

 CallableStatement cs = con.prepareCall("{call SHOW_ORDERS_BY_STATE(?)}");

 cs.setString(1,"NJ");

 ResultSet rs = cs.executeQuery();

 while (rs.next()) {

 name = rs.getString("Name");

 orderNo = rs.getInt("Order_Number");

 System.out.println(name+": "+orderNo);

 }

 }

 catch(ClassNotFoundException e){

 e.printStackTrace();

 }

 catch(SQLException e){

 e.printStackTrace();

 }

 }

}

Notice the JDBC escape sequence used to call the stored procedure. This allows
stored procedures to be called in a standard way for all database management
systems.

Chapter 4:Introduction to JDBC

-131 -

CallableStatement extends PreparedStatement, so a CallableStatement object can
take input parameters as a PreparedStatement object can. A CallableStatement can
also take output parameters or parameters that are for both input and output.

This escape syntax used to call a stored procedure has two forms: one that includes
a result parameter and one that does not. Here's an example:

{?= call <procedure-name>[<arg1>,<arg2>, ...]}

{call <procedure-name>[<arg1>,<arg2>, ...]}

Question marks (?) serve as placeholders for parameters defined in the stored
procedure using the @Name convention as shown in the example. IN parameter
values are set using the set methods inherited from PreparedStatement. If used, the
result parameter must be registered as an OUT parameter using the
registerOutParameter() method before one of the execute methods is called.
Consider this example:

cstmt.registerOutParameter(1, java.sql.Types.VARCHAR);

OUT parameter values can be retrieved after execution using get methods
appropriate to the data types of the values.

Listing 4-4 is an example of a simple stored procedure that checks a user name and
password against the database, returning the String "PASS" if a match is found or
"FAIL" otherwise:

Listing 4-4: Stored procedure with input and output parameters

CREATE PROCEDURE CHECK_USER_NAME

 @UserName varchar(30),

 @Password varchar(20),

 @PassFail varchar(20) OUTPUT

As

IF EXISTS(Select * From Customers

Where UserName = @UserName

 And

Password = @Password)

 SELECT @PassFail = "PASS"

else

 SELECT @PassFail = "FAIL"

Because of limitations imposed by some relational database management systems, it
is recommended that, for maximum portability, all of the results generated by the
execution of a CallableStatement object be retrieved before OUT parameters are
retrieved.

Chapter 4:Introduction to JDBC

-132-

In cases where a CallableStatement object returns multiple ResultSet objects, all of
the results should be retrieved using the method getMoreResults before OUT
parameters are retrieved.

Listing 4-5 illustrates how you would retrieve an output parameter from a stored
procedure in a JDBC application.

Note Stored procedures can contain more than one SQL statement, in which

case they produce multiple results, in which case the execute method
should be used.

Listing 4-5: Getting an output parameter from a stored procedure

package java_databases.ch04;

import java.sql.*;

public class CheckPassword{

 public static void main(String args[]){

 try {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 Connection con =

 DriverManager.getConnection ("jdbc:odbc:Customers","user","pwd");

 CallableStatement cs =

 con.prepareCall("{call CHECK_USER_NAME(?,?,?)}");

 cs.setString(1,"Corleone");

 cs.setString(2,"Vito");

 cs.registerOutParameter(3, java.sql.Types.VARCHAR);

 cs.executeUpdate();

 System.out.println(cs.getString(3));

 con.close();

 }

 catch(ClassNotFoundException e){

 e.printStackTrace();

 }

 catch(SQLException e){

 e.printStackTrace();

 }

 }

}

There are many situations in which it is important that a group of SQL statements be
executed in its entirety. A classic example is a series of statements that debit one
bank account and credit another. In this situation, it is highly undesirable from the
bank's viewpoint to credit the second account if, for some reason, the system fails to

Chapter 4:Introduction to JDBC

-133-

debit the first account. The issue of managing a series of SQL statements as a single
transaction is discussed in the next section.

Transactions

The capability to group SQL statements for execution as a single entity is provided
through SQL's transaction mechanism. A transaction consists of one or more
statements that are executed, completed, and either committed or rolled back as a
group. When the method commit or rollback is called, the current transaction ends,
and another one begins.

In the context of database transactions, the term commit means that the change is
made permanently in the database, and the term rollback means that no change is
made in the database.

A new JDBC connection is usually in auto-commit mode by default, meaning that
when a statement is completed, the method commit is called on that statement
automatically. The commit occurs when the statement completes or the next execute
occurs, whichever comes first. In the case of statements returning a ResultSet, the
statement completes when the last row of the ResultSet has been retrieved or the
ResultSet has been closed. In advanced cases, a single statement may return
multiple results as well as output parameter values. Here, the commit occurs when all
results and output parameter values have been retrieved.

Auto-commit mode is controlled by this method:

public void setAutoCommit(boolean autoCommit) throws SQLException

If auto-commit mode has been disabled, a transaction will not terminate until either
the commit method or the rollback method is called explicitly, so it will include all the
statements that have been executed since the last invocation of the commit or
rollback method. In this case, all the statements in the transaction are committed or
rolled back as a group.

When a SQL statement makes changes to a database, the commit method makes
those changes permanent, and it releases any locks the transaction holds. The
rollback method, on the other hand, simply discards those changes.

Clearly, in a situation such as our preceding bank-transfer example, we can prevent
one step in the funds transfer if the other fails by disabling auto-commit and grouping
both updates into one transaction. If both updates are successful, the commit method
is called, making the effects of both updates permanent; if one fails or both fail, the
rollback method is called, restoring the account balances that existed before the
updates were executed.

Chapter 4:Introduction to JDBC

-134 -

Most JDBC drivers support transactions. In fact, a JDBC-compliant driver must
support transactions. DatabaseMetaData supplies information describing the level of
transaction support a DBMS provides.

Transaction Isolation Levels

The basic concept of transaction management allows us to manage simple conflicts
arising from events such as a failure to complete a linked series of SQL commands.
However, other types of conflict can occur that require additional levels of
management.

For example, consider the case of a multiuser application, where one transaction has
initiated a transfer between two accounts but has not yet committed it, when a second
transaction attempts to access one of the accounts in question. If the first transaction
is rolled back, the value the second transaction reads will be invalid. Depending on
the application, this situation may be acceptable, but in many financial applications, it
would probably be quite unacceptable.

JDBC defines five levels of transaction isolation that provide different levels of conflict
management. The lowest level specifies that transactions are not supported at all,
and the remainder map to the four isolation levels that SQL-92 defines. These are as
follows:

§ Read Uncommitted

§ Read Committed

§ Repeatable Read

§ Serializable

The highest specifies that while one transaction is operating on a database, no other
transactions may make any changes to the data that transaction reads.

SQL-92 isolations levels are stated in terms of three prohibited operation sequences,
called phenomena. These are as follows:

§ Dirty Read. This occurs if one transaction can see the results of the actions of another

transaction before it commits.

§ Non-Repeatable Read (also called Fuzzy Read). This occurs if the results of one transaction

can be modified or deleted by another transaction before it commits.

§ Phantom Read. This occurs if the results of a query in one transaction can be changed by

another transaction before it commits.

The SQL-92 isolation levels are defined in terms of which of these phenomena can
occur for a given isolation level, as shown in Table 4-1.

Table 4-1: SQL-92 Isolation Levels

Chapter 4:Introduction to JDBC

-135-

Isolation Level Dirty Read Non-Repeatable Read Phantom Read

Read Uncommitted YES YES YES

Read Committed NO YES YES

Repeatable Read NO NO YES

Serializable NO NO NO

From Table 4-1, you can see that if Read Committed is supported, you will never
experience a DIRTY READ, but you might experience a NON-REPEATABLE READ
or a PHANTOM READ. Similarly, if Repeatable Read is supported, you will never
experience a DIRTY READ or a NON-REPEATABLE READ, but you might
experience a PHANTOM READ.

Table 4-1 lists isolation levels in terms of the level of isolation afforded, in that Read
Uncommitted is less restrictive than Read Committed. Typically, the higher the level
of isolation, the greater the locking overhead and the lower the concurrency between
users, so the slower the application executes. This means a trade off occurs between
performance and data consistency when making a decision about what isolation level
to use.

The current level of isolation can be queried using this method:

public int getTransactionIsolation()

This method returns the following isolation level codes:

§ TRANSACTION_NONE: Transactions are not supported.

§ TRANSACTION_READ_COMMITTED: Dirty reads are prevented; nonrepeatable reads and

phantom reads can occur.

§ TRANSACTION_READ_UNCOMMITTED: Dirty reads, nonrepeatable reads, and phantom

reads can occur.

§ TRANSACTION_REPEATABLE_READ: Dirty reads and nonrepeatable reads are prevented;

phantom reads can occur.

§ TRANSACTION_SERIALIZABLE: Dirty reads, nonrepeatable reads, and phantom reads are

prevented.

Control over the isolation level of a connection is provided by this method:

con.setTransactionIsolation(TRANSACTION_ISOLATION_LEVEL_XXX);

For example, you can instruct the DBMS to allow a value to be read before it has
been committed with the following code:

con.setTransactionIsolation(TRANSACTION_READ_UNCOMMITTED);

Chapter 4:Introduction to JDBC

-136 -

When you create a new Connection object, its transaction isolation level is usually set
to the default for the underlying database. You can call the method setIsolationLevel
to change the transaction isolation level, and the new level is in effect for the rest of
the connection session.

You can also change the transaction isolation level for just one transaction by setting
it before the transaction begins and resetting it after the transaction ends.

Caution Changing the transaction isolation level during a transaction is not

usually recommended because it triggers an immediate call to the
commit method, causing any changes up to that point to be made
permanent.

Transaction Savepoints

Transaction savepoints are JDBC 3.0 enhancements that offer finer control over
transaction commit and rollback. During a transaction, a named savepoint may be
inserted between operations to act as a marker, so that the transaction may be rolled
back to that marker, leaving all of the operations before the marker in effect.

The following example shows a Savepoint being set after the first update, and the
transaction being rolled back to that Savepoint, removing two subsequent updates.
(The arguments update1, update2 and update3 represent SQL commands.)

con.setAutoCommit(false);

Statement stmt = con.createStatement();

stmt.executeUpdate(update1);

Savepoint savePoint1 = con.setSavepoint("SavePoint1");

stmt.executeUpdate(update2);

stmt.executeUpdate(update3);

con.rollback(savePoint1);

con.commit();

Multithreading

The JDBC specifications require that operations on all the java.sql objects be thread
safe. This means that they must be able to handle a situation where several threads
call the same object simultaneously. Some drivers may provide this full concurrency,
and others may execute one statement and wait until it completes before sending the
next.

Chapter 4:Introduction to JDBC

-137 -

Note One specific use of multithreading is to cancel a long-running statement.

This is done by using one thread to execute the statement and another to
cancel it with its Statement.cancel() method.

It is sometimes more efficient to submit a set of update statements to the database for
processing as a batch. Support for batch updates is part of the JDBC 2.0 API, as
discussed in the next section.

Batch Updates

A batch update is a set of update statements submitted to the database for
processing as a batch. This can be more efficient than sending update statements
separately. Support for batch updates is part of the JDBC 2.0 API.

Under the JDBC 1.0 API, updates must be submitted to the database individually, so
that even though multiple update statements can be part of the same transaction,
they are processed individually.

Under the JDBC 2.0 API, the Statement, PreparedStatement and CallableStatement
support a batch list, which may contain statements for updating, inserting, or deleting
a row. The batch list may also contain DDL statements such as CREATE TABLE and
DROP TABLE.

Note Only statements that produce an update count can be used in a batch

update. Statements that return a ResultSet object, such as a SELECT
statement, cannot be used in a batch.

Commands used to manage batch updates include the following:

§ AddBatch (add SQL commands to the batch list)

§ clearBatch (empty the batch list)

§ executeBatch (execute all statements in the list as a batch)

Note The batch list associated with a Statement is initially empty.

The code for inserting new rows as a batch might look like this:

 con.setAutoCommit(false);

 Statement stmt = con.createStatement();

 stmt.addBatch("INSERT INTO CUSTOMERS VALUES('Homer', 'Simpson')");

 stmt.addBatch("INSERT INTO CUSTOMERS VALUES('Bart', 'Simpson')");

 stmt.addBatch("INSERT INTO CUSTOMERS VALUES('Marge', 'Simpson')");

 int [] updateCounts = stmt.executeBatch();

 con.commit();

Chapter 4:Introduction to JDBC

-138-

 con.setAutoCommit(true);

The DBMS executes the commands in the batch list in the order in which they are
added, returning an array of integer update counts.

The array of update counts represents the results of successfully executed
commands in the batch list in the order in which they are executed.

You will get a BatchUpdateException if any of the SQL statements in the batch do not
execute successfully.

Since the array of update counts represents the results of successfully executed
commands, you can easily identify the problem command from the length of the
returned array.

Note You should always disable auto -commit mode during a batch update so

that, if any errors occur, they can be handled properly. As shown in the
example, you need to issue a specific commit() command to commit the
updates.

BatchUpdateException extends SQLException, adding an array of update counts
similar to the array the executeBatch method returns. You can retrieve this array
using the getUpdateCounts() method, as shown here:

 try {

 //...

 } catch(BatchUpdateException b) {

 System.err.print("Update counts: ");

 int [] updateCounts = b.getUpdateCounts();

 for (int i = 0; i < updateCounts.length; i++) {

 System.err.println(updateCounts[i]);

 }

 }

Since the update counts are in the same order as the commands, you can tell which
commands in the batch have executed successfully.

Cross-Reference Exception handling, SQLExceptions, and SQLWarnings are

discussed in more detail at the end of this chapter.

The results returned by a SQL query are held in a java.sql.ResultSet. This objects is
discussed in the next section.

ResultSets

Chapter 4:Introduction to JDBC

-139 -

A ResultSet is the data a SQL Query returns, consisting of all the rows that satisfy the
conditions of that query arranged in rows accessible through the ResultSet's
methods.

ResultSets are arranged as a table, with the column headings and values returned in
the order specified in the statement, satisfying the conditions of the query. For
example, if this is your query:

SELECT Name,Description,Qty,Cost FROM Stock

Your result set might look like Table 4-2.

Table 4-2: Organization of a ResultSet

Name Description Qty Cost

Steiner 10 x 50 Binoculars 10 799.95

Steiner 8 x 30 Binoculars 30 299.95

PYGMY-2 Night Vision Monocular 20 199.95

A ResultSet maintains a cursor that points to the row of data accessible through the
getter methods of the ResultSet. Each time the ResultSet.next() method is called, the
cursor moves down one row.

Initially, the cursor is positioned before the first row, so you need to call next() to set
the cursor on the first row, making it the current row. Since next()returns a boolean
true if a valid data row is available, this design approach makes for a clean while loop
for accessing row data, as shown in Listing 4-6.

Listing 4-6: Retrieving a ResultSet

package java_databases.ch04;

import java.sql.*;

public class PrintResultSet{

 public static void main(String args[]){

 String query = "SELECT Name,Description,Qty,Cost FROM Stock";

 PrintResultSet p = new PrintResultSet(query);

 }

 public PrintResultSet(String query){

 try {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 Connection con = DriverManager.getConnection ("jdbc:odbc:Inventory");

 Statement stmt = con.createStatement();

TE
AM
FL
Y

Team-Fly®

Chapter 4:Introduction to JDBC

-140-

 ResultSet rs = stmt.executeQuery(query);

 System.out.println("Name\tDescription\tQty\tCost");

 while (rs.next()) {

 System.out.print(rs.getString("Name")+"\t");

 System.out.print(rs.getString("Description")+"\t");

 System.out.print(rs.getInt("Qty")+"\t");

 System.out.println(rs.getFloat("Cost"));

 }

 }

 catch(ClassNotFoundException e){

 e.printStackTrace();

 }

 catch(SQLException e){

 e.printStackTrace();

 }

 }

}

ResultSet rows are retrieved in sequence from the top row down as the cursor moves
down one row with each successive call to next().

A cursor remains valid until the ResultSet object or its parent Statement object is
closed.

Note Column names used as input to ResultSet getter methods are case

insensitive.

Data is retrieved from a ResultSet using getter methods that reference the column
containing the data. The ResultSet getter methods provide for data-type specific
retrieval of column values from the current row. Within each row, column values may
be retrieved in any order.

The getter methods the ResultSet object provides are listed in Table 4-3. Each getter
method has two variants: one that references the column by name and one by
column number. For brevity, only one variant of each is listed in Table 4-3.

Caution Columns are numbered from left to right, starting with column 1, not

column 0.
Table 4-3: ResultSet getter Methods

Data Type Method

BigDecimal getBigDecimal(String columnName, int scale)

Chapter 4:Introduction to JDBC

-141-

Table 4-3: ResultSet getter Methods

Data Type Method

boolean getBoolean(String columnName)

byte getByte(String columnName)

byte[] getBytes(String columnName)

double getDouble(String columnName)

float getFloat(String columnName)

int getInt(String columnName)

java.io.InputStream getAsciiStream(String columnName)

java.io.InputStream getUnicodeStream(String columnName)

java.io.InputStream getBinaryStream(String columnName)

java.sql.Date getDate(String columnName)

java.sql.Time getTime(String columnName)

java.sql.Timestamp getTimestamp(String columnName)

long getLong(String columnName)

Object getObject(String columnName)

short getShort(String columnName)

String getString(String columnName)

Data can be retrieved using either the column name or the column number. For
example, the previous example uses column names. However, you can get the same
results using column numbers, assuming you know what they are. Here's an
example:

ResultSet rs = stmt.executeQuery("SELECT First_Name, Last_Name FROM Customers");

while (rs.next()){

 System.out.println(rs.getString(2)+•, •+rs.getString(1));

}

The option of using column names is provided so that if you specify column names in
a query, you can use the same names as the arguments to getter methods.

A problem that can arise using column names is that if you do a join on two tables, it
is possible for a SQL query to return a result set that has more than one column with
the same name. If you then use the column name as the parameter to a getter
method, it will return the value of the first matching column name.

Chapter 4:Introduction to JDBC

-142 -

Some database management systems, such as Oracle, get around this by letting you
use fully qualified columns names of the form table_name.column_name to resolve
this situation; but others, such as MSAccess, do not, so if there are multiple columns
with the same name, using the column index is more portable. It may also be slightly
more efficient to use column numbers.

Caution Column values should be read only once. Subsequent reads are not

guaranteed to return valid data.
Scrollable ResultSets

One of the features added in the JDBC 2.0 API is the ScrollableResultSet, which
supports the ability to move a result set's cursor in either direction. In addition to
methods that move the cursor backwards and forwards, there are methods for getting
the cursor position and moving the cursor to a particular row.

Creating a Scrollable ResultSet

The type of ResultSet a java.sql.Statement object returns is defined when the
Statement is created by the Connection.createStatement method. These are the two
forms of the Connection.createStatement method:

public Statement createStatement() throws SQLException

public Statement createStatement(int rsType, int rsConcurrency) throws

SQLException

The first of these methods is discussed in the examples earlier in this chapter. The
second variant allows the user to create scrollable and updateable ResultSets.

The first argument, rsType, must be one of the three following constants added to the
ResultSet interface to indicate the type of a ResultSet object:

§ TYPE_FORWARD_ONLY

§ TYPE_SCROLL_INSENSITIVE

§ TYPE_SCROLL_SENSITIVE

Specifying the constant TYPE_FORWARD_ONLY creates a nonscrollable result set
(that is, one in which the cursor moves forward only). If you also specify
CONCUR_READ_ONLY for the second argument, you will get the default ResultSet
identical to the ResultSet created with the no-argument variant.

To get a scrollable ResultSet object, you must specify either
TYPE_SCROLL_INSENSITIVE or TYPE_SCROLL_SENSITIVE. The difference
between these two types of scrollable result sets is that a result set defined using
TYPE_SCROLL_INSENSITIVE does not reflect changes made while it is still open,
and one that is TYPE_SCROLL_SENSITIVE does. Of course, you can always see

Chapter 4:Introduction to JDBC

-143 -

changes, regardless of the type of result set, by closing the result set and reopening
it.

The second argument must be one of the two ResultSet constants for specifying
whether a result set is read-only or updateable: CONCUR_READ_ONLY or
CONCUR_UPDATABLE. If you specify a result-set type, you must also specify
whether the result set is read-only or updateable.

The ResultSet.getType() method checks whether the ResultSet object is scrollable:

if(rs.getType()==ResultSet.TYPE_FORWARD_ONLY)

 System.out.println("FORWARD_ONLY");

else

 System.out.println("SCROLLABLE");

Cursor Control

Once you have a scrollable ResultSet object, you can use it to move the cursor
around in the result set. As with a ResultSet that is not scrollable, the cursor is initially
positioned before the first row.

In addition to the ResultSet.next() method, which is used to move the cursor forward,
one row at a time, scrollable ResultSets support the method ResultSet.previous(),
which moves the cursor back one row.

Both methods return false when the cursor goes beyond the result set (to the position
after the last row or before the first row), which makes it possible to use them in a
while loop. Listing 4-7 replaces the default ResultSet of Listing 4-6 with a scrollable
ResultSet navigated using both next() and previous().

Listing 4-7: Scrollable ResultSet

 public void printResultSet(String query){

 try {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 Connection con = DriverManager.getConnection ("jdbc:odbc:Inventory");

 Statement stmt = con.createStatement(

 ResultSet.TYPE_SCROLL_INSENSITIVE,

 ResultSet.CONCUR_READ_ONLY);

 ResultSet rs = stmt.executeQuery(query);

 ResultSetMetaData md = rs.getMetaData();

 int nColumns = md.getColumnCount();

 for(int i=1;i<=nColumns;i++){

 System.out.print(md.getColumnLabel(i)+((i==nColumns)?"\n":"\t"));

Chapter 4:Introduction to JDBC

-144-

 if(i==2)System.out.print("\t");

 }

 while (rs.next()) {

 for(int i=1;i<=nColumns;i++){

 System.out.print(rs.getString(i)+((i==nColumns)?"\n":"\t"));

 }

 }

 while (rs.previous()) {

 for(int i=1;i<=nColumns;i++){

 System.out.print(rs.getString(i)+((i==nColumns)?"\n":"\t"));

 }

 }

 }

 catch(ClassNotFoundException e){

 e.printStackTrace();

 }

 catch(SQLException e){

 e.printStackTrace();

 }

 }

As you can see from the screen shot of Figure 4-3, the example first prints three rows
in first-to-last order and prints them again in reverse:

Figure 4-3: Printing rows from a scrollable result set

Moving the Cursor to a Designated Row

In addition to using the next() and previous() methods to scroll forward and backward,
you can move the cursor to a particular row by using the following methods:

§ first()

§ last()

§ beforeFirst()

§ afterLast()

§ absolute(int rowNumber)

§ relative(int rowNumber)

The effect of the first four of these is apparent from the method names.

Chapter 4:Introduction to JDBC

-145-

The method absolute(int rowNumber) moves the cursor to the row number indicated
in the argument. If the number is positive, the cursor moves to the given row number
from the beginning. If the number is negative, the cursor moves to the given row
number from the end.

Note Row numbers count from 1, so calling absolute(1)puts the cursor on the

first row, and calling absolute(-1) puts the cursor on the last row.

The method relative(int rowNumber) lets you specify how many rows to move from
the current row and in which direction to move. A positive number moves the cursor
forward the given number of rows; a negative number moves the cursor backward the
given number of rows.

Getting the Cursor Position

In addition to positioning the cursor, you can get its position by using one of these
methods:

§ isFirst()

§ isLast()

§ isBeforeFirst()

§ isAfterLast()

§ getRow()

Again, the behavior of these methods is apparent from their names.

Note The method isAfterLast() returns false when the cursor is not after the last

row and when the result set is empty, so a returned value of false from the
method isAfterLast() cannot be used to indicate that data is available.

Updatable ResultSets

An UpdatableResultSet is, as the name suggests, updatable. You can make updates
to the values in the ResultSet itself, and these changes are reflected in the database.

To create an UpdatableResultSet object, you need to call the createStatement
method with the ResultSet constant CONCUR_UPDATABLE as the second
argument. The Statement object created produces an updatable ResultSet object
when it executes a query.

Note An updatable ResultSet object does not necessarily have to be scrollable.

Once you have an UpdatableResultSet object, you can insert a new row, delete an
existing row, or modify one or more column values.

Chapter 4:Introduction to JDBC

-146-

Caution Specifying that a result set be updatable does not guarantee that the

result set you get will actually be updatable. Drivers that do not support
updatable result sets will return one that is read-only. In addition, to get
an updatable result set, the query must generally specify the primary
key as one of the columns selected, and it should select columns from
only one table.

Since requesting an UpdatableResultSet does not guarantee that you will actually get
one, depending on the driver in use, you should check whether the ResultSet is
updatable using ResultSet.getConcurrency(). Listing 4-8 illustrates opening a
scrollable updatable ResultSet and using getConcurrency to ensure that it is
updatable.

Listing 4-8: Opening an updatable ResultSet

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc: Contacts");

Statement stmt = con.createStatement(

 ResultSet.TYPE_SCROLL_INSENSITIVE,

 ResultSet.CONCUR_UPDATABLE);

ResultSet rs = stmt.executeQuery(query);

ResultSetMetaData md = rs.getMetaData();

if(rs.getConcurrency()==ResultSet.CONCUR_UPDATABLE)

 System.out.println("UPDATABLE");

else

 System.out.println("READ_ONLY");

int nColumns = md.getColumnCount();

for(int i=1;i<=nColumns;i++){

 System.out.print(md.getColumnLabel(i)+((i==nColumns)?"\n":"\t"));

}

while (rs.next()) {

 rs.updateString("Street", "123 Main");

 rs.updateRow();

 for(int i=1;i<=nColumns;i++){

 System.out.print(rs.getString(i)+((i==nColumns)?"\n":"\t"));

 }

}

If the driver does not support the definition of UpdatableResultSet, the Statement
object may throw a SQL "Optional feature not implemented" exception.

Updating a ResultSet

Chapter 4:Introduction to JDBC

-147 -

To appreciate the simplicity of using UpdatableResultSet instead of SQL UPDATES,
it is worth looking first at what is involved in using Statement.executeUpdate() to
change a customer address. The code to make this change looks like this:

stmt.executeUpdate(

 "UPDATE Customers SET Street = '123 Main Street' +

 "WHERE First_Name = 'Vito' AND Last_Name = 'Corleone'");

This is simple enough when you know how to identify the record to be updated, but
consider how much more complicated it would be if your application were displaying
the ResultSet in a JTable. Unless you go to considerable trouble to keep track of the
current record, it is quite difficult to identify to the RDBMS which record to update.

Using an UpdatableResultSet simplifies the situation considerably. All you need to do
is set the cursor to the desired row and change the column value using a
data-type-specific update method. Here's an example:

rs.updateString("Street", "123 Main");

Since updates made to an UpdatableResultSet always affect the current row, you
must make sure you have moved the cursor to the correct row prior to making an
update.

Most of the ResultSet.update methods take two parameters: the column to update
and the new value to put in that column. As with the getter methods, the column may
be specified using either the column name or the column number.

Table 4-4 summarizes the update methods for the UpdatableResultSet, showing only
the variant using column name as the specifier for reasons of space.

Note A special update method, updateNull(), is used for setting column values

to NULL.
Table 4-4: ResultSet Update Methods

Data Type Method

BigDecimal updateBigDecimal(String columnName, BigDecimal x)

boolean updateBoolean(String columnName, boolean x)

byte updateByte(String columnName, byte x)

byte[] updateBytes(String columnName, byte[] x)

double updateDouble(String columnName, double x)

float updateFloat(String columnName, float x)

int updateInt(String columnName, int x)

Chapter 4:Introduction to JDBC

-148-

Table 4-4: ResultSet Update Methods

Data Type Method

java.io.InputStream updateAsciiStream(String columnName, InputStream x, int length)

java.io.InputStream updateUnicodeStream(String columnName, InputStream x, int length)

java.io.InputStream updateBinaryStream(String columnName, InputStream x, int length)

java.sql.Date updateDate(String columnName, Date x)

java.sql.Time updateTime(String columnName, Time x)

java.sql.Timestamp updateTimestamp(String columnName, Timestamp x)

long updateLong(String columnName, long x)

Object updateObject(String columnName, Object x)

Object updateObject(String columnName, Object x, int scale)

short updateShort(String columnName, short x)

String updateString(String columnName, String x)

NULL updateNull(String columnName)

Note that after updating a column value in the ResultSet, you must call the
ResultSet's updateRow() method to make a permanent change in the database
before moving the cursor, since changes made using the update methods do not take
effect until updateRow() is called.

Caution If you move the cursor to another row before calling updateRow(), the

updates will be lost, and the row will revert to its previous column
values.

You can specifically cancel updates any time before calling updateRow() by calling
the cancelRowUpdates() method. Once you have called updateRow(), however, the
cancelRowUpdates() method no longer works.

Inserting a New Row

In addition to supporting updates, an UpdatableResultSet supports the insertion and
deletion of entire rows. The ResultSet object has a row called the insert row, which is,
in effect, a dedicated row buffer in which you can build a new row.

The new row is created in a manner very similar to the row updates discussed earlier.
Simply follow these steps:

1. Move the cursor to the insert row, which is done by calling the method moveToInsertRow().

Chapter 4:Introduction to JDBC

-149-

2. Set a new value for each column in the row by using the appropriate update method.

3. Call the method insertRow() to insert the new row into the result set and, simultaneously, into the

database.

Listing 4-9 demonstrates the use of the UpdatableResultSet to insert a new row into a
database.

Listing 4-9: Using UpdatableResultSet to insert a new row

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:Contacts");

Statement stmt = con.createStatement(

 ResultSet.TYPE_SCROLL_INSENSITIVE,

 ResultSet.CONCUR_UPDATABLE);

ResultSet rs = stmt.executeQuery(query);

rs.moveToInsertRow();

rs.updateInt("Contact_ID", 150);

rs.updateString("First_Name", "Nigel");

rs.updateString("Last_Name", "Thornebury");

rs.insertRow();

If you insert a row without supplying a value for every column in the row, the default
value for the column will be used if there is one. Otherwise, if the column accepts
SQL NULL values, a NULL will be inserted. Failing either of those, a SQLException
will be thrown.

You will also get a SQLException if a required table column is missing in the
ResultSet you use to insert the row, so the query used to get the ResultSet object
should generally select all columns, though you will probably want to use a WHERE
clause to limit the number of rows returned by your SELECT statement.

Caution If you move the cursor from the insert row before calling the method

insertRow(), you will lose all of the values you have added to the insert
row.

To move the cursor from the insert row back to the result set, you can use any of the
methods that put the cursor on a specific row: first, last, beforeFirst, afterLast, and
absolute. You can also use the methods previous and relative because the result set
maintains a record of the current row while accessing the insert row.

In addition, you can use a special method: moveToCurrentRow(), which can be called
only when the cursor is on the insert row. This method moves the cursor from the
insert row back to the row that was previously the current row.

TE
AM
FL
Y

Team-Fly®

Chapter 4:Introduction to JDBC

-150-

Deleting a Row

Deleting a row in an UpdatableResultSet is very simple. All you have to do is move
the cursor to the row you want to delete and call the method deleteRow().

The example in the following code snippet shows how to delete the third row in a
result set by getting the ResultSet object, moving the cursor to the third row, and
using the deleteRow() method:

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection ("jdbc:odbc:Contacts");

Statement stmt = con.createStatement(

 ResultSet.TYPE_SCROLL_INSENSITIVE,

 ResultSet.CONCUR_UPDATABLE);

ResultSet rs = stmt.executeQuery(query);

rs.absolute(3);

rs.deleteRow();

Caution Be aware that different JDBC drivers handle deletions in different ways.

Some remove a deleted row so that it is no longer visible in a result set,
and others insert a blank row where the deleted row used to be.

When you make a change to a ResultSet, the change may not necessarily be visible.
The next section explains the reasons.

Seeing Changes in ResultSets

Changes made to a ResultSet are not necessarily visible, either to the ResultSet itself
or to other open transactions. In this context, the terms visible and not visible have
the following meanings:

§ An update is visible if the updated value can be retrieved by calling the appropriate getter method

after making an update.

§ An update is not visible if the getter method still returns the initial column value.

Similarly, an inserted row is visible if it appears in the ResultSet after calling
insertRow(). Deletions are visible if deleted rows are either removed from the result
set or if deleted rows leave a hole in the result set.

There are a number of factors affecting the visibility of changes, including the
following:

§ JDBC driver implementation

§ Transaction isolation level in effect

§ Result-set type

Chapter 4:Introduction to JDBC

-151 -

An application can determine if the changes a result set makes are visible to the
result set itself by calling these DatabaseMetaData methods:

§ ownUpdatesAreVisible(int ResultSet.TYPE_XXX)

§ ownDeletesAreVisible(int ResultSet.TYPE_XXX)

§ ownInsertsAreVisible(int ResultSet.TYPE_XXX)

The DatabaseMetaData interface also provides the following methods that allow an
application to determine whether a JDBC driver can detect changes for a particular
result-set type:

§ insertsAreDetected(ResultSet.TYPE_XXX)

§ deletesAreDetected(ResultSet.TYPE_XXX)

§ updatesAreDetected(ResultSet.TYPE_XXX)

If these methods return true, the following methods can be used to detect changes to
a ResultSet:

§ wasInserted()

§ wasDeleted()

§ wasUpdated()

Remember that if you modify data in a ResultSet object, the change will always be
visible if you close the ResultSet and reopen it by executing the same query again
after the changes have been made.

Another way to get the most recent data is to use the method refreshRow(), which
gets the latest values for a row straight from the database. This is done by positioning
the cursor to the desired row and calling refreshRow(), as shown here:

rs.absolute(3);

rs.refreshRow();

Note The result set should be TYPE_SCROLL_SENSITIVE; if you use the

method refreshRow() with a ResultSet object that is
TYPE_SCROLL_INSENSITIVE, refreshRow() does nothing.

Another way to get data from a database is to use a RowSet object. RowSets add
JavaBeans support to the functionality of the ResultSet, as explained in the next
section.

RowSets

A RowSet is an object that contains a set of rows from a result set or some other
source of tabular data, like a fi le or spreadsheet. RowSet is an extension of ResultSet,

Chapter 4:Introduction to JDBC

-152 -

with the added feature that it adds JavaBeans support to the JDBC API. Similarly, the
RowSetMetaData interface extends the ResultSetMetaData interface.

Being JavaBeans, RowSets follow the JavaBeans model for setting and getting
properties and for event notification, so they are easy to combine with other
components in an application.

RowSets make it easy to send tabular data over a network. They can also be used as
a wrapper, providing scrollable result sets or updatable result sets when the
underlying JDBC driver does not support them.

There are two main types of RowSets: connected and disconnected.

§ A connected RowSet, like a ResultSet, maintains a connection to a data source for as long as the

RowSet is in use.

§ A disconnected RowSet gets a connection to a data source to load data or to propagate changes

back to the data source, but most of the time it does not have a connection open.

While it is disconnected, a RowSet does not need a JDBC driver or the full JDBC API,
so its footprint is very small.

Because it is not continually connected to its data source, a disconnected RowSet
stores its data in memory. It maintains MetaData about the columns it contains and
information about its internal state. It also includes methods for making connections,
executing commands, and reading and writing data to and from the data source.

Implementations of RowSets include the following:

§ JDBCRowSet — A connected RowSet that serves mainly as a thin wrapper around a ResultSet

object to make a JDBC driver look like a JavaBeans component

§ CachedRowSet — A disconnected RowSet that caches its data in memory

§ WebRowSet — A connected RowSet that uses the HTTP protocol internally to talk to a Java

servlet that provides data access

Creating a Rowset and Setting Properties

Since RowSets are JavaBeans, they contain setter and getter methods for retrieving
and setting properties.

These methods include the following:

§ setCommand — The SQL command to be executed

§ setConcurrency — Read only or updatable

§ setType — Scrollable or foward only

§ setDataSourceName — Used with DataSource access

Chapter 4:Introduction to JDBC

-153 -

§ setUrl — used with DriverManager access

§ setUsername

§ setPassword

§ setTransactionIsolation

You need only set those properties that are needed for your particular use of a
RowSet.

The following lines of code make the CachedRowSet object crset scrollable and
updatable.

 CachedRowSet crset = new CachedRowSet();

 crset.setType(ResultSet.TYPE_SCROLL_INSENSITIVE);

 crset.setConcurrency(ResultSet.CONCUR_UPDATABLE);

 crset.setCommand("SELECT * FROM Customers");

 crset.setDataSourceName("jdbc/customers");

 crset.setUsername("myName");

 crset.setPassword("myPwd");

 crset.setTransactionIsolation(Connection.TRANSACTION_READ_COMMITTED);

 crset.addRowSetListener(listener);

If the DriverManager were being used to make a connection, you would set the
properties for a JDBC URL, a user name, and a password. The preferred means of
getting a connection is to use a DataSource object with the owner's user name and
the owner's password.

Now that the CachedRowSet has been created and initialized, all that remains is to
call the execute() method; the RowSet uses the information in its properties to make a
connection and execute the query. The data in the RowSet can then be accessed
and updated.

Rowset Events

A RowSetEvent is generated when something important happens in a RowSet, such
as a change in a column value. Being JavaBeans, RowSets can use the Java event
model to notify listeners when the RowSet is changed.

These are the RowSetListener methods:

§ rowChanged (Called when the RowSet is changed)

§ rowSetChanged(Called when a RowSet is inserted, updated, or deleted)

§ cursorMoved (Called when a RowSet's cursor is moved)))

Chapter 4:Introduction to JDBC

-154 -

In addition to obtaining the data stored in the database, it is frequently ver useful to be
able to obtain data about the database and its contents. This capability is supported
by the MetaData objects discussed in the next section.

MetaData

MetaData is information about the database or its contents made available by the
JDBC API.

These are the main types of MetaData accessible from JDBC:

§ DatabaseMetaData

§ ResultSetMetaData

§ ParameterMetaData

DatabaseMetaData

The DatabaseMetaData interface provides information about the underlying database
as a whole. The interface defines over 150 different methods providing the following
types of information about the database:

§ General information about the data source

§ Data-source limits

§ Levels of transaction support

§ Feature support

§ Information about the SQL objects that the source contains

Many of the DatabaseMetaData methods return information in ResultSets, allowing
you to use ResultSet methods such as getString and getInt to retrieve this information.
If a given form of MetaData is not available, these methods should throw a
SQLException.

Some of the DatabaseMetaData methods take arguments that are String patterns
conforming to the normal wild-card rules for SQL Strings. For pattern String
arguments, "%" means match any substring of zero or more characters, and "_"
means match any one character. If a search pattern argument is set to null, that
argument's criteria will be ignored in the search.

If a driver does not support a MetaData method, a SQLException will normally be
thrown. In the case of methods that return a ResultSet, either a ResultSet (which may
be empty) is returned or a SQLException is thrown.

A DatabaseMetaData object is created using the Connection.getMetaData() method.
It can then be used to get information about the database, as in the following example,
which gets the names of the tables in the database:

Chapter 4:Introduction to JDBC

-155-

Connection con = DriverManager.getConnection ("jdbc:odbc:Customers");

DatabaseMetaData dbmd = con.getMetaData();

ResultSet rs = dbmd.getTables(null,null,"%",new String[]{"TABLE"});

General information about the underlying database is accessible from the
DatabaseMetaData interface by using methods such as these:

§ getURL()

§ getUserName()

§ getDatabaseProductName()

§ getSQLKeywords()

§ nullsAreSortedHigh() and nullsAreSortedLow()

Useful methods for retrieving information about supported functionality include the
following:

§ supportsBatchUpdates()

§ supportsStoredProcedures()

§ supportsFullOuterJoins()

§ supportsPositionedDelete()

These methods are provided to determine limits the database imposes:

§ getMaxRowSize()

§ getMaxStatementLength()

§ getMaxConnections()

§ getMaxColumnsInTable()

Useful methods for retrieving information about SQL objects and their attributes
include the following:

§ getSchemas()

§ getCatalogs()

§ getTables()

§ getPrimaryKeys()

§ getProcedures()

The transaction-support capabilities of the database management system can be
queried using these methods:

§ supportsMultipleTransactions()

§ getDefaultTransactionIsolation()

§ supportsSavePoints()

Note Many of the DatabaseMetaData methods have been added or modified in

JDBC 2.0 and JDBC 3.0, so if your driver is not JDBC 2.0 or JDBC 3.0

Chapter 4:Introduction to JDBC

-156 -

compliant, a SQLException may be thrown.

ResultSetMetaData

Information about the columns in a ResultSet is available by calling the getMetaData()
method. The ResultSetMetaData object returned gives the number, types, and
properties of its ResultSet object's columns.

Some of the methods available to access ResultSetMetaData are as follows:

§ getColumnCount() — Returns the number of columns in the ResultSet

§ getColumnDisplaySize(int column)— Returns the column's normal max width in chars

§ getColumnLabel(int column) — Returns the column title for use in printouts and displays

§ getColumnName(int column) — Returns the column name

§ getColumnType(int column) — Returns the column's SQL data-type index

§ getColumnTypeName(int column)— Returns the name of the column's SQL data type

§ getPrecision(int column)— Returns the number of decimal digits in the column

§ getScale(int column) — Returns the number of digits to right of the decimal point

§ getTableName(int column) — Returns the table name

§ isAutoIncrement(int column) — Returns true if the column is automatically numbered

§ isCurrency(int column) — Returns true if the column value is a currency

§ isNullable(int column)— Returns true if the column value can be set to NULL

Listing 4-10 illustrates the use of the ResultSetMetaData methods getColumnCount
and getColumnLabel in an example where the column names and column count are
unknown.

Listing 4-10: Using ResultSetMetaData

 public void printResultSet(String query){

 try {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 Connection con = DriverManager.getConnection

("jdbc:odbc:Inventory");

 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery(query);

 ResultSetMetaData md = rs.getMetaData();

 int nColumns = md.getColumnCount();

 for(int i=1;i<=nColumns;i++){

System.out.print(md.getColumnLabel(i)+((i==nColumns)?"\n":"\t"));

 }

 while (rs.next()) {

 for(int i=1;i<=nColumns;i++){

Chapter 4:Introduction to JDBC

-157 -

 System.out.print(rs.getString(i)+((i==nColumns)?"\n":"\t"));

 }

 }

 }

 catch(ClassNotFoundException e){

 e.printStackTrace();

 }

 catch(SQLException e){

 e.printStackTrace();

 }

 }

Notice in particular the use of the getColumnLabel method. This method returns the
preferred display name for the column, defaulting to the column name if no specific
label is assigned.

ParameterMetaData

The PreparedStatement method getMetaData() retrieves a ResultSetMetaData
object containing a description of the columns that will be returned when the
PreparedStatement is executed. Here's an example:

PreparedStatement ps = con.PrepareStatement("SELECT * FROM CUSTOMERS");

ResultSetMetaData md = ps.getMetaData();

int cols = md.getColumnCount();

The method getParameterMetaData() returns a ParameterMetaData object
containing descriptions of the IN and OUT parameters the PreparedStatement uses,
as shown here:

PreparedStatement ps = con.PrepareStatement("SELECT * FROM CUSTOMERS");

ParameterMetaData pd = ps.getParameterMetaData();

int pType = pd.getParameterType(1);

Note Support for ParameterMetaData is provided as part of the JDBC 3.0 API,

and requires JDK 1.4

JDBC Mapping of SQL Data Types

The JDBC Core API provides automatic type conversion between SQL data types
and Java data types. Table 4-5 summarizes these conversions.

Table 4-5: Standard Mapping from SQL Types to Java

SQL type Java Type Description

CHAR String Fixed-length character string. For a CHAR type

Chapter 4:Introduction to JDBC

-158-

Table 4-5: Standard Mapping from SQL Types to Java

SQL type Java Type Description

of length n, the DBMS invariably assigns n

characters of storage, padding unused space.

VARCHAR String Variable-length character string. For a

VARCHAR of length n, the DBMS assigns up

to n charcters of storage, as required.

LONGVARCHAR String Variable-length character string. JDBC allows

retrieval of a LONGVARCHAR as a Java input

stream.

NUMERIC java.math.BigDecimal Arbitrary-precision signed decimal numbers.

Can be retrieved using either BigDecimal or

String.

DECIMAL java.math.BigDecimal Arbitrary-precision signed decimal numbers.

Can be retrieved using either BigDecimal or

String.

BIT boolean Yes / No value

TINYINT byte 8 bit integer values

SMALLINT short 16 bit integer values

INTEGER int 32 bit integer values

BIGINT long 64 bit integer values

REAL float Floating point number, mapped to float

FLOAT double Floating point number, mapped to double

DOUBLE double Floating point number, mapped to double

BINARY byte[] Retrieve as byte array.

VARBINARY byte[] Retrieve as byte array.

LONGVARBINARY byte[] Retrieve as byte array. JDBC allows retrieval of

a LONGVARCHAR as a Java input stream.

DATE java.sql.Date Thin wrapper around java.util.Date

TIME java.sql.Time Thin wrapper around java.util.Date

TIMESTAMP java.sql.Timestamp Composite of a java.util.Date and a separate

nanosecond value

Cross-Reference In addition to the data types supported by the JDBC Core API,

JDBC 2.0 and JDBC 3.0 have introduced support for other data

Chapter 4:Introduction to JDBC

-159 -

types. These are discussed in the next few paragraphs.

Some databases allow for certain columns to be given automatically generated key
values. In this case, an insert statement is not responsible for supplying a value for
the column. The database generates a unique value for the column and inserts the
value. This is often used for generating unique primary keys. A problem with this
approach is that it may be difficult to get the value after the insert is executed. The
JDBC 3.0 specification defines a more functional Statement interface that provides
access to these values after an insert.

Assume a table called USERS with three columns. The FIRST_NAME column and
LAST_NAME column are varchars. The USER_ID column is auto-generated and
should contain a unique identifier for each user in the table. Here's an example:

Statement stmt = conn.createStatement();

String SQLInsert = "INSERT INTO Users (First_Name, Last_Name) "+

 "VALUES('Robert', 'Conners')");

stmt.executeUpdate(SQLInsert);

ResultSet rs = stmt.getGeneratedKeys();

SQL3 Data Types

The JDBC 2.0 Extension API adds support for the new data types commonly referred
to as SQL3 types. The JDBC 3.0 Extension API extends this support. These new data
types support the two following major new features:

§ Very large data objects

§ Object relational data types

The SQL3 data types are being adopted in the next version of the ANSI/ISO SQL
standard. The JDBC API extensions provide interfaces that represent the mapping of
these SQL3 data types into the Java programming language. With these new
interfaces, you can work with SQL3 data types the same way you do other data
types.

Object Relational Databases

Object relational databases are simply an extension to normal relational database
management systems supporting the use of an object-oriented-design approach to
the database world.

For example, in a normal RDBMS, you might create a table of names and addresses,
containing these columns:

TE
AM
FL
Y

Team-Fly®

Chapter 4:Introduction to JDBC

-160-

First_Name VARCHAR (20)

MI CHAR(1)

Last_Name VARCHAR(30)

Street VARCHAR(50)

City VARCHAR(30)

State CHAR(2)

Zip CHAR(10)

In another application, you might create a second table of names and addresses,
perhaps this time with different field sizes or even additional fields.

From a design viewpoint, the ability to define a class or structure can be used across
the board is very attractive.

An object relational database provides the necessary tools to support this approach
with User Defined Data Types (UDTs).

Using SQL3 Data Types

The new SQL3 data types that the JDBC 2.0 Extension supports include the
following:

§ BLOB (Binary Large Object), which can store very large amounts of data as raw bytes

§ CLOB (Character Large Object), which can store very large amounts of character data

§ ARRAY, which can store an array as a column value

§ User Defined Types

§ Structured, object relational types

§ The DISTINCT type

The following list provides the JDBC 2.0 interfaces that map SQL3 types. We discuss
them in more detail later in this chapter.

§ A Blob instance maps an SQL BLOB value.

§ A Clob instance maps an SQL CLOB value.

§ An Array instance maps an SQL ARRAY value.

§ A Struct instance maps an SQL structured type value.

§ A Ref instance maps an SQL REF value.

SQL3 data types are retrieved, stored, and updated in the same way as other data
types, using the methods shown in Table 4-6.

Chapter 4:Introduction to JDBC

-161-

Table 4-6: SQL3 Data Type Reference Methods

SQL3 type get set update

BLOB getBlob seBlob updateBlob

CLOB getClob setClob updateClob

ARRAY getArray setArray updateArray

Structured type getObject setObject updateObject

REF (structured type) getObject setObject updateObject

Note At the time of this writing, the update methods are scheduled for future

release. Until then, you can use the method updateObject, which works
just as well.

Here's an example of accessing one of these new data types. The following code
fragment retrieves a CLOB value, Notes, from a patient's medical records.

ResultSet rs = stmt.executeQuery(

 "SELECT Notes FROM Patients WHERE SSN = 123-45-6789");

rs.next();

Clob notes = rs.getClob("Notes");

Because a SQL BLOB, CLOB, or ARRAY object may be very large, an instance of
any of these types is actually a SQL locator or logical pointer to the object in the
database that the instance represents. JDBC provides the tools to manipulate them
without having to bring all of their data from the database server to your client
machine. This feature can make performance significantly faster.

If you want to bring the data of a BLOB or CLOB value to the client, you can use the
following methods in the Blob and Clob interfaces provided for this purpose:

§ getAsciiStream()(Gets the CLOB value designated by this Clob object as a stream of ASCII

bytes)

§ getCharacterStream() (Gets the Clob contents as a Unicode stream)

§ getSubString(long pos, int length)(Returns a copy of the specified substring in the CLOB value

designated by this Clob object)

§ length()(Returns the number of characters in the CLOB value designated by this Clob object)

§ position(Clob searchstr, long start) (Determines the character position at which the specified

Clob object searchstr appears in this Clob object)

§ position(String searchstr, long start) (Determines the character position at which the specified

substring searchstr appears in the CLOB)

Chapter 4:Introduction to JDBC

-162 -

Both Blob and Clob objects provide methods for materializing the object's value on
the client, for getting the length of the object, and for performing searches within the
object's value.

The JDBC 3.0 API Extensions add methods to alter the values of BLOBS and CLOBS
directly, using these methods:

§ Blob.setBytes()

§ Clob.setString()

A JDBC Array object materializes the SQL ARRAY it represents as either a result set
or a Java array.

For example, after retrieving the SQL ARRAY value in the column Meds as a
java.sql.Array object, the following code fragment materializes the ARRAY value on
the client. It then iterates through Medications, the Java array that contains the
elements of the SQL ARRAY value.

 ResultSet rs = stmt.executeQuery(

 "SELECT MEDS FROM Patients WHERE SSN = 123-45-6789");

 while (rs.next()) {

 Array Medications = rs.getArray("MEDS");

 String[] meds = (String[])Medications.getArray();

 for (int i = 0; i < meds.length; i++) {

 . . . // code to display medications

 }

 }

The ResultSet method getArray returns the value stored in the column MEDS of the
current row as the java.sql.Array object Medications, as shown here:

 Array Medications = rs.getArray("MEDS");

The variable Medications contains a locator, which means that it is a logical pointer to
the SQL ARRAY on the server; it does not contain the elements of the ARRAY itself.

In the following line, getArray is the Array.getArray method, returning a Java Object
that is cast to an array of String objects before being assigned to the variable meds.

 String[] meds = (String[])Medications.getArray();

Thus, the Array.getArray method materializes the SQL ARRAY elements on the client
as an array of String objects we can iterate through and display.

Creating User Defined Data Types

Chapter 4:Introduction to JDBC

-163 -

SQL allows the user to create user defined data types or UDTs with the CREATE
TYPE statement. There are two main kinds of data type which the user can create:

§ The structured data type

§ The DISTINCT type

Creating a structured data type

The following SQL statement creates the new data type ADDRESS and registers it
with the database as a data type, so it is available for use as the data type for a table
column or as an attribute of a structured type:

CREATE TYPE ADDRESS

(

 STREET VARCHAR(40),

 APT_NO INTEGER,

 CITY VARCHAR(40),

 STATE CHAR(2),

 ZIP CHAR(5)

);

In this definition, the new type ADDRESS has five attributes, which are equivalent to
fields in a Java class. The attribute STREET is a VARCHAR(40); the attribute
APT_NO is an INTEGER; the attribute CITY is a VARCHAR(40); the attribute STATE
is a CHAR(2); and the attribute ZIP is a CHAR(5).

Creating a DISTINCT type

A DISTINCT type can be thought of as a structured type with only one attribute.
DISTINCT types are always based on another data type, which must be a predefined
type; they cannot be based on another UDT. DISTINCT types are retrieved or set
using the appropriate method for the underlying type.

For example, a Social Security Number (SSN), which is never going to be used for
arithmetic operations, and may be a good candidate for special handling, can be
created using the command. Here's an example:

CREATE TYPE SSN AS CHAR(9);

This is the equivalent SQL Server command:

EXEC sp_addtype SSN, 'VARCHAR(9)'

Now that User Defined Data Types for Address and Social Security Number have
been created, they can be used to define a new UDT, as shown here:

Chapter 4:Introduction to JDBC

-164-

CREATE TYPE EMPLOYEE

(

 EMP_ID INTEGER,

 LAST_NAME VARCHAR(40),

 FIRST_NAME VARCHAR(40),

 RESIDENCE ADDRESS,

 SOCIAL SSN

);

This definition can be created in a JDBC application by opening a connection and
creating a Statement in the normal way, then executing the following code to send the
definition of the structured type EMPLOYEE to the database.

String createEmployee = "CREATE TYPE EMPLOYEE ("+

 "EMP_ID INTEGER,"+

 "LAST_NAME VARCHAR(40),"+

 "FIRST_NAME VARCHAR(40),"+

 "RESIDENCE ADDRESS,"+

 "SOCIAL SSN);";

stmt.executeUpdate(createEmployee);

On occasion, your code may generate errors. Java handles these errors by throwing
SQLExceptions, as discussed in the next section.

Exceptions and Logging

There are several types of exceptions which can be thrown during data base access.
The most common is the SQLException.

SQLException

The SQLException class extends java.lang.Exception to provide information on
database-access errors. Each SQLException provides the following information:

§ The Java exception message String, available using the getMessage() method

§ The SQLState String, which follows the XOPEN SQLState conventions, available using the

getSQLState() method

§ A vendor-specific, integer-error code, available using the getErrorCode() method. Normally, this

isthe actual error code that the underlying database returns.

SQLException also lets you get the next exception, which can be used to provide
additional error information.

SQLWarning

Chapter 4:Introduction to JDBC

-165-

The SQLWarning class extends SQLException to provide information on
database-access warnings. Warnings are silently chained to the object whose
method causes the warning to be reported and are returned by the getWarnings()
method of that class.

In addition to the inherited methods of SQLException, SQLWarning provides methods
to get the next SQLWarning for additional information or to add a warning to the
chain.

BatchUpdateException

A BatchUpdateException provides information about problems arising during batch
updates. BatchUpdateException extends SQLException, adding an array of update
counts similar to the array returned by the executeBatch method. You can retrieve
this array by using the getUpdateCounts() method as follows:

int [] updateCounts = b.getUpdateCounts();

Since the update counts are in the same order as the commands, you can tell which
commands in the batch have executed successfully.

Logging

In all but the simplest applications, it is worth incorporating some degree of error and
event logging. The most basic form of logging, of course, is the use of System.err and
System.out to report exceptions and significant events.

In a practical application, simply dumping exception messages to the system console
is generally inadequate. It is preferable to use dedicated logging files or perhaps even
a database to manage event logs and error logs.

It is easy to implement a file-based error and event-logging system by simply
redirecting the basic System.err stream and by defining a PrintWriter for use by the
Exception class for dumping a StackTrace.

Listing 4-11 extends the example of Listing 4-1 to demonstrate two different ways to
log exceptions to an error-logging file:

§ Define a PrintWriter for use with the printStackTrace() method.

§ Redirect System.err to a logging file by using System.setErr().

Listing 4-11: Logging errors to a file

package java_databases.ch04;

import java.io.*;

Chapter 4:Introduction to JDBC

-166-

import java.sql.*;

import java.util.*;

public class Logging{

 public static void main(String args[]){

 PrintWriter errLog = null;

 PrintStream stderr = null;

 try{

 FileOutputStream errors = new FileOutputStream ("StdErr.txt",

true);

 stderr = new PrintStream (errors);

 errLog = new PrintWriter(errors,true);

 }

 catch (Exception e){

 System.out.println ("Redirection error: Unable to open SystemErr.txt");

 }

 System.setErr (stderr);

 int qty;

 float cost;

 String name;

 String desc;

 String query = "SELECT Name,Description,Qty,Cost,Sell_Price FROM Stock";

 try {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 Connection con = DriverManager.getConnection

("jdbc:odbc:Inventory");

 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery(query);

 while (rs.next()) {

 name = rs.getString("Name");

 desc = rs.getString("Description");

 qty = rs.getInt("Qty");

 cost = rs.getFloat("Cost");

 System.out.println(name+", "+desc+"\t: "+qty+"\t@ $"+cost);

 }

 }

 catch(ClassNotFoundException e){

 e.printStackTrace(errLog);

 }

 catch(SQLException e){

 System.err.println((new GregorianCalendar()).getTime());

 System.err.println("Thread: "+Thread.currentThread());

Chapter 4:Introduction to JDBC

-167 -

 System.err.println("ErrorCode: "+e.getErrorCode());

 System.err.println("SQLState: "+e.getSQLState());

 System.err.println("Message: "+e.getMessage());

 System.err.println("NextException: "+e.getNextException());

 e.printStackTrace(errLog);

 System.err.println();

 }

 try{

 stderr.close ();

 }

 catch (Exception e){

 System.out.println("Redirection error: Unable to close SystemErr.txt");

 }

 }

}

A practical point worth noting is that the example saves current time and the current
thread as part of the logged-error information.

Caution Remember to open your error-logging file for append. Otherwise, you

see only the last error. Also, it is a good idea to set autoFlush = true as
shown, so that errors are written to the file immediately.

This query is used in Listing 4-11:

 String query = "SELECT Name,Description,Qty,Cost,Sell_Price FROM Stock";

This query attempts to SELECT a nonexistent column, so a SQL Exception is thrown,
resulting in logging the following error messages to the error log:

Sun Dec 30 14:43:44 EST 2001

Thread: Thread[main,5,main]

ErrorCode: -3010

SQLState: 07001

Message: [Microsoft][ODBC Microsoft Access Driver] Too few parameters.

Expected 1.

NextException: null

java.sql.SQLException: [Microsoft][ODBC Microsoft Access Driver] Too few

parameters. Expected 1.

 at sun.jdbc.odbc.JdbcOdbc.createSQLException(JdbcOdbc.java:6031)

 at sun.jdbc.odbc.JdbcOdbc.standardError(JdbcOdbc.java:6188)

 at sun.jdbc.odbc.JdbcOdbc.SQLExecDirect(JdbcOdbc.java:2494)

 at sun.jdbc.odbc.JdbcOdbcStatement.execute(JdbcOdbcStatement.java:314)

 at

Chapter 4:Introduction to JDBC

-168-

sun.jdbc.odbc.JdbcOdbcStatement.executeQuery(JdbcOdbcStatement.java:229)

 at java_databases.ch04.Logging.main(Logging.java:30)

Summary

Part I is an introduction to database management systems, SQL, and JDBC,
providing a theoretical overview of the topics as a basis for the more detailed
explanations in subsequent chapters.

This chapter provides an overview of the use of the JDBC API. In this chapter, you
learn about the building blocks of a JDBC-based application:

§ Using the DriverManager and different types of JDBC drivers

§ Using JDBC DataSources for dimple, pooled, and distributed connections

§ Using connections

§ Using Statements, PreparedStatements and CallableStatements

§ Using transactions, isolation levels and SavePoints

§ Handling batch updates

§ Using ResultSets and Rowsets

§ Using MetaData

§ JDBC Mapping of SQL Data Types

§ Exceptions and loggin

Part II:Using JDBC and SQL in a Two-Tier Client/Server Application

-169-

Part II: Using JDBC and SQL in a
Two-Tier Client/Server Application
Chapter List

Chapter 5: Creating a Table with JDBC and SQL

Chapter 6: Inserting, Updating, and Deleting Data

Chapter 7: Retrieving Data with SQL Queries

Chapter 8: Organizing Search Results and Using Indexes

Chapter 9: Joins and Compound Queries

Chapter 10: Building a Client/Server Application

Part Overview

Part II expands the overviews of Part I by presenting a series of application examples that cover two

major topics in depth: The JDBC core API and SQL basics. These topics are covered in the context of

a series of Swing-based desktop applications. Each chapter starts with a detailed discussion of a

major element of the SQL language, followed by a presentation of a JDBC application using the SQL

commands discussed.

Individual chapters are dedicated to using basic SQL commands to create, populate, and query

databases, as well as to using the various SQL operators to build more complex queries. The Java

examples use the JDBC core API to connect to a database and execute the SQL commands.

Another chapter is devoted to showing how to perform SQL joins and compound queries. Inner and

outer joins, self-joins, and unions are discussed, as are ordering and grouping the results of these

joins.

The final chapter in Part II brings together the examples in the previous chapters to create a Swing GUI

that can be used as a control panel for any database system. This chapter goes on to explain how

JDBC can be used with any RDBMS system by simply plugging in the appropriate drivers. The

examples compare the effects on performance of plugging in a commercial pure Java driver in place of

Sun's JDBC-ODBC bridge.

TE
AM
FL
Y

Team-Fly®

Chapter 5:Creating a Table with JDBC and SQL

-170-

Chapter 5: Creating a Table withJDBC and SQL

This chapter discusses various ways in which JDBC and SQL enable you to create tables and

manipulate the content therein.

Creating the Database

Before we can create a table, we need to create a database. This has to be done using the Database

Management System itself, because JDBC requires an existing database to make a connection.

DBMS packages that support a GUI, such as MS Access, SQL Server, Sybase, and Oracle, provide a

simple graphical way to do this, generally in the form of a wizard, which guides you through the

necessary steps. If you are running a command line DBMS such as MySQL, start the package; at the

command prompt, type the following:

CREATE DATABASE CONTACTS;

Although the material in this book applies to any JDBC driver, assume that you are using the

JDBC-ODBC bridge. Once you have created the database, register it with the ODBC Data Source

Administrator utility. If, in fact, you are using a different driver, the examples still work fine; all you need

to do is to specify the name of the driver you are using when you register the driver with the

DriverManager.

Assuming that you are, in fact, using the JDBC-ODBC bridge, you will need to register your newly

created database with the ODBC Data Source Administrator utility. If, in fact, you are using a different

driver, the examples still work fine: all you need to do is to specify the name of the driver you are using

when you register the driver with the DriverManager.

Once you have created a database, you are ready to start creating tables. The SQL commands used

to create tables are discussed in the next section.

Using Tables

Relational databases store data in tables. A given database may contain one or more tables,

depending on the application. Tables are intended to store logically related data items together, so a

database may contain one table for business contacts, another for projects, and so on.

Each table in a database is like a spreadsheet. When you create a table, you tell the RDBMS how

many columns each row has. Each record in the database consists of one row in this table.

A database is more restrictive than a spreadsheet in that all the data in one column must be of the

same type, such as integer, decimal, character string, or date. Another difference between a

spreadsheet and a database is that unlike the rows in a spreadsheet, the rows in a database have no

implicit order. This is significant; although you may insert records in some order, there is no guarantee

that they will be returned in that order when you query the database.

Cross-Reference

The design of relational databases and the organization of tables is

Chapter 5:Creating a Table with JDBC and SQL

-171-

discussed in Chapter 1.

Records and Fields, Rows and Columns

A table (see Table 5-1) is a set of data records, arranged as rows, each of which contains individual

data elements or fields, arranged as columns. Here and in subsequent chapters in this part of the book,

we are working with a simple Name and Address Table. Each row in this table is a record containing

information about a single individual or entity.

Successive fields within the record contain different pieces of information about the person or entity,

such as first name, middle initial, last name, and so on. These fields are arranged logically in columns,

so that the first column contains first names, the second, middle initials, and so on.

Table 5-1: Example of a Table

First_Name MI Last_Name Street City State Zip

Alex M Baldwin 123 Pine St Washington DC 12345

Michael Q Cordell 1701 York Rd Columbia MD 21144

It is immediately obvious that all fields within a given column have the following features in common:

§ They are similar in type; for example, all M.I. fields contain zero or one character, and all zips are

numeric.

§ They form part of a column that has a name.

§ As you will see shortly, all fields in a column may be subject to one or more constraints.

Note

The table and column names must start with a letter and can be followed by letters,

numbers, or underscores. Do not use any SQL reserved keywords as names for tables

or column names (such as "select," "create," "insert," and so on).

Create this table using the SQL CREATE command. Before you can do this, there are some decisions

you need to make regarding data types, field lengths, and constraints.

SQL Data Types

As we see in Chapter 2, SQL supports a variety of data types. Table 5-2 lists SQL data types with the

corresponding java.sql data types.

Table 5-2: Standard Mapping from SQL Types to Java

SQL type Java type Description

CHAR String Fixed-length character string. For a CHAR type of

length n, the DBMS invariably assigns n

characters of storage, padding unused space.

VARCHAR String Variable-length character string. For a VARCHAR

of length n, the DBMS assigns up to n charcters

of storage, as required.

Chapter 5:Creating a Table with JDBC and SQL

-172-

Table 5-2: Standard Mapping from SQL Types to Java

SQL type Java type Description

LONGVARCHAR String Variable-length character string. JDBC allows

retrieval of a LONGVARCHAR as a Java input

stream.

NUMERIC java.math.BigDecimal Arbitrary-precision signed decimal numbers. Can

be retrieved using either BigDecimal or String.

DECIMAL java.math.BigDecimal Arbitrary-precision signed decimal numbers. Can

be retrieved using either BigDecimal or String.

BIT boolean Yes/No value

TINYINT byte 8 bit integer values

SMALLINT short 16 bit integer values

INTEGER int 32 bit integer values

BIGINT long 64 bit integer values

REAL float Floating point number, mapped to float

FLOAT double Floating point number, mapped to double

DOUBLE double Floating point number, mapped to double

BINARY byte[] Retrieve as byte array

VARBINARY byte[] Retrieve as byte array

LONGVARBINARY byte[] Retrieve as byte array. JDBC allows retrieval of a

LONGVARCHAR as a Java input stream.

DATE java.sql.Date Thin wrapper around java.util.Date

TIME java.sql.Time Thin wrapper around java.util.Date

TIMESTAMP java.sql.Timestamp Composite of a java.util.Date and a separate

nanosecond value

As you can see from Table 5-2, most of the fields we will be using can be handled using the VARCHAR

type. The zip code is perhaps also best handled using a VARCHAR, since we will not be using it for

arithmetic; nine-digit zips are frequently entered with a hyphen as a separator.

Note

VARCHAR is preferrable to CHARACTER because when you use CHARACTER(n), the

DBMS always assigns n characters to the field, padding the field to fill unallocated space;

when you use VARCHAR(n), the DBMS assigns up to n characters, as required.

Integrity Constraints

Chapter 5:Creating a Table with JDBC and SQL

-173-

In addition to selecting data type and length, there are various integrity constraints you may need to

apply to the data stored in a column. Integrity constraints are important to ensure consistency and

accuracy.

NULL or NOT NULL

In addition to assigning a data type to a field, SQL lets you specify whether a field is required to contain

valid data or whether it can be left empty. In our example, you may decide that you require first name

and last name, but you may not be particularly concerned about middle initials. In this case, set the

constraints for first name and last name to NOT NULL and the constraint for middle initial to NULL.

Note

Most database systems default to NULL.

UNIQUE

The UNIQUE constraint specifies that no two records can have the same value in a particular column.

They must each be unique. An employee id, for example, should be unique.

PRIMARY KEY

The primary key is used by the database management systems as a unique identifier for a row.

Probably the best choice for a primary-key field is an integer, because integers are much faster to

process than, for example, long strings when processing the table. This is one reason why Oracle

provides a ROWID field that is incremented for each row that is added, and MSAccess offers an

AutoNumber option, making the field always a unique key by default.

Note

NULL, UNIQUE, and PRIMARY KEY are the constraints most commonly used, but various

database management systems offer custom constraints, such as Oracle's CHECK,

which lets you define syntactic and logical checks to be performed on field values prior to

insertion.

This brief review of data types, constraints and keys should have given you enough background to

start creating a table. The use of SQL to create tables is covered in the next section.

Creating a Table

Now that you know enough about the data you intend to store in your table, you are ready to give your

table a name and write the SQL command to create it. Tables are created using the CREATE TABLE

statement with a table name, followed in parentheses (()) by a series of column definitions. Here's an

example:

CREATE TABLE tableName (columnName dataType [constraints],...);

Column definitions simply list the column or field name, followed by the data type and the optional

constraints. Column definitions are separated by commas, as shown here:

CREATE TABLE CONTACT_INFO

(CONTACT_ID INTEGER NOT NULL PRIMARY KEY,

 FIRST_NAME VARCHAR(20) NOT NULL,

Chapter 5:Creating a Table with JDBC and SQL

-174-

 MI CHAR(1) NULL,

 LAST_NAME VARCHAR(30) NOT NULL,

 STREET VARCHAR(50) NOT NULL,

 CITY VARCHAR(30) NOT NULL,

 STATE CHAR(2) NOT NULL,

 ZIP VARCHAR(10) NOT NULL);

Caution

Notice the semicolon terminating the command. Most dialects of SQL work with

semicolons, but some, such as Transact-SQL, require the keyword GO. We use

semicolons in our examples.

The next section will show you how to use the SQL CREATE TABLE from a Java application.

Creating a Table Using JDBC

The JDBC API is made up of a small number of important classes and interfaces that handle the tasks

of loading a suitable driver for your database, connecting to the database, creating and executing a

SQL command, and handling any returned records. The primary classes we use for this example are

as follows:

§ DriverManager

§ Driver

§ Connection

§ Statement

DriverManager

The DriverManager is responsible for loading JDBC drivers and for returning a connection to the

appropriate driver. The DriverManager locates a suitable driver for the URL provided in the

getConnection()call by polling the registered drivers.

Driver

For the examples in this book, we use the JDBC ODBC bridge. The first thing we do is load the

sun.jdbc.odbc.JdbcOdbcDriver by name, using Class.forName().Then we register it with

the DriverManager, using this command:

 DriverManager.registerDriver(new JdbcOdbcDriver());

Connection

We next request a connection to the database from the DriverManager using the following command:

getConnection(jdbc:driverName:databaseName);

Chapter 5:Creating a Table with JDBC and SQL

-175-

The DriverManager polls all registered drivers to find the first one that can create a connection to the

URL. Variations on this command let you give the database a user name and password or pass a Java

Properties object with the URL:

getConnection(String url,String user,String password);

getConnection(String url, Properties info);

A connection represents a session with a specific database, providing the context in which our SQL

statements are executed and results are returned.

Statement

The term Statement refers to the Java class that passes the SQL Query to the database via the

connection rather than to the SQL Query itself. A Statement object is used for executing a static SQL

statement and obtaining the results it produces.

The actual SQL command you pass to the database is the command you have just created when we

were discussing the CREATE command. JDBC does not put any restrictions on the SQL commands

you send to the database, but you must ensure that the data source you are connecting to supports

whatever SQL you are using. JDBC allows any query string to be passed to an underlying DBMS

driver, so an application may use as much SQL functionality as desired at the risk of receiving an error

on some DBMSs. In fact, an application query need not even be SQL, or it may be a specialized

derivative of SQL. If the database engine reports a problem, a SQLException will be thrown, providing

information on the database-access error.

Listing 5-1 contains the code for creating a table using JDBC.

Listing 5-1: Creating a table using JDBC

package jdbc_bible.part2;

import java.sql.*;

import sun.jdbc.odbc.JdbcOdbcDriver;

public class TableMaker{

 static String jdbcDriver = "sun.jdbc.odbc.JdbcOdbcDriver";

 static String dbName = "Contacts";

 static String url = "jdbc:odbc:";

 static String SQLCreate =

 "CREATE TABLE CONTACT_INFO ("+

Chapter 5:Creating a Table with JDBC and SQL

-176-

 "CONTACT_ID INTEGER NOT NULL PRIMARY KEY,"+

 "FIRST_NAME VARCHAR(20) NOT NULL,"+

 "MI CHAR(1) NULL,"+

 "LAST_NAME VARCHAR(30) NOT NULL,"+

 "STREET VARCHAR(50) NOT NULL,"+

 "CITY VARCHAR(30) NOT NULL,"+

 "STATE CHAR(2) NOT NULL,"+

 "ZIP VARCHAR(10) NOT NULL"+

 ");";

 public TableMaker(){

 registerDriver();

 }

 public void setDatabaseName(String dbName){

 this.dbName=dbName;

 }

 public void registerDriver(){

 try {

 Class.forName(jdbcDriver);

 }

 catch(ClassNotFoundException e){

 System.err.print(e.getMessage());

 }

 catch(SQLException e){

 System.err.println(e.getMessage());

 }

 }

 public void execute(String SQLCommand){

 url += dbName;

 Connection con;

 Statement stmt;

 try {

 con = DriverManager.getConnection(url);

Chapter 5:Creating a Table with JDBC and SQL

-177-

 stmt = con.createStatement();

 stmt.execute(SQLCommand);

 con.close();

 }

 catch(SQLException e){

 System.err.println(e.getMessage());

 }

 finally {

 try {

 if (con != null) {

 con.close();

 }

 if (stmt !=null) {

 stmt.close();

 }

 } catch (Exception ex) { // ignore }

 }

 }

 public static void main(String[] args) {

 TableMaker tableMaker = new TableMaker();

 tableMaker.execute(SQLCreate);

 }

}

Compile and execute the example, and you should be able to see the new table in your database.

Using a GUI-based system, you are able to see the table when you open the database. With a

command line DBMS like MySQL, you need to type the following at the command prompt:

SHOW TABLES;

In addition to creating a table, you may find it necessary to alter an existing table. This can be done

using the ALTER TABLE command.

Altering a Table with ALTER TABLE

Now that you have built your table, it looks as if you should have included fields for phone number and

e-mail address. Many database management systems let you use SQL to modify tables with the

ALTER TABLE command. The ALTER TABLE command enables you to do these two things:

§ Add a column to an existing table

Chapter 5:Creating a Table with JDBC and SQL

-178-

§ Modify a column that already exists

This is the syntax for the ALTER TABLE command:

ALTER TABLE tableName ADD columnName dataType;

For example, to add a phone number field to the CONTACT_INFO table, use this command:

ALTER TABLE CONTACT_INFO ADD PHONE VARCHAR(16);

You can use MODIFY to change a column constraint from NOT NULL to NULL using this command:

ALTER TABLE tableName MODIFY columnName dataType NULL;>

In much the same way, you can use MODIFY as follows to change the width of a column using:

ALTER TABLE tableName MODIFY columnName dataType;>

Caution

You can always increase the width of a column, but you can't reduce the width below

that of the widest value anywhere in the column. Similarly, you can only change a

column's constraints from NOT NULL to NULL if there are no NULL values in the

column.

Note

Implementations of the MODIFY clause tend to be specific to a database management

system. Some allow the use of the MODIFY clause; others do not.

These are the SQL statements that are required to insert phone number and e-mail address columns:

ALTER TABLE CONTACT_INFO ADD PHONE VARCHAR(16);

ALTER TABLE CONTACT_INFO ADD EMAIL VARCHAR(50) NOT NULL;

Just as you can create a table using JDBC, you can also alter a table using JDBC. As you can see

from the example of Listing 5-2, the code to alter a table looks very much like the TableMaker.java

example, with the exception that a new method, execute(String[] SQLCommand) has been
added. This method loops through an array of SQL commands to execute each of the ALTER TABLE

commands.

Listing 5-2: Altering a table using JDBC

IMPORT JAVA.SQL.*;

IMPORT SUN.JDBC.ODBC.JDBCODBCDRIVER;

PUBLIC CLASS TABLEMODIFIER{

 STATIC STRING JDBCDRIVER = "SUN.JDBC.ODBC.JDBCODBCDRIVER";

 STATIC STRING DBNAME = "CONTACTS";

 STATIC STRING URL = "JDBC:ODBC:CONTACTS";

Chapter 5:Creating a Table with JDBC and SQL

-179-

 STATIC STRING[] SQLALTER = {

 "ALTER TABLE CONTACT_INFO ADD PHONE VARCHAR(16);",

 "ALTER TABLE CONTACT_INFO ADD EMAIL VARCHAR(50);",

 };

 PUBLIC TABLEMODIFIER(){

 REGISTERDRIVER();

 }

 PUBLIC VOID REGISTERDRIVER(){

 TRY {

 CLASS.FORNAME(JDBCDRIVER);

 DRIVERMANAGER.REGISTERDRIVER(NEW JDBCODBCDRIVER());

 }

 CATCH(CLASSNOTFOUNDEXCEPTION E){

 SYSTEM.ERR.PRINT(E.GETMESSAGE());

 }

 CATCH(SQLEXCEPTION E){

 SYSTEM.ERR.PRINTLN(E.GETMESSAGE());

 }

 }

 PUBLIC VOID EXECUTE(STRING[] SQLCOMMAND){

 TRY {

 CONNECTION CON = DRIVERMANAGER.GETCONNECTION(URL);

 STATEMENT STMT = CON.CREATESTATEMENT();

 FOR(INT I=0;I<SQLCOMMAND.LENGTH;I++){

 STMT.EXECUTE(SQLCOMMAND[I]);

 }

 CON.CLOSE();

 }

 CATCH(SQLEXCEPTION E){

 SYSTEM.ERR.PRINTLN(E.GETMESSAGE());

 }

 }

 PUBLIC STATIC VOID MAIN(STRING[] ARGS) {

 TABLEMODIFIER TABLEMODIFIER = NEW TABLEMODIFIER();

TE
AM
FL
Y

Team-Fly®

Chapter 5:Creating a Table with JDBC and SQL

-180-

 TABLEMODIFIER.EXECUTE(SQLALTER);

 }

}

From time to time, you may need to delete a table. Deleting tables, like creating and altering tables, is

easy to do using SQL and JDBC.

Deleting or Dropping a Table

Deleting a table with SQL is done using the DROP TABLE command. The DROP TABLE command

deletes a table along with all its associated views and indexes. Here's the syntax for the DROP TABLE

command:

DROP TABLE table_name;

To drop the CONTACT_INFO, issue this command:

DROP TABLE CONTACT_INFO;

Since the code used to drop a table is very similar to the code used to create or alter a table, a

dedicated Java example for DROP TABLE, is not provided. The Table Builder example discussed in the

next section includes an example of the code required to drop a table in listing 5-3.

Creating a Swing-based Table Builder

To illustrate the topics covered in this chapter, we build a Swing-based Table Builder. This application

forms the basis of a complete database management console, which, with only minor modifications,

works with any database management system.

The Table Builder uses Model View Controller (MVC) architecture, both for clarity, and because MVC

designs are easier to understand, build, and maintain. The first step is to create the controller portion of

the MVC architecture.

The controller responds to user inputs from the various view elements and commands the model to

execute the user's commands. User inputs come from JMenus, dialog boxes, and JInternalFrames.

The sequence of events is as follows:

1. User selects a database.

2. User assigns a table name.

3. User defines the required fields for the table.

4. SQL CREATE TABLE command is issued to create the desired table.

The controller interacts with the model using classes based on the code we look at in Listing 5-1.

The view portion of the MVC architecture is handled by the usual JMenu items, together with a

JOptionPane to deal with single-value inputs such as database name and table name, and dedicated

JInternalFrames to handle anything more complicated. The view components interact with the

controller only for initialization and to return the data they are designed to collect. The model portion of

Chapter 5:Creating a Table with JDBC and SQL

-181-

the MVC architecture performs the actual JDBC functions, connecting to the database and issuing the

CREATE TABLE command.

Controller

Base your controller on a JFrame, which also hosts the view components. If you want to be a purist,

you can create the JFrame separately and subclass it for the controller; but as the only view-related

code in this class is in the constructor, I feel it is acceptable to use the JFrame as the controller.

In addition to constructing the JFrame, the constructor adds a JDesktopPane to handle the

JInternalFrames, a JMenu class, and the ActionListener for the JMenu.

The selectDatabase() method is called when the user selects the "Database" menu option. This

method prompts the user for the database name using a JOptionPane; after saving the database

name, it enables the New Table menu item and the Drop Table menu item.

When either the New Table menu item or the Drop Table menu item is selected, a JOptionPane is

displayed to get the table name, and then, depending on the menu selection, either the

TableBuilderFrame is displayed to allow the user to create the table, or a JOptionFrame is displayed to

confirm that the table should be dropped.

The displayTableBuilderFrame()method is called when the user responds to a prompt for the

table name. It launches the TableBuilderFrame, setting an ActionListener,

CommandListener, to receive the completed CREATE TABLE command from the JInternalFrame.

The CommandListener ultimately passes the CREATE TABLE command to the JDBC SQLToolkit

class, which connects to the database and creates the table. (See Listing 5-3.)

Listing 5-3: Swing-based Table Builder — the main JFrame

package jdbc_bible.part2;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import javax.swing.event.*;

public class DBManager extends JFrame{

 JMenuBar menuBar = new JMenuBar();

 JDesktopPane desktop = new JDesktopPane();

 String database = null;

 String tableName = null;

Chapter 5:Creating a Table with JDBC and SQL

-182-

 String menuSelection = null;

 TableBuilderFrame tableMaker = null;

 DatabaseUtilities dbUtils = null;

 TableMenu tableMenu = new TableMenu();

 MenuListener menuListener = new MenuListener();

 public DBManager(){

 setJMenuBar(menuBar);

 setTitle("JDBC Database Bible");

 getContentPane().setLayout(new BorderLayout());

 getContentPane().add(desktop,BorderLayout.CENTER);

 setSize(new Dimension(640,480));

 menuBar.add(tableMenu);

 tableMenu.setMenuListener(menuListener);

 setVisible(true);

 }

 private void displayTableBuilderFrame(){

 tableName = JOptionPane.showInputDialog(this,"Table:",

 "Select table",JOptionPane.QUESTION_MESSAGE);

 tableMaker = new TableBuilderFrame(tableName);

 tableMaker.setCommandListener(new CommandListener());

 desktop.add(tableMaker);

 tableMaker.setVisible(true);

 }

 private void selectDatabase(){

 database = JOptionPane.showInputDialog(this,"Database:",

 "Select database",JOptionPane.QUESTION_MESSAGE);

 dbUtils = new DatabaseUtilities();

Chapter 5:Creating a Table with JDBC and SQL

-183 -

 dbUtils.setExceptionListener(new ExceptionListener());

 tableMenu.enableMenuItem("New Table",true);

 tableMenu.enableMenuItem("Drop Table",true);

 }

 private void executeSQLCommand(String SQLCommand){

 dbUtils.execute(SQLCommand);

 }

 private void dropTable(){

 tableName = JOptionPane.showInputDialog(this,"Table:",

 "Select table",JOptionPane.QUESTION_MESSAGE);

 int option = JOptionPane.showConfirmDialog(null,

 "Dropping table "+tableName,

 "Database "+database,

 JOptionPane.OK_CANCEL_OPTION);

 if(option==0){

 executeSQLCommand("DROP TABLE "+tableName);

 }

 }

 class MenuListener implements ActionListener{

 public void actionPerformed(ActionEvent event){

 String menuSelection = event.getActionCommand();

 if(menuSelection.equals("Database")){

 selectDatabase();

 }else if(menuSelection.equals("New Table")){

 displayTableBuilderFrame();

 }else if(menuSelection.equals("Drop Table")){

 dropTable();

 }else if(menuSelection.equals("Exit")){

 System.exit(0);

 }

Chapter 5:Creating a Table with JDBC and SQL

-184-

 }

 }

 class ExceptionListener implements ActionListener{

 public void actionPerformed(ActionEvent event){

 String exception = event.getActionCommand();

 JOptionPane.showMessageDialog(null, exception,

 "SQL Error", JOptionPane.ERROR_MESSAGE);

 }

 }

 class CommandListener implements ActionListener{

 public void actionPerformed(ActionEvent event){

 String SQLCommand = event.getActionCommand();

 executeSQLCommand(SQLCommand);

 }

 }

 public static void main(String args[]){

 DBManager dbm = new DBManager ();

 }

}

View

The view is handled primarily by these two classes:

§ TableMenu.

§ TableBuilderFrame

TableMenu

TableMenu displays and handles inputs from a basic JMenu used to select a database and identify a

table. Being the first menu on the JMenuBar, the TableMenu also handles the Exit function.

TableMenu extends a simple base class DBMenu (see Listing 5-4), which provides common

functionality. The main purpose of DBMenu is to simplify menu creation and to provide a common point

for hooking an event listener into the menu items so that they do not have to be set up individually from

the controller.

Chapter 5:Creating a Table with JDBC and SQL

-185-

Listing 5-4: DBMenu (the base class for TableMenu)

package jdbc_bible.part2;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class DBMenu extends JMenu{

 JMenuItem dbItem;

 JMenuItem newItem;

 JMenuItem openItem;

 JMenuItem exitItem;

 ActionListener menuListener = null;

 MenuItemListener itemListener = new MenuItemListener();

 public DBMenu(){

 }

 public void enableMenuItem(String itemName,boolean enable){

 Component c[] = getMenuComponents();

 for(int i=0;i<c.length;i++){

 if(c[i] instanceof JMenuItem){

 JMenuItem menuItem = (JMenuItem)c[i];

 if(menuItem.getText().equals(itemName))menuItem.setEnabled(enable);

 }

 }

 }

 public void setMenuListener(ActionListener menuListener){

 this.menuListener = menuListener;

 }

 class MenuItemListener implements ActionListener{

 public void actionPerformed(ActionEvent event){

 String action = event.getActionCommand();

Chapter 5:Creating a Table with JDBC and SQL

-186-

 if(menuListener!=null)menuListener.actionPerformed(event);

 }

 }

}

DBMenu is supported by DBMenuItem, which extends JMenuItem to provide a simple base class for

the creation of the JMenuItems. This DBMenuItem base class is shown in Listing 5-5:

Listing 5-5: DBMenuItem (a convenience class for easy JMenuItem creation)

package jdbc_bible.part2;

import java.awt.event.*;

import javax.swing.*;

public class DBMenuItem extends JMenuItem{

 public DBMenuItem(String name,char hotkey,

 ActionListener itemListener,boolean enabled){

 super(name,(int)hotkey);

 setActionCommand(name);

 setEnabled(enabled);

 addActionListener(itemListener);

 }

}

Using these convenience classes, the creation of our custom menus becomes very simple, as you can

see from Listing 5-6.

Listing 5-6: Table Menu

package jdbc_bible.part2;

import javax.swing.*;

public class TableMenu extends DBMenu{

 JMenuItem dbItem;

 JMenuItem newItem;

 JMenuItem openItem;

Chapter 5:Creating a Table with JDBC and SQL

-187-

 JMenuItem exitItem;

 public TableMenu(){

 setText("Table");

 setActionCommand("Table");

 setMnemonic((int)'T');

 dbItem = new DBMenuItem("Database", 'D',itemListener,true);

 newItem = new DBMenuItem("New Table",'T',itemListener,false);

 openItem = new DBMenuItem("Drop Table",'D',itemListener,false);

 exitItem = new DBMenuItem("Exit",'X',itemListener,true);

 add(dbItem);

 addSeparator();

 add(newItem);

 add(openItem);

 addSeparator();

 add(exitItem);

 }

}

TableBuilderFrame

TableBuilderFrame is the heart of the MVC view. TableBuilderFrame extends

JInternalFrame, containing a JTable used to set up the fields for the database table, a
JTextArea, which provides a preview of the generated SQL command, and a Create Table button,

which fires an ActionEvent to the controller, sending it the generated SQL command.

Chapter 5:Creating a Table with JDBC and SQL

-188-

Figure 5-1: TableBuilderFrame generates SQL from table entries.

TableBuilderFrame is, in turn, built around a Jtable, which has been customized by adding

JComboBox components as column editors for such fields as DataType.

The method setCommandListener() is called by the MVC controller so that TableBuilderFrame

can pass the controller the generated SQL command when the Create Table button bar at the bottom

of the frame is pressed by the user.

Listing 5-8: TableBuilderFrame

package jdbc_bible.part2;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import javax.swing.event.*;

/**

* TableBuilderFrame: a display which builds SQL CREATE statements

* <p/>

* TableBuilder, which extends JTable, is a key component.

*/

class TableBuilderFrame extends JInternalFrame{

 protected int nRows = 15;

 protected int nColumns = 6;

Chapter 5:Creating a Table with JDBC and SQL

-189-

 protected JTable table;

 protected JTextArea SQLPane = new JTextArea();

 protected JButton createButton = new JButton("Create Table");

 protected ActionListener commandListener = null;

 protected String tableName = null;

 protected String SQLCommand = "";

 protected String SQLCommandRoot = "";

 public TableBuilderFrame(String tableName){

 setSize(600,400);

 setLocation(10,10);

 setClosable(true);

 setMaximizable(true);

 setIconifiable(true);

 setResizable(true);

 getContentPane().setLayout(new BorderLayout());

 this.tableName=tableName;

 SQLCommandRoot = "CREATE TABLE "+tableName;

 setTitle(SQLCommandRoot);

 init();

 setVisible(true);

 }

 // initialise the JInternalFrame

 private void init(){

 table = createTable(nRows);

 TableChangeListener modelListener = new TableChangeListener ();

 table.getModel().addTableModelListener(modelListener);

 JScrollPane sqlScroller = new JScrollPane(SQLPane);

 JScrollPane tableScroller = new JScrollPane(table);

 JSplitPane splitter = new

 JSplitPane(JSplitPane.VERTICAL_SPLIT,sqlScroller,tableScroller);

 splitter.setDividerLocation(100);

TE
AM
FL
Y

Team-Fly®

Chapter 5:Creating a Table with JDBC and SQL

-190-

 getContentPane().add(splitter,BorderLayout.CENTER);

 getContentPane().add(createButton,BorderLayout.SOUTH);

 createButton.addActionListener(new ButtonListener());

 }

 private JTable createTable(int nRows){

 String[] dataTypes = {"CHAR","VARCHAR","INT","FLOAT","DATE"};

 String[] defNull = {"","NULL","NOT NULL"};

 String[] defUnique = {"","UNIQUE"};

 String[] defPriKey = {"","PRIMARY KEY"};

 String[] colNames =

 {"Name","DataType","SIZE","NULL","UNIQUE","PRIMARY KEY"};

 String[][] rowData = new String[nRows][colNames.length];

 for(int i=0;i<nRows;i++){

 for(int j=0;j<colNames.length;j++)rowData[i][j]="";

 }

 JComboBox dTypes = new JComboBox(dataTypes);

 JComboBox nullDefs = new JComboBox(defNull);

 JComboBox uniqueDefs = new JComboBox(defUnique);

 JComboBox primaryKDefs = new JComboBox(defPriKey);

 JTable table = new JTable(rowData,colNames);

 table.getColumnModel().getColumn(1).

 setCellEditor(new DefaultCellEditor(dTypes));

 table.getColumnModel().getColumn(3).

 setCellEditor(new DefaultCellEditor(nullDefs));

 table.getColumnModel().getColumn(4).

 setCellEditor(new DefaultCellEditor(uniqueDefs));

 table.getColumnModel().getColumn(5).

 setCellEditor(new DefaultCellEditor(primaryKDefs));

 return table;

 }

 public String parseTable(){

 String tableValues = "";

 int rows = table.getRowCount();

 int cols = table.getColumnCount();

Chapter 5:Creating a Table with JDBC and SQL

-191-

 if(rows>=0&&cols>=0){

 tableValues += "\n(";

 for(int i=0;i<rows;i++){

 String rowData = "";

 for(int j=0;j<cols;j++){

 String field = (String)table.getValueAt(i,j);

 if(field!=null){

 if(field.length()==0)break;

 if(j==2)rowData+="(";

 else if(i>0||j>0)rowData += " ";

 rowData += field;

 if(j==2)rowData+=")";

 }

 }

 if(rowData.length()==0)break;

 tableValues += rowData+",\n";

 }

 }

 if(tableValues.endsWith(",\n")){

 int tvLen = tableValues.length()-2;

 if(tvLen>0)tableValues = tableValues.substring(0,tvLen);

 }

 tableValues += ");";

 return tableValues;

 }

 // CommandListener is set by the MVC Controller module as a call back to

 // return the SQL command

 public void setCommandListener(ActionListener commandListener){

 this.commandListener=commandListener;

 }

 // Listener for the CreateButton

 class ButtonListener implements ActionListener{

Chapter 5:Creating a Table with JDBC and SQL

-192 -

 public void actionPerformed(ActionEvent event){

 String action = event.getActionCommand();

 if(commandListener!=null){

 ActionEvent evt = new ActionEvent(this,0,SQLCommand);

 commandListener.actionPerformed(evt);

 }

 }

 }

 // Listener for Edit events on the JTable

 class TableChangeListener implements TableModelListener{

 public TableChangeListener (){

 }

 public void tableChanged(TableModelEvent event){

 SQLCommand = SQLCommandRoot+parseTable();

 SQLPane.setText(SQLCommand);

 }

 }

}

Model

The model portion of the MVC model is nothing more than the JDBC class we build earlier in the

chapter. This version has been edited slightly to remove the embedded SQL command strings and the

main() method we use to test it.

We have also changed the exception handling to fire an ActionEvent to an ExceptionListener

registered by the controller, which pops up a JOptionPane to display exceptions from the SQLToolkit

rather than printing them to the console. (See Listing 5-9.)

Listing 5-9: DatabaseUtilities — the JDBC code

package jdbc_bible.part2;

import java.awt.event.*;

import java.sql.*;

import java.util.Vector;

import sun.jdbc.odbc.JdbcOdbcDriver;

Chapter 5:Creating a Table with JDBC and SQL

-193 -

public class DatabaseUtilities{

 static String jdbcDriver = "sun.jdbc.odbc.JdbcOdbcDriver";

 static String dbName = "Contacts";

 static String urlRoot = "jdbc:odbc:";

 private ActionListener exceptionListener = null;

 public DatabaseUtilities(){

 registerDriver();

 }

 public void setDatabaseName(String dbName){

 this.dbName=dbName;

 }

 public void registerDriver(){

 try {

 Class.forName(jdbcDriver);

 DriverManager.registerDriver(new JdbcOdbcDriver());

 }

 catch(ClassNotFoundException e){

 reportException(e.getMessage());

 }

 catch(SQLException e){

 reportException(e.getMessage());

 }

 }

 public void execute(String SQLCommand){

 String url = urlRoot+dbName;

 try {

 Connection con = DriverManager.getConnection(url);

 Statement stmt = con.createStatement();

 stmt.execute(SQLCommand);

 con.close();

 }

 catch(SQLException e){

Chapter 5:Creating a Table with JDBC and SQL

-194-

 reportException(e.getMessage());

 }

 }

 public void setExceptionListener(ActionListener exceptionListener){

 this.exceptionListener=exceptionListener;

 }

 private void reportException(String exception){

 if(exceptionListener!=null){

 ActionEvent evt = new ActionEvent(this,0,exception);

 exceptionListener.actionPerformed(evt);

 }else{

 System.err.println(exception);

 }

 }

}

Summary

Having read this chapter, you should have a good understanding of the following topics:

§ How a relational database stores data in the rows and columns that make up tables

§ Records and fields are and how they relate to rows and columns

§ Integrity constraints

§ Creating a table with SQL CREATE

§ Removing a table with SQL DROP

§ Modifying a table with SQL ALTER

§ Using JDBC and Swing to create a Table Builder

In Chapter 6, we discuss the SQL INSERT command and use it to populate our Name and Address

Table with data.

Chapter 6:Inserting, Updating, and Deleting Data

-195-

Chapter 6: Inserting, Updating,and Deleting Data

In This Chapter

The preceding chapter explains how to create a database and how to add, delete, and modify

database tables. This chapter explains how to insert data into a table and, when necessary, modify or

delete data.

Related topics covered in this chapter include a review of transaction control, which is important to

understand when you are inserting and deleting interdependent data items. Transaction control is also

covered at a more theoretical level in Chapter 1.

The use of the SQL commands is illustrated in the context of a series of Java examples, including a

discussion of the use of the JDBC DatabaseMetaData object to obtain information about a database.

Inserting Data Using SQL INSERT

Once you have created a database and its constituent tables, it is important to know how to add, delete

and modify its contents. SQL provides the three following statements you can use to manipulate data

within a database:

§ INSERT

§ UPDATE

§ DELETE

INSERT

The INSERT statement, in its simplest form, is used to insert data into a table, one row or record at a

time. It can also be used in combination with a SELECT statement to perform bulk inserts of multiple

selected rows from another table or tables. INSERT can only be used to insert entire rows into a table,

not to insert individual fields directly into a row.

UPDATE

The UPDATE command is used to modify the contents of individual columns within a set of rows. The

UPDATE command is normally used with a WHERE clause. As this chapter explains, the WHERE clause

is used to select the rows to be updated. Clearly, it is important to choose the rows you are updating

correctly; otherwise, you may find yourself updating records you have not planned on changing.

DELETE

DELETE is used to delete selected rows from a table. As in the case with the UPDATE command, row

selection is based on the result of an optional WHERE clause. Again, you need to be careful when you

make the selection, or you may delete records you mean to leave intact.

The INSERT Statement

The basic form of the INSERT statement looks like this:

Chapter 6:Inserting, Updating, and Deleting Data

-196-

INSERT INTO tableName (colName1, colName2, ...) VALUES (value1, value2, ...);

To insert name and address information into the Contact_Info Table we create in Chapter 5, use a SQL
INSERT statement like this:

INSERT INTO Contact_Info

(FName, MI, LName, Email)

VALUES

('Michael','X','Corleone','offers@cosa_nostra.com');

Notice how the field names have been specified in the order in which you plan to insert the data. This

insert will work just as well if you use the following command:

INSERT INTO Contact_Info

(Email, LName, FName, MI)

VALUES

('offers@cosa_nostra.com','Corleone','Michael','X');

You can also use a shorthand form if you know the column order of the table. Here's an example:

INSERT INTO Contact_Info

VALUES

('Michael','X','Corleone','offers@cosa_nostra.com');

Note

String data is specified in single quotes ('), as shown in the examples. Numeric values

are specified without quotes.

Follow these rules when inserting data into a table with the INSERT statement:

§ The column names you use must match the names defined for the column.

§ The values you insert must match the data type defined for the column they are being inserted

into. You can't, for example, put string data into a numeric field.

§ The data size must not exceed the column width, so you can't put 30 character names into 20

character fields.

§ The data you insert into a column must comply with the column's data constraints; for example,

you can't put the last names of all members of the Corleone family into a column if you have

constrained that column as UNIQUE.

These rules are obvious, but breaking them accounts for a lot of SQL exceptions, particularly when you

save data in the wrong field order. Another common error is to try and insert the wrong number of data

fields.

When the Contact_Info Table is defined, the MI field is defined as NULLABLE. The correct way to

insert a NULL is this:

INSERT INTO Contact_Info

(FName, MI, LName, Email)

Chapter 6:Inserting, Updating, and Deleting Data

-197 -

VALUES

('Michael',NULL,'Corleone','offers@cosa_nostra.com');

Caution

NULL values are not the same as spaces. A NULL value means that the value is

empty. It is neither a zero, in the case of an integer, nor a space, in the case of a

string.

Using INSERT with JDBC

The code required to use INSERT with JDBC is illustrated in Listing 6-1. This example is similar in

appearance to the code of Listing 5-1, which illustrates how to create a table using JDBC. This helps

illustrate how the JDBC API provides a means of passing any desired SQL command to a database

management system.

Listing 6-1: Using INSERT with JDBC

package jdbc_bible.part2;

import java.awt.event.*;

import java.sql.*;

import sun.jdbc.odbc.JdbcOdbcDriver;

public class DataInserter{

 static String jdbcDriver = "sun.jdbc.odbc.JdbcOdbcDriver";

 static String dbName = "Contacts";

 static String urlRoot = "jdbc:odbc:";

 public DataInserter(){

 registerDriver();

 }

 public void setDatabaseName(String dbName){

 this.dbName=dbName;

 }

 public void registerDriver(){

 try {

 Class.forName(jdbcDriver);

 DriverManager.registerDriver(new JdbcOdbcDriver());

 }

Chapter 6:Inserting, Updating, and Deleting Data

-198-

 catch(ClassNotFoundException e){

 System.err.println(e.getMessage());

 }

 catch(SQLException e){

 System.err.println(e.getMessage());

 }

 }

 public void execute(String SQLCommand){

 String url = urlRoot+dbName;

 try {

 Connection con = DriverManager.getConnection(url);

 Statement stmt = con.createStatement();

 stmt.execute(SQLCommand);

 con.close();

 }

 catch(SQLException e){

 System.err.println(e.getMessage());

 }

 }

 public static void main(String args[]){

 DataInserter inserter = new DataInserter();

 String SQLCommand = "INSERT INTO CONTACT_INFO "+

 "(First_Name,MI,Last_Name,Street,City,State,Zip) "+

 "VALUES "+

 "('Michael','J','Corleone','86 Horsehead
Blvd','NY','NY','12345');";

 inserter.execute(SQLCommand);

 }

}

If you compile and execute the example, you should be able to see the new record in your

Contact_info Table. Using a DBMS with a GUI-based management console, you are able to see the

table and its contents when you open the database. With a command line DBMS such as MySQL, you

need to go to the command prompt and type the following command:

SELECT * FROM Contact_Info;

Chapter 6:Inserting, Updating, and Deleting Data

-199-

Using INSERT ... SELECT

The INSERT statement illustrated in the example of Listing 6-1 is primarily intended for inserting

records into a table one at a time. For applications such as storing information from membership

applications or entering employee records, this is the perfect solution. However, there are times when

you want to copy subsets of data from one table to another. On these occasions, doing the transfer

one record at a time introduces a lot of overhead because each record has to be individually retrieved

from one table and inserted into another other.

SQL allows you to handle these situations by combining the INSERT command with a SELECT
command, which queries the database for the desired records. The advantage of this approach is that

the whole process is carried out within the RDBMS, avoiding the overhead of retrieving records and

reinserting them externally.

The SELECT statement

The SELECT statement is used to query the database for specific rows. This is the basic form of the

SELECT statement:

SELECT

Field1, Field2, ...

FROM

TableName

[WHERE ...];

In place of a comma-delimited list of field names, you can supply the asterisk wildcard character, *, to

request all fields:

SELECT * FROM TableName;

Cross-Reference

The SELECT statement is discussed in detail in Chapter 7.

An example of a situation where you might use INSERT...SELECT is the creation of a table

containing only the first and last names from the Contact_Info Table. As illustrated in Chapter 5, the

SQL command to create the table is as follows:

CREATE TABLE Names

(First_Name VARCHAR(20), Last_Name LName VARCHAR(30));

To insert the corresponding data from the original Contact_Info Table, use a SQL INSERT...SELECT

command to select the desired fields from the Contact_Info Table, and insert them into the new Names

Table. Here's an example:

INSERT INTO Names

SELECT First_Name, Last_Name FROM Contact_Info;

Essentially, this command tells the database management system to perform these two separate

operations internally:

TE
AM
FL
Y

Team-Fly®

Chapter 6:Inserting, Updating, and Deleting Data

-200-

A SELECT (to query the Contact_Info Table for the FName and LName fields from all

records)

An INSERT (to input the resulting record set into the new Names Table

By performing these operations within the RDBMS, the use of the INSERT...SELECT command

eliminates the overhead of retrieving the records and reinserting them.

The WHERE clause

The optional WHERE clause allows you to make conditional queries; for example, you can get all

records where the last name is "Corleone" and insert them into the Names Table with this statement:

INSERT INTO Names

SELECT First_Name, Last_Name FROM Contact_Info WHERE Last_Name =

'Corleone';

Using INSERT ... SELECT with JDBC

As with any other SQL command, it is easy to use INSERT ... SELECT with JDBC. If you substitute

the code snippet of Listing 6-2 for the main() of Listing 6-1 and run the example again, you will create

a Name Table populated with the first and last names.

Listing 6-2: Using INSERT ... SELECT with JDBC

 public static void main(String args[]){

 DataInserter inserter = new DataInserter();

 String SQLCommand = "INSERT INTO NAMES "+

 "SELECT First_Name,Last_Name FROM CONTACT_INFO "+

 "WHERE Last_Name = 'Corleone'; ";

 inserter.execute(SQLCommand);

 }

}

Once you have data in a table, you are likely to have to update it to reflect changes in data fields like

addresses or inventory item count. The next section shows how to use the SQL UPDATE command to

modify data in a table.

The UPDATE Statement

A frequent requirement in database applications is updating records. For example, when a contact

moves, you need to change his or her address. Do this with the SQL UPDATE statement, using a

WHERE clause to identify the record you want to change. Here's an example:

Chapter 6:Inserting, Updating, and Deleting Data

-201-

UPDATE Contact_Info

SET Street = '55 Broadway', ZIP = '10006'

WHERE First_Name = 'Michael' AND Last_Name = 'Corleone';

This statement first evaluates the WHERE clause to find all records with matching First_Name and

Last_Name. It then makes the address change to all of those records.

Caution

If you omit the WHERE clause from the UPDATE statement, all records in the given

table are updated.

Using Calculated Values with UPDATE

You can also use the UPDATE statement to update columns with calculated values. For example, if you

add stock to your inventory, instead of setting the Qty column to an absolute value, you can simply add

the appropriate number of units with a calculated UPDATE statement like this:

UPDATE Inventory

SET Qty = QTY + 24

WHERE Name = 'Corn Flakes';

When you use a calculated UPDATE statement like this, you need to make sure that you observe the

rules for INSERTS and UPDATES mentioned earlier. In particular, ensure that the data type of the

calculated value is the same as the data type of the field you are modifying, as well as short enough to

fit in the field.

Common Problems with UPDATE

Two common problems can result from the use of calculated values:

§ Truncation can result from number conversions, such as conversion from a real number to an

integer.

§ Overflow occurs when the resulting value is larger than the capacity of the column. This causes

the database system to return an error.

Problems of this type can be avoided if you observe the rules for INSERTS and UPDATES mentioned

earlier.

Listing 6-3: Using UPDATE with JDBC

package jdbc_bible.part2;

import java.awt.event.*;

import java.sql.*;

import sun.jdbc.odbc.JdbcOdbcDriver;

Chapter 6:Inserting, Updating, and Deleting Data

-202 -

public class DataUpdater{

 static String jdbcDriver = "sun.jdbc.odbc.JdbcOdbcDriver";

 static String dbName = "Contacts";

 static String urlRoot = "jdbc:odbc:";

 private ActionListener exceptionListener = null;

 public DataUpdater(){

 registerDriver();

 }

 public void setDatabaseName(String dbName){

 this.dbName=dbName;

 }

 public void registerDriver(){

 try {

 Class.forName(jdbcDriver);

 DriverManager.registerDriver(new JdbcOdbcDriver());

 }

 catch(ClassNotFoundException e){

 System.err.println(e.getMessage());

 }

 catch(SQLException e){

 System.err.println(e.getMessage());

 }

 }

 public void execute(String SQLCommand){

 String url = urlRoot+dbName;

 try {

 Connection con = DriverManager.getConnection(url);

 Statement stmt = con.createStatement();

 stmt.execute(SQLCommand);

 con.close();

 }

 catch(SQLException e){

 System.err.println(e.getMessage());

Chapter 6:Inserting, Updating, and Deleting Data

-203 -

 }

 }

 public static void main(String args[]){

 DataUpdater inserter = new DataUpdater();

 String SQLCommand = "UPDATE CONTACT_INFO "+

 "SET STREET = '58 Broadway', ZIP = '10008' "+

 "WHERE First_Name = 'Michael' AND "+

 "Last_Name ='Corleone';";

 inserter.execute(SQLCommand);

 }

}

Once again, the basic Java code used to issue the SQL command remains unchanged. To try it out,

compile and execute the example; you should be able to see the modified record in your Contact_Info

Table.

Transaction Management with COMMIT and ROLLBACK

Transaction management refers to the capability of a relational database management system to

execute database commands in groups, known as transactions. A transaction is a group or sequence

of commands, all of which must be executed in order and must complete successfully. If anything goes

wrong during the transaction, the database management system will allow the entire transaction to be

cancelled or "rolled back." If, on the other hand, it completes successfully, the transaction can be

saved to the database or "committed."

A transaction typically involves several related commands, as in the case of a bank transfer. If Client A

orders a transfer of funds to Client B, at least two database-access commands must be executed:

§ Client A's account must be debited.

§ Client B's account must be credited.

If one of these commands is executed but the other is not, the funds will either vanish from Client A's

account without appearing in Client B's account, or, perhaps worse from the viewpoint of the bank, the

funds will be credited to Client B's account without being withdrawn from Client A's account, leaving

the bank in the hole.

This situation obviously becomes dramatically more complicated in the real world, where a large

financial institution, with hundreds or thousands of users all accessing the database at the same time,

can potentially have vast numbers of incomplete transactions active at any given moment.

The solution is to combine logically related commands into groups that are committed as a single

transaction. If a problem arises, the entire transaction can be rolled back and the problem fixed without

serious adverse impact on business operations.

Chapter 6:Inserting, Updating, and Deleting Data

-204 -

The primary commands used in managing transactions are COMMIT and ROLLBACK. As their names

suggest, the COMMIT command commits changes made from the beginning of the transaction to the

point at which the command is issued, and the ROLLBACK command undoes them. In addition, most

databases support the AUTOCOMMIT option, which tells the RDBMS to commit all commands

individually, as they are executed. This option can be used with the SET command. For example:

SET AUTOCOMMIT [ON | OFF] ;

By default, the SET AUTOCOMMIT ON command is executed at startup, telling the RDBMS to commit all

statements automatically as they are executed. If you do not want these commands to be

automatically executed, set the AUTOCOMMIT option to off as follows:

SET AUTOCOMMIT OFF;

When you start to work with a transaction, turn Autocommit off; then issue the commands required by

the transaction, and, assuming that everything executes correctly, commit the transaction using this

command:

COMMIT;

If any problems should arise during the transaction, you can cancel the entire transaction by using the

following command:

ROLLBACK;

Note

Transaction-management syntax varies considerably from one database management

system to the next, but the basic syntax shown previously is supported by all common

database management systems.

The use of COMMIT and ROLLBACK in a JDBC example is very straightforward. Here's a modification to

the example of Listing 6-3, which specifically turns Autocommit on. Simply insert the

con.setAutoCommit(true) line into the stmt.execute(SQLCommand) method, as shown:

 public void execute(String SQLCommand){

 String url = urlRoot+dbName;

 try {

 Connection con = DriverManager.getConnection(url);

 con.setAutoCommit(true);

 Statement stmt = con.createStatement();

 stmt.execute(SQLCommand);

 con.close();

 }

 catch(SQLException e){

 System.err.print(e.getMessage());

 }

 }

Chapter 6:Inserting, Updating, and Deleting Data

-205-

Adding the setAutoCommit(true) line tells the database management system to commit all

changes automatically. If you compile and execute the modified code, you should get exactly the same

results as you do when you run the original example.

Now modify the code to turn Autocommit off, using setAutoCommit(false), as shown here:

 public void execute(String SQLCommand){

 String url = urlRoot+dbName;

 try {

 Connection con = DriverManager.getConnection(url);

 con.setAutoCommit(false);

 Statement stmt = con.createStatement();

 stmt.execute(SQLCommand);

 con.close();

 }

 catch(SQLException e){

 System.err.print(e.getMessage());

 }

 }

This time, when you run the example, it throws an "Invalid Transaction State" exception, and the

update has not been made. The exception is thrown because we have not terminated the transaction

before closing the connection.

Now alter the code in the try block to the following; the change is made as before, because we have

specifically told the database management system to commit the change:

 try {

 Connection con = DriverManager.getConnection(url);

 con.setAutoCommit(false);

 Statement stmt = con.createStatement();

 stmt.execute(SQLCommand);

 con.commit();

 con.close();

 }

If you change the try block by replacing the con.commit() with con.rollback(), the change will

be rolled back, so no change will be visible. This time, however, no exception is thrown, as you can

see here:

 try {

 Connection con = DriverManager.getConnection(url);

Chapter 6:Inserting, Updating, and Deleting Data

-206 -

 con.setAutoCommit(false);

 Statement stmt = con.createStatement();

 stmt.execute(SQLCommand);

 //con.commit();

 con.rollback();

 con.close();

 }

You can check to see if the UPDATE has been executed by inserting a SELECT statement to read the

updated value of the Street field after the update command is executed but before it is rolled back. The

try block now looks like this:

 try {

 Connection con = DriverManager.getConnection(url);

 con.setAutoCommit(false);

 Statement stmt = con.createStatement();

 stmt.execute(SQLCommand);

 String query = "SELECT Street FROM Contact_Info "+

 "WHERE First_Name = 'Michael' AND Last_Name ='Corleone';";

 ResultSet rs = stmt.executeQuery(query);

 rs.next();

 System.out.println("Street = "+rs.getString(1));

 con.rollback();

 con.close();

 }

When you run this version, it shows that the new value of Street matches the update, but when you

look in the database, the previous value is still there because the change has been rolled back.

Cross-Reference

RecordSets and the SELECT are discussed in detail in Chapter 7.

The DELETE Statement

The last data-manipulation command is DELETE, which is used for deleting entire records or groups of

records. Again, when using the DELETE command, you use a WHERE clause to identify the records to

be deleted.

Chapter 6:Inserting, Updating, and Deleting Data

-207-

Use of the DELETE command is very straightforward. For example, this is the command you use to

delete records containing the First_Name: "Michael" and the Last_Name: "Corleone":

DELETE FROM Contact_Info

WHERE First_Name = 'Michael' AND Last_Name = 'Corleone';

Caution

INSERT, DELETE, and UPDATE can cause referential integrity problems with other

tables, as well as significant problems within the table you are working on. Delete with

care.

A Swing-Based Table Editor

To illustrate the topics covered in this chapter, the Swing-based table builder created in Chapter 5 is

extended by the addition of a table editor (see Figure 6-1). The table editor is based on components

derived from components built in Chapter 5. A new Edit menu (with Insert, Update, Delete,
JMenuItems) and a new JTable in a JInternalFrame (for handling the Insert, Edit, and Delete

functions) are also added.

Figure 6-1: Inserting data with SQL INSERT

The events are as follows:

1. The user selects a database.

2. The user selects an action: Insert, Update, or Delete.

3. The user selects the table.

4. A TableEdit frame is displayed for user interaction.

5. A SQL command is created dynamically and executed on command.

The first step in building the table editor is to create the Edit menu by subclassing the DBMenu

convenience class. The DBMenuItems Insert, Update, and Delete to the Edit menu are added and

hooked into the Jframe, which forms the basis of the MainFrame class.

Listing 6-4: Edit menu with insert, update, and delete items

Chapter 6:Inserting, Updating, and Deleting Data

-208-

package jdbc_bible.part2;

import java.awt.*;

import java.awt.event.*;

import java.util.Vector;

import javax.swing.*;

import javax.swing.event.*;

public class EditMenu extends DBMenu{

 JMenuItem insertItem;

 JMenuItem updateItem;

 JMenuItem deleteItem;

 JMenuItem exitItem;

 public EditMenu(){

 setText("Edit");

 setActionCommand("Edit");

 setMnemonic((int)'E');

 insertItem = new DBMenuItem("Insert",'I',itemListener,false);

 updateItem = new DBMenuItem("Update",'U',itemListener,false);

 deleteItem = new DBMenuItem("Delete",'D',itemListener,false);

 add(insertItem);

 add(updateItem);

 add(deleteItem);

 }

}

As discussed in Chapter 5, the DBMenu base class and the DBMenuItem class are simply

convenience classes for building menus. Using these convenience classes simplifies the menu code

considerably.

TableEditFrame

TableEditFrame, shown in Listing 6-5, is very similar to the TableBuilderFrame discussed in

Chapter 5. It extends JInternalFrame and contains a JTable used to set up the fields for the

Chapter 6:Inserting, Updating, and Deleting Data

-209 -

database table. It also contains a JTextArea, which provides a preview of the generated SQL

command, and an "Insert Data" button.

Listing 6-5: TableEditFrame

package jdbc_bible.part2;

import java.awt.*;

import java.awt.event.*;

import java.util.EventObject;

import java.util.EventListener;

import java.util.Vector;

import javax.swing.*;

import javax.swing.event.*;

import javax.swing.table.*;

/**

* TableEditFrame extends JInternalFrame to create a display which builds

* SQL CREATE statements

* <p/>

* TableBuilder, which extends JTable, is a key component.

*/

class TableEditFrame extends JInternalFrame{

 protected JTable table;

 protected JTextArea SQLPane = new JTextArea();

 protected JButton insertButton = new JButton("Insert Data");

 protected DatabaseUtilities dbUtils;

 protected String tableName = null;

 protected String colNames[] = null;

 protected String dataTypes[] = null;

 protected String SQLCommand[] = null;

 protected String SQLCommandRoot = "";

TE
AM
FL
Y

Team-Fly®

Chapter 6:Inserting, Updating, and Deleting Data

-210-

 public TableEditFrame(String tableName, DatabaseUtilities dbUtils){

 setSize(600,400);

 setLocation(10,10);

 setClosable(true);

 setMaximizable(true);

 setIconifiable(true);

 setResizable(true);

 getContentPane().setLayout(new BorderLayout());

 this.tableName=tableName;

 this.dbUtils=dbUtils;

 SQLCommandRoot = "INSERT INTO "+tableName+" VALUES ";

 setTitle(SQLCommandRoot);

 init();

 setVisible(true);

 }

 // initialise the JInternalFrame

 private void init(){

 colNames = dbUtils.getColumnNames(tableName);

 dataTypes = dbUtils.getDataTypes(tableName);

 table = createTable(colNames,15);

 TableChangeListener modelListener = new TableChangeListener();

 table.getModel().addTableModelListener(modelListener);

 JScrollPane sqlScroller = new JScrollPane(SQLPane);

 JScrollPane tableScroller = new JScrollPane(table);

 JSplitPane splitter = new JSplitPane(JSplitPane.VERTICAL_SPLIT,

 sqlScroller,tableScroller);

 splitter.setDividerLocation(100);

 getContentPane().add(splitter,BorderLayout.CENTER);

 getContentPane().add(insertButton,BorderLayout.SOUTH);

 insertButton.addActionListener(new ButtonListener());

 }

Chapter 6:Inserting, Updating, and Deleting Data

-211-

 protected JTable createTable(String[] colNames,int nRows){

 String[][] rowData = new String[nRows][colNames.length];

 for(int i=0;i<nRows;i++){

 for(int j=0;j<colNames.length;j++)rowData[i][j]="";

 }

 JTable table = new JTable(rowData,colNames);

 return table;

 }

 public Vector parseTable(){

 int rows = table.getRowCount();

 int cols = table.getColumnCount();

 Vector tableValues = new Vector();

 if(rows>=0&&cols>=0){

 for(int i=0;i<rows;i++){

 String rowData = "";

 for(int j=0;j<cols;j++){

 String field = (String)table.getValueAt(i,j);

 if(field.length()>0){

 field = fixApostrophes(field);

 if(j>0)rowData += ", ";

 if(dataTypes[j].equals("CHAR")||

 dataTypes[j].equals("VARCHAR"))

 rowData += "'"+field+"'";

 else

 rowData += field;

 }

 }

 if(rowData.length()==0)break;

 tableValues.addElement(" (" + rowData + ");\n");

 }

 }

Chapter 6:Inserting, Updating, and Deleting Data

-212-

 return tableValues;

 }

 private String fixApostrophes(String in){

 int n=0;

 while((n=in.indexOf("'",n))>=0){

 in = in.substring(0,n)+"'"+in.substring(n);

 n+=2;

 }

 return in;

 }

 // Listener for the Insert Button

 class ButtonListener implements ActionListener{

 public void actionPerformed(ActionEvent event){

 dbUtils.execute(SQLCommand);

 }

 }

 // Listener for Edit events on the JTable

 class TableChangeListener implements TableModelListener{

 public TableChangeListener(){

 }

 public void tableChanged(TableModelEvent event){

 Vector rowData = parseTable();

 SQLCommand = new String[rowData.size()];

 SQLPane.setText("");

 for(int i=0;i<rowData.size();i++){

 if(rowData.elementAt(i)==null)break;

 SQLCommand[i] = SQLCommandRoot+(String)rowData.elementAt(i);

 SQLPane.append(SQLCommand[i]);

 }

 }

 }

Chapter 6:Inserting, Updating, and Deleting Data

-213-

}

The parseTable() method has been modified slightly and now returns a vector of Strings. This

change supports the ability to issue several SQL INSERT commands as a result of a one-button click.

An additional change has been made to the TableChangeListener, which now accesses the

DatabaseUtilities class directly rather than through the event system. Again, this has been done

to support the ability to issue several SQL commands in response to a button click.

The Controller Class

The DatabaseManager class is shown in Listing 6-6. It is based on the class used in Chapter 5. It

incorporates additional code to hook in the new menu and a new method,

displayTableEditFrame(), to display the new JInternalFrame, TableEditFrame.

Listing 6-6: DatabaseManager — Controller class

package jdbc_bible.part2;

import java.awt.*;

import java.awt.event.*;

import java.util.Vector;

import javax.swing.*;

import javax.swing.event.*;

public class DBManager extends JFrame{

 JMenuBar menuBar = new JMenuBar();

 JDesktopPane desktop = new JDesktopPane();

 String database = null;

 String tableName = null;

 String menuSelection = null;

 TableBuilderFrame tableMaker = null;

 TableEditFrame tableEditor = null; // added for Chapter 6

 DatabaseUtilities dbUtils = null;

 TableMenu tableMenu = new TableMenu();

 EditMenu editMenu = new EditMenu(); // added for Chapter 6

Chapter 6:Inserting, Updating, and Deleting Data

-214-

 MenuListener menuListener = new MenuListener();

 public DBManager(){

 setJMenuBar(menuBar);

 setTitle("JDBC Database Bible");

 getContentPane().setLayout(new BorderLayout());

 getContentPane().add(desktop,BorderLayout.CENTER);

 setSize(new Dimension(640,480));

 menuBar.add(tableMenu);

 tableMenu.setMenuListener(menuListener);

 menuBar.add(editMenu); // added for Chapter 6

 editMenu.setMenuListener(menuListener);

 setVisible(true);

 }

 private void displayTableBuilderFrame(){

 tableName = JOptionPane.showInputDialog(this,"Table:",

 "Select table",JOptionPane.QUESTION_MESSAGE);

 tableMaker = new TableBuilderFrame(tableName);

 tableMaker.setCommandListener(new CommandListener());

 desktop.add(tableMaker);

 tableMaker.setVisible(true);

 }

 private void displayTableEditFrame(){ // added for Chapter 6

 tableName = JOptionPane.showInputDialog(this,"Table:",

 "Select table",JOptionPane.QUESTION_MESSAGE);

 tableEditor = new TableEditFrame(tableName,dbUtils);

 desktop.add(tableEditor);

 tableEditor.setVisible(true);

 }

Chapter 6:Inserting, Updating, and Deleting Data

-215-

 private void selectDatabase(){

 database = JOptionPane.showInputDialog(this,

 "Database:","Select database",

 JOptionPane.QUESTION_MESSAGE);

 dbUtils = new DatabaseUtilities();

 dbUtils.setExceptionListener(new ExceptionListener());

 tableMenu.enableMenuItem("New Table",true);

 tableMenu.enableMenuItem("Drop Table",true);

 editMenu.enableMenuItem("Insert",true);

 editMenu.enableMenuItem("Update",true);

 editMenu.enableMenuItem("Delete",true);

 }

 private void executeSQLCommand(String SQLCommand){

 dbUtils.execute(SQLCommand);

 }

 private void dropTable(){

 tableName = JOptionPane.showInputDialog(this,"Table:",

 "Select table",JOptionPane.QUESTION_MESSAGE);

 int option = JOptionPane.showConfirmDialog(null,

 "Dropping table "+tableName,

 "Database "+database,

 JOptionPane.OK_CANCEL_OPTION);

 if(option==0){

 executeSQLCommand("DROP TABLE "+tableName);

 }

 }

 class MenuListener implements ActionListener{

 public void actionPerformed(ActionEvent event){

Chapter 6:Inserting, Updating, and Deleting Data

-216-

 String menuSelection = event.getActionCommand();

 if(menuSelection.equals("Database")){

 selectDatabase();

 }else if(menuSelection.equals("New Table")){

 displayTableBuilderFrame();

 }else if(menuSelection.equals("Drop Table")){

 dropTable();

 }else if(menuSelection.equals("Insert")){

 displayTableEditFrame();

 }else if(menuSelection.equals("Exit")){

 System.exit(0);

 }

 }

 }

 class ExceptionListener implements ActionListener{

 public void actionPerformed(ActionEvent event){

 String exception = event.getActionCommand();

 JOptionPane.showMessageDialog(null, exception,

 "SQL Error", JOptionPane.ERROR_MESSAGE);

 }

 }

 class CommandListener implements ActionListener{

 public void actionPerformed(ActionEvent event){

 String SQLCommand = event.getActionCommand();

 executeSQLCommand(SQLCommand);

 }

 }

 public static void main(String args[]){

 DBManager dbm = new DBManager();

 }

}

Chapter 6:Inserting, Updating, and Deleting Data

-217 -

One of the most useful tools provided by JDBC is the capability to retrieve information about the data

returned in a ResultSet. This information is obtained using the JDBC ResultSetMetaData object

reviewed in the next section.

JDBC ResultSetMetaData

In addition, two methods have been added that use the ResultSetMetaData class to get information

about the table being edited. The two MetaData objects that follow are capable of returning the table

information required:

§ DatabaseMetaData, which returns information at the database level

§ ResultSetMetaData, which returns information at the ResultSet level

The reason for using the ResultSetMetaData object in this example is to restrict the column

information to just the columns being displayed and to defer discussion of the DatabaseMetaData

object until ResultSets have been discussed, since it makes heavy use of ResultSets to return

information.

JDBC ResultSetMetaData provides access to different kinds of information about the data in a

table, including column names and data types. Some of the most useful ResultSet MetaData
methods are the following:

§ int getColumnCount()

§ String getColumnName(int column)

§ String getColumnTypeName(int column)

The following usage is very straightforward. To get the names of all columns in a table, for example, a

simple query is executed to return a ResultSet used to get the ResultSetMetaData. This is then

queried for the desired information.

 String SQLCommand = "SELECT * FROM "+tableName+";";

 try {

 Connection con = DriverManager.getConnection(url);

 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery(SQLCommand);

 ResultSetMetaData md = rs.getMetaData();

 String[] columnNames = new String[md.getColumnCount()];

 for(int i=0;i<columnNames.length;i++){

 columnNames[i] = md.getColumnLabel(i+1);

 }

 con.close();

 }

Chapter 6:Inserting, Updating, and Deleting Data

-218-

Cross-Reference

ResultSetMetaData methods and usage are discussed in Chapter 4;

usage examples are in Chapter 10.

In the expanded version of the DatabaseUtilities class shown in Listing 6-7, a second version of

the execute() method has been added. This new version accepts a String array argument so that it

can loop through a number of SQL INSERT commands.

Listing 6-7: DatabaseUtilities — JDBC code

package jdbc_bible.part2;

import java.awt.event.*;

import java.sql.*;

import java.util.Vector;

import sun.jdbc.odbc.JdbcOdbcDriver;

public class DatabaseUtilities{

 static String jdbcDriver = "sun.jdbc.odbc.JdbcOdbcDriver";

 static String dbName = "Contacts";

 static String urlRoot = "jdbc:odbc:";

 private ActionListener exceptionListener = null;

 public DatabaseUtilities(){

 registerDriver();

 }

 public void setDatabaseName(String dbName){

 this.dbName=dbName;

 }

 public void registerDriver(){

 try {

 Class.forName(jdbcDriver);

 DriverManager.registerDriver(new JdbcOdbcDriver());

 }

 catch(ClassNotFoundException e){

 reportException(e.getMessage());

 }

Chapter 6:Inserting, Updating, and Deleting Data

-219-

 catch(SQLException e){

 reportException(e.getMessage());

 }

 }

 public void execute(String SQLCommand){

 String url = urlRoot+dbName;

 try {

 Connection con = DriverManager.getConnection(url);

 Statement stmt = con.createStatement();

 stmt.execute(SQLCommand);

 con.close();

 }

 catch(SQLException e){

 reportException(e.getMessage());

 }

 }

 public void execute(String[] SQLCommand){

 String url = urlRoot+dbName;

 try {

 Connection con = DriverManager.getConnection(url);

 Statement stmt = con.createStatement();

 for(int i=0;i<SQLCommand.length;i++){

 stmt.execute(SQLCommand[i]);

 }

 con.close();

 }

 catch(SQLException e){

 reportException(e.getMessage());

 }

 }

 public String[] getColumnNames(String tableName){

 Vector dataSet = new Vector();

 String[] columnNames = null;

 String url = urlRoot+dbName;

TE
AM
FL
Y

Team-Fly®

Chapter 6:Inserting, Updating, and Deleting Data

-220-

 String SQLCommand = "SELECT * FROM "+tableName+";";

 try {

 Connection con = DriverManager.getConnection(url);

 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery(SQLCommand);

 ResultSetMetaData md = rs.getMetaData();

 columnNames = new String[md.getColumnCount()];

 for(int i=0;i<columnNames.length;i++){

 columnNames[i] = md.getColumnLabel(i+1);

 }

 con.close();

 }

 catch(SQLException e){

 reportException(e.getMessage());

 }

 return columnNames;

 }

 public String[] getDataTypes(String tableName){

 Vector dataSet = new Vector();

 String[] dataTypes = null;

 String url = urlRoot+dbName;

 String SQLCommand = "SELECT * FROM "+tableName+";";

 try {

 Connection con = DriverManager.getConnection(url);

 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery(SQLCommand);

 ResultSetMetaData md = rs.getMetaData();

 dataTypes = new String[md.getColumnCount()];

 for(int i=0;i<dataTypes.length;i++){

 dataTypes[i] = md.getColumnTypeName(i+1);

Chapter 6:Inserting, Updating, and Deleting Data

-221 -

 }

 con.close();

 }

 catch(SQLException e){

 reportException(e.getMessage());

 }

 return dataTypes;

 }

 public void setExceptionListener(ActionListener exceptionListener){

 this.exceptionListener=exceptionListener;

 }

 private void reportException(String exception){

 if(exceptionListener!=null){

 ActionEvent evt = new ActionEvent(this,0,exception);

 exceptionListener.actionPerformed(evt);

 }else{

 System.err.println(exception);

 }

 }

}

Summary

In this chapter, you learned about:

§ Using SQL INSERT to populate a table

§ Using SQL UPDATE to modify the contents of a table

§ Using SQL DELETE to delete records from a table

§ Using the SELECT clause and how to use it with INSERT

§ Using the WHERE clause and how to use it with UPDATE and DELETE

§ Applying the basics of transaction control with COMMIT and ROLLBACK

§ Using JDBC ResultSetMetaData to get information about a table

§ Using JDBC and Swing to create a JDBC/SQL table editor

Chapter 7 discusses retrieving data from a database by using the SELECT command.

Chapter 7:Retrieving Data with SQL Queries

-222-

Chapter 7: Retrieving Data withSQL Queries

In This Chapter

One of the most important functions of any database application is finding the records in the database

tables and returning them in the desired form. The process of finding and returning formatted records

is known as querying the database. This chapter will explore the use of the SQL SELECT command to

query the database created and populated in Chapters 5 and 6.

The SELECT Statement

The SELECT statement is the heart of a SQL query. In addition to its use in returning data in a query, it

can be used in combination with other SQL commands to select data for a variety of other operations,

such as modifying specific records using the UPDATE command.

The most common use of SELECT, however, is as the basis of data-retrieval commands, or queries, to

the database. A simple query specifies the names of the columns to be returned and the name of the

table they can be found in. A basic SELECT command looks like this:

SELECT columnName1, columnName2,.. FROM tableName;

The SQL command for selecting the First Name and Last Name of each entry in the Contact_Info table

would be as follows:

SELECT First_Name, Last_Name FROM Contact_Info;

In addition to this specific form, where the names of all the fields you want returned are specified in the

query, SQL also supports the following wild-card form:

SELECT * FROM tableName;

The wild card, *, tells the database-management system to return the values for all columns.

Using the WHERE Clause

The real power of the SELECT command comes from the WHERE clause, which allows you to query the

database for specific data. You will have noticed that each of the commands shown above returns

values for all rows. A practical query needs to be more restrictive, returning the requested fields from

only those records that match specific criteria. For example, the WHERE clause enables you to retrieve

all records with a Last_Name Corleone from the Contact_Info table shown in Table 7-1.

Table 7-1: The CONTACT_INFO Table

FIRST_NAME MI LAST_NAME STREET CITY STATE ZIP

Michael A Corleone 123 Pine New York NY 10006

Fredo X Corleone 17 Main New York NY 10007

Sonny A Corleone 123 Walnut Newark NJ 12346

Chapter 7:Retrieving Data with SQL Queries

-223-

Table 7-1: The CONTACT_INFO Table

FIRST_NAME MI LAST_NAME STREET CITY STATE ZIP

Francis X Corleone 17 Main New York NY 10005

Vito G Corleone 23 Oak St Newark NJ 12345

Tom B Hagen 37 Chestnut Newark NJ 12345

Kay K Adams 109 Maple Newark NJ 12345

Francis F Coppola 123 Sunset Hollywood CA 23456

Mario S Puzo 124 Vine Hollywood CA 23456

To retrieve all records containing the last name Corleone, you could use the following query:

SELECT * FROM Contact_Info WHERE Last_Name = 'Corleone';

The result of this query will be to return all columns from any row containing the Last_Name Corleone.

The order in which the columns are returned will be the order in which they are stored in the database,

although the row order is arbitrary.

Note

Unlike rows in a spreadsheet, records in a database table have no implicit order. You

must specify explicitly any ordering you need.

To retrieve columns in a specific order, the column names must be specified in the query. For example,

to get the data in First_Name, Last_Name order, use the following query:

SELECT First_Name, Last_Name FROM Contact_Info WHERE Last_Name =

'Corleone';

To get the order reversed, use the following query:

SELECT Last_Name, First_Name FROM Contact_Info WHERE Last_Name =

'Corleone';

Formatting SQL Commands

The SQL engine ignores excess white space, so you can and should insert line breaks for clarity.

Conventionally, major clauses such as the FROM clause and the WHERE clause are placed on their own

lines, unless the command is so brief as to be trivial. For example, many Relational Database

Management Systems (RDBMS) such as SQL Server, format commands in the SQL pane

automatically to conform to this style. A good basic approach when you are not quite sure how to

format a command is to aim for readability. Remember, somebody will have to maintain what you write,

so readability is important.

Key words, table names, and column names are not case sensitive, but the contents of the records

within a table are case sensitive. This means that with a little thought, you can use case to help make

your SQL statements more readable.

Chapter 7:Retrieving Data with SQL Queries

-224-

Caution

Although SQL ignores case in commands, table names, column names, and so on,

case can matter when you are using a name in a WHERE clause. Thus, 'Corleone' and

'CORLEONE' are not necessarily the same. You should read the documentation for

your particular DBMS.

While the simple SELECT statements discussed so far in this chapter give you an idea of what can be

done in a SQL query, you are likely to need to use more complex queries in practice. The next section

discusses creating more complex queries.

Using Operators in More Complex WHERE Clauses

The queries discussed so far have been very simple, but in practice you will frequently be using

queries that depend on the values of a number of fields in various combinations. SQL provides a

number of operators that enable you to create more complex queries based on value comparisons.

In practice, many queries will require the evaluation of more than a single condition or test. In such

cases operators are used in the WHERE clause to specify a combination of conditions which must be

evaluated. SQL has the following types of operators:

§ DISTINCT

§ TOP

§ Comparison operators

§ Character comparison

§ Logical

§ Arithmetic

§ IN and BETWEEN

§ Set operators

Note

There is also a keyword ALL, as in SELECT ALL, but since ALL is implied unless

DISTINCT is used, the expression SELECT ALL is rarely, if ever, used in practice.

The DISTINCT Operator

A basic SELECT statement tells the database-management system to return all records matching the

query in the ResultSet. For example, you could request all Last_Names from Contact_Info using this

query:

SELECT Last_Name

FROM Contact_Info;

Using the data shown in Table 7-1 would give you Corleone repeated five times.

The DISTINCT operator tells the database-management system not to return duplicate records in a

ResultSet. For example, to return all Last_Names from the Contact_Info table with no duplicates,

you would use this query:

SELECT DISTINCT Last_Name

FROM Contact_Info;

Chapter 7:Retrieving Data with SQL Queries

-225-

When this operator is applied to the results, you would only see the Last_Name Corleone once,

despite the fact that there are several different Corleones in the table.

Note

The DISTINCT operator is very resource intensive, so you might want to consider

filtering duplicates when iterating over the ResultSet.

The TOP Operator

The TOP operator specifies that only the first n rows are to be output from the query result set, or,

optionally, the top n percent of the rows. When specified with PERCENT, n must be an integer between

0 and 100, as shown in the following code:

SELECT TOP 25 PERCENT *

FROM Inventory;

The result set from running this query against a table containing 12 rows is shown in Table7-2.

Table 7-2: ResultSet Containing the TOP 25 Percent of the Table

ID Name Description Qty Cost

1001 Corn Flakes Cereal 130 1.95

1002 Rice Krispies Cereal 97 1.87

1003 Shredded Wheat Cereal 103 2.05

If the query includes an ORDER BY clause, the first n rows (or n percent of rows) ordered by the ORDER
BY clause are output. If the query has no ORDER BY clause, the order of the rows is arbitrary.

Cross-Reference

The ORDER BY clause is discussd in Chapter 8.

Comparison Operators

SQL supports the following standard comparison operators, as well as a special operator used to test

for a NULL value in a column:

§ Equality (=)

§ Inequality (<>)

§ Greater than (>) and greater than or equal to (>=)

§ Less than (<) and less than or equal to (<=)

§ IS NULL

§ IS NOT NULL

Using the equals and not equals operators

Comparison operators work on strings as well as on numbers. Thus, to find all records in the

Contact_Info database with a Last_Name of Corleone, you would use an equals (=) query like the

following:

SELECT * FROM Contact_Info WHERE Last_Name = 'Corleone';

Chapter 7:Retrieving Data with SQL Queries

-226-

Conversely, to find all records in the Contact_Info database with any other Last_Name, you would use

a not equals (<>) query like this:

SELECT * FROM Contact_Info WHERE Last_Name <> 'Corleone';

Using the greater than and less than operators

The greater than (>) and less than (<) operators can also be used for lexical comparison of CHAR and

VARCHAR values, so to find all records in the Contact_Info database with a Last_Name that comes

after Corleone alphabetically, you would use a query like this:

SELECT * FROM Contact_Info WHERE Last_Name > 'Corleone';

Similarly, you can combine the greater than and equals operators to find all records in the Contact_Info

database with a last name including or after Corleone in the alphabet. Here's an example:

SELECT * FROM Contact_Info WHERE Last_Name >= 'Corleone';

Using the IS NULL Operator

As mentioned in Chapters 5 and 6, in the discussions about creating and populating database tables,

the value in a field can sometimes be NULL, indicating that there is nothing in the field. It is important to

understand that this really does mean nothing, rather than, for example, a value of zero in the case of a

numeric field, or white space in the case of a CHAR or VARCHAR field.

Since the NULL represents an absence of data, it can't be evaluated using Greater Than, Equals, or

Less Than. SQL provides a special IS NULL operator to test for NULL. If, for example, you added a

column to the Contact_Info table for Cell Phone numbers, leaving it NULL when you don't have a

contact's cell phone number, you could query the table for contacts without cell phones using this

code:

SELECT * FROM Contact_Info WHERE Cell_Phone IS NULL;

Using the IS NOT NULL operator

Another common requirement is to find records where a specific field is IS NOT NULL. For example, to

query the Contact_Info table for contacts with cell phones you could use this code:

SELECT * FROM Contact_Info WHERE Cell_Phone IS NOT NULL;

Note

You can't test for NULL using equality (=) or inequality (<>) operators, since, by

definition, there is nothing in the field.

CHAR and VARCHAR Operators

In addition to letting you use the comparison operators to work with strings, SQL adds these dedicated

string operators for use with CHAR and VARCHAR variables:

§ LIKE

§ NOT LIKE

§ String concatenation

Chapter 7:Retrieving Data with SQL Queries

-227-

Using the LIKE and NOT LIKE operators

The LIKE operator — and its negation, the NOT LIKE operator — combined with the wild card provide

a very powerful tool for string comparison. The wild cards are as follows:

§ Underscore (_), the single character wild card

§ Percent (%), the multi-character wild card

For example, to find all records in the Contact_Info table with last name starting with "C," you would

write a query using LIKE as follows:

SELECT * FROM Contact_Info WHERE Last_Name LIKE 'C%';

Similarly, to find all records where the Last_Name contains the letter "o" in the second position, the

query would look like this:

SELECT * FROM Contact_Info WHERE Last_Name LIKE '_o%';

NOT LIKE works in very much the same way as LIKE. For example, to find all records in the

Contact_Info table with last name NOT starting with the letter "C," you would write a query using NOT
LIKE as follows:

SELECT * FROM Contact_Info WHERE Last_Name NOT LIKE 'C%';

Using the concatenation operator

The concatenation operator is used to concatenate two strings. It is represented by the symbol, +, in

SQL, Access, and Sybase; Oracle accepts || as the concatenation operator. For example, to return the

last name followed by the first name separated by commas, you would use the following query:

SELECT Last_Name + ', ' + First_Name AS NAME FROM Contact_Info;

Caution

The concatenation operator is one of the SQL features that varies from one flavor of

SQL to another (as mentioned above). It is frequently worth checking the

documentation for the version of SQL you are using when you encounter problems.

Logical Operators

SQL provides several logical operators to combine two or more conditions in the WHERE clause of a

SQL statement. These logical operators are as follows:
§ AND

§ OR

§ NOT

Using the AND operator

The AND operator is used to combine two or more comparisons, all of which must evaluate to TRUE for

the comparison to be valid. If any of the expressions are false, AND returns FALSE. For example, to

find all records in the Contact_Info table with a Last_Name of Corleone who live in New York, you

would use this query:

SELECT * FROM Contact_Info WHERE Last_Name = 'Corleone' AND City = 'New York';

Chapter 7:Retrieving Data with SQL Queries

-228-

Using the OR operator

The OR operator is used to combine two or more comparisons, any one of which can evaluate to TRUE

for the comparison to be valid. For example, to find all records in the Contact_Info table who live in

New York City or in New Jersey, you would use this query:

SELECT * FROM Contact_Info WHERE City = 'New York' OR State = 'NJ';

Combining logical operators using parentheses

Like arithmetic operators, logical operators can be combined using parentheses (()). For example, to

find all to find all records in the Contact_Info table with a last name of Corleone who live in New York

City or in New Jersey, you would use this query:

SELECT * FROM Contact_Info

WHERE Last_Name = 'Corleone' AND (City = 'New York' OR State = 'NJ');

Using the NOT operator

The NOT operator is used to reverse the result of a comparison. If the condition it applies to evaluates

to TRUE, using the NOT operator makes it FALSE. Conversely, if the condition after the NOT is FALSE, it

becomes TRUE when you use the NOT operator. For example, to find all to find all records in the

Contact_Info table with a last name of Corleone who do not live in New York City or in New Jersey, you

would use this query:

SELECT * FROM Contact_Info

WHERE Last_Name = 'Corleone' AND NOT (City = 'New York' OR State = 'NJ');

Arithmetic Operators

SQL supports the common arithmetic operators for addition (+), subtraction (-), multiplication (*), and

division (/). In addition, SQL supports the modulo operator (%), which returns the remainder from the

division of one integer by another.

Note

The modulo operator only works with integers. Dividing a float by a valid divisor always

gives a float, and thus, no remainder.

Table 7-3 shows a very simple inventory. This inventory will be used in discussing how to work with

arithmetic operators.

Table 7-3: Inventory

ID Name Description Qty Cost

1001 Corn Flakes Cereal 130 1.95

1002 Rice Krispies Cereal 97 1.87

1003 Shredded Wheat Cereal 103 2.05

1004 Oatmeal Cereal 15 0.98

Chapter 7:Retrieving Data with SQL Queries

-229-

Table 7-3: Inventory

ID Name Description Qty Cost

1005 Chocolate Chip Cookies 217 1.26

1006 Fig Bar Cookies 162 1.57

1007 Sugar Cookies Cookies 276 1.03

1008 Cola Soda 144 0.61

1009 Lemon Soda Soda 96 0.57

1010 Orange Soda Soda 84 0.71

The first, and most obvious use of arithmetic operators is in the WHERE clause. The following example

uses the LESS THAN operator to identify items that are running low:

SELECT *

FROM INVENTORY

WHERE Qty < 24;

The preceding query will return the following result:

ID Name Description Qty Cost

1004 Oatmeal Cereal 15 0.98

Creating calculated result fields

Another very useful application of arithmetic operators is to create a calculated result field as part of

the results returned from a query. For example, you can calculate a retail price by marking up a cost as

follows:

SELECT ID,Name,Description,Cost,Cost*1.6 AS Retail

FROM Inventory;

This query returns the additional column (or field) "Retail," as shown in Table 7-4.

Table 7-4: Calculated Result Fields

ID Name Description Cost Retail

1001 Corn Flakes Cereal 1.95 3.12

1002 Rice Krispies Cereal 1.87 2.992

1003 Shredded Wheat Cereal 2.05 3.28

1004 Oatmeal Cereal 0.98 1.568

1005 Chocolate Chip Cookies 1.26 2.016

TE
AM
FL
Y

Team-Fly®

Chapter 7:Retrieving Data with SQL Queries

-230-

Table 7-4: Calculated Result Fields

ID Name Description Cost Retail

1006 Fig Bar Cookies 1.57 2.512

1007 Sugar Cookies Cookies 1.03 1.648

1008 Cola Soda 0.61 0.976

1009 Lemon Soda 0.57 0.912

1010 Orange Soda 0.71 1.136

Aliases

In the preceding example, the expression command uses the key word AS. Using the optional AS

clause enables you to assign a meaningful name, or alias, to an expression, which makes it easier to

refer back to the expression later on. An alias can be used as a normal column name when you need

to refer to the column elsewhere in a statement, as you will see in examples later in the book. In this

example, AS assigned the name (alias) "Retail" to the calculated value column.

When assigning and using an alias, you must bear in mind the order in which SQL processes the

various clauses constituting the command, since the output of one clause is the input to the next one.

The order in which the subclauses of a SQL command are processed is shown in the following list:

§ FROM clause

§ WHERE clause

§ GROUP BY clause

§ HAVING clause

§ SELECT clause

§ ORDER BY clause

Since you used AS to assign an alias in the SELECT clause, you can't use the alias as part of the

predicate in a WHERE clause, since the WHERE clause has already been executed by the time you get to

the SELECT. The alias can, however, be used in an ORDER BY, if, for example, you wanted to order the

inventory table by Retail, as shown here:

SELECT ID,Name,Description,Cost,Cost*1.6 AS Retail

FROM Inventory ORDER BY Retail;

Tip

When you create a calculated field in a result, you should always use AS to assign a name

to the field. This is because there is no defined naming convention for calculated fields in

SQL. Different variants of SQL assign different arbitrary names.

Arithmetic operators can also be used in the WHERE clause. For example, to list only items whose retail

price is below 100, you would use the following code:

SELECT Name,Description,Cost,Cost*1.6 AS Retail

FROM Inventory

Chapter 7:Retrieving Data with SQL Queries

-231-

WHERE Cost * 1.6 < 100;

You can also create more complex calculations as required. The following query will return the profit on

each item as well as the retail price:

SELECT Name,Description,Cost,Cost*1.6 as Retail,Cost*1.6 - Cost AS Profit

FROM Inventory

WHERE Cost * 1.6 < 100;

The preceding code will generate the results in Table 7-5.

Table 7-5: More Complex Calculated Columns

Name Description Cost Retail Profit

Cola Soda 0.61 0.976 0.366

Lemon Soda 0.57 0.912 0.342

Miscellaneous Operators: IN and BETWEEN

The IN operator provides a simple way to compare fields against a list. For example, to find contacts in

New York State or New Jersey, you can use this query:

SELECT *

FROM Contact_Info

WHERE State IN ('NY', 'NJ');

IN also works with numbers. For example, if you wanted to select items from the inventory table by ID,

you could use this query:

SELECT *

FROM Inventory

WHERE ID IN (1001, 1003, 1004);

The BETWEEN operator, as its name suggests, helps you select fields with values that fall between

specified limits. Referring again to the Inventory table (Table 7-3), you can query for items with costs in

the $1.03–$1.95 range using the query. Here's an example:

SELECT *

FROM Inventory

WHERE Cost BETYOUEN 1.03 AND 1.95;

Note

BETWEEN returns values within its defined range inclusive of the limits, so if you try the

query against the Inventory table, it will return rows with costs of 1.03 and 1.95.

Set Operators

Chapter 7:Retrieving Data with SQL Queries

-232-

Set operators allow you to combine ResultSets returned by different queries into a single

ResultSet. These are the main set operators:

§ UNION returns the combined results of two queries.

§ INTERSECT returns only the rows found by both queries.

§ EXCEPT returns the rows from the first query that are not present in the second.

Caution

The INTERSECT and EXCEPT operators are not supported by all SQL dialects.

UNION, together with the variant UNION ALL, works on most SQL versions.

Using UNION and UNION ALL

UNION ALL returns the results of two queries. UNION does the same thing, but it removes duplicate

results. Let's say you wanted to invite all the New York and New Jersey Corleones to a party and

introduce them to Kay Adams. You could use a UNION to combine the two queries into one guest list.

Here's an example:

SELECT *

FROM Contact_Info

WHERE Last_Name = 'Corleone' AND (City = 'New York' OR

 State = 'NJ')

UNION

SELECT *

FROM contact_info

WHERE first_name = 'Kay';

UNION, used by itself, returns the results of the two queries without any repetitions. UNION ALL, on the

other hand, returns the results of the two queries including all repetitions.

Using INTERSECT and EXCEPT

The INTERSECT and EXCEPT operators adhere to the same syntax as the UNION operator. You

should check with the documentation for the DBMS you are using to ensure that these operators are

supported before committing to using one of them.

Escape Sequences

Escape sequences are of valuable use in situations where a character has a particular meaning in

SQL, and you want to use that character in a different way. A typical example is the use of the

apostrophe (').

A problem that arises when handling names is the use of the apostrophe in names of Irish origin. Since

the apostrophe is, in effect, a single quote ('), SQL reads it as a CHAR or VARCHAR terminator and

throws a SQL error when it tries to handle the rest of the string. This problem also arises fairly

frequently in normal free-form text.

Chapter 7:Retrieving Data with SQL Queries

-233-

The solution is simple: you simply double up the apostrophe, as you have seen in the method

fixApostrophes()in earlier chapters. Here's an example:

 String fixApostrophes(String in){

 int n=0;

 while((n=in.indexOf("'",n))>=0){

 in = in.substring(0,n)+"'"+in.substring(n);

 n+=2;

 }

 return in;

 }

This simple fix is worth implementing, as it's very annoying for an Irishman to be told he has spelled his

name incorrectly (as frequently happens to me when logging on to a Web site). It's also quite surprising

how frequently apostrophes appear in normal text (as this paragraph demonstrates).

Two other characters that require escape sequences are:

§ Percent (%)

§ Underscore (_)

These are handled by defining an escape character at the end of the query in which the characters are

used.

The escape character is defined in curly braces ({}) using the keyword escape, as follows:

{escape 'escape-character'}

For example, the following query finds names that begin with an underscore. It uses the backslash

character as an escape character:

SELECT name

FROM variables

WHERE Id LIKE `_%' {escape '\'};

Subqueries

A query is a SQL command that uses the SELECT keyword to return an array of data fields from one or

more tables. A subquery is simply a query that is used as part of another SQL statement. Subqueries

can be nested inside any of the following types of SQL statements:

§ SELECT or SELECT...INTO

§ INSERT...INTO

§ DELETE

§ UPDATE

§ Inside another subquery

Chapter 7:Retrieving Data with SQL Queries

-234-

You can use a subquery in a WHERE or HAVING clause or, in rarer instances, you can use a subquery

instead of an expression in the field list of a SELECT statement.

In a subquery you use a SELECT statement to provide a set of one or more specific values to evaluate

in the WHERE or HAVING clause expression, or to provide the returned values of a SELECT command

directly, as part of the SELECT list.

Subqueries can be used in WHERE or HAVING clauses as the right-hand side of:

§ A comparison using ANY, ALL, or SOME

§ An expression using IN or NOT IN

§ An expression using EXISTS or NOT EXISTS

Using the ANY, SOME, and ALL Predicates

In many cases, a subquery used in a comparison will return more than one value. Because of this, you

need special predicates to operate on the results of the subquery before making the comparison. For

example, if you want to find out which inventory items cost more than cookies, you could use a

subquery like this:

 (SELECT cost FROM inventory

 WHERE Description = 'Cookies');

The result of this subquery will be several rows of cookie costs, so you will need to select which cost

you want to use. The ANY or SOME predicates, which are synonymous, can be used to retrieve records

in the main query that satisfy the comparison with any records retrieved in the subquery. The following

example returns all inventory items with a cost greater than the lowest cost cookies in the Inventory

table:

SELECT * FROM INVENTORY

WHERE cost >= ANY

 (SELECT cost FROM inventory

 WHERE Description = 'Cookies');

The ALL predicate can be used to retrieve only those records in the main query that satisfy the

comparison with all records retrieved in the subquery. If you changed ANY to ALL in the preceding

example, the query would return only those inventory items that cost more than all cookies, as

illustrated in Figure 7-1.

Chapter 7:Retrieving Data with SQL Queries

-235-

Figure 7-1: Subquery using ALL

Note

When creating a subquery, the entire subquery should be enclosed in parentheses.

Using the IN and NOT IN Predicates

The IN predicate is used to retrieve the records in the main query that have a matching record in the

data set returned by the subquery. This usage is similar to the simple SELECT used with an IN list, as

shown here:

SELECT * FROM CUSTOMERS

WHERE STATE IN ('NY','NJ');

In this example, the query returns all Customers where the State field is listed in the parenthesized IN

list, or, in other words, where the State field equals either NY or NJ.

The example shown in Figure 7-2 returns all items from the Inventory table whose item numbers can

be found in the Ordered_Items table, with Order_Number = 2.

Figure 7-2: Subquery using IN

The NOT IN predicate, of course, reverses the selection.

Note

You can only specify one SELECT list item when using the IN predicate, since the list is

returned for comparison with a single item.

Chapter 7:Retrieving Data with SQL Queries

-236-

Using the EXISTS and NOT EXISTS Predicates

The EXISTS and NOT EXISTS predicates are used in true/false comparisons to determine whether the

subquery returns any records. You will use EXISTS in a subquery to find out what kinds of cookies

have been ordered by members of the Corleone family.

The main query shown in Figure 7-3 selects the first and last names of the family member, and the

name of the preferred type of cookie for all instances of a cookie preference returned by executing an

EXISTS subquery on the tables.

Figure 7-3: Subquery using EXISTS

Note

Conventionally, you use an asterisk(*) with the EXISTS predicate because EXISTS only

returns true or false so there is nothing to be gained by being more specific.

As a rule, the main FROM list should only contain tables that are referenced in the main SELECT

statement. In this case, you listed Customers and Inventory in the main SELECT statement and used

their aliases in combination with the Orders and Ordered_Items tables in the subquery.

The EXISTS statement stops the search as soon as it finds a single match. The EXIST statement is

therefore much faster and more efficient than a query that continues to check for additional rows that

match.

Cross-Reference

You can also use table name aliases in a subquery to refer to tables listed in

a FROM clause outside the subquery, as in the example in Figure 7-3. This

capability, known as a correlated subquery, is discussed later in this chapter

Nesting Subqueries

Just as you can use a subquery within a query, you can also use a subquery within another subquery.

Subqueries can be nested as deeply as your implementation of SQL allows. The syntax for nesting

subqueries looks like this:

SELECT *

FROM Tables

Chapter 7:Retrieving Data with SQL Queries

-237-

WHERE

 (SUBQUERY

 (SUBQUERY

 (SUBQUERY)));

For example, to send out special notices to customers who spend more than the average amount of

money, you could build a customer list by creating a query using two nested subqueries, as shown in

Figure 7-4.

Figure 7-4: Using nested subqueries

Testing Subqueries

Recall that one of the nice things about subqueries is that they are easy to test as queries before

plugging them into larger queries. For example, the subquery that calculates the average cost of a

purchase is very straightforward. Here's an example:

(SELECT AVG(oi.Qty * i.Cost)

FROM Ordered_Items oi, Inventory i

WHERE oi.Item_Number = i.Item_Number)

In Figure 7-5 you see the two subqueries combined to generate a list of all purchases above the

average cost. Note that the additional columns oi.Order_Number and oi.Qty * i.Cost AS 'Total' have

been added to make it easier to check the queries.

Chapter 7:Retrieving Data with SQL Queries

-238-

Figure 7-5: Subquery to find above average purchases

The next section discusses a number of additional ways in which subqueries can be used.

Additional Uses of Subqueries

Earlier examples discussed how you can use calculated values, or even literals, in place of simple data

field values in the SELECT clause of a query, as in the following example:

SELECT 'Average Cost' AS Name, AVG(oi.Qty * i.Cost)

 AS 'AVG'

FROM Ordered_Items oi, Inventory i

WHERE oi.Item_Number = i.Item_Number;

This query returns the following result:

Name AVG

Average Cost 3.7045

Using a Subquery in the SELECT List

You can also use results returned by subqueries in the SELECT list of a query. This can be useful if you

want to create a summary table of items by category, as might be the case with the Inventory table. If,

for example, you wanted to tabulate the average cost of various types of products in the inventory, you

could use a query with subqueries in the command line, like the example shown in Figure 7-6.

Chapter 7:Retrieving Data with SQL Queries

-239-

Figure 7-6: Using dubqueries in the SELECT clause

Notice how the entire subquery replaces the column name, so that the alias clauses used to name the

columns appear outside the parentheses defining the subqueries.

Using a Subquery with the INSERT Command

You can use subqueries in the INSERT command just as easily as you can in a SELECT command.

Consider an example where you might want to insert selected records from one table into another.

One way to do this is to use a subquery to select the desired subset from the source table.

The following example uses a subquery to select the Customer_Numbers of customers from New

Jersey. Then the appropriate fields are selected from Customers with the selected

Customer_Numbers and are inserted into the Employees table.

INSERT INTO Employees

 (Employee_ID, First_Name, Last_Name)

SELECT Customer_Number, First_Name, Last_Name

FROM Customers

WHERE Customer_Number IN

 (SELECT Customer_Number

 FROM Customers

 WHERE State = 'NJ');

Using a Subquery with the UPDATE Command

A more common usage of the subquery is with the UPDATE command. One advantage of using a

subquery is that you can very easily test the subquery by itself to make sure you are getting the correct

data set. Then, once it checks out OK, you can plug it into the actual update.

The following example uses a subquery to select the Customer_Number of the customer to be

updated from the Customers table. You then use this customer number in the WHERE clause of the

UPDATE command.

UPDATE Employees

TE
AM
FL
Y

Team-Fly®

Chapter 7:Retrieving Data with SQL Queries

-240-

SET First_Name = 'Alfie'

WHERE Employee_ID IN

 (SELECT Customer_Number

 FROM Customers

 WHERE First_Name = 'Sonny');

Using a Subquery with the DELETE Command

Finally, here's an example of the use of a subquery with the DELETE command. This example uses a

subquery to select the Customer_Numbers of all the customers with a Last_Name of Corleone. This

list of Customer_Numbers is used in the DELETE command to identify the customers to be deleted

from the Customers table. In this instance, you will get a list of all Corleones in the Customer table,

regardless of whether they are employees. You then use this customer number list in the WHERE

clause of the DELETE command and delete any employees in the list.

DELETE FROM Employees

WHERE Employee_ID IN

 (SELECT Customer_Number

 FROM Customers

 WHERE Last_Name = 'Corleone');

Correlated Subqueries

Most of the subqueries discussed so far are self-contained, in that they refer only to tables defined

within the subquery itself. This self-contained aspect of subqueries has the advantage of making them

easy to check out as stand-alone queries. However, sometimes it's useful to use outside references in

a subquery.

Correlated subqueries are subqueries that depend on a value in the outer query. A reference to a table

in the outer query is called a correlated reference. The following example presents a correlated query

in the reference to the Customers table. In the following code, Customers appears in the FROM clause

of the outer query, but not in the FROM clause of the subquery:

SELECT c.First_Name, c.Last_Name, i.Name, i.Item_Number

FROM Customers c, Inventory i

WHERE c.Last_Name = 'Corleone' AND

 i.Description = 'Cookies' AND EXISTS

 (SELECT *

 FROM Ordered_Items oi, Orders o

 WHERE c.Customer_Number = o.Customer_Number AND

 oi.Order_Number = o.Order_Number AND

 oi.Item_Number = i.Item_Number);

Chapter 7:Retrieving Data with SQL Queries

-241 -

Correlated queries are executed repeatedly (once for each row of the table identified in the outer-level

query), so they can be extremely inefficient. It is frequently worthwhile to rewrite correlated queries as

joins wherever possible, though in some cases the SQL engine may be able to optimize the correlated

subquery.

The next section explains how the SQL queries discussed in this chapter can be used in a JDBC

application.

JDBC ResultSets

The JDBC ResultSet holds the data, arranged in rows and columns, returned by a query. A

ResultSet maintains a cursor that points to the current row of data. The cursor moves down one row

each time the next()method is called. You access the data by sequencing through the rows and

requesting data from the columns using getter methods, either by column name or by column

number. In general, using the column number will be more efficient than using the column name .

Caution

Columns are numbered from 1, not from 0.

The JDBC ResultSet provides getter methods that convert column data from SQL data types to the

specified Java types. Each getter method comes in these two flavors:
§ getXXx(String columnName)

§ getXXX(int columnNumber)

For clarity only one variant is shown in the getter method summary in Table 7-6.

Table 7-6: ResultSet getter Methods

Data Type Method

BigDecimal getBigDecimal(String columnName, int scale)

boolean getBoolean(String columnName)

byte getByte(String columnName)

byte[] getBytes(String columnName)

double getDouble(String columnName)

float getFloat(String columnName)

int getInt(String columnName)

java.io.InputStream getAsciiStream(String columnName)

java.io.InputStream getUnicodeStream(String columnName)

java.io.InputStream getBinaryStream(String columnName)

java.sql.Date getDate(String columnName)

java.sql.Time getTime(String columnName)

Chapter 7:Retrieving Data with SQL Queries

-242-

Table 7-6: ResultSet getter Methods

Data Type Method

java.sql.Timestamp getTimestamp(String columnName)

long getLong(String columnName)

Object getObject(String columnName)

short getShort(String columnName)

String getString(String columnName)

Caution

Each column can be read only once with getter method. Subsequent reads return

unpredictable results.

A ResultSet maintains a cursor that points to the current row of data. Initially the cursor is positioned

before the first row. The next() method moves the cursor to the next row and must be called before

the first getter method is called.

When you access data with a basic, nonscrollable ResultSet, the table rows are retrieved

sequentially. ScrollableResultSets add absolute positioning and reverse scrolling capabilities to

the basic ResultSet. Within a row, you can access the column values in any order.

For the "getter" methods, the JDBC driver attempts to convert the underlying data to the specified

Java type and returns a suitable Java value. Column names used as input to "getter" methods are

case insensitive, in accordance with normal SQL rules.

Caution

When performing a "getXXX" using a column name, if several columns have the

same name, the value of the first matching column will be returned.

A basic ResultSet is automatically closed by the statement that generated it when that statement is

closed, re-executed, or is used to retrieve the next result from a sequence of multiple results. This

behavior may be modified in some of the JDBC Extension API ResultSets, as discussed in Chapter

4.

ResultSetMetaData

The ResulSetMetaData object returned by the getMetaData() method provides information about

a ResultSet's columns, such as number, types, and properties,. Chapter 4 discusses the

ResulSetMetaData object in some detail.

The following are some of the methods available to access ResultSetMetaData:

§ getColumnCount() — returns the number of columns in the ResultSet

§ getColumnLabel(int column) — returns the column title for use in printouts and displays

§ getColumnName(int column) — returns the column name

§ getColumnTypeName(int column) – returns the name of the column's SQL data type

Chapter 7:Retrieving Data with SQL Queries

-243-

With just these four methods you have enough information to display the results of any query in a

meaningful way.

Using SELECT to return RecordSets with JDBC

The procedure for retrieving data from a database is very similar to the procedure you used to insert

data, with the exception that, since this is a query, you need to define a ResultSet to hold the

returned data. In addition to the ResultSet, you are also defining a ResultSetMetaData object,

which will hold information about the ResultSet. You will use this object to get the number of

columns returned, since the getData method does not have any information regarding the query it is

executing.

For the purposes of the example in Listing 7-1, you will simply loop through the ResultSet and print

the data to the system console.

Listing 7-1: Data Retrieval using JDBC

package java_databases.part2;

import java.awt.event.*;

import java.sql.*;

import java.util.Vector;

import sun.jdbc.odbc.JdbcOdbcDriver;

public class DataRetriever{

 static String jdbcDriver = "sun.jdbc.odbc.JdbcOdbcDriver";

 static String dbName = "Contacts";

 static String urlRoot = "jdbc:odbc:";

 private ActionListener exceptionListener = null;

 public DataRetriever(){

 registerDriver();

 }

 public void setDatabaseName(String dbName){

 this.dbName=dbName;

 }

 public void registerDriver(){

 try {

Chapter 7:Retrieving Data with SQL Queries

-244-

 Class.forName(jdbcDriver);

 DriverManager.registerDriver(new JdbcOdbcDriver());

 }

 catch(ClassNotFoundException e){

 reportException(e.getMessage());

 }

 catch(SQLException e){

 reportException(e.getMessage());

 }

 }

 public String[][] executeQuery(String SQLQuery){

 Vector dataSet = new Vector();

 String url = urlRoot+dbName;

 try {

 Connection con = DriverManager.getConnection(url);

 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery(SQLQuery);

 ResultSetMetaData md = rs.getMetaData();

 int nColumns = md.getColumnCount();

 while(rs.next()){

 String[] rowData = new String[nColumns];

 for(int i=0;i<nColumns;i++){

 rowData[i] = rs.getObject(i+1).toString();

 }

 dataSet.addElement(rowData);

 }

 con.close();

 }

 catch(SQLException e){

 reportException(e.getMessage());

 }

 String[][] records = new String[dataSet.size()][];

Chapter 7:Retrieving Data with SQL Queries

-245-

 for(int i=0;i<records.length;i++){

 records[i]=(String[])dataSet.elementAt(i);

 }

 return records;

 }

 public void setExceptionListener(ActionListener exceptionListener){

 this.exceptionListener=exceptionListener;

 }

 private void reportException(String exception){

 if(exceptionListener!=null){

 ActionEvent evt = new ActionEvent(this,0,exception);

 exceptionListener.actionPerformed(evt);

 }else{

 System.err.println(exception);

 }

 }

 public static void main(String args[]){

 DataRetriever retriever = new DataRetriever();

 retriever.setDatabaseName("Contacts");

 String[][] records =

 retriever.executeQuery("SELECT * FROM Contact_Info");

 for(int i=0;i<records.length;i++){

 String[] record = records[i];

 for(int j=0;j<record.length;j++){

 if(j>0)System.out.print("\t");

 System.out.print(record[j]);

 }

 System.out.println();

 }

 }

}

The main difference between the code required to retrieve data from the table and the code you used

to insert it is the use of the ResultSet and ResultSetMetaData objects. The other difference is

Chapter 7:Retrieving Data with SQL Queries

-246-

that you need to use the executeQuery() method of the Statement object rather than the

execute() method when you expect a ResultSet to be returned. Initially, the ResultSet's cursor

is positioned before the first row of the returned data, so you need to execute the ResultSet.next()

method to point the cursor to the first row.

The ResultSet.next() method returns a boolean false if it advances the cursor beyond the end

of the ResultSet. This makes it suitable as the basis of a WHILE loop to loop through the entire

ResultSet, as shown here in Listing 7-1. Listing 7-1 also shows the use of ResultSetMetaData to

get the number of columns in the ResultSet.

Caution

ResultSet columns count from 1, not from 0, so an exception will be thrown if you

forget this and try to use a loop which counts columns from column 0.

The next section continues the development of the JDBC Swing example started in Chapters 5 and 6,

adding the capability to execute queries.

A Swing-Based SQL Query Pane

To illustrate the topics covered in this chapter, the Swing-based Table Builder will be extended by the

addition of a Query Pane (see Figure 7-7). The Query Pane is based on components you built in

Chapter 5. You will add a new View Menu to allow us to display the Query Pane, and a new

JInternalFrame for handling the Queries.

Figure 7-7: SQL Query Pane

The View Menu

The View menu extends the DBMenu class, adding DBMenuItems for the ResultSet that you are

working with in this chapter. Listing 7-2 shows the necessary code.

Listing 7-2: View menu with ResultSet item

package jdbc_bible.part2;

Chapter 7:Retrieving Data with SQL Queries

-247 -

import java.awt.*;

import java.awt.event.*;

import java.util.Vector;

import javax.swing.*;

import javax.swing.event.*;

public class ViewMenu extends DBMenu{

 JMenuItem resultSetItem;

 JMenuItem scrollableResultSetItem;

 JMenuItem updatableResultSetItem;

 JMenuItem rowSetItem;

 public ViewMenu(){

 setText("View");

 setActionCommand("View");

 setMnemonic((int)'V');

 resultSetItem = new DBMenuItem("ResultSet",'R',itemListener,false);

 scrollableResultSetItem

 = new DBMenuItem("Scrollable ResultSet",'S',itemListener,false);

 updatableResultSetItem

 = new DBMenuItem("Updatable ResultSet",'U',itemListener,false);

 rowSetItem = new DBMenuItem("RowSet",'W',itemListener,false);

 add(resultSetItem);

 add(scrollableResultSetItem);

 add(updatableResultSetItem);

 add(rowSetItem);

 }

}

TableQueryFrame

TableQueryFrame is very similar to the TableBuilderFrame discussed in Chapter 5. It extends

JInternalFrame and contains a Jtable, which is used to display the fields returned in the

ResultSet, a JTextArea that provides an editable text area in which you can create queries, and an

Chapter 7:Retrieving Data with SQL Queries

-248-

"Execute Query" button. Otherwise, this class is simpler than its counterparts in preceding chapters as

you no longer need a parseTable() method or a TableChangeListener.

The JTable is preloaded using the SQL query as shown in the following:

"SELECT TOP 5 * FROM " + tableName;

You use the TOP 5 limitation to prevent having to load a huge JTable in cases where the database

table is large. Obviously, you can change this to suit your own application.

The TableQueryFrame class is different from its counterparts in previous chapters primarily because

it is driven by the JTextArea rather than by the JTable. The JTextArea is used to enter free form

SQL queries for execution when the "Execute Query" button is clicked.

The sequence of events involved in using the TableQueryFrame (shown in Listing 7-3) example is as

follows:

1. User selects a database.

2. User selects "View ResultSet".

3. User selects the table.

4. A TableQueryFrame is displayed showing the top five records from the table.

5. A SQL command is typed into the JTextArea and executed on command.

This example extends the examples of Chapters 5 and 6 to create a Swing-based application that can

connect to any database-management system. This example can be used to create and populate

tables, and to execute any of the queries discussed in this chapter. The TableQueryFrame code is

shown in Listing 7-3.

Listing 7-3: TableQueryFrame

package jdbc_bible.part2;

import java.awt.*;

import java.awt.event.*;

import java.util.EventObject;

import java.util.EventListener;

import java.util.Vector;

import javax.swing.*;

import javax.swing.event.*;

import javax.swing.table.*;

/**

* TableQueryFrame extends JInternalFrame to create a display which builds SQL

Chapter 7:Retrieving Data with SQL Queries

-249-

* CREATE statements

*/

class TableQueryFrame extends JInternalFrame{

 protected JTable table;

 protected JScrollPane tableScroller;

 protected JTextArea SQLPane = new JTextArea();

 protected JButton queryButton = new JButton("Execute Query");

 protected DatabaseUtilities dbUtils;

 protected String tableName = null;

 protected String colNames[] = null;

 protected String dataTypes[] = null;

 protected String SQLQuery = null;

 protected String SQLCommandRoot = "";

 public TableQueryFrame(String tableName, DatabaseUtilities dbUtils){

 System.out.println(tableName+", "+dbUtils);

 setSize(600,400);

 setLocation(10,10);

 setClosable(true);

 setMaximizable(true);

 setIconifiable(true);

 setResizable(true);

 getContentPane().setLayout(new BorderLayout());

 this.tableName=tableName;

 this.dbUtils=dbUtils;

 setTitle("Query "+tableName);

 init();

 setVisible(true);

 }

 // initialize the JInternalFrame

 private void init(){

TE
AM
FL
Y

Team-Fly®

Chapter 7:Retrieving Data with SQL Queries

-250-

 colNames = dbUtils.getColumnNames(tableName);

 dataTypes = dbUtils.getDataTypes(tableName);

 SQLQuery = "SELECT TOP 5 * FROM "+tableName;

 Vector dataSet = dbUtils.executeQuery(SQLQuery);

 table = createTable(colNames,dataSet);

 JScrollPane sqlScroller = new JScrollPane(SQLPane);

 tableScroller = new JScrollPane(table);

 JSplitPane splitter = new JSplitPane(JSplitPane.VERTICAL_SPLIT,

 sqlScroller,tableScroller);

 splitter.setDividerLocation(100);

 getContentPane().add(splitter,BorderLayout.CENTER);

 getContentPane().add(queryButton,BorderLayout.SOUTH);

 queryButton.addActionListener(new ButtonListener());

 }

 protected JTable createTable(String[] colNames,Vector dataSet){

 int nRows = dataSet.size();

 String[][] rowData = new String[nRows][colNames.length];

 for(int i=0;i<nRows;i++){

 Vector row = (Vector)dataSet.elementAt(i);

 for(int j=0;j<row.size();j++)

 rowData[i][j]=((Object)row.elementAt(j)).toString();

 }

 JTable table = new JTable(rowData,colNames);

 return table;

 }

 // Listener for the Query Button

 class ButtonListener implements ActionListener{

 public void actionPerformed(ActionEvent event){

 SQLQuery = SQLPane.getText();

 JViewport viewport = tableScroller.getViewport();

 viewport.remove(table);

 colNames = dbUtils.getColumnNamesUsingQuery(SQLQuery);

 Vector dataSet = dbUtils.executeQuery(SQLQuery);

 table = createTable(colNames,dataSet);

Chapter 7:Retrieving Data with SQL Queries

-251-

 viewport.add(table);

 }

 }

}

Changes to the DBManager class (Listing 7-4) are once again minimal, amounting to no more than

adding the hooks for the menu.

Listing 7-4: DBManager

package jdbc_bible.part2;

import java.awt.*;

import java.awt.event.*;

import java.util.Vector;

import javax.swing.*;

import javax.swing.event.*;

public class DBManager extends JFrame{

 JMenuBar menuBar = new JMenuBar();

 JDesktopPane desktop = new JDesktopPane();

 String database = null;

 String tableName = null;

 String menuSelection = null;

 TableBuilderFrame tableMaker = null;

 TableEditFrame tableEditor = null; // added for Chapter 6

 TableQueryFrame tableQuery = null; // added for Chapter 7

 DatabaseUtilities dbUtils = null;

 TableMenu tableMenu = new TableMenu();

 EditMenu editMenu = new EditMenu(); // added for Chapter 6

 ViewMenu viewMenu = new ViewMenu(); // added for Chapter 7

 MenuListener menuListener = new MenuListener();

 public DBManager(){

Chapter 7:Retrieving Data with SQL Queries

-252 -

 setJMenuBar(menuBar);

 setTitle("Java Database Bible");

 getContentPane().setLayout(new BorderLayout());

 getContentPane().add(desktop,BorderLayout.CENTER);

 setSize(new Dimension(480,320));

 menuBar.add(tableMenu);

 tableMenu.setMenuListener(menuListener);

 menuBar.add(editMenu); // added for Chapter 6

 editMenu.setMenuListener(menuListener);

 menuBar.add(viewMenu); // added for Chapter 7

 viewMenu.setMenuListener(menuListener);

 setFont(new Font("Dialog",Font.PLAIN,18));

 setVisible(true);

 Font font = getGraphics().getFont();

 System.out.println(font);

 }

 private void displayTableBuilderFrame(){

 tableName = JOptionPane.showInputDialog(this,"Table:",

 "Select table",JOptionPane.QUESTION_MESSAGE);

 tableMaker = new TableBuilderFrame(tableName);

 tableMaker.setCommandListener(new CommandListener());

 desktop.add(tableMaker);

 tableMaker.setVisible(true);

 }

 private void displayTableEditFrame(){ // added for Chapter 6

 tableName = JOptionPane.showInputDialog(this,"Table:",

 "Select table",JOptionPane.QUESTION_MESSAGE);

 tableEditor = new TableEditFrame(tableName,dbUtils);

Chapter 7:Retrieving Data with SQL Queries

-253 -

 desktop.add(tableEditor);

 tableEditor.setVisible(true);

 }

 private void displayTableQueryFrame(){ // added for Chapter 7

 tableName = JOptionPane.showInputDialog(this,"Table:",

 "Select table",JOptionPane.QUESTION_MESSAGE);

 tableQuery = new TableQueryFrame(tableName,dbUtils);

 desktop.add(tableQuery);

 tableQuery.setVisible(true);

 }

 private String[] parseKeyValueString(String kvString){

 String[] kvPair = null;

 int equals = kvString.indexOf("=");

 if(equals>0){

 kvPair = new String[2];

 kvPair[0] = kvString.substring(0,equals).trim();

 kvPair[1] = kvString.substring(equals+1).trim();

 }

 return kvPair;

 }

 private void selectDatabase(){

 database = JOptionPane.showInputDialog(this,"Database:",

 "Select database",JOptionPane.QUESTION_MESSAGE);

 dbUtils = new DatabaseUtilities();

 dbUtils.setDatabaseName(database);

 dbUtils.setExceptionListener(new ExceptionListener());

 tableMenu.enableMenuItem("New Table",true);

 tableMenu.enableMenuItem("Drop Table",true);

Chapter 7:Retrieving Data with SQL Queries

-254 -

 editMenu.enableMenuItem("Insert",true);

 editMenu.enableMenuItem("Update",true);

 editMenu.enableMenuItem("Delete",true);

 viewMenu.enableMenuItem("ResultSet",true);

 }

 private void executeSQLCommand(String SQLCommand){

 dbUtils.execute(SQLCommand);

 }

 private void dropTable(){

 tableName = JOptionPane.showInputDialog(this,"Table:",

 "Select table",JOptionPane.QUESTION_MESSAGE);

 int option = JOptionPane.showConfirmDialog(null,

 "Dropping table "+tableName,

 "Database "+database,

 JOptionPane.OK_CANCEL_OPTION);

 if(option==0){

 executeSQLCommand("DROP TABLE "+tableName);

 }

 }

 class MenuListener implements ActionListener{

 public void actionPerformed(ActionEvent event){

 String menuSelection = event.getActionCommand();

 if(menuSelection.equals("Database")){

 selectDatabase();

 }else if(menuSelection.equals("New Table")){

 displayTableBuilderFrame();

 }else if(menuSelection.equals("Drop Table")){

 dropTable();

 }else if(menuSelection.equals("Insert")){

 displayTableEditFrame();

Chapter 7:Retrieving Data with SQL Queries

-255-

 }else if(menuSelection.equals("ResultSet")){ // added for Chapter 7

 displayTableQueryFrame();

 }else if(menuSelection.equals("Exit")){

 System.exit(0);

 }

 }

 }

 class ExceptionListener implements ActionListener{

 public void actionPerformed(ActionEvent event){

 String exception = event.getActionCommand();

 JOptionPane.showMessageDialog(null, exception,

 "SQL Error", JOptionPane.ERROR_MESSAGE);

 }

 }

 class CommandListener implements ActionListener{

 public void actionPerformed(ActionEvent event){

 String SQLCommand = event.getActionCommand();

 executeSQLCommand(SQLCommand);

 }

 }

 public static void main(String args[]){

 DBManager dbm = new DBManager();

 }

}

It now remains to add the necessary JDBC code to run the query, as discussed in the next section.

JDBC Code

In the extended version of the DatabaseUtilities class in Listing 7-5, the method

executeQuery(String SQLQuery) has been added to return a Vector of Vectors containing the

row data from the table. The choice of a Vector of Vectors is driven partly by the inherent flexibility it

offers, and partly to demonstrate an approach that differs slightly from Listing 7-1. The method

getColumnNamesUsingQuery(String SQLCommand) has also been added. This method returns a

Chapter 7:Retrieving Data with SQL Queries

-256 -

String array of column names pertinent to the query, rather than all the column names for the entire

table.

Listing 7-5: DatabaseUtilities

package jdbc_bible.part2;

import java.awt.event.*;

import java.sql.*;

import java.util.Vector;

import sun.jdbc.odbc.JdbcOdbcDriver;

public class DatabaseUtilities{

 static String jdbcDriver = "sun.jdbc.odbc.JdbcOdbcDriver";

 static String dbName = "Contacts";

 static String urlRoot = "jdbc:odbc:";

 private ActionListener exceptionListener = null;

 public DatabaseUtilities(){

 registerDriver();

 }

 public void setDatabaseName(String dbName){

 this.dbName=dbName;

 }

 public void registerDriver(){

 try {

 Class.forName(jdbcDriver);

 DriverManager.registerDriver(new JdbcOdbcDriver());

 }

 catch(ClassNotFoundException e){

 reportException(e.getMessage());

 }

 catch(SQLException e){

 reportException(e.getMessage());

 }

Chapter 7:Retrieving Data with SQL Queries

-257-

 }

 public void execute(String SQLCommand){

 String url = urlRoot+dbName;

 try {

 Connection con = DriverManager.getConnection(url);

 Statement stmt = con.createStatement();

 stmt.execute(SQLCommand);

 con.close();

 }

 catch(SQLException e){

 reportException(e.getMessage());

 }

 }

 public void execute(String[] SQLCommand){

 String url = urlRoot+dbName;

 try {

 Connection con = DriverManager.getConnection(url);

 Statement stmt = con.createStatement();

 for(int i=0;i<SQLCommand.length;i++){

 stmt.execute(SQLCommand[i]);

 }

 con.close();

 }

 catch(SQLException e){

 reportException(e.getMessage());

 }

 }

 public String[] getColumnNames(String tableName){

 Vector dataSet = new Vector();

 String[] columnNames = null;

 String url = urlRoot+dbName;

 String SQLCommand = "SELECT * FROM "+tableName+";";

 try {

Chapter 7:Retrieving Data with SQL Queries

-258-

 Connection con = DriverManager.getConnection(url);

 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery(SQLCommand);

 ResultSetMetaData md = rs.getMetaData();

 columnNames = new String[md.getColumnCount()];

 for(int i=0;i<columnNames.length;i++){

 columnNames[i] = md.getColumnLabel(i+1);

 }

 con.close();

 }

 catch(SQLException e){

 reportException(e.getMessage());

 }

 return columnNames;

 }

 public String[] getColumnNamesUsingQuery(String SQLCommand){

 Vector dataSet = new Vector();

 String[] columnNames = null;

 String url = urlRoot+dbName;

 try {

 Connection con = DriverManager.getConnection(url);

 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery(SQLCommand);

 ResultSetMetaData md = rs.getMetaData();

 columnNames = new String[md.getColumnCount()];

 for(int i=0;i<columnNames.length;i++){

 columnNames[i] = md.getColumnLabel(i+1);

 }

 con.close();

 }

 catch(SQLException e){

Chapter 7:Retrieving Data with SQL Queries

-259 -

 reportException(e.getMessage());

 }

 return columnNames;

 }

 public String[] getDataTypes(String tableName){

 Vector dataSet = new Vector();

 String[] dataTypes = null;

 String url = urlRoot+dbName;

 String SQLCommand = "SELECT * FROM "+tableName+";";

 try {

 Connection con = DriverManager.getConnection(url);

 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery(SQLCommand);

 ResultSetMetaData md = rs.getMetaData();

 dataTypes = new String[md.getColumnCount()];

 for(int i=0;i<dataTypes.length;i++){

 dataTypes[i] = md.getColumnTypeName(i+1);

 }

 con.close();

 }

 catch(SQLException e){

 reportException(e.getMessage());

 }

 return dataTypes;

 }

 public Vector executeQuery(String SQLQuery){

 Vector dataSet = new Vector();

 String url = urlRoot+dbName;

 try {

 Connection con = DriverManager.getConnection(url);

 Statement stmt = con.createStatement();

TE
AM
FL
Y

Team-Fly®

Chapter 7:Retrieving Data with SQL Queries

-260-

 ResultSet rs = stmt.executeQuery(SQLQuery);

 ResultSetMetaData md = rs.getMetaData();

 int nColumns = md.getColumnCount();

 while(rs.next()){

 Vector rowData = new Vector();

 for(int i=1;i<=nColumns;i++){

 rowData.addElement(rs.getObject(i));

 }

 dataSet.addElement(rowData);

 }

 con.close();

 }

 catch(SQLException e){

 reportException(e.getMessage());

 }

 return dataSet;

 }

 public void setExceptionListener(ActionListener exceptionListener){

 this.exceptionListener=exceptionListener;

 }

 private void reportException(String exception){

 if(exceptionListener!=null){

 ActionEvent evt = new ActionEvent(this,0,exception);

 exceptionListener.actionPerformed(evt);

 }else{

 System.err.println(exception);

 }

 }

}

Summary

In this chapter you learned how to build and use queries and subqueries. You also learned how to use

queries and subqueries in a SELECT command as well as in the INSERT, DELETE, and UPDATE

commands. Other topics discussed were:

§ What a Query is and how to create and execute one

Chapter 7:Retrieving Data with SQL Queries

-261 -

§ Using SELECT FROM to retrieve all rows and columns from a table

§ Using the WHERE clause to retrieve rows matching a specific query

§ Using the ORDER BY clause to sort the returned data

§ SQL Operators

§ Escape sequences

§ Subqueries using the keywords:

§ EXISTS and NOT EXISTS

§ ANY and ALL

§ IN and NOT IN

§ Nested and correlated subqueries

§ JDBC ResultSets and ResultSetMetaData

The next chapter discusses using joins to retrieve data from more than one table.

Chapter 8:Organizing Search Results and Using Indexes

-262-

Chapter 8: Organizing Search Results and Using

Indexes

In This Chapter

This chapter discusses various ways of organizing and analyzing the data returned by SQL queries.

These include sorting the data by one or more columns, grouping the data and performing statistical

analysis, and filtering the grouped results.

The chapter also addresses the use of indexes to make your queries more efficient. Using indexes

wisely can result in a very significant improvement in performance, while using indexes incorrectly can

result in very poor performance.

The final topic discussed in this chapter is the use of Views. Views provide a means of creating

temporary tables based on a particular query.

Using ORDER BY to Sort the Results of a Query

A common requirement when retrieving data from an RDBMS by using the SELECT statement is to sort

the results of the query in alphabetic or numeric order on one or more of the columns. You sort the

results by using the ORDER BY clause in a statement like this:

SELECT First_Name, Last_Name, City, State

FROM CUSTOMERS

WHERE Last_Name = 'Corleone'

ORDER BY First_Name;

This gives you a list of all the Corleones sorted in ascending order by first name, as shown in Table

8-1:

Table 8-1: Records Sorted Using ORDER BY

First_Name Last_Name City State

Francis Corleone New York NY

Fredo Corleone New York NY

Michael Corleone New York NY

Sonny Corleone Newark NJ

Vito Corleone Newark NJ

The default sort order is ascending. This can be changed to descending order by adding the DESC
keyword as shown in the next example:

Note

The keywords ASC and DESC can be used to specify ascending or descending sort

Chapter 8:Organizing Search Results and Using Indexes

-263-

order.

SELECT *

FROM CUSTOMERS

WHERE Last_Name = 'Corleone'

ORDER BY First_Name DESC;

Sorting on multiple columns is also easy to do by using a sort list. For example, to sort the data in

ascending order based on Last_Name and then sort duplicates using the First_Name in descending

order, the sort list is as follows:

ORDER BY Last_Name, First_Name DESC;

The entire SQL statement to sort the data in ascending order based on Last_Name and then sort

duplicates using the First_Name in descending order is shown below .

SELECT First_Name, MI, Last_Name, Street, City, State, Zip

FROM CUSTOMERS

ORDER BY Last_Name, First_Name DESC;

Note

When no ORDER BY clause is used, the order of the output of a query is undefined.

These are the rules for using ORDER BY:

§ ORDER BY must be the last clause in the SELECT statement.

§ Default sort order is ascending.

§ You can specify ascending order with the keyword ASC.

§ You can specify descending order with the keyword DESC.

§ You can use column names or expressions in the ORDER BY clause.

§ The column names in the ORDER BY clause do not have to be specified in the select list.

§ NULLS usually occur first in the sort order.

Note

The DatabaseMetaData object provides a number of methods:

boolean nullsAreSortedAtStart()

boolean nullsAreSortedAtEnd()

These methods can be used to determine the sort order for NULLs when in doubt.

Another common reporting requirement is to break down the data a query returns into various groups

so that the data can be analyzed in some way. The GROUP BY clause, discussed in the next section,

enables you to combine database records to perform calculations such as averages or counts on

groups of records.

The GROUP BY Clause

Chapter 8:Organizing Search Results and Using Indexes

-264-

The GROUP BY clause combines records with identical values in a specified field into a single record for

this purpose, as shown in Figure 8-1, illustrating how to use GROUP BY to compute a count of

customers by state.

Figure 8-1: Using GROUP BY to count customers by state

Because the GROUP BY clause combines all records with identical values in one column into a single

record, each of the column names in the SELECT clause must be either a column specified in the

GROUP BY clause or a column function such as COUNT() or SUM().

This means that you can't SELECT a list of individual customers by name and then count them as a

group by using GROUP BY. However, you can group on more than one column, just as you can use

more than one column with the ORDER BY clause. You can see an example of the use of GROUP BY on

more than one column in Figure 8-2.

Figure 8-2: Using GROUP BY on multiple columns

Note

Every column name specified in the SELECT statement is also mentioned in the GROUP
BY clause. Not mentioning the column names in both places gives you an error. The

GROUP BY clause returns a row for each unique combination of description and state.

Chapter 8:Organizing Search Results and Using Indexes

-265-

The most important uses of the GROUP BY clause is to group data for analytical purposes. The

functions used to analyze groups of data are called aggregate functions. The aggregate functions are

discussed in the next section.

Aggregate Functions

Aggregate functions return a single value from an operation on a column of data. This differentiates

them from the arithmetic, logical, and character functions discussed in Chapter 7, which operate on

individual data elements. Most relational database management systems support the aggregate

functions listed in Table 8-2.

Table 8-2: Commonly Supported Aggregate Functions

Sum SUM

Average AVG

Count COUNT

Standard Deviation STDEV

Maximum MAX

Minimum MIN

Aggregate functions are used to provide statistical or summary information about groups of data

elements. These groups may be created specifically using the GROUP BY clause, or the aggregate

functions may be applied to the default group, which is the entire result set.

A good practical example of the use of aggregate functions is the creation of a simple sales report. In

Figure 8-3, the query creates a result set listing distinct customers and calculating the number and total

cost of the items they have bought.

Figure 8-3: Using aggregate functions

Chapter 8:Organizing Search Results and Using Indexes

-266-

Since this example groups order data by customer, each row of the result set represents a single

customer so that customer information can be displayed. The aggregate functions act on all the

purchases customers have made, so they, too, can be included in the SELECT list:

Note

The fundamental difference between aggregate functions and standard functions is that

aggregate functions use the entire column of data as their input and produce a single

output, whereas standard functions operate on individual data elements .

In addition to using the GROUP BY clause to group your results, you may also wish to narrow your set of

groups down to a smaller subset. You can filter grouped data by using the HAVING clause, which is

discussed in the next section.

Using the HAVING Clause to Filter Groups

There are going to be situations where you'll want to filter the groups themselves in much the same

way as you filter records using the WHERE clause. For example, you may want to analyze your sales by

state but ignore states with a limited number of customers.

SQL provides a way of filtering groups in a result set using the HAVING clause. The HAVING clause

works in much the same way as the WHERE clause, except that it applies to groups within a returned

result set, rather than to the entire table or group of tables forming the subject of a SELECT statement.

To filter groups, apply a HAVING clause after the GROUP BY clause. The HAVING clause lets you apply

a qualifying condition to groups so that the database management system returns a result only for the

groups that satisfy the condition. Incidentally, you can also apply a HAVING clause to the entire result

set by omitting the GROUP BY clause. In this case, DBMS treats the entire table as one group, so there

is at most one result row. If the HAVING condition is not true for the table as a whole, no rows will be

returned.

HAVING clauses can contain one or more predicates connected by ANDs and ORs. Each predicate

compares a property of the group (such as COUNT(State)) with either another property of the group

or a constant.

Figure 8-4 shows the use of the HAVING clause to compute a count of customers by state, filtering

results from states that contain only one customer.

Chapter 8:Organizing Search Results and Using Indexes

-267 -

Figure 8-4: Using the HAVING clause

The main similarity between the HAVING clause and the WHERE clause is that both allow you to use a

variety of filters in a query. The main difference is that the HAVING clause applies to groups within a

returned result set, while the WHERE clause applies to the entire table or group of tables forming the

subject of a SELECT statement.

Using Indexes to Improve the Efficiency of SQL Queries

You can improve database performance significantly by using indexes. An index is a structure that

provides a quick way to look up specific items in a table or view. In effect, an index is an ordered array

of pointers to the rows in a table or view.

When you assign a unique id to each row as a key, you are predefining an index for that table. This

makes it much faster for the DBMS to look up items by id, which is commonly required when you are

doing joins on the id column.

SQL's CREATE INDEX statement allows you to add an index for any desired column or group of

columns. When you need to do a search by customer name, for example, the unique row id buys you

nothing; the DBMS has to do a brute-force search of the entire table to find all customer names

matching your query. If you plan on doing a lot of queries by customer name, it obviously makes sense

to add an index to the customer name column or columns. Otherwise, you are in the position of

someone working with a phone list that hasn't been alphabetized.

The SQL command to add an index uses the CREATE INDEX keyword, specifying a name for the index

and defining the table name and the column list to index. Here's an example:

CREATE INDEX STATE_INDEX ON MEMBER_PROFILES(STATE);

To remove the index, use the DROP INDEX command.

DROP INDEX MEMBER_PROFILES.STATE_INDEX;

Notice how the name of the index has to be fully defined by prefixing it with the name of the table to

which it applies.

Chapter 8:Organizing Search Results and Using Indexes

-268-

The example in Listing 8-1 is a simple JDBC, with a couple of lines of additional code that calculate the

start and stop times of the query so that the elapsed can be calculated. By commenting out the

CREATE INDEX and DROP INDEX lines, speed improvement can easily be calculated.

Listing 8-1: Creating and dropping indexes

package java_databases.ch04;

import java.sql.*;

public class PrintIndexedResultSet{

 public static void main(String args[]){

 String query =

 "SELECT STATE, COUNT(STATE) FROM MEMBER_PROFILES GROUP BY STATE";

 PrintIndexedResultSet p = new PrintIndexedResultSet(query);

 }

 public PrintIndexedResultSet(String query){

 try {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 Connection con = DriverManager.getConnection ("jdbc:odbc:Members");

 Statement stmt = con.createStatement();

 stmt.executeUpdate("CREATE INDEX STATE_INDEX ON
MEMBER_PROFILES(STATE)");

 java.util.Date startTime = new java.util.Date();

 ResultSet rs = stmt.executeQuery(query);

 ResultSetMetaData md = rs.getMetaData();

 int nColumns = md.getColumnCount();

 for(int i=1;i<=nColumns;i++){

 System.out.print(md.getColumnLabel(i)+((i==nColumns)?"\n":"\t"));

 }

 while (rs.next()) {

Chapter 8:Organizing Search Results and Using Indexes

-269-

 for(int i=1;i<=nColumns;i++){

 System.out.print(rs.getString(i)+((i==nColumns)?"\n":"\t"));

 }

 }

 java.util.Date endTime = new java.util.Date();

 long elapsedTime = endTime.getTime() - startTime.getTime();

 System.out.println("Elapsed time: "+elapsedTime);

 stmt.executeUpdate("DROP INDEX MEMBER_PROFILES.STATE_INDEX");

 }

 catch(ClassNotFoundException e){

 e.printStackTrace();

 }

 catch(SQLException e){

 e.printStackTrace();

 }

 }

}

The example in Listing 8-1 is run against a membership database containing approximately 150,000

members and shows an improvement of 2:1 in elapsed time for the query shown.

Once you have executed a SQL query and obtained a sorted, grouped set of data from the database, it

is frequently very useful to be able to save the query for reuse. One of the ways SQL lets you do this is

by using Views.

Views

A view is similar to a table, but rather than being created as a fundamental part of the underlying

database, it is created from the results of a query. In fact, you can think of a view as a temporary table.

Like a table, a view has a name that can be used to access it in other queries. Because views work like

tables, they can be a very useful tool in simplifying SQL queries. For example, you could create a view

based on a complex JOIN, and then work with that view as a temporary table rather than embedding

the JOIN as a subquery and working with the underlying tables.

The basic syntax used to create a view is as follows:

CREATE VIEW Orders_by_Name AS SELECT ...

The SELECT statement in the code is the SELECT you use in the query you want to save as a view, as

shown here:

TE
AM
FL
Y

Team-Fly®

Chapter 8:Organizing Search Results and Using Indexes

-270-

CREATE VIEW ViewCorleones AS

 SELECT *

 FROM CUSTOMERS

 WHERE Last_Name = 'Corleone'

Now you can execute a query just as if this view were a normal table, as follows:

SELECT *

FROM ViewCorleones

The result set this query returns looks like this:

FIRST_NAME MI LAST_NAME STREET CITY STATE ZIP

Michael A Corleone 123 Pine New York NY 10006

Fredo X Corleone 17 Main New York NY 10007

Sonny A Corleone 123 Walnut Newark NJ 12346

Francis X Corleone 17 Main New York NY 10005

Vito G Corleone 23 Oak St Newark NJ 12345

As with any other table, you can use more complex queries. Here's an example:

SELECT *

FROM ViewCorleones

WHERE State = 'NJ'

This query returns the following result set:

FIRST_NAME MI LAST_NAME STREET CITY STATE ZIP

Sonny A Corleone 123 Walnut Newark NJ 12346

Vito G Corleone 23 Oak St Newark NJ 12345

You can use a view for updating or deleting rows, as well as for retrieving data. Since the view is not a

table in its own right, but merely a way of looking at a table, rows updated or deleted in the view are

updated or deleted in the original table. For example, you can use the view to change Fredo

Corleone's street address by using the following SQL statement:

UPDATE ViewCorleones

SET Street = '19 Main'

WHERE First_Name = 'Fredo'

This example illustrates one of the advantages of using a view. A lot of the filtering required to identify

the target row is done in the view, so the SQL code is simpler and more maintainable. In a nontrivial

example, this can be a worthwhile improvement.

Chapter 8:Organizing Search Results and Using Indexes

-271 -

Figure 8-5 shows how using the view to the change Fredo Corleone's street address propagates

through to the Customers Table.

Figure 8-5: Updating a view updates the underlying table.

Recall that a view is really nothing more than a named result set made accessible as if it were a table.

Creating a view from a complicated query is just as easy as creating one from a simple query.

One way to retrieve data from multiple tables is to use an INNER JOIN. The next example shows how

to use an INNER JOIN to retrieve data from four different tables, creating a view called

"Orders_by_Name":

CREATE VIEW Orders_by_Name AS

SELECT c.LAST_NAME + ', ' + c.FIRST_NAME AS Name,

 COUNT(i.Item_Number) AS Items, SUM(oi.Qty * i.Cost)

 AS Total

FROM ORDERS o INNER JOIN

 ORDERED_ITEMS oi ON

 o.Order_Number = oi.Order_Number INNER JOIN

 INVENTORY i ON

 oi.Item_Number = i.Item_Number INNER JOIN

 CUSTOMERS c ON

 o.Customer_Number = c.CUSTOMER_NUMBER

GROUP BY c.LAST_NAME + ', ' + c.FIRST_NAME

Cross-Reference

JOINS are discussed in Chapter 9.

You can now query this view in the normal way to get a summary of customer orders by name as

shown in the following table.

Name Items Total

Adams, Kay 3 6.96

Chapter 8:Organizing Search Results and Using Indexes

-272-

Name Items Total

Corleone, Francis 2 7.42

Corleone, Fredo 4 12.92

Corleone, Vito 2 13.45

This result set always reflects the underlying table; if Fredo Corleone were to buy a huge supply of

chocolate chip cookies, the next time you run the same query, you might see a result set like this one:

Name Items Total

Adams, Kay 3 6.96

Corleone, Francis 2 7.42

Corleone, Fredo 4 135.14

Corleone, Vito 2 13.45

Note

Views are a way of saving queries by name, which can be very useful for creating reports

or updates you want to use on a regular basis. The database management system

generally saves the view by associating the SELECT statement with the view name and

executing it when you want to access the view.

Summary

In this chapter, you learn to perform the following tasks:

§ Sorting the data you retrieve from a database

§ Grouping the results for analysis

§ Performing statistical analyses on the data you retrieve from a database

§ Create and use indexes to improve performance

§ Saving your queries as views

In the next chapter, you learn to retrieve data from more than one table.

Chapter 9:Joins and Compound Queries

-273-

Chapter 9: Joins and Compound Queries

In This Chapter

One of the most powerful features of SQL is its ability to combine data from several tables into a single

result set. When tables are combined in this way, the operation performed is called a JOIN. There are

two primary types of JOIN, and a number of different ways in which they can be performed.

Another way to combine data from different tables into a single result set is to use the UNION operator.

This chapter discusses the different types of JOINS, and the use of the UNION operator.

Joining Tables

Chapter 2 explained how an efficient and reliable database design frequently requires the information

in a practical database will be distributed across several tables, each of which contains sets of logically

related data. A typical example might be a database containing these four tables:

§ Customers, containing customer number, name, shipping address, and billing information

§ Inventory, containing item number, name, description, cost, and quantity on hand

§ Orders, containing order number, customer number, order date, and ship date

§ Ordered_Items, containing order number, item number, and quantity

When a customer places an order, an entry is made in the Orders Table, assigning an order number

and containing the customer number and the order date. Then entries are added to the Ordered_Items

table, recording order number, item number, and quantity. To fill a customer order, you need to

combine the necessary information from each of these tables.

Using JOIN, you are able to combine data from these different tables to produce a detailed invoice.

This invoice will show the customer name, shipping address, and billing information from the

Customers table, combined with a detailed list of the items ordered from the Ordered_Items table,

supported by detailed description, quantity, and unit price information from the inventory table.

Cross-Reference

Primary and Foreign Keys are also discussed in Chapter 1, which provides

a more theoretical overview of Relational Database Management Systems.

Types of Joins

There are two major types of Joins: Inner Joins and Outer Joins. The difference between these two

types of Joins goes back to the basic Set Theory underlying relational databases. You can imagine the

keys of two database tables, A and B as intersecting sets, as shown in Figure 9-1.

Chapter 9:Joins and Compound Queries

-274-

Figure 9-1: Primary and Foreign keys are used to define intersecting data sets.

Inner Joins

The Inner Join of these two sets is the intersection of the sets. For example, to retrieve all the

information required to invoice a client, you would require the name and address information from table

A, joined on the order information from table B. The intersection of these sets is the set of primary keys

in the Customers table and the set of foreign keys in the order information table that match the required

Customer_ID. The Inner Join of the two tables is the subset of the rows in the name and address table,

which has the required Customer_ID, and the subset of the rows in the order information table, which

references that Customer_ID. This is shown as the shaded portion of Figure 9-1.

Outer Joins

There are three kinds of Outer Joins:

§ Full Outer Joins, which, in Set Theory terms, are Unions of the sets. A Full Outer Join includes

all of both joined sets. This would correspond to the entire area of both circles in Figure 9-1.

§ Left Outer Joins, which are the entire set on the left, plus the contents of the intersection. This

would correspond to the entire area of the left circle A, plus the shaded area in Figure 9-1.

§ Right Outer Joins, which are the entire set on the left, plus the contents of the intersection. This

would correspond to the entire area of the right circle B, plus the shaded area in Figure 9-1.

It is important to note that it is really the keys that form the members of the sets, since only the keys are

alike. The row data itself, being different from one table to another, can't intersect with row data from

another table. This observation underscores the importance of keys in linking tables, which is reviewed

in the next section.

Note

Although this discussion of Joins in terms of sets was illustrated using only two sets, the

concept applies to any number of tables or sets.

Since the use of JOINS is heavily dependent on using keys, the next section reviews what primary and

foreign keys are, and how they are used.

Keys

First, it is important to understand keys. In each of the four tables in the example, there is an identifier

such as customer number or item number. These identifiers are called keys and are used primarily to

provide a unique reference to a given record. Database management systems use two kinds of keys:

§ Primary keys

§ Foreign keys

Chapter 9:Joins and Compound Queries

-275-

Primary Keys

A primary key is a column that uniquely identifies the rest of the data in any given row. For example, in

the Customers Table, the Customer_Number column uniquely identifies that customer. For this to work,

no two rows can have the same key (or, in this instance, Customer_Number), so a key is a good

example of the use of the UNIQUE constraint. A clear benefit of using a unique integer as a row

identifier is that a list of integers is far faster to search than an array of First Name/Last Name

character variables. Another obvious benefit of using unique keys is that your system can support

more than one customer with the same name, as the Customer_Number is your primary means of

identifying customers.

Foreign Keys

A foreign key is a column in a table where that column is a primary key of another table. For example,

the Orders Table contains one column for Order_Number, which is its own primary key, and another

column for Customer_Number, which is a foreign key.

The purpose of these keys is to establish relationships across tables, without having to repeat data in

every table. This concept encapsulates the power of relational databases. You see many examples of

the use of both primary keys and foreign keys in the Joins you work with in this chapter.

Using Inner Joins

An Inner Join between two or more tables, as discussed, represents the intersection of the sets of keys

matching some query. The most common form of query used in creating an Inner Join involves the

selection of rows that have a key equal to some particular value. A typical example might be to find

data from a number of tables where the Customer_ID equals that of a specific customer. Joins using

this equality test are called Equi-Joins, and are discussed in the next section.

Using Equi-Joins

SQL Joins work by matching up equivalent columns in different tables by comparing keys. The most

common type of Join is an Equi-Join, where you look for items in one table that have the same item

number as items in another. The first example demonstrates how Equi-Joins work.

The examples throughout Part II have used variations on the Customers table shown in Table 9-1 and

the Inventory table shown in Table 9-2. These tables form the basis of an order management

database.

Table 9-1: Customer Table

Customer_Numb

er

First_Nam

e

M

I

Last_Nam

e

Street City Stat

e

Zip

100 Michael A Corleone 123

Pine

New

York

NY 1000

6

101 Fredo X Corleone 17 New NY 1000

Chapter 9:Joins and Compound Queries

-276-

Table 9-1: Customer Table

Customer_Numb

er

First_Nam

e

M

I

Last_Nam

e

Street City Stat

e

Zip

Main York 7

102 Sonny A Corleone 123

Walnut

Newark NJ 1234

6

103 Francis X Corleone 17

Main

New

York

NY 1000

5

104 Vito G Corleone 23 Oak

St

Newark NJ 1234

5

105 Tom B Hagen 37

Chestn

ut

Newark NJ 1234

5

106 Kay K Adams 109

Maple

Newark NJ 1234

5

107 Francis F Coppola 123

Sunset

Hollywoo

d

CA 2345

6

108 Mario S Puzo 124

Vine

Hollywoo

d

CA 2345

6

Table 9-2: Inventory Table

Item_Number Name Description Qty Cost

1001 Corn Flakes Cereal 130 1.95

1002 Rice Krispies Cereal 97 1.87

1003 Shredded Wheat Cereal 103 2.05

1004 Oatmeal Cereal 15 0.98

1005 Chocolate Chip Cookies 217 1.26

1006 Fig Bar Cookies 162 1.57

1007 Sugar Cookies Cookies 276 1.03

1008 Cola Soda 144 0.61

1009 Lemon Soda Soda 96 0.57

1010 Orange Soda Soda 84 0.71

In addition to the Customers table and the Inventory table you need a table that lists the orders by

order number, using one record per order, and containing the customer number of the customer

Chapter 9:Joins and Compound Queries

-277 -

placing the order, together with information such as order date and ship date. The Orders Table, as

shown in Table 9-3, maps orders to customers.

Table 9-3: Orders Table

Order_Number Customer_Number Order_Date Ship_Date

2 101 12/8/01 12/10/01

3 103 12/9/01 12/11/01

Finally, you need a table listing every item in each order. This table contains the order number, item

number, and quantity for each ordered item, as shown in Table 9-4.

Table 9-4: Ordered Items Table

ID Order_Number Item_Number Qty

5000 2 1001 2

5001 2 1004 1

5002 2 1005 3

5003 2 1010 6

5004 3 1006 4

5005 3 1009 2

The structure of these tables follows the basic principle of keeping related data items together and

separated from unrelated items. There is never, for example, a direct relationship between inventory

items and customers. The customer interacts with inventory through the mechanism of placing an

order. The order links to the inventory through the Ordered_Items Table and to the customer via the

customer number. The Ordered_Items Table provides a link between the order number and the items

in the Inventory Table.

Once the data has been divided logically among these four tables, as illustrated in Tables 9-1 through

9-4, you can write the following SQL command to get a list of the products in order number 2:

SELECT Orders.Order_number, Ordered_Items.Item_number,

 Ordered_Items.Qty, Inventory.Name,

 Inventory.Description

FROM Orders, Ordered_Items, Inventory

WHERE Orders.order_number = Ordered_Items.order_number AND

 Inventory.Item_Number = Ordered_Items.Item_Number AND

 Orders.order_number = 2;

Notice how the columns used in the WHERE clause comparison are the key columns of the various

tables. The dotted notation allows you to tell the database management system which table to look in

Chapter 9:Joins and Compound Queries

-278-

for each use of a given field, so the WHERE clause tells the DBMS to return data from the various tables

where the Order_Number fields match up and equal 2. This gives the following ResultSet:

Order_number Item_number Qty Name Description

2 1001 2 Corn Flakes Cereal

2 1004 1 Oatmeal Cereal

2 1005 3 Chocolate Chip Cookies

2 1010 6 Orange Soda

Although this approach of prefixing the column name by the table name works well, it is rather verbose.

Conventionally, SQL queries are made using short aliases for the table names. The use of aliases is

discussed in the next section.

Using an alias for the table name in a query

Conventionally, SQL queries are made using short aliases for the table names. Frequently, the alias is

a single letter, as shown here:

SELECT o.Order_number, oi.Item_number, oi.Qty, i.Name,

 i.Description

FROM Orders o, Ordered_Items oi, Inventory i

WHERE o.Order_number = oi.Order_number AND

 i.Item_Number = oi.Item_Number AND o.Order_number = 2;

The alias is defined in the FROM clause, since that is where the tables are identified, and is used

throughout the rest of the query.

Caution

The most important aspect of using aliases succesfully is to understand the order in

which parts of a SQL statement are executed. The use of aliases is discussed in more

detail in chapter 7.

Figure 9-2 shows the results produced by executing this query using the Swing Database Query tool

built in Chapter 7.

Chapter 9:Joins and Compound Queries

-279-

Figure 9-2: Using aliases to simplify queries

Figure 9-3 illustrates a slightly more complex query, involving all four tables and using calculated

results in columns, with names assigned in the query.

Figure 9-3: Returning calculated results from a Join

The example shown in Figure 9-3 does not take into account the possibility that you might want to write

a query where a customer is listed only once. To handle situations where this is the case, you need a

way to eliminate duplicate names from a result set.

Using DISTINCT to eliminate duplicates

There are many situations in which you may not want data to be repeated in a result set. For example,

if you are planning a special sale on cookies, you might want to send a mailer to only customers who

have bought cookies. Obviously, you want a list where each customer appears only once. This means

that you need to tell SQL to eliminate duplicate names.

To find which orders include cookies, perform an Equi-Join on the Inventory, Ordered_Items, and

Orders Tables. Then join the results on customers to get the name and address information for the

mailer.

The basic Join looks like this:

SELECT c.first_name, c.last_name, c.street, c.city, c.state,

 c.zip

FROM ORDERS o, customers c, ordered_items oi,

 inventory i

WHERE i.description = 'Cookies' AND

 i.item_number = oi.item_number AND

 oi.order_number = o.order_number AND

 o.customer_number = c.customer_number;

TE
AM
FL
Y

Team-Fly®

Chapter 9:Joins and Compound Queries

-280-

The result, as it stands, is not quite what you are looking for, in that Kay Adams appears twice because

she bought cookies twice. The solution is to insert the keyword DISTINCT into the SELECT clause,

telling the SQL engine to return only one instance of each record, as shown in Figure 9-4.

Figure 9-4: Using DISTINCT to eliminate duplicate records

Using Non-Equi-Joins

The Joins used up to this point have all been Equi-Joins, or Joins where the values of the keys used to

make the join have been equal to each other. However, it seems reasonable that you should be able to

do Non-Equi-Joins or Joins where the relationship is not equal. For example, since there are only two

orders in the Orders Table used in the previous example, you can get the other order using the

Non-Equi-Join. Here's an example:

SELECT c.Last_Name + ', ' + c.First_Name AS Customer, oi.Qty,

 i.Name, i.Description, i.Cost * 1.6 AS Price_Each,

 i.Cost * 1.6 * oi.Qty AS Price

FROM Orders o, Customers c, Ordered_Items oi, Inventory i

WHERE o.Order_number = oi.Order_number AND

 c.Customer_Number = o.Customer_Number AND

 i.Item_Number = oi.Item_Number AND o.Order_number <> 2;

Using Outer Joins

The Joins discussed so far have been Inner Joins. An Inner Join is a Join between two tables. An inner

Join includes only rows with matching rows in the both tables. A set oriented way of visualising Joins

was shown in Figure 9-1. Another easy way to visualize this is by drawing a diagram like Figure 9-5,

where the Customer_Number columns in the Customers and Orders Tables intersect in the shaded

area to identify an Inner Join.

Chapter 9:Joins and Compound Queries

-281 -

Figure 9-5: Tables joined on customer number

The two tables are shown in the rounded boxes, and the Joined fields are shaded.

Using an Inner Join, as shown in the last example, you can only list customers who have placed an

order, so their customer numbers fall into the shaded area of Figure 9-5. If you want a list of all

customers, together with the dates of any orders they have placed, you can't get there with an Inner

Join.

An Outer Join can include not only records inside the union of the sets or tables, but records outside

the union of the sets, as well. In other words, in addition to the set members that share customer

numbers, you can get customers in the lower, or "Outer," part of the joined tables.

There are three types of Outer Joins:
§ LEFT OUTER JOIN (*=)

§ RIGHT OUTER JOIN (=*)

§ FULL OUTER JOIN

The terms LEFT, RIGHT, and FULL describe which of the tables' unmatched columns to include in the

Join relative to the order in which the tables appear in the JOIN command.

LEFT OUTER JOIN

The LEFT OUTER JOIN operator includes all rows from the left side of the Join, as shown in Figure 9-6.

Figure 9-6: Executing a LEFT OUTER JOIN

RIGHT OUTER JOIN

Chapter 9:Joins and Compound Queries

-282-

It is important to note that "left" and "right" are completely dependent on the order of the tables in the

SQL statement, so you can turn this into a RIGHT OUTER JOIN by reversing the order of the tables in

the JOIN command. Here's an example:

SELECT c.Last_Name + ', ' + c.First_Name AS Customer,

 o.Order_Date

FROM ORDERS o RIGHT OUTER JOIN

 CUSTOMERS c ON c.customer_number = o.customer_number;

OUTER JOIN commands can also be written in shorthand similar to the form we use for our INNER
JOIN. This is the form for the LEFT OUTER JOIN:

SELECT c.Last_Name + ', ' + c.First_Name AS Customer,

 o.Order_Date

FROM CUSTOMERS c, ORDERS o

WHERE c.customer_number *= o.customer_number;

The form for the RIGHT OUTER JOIN follows:

SELECT c.Last_Name + ', ' + c.First_Name AS Customer,

 o.Order_Date

FROM ORDERS o, CUSTOMERS c

WHERE o.customer_number =* c.customer_number;

Note

In the shorthand version, the type of JOIN depends on both the order of the tables in the

FROM clause, and the position of the asterisk in the *= operator.

FULL OUTER JOIN

A FULL OUTER JOIN includes all unmatched rows from both tables in the result. For example, to find

any orders in the Orders Table with customer numbers that do not match any entries in our Customers

Table, you can execute a Full Outer Join to show all the entries in both tables, as shown in Figure 9-7.

Chapter 9:Joins and Compound Queries

-283 -

Figure 9-7: Full Outer Join

The preceding examples have illustrated the use of JOINS to find records from two tables with some

degree of commonality. The next section discusses how to obtain result sets which specifically exclude

those matching selected criteria.

Using NOT EXISTS

Now you know how to use INNER JOINS to find records from two tables with matching fields and how

to use OUTER JOINS to find all records, matching or nonmatching. Next, consider the case where you

want to find records from one table that don't have corresponding records in another.

Using the Customers and Orders Tables again, find all the customers who have not placed an order.

The way to do this is to find customer records with customer numbers that do not exist in the Orders

Table. Do this by using NOT EXISTS, as shown in Figure 9-8.

Figure 9-8: Using NOT EXISTS to find records in one table with no corresponding entry in another

table.

SELECT c.Last_Name + ', ' + c.First_Name AS Customer

FROM CUSTOMERS c

WHERE NOT EXISTS

 (SELECT *

 FROM orders o

 WHERE o.customer_number = c.customer_number);

In addition to joining tables to each other, it is sometimes useful to join a table to itself. The next section

discusses how and why you would perform a Self-Join on a table.

Using Self-Joins

Chapter 9:Joins and Compound Queries

-284-

A Self-Join is simply a normal SQL join that joins a table to itself. Use a Self-Join when rows in a table

contain references to other rows in the same table. Here's an example of this situation in a table of

employees, where each record contains a reference to the employee's supervisor by Employee_ID:

EMPLOYEE_ID FIRST_NAME LAST_NAME SUPERVISOR

100 Michael Corleone 104

101 Fredo Corleone 100

102 Sonny Corleone 100

103 Francis Corleone 100

104 Vito Corleone 99

105 Tom Hagen 100

106 Kay Adams 100

107 Francis Coppola 100

108 Mario Puzo 100

Since the supervisor is also an employee, information about the supervisor is stored in the Employees

Table, so you use a Self-Join to access it. Do this by using table-name aliases to give each reference

to the table a separate name.

To get a list of employees and their supervisors, create a Self-Join by creating two separate references

to the Employees Table, using two different aliases. An example is shown in Figure 9-9.

Figure 9-9: Using a Self-Join

The preceding SQL code is effectively creating what looks like two identical tables, e and boss, and

joining them using an Inner Join, so that you can get employee information from one reference to the

table and supervisor information from the other:

You can turn this into an Outer Self-Join very easily, as follows:

SELECT e.last_name, e.first_name,

Chapter 9:Joins and Compound Queries

-285-

 boss.last_name + ', ' + boss.first_name AS Boss

FROM EMPLOYEES e, employees boss

WHERE e.supervisor *= boss.employee_id;

This returns one additional row; the Employee_ID of Vito's supervisor does not appear in the

Employees Table, so his boss is shown as <NULL> in the example of Figure 9-10.

Figure 9-10: Using an Outer Self-Join

In addition to using joins, you can combine data from two separate sources using the UNION operator.

The next section describes the UNION operator.

Using the UNION Operator to Combine Queries

Another way to combine data from two separate sources is to use the UNION operator. The default

action of the UNION operator is to combine the results of two or more queries into a single query and to

eliminate any duplicate rows. When ALL is used with UNION, duplicate rows are not eliminated.

In Figure 9-11, the first query returns the names and addresses of all the Corleones, and the second

returns all customers in New Jersey. The UNION operator combines the results, removing the duplicate

records that are generated for Corleones in New Jersey.

Chapter 9:Joins and Compound Queries

-286-

Figure 9-11: Using the UNION operator to combine two result sets

Understanding Cartesian Products

Cartesian Products, or cross products, are something you normally want to avoid. The Cartesian

Product of a Join occurs when every record in one table is joined on every record of the other, so

the Cartesian Product of two tables of 100 rows each is10,000 rows.

Cartesian Products are normally an error, caused by a bad or nonexistent WHERE clause. In the

case of a small table like the ones in our examples, this is not a major problem, but on a large

database, the time taken to generate cross products of thousands of rows can be significant.

You can use ORDER BY to sort the combined answer set by adding the ORDER BY clause after the last

query. You do not have to use the same column in each query. Only the column counts and column

types needs to match. If you create a UNION of two result sets with different columns, you have to

apply the ORDER BY clause using the column number. An example of this usage is shown in Figure

9-12.

Figure 9-12: Using ORDER BY on a UNION

Chapter 9:Joins and Compound Queries

-287 -

Two further set operators are supported by some SQL dialects. These are the EXCEPT operator, and

the INTERSECT operator, which are discussed in the following paragraphs.

EXCEPT Operator

The EXCEPT operator creates a result set by including all rows returned by the first query but not

returned by the second query. The default version eliminates all duplicate rows, but EXCEPT ALL does

not.

INTERSECT Operator

The INTERSECT operator creates a result set by including only rows that exist in both queries and by

eliminating all duplicate rows. When you use ALL with INTERSECT, the duplicate rows are not

eliminated.

Summary

In this chapter, you learn about the following topics:

§ INNER JOINS and OUTER JOINS

§ EQUI-JOINs

§ NON-EQUI-JOINs

§ OUTER JOINs

§ LEFT OUTER JOINS

§ RIGHT OUTER JOINS

§ FULL OUTER JOINS

§ SELF-JOINS

§ Cartesian Products

§ The UNION operator

The next chapter discusses MetaData and moves on to combine the topics discussed thus far to build

a complete client/server application.

Chapter 10:Building a Client/Server Application

-289-

Chapter 10: Building a Client/Server Application

In This Chapter

The aim of this chapter is to round out the discussion of the Java Database Connectivity (JDBC) core
application programming interface (API). Also, this chapter extends the code examples using simple
components in a client/server architecture. In addition, the chapter combines those examples to create
a complete, general-purpose database-management console application. This application forms the
basis of a generic toolkit for working with any data source from a flat file to a full object relational
database.

In the process of creating this application, the capabilities of the MetaData objects in the core API are
explored. The chapter also explains how to connect to different databases and use different drivers
within a single application.

To add to the functionality of this database management application, the chapter discusses measuring
and displaying the time taken to execute a query. The examples illustrate the significant difference in
performance between a good commercial pure Java driver and the jdbc-odbc bridge provided by Sun as
a basic implementation of JDBC.

Using Different Databases and Drivers

To demonstrate the flexibility of JDBC, you can create copies of the Contacts database under a variety
of RDBMS systems and listed them in a JComboBox. The JComboBox is displayed in a
JOptionPane used to select the database, as illustrated in Figure 10-1.

Figure 10-1: Selecting different databases using a JComboBox

With this new dialog box, the user can select any of a number of versions of the Contacts test database.
Once the selection has been made, a second dialog box is displayed to enable the selection of a JDBC
driver.

Although the use of other drivers is mentioned briefly at the beginning of Chapter 5, the examples in
earlier chapters all use the JDBC-ODBC bridge, leaving the choice of database management system
open. The reason for this is to get straight into the nuts and bolts of creating and working with a
database.

As discussed in Chapter 4, the JDBC-ODBC bridge has one significant advantage when working with a
variety of databases: it can be used with virtually any RDBMS, whereas most other drivers are
database-system specific. On the other hand, it has the disadvantage of being less efficient than, for
example, a pure Java driver optimized for a specific RDBMS (just how much less efficient is
demonstrated by the query-timing code discussed later in this chapter).

The DriverManager can load a JDBC driver in two ways:

Chapter 10:Building a Client/Server Application

-290-

§ During initialization, when the DriverManager loads drivers listed in the "jdbc.drivers"
system property.

§ Using Class.forName(), when a program can also explicitly load JDBC drivers at any time

When getConnection() is called, the DriverManager attempts to locate a suitable driver from
amongst those loaded at initialization and those loaded explicitly. It does this by polling all registered
drivers, passing the URL of the database to each driver's acceptsURL() method.

To illustrate explicit loading of a JDBC driver, a new JOptionPane with a JComboBox listing several
different JDBC drivers has been added to the DBManager class. This makes it possible for the user to
select the SQL Server version and use either the JdbcOdbcDriver or the Opta2000 pure Java driver.

Note

For brevity, the String arrays driving these JOptionPanes are restricted to only a few
sample items.

In addition to these changes, a couple of new features have been included to the application to add the
following functionality:
§ Window Menu has been added, together with some supporting code that allows the user to

perform such window-management tasks as cascading and tiling the JInternalFrames used to
display result sets and other information.

§ Help Menu has been added to allow the user to access information about the database
management system and the JDBC driver in use.

§ StatusPanel has been added to the bottom of the JFrame to support a message and a timer
display showing the time required to execute a statement.

§ Code has been added to get the system time before and after connecting to the database. The
elapsed time in milliseconds is calculated from the difference between these times and is displayed
on the status bar added to the bottom of the JFrame.

The code for the Window Menu and the Help Menu is similar to the menus shown in earlier chapters.
Listing 10-1 shows the cascade and tile functions supported.

Listing 10-1: The Window Menu

package JavaDatabaseBible.part2;
import java.awt.*;

import javax.swing.*;

public class WindowMenu extends DBMenu{
 public WindowMenu(){

 setText("Window");
 setActionCommand("Window");

 setBorderPainted(false);
 add(new DBMenuItem("Cascade",'C',itemListener,true));

 add(new DBMenuItem("Tile horizontally",'H',itemListener,true));
 add(new DBMenuItem("Tile vertically",'V',itemListener,true));

 }
}

The window-management functions are implemented in the DBManager class through the cascade(),
tileVertically(), and tileHorizontally() methods. The selected() method is used to
identify the currently selected JInternalFrame in order to position it correctly.

The StatusPanel class is also very simple. It incorporates a couple of JLabels added to the CENTER
and EAST areas of a JPanel with BorderLayout, as shown in Listing 10-2. The StatusPanel is

TE
AM
FL
Y

Team-Fly®

Chapter 10:Building a Client/Server Application

-291 -

added to the SOUTH area of the main JFrame. JavaBean style-setter methods are used to set the
messages the Status Panel displays.

Listing 10-2: Status Panel

package JavaDatabaseBible.part2;

import java.awt.*;
import javax.swing.*;

public class StatusPanel extends JPanel{

 JLabel msgLabel = new JLabel();
 JLabel timerLabel = new JLabel();

 public StatusPanel(){
 setLayout(new BorderLayout());

 add(msgLabel,BorderLayout.CENTER);
 add(timerLabel,BorderLayout.EAST);

 }
 public StatusPanel(String message){

 this();
 setMessage(message);

 }
 public void setMessage(String message){

 msgLabel.setText(message);
 }

 public void setTimerMsg(String message){
 timerLabel.setText(message);

 }
}

The Expanded DBManager Class

Since the changes to the DBManager class are fairly extensive, the whole class is shown in Listing 10-3,
rather than showing the changes piecemeal. Comments have been added to identify the changes
specific to this chapter.

Listing 10-3: The DBManager class

package JavaDatabaseBible.part2;

import java.awt.*;
import java.awt.event.*;

import javax.swing.*;

public class DBManager extends JFrame{
 JMenuBar menuBar = new JMenuBar();

Chapter 10:Building a Client/Server Application

-292-

 JDesktopPane desktop = new JDesktopPane();
 StatusPanel statusBar = new StatusPanel("Ready");

 String database = null;
 String jdbcDriver = null;

 String tableName = null;
 String menuSelection = null;

 TableBuilderFrame tableMaker = null;
 TableEditFrame tableEditor = null;

 TableQueryFrame tableQuery = null;
 DatabaseUtilities dbUtils = null;

 InfoDialog infoDlg = null;

 TableMenu tableMenu = new TableMenu();
 EditMenu editMenu = new EditMenu();

 ViewMenu viewMenu = new ViewMenu();
 WindowMenu windowMenu = new WindowMenu();

 HelpMenu helpMenu = new HelpMenu();

 MenuListener menuListener = new MenuListener();

 public DBManager(){
 setJMenuBar(menuBar);

 setTitle("Java Database Bible");
 setIconImage((new ImageIcon("od.gif")).getImage());

 getContentPane().setLayout(new BorderLayout());
 getContentPane().add(desktop,BorderLayout.CENTER);

 getContentPane().add(statusBar,BorderLayout.SOUTH);
 setSize(new Dimension(480,320));

 menuBar.add(tableMenu);

 tableMenu.setMenuListener(menuListener);

 menuBar.add(editMenu);
 editMenu.setMenuListener(menuListener);

 menuBar.add(viewMenu);

 viewMenu.setMenuListener(menuListener);

 menuBar.add(windowMenu); // added for Chapter 10
 windowMenu.setMenuListener(menuListener);

 menuBar.add(helpMenu); // added for Chapter 10

 helpMenu.setMenuListener(menuListener);

Chapter 10:Building a Client/Server Application

-293-

 setVisible(true);

 }

 private void displayTableBuilderFrame(){
 tableName = JOptionPane.showInputDialog(this,"Table:",

 "Select table",JOptionPane.QUESTION_MESSAGE);
 tableMaker = new TableBuilderFrame(tableName);

 tableMaker.setCommandListener(new CommandListener());
 desktop.add(tableMaker);

 tableMaker.setSize(desktop.getSize());
 tableMaker.setVisible(true);

 }

 private void displayTableEditFrame(){
 tableName = JOptionPane.showInputDialog(this,"Table:",

 "Select table",JOptionPane.QUESTION_MESSAGE);
 tableEditor = new TableEditFrame(tableName,dbUtils);

 desktop.add(tableEditor);
 tableEditor.setSize(desktop.getSize());

 tableEditor.setVisible(true);
 }

 private void displayTableQueryFrame(){

 tableName = JOptionPane.showInputDialog(this,"Table:",
 "Select table",JOptionPane.QUESTION_MESSAGE);

 tableQuery = new TableQueryFrame(tableName,dbUtils);
 desktop.add(tableQuery);

 tableQuery.setSize(desktop.getSize());
 tableQuery.setVisible(true);

 }
 // added for Chapter 10

 private void displayInfoDialog(){
 infoDlg = new InfoDialog(dbUtils);

 Rectangle r = getBounds();
 infoDlg.setBounds(r.x+r.width-250,r.y+10,240,360);

 infoDlg.setVisible(true);
 }

 private void selectDatabase(){

 // revised for Chapter 10
 String[] databases = { "MSAccessContacts", "MySQLContacts",

 "OracleContacts", "SQLServerContacts",

Chapter 10:Building a Client/Server Application

-294-

 "SybaseContacts" };

 database = (String)JOptionPane.showInputDialog(null, "Database:",
 "Select database", JOptionPane.QUESTION_MESSAGE,

 null, databases, databases[0]);

 dbUtils = new DatabaseUtilities();

 // added for Chapter 10
 dbUtils.setJdbcDriverName(selectJDBCDriver());

 if(database.equals("SQLServerContacts")&&

 jdbcDriver.equals("com.inet.tds.TdsDriver"))
 dbUtils.setDatabaseUrl("jdbc:inetdae7:localhost:1433");

 dbUtils.setUserName("dba");
 dbUtils.setPassword("sa");

 if(!dbUtils.connectToDatabase(database)){

 statusBar.setMessage("Error connecting to "+database);
 return;

 }
 // added for Chapter 10

 statusBar.setMessage("Retrieving MetaData from "+database);
 statusBar.repaint();

 System.out.println("Retrieving MetaData from "+database);

 java.util.Date startTime = new java.util.Date();

 MetaDataFrame dbTree = new MetaDataFrame(database,dbUtils);
 java.util.Date endTime = new java.util.Date();

 long elapsed = endTime.getTime() - startTime.getTime();
 statusBar.setTimerMsg("Elapsed time = "+elapsed+" ms");

 desktop.add(dbTree);

 dbTree.setSize(desktop.getSize());
 dbTree.setVisible(true);

 tableMenu.enableMenuItem("New Table",true);

 tableMenu.enableMenuItem("Drop Table",true);

 editMenu.enableMenuItem("Insert",true);
 editMenu.enableMenuItem("Update",true);

 editMenu.enableMenuItem("Delete",true);

Chapter 10:Building a Client/Server Application

-295-

 viewMenu.enableMenuItem("ResultSet",true);

 helpMenu.enableMenuItem("Database Info",true);

 }
 // added for Chapter 10

 private String selectJDBCDriver(){
 String[] drivers = { "sun.jdbc.odbc.JdbcOdbcDriver",

 "com.inet.tds.TdsDriver"};

 jdbcDriver = (String)JOptionPane.showInputDialog(null, "JDBCDriver:",
 "Select JDBC Driver", JOptionPane.QUESTION_MESSAGE,

 null, drivers, drivers[0]);
 return jdbcDriver;

 }

 private void executeSQLCommand(String SQLCommand){
 dbUtils.update(SQLCommand);

 }

 private void dropTable(){
 tableName = JOptionPane.showInputDialog(this,"Table:",

 "Select table",JOptionPane.QUESTION_MESSAGE);
 int option = JOptionPane.showConfirmDialog(null,

 "Dropping table "+tableName,
 "Database "+database,

 JOptionPane.OK_CANCEL_OPTION);
 if(option==0){

 executeSQLCommand("DROP TABLE "+tableName);
 }

 }
 // added for Chapter 10

 private int selected(){
 JInternalFrame[] jif = desktop.getAllFrames();

 for(int i=0;i<jif.length;i++){
 if(jif[i].isSelected())return i;

 }
 return 0;

 }
 // added for Chapter 10

 private void cascade(){
 JInternalFrame[] jif = desktop.getAllFrames();

 int j = selected();

Chapter 10:Building a Client/Server Application

-296-

 int nJifs = jif.length;
 j=(j<nJifs-1)?j+1:0;

 Dimension d = desktop.getSize();
 for(int i=0;i<nJifs;i++){

 jif[i].setBounds(
 new Rectangle(i*20,i*20,d.width-nJifs*20,d.height-nJifs*20));

 jif[i].toFront();
 j=(j<nJifs-1)?j+1:0;

 }
 }

 // added for Chapter 10
 private void tileVertically(){

 JInternalFrame[] jif = desktop.getAllFrames();
 int j = selected();

 int nJifs = jif.length;
 Dimension d = desktop.getSize();

 for(int i=0;i<nJifs;i++){
 jif[i].setBounds(new
Rectangle(i*d.width/nJifs,0,d.width/nJifs,d.height));
 jif[i].toFront();
 j=(j<nJifs-1)?j+1:0;

 }
 }

 // added for Chapter 10
 private void tileHorizontally(){

 JInternalFrame[] jif = desktop.getAllFrames();
 int j = selected();

 int nJifs = jif.length;
 Dimension d = desktop.getSize();

 for(int i=0;i<nJifs;i++){
 jif[i].setBounds(

 new Rectangle(0,i*d.height/nJifs,d.width,d.height/nJifs));
 jif[i].toFront();

 j=(j<nJifs-1)?j+1:0;
 }

 }

 class MenuListener implements ActionListener{
 public void actionPerformed(ActionEvent event){

 String menuSelection = event.getActionCommand();
 if(menuSelection.equals("Database")){

 selectDatabase();
 }else if(menuSelection.equals("New Table")){

Chapter 10:Building a Client/Server Application

-297 -

 displayTableBuilderFrame();
 }else if(menuSelection.equals("Drop Table")){

 dropTable();
 }else if(menuSelection.equals("Insert")){

 displayTableEditFrame();
 }else if(menuSelection.equals("ResultSet")){

 displayTableQueryFrame();
 }else if(menuSelection.equals("Cascade")){// added for Chapter 10

 cascade();
 }else if(menuSelection.equals("Tile vertically")){

 tileVertically();
 }else if(menuSelection.equals("Tile horizontally")){

 tileHorizontally();
 }else if(menuSelection.equals("Database Info")){

 displayInfoDialog();
 }else if(menuSelection.equals("Exit")){

 System.exit(0);
 }

 }
 }

 class ExceptionListener implements ActionListener{

 public void actionPerformed(ActionEvent event){
 String exception = event.getActionCommand();

 JOptionPane.showMessageDialog(null, exception,
 "SQL Error", JOptionPane.ERROR_MESSAGE);

 }
 }

 class CommandListener implements ActionListener{

 public void actionPerformed(ActionEvent event){
 String SQLCommand = event.getActionCommand();

 executeSQLCommand(SQLCommand);
 }

 }
 public static void main(String args[]){

 DBManager dbm = new DBManager();
 }

}

The simplest way to illustrate the use of a JDBC application with different databases and different
drivers is to move on to the next topic and to use the new version of the DBManager class as the basis
of the examples.

Chapter 10:Building a Client/Server Application

-298-

The most noticeable effects of modifying the example to handle different RDBMS systems and different
drivers are how minimal the required changes are and how pronounced a difference it makes to use the
Opta2000 driver instead of the jdbc:odbc bridge in terms of speed.

Using DatabaseMetaData

The DatabaseMetaData interface provides the following types of information about the database:
§ General information about the data source, including:

§ Database product name and version
§ Driver name
§ Database URL

§ Feature support, such as:
§ SQL92 Support level
§ SQL keywords recognized
§ Transaction Isolation levels supported
§ Support of features such as batch updates

§ Data-source limits including:
§ The maximum number of columns in a table
§ The maximum lengths of column and table names

§ Information about the SQL objects the source contains, such as:
§ The types of tables in a catalog
§ The names of all tables of each type
§ Information about all columns in the tables

Many of the DatabaseMetaData methods return information in ResultSets, allowing you to use
ResultSet methods such as getString() and getInt() to retrieve this information. If a given form
of metadata is not available, these methods throw a SQLException. The next section illustrates how to
retrieve information about the database.

Retrieving Information about the Database

Figure 10-2 illustrates the kind of information you can get about a database using the
DatabaseMetaData object. The JTree displays the types of tables in the database, with the table
names of each type of table displayed as child nodes of the table type. Tables can be expanded to
display column names, and the columns themselves can be expanded to show information about the
column.

Figure 10-2: Tree view of tables in a database

Chapter 10:Building a Client/Server Application

-299-

Figure 10-2 also shows how long the application takes to get all the metadata for the display using the
sun.jdbc.odbc.JdbcOdbcDriver. Contrast this elapsed time of nearly seven seconds with the
elapsed time of just over two seconds for the Opta2000 driver, shown in Figure 10-3. Although the
timing methodology used is by no means rigorous, the results speak for themselves.

Figure 10-3: Additional DatabaseMetaData information

Many of the DatabaseMetaData methods take so-called "String pattern" arguments. These are
arguments that may contain a mixture of Strings and wildcards. The wild cards conform to the normal
wildcard rules for SQL Strings:
§ "%" means match any substring of 0 or more characters.
§ "_" means match any one character.

If a search-pattern argument is set to null, that argument's criteria will be ignored in the search.

Cross-
Reference SQL escapes and wildcards are discussed in Chapter 3.

If a driver does not support a metadata method, a SQLException will normally be thrown. In the case
of methods that return a ResultSet, either a ResultSet (which may be empty) is returned or a
SQLException is thrown.

After connecting to the SQLServerContacts database, the DatabaseMetaData object is first queried
for all table types, then for all tables within a type, then for columns within a table, and finally for
information about the columns themselves. The results are used to populate the JTree.

A DatabaseMetaData object is created using the Connection.getMetaData() method. It is then
used to get information about the database, as in the example shown in Listing 10-4, which gets the
types of the tables in the database.

Listing 10-4: Retrieving table types

 public Vector getTableTypes(){
 Vector typeVector = new Vector();

 try{
 Connection con = DriverManager.getConnection(url,userName,password);

 DatabaseMetaData dbmd = con.getMetaData();
 ResultSet rs = dbmd.getTableTypes();

 ResultSetMetaData md = rs.getMetaData();
 while(rs.next()){

 typeVector.addElement(rs.getString(1));

Chapter 10:Building a Client/Server Application

-300-

 }
 }

 catch(SQLException e){
 reportException(e);

 }
 return typeVector;

 }

The method getTableTypes() returns a ResultSet containing a single String column per row,
identifying the table type. Typically, these types are as follows:
§ TABLE
§ VIEW
§ SYSTEM TABLE

Using this table-type information, you can get the actual table names using the getTables() method.
An example is shown in Listing 10-5.

Listing 10-5: Retrieving tables

 public Vector getTables(String[] types){

 Vector tableVector = new Vector();
 try{

 Connection con = DriverManager.getConnection(url,userName,password);
 DatabaseMetaData dbmd = con.getMetaData();

 ResultSet rs = dbmd.getTables(null,null,"%",types);
 ResultSetMetaData md = rs.getMetaData();

 int nColumns = md.getColumnCount();
 while(rs.next()){

 tableVector.addElement(rs.getString("TABLE_NAME"));
 }

 }
 catch(SQLException e){

 reportException(e);

 }
 return tableVector;

 }

The code to get the table names is similar to that used to get the table types. The most significant
difference is in the argument list for the getTables() method. Since these types of arguments are
fairly common when using metadata methods, it is worth discussing them in some detail.

The getTables() method takes these four arguments:

getTables(String catalog,
 String schemaPattern,

 String tableNamePattern,
 String[] types);

Here are explanations of each argument:

TE
AM
FL
Y

Team-Fly®

Chapter 10:Building a Client/Server Application

-301 -

§ Catalog — a pair of double quotes ("") retrieves tables without a catalog, and null retrieves all
tables.

§ SchemaPattern — a pair of double quotes ("") retrieves tables without a schema, and null
retrieves all tables.

§ TableNamePattern — This is a table-name pattern similar to the argument used with SQL
"LIKE". The"%" matches any substring of 0 or more characters, and "_" matches any one character.

§ Types — an array of table types to include; null returns all types.

The getTables() method returns a ResultSet containing descriptions of the tables available in a
catalog. The result set contains the columns shown in Table 10-1.

Table 10-1: Columns Returned by getTables()

Column Column Name Type Contents

1. TABLE_CAT String table_catalog (may be null)

2. TABLE_SCHEM String table_schema (may be null)

3. TABLE_NAME String table_name

4. TABLE_TYPE String table_type: "TABLE", "VIEW", "SYSTEM TABLE",
etc.

5. REMARKS String remarks explanatory comment on the table

Note

Some databases may not return information for all tables.

The DatabaseMetaData object also provides a mechanism to retrieve detailed information about the
columns in a table through the use of the getColumns() method. Like the getTables() method, the
getColumns() method returns a ResultSet. The method's argument list is also similar in that it takes a
number of String patterns:

public ResultSet getColumns(String catalog,

 String schemaPattern,
 String tableNamePattern,

 String columnNamePattern);

Here are explanations of each argument:
§ Catalog — A pair of double quoutes ("") retrieves tables without a catalog, and null retrieves all

tables.
§ SchemaPattern — The double quotes ("") retrieve tables without a schema, and null retrieves

all tables.
§ TableNamePattern — This is a table name pattern similar to the argument used with SQL

"LIKE". The "%" matches any substring of 0 or more characters; "_" matches any one character.
§ columnNamePattern— This is a column name pattern similar to the argument used with SQL

"LIKE". The "%" matches any substring of 0 or more characters; "_" matches any one character.

Using the table information that the code in Listing 10-5 returns, you can get column information using
the getColumns() method. An example is shown in Listing 10-6.

Listing 10-6: Retrieving column data

 public Vector getColumns(String tableName){

 Vector columns = new Vector();
 Hashtable columnData;

 try{
 Connection con = DriverManager.getConnection(url,userName,password);

Chapter 10:Building a Client/Server Application

-302 -

 DatabaseMetaData dbmd = con.getMetaData();
 String catalog = con.getCatalog();

 ResultSet rs = dbmd.getColumns(catalog,"%",tableName,"%");
 ResultSetMetaData md = rs.getMetaData();

 int nColumns = md.getColumnCount();
 String value;

 while(rs.next()){
 columnData = new Hashtable();

 for(int i=1;i<=nColumns;i++){
 value = rs.getString(i);

 if(value==null)value="<NULL>";
 columnData.put(md.getColumnLabel(i),value);

 }
 columns.addElement(columnData);

 }
 }

 catch(SQLException e){
 reportException(e);

 }
 return columns;

 }

The code examples of Listings 10-5, 10-5, and 10-6 are additions to the DatabaseUtilities class.
Further examples of the use of DatabaseMetaData are given later in this chapter.

Note

Many of the DatabaseMetaData methods have been added or modified in JDBC 2.0 and
JDBC 3.0, so if your driver is not JDBC 2.0 or JDBC 3.0 compliant, a SQLException
may be thrown by some DatabaseMetaData methods.

Displaying DatabaseMetaData in a JTree

The class required to display the table and column data retrieved from the DatabaseMetaData object
is an extension of JInternalFrame. This is used to display a JTree in a JScrollPane, as shown
in Listing 10-7.

Listing 10-7: Displaying DatabaseMetaData in a JTree

package JavaDatabaseBible.part2;

import java.awt.*;
import java.util.Hashtable;

import java.util.Vector;
import javax.swing.*;

import javax.swing.JTree;
import javax.swing.border.*;

import javax.swing.tree.*;

Chapter 10:Building a Client/Server Application

-303 -

class MetaDataFrame extends JInternalFrame{

 protected JTree tree;
 protected JScrollPane JTreeScroller = new JScrollPane();

 protected DatabaseUtilities dbUtils;
 protected String dbName;

 protected String[] tableTypes;
 protected JPanel JTreePanel = new JPanel();

 public MetaDataFrame(String dbName, DatabaseUtilities dbUtils){

 setLocation(0,0);
 setClosable(true);

 setMaximizable(true);
 setIconifiable(true);

 setResizable(true);
 getContentPane().setLayout(new BorderLayout());

 this.dbName=dbName;
 this.dbUtils=dbUtils;

 setTitle(dbName);
 init();

 setVisible(true);
 }

 // initialise the JInternalFrame

 private void init(){
 JTreePanel.setLayout(new BorderLayout(0,0));

 JTreePanel.setBackground(Color.white);
 JTreeScroller.setOpaque(true);

 JTreePanel.add(JTreeScroller,BorderLayout.CENTER);
 DefaultTreeModel treeModel = createTreeModel(dbName);

 tree = new JTree(treeModel);
 tree.setBorder(new EmptyBorder(5,5,5,5));

 JTreeScroller.getViewport().add(tree);
 JTreePanel.setVisible(true);

 JTreeScroller.setVisible(true);
 tree.setRootVisible(true);

 tree.setVisible(true);
 getContentPane().add(JTreePanel,BorderLayout.CENTER);

 }

 // Create a TreeModel using DefaultMutableTreeNodes
 protected DefaultTreeModel createTreeModel(String dbName){

 DefaultMutableTreeNode treeRoot = new DefaultMutableTreeNode(dbName);

Chapter 10:Building a Client/Server Application

-304 -

 Vector tableTypes = dbUtils.getTableTypes();
 for(int i=0;i<tableTypes.size();i++){

 DefaultMutableTreeNode tableTypeNode =
 new DefaultMutableTreeNode((String)tableTypes.elementAt(i));

 treeRoot.add(tableTypeNode);
 String[] type = new String[]{(String)tableTypes.elementAt(i)};

 Vector tables = dbUtils.getTables(type);
 for(int j=0;j<tables.size();j++){

 DefaultMutableTreeNode tableNode =
 new DefaultMutableTreeNode(tables.elementAt(j));

 tableTypeNode.add(tableNode);
 Vector columns = dbUtils.getColumns((String)tables.elementAt(j));

 for(int k=0;k<columns.size();k++){
 Hashtable columnData = (Hashtable)columns.elementAt(k);

 DefaultMutableTreeNode columnNode =
 new DefaultMutableTreeNode(columnData.get("COLUMN_NAME"));

 columnNode.add(new DefaultMutableTreeNode("TYPE_NAME:
 "+columnData.get("TYPE_NAME")));

 columnNode.add(new DefaultMutableTreeNode("COLUMN_SIZE:
 "+columnData.get("COLUMN_SIZE")));

 columnNode.add(new DefaultMutableTreeNode("IS_NULLABLE:
 "+columnData.get("IS_NULLABLE")));

 tableNode.add(columnNode);
 }

 }
 }

 return new DefaultTreeModel(treeRoot);
 }

}

Most of the work in Listing 10-7 is done in the createTreeModel() method. This method first calls
the getTableTypes() method shown in Listing 10-4 to get a vector of table-type names. These are
used to create DefaultMutableTreeNodes attached to the root node representing the selected database.

For each table type, a vector of table names of that type is returned by the getTables() method
shown in Listing 10-5. These are used to create DefaultMutableTreeNodes that are attached to the
table-type nodes representing each of the tables.

Finally, for each table, a vector of Hashtables of column descriptors is obtained by calling the
getColumns() method shown in Listing 10-6. This information is used to create the column node and
column-information child nodes shown in Figure 10-2. Only a small amount of the available column
information is used in this display for reasons of clarity. Additional fields that the getColumns()
method makes available include those listed in Table 10-2.

Table 10-2: Column Information Provided by getColumns()

Column Name Type Meaning

TABLE_CAT String table catalog (may be null)

Chapter 10:Building a Client/Server Application

-305-

Table 10-2: Column Information Provided by getColumns()

Column Name Type Meaning

TABLE_SCHEM String table schema (may be null)

TABLE_NAME String table name

COLUMN_NAME String column name

DATA_TYPE short SQL type from java.sql.Types

TYPE_NAME String Data source dependent type name

COLUMN_SIZE int column size.

DECIMAL_DIGITS int the number of fractional digits

NUM_PREC_RADIX int Radix (typically either 10 or 2)

NULLABLE int § columnNoNulls - might not allow NULL values

§ columnNullable - definitely allows NULL values

§ columnNullableUnknown - nullability unknown

REMARKS String comment describing column (may be null)

COLUMN_DEF String default value (may be null)

CHAR_OCTET_LENGTH int the maximum number of bytes in the column

ORDINAL_POSITION int index of column in table (starting at 1)

IS_NULLABLE String § "NO" means column definitely does not allow
NULLs.

§ "YES" means the column might allow NULL
values.

§ An empty string means nullability unknown.

In addition to information about the structure of the database, you will frequently find it useful to know
something about the capabilities of the RDBMS itself. The methods supported by the
DatabaseMetaData object to provide this type of information are discussed in the next section.

Retrieving Information about RDBMS Functionality

In addition to describing the structure of the database, the DatabaseMetaData object provides
methods to access to a great deal of general information about the RDBMS itself. Some of the
information you can retrieve about the database-management system is illustrated in Figure 10-3.

The example shown in Figure 10-3 shows that the SQLServerContacts database is running under SQL
Server 7, using the Opta2000 pure Java driver from i-net Software. Also listed are some of the features
that this database configuration supports.

The elapsed time shown in the status bar is the time to access and display the tree view of the
DatabaseMetaData, as shown in Figure 10-2. The difference between the elapsed time of just over two
seconds using the Opta2000 driver and nearly seven seconds using the jdbc-odbc bridge illustrated in
Figure 10-3 is significant. The code required to retrieve this information is shown in Listing 10-8.

Listing 10-8: Retrieving information about the RDBMS

package JavaDatabaseBible.part2;

Chapter 10:Building a Client/Server Application

-306 -

import java.awt.*;
import java.util.Hashtable;

import java.util.Vector;
import javax.swing.*;

import javax.swing.JTree;
import javax.swing.border.*;

import javax.swing.tree.*;

public class InfoDialog extends JDialog{

 protected DatabaseUtilities dbUtils = null;
 protected JPanel dbInfoPanel = new JPanel();

 protected JPanel featuresPanel = new JPanel();
 protected JPanel topPanel = new JPanel(new BorderLayout());

 protected JPanel centerPanel = new JPanel(new BorderLayout());
 protected JPanel bottomPanel = new JPanel(new BorderLayout());

 public InfoDialog(DatabaseUtilities dbUtils){

 this.dbUtils=dbUtils;
 setTitle("Database Info");

 getContentPane().setLayout(new BorderLayout());

 String[] dbInfo = dbUtils.databaseInfo();
 dbInfoPanel.setLayout(new GridLayout(dbInfo.length,1,2,2));

 for(int i=0;i<dbInfo.length;i++){
 dbInfoPanel.add(new JLabel(dbInfo[i]));

 }
 dbInfoPanel.setBorder(new CompoundBorder(

 new BevelBorder(BevelBorder.LOWERED),
 new EmptyBorder(2,2,2,2)));

 topPanel.add(new JLabel(" Database and Driver:"),BorderLayout.NORTH);
 topPanel.add(dbInfoPanel,BorderLayout.CENTER);

 getContentPane().add(topPanel,BorderLayout.NORTH);

 String[] features = dbUtils.featuresSupported();
 featuresPanel.setLayout(new GridLayout(features.length,1,2,2));

 for(int i=0;i<features.length;i++){
 featuresPanel.add(new JLabel(features[i]));

 }
 featuresPanel.setBorder(new CompoundBorder(

 new BevelBorder(BevelBorder.LOWERED),
 new EmptyBorder(2,2,2,2)));

 centerPanel.add(new JLabel(" Supported Features:"),BorderLayout.NORTH);

Chapter 10:Building a Client/Server Application

-307 -

 centerPanel.add(featuresPanel,BorderLayout.CENTER);
 getContentPane().add(centerPanel,BorderLayout.CENTER);

 }
}

Clearly, this example illustrates only a small percentage of the data available through the use of the
DatabaseMetaData object. It is well worth referring to the Javadocs available on the Sun Web site at:
http://java.sun.com/j2se/1.4/docs/api/java/sql/package-summary.html.

Note

A shorter link is http://java.sun.com/docs/. This takes you to he main Javadocs
page, and you can navigate from there.

In addition to DatabaseMetaData methods, JDBC provides a large number of useful methods for
accessing information about the ResultSet returned by a query. The next section discusses these
methods.

Using ResultSetMetaData

The ResultSetMetaData object is similar to the DatabaseMetaData object, with the exception that
it returns information specific to the columns in a ResultSet.

Information about the columns in a ResultSet is available by calling the getMetaData() method on
the ResultSet. The ResultSetMetaData object returned gives the number, types, and properties of its
ResultSet object's columns.

Table 10-3 shows some of the more commonly used methods of the ResultSetMetaData object.

Table 10-3: ResultSetMetaData Methods

ResultSetMetaData method Description

getColumnCount() Returns the number of columns in the ResultSet

getColumnDisplaySize(int column) Returns the column's max width in chars

getColumnLabel(int column) Returns the column title for use in displays

getColumnName(int column) Returns the column name

getColumnType(int column) Returns the column's SQL data-type index

getColumnTypeName(int column) Returns the name of the column's SQL data type

getPrecision(int column) Returns the number of decimal digits in the column

getScale(int column) Returns the number of digits to the right of the
decimal point

getTableName(int column) Returns the table name

isAutoIncrement(int column) Returns true if the column is autonumbered

isCurrency(int column) Returns true if the column value is a currency value

isNullable(int column) Returns true if the column value can be set to NULL

Listing 10-9 illustrates the use of the ResultSetMetaData methods getColumnCount and
getColumnLabel in an example where the column names and column count are unknown.

Listing 10-9: Using ResultSetMetaData

 public void printResultSet(String query){

Chapter 10:Building a Client/Server Application

-308-

 try {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 Connection con = DriverManager.getConnection ("jdbc:odbc:Inventory");
 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery(query);
 ResultSetMetaData md = rs.getMetaData();

 int nColumns = md.getColumnCount();

 for(int i=1;i<=nColumns;i++){
 System.out.print(md.getColumnLabel(i)+((i==nColumns)?"\n":"\t"));

 }
 while (rs.next()) {

 for(int i=1;i<=nColumns;i++){
 System.out.print(rs.getString(i)+((i==nColumns)?"\n":"\t"));

 }
 }

 }
 catch(Exception e){

 e.printStackTrace();
 }

 }

This example will print the ResultSet returned by a query to a file called "rs.txt". The command line to
run the example is:

java printResultSet jdbc:odbc:Contacts "SELECT * FROM CONTACT_INFO"

The output is tab delimited, so that it can easily be imported into MSWord. The example first retrieves
the column count for the ResultSet, then loops through the columns to get the column labels, which are
printed as the first line. It then loops through all the rows, retrieving the data in an inner loop. Table 10-4
shows the ResultSet output by the command line shown above.
Table 10-4: Formatting a ResultSet using ResultSetMetaData

FIRST_NAME MI LAST_NAME STREET CITY STATE ZIP

Michael A Corleone 123 Pine New York NY 10006

Fredo X Corleone 17 Main New York NY 10007

Sonny A Corleone 123 Walnut Newark NJ 12346

Francis X Corleone 17 Main New York NY 10005

Vito G Corleone 23 Oak St Newark NJ 12345

Tom B Hagen 37 Chestnut Newark NJ 12345

Kay K Adams 109 Maple Newark NJ 12345

Francis F Coppola 123 Sunset Hollywood CA 23456

Mario S Puzo 124 Vine Hollywood CA 23456

Michael J Fox 109 Sepulveda LA CA 91234

James A Caan 113 Sunset Hollywood CA 92333

Chapter 10:Building a Client/Server Application

-309 -

Summary

This chapter combines the examples in Chapters 5-9 to create the basis of a useful database-
management tool and test platform. In the process, you learn about:
§ Using DatabaseMetaData
§ Using ResultSetMetaData
§ Comparing the performance of different drivers

In Part 2 as a whole, you learn how to use the JDBC Core API to create, maintain, and query a
database. You also gain hands-on experience in creating a practical client/server application

Part III explores the JDBC 2.0 Extension API in the context of a web application example. Web
applications tend to be heavily database oriented, since they frequently involve a lot of form handling,
and the need to upload and download large data items using streams and large data base objects.

Part III:A Three-Tier Web Site with JDBC

-310-

Part III: A Three-Tier Web Site with
JDBC
Chapter List

Chapter 11: Building a Membership Web Site

Chapter 12: Using JDBC DataSources with Servlets and JavaServer Pages

Chapter 13: Using PreparedStatements and CallableStatements

Chapter 14: Using Blobs and Clobs to Manage Images and Documents

Chapter 15: Using JSPs, XSL, and Scrollable ResultSets to Display Data

Chapter 16: Using the JavaMail API with JDBC

Part Overview

A significant part of Java's success has been its application to server-side programming. One of the
most widespread applications of Java is the creation of dynamic Web sites using servlets, JSPs, and
databases. This part discusses the JDBC Extension API in the context of developing a membership-
based Web application.

The Web application employs a three-tier architecture built around an Apache/Tomcat-based Web
server that implements the business logic in Servlets and Java Server Pages. The Web server uses
JDBC to connect to a database server.

Since this part deals with Web applications, it includes an introduction to using Servlets and Java Server
Pages. Basic handling of HTML forms is also discussed.

More advanced form handling using PreparedStatements and CallableStatements is discussed
in a subsequent chapter. This chapter also discusses how to create stored procedures in SQL.

A relatively new feature in most databases is support for large objects such as images and entire
documents. Examples of uploading and storing image files as binary large objects, and downloading
them for display, are the subjects of another chapter.

In addition to discussing straightforward HTML applications, the possibilities of retrieving data as XML
are discussed. Examples illustrate how to use the same XML document to create two completely
different Web pages using an XSL transformation. This example also illustrates the use of scrollable
ResultSets.

This part closes with a chapter on writing an e-mail application. The application uses JDBC and SQL
with the JavaMail API to automate e-mail generation and to read and save e-mail to a database.

TE
AM
FL
Y

Team-Fly®

Chapter 11:Building a Membership Web Site

-311 -

Chapter 11: Building a Membership Web Site

In This Chapter

An area in which Java and databases are used together very frequently is in creating dynamic Web
sites. Part III of this book illustrates the use of the JDBC Extension API in the context of a membership
Web site. The Web site is built around a membership database that incorporates a number of different
tables. This chapter discusses the design of this database.

The application design uses a three-tier architecture built around an Apache/ Tomcat -based Web server.
Apache and Tomcat provide HTTP service and Servlet/Java Server Pages (JSP) support, respectively.
Several alternative products can handle these tasks very adequately, but Apache and Tomcat have
several advantages over most of the others, not the least of which is that they both run on all common
platforms. Appendix B is a guide to downloading and installing Apache and Tomcat. Both are easy to
install and run on Windows or Linux/Unix platforms.

Another important reason for selecting the Apache server to provide HTTP service and is that Apache is
the most widely used server on the Internet at the present time, having been selected for over 60
percent of all web sites. This means, of course, that Apache is the server you are most likely to be using.
Similarly, Tomcat was chosen as the Servlet and JSP engine since Sun selected Tomcat as the
reference implementation for servlets and JSP applications, thus there is a high probability that you will
use it at some time. A final advantage is that both are available for free download from jakarta.org.

Designing a Multi-Tier System

Partitioning a design into tiers allows you to apply various off-the-shelf technologies as appropriate for a
given situation. For example, a browser displaying Web pages generated from JSP pages and servlets
in the Web tier handles the client tier. This means that all you have to do is comply with the HTTP
specifications and avoid any technologies that all the browsers you expect to encounter do not support.

Since the browser and the RDBMS are, essentially, off-the-shelf products with clearly defined interfaces,
the following chapters concentrate on the business and presentation logic required to interface to them.
The interface to the browser is handled through the Web server, which serves static Web pages and
provides a front end for Tomcat. Tomcat is responsible for serving the dynamic Web content created in
Java using servlets and JSP pages.

The structure of the three-tier system is shown in Figure 11-1. On the left is the client machine running a
standard Web browser; in the center is the Web server; and on the right is the database server.

Figure 11-1: Three-tier Internet application

The business and data-presentation logic is handled using Java and JSPs in the Web-server tier. The
database itself can use virtually any RDBMS. The examples in the following chapters are based on SQL
Server and the Opta2000 drivers from Inet Software. This choice was made largely because the
Opta2000 drivers are a good example of a family of pure Java drivers that support the JDBC Extension
API, the primary topic of Part III of this book. Opta2000 drivers are available for most major databases.

Just as you will almost certainly have no trouble figuring out how to change parts of the sample code
that refer to my user name, password, and server name, I am sure you will have no trouble figuring out
how to switch to a different RDBMS using different drivers. The degree of difficulty involved in either
case is similar.

Chapter 11:Building a Membership Web Site

-312-

The examples concentrate on the servlets and JSPs, and the JavaBeans encapsulating the business
logic. These examples also illustrate various aspects of the JDBC Extension API.

Cross-
Reference One of the strengths of JDBC is that it is designed to plug and play with

virtually any relational database management system with a minimum of
effort. The use of different relational database management systems is
discussed in Part II, with extensive examples in Chapter 10.

The first step in designing the Web site is to define the functionality of the site and to design the
underlying database. Designing the database around the Web pages it supports makes the Java code
simpler and faster to implement. The functional requirements of the membership Web site application
are discussed in the next section.

Functional Requirements

The following chapters describe a membership web site that allows members to auction their vehicles
over the Internet. The main reason for choosing this theme is to exploit the opportunities it provides to
discuss the following important JDBC topics in the context of practical examples:
§ HTML form handling with servlets, JSP, and JDBC
§ Using scrollable ResultSets in a search engine
§ Using updatable ResultSets to allow a member to call up and modify his or her profile
§ Handling image upload, storage, and retrieval using HTML forms and blobs
§ Using the JavaMail API with JDBC to send and receive e-mail

The use of XML and XSLT to create different Web pages from the same ResultSet is also discussed
in the context of using updateable ResultSets to display data in one format and edit it in another
format. The examples in Part IV discuss the use of XML with JDBC in more detail.

The sample application supports the functionality common to most commercial catalog sites as well as
the normal features of a membership site. These include the following:
§ Member login
§ New member registration
§ Member data entry
§ Upload and storage of large objects such as images
§ Site search
§ Summary page display, with thumbnail photos
§ Links from the summary pages to detail pages
§ Automated email support

The best way to understand the logical structure of the Web site is to use a block diagram. The logical
structure of the Web site discussed in Chapters 11 through 16 is illustrated in Figure 11-2.

Chapter 11:Building a Membership Web Site

-313-

Figure 11-2: Structure of Web site developed in Chapters 11-16

The member login and registration process involves displaying HTML forms and processing their input.
The examples use both servlet and Java Server Page approaches using JavaBeans to encapsulate
logic functions. In addition to handling simple text-based forms, Chapter 14 shows you how to upload
images from a browser page and store them in a database.

Having reviewed the functional requirements of the application, you are ready to design the database.
The design of the database for this application is discussed in the next section.

Cross-
Reference The theoretical aspects of database design, are discussed in Part I. It is

particularly important to understand the use of primary anf foreign keys, as
well as the Normal Forms. Both of these topics are discussed in Chapter 2.

Designing the Database

As a catalog site, the sample application has to support the basic functionality common to most
commercial catalog sites. The primary functions supported include the following:
§ Handling member logins
§ Member registration
§ Data entry
§ Site search, with a summary display capability
§ Detailed display of database items
§ Database-driven e-mail using the JavaMail API

The examples don't get into secure sockets and payment handling because those topics are not really
database related. The subject of this chapter is the overall design of the Web site and the underlying
database.

Handling Member Logins

Users are first required to respond to a login-request form, with the usual user name and password
combination. There are three possible outcomes to a login attempt:
§ Successful login with the correct username and password, permitting site access
§ Failed login attempt with a valid user name but an invalid password
§ Failed login attempt with an invalid user name

Chapter 11:Building a Membership Web Site

-314-

For the purposes of this application, login with a valid user name and a bad password results in a
prompt for an e-mail reminder, and completely erroneous logins lead the user along a registration trail.
Although this is a simplistic approach, it serves to illustrate the technology and provides a starting point
for a more complete solution.

The Login Table itself is very simple. It uses only the three columns illustrated in Table 11-1. The
UserName column is the primary key and, as such, is indexed for speed of access. The price of fast
access for returning users is that inserting new users is slower because of the need to build the index.

Table 11-1: Login Table

UserName Password MemberID

axman hatchet 7

batman robin 3

cat balou 8

garfield lasagna 1

snoopy peanuts 2

The Password column is used simply for user validation, as shown in the examples in Chapter 12. The
MemberID column, however, is the key to accessing all the other tables.

The importance of the MemberID field lies in the fact that it is the unique identifier used to access
member-specific data from all the other tables. In most of the tables, MemberID is also the primary key,
since each member has only one entry in most of the tables.

Some of the tables, however, have their own primary keys and use MemberID as a foreign key. For
example, all member photos are stored as binary large objects (blobs) in the Photos Table. This table
contains a unique PhotoID, which is the primary key, and the MemberID, which is a foreign key used to
associate the photo with a specific member. The Photos Table also contains a column for the photos
themselves, as well as a descriptor column used for selecting individual photos.

Member Registration

When a new member goes into the registration process, the system displays an HTML form for the
member to complete. The data from the form is then saved to the Contact_Info table, shown in Table
11-2.
Table 11-2: Contact_Info Table

I
D

FNAM
E

M
I

LNAME STREE
T

CIT
Y

S
T

ZIP PHON
E

EMAIL

1 Vito A Corleon
e

123
Main St

New
York

N
Y

1000
2

212-
555-
0000

vito@home.co
m

2 Fred A Tagliatell
e

123
Main

Phil
a.

P
A

1234
5

123-
456-
7890

fat@cn.com

7 Al X Edwards 123
Pine

New
York

N
Y

1234
5

123-
456-
1111

axman@abc.co
m

The Contact_Info Table is the only place in the database where the name and address information of
the members is stored. The primary use of the Contact_Info table is for billing and administrative
purposes.

Chapter 11:Building a Membership Web Site

-315-

The primary key for the Contact_Info Table is MemberID (shown in the tables as ID because of space
limitations). Columns in the Contact_Info Table that require indexes are the following:
§ ID — used extensively, any time you need data from the table.
§ City, State, Zip — used in regional searches.

After completing the registration form, the member will be given the option of entering vehicle
information for the auction part of the site. Vehicle data is stored primarily in the Product_Info and
Options tables.

Data Entry

The vehicle data will be divided amongst a number of tables, both for convenience in data entry and to
improve the efficiency of searches. The primary table will be the Product_Info table, which will contain
such data as the make, model and year of the vehicle. Secondary tables will be used for less important
data such as the optional accessories and photos of the vehicles.

The primary table: Product_Info

The Product_Info Table, shown in Table 11-3, is used in most of the searches, so it is important to
ensure that it can be searched efficiently. This means that many of the columns will be indexed.

The primary key is Vehicle_ID. This key will also be used as the primary key of the Options table with
which the Product_Info table will have a one-to-one relationship. Note the use of the Member_ID
column as a foreign key linking the vehicle to its owner in the Contact_Info table.
Table 11-3: Product_Info Table

Vehicle_ID Member_ID Make Body Model Year Color

1000 1 Honda Coupe Civic 1996 Red

1001 1 Mitsubishi SUV Montero 2000 Green

1002 2 GM Pickup Sonoma 1999 Red

The Product_Info Table is updated using an HTML form, as shown in Figure 11-3. The data-entry form
uses combo boxes extensively to minimize data-entry errors. It is particularly important to ensure that all
terms that may be used in searches are input using combo boxes. The reason for this is purely practical:
given the opportunity, a certain percentage of the users will enter data in the wrong place or in a format
that makes it useless in a search, so free text fields are used only where no search capability is
provided.

Figure 11-3: Data-entry form using combo-boxes to reduce data-entry errors

Chapter 11:Building a Membership Web Site

-316-

The Product_Info Table is worth looking at from the viewpoint of breaking a single table into two or more
separate tables. In an application like this, there is a high probability that most searches will be
conducted for vehicles of a specific type, such as pickups or SUVs. Breaking a large table into several
separate, smaller tables organized by common search categories will obviously speed up searches.

Note that you can also enforce some restrictions on searches to improve response times. For example,
dividing your database by regions is probably practical, since it is unlikely that members will really need
to search beyond their local area. Using a combo box in a search form is an excellent way to do this.

Secondary tables populated using check boxes

Apart from the special tables used to store photographs and large blocks of free text, the remaining
tables are all very similar, storing boolean variables to identify specific characteristics such as product
options. These tables are intended to be easy to search.

In a larger application, where database items may be described by a large number of different
characteristics, you may prefer to split the descriptions among a number of tables to simplify data entry.
In this way, each table can map to a single HTML form. Dedicated JSP pages can handle the form data
by using the same generic SQLInsertBean before forwarding the user to the next page.

The SQLInsertBean uses an enumeration to iterate through the http request parameters and create a
SQL insert statement that saves the data. Listing 11-1 illustrates this technique.

Listing 11-1: Generic form handling using an enumeration

// use Enumeration to get param names and values from HTTP request

for(Enumeration e=request.getParameterNames();e.hasMoreElements();){
 pNames[i] = (String)e.nextElement();

 Values[i] = request.getParameter(pNames[i]);
 ++i;

}

// create fieldNames and fieldValues Strings for SQL INSERT command
String fieldNames = "ID,";

String fieldValues = "'" + memberID + "',";

// append parameter names and values to fieldNames and fieldValues
for(int j=0;j<i;j++){

 if(!pNames[j].equals("DBName")&&
 !pNames[j].equals("TableName")&&

 !pNames[j].equals("SubmitButton")){
 fieldNames += pNames[j] + ",";

 fieldValues += "'" + fixApostrophes(Values[j]) + "',";
 }

}

// strip trailing commas
fieldNames = fieldNames.substring(0,fieldNames.length()-1);

Chapter 11:Building a Membership Web Site

-317 -

fieldValues = fieldValues.substring(0,fieldValues.length()-1);

// create SQL command
SQLCommand = "INSERT INTO " + tableName + " ("+fieldNames+") "+

 "VALUES ("+fieldValues+")";

Cross-
Reference Chapter 12 explains how servlets and JSP pages work and how to use them

to handle HTML forms.

This generic approach to handling the form data means that although the table structures have to track
the HTML forms, the middle-tier code can be independent of both. This approach makes maintenance
much easier, since you may find that you have to add new tables or modify existing tables.

Like the Product_Info Table, most of the tables are completed using data from forms designed to
minimize data-entry errors. In this case, most of the entries are made using check boxes, as shown in
Figure 11-4.

Figure 11-4: Data entry form using check boxes

As you can see, a single free-form text field supports the check boxes, as shown in Figure 11-4. Again,
the rationale for this approach is to minimize data-entry errors. The check boxes map to boolean
variables that are quick and easy to search. Assuming that most of the popular options are covered by
the check boxes, the free-form text entries can simply be ignored for search purposes.

Table 11-4 shows a simplified subset of the table completed using the HTML form of Figure 11-5. The
most significant column in Table 11-4 is the List column, which is used to provide a summary of the
items in the table for display purposes. The data for this column is synthesized when the table is
updated by creating a string from all the data-entry field names, plus the contents of the "Other options"
field.

Chapter 11:Building a Membership Web Site

-318-

Figure 11-5: Database searches are performed using an HTML Search Form

Table 11-4: Part of Options Table

Tow_Bar 4WD Other List

0 0 AM/FM Radio, Cassette, Moon roof, Power
windows

0 1 Entertainment
center

AM/FM Radio, CD Changer, Moon roof

1 0 AM/FM Radio, CD, Power locks,Power
windows

Tables used for photos and text objects

The tables discussed up to this point are structured so that they are easy to search. Support for easy
searching has been carried through to the HTML forms used to populate the tables. The database
includes the following additional tables that are not searchable:
§ Photos, which contains member photos as blobs
§ BodyText, which contains free-form text

These tables are also accessed using the MemberID. The Photos Table uses MemberID as a foreign
key, because the primary key is the PhotoID. The Photos Table is interesting primarily because it stores
the photos as blobs. These require special handling, since they are accessed as streams or byte arrays
using pointers known in SQL terminology as locators. Uploading photos from a browser is also an
interesting topic, since it involves special handling not included in the basic HTML form support that the
servlet object provides.

Cross-
Reference Chapter 14 explains how to use a servlet to upload images from a browser

page and store them in a database as blobs.

Once the data has been stored in the database, it is accessible to members via a search form. The
search capabilities of the Web site are discussed in the next section.

Searching the Database

Searches of the database are carried out using the search form illustrated in Figure 11-5. Notice the
similarities between the search form and the data entry form of Figure 11-3.

The results of a search are presented in summary form, showing several database item summaries per
page. Each summary item includes a thumbnail image that is downloaded from the database using a
servlet. The general appearance of a summary is shown in Figure 11-6.

Chapter 11:Building a Membership Web Site

-319-

Figure 11-6: The Summary pages provide summaries of several of the items in the database.

From a summary page, the user is able to click the thumbnail image and select a more detailed page.
The detailed page is actually retrieved as XML and processed with an XSL stylesheet on the server to
create the detail page, a sample of which is shown in Figure 11-7.

Figure 11-7: The detail page displays a larger image and additional information.

The XML approach to creating the detail page is selected primarily to illustrate the use of an updateable
ResultSet, which is displayed either as the profile shown previously or as a preloaded XML form ready
for editing. Generating the two completely different display formats from the same XML document is
made possible using XSLT to transform the XML into different HTML documents.

Chapter 11:Building a Membership Web Site

-320-

Database-Driven E-mail

The detail page includes a text area that allows the user to send an e-mail to the owner of the vehicle.
E-mails are handled through a JavaMail application, which obtains the sender and recipient information
from the database and forwards the message.

The final chapter of Part III of this book illustrates the use of JDBC with the JavaMail API. The
combination of JDBC and JavaMail lets you send e-mails to members automatically. It also allows you
to receive e-mails and save them directly to a database.

Summary

This chapter provides an overview of the design of a three-tier, database-driven Web site application.
The object of the chapter is to review practical aspects of the application in terms of the way the
database tables relate to the pages the user views. In addition, the chapter looks at the following topics:
§ Using primary and foreign keys
§ Using indexes for better performance

Chapter 12 discusses Java servlets and JSP pages and how to use them to handle HTML forms.
Subsequent chapters expand this base to discuss much of the JDBC Extension API.

TE
AM
FL
Y

Team-Fly®

Chapter 12:Using JDBC DataSources with Servlets and Java Server Pages

-321-

Chapter 12: Using JDBC DataSources with Servlets
and Java Server Pages

In This Chapter

Servlets and Java Server Pages (JSP) extend the power of Java technology to server-side applications.
They are Java technology's answer to CGI programming, for they enable the developer to build dynamic
Web pages combining user input with information from corporate data sources.

Server-side Java offers significant improvements in efficiency over the traditional Perl CGI, where a new
process is started for each HTTP request, since the overhead of starting the process can dominate the
execution time of the CGI program. With servlets and JSP applications, each request is handled by a
lightweight Java thread, in a Java Virtual Machine that stays up all the time, rather than as a
heavyweight operating system process.

Another major advantage of Java servlets and JSP pages is, of course, that they allow you to use a
single development language across an entire application. You can write applications for an Apache
server running on a Solaris platform but can do all your development and checkout under Linux or any
other OS that supports Java.

This chapter provides a brief introduction to using servlets and JSP to create dynamic Web pages.
These Web pages are driven by a membership database, accessed using the DataSource object.

Using JDBC DataSources

Database Connections obtained using the DataSource interface, introduced in the JDBC 2.0
Standard Extension API, offer the user considerably more capability than the basic Connection
objects that the DriverManager provides; DataSource objects can support connection pooling and
distributed transactions. These features make DataSource objects the preferred means of getting a
Connection to any source of data. This source can be anything from a relational database to a
spreadsheet or a file in tabular format.

There are three types of standard DataSource objects, each of which offers unique advantages:
§ The basic DataSource that produces standard Connection objects just like those the

DriverManager produces
§ A PooledDataSource that supports connection pooling. Pooled connections are returned to a

pool for reuse by another transaction.
§ A DistributedDataSource that supports distributed transactions accessing two or more

DBMS servers.

With connection pooling, connections can be used over and over again, avoiding the overhead of
creating a new connection for every database access. Reusing connections in this way can improve
performance dramatically, since the overhead involved in creating new connections is substantial.

Distributed transactions involve tables on more than one database server. When a DataSource is
implemented to support distributed transactions, it is almost always implemented to produce
connections that are pooled as well.

A DataSource object is normally registered with a JNDI naming service. JNDI naming services are
analogous to a file directory that allows you to find and work with files by name. This means that an
application can retrieve a DataSource object by name from the naming service in a manner
independent of the system configuration.

Preparatory to discussing the use of JDBC DataSource objects in a Web application, the next section
gives a brief introduction to Java servlets.

Chapter 12:Using JDBC DataSources with Servlets and Java Server Pages

-322-

Using Servlets to Create Dynamic Web Pages

Servlets are Java classes that run in a servlet engine and receive and service client requests. Although
they are not tied to a specific protocol, the most common use of servlets is to create dynamic Web
pages. An online catalog is a classic example of a dynamic Web application. Requests from a client can
be received by a servlet that gets the data from a database, formats it, and returns it to the client.

Note

The Tomcat servlet engine, from http://jakarta.apache.org/tomcat/ is used in
all the examples in this book. Tomcat was chosen because it is the servlet container
used in the official reference implementation for the Java Servlet and Java Server
Pages technologies. Commercial servlet containers such as JRun should work just as
well.

Creating a Simple Servlet

Servlets are created by implementing javax.servlet.Servlet. All servlets implement this interface.
Servlets are typically created by extending javax.servlet.GenericServlet, which implements the
servlet interface, or by extending javax.servlet.http.HttpServlet, which is the base class for
servlets that service HTTP requests.

The servlet interface defines so called life-cycle methods, which are called by the servlet engine to
handle the major-life cycle tasks. These life-cycle tasks are initialization, client request service,
destruction, and garbage collection.

Much of the work a servlet does is handled in the client request service methods. These are the two
most important client request service methods of the HttpServlet class:
§ doGet, which must be overridden to support HTTP GET requests
§ doPost, which must be overridden to support HTTP POST requests

GET and POST are the CGI methods used to transfer request parameters to the server. The primary
difference between the two is that the parameters in the GET request are appended to the host URL,
whereas the parameters in the POST request are passed separately.

Another important reason for using the POST method is that it can transfer more data than the GET
method . The maximum length of the parameters in a GET request is specified as 256 characters.

Typical uses for HTTP servlets include the following:
§ Processing and/or storing data an HTML form submits
§ Creating dynamic Web pages
§ Managing state information for applications such as an online shopping cart

Servlets offer many advantages over traditional CGI scripts and are the backbone of today's application
servers. In spite of their power, however, they are relatively easy to write and deploy, as the simple
"Hello World" example of Listing 12-1 demonstrates.

Listing 12-1: A simple servlet

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class HelloServlet extends HttpServlet{

 protected void doGet(HttpServletRequest req,HttpServletResponse resp)
 throws ServletException, IOException

 {

Chapter 12:Using JDBC DataSources with Servlets and Java Server Pages

-323-

 resp.setContentType("text/html");
 PrintWriter out = resp.getWriter();

 out.println("<HTML>");
 out.println("<HEAD><TITLE>Hello Servlet</TITLE></HEAD>");

 out.println("<BODY><H1>Hello Servlet World</H1></BODY>");
 out.println("</HTML>");

 out.close();
 }

}

The next section expands on the basic example of Listing 12-1 to create a simple Login servlet.

Creating and Deploying a Login Servlet

As mentioned in Chapter 11, the examples in Part III of this book are geared toward building a simple
membership Web site. The Web site in the examples is based on SQL Server, using the Opta2000
JDBC driver. The Opta2000 driver is an excellent example of an efficient, modern, pure Java driver.
One reason for choosing the Opta2000 driver is to illustrate the use of a different driver, since most of
the sample code in Part II uses the JDBC-ODBC bridge. A more practical consideration is that the
JDBC-ODBC bridge is slow compared with Opta2000 and other commercial drivers. As I point out in
Part II, and illustrate in Chapter 10, JDBC does such a great job of supporting different RDBMS systems
and drivers that using a different driver or database involves only a couple of minor changes in the code.

The HTTP server used in the examples is Apache, currently the most widely used and one of the
easiest to install. The servlet engine is Apache Tomcat; it has been chosen by Sun as the reference
implementation, it works well, and both Apache and Tomcat are available as free downloads from the
Apache Software Foundation at http://www.apache.org/. Like Tomcat, Apache can be installed
on Linux, Windows, and most other major platforms.

Cross-
Reference Installation and setup of Apache and Tomcat are covered in Appendix 2.

Implementing a Membership Web Site

The first step in implementing a membership Web site, obviously, is handling member logins. The Web-
site design discussed in Chapter 11 calls for a dedicated table for user names and passwords. The
design of this table is extremely simple, as shown in Table 12-1.

Table 12-1: Login Table Containing Usernames and Passwords

UserName Password MemberID

garfield lasagna 1

snoopy peanuts 2

batman robin 3

When the table is created, the UserName column is defined as the primary key, because this column is
used in a WHERE clause when a member logs in. The Password column is a simple VARCHAR field,
used only for validation. The MemberID column is important because all the other tables containing
member information use a MemberID column as their primary key to facilitate looking up member
information in other tables. MemberID is defined with the IDENTITY constraint so that the DBMS
automatically assigns a new, unique number to the field. The SQL CREATE statement used to create
this table is shown below:

CREATE TABLE LOGIN(
 UserName VARCHAR(20) PRIMARY KEY,

Chapter 12:Using JDBC DataSources with Servlets and Java Server Pages

-324-

 Password VARCHAR(20) NOT NULL,
 MemberID int IDENTITY);

Notice that the UserName column has been defined as the primary key but not as a clustered key,
because the physical layout of a SQL Server database is ordered on the clustered key, if assigned. This
means that if a new member is added with a clustered key value within the current range of clustered
key values, as might easily be the case, the entire table will be reshuffled to reflect the change. This
clearly has an adverse impact on performance if you sign up a lot of new members.

The importance of the MemberID column is easiest to understand when you consider a situation where
you have to access member information from another table. When the user logs in, the first thing you do
is look up his UserName and password in the Login Table. This lookup also returns the MemberID,
which can be used to look up any other data you may need. Table 12-2 illustrates a member name and
address table that can be indexed by MemberID for rapid access.

Table 12-2: Member Name and Address Table

MemberI
D

FNAM
E

LNAME STREE
T

CIT
Y

S
T

ZIP EMAIL

1 Giorgio Corleon
e

123
Main St

NY N
Y

1000
2

gcorleone@hotmail.co
m

Creating the Login Page

The user interface between the member and the database is based on the use of HTML forms.
Members log in to the Web site by using a simple HTML form. The screen shot of Figure 12-1 shows
the HTML form in an Opera browser window. The HTML for the login form is shown in Listing 12-2.

Figure 12-1: HTML login form displayed in the Opera browser

Listing 12-2: Using HTML to create a basic login form

<html>
<head>
<title>Member Login</title>

</head>
<body bgcolor="#c0c0c0">

<form method="POST" action="servlet/LoginServlet">
<table>

 <tr>
 <td colspan=2>

 <h3>Please log in:</h3>
 </td>

Chapter 12:Using JDBC DataSources with Servlets and Java Server Pages

-325-

 </tr>
 <tr>

 <td>
 Username:

 </td>
 <td>

 <input type="text" name="username">

 </td>

 </tr>
 <tr>

 <td>
 Password:

 </td>
 <td>

 <input type="password" name="password">

 </td>

 </tr>
 <tr>

 <td colspan=2> </td>
 </tr>

 <tr>
 <td>

 <input type="submit" value="SUBMIT" name="submitButton">
 </td>

 </tr>
</table>

</form>
</body>

</html>

As you can see from Listing 12-2, the action method uses the POST method to call the LoginServlet.
The two input fields UserName and Password are passed as parameters to the servlet. The GET
method can work just as well and is, in fact, implemented in the servlet code. POST is normally preferred
because it offers more flexibility. The code for the servlet itself is shown in the next section.

Creating the Servlet

The login servlet is not much more complex than the simple "Hello World" example of Listing 12-1. In
this more practical example, the base class methods that need to be overridden are as follows:

init()

doPost()
doGet()

The code of Listing 12-3 shows the use of the init() method to load the JDBC driver. The
doGet()and doPost() methods are overridden to handle the user request. The writePage()
method simply exists to separate HTML output from JDBC code.

Chapter 12:Using JDBC DataSources with Servlets and Java Server Pages

-326-

Listing 12-3: Login servlet

import java.io.*;
import java.sql.*;

import javax.sql.*;
import javax.servlet.*;

import javax.servlet.http.*;

public class DataSourceLoginServlet extends HttpServlet{
 private static String dbUserName = "sa";

 private static String dbPassword = "dba";

 private Connection con = null;
 private DataSource ds = null;

 public void init(ServletConfig config) throws ServletException{

 super.init(config);
 try{

 Class.forName("com.inet.pool.PoolDriver").newInstance();
 com.inet.tds.TdsDataSource tds = new com.inet.tds.TdsDataSource();

 tds.setServerName("JUPITER");
 tds.setDatabaseName("MEMBERS");

 tds.setUser(dbUserName);
 tds.setPassword(dbPassword);

 ds = tds;
 }

 catch(Exception e){
 System.err.println(e.getMessage());

 }
 }

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException

 {
 doPost(request,response);

 }
 public void doPost(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException
 {

 response.setContentType("text/html");
 PrintWriter out = new PrintWriter(response.getWriter());

 int id = -1;

Chapter 12:Using JDBC DataSources with Servlets and Java Server Pages

-327-

 String memberPwd = null;
 String userName = request.getParameter("username");

 String password = request.getParameter("password");

 try {
 Connection con = ds.getConnection(dbUserName,dbPassword);

 Statement stmt;

 ResultSet rs = null;

 String SQLQuery = "SELECT * FROM LOGIN WHERE UserName =
'"+userName+"';";
 stmt = con.createStatement();

 rs = stmt.executeQuery(SQLQuery);
 while(rs.next()){

 id = rs.getInt("MemberID");
 memberPwd = rs.getString("Password");

 }
 con.close();

 }catch(SQLException e){
 System.err.println(e.getMessage());

 }
 RequestDispatcher dispatcher = null;

 if(id==-1){
 dispatcher =

 getServletContext().getRequestDispatcher("/jdbc/NewMember.html");
 }else if(!memberPwd.equals(password)){

 dispatcher =
 getServletContext().getRequestDispatcher("/jdbc/BadPassword.html");

 }else{
 dispatcher =

 getServletContext().getRequestDispatcher("/jdbc/WelcomeBack.html");
 }

 dispatcher.forward(request, response);
 }

}

The login servlet works by getting the UserName and Password inputs from the
HttpServletRequest object and plugging the UserName into a simple SQL query. The query
returns matching rows from the LOGIN table. A series of simple checks on the returned values is used
to create the appropriate response to the user.

JDBC initialization is performed in the init() method. In this example, the Opta2000 driver is being
used, but you can substitute whichever driver you prefer by simply substituting the appropriate driver
name and URL into the appropriate String variables.

Chapter 12:Using JDBC DataSources with Servlets and Java Server Pages

-328-

Unlike the examples in Part II, which use the "classic" JDBC Core API approach of getting a
Connection from the DriverManager, this servlet illustrates the preferred way of getting a
connection, which is to use a javax.sql.DataSource. You can, of course, use the DriverManager
instead.

Cross-
Reference The javax.sql.DataSource is discussed in Chapter 4 and is used

throughout the examples in Part III of this book.

Notice that, in addition to the doPost() method, the doGet() method has been minimally
implemented with a simple call to doPost(). The main reason for doing this is to make it easier to
check out the servlet from a browser by simply typing the entire GET string into the browser's address
window. Here's an example:

http://jdbc.j-

machines.com/servlet/LoginServlet?UserName=OneFish&Password=TwoFish

The ResultSet the SQL query returns is used to determine whether a MemberID has been assigned
to this UserName. If not, the servlet forwards the user to the new member sign up page. Similarly, if the
UserName is recognized but the password is bad, the user is forwarded to a page that lets the user
retry or request that the password be e-mailed. If the UserName and password are found in the
database, the user is forwarded to the welcome page.

Forwarding is handled using a javax.servlet.RequestDispatcher object. To get a
RequestDispatcher, use the ServletContext object's getRequestDispatcher() method,
passing it the desired URL as an argument. Notice the format of this argument: a slash ("/") followed by
the relative path, ending with the name of the resource. This is very important to remember, since, as
soon as you call the servlet, you move from the HTTP server's environment, which may be a virtual
host's root directory under Apache, to the servlet environment, which will probably be somewhere under
Tomcat's root directory.

You should use forwarding when the servlet's job is done and the next page is logically decoupled from
the servlet's functions to such an extent that another resource can handle it. Remember, however, that
if you have already written any output from the servlet, using a ServletOutputStream or a
PrintWriter, you can't use the RequestDispatcher.forward method; it will throw an
IllegalStateException. In this case, you can use the RequestDispatcher.include() method
instead.

Deployment

To deploy the login servlet, you have to put the class file into the appropriate directory. This is the usual
path for a simple Tomcat installation:

TOMCAT/WEBAPPS/ROOT/WEB-INF/CLASSES

Tomcat maintains a configuration file that defines URL mappings, so that the /servlet/ path is
mapped to this directory. You can set up your own mappings as needed by editing this file.

To use the Opta2000 driver, you need to put the Opta2000.jar into a suitable directory and modify
Tomcat's class path in the tomcat.properties file in the Tomcat/conf directory. In this example,
the .jar file is saved in the /lib directory, and Tomcat's class path is modified by adding this line in
the tomcat.properties file:

wrapper.classpath=lib/Opta2000.jar

To make the use of servlets even easier, Sun came up with the idea of Java Server Pages, or JSPs. A
brief introduction to JSPs is given in the next section.

Using Java Server Pages

Chapter 12:Using JDBC DataSources with Servlets and Java Server Pages

-329-

The login servlet example in Listing 12-3 shows how easy it is to write and deploy Java server-side
applications using JDBC. There is also an even easier way — you can use Java Server Pages.

Java Server Pages provide a means of using Java code within an HTML page. Simply write the static
HTML parts of the page in the normal way, and embed the Java code inside special tags. The Java is
executed in the JSP engine, and the result is sent to the client as HTML.

Note

Java Server Pages are not limited to generating HTML. JSP technology is also a great
way of generating XML, as you will see in Part IV.

You can use these four main types of elements in constructing a Java Server Page:
§ Markup language elements, which, in the case of a Web page, are HTML
§ Scripting elements, which let you specify a block of Java code
§ JSP directives, which control the JSP structure and environment
§ Actions, which let you specify execute commands such as loading a parameter

A special type of tag identifies the JSP-specific elements so that they are not confused with markup
language tags. These tags take one of the two following forms:
§ <% %>
§ <jsp: />

Although Java Server Pages offer a lot of advantages over basic servlets, they actually build on servlet
technology. The JSP engine compiles the JSP to a servlet the first time the page is requested, though
there are various ways of forcing the compile to ensure that the first real user doesn't see any delay due
to the translation. The simplest way to do this, of course, is to call the JSP page yourself to force a
compile.

The easiest way to demonstrate the advantages of Java Server Pages is to rework the login example to
use JSP. Since the JSP engine can serve static HTML as easily as dynamic HTML, even the login form
can be turned into a JSP page. The login form shown in Listing 12-4 is basically the same form shown
in Listing 12-1. All that is required to make it a JSP page is to save it where the JSP engine can find it
and name it LoginForm.jsp.

Listing 12-4: A login form using JSP

<html>

<head>
<title>Member Login</title></head>

<body bgcolor="#c0c0c0">
<form method="POST" action="ProcessLogin.jsp">

<table>
 <tr>

 <td colspan=2><h3>Please log in:</h3></td>
 </tr>

 <tr>
 <td>Username: </td>

 <td><input type="text" name="username"></td>
 </tr>

 <tr>
 <td>Password:</td>

 <td><input type="password" name="password"></td>
 </tr>

 <tr><td colspan=2></td></tr>

Chapter 12:Using JDBC DataSources with Servlets and Java Server Pages

-330-

 <tr>
 <td></td>

 <td><input type="submit" value="SUBMIT" name="submitButton"></td>
 </tr>

</form>
</body>

</html>

The only significant difference between login.html and LoginForm.jsp is that the action parameter
has been changed to point to ProcessLogin.jsp. The UserName and Password parameters are
passed to the new action method just as they are to LoginServlet.

A simple JSP page that picks up the HTTP request parameters and echoes them to the client is shown
in Listing 12-5. The example illustrates how you can combine HTML and embedded Java in a single
JSP page using a number of JSP-specific tags:
§ <% %> delimiters for in-line Java scriptlets
§ <%=expression %> output the evaluated value of the expression
§ <%@ page %> directive defining page properties

Listing 12-5: Using a JSP page to display CGI parameters

<HTML>
<HEAD>

<TITLE>
Display Login Parameters

</TITLE>
</HEAD>

<BODY>
<%@ page language="java"%>

<%
 String userName=request.getParameter("username");

 String password=request.getParameter("password");
%>

User Name = <%=userName%><p/>
Password = <%=password%><p/>

</BODY>
</HTML>

This example can be extended by including the SQL query code used in the JDBC servlet example of
Listing 12-3. This approach combines both the JDBC code and the HTML generation, emulating the
behavior of the original servlet example. However, writing the JSP page this way is messy, since it
combines Java and HTML in a single page.

A much better way to structure the JSP page is to encapsulate the JDBC logic in a JavaBean, which
acts as the model in a model-view-controller (MVC) structure. The view is provided by a JSP page,
using the <jsp:forward /> directive. The action method of the LoginForm.jsp calls a controller
JSP, which loads the bean, passes it the request parameters, and forwards the user to the appropriate
view JSP, depending on the results of the SQL the JavaBean executes.

Before implementing the MVC approach to handling the login form, it is worth reviewing the use of
JavaBeans with JSP pages. The next few paragraphs give a brief overview.

TE
AM
FL
Y

Team-Fly®

Chapter 12:Using JDBC DataSources with Servlets and Java Server Pages

-331-

Using JavaBeans with Java Server Pages

One of the most useful features of Java Server Pages is that JSP directly supports the use of
JavaBeans through the <jsp:useBean> tag. Java Beans, as you probably know, are Java classes that
can be loaded by name and otherwise conform to a specific set of rules. These rules include the
following:
§ Being a public class: public class JavaBean
§ Having a public, no argument constructor: public JavaBean ()
§ Using private data fields only: private String message
§ Providing public, no-argument access methods for its private data fields:

§ public getMessage()
§ public setMessage(String message)

§ Supporting introspection — the ability of an external class to query a bean for its behavior.

A big advantage of using JavaBeans in JSP applications is that they allow you to implement the logic of
the JSP page as a separate Java class and "plug it in." This approach offers these significant
advantages:
§ Separation of content from logic
§ Reusable plug-in components for common tasks

When they are used with Java Server Pages, JavaBeans have two primary functions. They can be used
as logic blocks, where their primary purpose is to separate logic from display, and as storage classes,
where their primary purpose is data storage.

Loading by Name: the <jsp:useBean> tag

The ability to load and execute a JavaBean by name is the real key to using JavaBeans as pluggable
components. Since the JavaBean is linked into the JSP at runtime rather than at compile time, the JSP
can be edited and updated separately from the business logic in the JavaBean.

To call a Java Bean from a JSP, simply write this:

<jsp:useBean id="TestBean" class="java_database_bible.TestBean"/>

The <jsp:useBean> element has a number of attributes. Of these, the most commonly used are the
following:
§ id="beanInstanceName". The id attribute assigns a local name to the JavaBean for

references within the JSP page. The id is case sensitive and must be used consistently throughout
the scope of the bean.

§ scope="page | request | session | application". The scope attribute defines the
scope in which the bean exists and the in which variable named in id is available. The default
value is page.

§ class="package.class". The class attribute defines the JavaBean class to load if the
JavaBean with the specified id has not already been loaded in the defined scope. The new bean is
instantiated using the new keyword and the class constructor.

Note

The <jsp:useBean> tag first looks for the bean instance with the specified name and
instantiates a new one only if it cannot find the bean instance within the specified scope.
If the bean has already been created by another <jsp:useBean> element, the value of
id must match the value of id used in the original <jsp:useBean> element.

Scope

Once a JavaBean has been loaded, it can be accessed from various parts of your application,
depending on its scope. In other words, the scope of a JavaBean defines that part of your application
that can access the bean. The default value is page scope. The meanings of the different scopes are
as follows:

Chapter 12:Using JDBC DataSources with Servlets and Java Server Pages

-332-

§ page scope — The bean is accessible within the JSP page with the <jsp:useBean> element or
any of the page's static include files until the page sends a response to the client or forwards a
request to another file.

§ request scope — The bean is accessible from any JSP page processing the same request until a
JSP page sends a response to the client or forwards the request to another file.

§ session scope — The bean is accessible from any JSP page in the same session as the JSP
page that creates the bean. The bean exists across the entire session, and any page that
participates in the session can use it. The page in which you create the bean must have a <%@
page %> directive with session=true.

§ application — The bean is accessible from any JSP page in the same application as the JSP
page that creates the bean. The bean exists across an entire JSP application, and any page in the
application can use the bean.

Caution

When using the <jsp:useBean> tag, the closing "/" at the end of the tag is very
important. If you forget the "/", the tag will work, but it will work unpredictably. For
example, I have spent hours trying to find what I thought was a scope problem
before noticing that I had lost the closing slash in one of a number of JSP pages
using the bean.

Properties: the <jsp:getProperty> and <jsp:setProperty> tags

JavaBean properties are private data fields that can be accessed through predefined "accessor"
methods or getter and setter methods. Property getter and setter method names follow specific rules
called design patterns. By using these design pattern-based method names, JSP pages can access a
JavaBean's properties through these directives:

<jsp:setProperty name="TestBean" property="service" value="login"/>
<jsp:setProperty name="TestBean" property="username"

value='<%=request.getParameter("username")%>'/>
<jsp:setProperty name="TestBean" property="password"/>

<jsp:getProperty name="TestBean" property="message"/>

Notice the different ways in which you can set the value of a JavaBean parameter. The first example
shows how you can set the parameter using a static value. The second shows the use of an evaluation
expression to set the value. In the third case, the value is set implicitly to the value of the same name in
the CGI query parameters. A fourth variant is discussed later in this chapter, under the heading
"Introspection."

Using JavaBeans, you can get away from using in-line Java code completely. Simply code the logic as
a JavaBean, and load the JavaBean by name, using the jsp:getProperty and jsp:setProperty
tags to access its properties.

Using <jsp:setProperty> for initialization

Recall that the JSP engine only loads a new instance of the bean if it can't find an existing instance in
scope. This means you can use a bean as a storage container that keeps track of the application's data
anywhere within its scope. This raises the question of how the bean is initialized. The answer is to nest
the initialization inside the <jsp:useBean> element itself, as shown here:

<jsp:useBean id="TestBean" class="JavaDatabaseBible.TestBean"/>

 <jsp:setProperty name="TestBean" property="message" value="goodbye"/>
</jsp:useBean>

Any <jsp:setProperty> elements nested within the <jsp:useBean> element are executed only when the
bean is first loaded and run. These nested elements are not executed if the bean is found within the
current scope. The idea here is that the first time the bean is used, it is initialized; in subsequent
references; however, it is assumed that you actually want the data stored in the bean by earlier
references.

Chapter 12:Using JDBC DataSources with Servlets and Java Server Pages

-333-

Introspection

Introspection refers to the ability to look inside a JavaBean and identify the methods available to the
user. For example, introspection allows the JSP engine to look at the JavaBean properties that can be
set from the JSP page. This means that the JSP engine can handle most of the details of setting
properties automatically, as shown here:

<jsp:setProperty name=" TestBean" property="*"/>

Using the "*" wildcard as the value of the property attribute in a <jsp:setProperty> tag tells the JSP
engine to use introspection to identify the JavaBean's properties and match them by name with the
parameters the form passes. This approach is illustrated in Listing 12-6.

Listing 12-6: Using a JSP with the <jsp:useBean/> tag

<html>

<head>
<title>ParameterTestBean</title>

</head>
<body>

<%@ page language="java"%>
<jsp:useBean id="ParameterTestBean"

class="JavaDatabaseBible.ch12.ParameterTestBean"/>
<jsp:setProperty name="ParameterTestBean" property="*"/>

User Name:
<jsp:getProperty name="ParameterTestBean" property="username"/><p/>

Password:
<jsp:getProperty name="ParameterTestBean" property="password"/>.

</body>
</html>

Much nicer, isn't it? Of course, if you don't have a one-to-one match between the parameter names and
the bean properties, you can always resort to mapping them by hand. Incidentally, this technique also
works for saving values from radio buttons, where the JavaBean property is set to the selected radio-
button value.

You can test the use of JSP and JavaBeans using the simple JavaBean of Listing 12-7. This is the
JavaBean originally used with the JSP code of Listing 12-6.

Listing 12-7: Simple JavaBean illustrating getter and setter methods

package JavaDatabaseBible.ch12;

public class ParameterTestBean extends java.lang.Object{

 protected String username;
 protected String password;

 public ParameterTestBean(){

 }
 public void setUsername(String username){

Chapter 12:Using JDBC DataSources with Servlets and Java Server Pages

-334-

 this.username = username;
 }

 public void setPassword(String password){
 this.password = password;

 }
 public String getUsername(){

 return username;
 }

 public String getPassword(){
 return password;

 }
}

If you are working with checkboxes, where you specify the same name, but different values for each
checkbox, the only difference is that you must specify the JavaBean property as a String array.
Unfortunately, you can't get String-array values as easily. The solution in this case is to use a scriptlet,
as shown here:

<%

String[] checkBoxes = formHandler.getCheckBoxes();
for(int i=0;i< checkBoxes.length;i++){

 if(i>0)out.print(",");
 out.print(" "+ checkBoxes [i]);

}
%>

Using built-in JSP objects in a JavaBean

The JSP API provides access to a range of useful information about the client and about the JSP's
context through a set of built-in, implicit objects. The javax.servlet.jsp.PageContext object is the general
point of access for most of the built-in JSP objects. These objects are as follows:
§ request
§ response
§ out
§ session
§ application
§ pageContext
§ page
§ exception

request

The request object encapsulates the current request from the browser. The servlet container creates a
ServletRequest object and passes it to the servlet's service method. A ServletRequest object
provides such data as parameter name and values, attributes, and an input stream. Useful request
object methods include the following:
§ getQueryString()
§ getHeader(String headerName)
§ getCookies()

response

The ServletResponse object is designed to assist a servlet in sending a response to the client. The
servlet container creates a ServletResponse object and passes it to the servlet's service method.

Chapter 12:Using JDBC DataSources with Servlets and Java Server Pages

-335-

The ServletResponse object allows you to set response parameters such as content type. You can
also get an OutputStream from the response object for binary writes.

out

The out object is the instance of JspWriter used to write output to the client. The ability to access the
JspWriter directly allows you to send output directly from a scriptlet.

session

The session object is an instance of HttpSession. It encapsulates session information in the form of
objects that can be written and read by beans or JSP pages within the session scope.

application

The application object is an instance of the ServletContext object.

pageContext

The pageContext object is the general point of access for most of the built-in objects; for example, to get
the session object, you can call:

HttpSession session = pageContext.getSession();

page

The page object is a reference to the current page.

exception

The exception object is used by an error page to access the exception that causes the error page to be
displayed.

Automatic Type Conversion

Clearly, when you create a JavaBean, you may want to use property variables of various types, such as
integers and doubles. The values of the request parameters sent from the client to the server are
always of type String. These values are converted to other data types automatically, using the
appropriate valueOf(String) expression.

valueOf(String)

JSP's automatic type conversion uses the methods listed in Table 12-2 to perform conversions.
Table 12-2: Automatic Type Conversions Supported by JSP

Data Type Conversion Method

boolean or Boolean java.lang.Boolean.valueOf(String)

byte or Byte java.lang.Byte.valueOf(String)

char or Character, java.lang.Character.valueOf(String)

int or Integer java.lang.Integer.valueOf(String)

double or Double java.lang.Double.valueOf(String)

integer or Integer java.lang.Integer.valueOf(String)

float or Float java.lang.Float.valueOf(String)

long or Long java.lang.Long.valueOf(String)

Chapter 12:Using JDBC DataSources with Servlets and Java Server Pages

-336-

Creating and Deploying a JDBC LoginBean

The simple example of Listings 12-6 and 12-7 provide the basics of a JSP-based and JavaBean-based
login form handler. Using the LoginForm.jsp of Listing 12-4, the user enters his or her name and
password and clicks the Submit button to call ProcessLogin.jsp.

ProcessLogin.jsp is an extended version of the JSP page illustrated in Listing 12-6. These are the
main differences:
§ ProcessLogin.jsp has no HTML content. It acts as a pure controller.
§ A <jsp:forward /> tag is used to display the view portion of the MVC structure.

Like the JSP page illustrated in Listing 12-6, the ProcessLogin.jsp relies on a JavaBean to handle
the business logic. In this instance, the bean incorporates the JDBC code illustrated in the servlet
example of Listing 12-3.

Since the functionality of the ProcessLogin.jsp page is reduced to launching the JavaBean and
interpreting the response, the resulting MVC controller is simple and easily understood. All it does is
accept the form inputs, pass them to the LoginBean, and select one of three pages to forward the user
to, depending on his or her login status. The resulting JSP code is shown in Listing 12-8.

Listing 12-8: ProcessLogin.jsp

<%@ page language="java"%>

<jsp:useBean id="LoginBean" class="JavaDatabaseBible.ch12.LoginBean"/>
<jsp:setProperty name="LoginBean" property="*"/>

<%
String status = LoginBean.validate();

String nextPage = "MemberWelcome.jsp";
if(status.equals("New Member")) nextPage = "NewMemberForm.jsp";

if(status.equals("Bad Password")) nextPage = "BadPasswordForm.jsp";
%>

<jsp:forward page="<%=nextPage%>"/>

Like the servlet example of Listing 12-3, the JSP version uses page forwarding. In Java Server Pages,
this function is implemented by the <jsp:forward/> tag.

The LoginBean is also relatively simple. Unlike the servlet, which incorporates a certain amount of
HTML generation and other overhead, the LoginBean is simply a logic block. Setup is handled when the
bean is instantiated, and the JSP page sets username and password. Listing 12-9 shows the simplicity
of the LoginBean.

Listing 12-9: LoginBean

package JavaDatabaseBible.ch12;

import java.sql.*;
import javax.sql.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class LoginBean extends java.lang.Object{

Chapter 12:Using JDBC DataSources with Servlets and Java Server Pages

-337-

 private static String dbUserName = "sa";
 private static String dbPassword = "dba";

 private Connection con = null;

 protected String username;
 protected String password;

 public LoginBean(){

 }
 public void setUsername(String username){

 this.username = username;
 }

 public void setPassword(String password){
 this.password = password;

 }
 public String getUsername(){

 return username;
 }

 public String getPassword(){
 return password;

 }
 public String validate(){

 int id = -1;
 String memberPwd = null;

 try {

 Class.forName("com.inet.pool.PoolDriver");
 com.inet.tds.TdsDataSource tds = new com.inet.tds.TdsDataSource();

 tds.setServerName("JUPITER");
 tds.setDatabaseName("MEMBERS");

 tds.setUser(dbUserName);
 tds.setPassword(dbPassword);

 DataSource ds = tds;

 Connection con = ds.getConnection(dbUserName,dbPassword);
 Statement stmt;

 ResultSet rs = null;

 String SQLQuery = "SELECT * FROM LOGIN WHERE UserName = '" +
username + "';"; // for clarity

 stmt = con.createStatement();
 rs = stmt.executeQuery(SQLQuery);

 while(rs.next()){

Chapter 12:Using JDBC DataSources with Servlets and Java Server Pages

-338-

 id = rs.getInt("MemberID");
 memberPwd = rs.getString("Password");

 }
 con.close();

stmt.close();

 }catch(ClassNotFoundException e1){
 System.err.println(e1.getMessage());

 }catch(SQLException e2){
 System.err.println(e2.getMessage());

 }
 if(id==-1){

 return "New Member";
 }else if(!memberPwd.equals(password)){

 return "Bad Password";
 }else{

 return "Member#"+id;
 }

 }
}

Note

In order to use the "*" wildcard to set JavaBean properties from a JSP page, the
property names must match the variable names used in the HTML form. Property
names are case sensitive.

The LoginBean of Listing 12-9 returns a String indicating the user's login status. The three possible
return values are as follows:
§ "New Member"
§ "Bad Password"
§ "Member#nnn"

The JSP page deals with each of these possible return values by forwarding the user to the appropriate
JSP page. In the case of a registered member, the user is simply forwarded to the welcome page of the
main site. Someone logging on with an unknown user name is considered a new member and is
forwarded to the Member Registration trail, discussed in the next chapter. If the user name is
recognized, but the password is not, the user is offered the option of retrying, signing on as a new
member, or having the correct password sent to his or her e-mail address.

Summary

This chapter gives you a look at the use of the JDBC DataSource object as a means of obtaining
database connections. Other topics covered include the following:
§ Creating Dynamic Web Pages
§ Using the HttpServlet object
§ Implementing a Membership Web Site
§ Using Java Server Pages
§ Using JavaBeans with Java Server Pages

Chapter 13 covers creating and populating the basic membership database tables. The examples are
based on the use of PreparedStatements and CallableStatements.

Chapter 1 3:Using PreparedStatements and CallableStatements

-339-

Chapter 13: Using PreparedStatements and
CallableStatements

In This Chapter

All of the discussions and examples up to this point have been about how to use the JDBC API to
execute SQL statements. The subject of what actually happens when the SQL statement is passed to
the DBMS has not been considered. The purpose of this chapter is to address two significant ways in
which you can improve the performance of a Java database application by improving the execution
performance of your SQL statements.

One of the main drawbacks of using the basic java.sql.Statement is that every time the basic
Statement object is executed, the SQL command is passed to the RDBMS, where it has to be parsed
and compiled before it can be executed. Most versions of SQL allow the user to define stored
procedures, which are, in effect, precompiled SQL statements or groups of statements. Stored
procedures, being precompiled, execute faster and more efficiently than statements that have to be
parsed and compiled each time they are used.

To eliminate the overhead of repeated parsing and compilation of the SQL command, JDBC provides
the user with two ways of using precompiled SQL statements: the PreparedStatement object and the
CallableStatement object. Using PreparedStatements and CallableStatements greatly
increases the efficiency of an application when a specific SQL command is executed frequently or
repeatedly, as is the case when handling forms for a Web site.

The three different flavors of the Statement object are intended to be used in very different situations.
The first situation arises when you want to execute a statement just once. This is the ideal place to use
a basic java.sql.Statement. If you want to execute a SQL command repeatedly in a loop, and then
discard it, the best approach is to use a PreparedStatement, which is parsed, compiled and cached
temporarily by the RDBMS. Finally, if you have a statement or group of statements you want to execute
frequently, the CallableStatement is ideal, since it is compiled and stored permanently in the
RDBMS to be called by name when needed.

Creating and Using a PreparedStatement

The main difference between a basic Statement object and a PreparedStatement object is that
when the PreparedStatement is used, the SQL command is sent to the DBMS when the
PreparedStatement is created, so that it can be precompiled and saved in a cache. This means that
when the PreparedStatement is executed, the database management system can run the
PreparedStatement's SQL statement without having to compile it first.

Using PreparedStatements improves efficiency; when you execute the PreparedStatement, it is
once again parsed, but no recompile occurs. Instead, the precompiled statement is found in the cache
and is reused. For an application that requires the repeated execution of a SQL command in a loop, the
use of PreparedStatements can greatly improve the performance of the database.

PreparedStatement objects can be used for SQL statements with no parameters or for SQL
statements that take parameters. PreparedStatements can contain placeholders for variables known
as IN parameters, which are set using setter methods. The JDBC PreparedStatement provides
setter methods for all SQL data types.

Creating a PreparedStatement Object

PreparedStatements, like Statements, are created using a Connection. For example, you can
easily replace the Statement object in the LoginBean developed in Listing 12-9 with a
PreparedStatement, as shown in Listing 13-1.

Chapter 1 3:Using PreparedStatements and CallableStatements

-340-

Listing 13-1: Using a PreparedStatement

Class.forName("com.inet.pool.PoolDriver");
com.inet.tds.TdsDataSource tds = new com.inet.tds.TdsDataSource();

tds.setServerName("JUPITER");
tds.setDatabaseName("MEMBERS");

tds.setUser(dbUserName);
tds.setPassword(dbPassword);

DataSource ds = tds;

Connection con = ds.getConnection(dbUserName,dbPassword);

String SQLQuery = "SELECT * FROM LOGIN WHERE UserName = ?;";
PreparedStatement pstmt = con.prepareStatement(SQLQuery);

pstmt.setString(1, username);

ResultSet rs = pstmt.executeQuery();
while(rs.next()){

 id = rs.getInt("MemberID");
 memberPwd = rs.getString("Password");

}
con.close();

The main difference between the PreparedStatement used in this example and the Statement
object used in Chapter 12 lies in the form of the SQL command. In this example, a "?" is used as a
place holder for the variable UserName, which is set using the pstmt.setString() method. There
are corresponding setter methods in the PreparedStatement for all SQL data types.

You need to supply values to be used in place of all placeholders before you can execute a
PreparedStatement. Once a PreparedStatement parameter has been set to a given value, it
retains that value until it is reset to another value or until the method clearParameters is called.

Using PreparedStatement in a Loop

The real efficiency gain in using PreparedStatement objects occurs when you use them repeatedly
(for example, when you need to execute a SQL command in a loop). If you need to use the same SQL
command frequently from different instances of the Java class, a better alternative is the use of a
CallableStatement.

An example of using a PreparedStatement in a loop is shown in Listing 13-2. A simple for loop sets
the parameters of the PreparedStatement from the Orders array. The data is then inserted into the
Ordered_Items Table, which is similar to the table of the same name used in the examples of Part II.

Listing 13-2: Using a PreparedStatement in a loop

package JavaDatabaseBible.ch13;

import java.sql.*;

import javax.sql.*;

TE
AM
FL
Y

Team-Fly®

Chapter 1 3:Using PreparedStatements and CallableStatements

-341 -

public class PStatement {

 private static String dbUserName = "sa";
 private static String dbPassword = "dba";

 public static void main(String args[]){

 int[][] Orders = {{1001,327,2},
 {1001,412,1},

 {1001,906,5},
 {1002,111,7},

 {1002,112,19}};

 try {
 Class.forName("com.inet.pool.PoolDriver");

 com.inet.tds.TdsDataSource tds = new com.inet.tds.TdsDataSource();
 tds.setServerName("JUPITER");

 tds.setDatabaseName("MEMBERS");
 tds.setUser(dbUserName);

 tds.setPassword(dbPassword);

 DataSource ds = tds;
 Connection con = ds.getConnection(dbUserName,dbPassword);

 String SQLCmd =

 "INSERT INTO ORDERED_ITEMS (ORDER_NUMBER,ITEM_NUMBER,QTY)
VALUES(?,?,?)";
 PreparedStatement pstmt = con.prepareStatement(SQLCmd);

 for(int i=0;i<5;i++){

 pstmt.setInt(1, Orders[i][0]);
 pstmt.setInt(2, Orders[i][1]);

 pstmt.setInt(3, Orders[i][2]);
 pstmt.executeUpdate();

 }
 con.close();

 }catch(ClassNotFoundException e1){

 System.err.println(e1.getMessage());
 }catch(SQLException e2){

 System.err.println(e2.getMessage());
 }

 }
}

Chapter 1 3:Using PreparedStatements and CallableStatements

-342-

The appearance of the Ordered_Items Table after executing the loop is shown in Table 13-1. Note that
the ID column uses the auto increment data type, so it is not specifically updated by the Java example.

Table 13-1: Ordered_Items Table

ID Order_Number Item_Number Qty

1 1001 327 2

2 1001 412 1

3 1001 906 5

4 1002 111 7

5 1002 112 19

Values Returned by PreparedStatements

The kinds of values a PreparedStatement can return are exactly the same as for a basic
Statement. Although the executeQuery() method used in Listing 13-1 returns a ResultSet object
containing the results of the query, the return value for the executeUpdate() method in Listing 13-2 is
an int that indicates how many rows are updated in the table. For example, you can wrap the
pstmt.executeUpdate()of Listing 13-2 in the following System.out.println() method call:

System.out.println(pstmt.executeUpdate());

This results in a series of ones being printed to the console. When the executeUpdate()method is
used to execute a DDL statement, such as CREATE TABLE, it returns a zero.

This section illustrated the most efficient way to execute a SQL command repeatedly in a loop when you
have no expectation of using the command again later. If you have a statement or group of statements
you want to execute frequently, the CallableStatement is a better solution, as illustrated in the next
section.

Creating and Using a CallableStatement

The CallableStatement object allows you to call a database stored procedure from a Java
application. The CallableStatement object is similar to the PreparedStatement, which it extends;
but whereas a PreparedStatement actually contains the SQL command, a CallableStatement
object contains a call to a procedure stored in the database; it does not contain the stored procedure
itself. For an application such as a Web site, with a large number of users executing the same SQL
statements repeatedly, the use of CallableStatement can greatly improve the performance of the
database.

Since CallableStatement extends PreparedStatement , a CallableStatement object can
take input parameters like a PreparedStatement object can. A CallableStatement can also take
output parameters or parameters that are for both input and output.

The input parameters are defined in the SQL CREATE PROCEDURE statement, using syntax of this form:

@param_name type [(size)]

The @ symbol preceding the parameter name identifies the name as a parameter to the SQL engine.
The type and size fields correspond to the normal SQL data type fields used in creating a table.

Creating a Stored Procedure

Reverting to the membership Web site example, the first step a user takes is to log in. A basic login
form is developed in Chapter 12. In the event that the username and password is not recognized, the
user is given the opportunity to register as a new member.

Chapter 1 3:Using PreparedStatements and CallableStatements

-343-

One of the first tables to be updated for a new member is Contact_Info. This occurs by having the new
member complete a basic new-member registration form. After completing the member registration form,
applicants for membership are forwarded to a series of additional forms. These are used to complete
the member's entries in the Contact_Info and Member_Profile Tables.

The Contact_Info Table contains such data as the member's real name and address and his or her e-
mail address. The layout of the Contact_Info Table is shown in Table 13-2.
Table 13-2: Contact_Info Table

ID FNAME MI LNAME STREET CITY ST ZIP EMAIL

1 Giorgio A Corleone 123 Main
St

New
York

NY 10002 gac@cn.com

Since updating the Contact_Info Table is a process that is repeated frequently, it is a good choice for
implementation using a stored procedure. The CallableStatement object will be used to execute the
stored procedure. Listing 13-3 illustrates the creation of a simple stored procedure to populate this table.

Listing 13-3: Creating a stored procedure

package JavaDatabaseBible.ch13;

import java.sql.*;
import javax.sql.*;

public class CreateCallableStmt{

 private static String dbUserName = "sa";
 private static String dbPassword = "dba";

 public static void main(String args[]){

 String createProc = "CREATE PROCEDURE INSERT_CONTACT_INFO "+
 "@ID INT, @FName VARCHAR(20), @MI CHAR(1), "+

 "@LName VARCHAR(30),@Street VARCHAR(50), "+
 "@City VARCHAR(30), @ST CHAR(2), "+

 "@ZIP VARCHAR(10), @Phone VARCHAR(20), "+
 "@Email VARCHAR(50) "+

 "AS INSERT INTO CONTACT_INFO "+

 "(ID, FName, MI, LName, Street, City, ST, ZIP, "+
 "Phone, Email) "+

 "VALUES "+
 "(@ID, @FName, @MI, @LName, @Street, @City, "+

 " @ST, @ZIP, @Phone, @Email);";

 try {
 Class.forName("com.inet.pool.PoolDriver");

 com.inet.tds.TdsDataSource tds = new com.inet.tds.TdsDataSource();
 tds.setServerName("JUPITER");

 tds.setDatabaseName("MEMBERS");

Chapter 1 3:Using PreparedStatements and CallableStatements

-344-

 tds.setUser(dbUserName);
 tds.setPassword(dbPassword);

 DataSource ds = tds;

 Connection con = ds.getConnection(dbUserName,dbPassword);

 Statement stmt = con.createStatement();
 stmt.executeUpdate(createProc);

 }
 catch(ClassNotFoundException e){

 e.printStackTrace();
 }

 catch(SQLException e){
 e.printStackTrace();

 }
 }

}

Calling a Stored Procedure

Stored procedures are called using a simple escape syntax defined by enclosing the call in curly braces.
When the driver encounters the curly braces, it will translate the command they enclose into the native
SQL used by the database to call the stored procedure. This syntax has two forms: one that has a result
parameter and one that does not. Here's an example:

{?= call <procedure-name>[<arg1>,<arg2>, ...]}

{call <procedure-name>[<arg1>,<arg2>, ...]}

Question marks (?) serve as placeholders for parameters defined in the stored procedure using the
@Name convention as shown in the example. IN parameter values are set using the set methods
inherited from PreparedStatement.

When calling a stored procedure, a CallableStatement object is created using the Connection
method prepareCall(). The argument of the prepareCall() method is the escape String, with
question marks as place holders for each of the input parameters. Values for each of these parameters
are assigned using the setter methods of the CallableStatement object; then the
CallableStatement is executed. The following code fragment shows how the stored procedure
created in Listing 13-3 can be called:

String[] newMember = {"Fred","A","Tagliatelle","123 Ziti",

 "Penne","PA","12345","123-456-7890","fat@pasta.com"};
CallableStatement cs =

 con.prepareCall("{call
INSERT_CONTACT_INFO(?,?,?,?,?,?,?,?,?,?)}");

cs.setInt(1,2);
for(int i=0;i<newMember.length;i++){

 cs.setString(i+2,newMember[i]);
}

System.out.println(cs.executeUpdate()+" row updated");

Chapter 1 3:Using PreparedStatements and CallableStatements

-345-

Calling stored procedures that return ResultSets is just as easy. For example, a simple stored
procedure, GET_LOGIN_FOR_USER, which gets the login data for a given UserName, can be defined
as follows:

CREATE PROCEDURE GET_LOGIN_FOR_USER @USERNAME VARCHAR(20)

 AS SELECT *
 FROM LOGIN

 WHERE USERNAME = @USERNAME;

The example in Listing 13-4 shows how to call the stored procedure GET_LOGIN_FOR_USER.

Listing 13-4: Calling a stored procedure that returns a ResultSet

package JavaDatabaseBible.ch13;

import java.sql.*;
import javax.sql.*;

public class CallableGetLogin{

 private static String dbUserName = "sa";
 private static String dbPassword = "dba";

 public static void main(String args[]){

 try {
 Class.forName("com.inet.pool.PoolDriver");

 com.inet.tds.TdsDataSource tds = new com.inet.tds.TdsDataSource();
 tds.setServerName("JUPITER");

 tds.setDatabaseName("MEMBERS");
 tds.setUser(dbUserName);

 tds.setPassword(dbPassword);

 DataSource ds = tds;
 Connection con = ds.getConnection(dbUserName,dbPassword);

 CallableStatement cs = con.prepareCall("{call GET_LOGIN_FOR_USER(?)}");

 cs.setString(1,"garfield");
 ResultSet rs = cs.executeQuery();

 ResultSetMetaData md = rs.getMetaData();

 while(rs.next()){
 for(int i=1;i<=md.getColumnCount();i++){

 System.out.print(md.getColumnLabel(i)+"\t=\t");
 if(md.getColumnType(i)==java.sql.Types.INTEGER)

 System.out.println(rs.getInt(i));
 else

 System.out.println(rs.getString(i));

Chapter 1 3:Using PreparedStatements and CallableStatements

-346-

 }
 }

 }
 catch(ClassNotFoundException e){

 e.printStackTrace();
 }

 catch(SQLException e){
 e.printStackTrace();

 }
 }

}

Note that the sequence of events is the same as in the previous example:
1. The CallableStatement is created using prepareCall().
2. The CallableStatement's parameters are set.
3. The CallableStatement is executed, in this instance returning a ResultSet.

In this example, a simple type check is performed on the returned values to ensure that the right getter
method is used to retrieve the data.

Using a StoredProcedure from a JSP Bean

Now that the stored procedure has been created, it is called from a JavaBean instantiated from a JSP
page. The JSP page itself is called from the action method of the HTML form displayed as part of the
member-registration process. The form itself is shown in Figure 13-1.

Figure 13-1: A basic name and address form used to provide data for the Contact_info Table

The HTML to create this form is shown in Listing 13-5. Note that a simple validation script has been
included to ensure that at least some data is entered for each of the important fields. This form is saved
as NewMemberForm.jsp and is called from theProcessLogin.jsp form handler shown in Listing
12-8.

Listing 13-5: Registration form NewMemberForm.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>

Chapter 1 3:Using PreparedStatements and CallableStatements

-347-

<TITLE>
Member Registration

</TITLE>

<SCRIPT language=JavaScript1.1 >
function validate(form){

 if(form.elements["firstName"].value==" "||
 form.elements["lastName"].value=="" ||

 form.elements["email"].value=="" ||
 form.elements["city"].value=="" ||

 form.elements["state"].value=="?"||
 form.elements["zip"].value==""){

 alert("Please enter first name, last name, email, city, state and
zip.");
 return false;

 } return true;
}

</SCRIPT>

<META content="text/html; charset=windows-1252" http-equiv=Content-Type>
</HEAD>

<BODY bgColor=#ffffff>
<BASEFONT face=Arial size=3>

<FORM action=ProcessNAForm.jsp method=POST target=_self

 onSubmit="return validate(this);">
<TABLE cellPadding=0 BORDER=0>

 <TR>
 <TD>

 <TABLE cellPadding=0 BORDER=1>
 <TR>

 <TD valign=center>
 </P>

 <SMALL>
 <CENTER>

 Information contained in the shaded portion of this page will be
kept
 confidential.

 </CENTER>
 <SMALL>

 </TD>
 </TR>

Chapter 1 3:Using PreparedStatements and CallableStatements

-348-

 <TR>
 <TD>

 <TABLE cellPadding=4 cellSpacing=0 BGCOLOR="#AAAAAA" WIDTH="100%">
 <TBODY>

 <TR>
 <TD vAlign=bottom>

 <TABLE cellSpacing=0 cellPadding=0 Border=0>
 <TR>

 <TD>
 First Name
<INPUT maxLength=30 name=firstName
size=26>
 </TD>
 <TD vAlign=bottom align=right>

 M.I.
<INPUT maxLength=1 name=mI size=2>
 </TD>

 </TR>
 </TABLE>

 </TD>
 <TD vAlign=bottom>

 Last Name
<INPUT maxLength=30 name=lastName size=30>
 </TD>

 </TR>
 <TR>

 <TD vAlign=bottom>
 Choose a User Name
<INPUT maxLength=30 name=username
size=30>
 </TD>
 <TD height=43 colspan=2 vAlign=bottom>

 Choose a password
<INPUT name=password size=20>
 </TD>

 </TR>
 <TR>

 <TD vAlign=bottom>
 EMail Address
<INPUT maxLength=30 name=email size=30>

 </TD>
 </TR>

 <TR>
 <TD height=43 vAlign=bottom>

 Street Address
<INPUT name=Street size=30>
 </TD>

 </TR>
 </TBODY>

 </TABLE>
 </TD>

Chapter 1 3:Using PreparedStatements and CallableStatements

-349-

 </TR>
 <TR>

 <TD valign=center>
 </P>

 <SMALL>
 <CENTER>

 Information entered below this line will be used by our search
engine.

 </CENTER>

 <SMALL>
 </TD>

 </TR>
 <TR>

 <TD>
 <TABLE cellPadding=4 cellSpacing=0>

 <TBODY>
 <TR>

 <TD height=43 vAlign=bottom width=163>
 City
<INPUT name=City size=15>

 </TD>
 <TD height=49 vAlign=bottom width=229>

 State/Province

 <SELECT name=State size=1>

 <OPTION selected value="?">Please choose</OPTION>
 <OPTION value=aa>I live outside US or Canada</OPTION>

 <OPTION value=AB>Alberta</OPTION>
 <OPTION value=AK>Alaska</OPTION>

 <OPTION value=AL>Alabama</OPTION>
 <OPTION value=AR>Arkansas</OPTION>

 <OPTION value=AZ>Arizona</OPTION>
 <OPTION value=BC>British Columbia</OPTION>

 <OPTION value=CA>California</OPTION>
 <OPTION value=CO>Colorado</OPTION>

 <OPTION value=CT>Connecticut</OPTION>
 <OPTION value=DC>District of Columbia</OPTION>

 <OPTION value=DE>Delaware</OPTION>
 <OPTION value=FL>Florida</OPTION>

 <OPTION value=GA>Georgia</OPTION>
 <OPTION value=HI>Hawaii</OPTION>

 <OPTION value=IA>Iowa</OPTION>
 <OPTION value=ID>Idaho</OPTION>

Chapter 1 3:Using PreparedStatements and CallableStatements

-350-

 <OPTION value=IL>Illinois</OPTION>
 <OPTION value=IN>Indiana</OPTION>

 <OPTION value=KS>Kansas</OPTION>
 <OPTION value=KY>Kentucky</OPTION>

 <OPTION value=LA>Louisiana</OPTION>
 <OPTION value=MA>Massachusetts</OPTION>

 <OPTION value=MB>Manitoba</OPTION>
 <OPTION value=MD>Maryland</OPTION>

 <OPTION value=ME>Maine</OPTION>
 <OPTION value=MI>Michigan</OPTION>

 <OPTION value=MN>Minnesota</OPTION>
 <OPTION value=MO>Missouri</OPTION>

 <OPTION value=MS>Mississippi</OPTION>
 <OPTION value=MT>Montana</OPTION>

 <OPTION value=NB>New Brunswick</OPTION>
 <OPTION value=NC>North Carolina</OPTION>

 <OPTION value=ND>North Dakota</OPTION>
 <OPTION value=NE>Nebraska</OPTION>

 <OPTION value=NF>Newfoundland</OPTION>
 <OPTION value=NH>New Hampshire</OPTION>

 <OPTION value=NJ>New Jersey</OPTION>
 <OPTION value=NM>New Mexico</OPTION>

 <OPTION value=NS>Nova Scotia</OPTION>
 <OPTION value=NT>Northwest Territories</OPTION>

 <OPTION value=NV>Nevada</OPTION>
 <OPTION value=NY>New York</OPTION>

 <OPTION value=OH>Ohio</OPTION>
 <OPTION value=OK>Oklahoma</OPTION>

 <OPTION value=ON>Ontario</OPTION>
 <OPTION value=OR>Oregon</OPTION>

 <OPTION value=PA>Pennsylvania</OPTION>
 <OPTION value=PE>Prince Edward Island</OPTION>

 <OPTION value=QC>Quebec</OPTION>
 <OPTION value=RI>Rhode Island</OPTION>

 <OPTION value=SC>South Carolina</OPTION>
 <OPTION value=SD>South Dakota</OPTION>

 <OPTION value=SK>Saskatchewan</OPTION>
 <OPTION value=TN>Tennessee</OPTION>

 <OPTION value=TX>Texas</OPTION>
 <OPTION value=UT>Utah</OPTION>

 <OPTION value=VA>Virginia</OPTION>
 <OPTION value=VT>Vermont</OPTION>

 <OPTION value=WA>Washington</OPTION>

TE
AM
FL
Y

Team-Fly®

Chapter 1 3:Using PreparedStatements and CallableStatements

-351 -

 <OPTION value=WI>Wisconsin</OPTION>
 <OPTION value=WV>West Virginia</OPTION>

 <OPTION value=WY>Wyoming</OPTION>
 <OPTION value=YK>Yukon</OPTION>

 </SELECT>
 </TD>

 <TD height=49 vAlign=bottom width=158>
 Zip/Postal code
<INPUT name=Zip size=15>

 </TD>
 </TR>

 </TBODY>
 </TABLE>

 </TD>
 </TR>

 <TR>
 <TD align=center>

 <INPUT name=SubmitButton type=SUBMIT value="Click here to

proceed">

 <P/>
 </TD>

 </TR>
 </TABLE>

 </TD>
 </TR>

</TABLE>
</FORM>

</BODY>
</HTML>

After local validation by the JavaScript, the form data is passed to the JSP page ProcessNAForm.jsp,
which uses the ProcessNABean to insert the form data into the database. ProcessNAForm.jsp is a
simple example of a JSP form handler. It loads the ProcessNABean and sets its properties using the
wild card property setter that relies on introspection to set all the properties of the JavaBean from the
form data. When the insertData() method is called, ProcessNABean returns a boolean which is
used to set the String nextPage to the appropriate handler. Finally, the <jsp:forward> tag is
used to forward the user to the appropriate page. Listing 13-6 shows the JSP page.

Listing 13-6: ProcessNAForm.jsp

<%@ page language="java"%>

<jsp:useBean id="ProcessNABean"
class="JavaDatabaseBible.ch13.ProcessNABean" scope="session"/>

<jsp:setProperty name="ProcessNABean" property="*"/>
<%

Chapter 1 3:Using PreparedStatements and CallableStatements

-352 -

String nextPage = "MemberWelcome.jsp";
if(ProcessNABean.insertData()){

 nextPage = "MemberProfile.jsp";
}else{

 nextPage = "NewMemberForm.jsp";
}

%>
<jsp:forward page="<%=nextPage%>"/>

Operation of the ProcessNABean

The first part of the ProcessNABean is the collection of getter and setter methods required to access
the bean's parameters. These must be supplied for the bean introspection that the JSP engine requires
to work properly.

The real work is done in the insertData() method. The ProcessNABean makes extensive use of a
CallableStatement object, cs. First it calls the stored procedure GET_LOGIN_FOR_USER to validate
the username against the Login table. If the username is already in use, the boolean flag
username_selection_ok is set to false so that the JSP page can notify the user that he or she
needs to select a different username.

Once the user has selected a valid, unique username, the CallableStatement object is used to call
the stored procedure SET_LOGIN_FOR_USER to update the Login table with the new username and
password. The stored procedure SET_LOGIN_FOR_USER is defined as follows:

CREATE PROCEDURE SET_LOGIN_FOR_USER

 @USERNAME VARCHAR(20),
 @PASSWORD VARCHAR(20)

 AS
 INSERT INTO LOGIN (USERNAME, PASSWORD)

 VALUES (@USERNAME, @PASSWORD);

The stored procedure GET_LOGIN_FOR_USER is then called again to get the auto generated MemberID
assigned to this user. A more elegant way to do this is to use the getGeneratedKeys() method
defined in JDBC 3.0 for the Statement object as shown here:

if(cs.executeUpdate()!=1)ok = false;

Result rs = cs.getGeneratedKeys();

Cross-
Reference The use of the JDBC 3.0 extension method

Statement.getGeneratedKeys() is discussed in Chapter 4.

Finally, the stored procedure INSERT_CONTACT_INFO is called to insert the member data stored in
the ProcessNABean.

The code for the ProcessNABean is shown in Listing 13-7.

Listing 13-7: Calling a stored procedure from a JavaBean

package JavaDatabaseBible.ch13;

import java.sql.*;

import javax.sql.*;

Chapter 1 3:Using PreparedStatements and CallableStatements

-353 -

public class ProcessNABean extends java.lang.Object{

 private static String dbUserName = "sa";
 private static String dbPassword = "dba";

 protected String firstName;

 protected String lastName;
 protected char mi;

 protected String street;
 protected String city;

 protected String state;
 protected String zip;

 protected String phone;
 protected String email;

 protected String username;
 protected String password;

 public ProcessNABean(){

 }
 public void setUsername(String username){

 this.username = username;
 }

 public void setPassword(String password){
 this.password = password;

 }
 public void setFirstName(String firstName){

 this.firstName = firstName;
 }

 public void setLastName(String lastName){
 this.lastName = lastName;

 }
 public void setMi(char mi){

 this.mi= mi;
 }

 public void setStreet(String street){
 this.street = street;

 }
 public void setCity(String city){

 this.city = city;
 }

 public void setState(String state){
 this.state = state;

 }

Chapter 1 3:Using PreparedStatements and CallableStatements

-354 -

 public void setZip(String zip){
 this.zip = zip;

 }
 public void setPhone(String phone){

 this.phone = phone;
 }

 public void setEmail(String email){
 this.email = email;

 }
 public String getUsername(){

 return username;
 }

 public String getPassword(){
 return password;

 }
 public String getFirstName(){

 return firstName;
 }

 public String getLastName(){
 return lastName;

 }
 public char getMi(){

 return mi;
 }

 public String getStreet(){
 return street;

 }
 public String getCity(){

 return city;
 }

 public String getState(){
 return state;

 }
 public String getZip(){

 return zip;
 }

 public String getPhone(){
 return phone;

 }
 public String getEmail(){

 return email;
 }

 public boolean insertData(){

Chapter 1 3:Using PreparedStatements and CallableStatements

-355-

 boolean username_selection_ok = true;
 try {

 Class.forName("com.inet.pool.PoolDriver");
 com.inet.tds.TdsDataSource tds = new com.inet.tds.TdsDataSource();

 tds.setServerName("JUPITER");
 tds.setDatabaseName("MEMBERS");

 tds.setUser(dbUserName);
 tds.setPassword(dbPassword);

 DataSource ds = tds;

 Connection con = ds.getConnection(dbUserName,dbPassword);

 CallableStatement cs = con.prepareCall("{call
GET_LOGIN_FOR_USER(?)}");

 cs.setString(1,username);
 ResultSet rs = cs.executeQuery();

 ResultSetMetaData md = rs.getMetaData();

 int id = -1;
 while(rs.next()){

 id = rs.getInt("MemberID");
 }

 if(id>=0){

 System.out.println(id+": "+username+"; "+password);
 username_selection_ok = false;

 }else{

 cs = con.prepareCall("{call SET_LOGIN_FOR_USER(?,?)}");

 cs.setString(1,username);
 cs.setString(2,password);

 if(cs.executeUpdate()!=1) username_selection_ok = false;

 cs = con.prepareCall("{call GET_LOGIN_FOR_USER(?)}");

 cs.setString(1,username);
 rs = cs.executeQuery();

 while(rs.next()){
 id = rs.getInt("MemberID");

 }

 cs = con.prepareCall("{call

Chapter 1 3:Using PreparedStatements and CallableStatements

-356 -

INSERT_CONTACT_INFO(?,?,?,?,?,?,?,?,?,?)}");

 cs.setInt(1,id);
 cs.setString(2,firstName);

 cs.setString(3,String.valueOf(mi));
 cs.setString(4,lastName);

 cs.setString(5,street);
 cs.setString(6,city);

 cs.setString(7,state);
 cs.setString(8,zip);

 cs.setString(9,"<NULL>");
 cs.setString(10,email);

 if(cs.executeUpdate()!=1) username_selection_ok = false;
 }

 }catch(ClassNotFoundException e1){

 System.err.println(e1.getMessage());
 }catch(SQLException e2){

 System.err.println(e2.getMessage());
 }

 return username_selection_ok;
 }

}

Error Handling

Recall that the ProcessNABean notifies the ProcessNAForm.jsp page that the user needs to select
a different username by setting the boolean flag username_selection_ok to false. This lets the
ProcessNAForm.jsp know that a problem has arisen, so it then sends the user back to the form so he
or she can select a new username and password.

As it stands, the form is cleared when redisplayed. This is virtually guaranteed to ensure that the user
gets fed up and surfs on. The way to avoid this is to fill in the fields the user has already completed and
to present a message telling him or her what to do next.

One of the primary uses of JavaBeans in JSP applications is data storage. Since all the form data has
already been inserted into the ProcessNABean, completing the form for the user requires only the
addition of this line:

<jsp:useBean id="ProcessNABean".../>

Also, include these few extra lines of code to set the properties:

First Name
<INPUT maxLength=30 name=firstName

 value='<jsp:getProperty name="ProcessNABean" property="firstName"/>'
size=26>

A partial listing of the modified form is shown in Listing 13-8.

Listing 13-8: ProcessNAForm.jsp modified for use as an error page

Chapter 1 3:Using PreparedStatements and CallableStatements

-357 -

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>

<HEAD>
<TITLE>

Member Registration
</TITLE>

<SCRIPT language=JavaScript1.1 >

function validate(form){
 if(form.elements["firstName"].value==" "||

 form.elements["lastName"].value=="" ||
 form.elements["email"].value=="" ||

 form.elements["city"].value=="" ||
 form.elements["state"].value=="?"||

 form.elements["zip"].value==""){
 alert("Please enter first name, last name, email, city, state and
zip.");
 return false;
 }

 return true;
}

</SCRIPT>

<META content="text/html; charset=windows-1252" http-equiv=Content-Type>
</HEAD>

<BODY bgColor=#ffffff>
<BASEFONT face=Arial size=3>

<%@ page session="true" %>
<jsp:useBean id="ProcessNABean"

class="JavaDatabaseBible.ch13.ProcessNABean" scope="session"/>

<FORM action=ProcessNAForm.jsp method=POST target=_self
 onSubmit="return validate(this);">

<TABLE cellPadding=0 BORDER=0>
 <TR>

 <TD>
 <TABLE cellPadding=0 BORDER=1>

 <TR>
 <TD valign=center>

 </P>
 <SMALL>

 <CENTER>

Chapter 1 3:Using PreparedStatements and CallableStatements

-358-

 Information contained in the shaded portion of this page will
be kept

 confidential

 </CENTER>
 <SMALL>

 </TD>
 </TR>

 <TR>
 <TD>

 <TABLE cellPadding=4 cellSpacing=0 Border=0 BGCOLOR="#AAAAAA"
 WIDTH="100%">

 <TBODY>
 <TR>

 <TD vAlign=bottom>
 <TABLE cellSpacing=0 cellPadding=0 Border=0>

 <TR>
 <TD>

 First Name
<INPUT maxLength=30 name=firstName
 value=

 '<jsp:getProperty name="ProcessNABean"
property="firstName"/>'

 size=26>
 </TD>

 <TD vAlign=bottom align=right>
 M.I.
<INPUT maxLength=1 name=mi value=

 '<jsp:getProperty name="ProcessNABean"
property="mi"/>'size=2>

 </TD>
 </TR>

 </TABLE>
 </TD>

 <TD vAlign=bottom>
 Last Name
<INPUT maxLength=30 name=lastName

 value='<jsp:getProperty name="ProcessNABean"
property="lastName"/>

 'size=30>
 </TD>

 </TR>
 <TR>

 <TD vAlign=bottom>
 Choose a User Name
<INPUT maxLength=30 name=username

 value=

Chapter 1 3:Using PreparedStatements and CallableStatements

-359 -

 '<jsp:getProperty name="ProcessNABean"
property="username"/>'

 size=30>
 </TD>

 <TD height=43 colspan=2 vAlign=bottom>
 Choose a password
<INPUT name=password size=20>

 </TD>
 </TR>

 <TR>
 <TD vAlign=bottom>

 EMail Address
<INPUT maxLength=30 name=email
 value='<jsp:getProperty name="ProcessNABean"

property="email"/>'
 size=30>

 </TD>
 </TR>

 <TR>
 <TD height=43 vAlign=bottom>

 Street Address
<INPUT name=street
 value=

 '<jsp:getProperty name="ProcessNABean"
property="street"/>'

 size=30>
 </TD>

 </TR>
 </TBODY>

 </TABLE>
 </TD>

 </TR>

Note

Listing 13-8 is only partial, showing the basic workings of the JSP page. Substitute this
into Listing 13-5, and implement the additional lines for the remaining properties to
create a complete form.

Figure 13-2 shows the use of the original form as a means of providing interactive feedback to the user.
This kind of user feedback is important in terms of ensuring that a user will take the trouble to complete
a form instead of simply surfing on.

Chapter 1 3:Using PreparedStatements and CallableStatements

-360-

Figure 13-2: Member-registration form with user data restored and error message displayed for
user name

Using Stored Procedures with Input and Output Parameters

In addition to supplying input parameters to a stored procedure, you can get output parameters from a
stored procedure. If you decide to use an output parameter, it must be registered as an OUT parameter
using the CallableStatement.registerOutParameter() method before the execute method is
called. Here's an example:

cstmt.registerOutParameter(1, java.sql.Types.VARCHAR);

OUT parameter values can be retrieved after execution using get methods appropriate to the data types
of the values. Because of limitations some relational database management systems impose, all of the
results the execution generates of a CallableStatement object should be retrieved before OUT
parameters are retrieved.

Listing 13-9 gives an example of a simple stored procedure that checks a user name and password
against the database, returning the String "PASS" if a match is found or "FAIL" otherwise.

Listing 13-9: Using an output parameter with a stored procedure

CREATE PROCEDURE CHECK_USER_NAME
 @UserName varchar(30),

 @Password varchar(20),
 @PassFail varchar(20) OUTPUT

As
IF EXISTS(Select * From Login

Where UserName = @UserName
 And

Password = @Password)
 SELECT @PassFail = 'PASS'

else
 SELECT @PassFail = 'FAIL';

Note

Stored procedures can contain more than one SQL statement, in which case they
produce multiple results, and the execute method should be used. In cases where a
CallableStatement object returns multiple ResultSet objects, all of the results
should be retrieved using the method getMoreResults before OUT parameters are
retrieved.

TE
AM
FL
Y

Team-Fly®

Chapter 1 3:Using PreparedStatements and CallableStatements

-361 -

Listing 13-10 provides an example of using the simple stored procedure of Listing 13-9. Notice the call
to the registerOutParameter() method prior to calling the CallableStatement's getString
method to retrieve the output parameter.

Listing 13-10: Getting an output parameter from a stored procedure

package JavaDatabaseBible.ch13;

import java.sql.*;

import javax.sql.*;

public class CheckPassword{
 private static String dbUserName = "sa";

 private static String dbPassword = "dba";

 public static void main(String args[]){
 int id = -1;

 String password = null;
 String username = "";

 if(args.length>0)username = args[0];
 try {

 Class.forName("com.inet.pool.PoolDriver");
 com.inet.tds.TdsDataSource tds = new com.inet.tds.TdsDataSource();

 tds.setServerName("JUPITER");
 tds.setDatabaseName("MEMBERS");

 tds.setUser(dbUserName);
 tds.setPassword(dbPassword);

 DataSource ds = tds;

 Connection con = ds.getConnection(dbUserName,dbPassword);

 CallableStatement cs = con.prepareCall("{call
CHECK_USER_NAME(?,?,?)}");
 cs.setString(1,"garfield");

 cs.setString(2,"lasagna");
 cs.registerOutParameter(3, java.sql.Types.VARCHAR);

 cs.executeUpdate();
 System.out.println(cs.getString(3));

 }
 catch(ClassNotFoundException e){

 e.printStackTrace();
 }

 catch(SQLException e){
 e.printStackTrace();

Chapter 1 3:Using PreparedStatements and CallableStatements

-362-

 }
 }

}

Summary

This chapter discusses improving the efficiency of JDBC-based applications by comparing and
contrasting the three variations on the java.sql.Statement object:
§ java.sql.Statement, which performs in line execution of a SQL command. This approach is

ideal for one-shot execution of a single command, since it involves minimum overhead.
§ java.sql.PreparedStatement, which offers a means of precompiling SQL commands. This

approach is best for executing a command in a loop, since the PreparedStatement passes the
SQL command to the SQL engine where it is parsed, compiled and cached for efficiency and speed
of execution. There is a slight overhead incurred in the precompilation and caching process.

§ java.sql.CallableStatement, which allows you to call SQL stored procedures. This
approach takes advantage of SQL's ability to precompile and store procedures which can
subsequently be executed by name.

Now you know all about inserting basic data types into a database from an HTML form. Chapter 14
discusses inserting and retrieving large objects, such as images and word-processor documents, as
blobs and clobs.

Chapter 14:Using Blobs and Clobs to Manage Images and Documents

-363-

Chapter 14: Using Blobs and Clobs to Manage
Images and Documents

In This Chapter

Traditionally, relational database management systems have been designed around the need to handle
simple traditional data types such as bytes, integers, floats, and Strings. The evolution of computer
hardware and software has introduced both the need and the capability to store much larger data
objects, such as images and even video clips, economically and efficiently.

Until recently, these larger data objects have been stored in traditional file systems, resulting in
significant loss of efficiency whenever very large numbers of such objects were involved. The designers
of relational database management systems have responded by providing support for the management
and storage of these large objects within the database itself.

This chapter discusses the use of relational databases to store and retrieve large objects in various
ways. Examples include the use of servlets to upload images to a database, and to retrieve them for
display in a browser.

Large Objects

Support for large objects (LOBs) is an important feature of modern object relational databases. The
SQL3 standard defines a number of new data types for managing large objects. These data types are
supported by the JDBC extension API. The new SQL3 large object data types supported by the JDBC
2.0 extension include the following:
§ ARRAY — which can store an array as a column value
§ BLOB (binary large object) — which can store large amounts of data as raw bytes
§ CLOB (character large object) — which can store large amounts of character data
§ Structured types
§ References to structured types

Caution

Different RDBMS systems use different internal types to manage large objects, so
refer to your documentation to find out which data types to use for large-object
storage.

JDBC 2.0 defines a set of interfaces that map SQL3 types. Table 14-1 shows the type mappings and
the retrieval, storage, and update methods for the different large object types.
Table 14-1: SQL3 Large Object Data Types

SQL3 type Java
Interface

get set Update

BLOB java.sql.Blob getBlob setBlob updateBlob

CLOB java.sql.Clob getClob setClob updateClob

ARRAY java.sql.Array getArray setArray updateArray

SQL Structured type java.sql.Struct getObject setObject updateObject

REF to Structured Type java.sql.Ref getObject setObject updateObject

Note

At the time of this writing, the update methods are scheduled for future release. Until
then, you can use the method updateObject, which works just as well.

Large-object support is the database community's response to evolving requirements to manage
nontraditional data types, such as images, as well as more traditional data types, such as prices, dates,
and quantities. The traditional data types are relatively simple and typically require anywhere from a
handful of bytes for an integer value to perhaps a few tens of bytes for a name or address. Relational

Chapter 14:Using Blobs and Clobs to Manage Images and Documents

-364-

database management systems have been optimized to handle rows containing relatively small
numbers of these types of data fields.

Many modern applications require the management of much larger data objects, from images, which
may require tens of kilobytes of storage, to video clips, which may run into the hundreds of megabytes.
The earliest approach to handling large objects was to store them as files in the underlying operating
system, using the database to store only the file path and letting the application code manage the file.
Today, many enterprise RDBMS systems support large objects directly as special data types, albeit with
certain restrictions on using them in queries.

Since large objects are, by definition, large, they are managed using SQL locators. Conceptually, a
locator is similar to a C or C++ pointer which contains the location of an object rather than the object
itself. RDBMS systems use locators to manage large objects because handling them in-line destroys
the optimization that RDBMS systems perform to map data objects to physical-storage devices such as
disk sectors.

An important feature of ARRAYs, BLOBs, and CLOBs, is that, since they are accessed using locators,
you can manipulate them without having to copy all the data from the server to the client machine. In
fact, when you query a database for a large object, the locator, rather than the actual object, is returned
in the ResultSet. Using pointers in this way is more efficient than moving large quantities of data around
the system for each column, so this feature can improve performance dramatically. As a JDBC
developer, you won't have to deal with locators, but it is useful to understand the concept so you can
see why the various large-object manipulation methods work the way they do.

Once you have the locator, you must specifically ask for the large-object data. This process is known as
materializing the data. For example, to retrieve an image stored as a BLOB, you can materialize it either
as a byte array, using Blob.getBytes(), or as an InputStream, using
Blob.getBinaryStream().

Although this chapter focuses on the use of Blobs and Clobs, you can see from Table 14-1 that large-
object support works consistently for all of these data types. Once you understand how to handle one,
you understand them all.

Using Blobs to Store Binary Data

Blobs provide a means of storing and managing large quantities of binary data. Typical examples of
large binary data objects are audio and video clips and image files. Blobs are particularly useful in Web
applications for storing images. JDBC support for Blobs is provided by the Blob Interface, which
defines these access methods:
§ public InputStream getBinaryStream()
§ public byte[] getBytes(long position, int length)

In addition, the Blob interface defines the utility methods length() and position(), which return
the number of bytes in the Blob and the offset to a contained byte array or Blob. The ResultSet
method getBlob() is used to retrieve the locator of a Blob from a ResultSet, while the method
setBlob() in the PreparedStatement interface can be used to set a Blob. In practice, a more
common way to write a Blob to a database table is to use PreparedStatement.setBinaryStream()
to transfer data directly from an InputStream to the RDBMS system. An example of this approach is
shown in Listing 14-1.

Listing 14-1: Inserting a Blob into a table

package JavaDatabaseBible.ch14;

import java.io.*;
import java.sql.*;

import javax.sql.*;

Chapter 14:Using Blobs and Clobs to Manage Images and Documents

-365-

public class BlobSaver{

 private static String dbUserName = "jod";
 private static String dbPassword = "jod";

 public static void main(String args[]){

 BlobSaver blobber = new BlobSaver();
 blobber.saveImage(1,"Witch","Witch.gif");

 }

 public void saveImage(int imageID,String description,String filename){
 String cmd =

 "INSERT INTO Photos (ImageID,Description,Image) VALUES(?,?,?)";
 File imgFile = new File(filename);

 try {
 Class.forName("com.inet.pool.PoolDriver");

 com.inet.tds.TdsDataSource tds = new com.inet.tds.TdsDataSource();
 tds.setServerName("MARS");

 tds.setDatabaseName("CONTACTS");
 tds.setUser(dbUserName);

 tds.setPassword(dbPassword);

 DataSource ds = tds;
 Connection con = ds.getConnection(dbUserName,dbPassword);

 PreparedStatement pstmt = con.prepareStatement(cmd);

 pstmt.setInt(1, imageID);

 pstmt.setString(2, description);
 pstmt.setBinaryStream(3, new FileInputStream(filename),

 (int)imgFile.length());
 pstmt.executeUpdate();

 con.close();
 }

 catch(ClassNotFoundException e){
 e.printStackTrace();

 }
 catch(SQLException e){

 e.printStackTrace();
 }

 catch(FileNotFoundException e){
 e.printStackTrace();

 }

Chapter 14:Using Blobs and Clobs to Manage Images and Documents

-366-

 }
}

As you can see from the listing, the method PreparedStatement.setBinaryStream() is very bit
as easy to use as any of the other set parameter methods. You simply use the setStream() methods
just like setInt() or setString().

Note

The Blob interface makes no attempt to check whether the Blob contains an image or an
audio clip or whatever. Essentially, the Blob is defined as a means of storing large
chunks of binary data; what you do with the data is up to you.

Using Clobs to Store Text Data

Clobs are similar to Blobs in that they are designed for the storage and management of large data
objects; but in the case of Clobs, these are defined as text objects. The primary difference between
Clobs and Blobs is that the Clob interface supports character-oriented access methods such as the
following:
§ public InputStream getAsciiStream()
§ public Reader getCharacterStream()
§ public String getSubString(long pos, int length)

Like the Blob, the Clob has the utility methods length() and position(), which return the number
of characters in the Clob and the offset to a contained search String or an included Clob.

Note

Unlike normal String methods, getSubString() starts counting from 1 rather than
from 0; to return the entire clob as a String, use getSubString(1,
clob.length()).

The ResultSet method getClob() can be used to retrieve the locator of a Clob from a ResultSet,
and the method setClob() in the PreparedStatement interface can be used to set a Clob. As in
the case of a Blob, a more common way to write a Clob to a database table is to use a
setStream()method (in this case, the ones listed here):
§ setAsciiStream()
§ setUnicodeStream()
§ setCharacterStream()

Using one of the setStream() methods lets you transfer data directly from an InputStream to the
RDBMS system. Listing 14-2 illustrates the use of a FileReader and the setCharacterStream()
method.

Listing 14-2: Saving a Clob to an RDBMS using a FileReader

 public void saveDocument(int memberID,String title,String filename){

 String cmd =
 "INSERT INTO Documents "+

 "(MemberID,Title,Document) VALUES(?,?,?)";

 File doc = new File(filename);
 System.out.println(filename+" - "+doc.length());

 try {
 Class.forName("com.inet.pool.PoolDriver");

 com.inet.tds.TdsDataSource tds = new com.inet.tds.TdsDataSource();
 tds.setServerName("MARS");

 tds.setDatabaseName("CONTACTS");

Chapter 14:Using Blobs and Clobs to Manage Images and Documents

-367-

 tds.setUser(dbUserName);
 tds.setPassword(dbPassword);

 DataSource ds = tds;

 Connection con = ds.getConnection(dbUserName,dbPassword);

 PreparedStatement pstmt = con.prepareStatement(cmd);

 pstmt.setInt(1, memberID);
 pstmt.setString(2, title);

 pstmt.setCharacterStream(3, new FileReader(doc),
 (int)doc.length());

 pstmt.executeUpdate();

 con.close();
 }

 catch(ClassNotFoundException e){
 e.printStackTrace();

 }
 catch(SQLException e){

 e.printStackTrace();
 } catch(FileNotFoundException e){

 e.printStackTrace();
 }

 }

Uploading Images and Documents from a Browser

A common requirement in Web applications is to upload images and documents from a client machine
over the Internet. Uploading files using an HTML form is part of the HTML standard and is supported by
all major browsers. However, in spite of being a standard capability, HTML file upload isn't very well
documented elsewhere, so it is worth reviewing how to create a servlet to handle uploads.

HTML file uploads use the multipart message format defined by the Multipurpose Internet Mail
Extensions (MIME) standard, sending each field of the form as a separate MIME part. The main points
to notice about creating the HTML upload form are as follows:
§ The "method" attribute of the FORM is set to "post".
§ The attribute "enctype = multipart/form-data" is added to the FORM element.
§ An INPUT element with the type "file" is used to specifiy the file to upload.

When the form is set up like this, the browser creates a file select control that lets you select the file to
upload. Listing 14-3 shows an example of a simple HTML upload form.

Listing 14-3: HTML file-upload form

<HTML>

<BODY>
 <FORM action="servlet/BlobUploadServlet"

Chapter 14:Using Blobs and Clobs to Manage Images and Documents

-368-

 enctype="multipart/form-data" method="post">
 <INPUT type="hidden" name="ID" value="1">

 <TABLE BORDER=1>
 <TR>

 <TD ALIGN="center">
 Filename: <INPUT type="file" name="submit-file" size="40">

 </TD>
 </TR>

 <TR>
 <TD ALIGN="center">

 <center>
 <INPUT type="submit" value="Send">

 <INPUT type="reset">
 </center>

 </TD>
 </TR>

 </TABLE>
 </FORM>

</BODY>
</HTML>

This form contains a hidden field, with the member ID field set by the JSP page or servlet that creates
the form. The form also contains a file select field. The servlet shown in Listing 14-4 echoes the upload
back to the browser, so you can look at the upload format.

Listing 14-4: Blob upload test servlet

import java.sql.*;
import javax.sql.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class BlobTestServlet extends HttpServlet{

 public void doPost(HttpServletRequest request, HttpServletResponse
response)

 throws ServletException, IOException{
 ServletOutputStream out = response.getOutputStream();

 BufferedInputStream in = new
BufferedInputStream(request.getInputStream());

 out.println(request.getHeader("content-type"));
 int c = -1;

 while ((c=in.read()) >= 0)out.write(c);
 out.close();

 }
}

Chapter 14:Using Blobs and Clobs to Manage Images and Documents

-369-

If you select a GIF file for the first file, the data stream that this forms will look something like Listing 14-
5. The listing has been edited to remove most of the bytes representing the GIF image file.

Listing 14-5: Edited view of the multipart data stream

multipart/form-data; boundary=---------------------------7d21e01ffec
-----------------------------7d21e01ffec

Content-Disposition: form-data; name="ID"

1
-----------------------------7d21e01ffec

Content-Disposition: form-data; name="submit-file";
filename="C:\Clipart\Test.gif"
Content-Type: image/gif

GIF89a_ _ ñ—......................................_#_6 1¢•6•°U ;

-----------------------------7d21e01ffec--

One way to parse a data stream in multipart MIME format is to use the JavaMail API. However, a
simpler approach is to parse the data stream yourself. This approach will be demonstrated by
developing a BlobUploadServlet illustrates the basics of parsing a multipart MIME document.

The MIME parts are separated by boundaries, which are unique lines of text defined in the header and
guaranteed not to occur inside any MIME part. Each MIME part is made of a header section, a blank
line, and the body or payload.

The header section contains several headers defining the content and format of the body area. Headers
have a colon separated name/value pair and, optionally, several parameters separated by semicolons.
The parameters are similar to HTML attributes, with a name = value pair.

The MIME boundary is specified in the Content-Type header. In the Blob upload servlet, the
getBoundary() method parses out the boundary substring, prepends CRLF and two hyphens, and
returns the boundary as a String. This read() method, which is used to retrieve the payload Blob, uses
this boundary string.

The read() method creates a PushbackInputStream from the ServletInputStream and returns
input characters from the stream. If it encounters a boundary, it discards it, returning a flag to indicate
that a boundary has been reached. Since all normal characters are positive integers, a –1 is returned
when a boundary is encountered (unless it is the final boundary, in which case a –2 is returned).

The header area of each part, which, as you recall, corresponds to a field in the HTML form, contains a
Content-Disposition header, with the value "form-data". This Content-Disposition header
contains the attribute "name" with the name of the field specified in the HTML form as its value. If the
field type is "file", the header will also contain the attribute "filename", with the name of the file being
uploaded.

The headers are parsed by the parseHeader() method, which returns a Hashtable of header
parameters. These are merged into the parameter Hashtable, since parameters such as member id
are in a different header from the file name.

Th BlobUploadServlet has been written to output header information to the
ServletOutputStream, so you can see the results of parsing the ServletInputStream. Listing
14-6 shows the servlet output.

Listing 14-6: Ouput of the BlobUploadServlet

Chapter 14:Using Blobs and Clobs to Manage Images and Documents

-370-

boundary =

-----------------------------7d2104226b0

Content-Disposition: form-data; name="ID"

Content-Disposition: form-data; name="submit-file"; filename="C:\JDBC

Bible\Projects\Ch14\bather.jpg"

 ID = 101
 filename = C:\JDBC Bible\Projects\Ch14\bather.jpg

 name = submit-file
 Content-Disposition = form-data

 Content-Type = image/pjpeg
 ...saving payload

The servlet is designed specifically to handle Blob uploads, but it can obviously be
modified to handle Clobs with minimal effort. You can use the Content-Type
parameter to determine the uploaded file type and select the appropriate JDBC
methods when saving the data. If the uploaded file is an image, the Content-Type
parameter will be image/pjpeg or image/gif, and so on. Similarly, if you upload a
text file, the Content-Type will be set automatically to text/plain, and MSWord
documents will have their Content-Type set to application/msword, and so on.

The method savePayload() parses the Blob to a byte array and saves it to the DBMS table in the
method saveBlob(). The saveBlob() method uses the member id retrieved from a preceding
header and saved in the params Hashtable as one of the inputs to the PreparedStatement used to
save the Blob to the database table. The Blob upload servlet is shown in Listing 14-7.

Listing 14-7: Uploading images using a Blob upload servlet

import java.io.*;
import java.util.*;

import java.sql.*;
import javax.sql.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class BlobUploadServlet extends HttpServlet{

 private static String dbUserName = "sa";
 private static String dbPassword = "dba";

 private static final char CR = 13;

 private static final char LF = 10;

TE
AM
FL
Y

Team-Fly®

Chapter 14:Using Blobs and Clobs to Manage Images and Documents

-371 -

 protected String boundary = null;
 protected Hashtable params = new Hashtable();

 public void doPost(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException{
 ServletOutputStream out = response.getOutputStream();

 ServletInputStream in = request.getInputStream();
 BufferedInputStream bin = new BufferedInputStream(in);

 boundary = getBoundary(request.getHeader("content-type"));

 out.println("<html><body><pre>");
 out.println("boundary =\n"+boundary);

 out.println();

 byte[] bytes = new byte[128];
 in.readLine(bytes,0,bytes.length);

 String line = new String(bytes);
 Hashtable header = null;

 while(in.readLine(bytes,0,bytes.length)>=0){
 line = new String(bytes);

 if(line.startsWith("Content-Disposition:")){
 out.println(line);

 header = parseHeader(line);
 updateParams(header);

 }else if(line.startsWith("Content-Type:")){
 params.put("Content-Type",

 line.substring("Content-Type:".length()).trim());
 }else{

 if(header!=null&&bytes[0]==13){
 if(header.containsKey("filename")){

 displayParams(out);
 out.println(" ...saving payload");

 savePayload(params,bin);
 header = null;

 }else{
 String name = (String)header.get("name");

 String value = getParameter(in).trim();
 params.put(name,value);

 }
 }if(line.indexOf(boundary)>=0)out.println(line);

 }

Chapter 14:Using Blobs and Clobs to Manage Images and Documents

-372-

 bytes = new byte[128];
 }

 out.println("</pre></body></html>");
 out.close();

 }
 private void displayParams(ServletOutputStream out)

 throws java.io.IOException{
 for (Enumeration e = params.keys();e.hasMoreElements();) {

 String key = (String)e.nextElement();
 out.println(" "+key+" = "+params.get(key));

 }
 }

 private void updateParams(Hashtable header){
 for (Enumeration e = header.keys();e.hasMoreElements();) {

 String key = (String)e.nextElement();
 params.put(key,header.get(key));

 }
 }

 private String getParameter(ServletInputStream in)
 throws java.io.IOException{

 byte[] bytes = new byte[128];
 in.readLine(bytes,0,bytes.length);

 return new String(bytes);
 }

 private String getBoundary(String contentType){
 int bStart = contentType.indexOf("boundary=")+"boundary=".length();

 return "" + CR + LF + "--" + contentType.substring(bStart);
 }

 private void savePayload(Hashtable params,BufferedInputStream is)
 throws java.io.IOException{

 int c;
 PushbackInputStream input = new PushbackInputStream(is,128);

 ByteArrayOutputStream out = new ByteArrayOutputStream();
 while ((c=read(input,boundary)) >= 0)out.write(c);

 int id = Integer.parseInt((String)params.get("ID"));
 saveBlob(id,(String)params.get("filename"),out.toByteArray());

 out.close();
 }

 private int read(PushbackInputStream input, String boundary)

 throws IOException
 {

 StringBuffer buffer = new StringBuffer();

Chapter 14:Using Blobs and Clobs to Manage Images and Documents

-373-

 int index = -1;
 int c;

 do {

 c = input.read();
 buffer.append((char)c);

 index++;
 }while ((buffer.length() < boundary.length()) &&

 (c == boundary.charAt(index)));

 if (c == boundary.charAt(index)){
 int type = -1;

 if (input.read() == '-')
 type = -2;

 while (input.read() != LF);
 return type;

 }

 while (index >= 0){
 input.unread(buffer.charAt(index));

 index--;
 }

 return input.read();
 }

 private Hashtable parseHeader(String line){
 Hashtable header = new Hashtable();

 String token = null;
 StringTokenizer st = new StringTokenizer(line,";");

 while(st.hasMoreTokens()){
 token = ((String)st.nextToken()).trim();

 String key = "";
 String val = "";

 int eq = token.indexOf("=");
 if(eq <0) eq = token.indexOf(":");

 if(eq >0){
 key = token.substring(0,eq).trim();

 val = token.substring(eq+1);
 val = val.replace('"',' ');

 val = val.trim();
 header.put(key,val);

 }
 }

 return header;

Chapter 14:Using Blobs and Clobs to Manage Images and Documents

-374-

 }
 public void saveBlob(int memberID,String description,byte[] out){

 String cmd =
 "INSERT INTO Photos (MemberID,Description,Image) VALUES(?,?,?)";

 System.out.println(cmd);
 try {

 Class.forName("com.inet.pool.PoolDriver");
 com.inet.tds.TdsDataSource tds = new com.inet.tds.TdsDataSource();

 tds.setServerName("JUPITER");
 tds.setDatabaseName("MEMBERS");

 tds.setUser(dbUserName);
 tds.setPassword(dbPassword);

 DataSource ds = tds;

 Connection con = ds.getConnection(dbUserName,dbPassword);

 PreparedStatement pstmt = con.prepareStatement(cmd);
 pstmt.setInt(1, memberID);

 pstmt.setString(2, description);
 pstmt.setBytes(3, out);

 System.out.println(pstmt.executeUpdate());

 con.close();
 }

 catch(ClassNotFoundException e){
 e.printStackTrace();

 }
 catch(SQLException e){

 e.printStackTrace();
 }

 }
}

A Servlet for Downloading Large Objects from a DBMS

The conventional way of incorporating images or other large objects in a Web page is to provide a link
to a disk file and to rely on the operating system to find the file. This works just fine when you have only
a few image files, but in a membership Web site with tens or hundreds of thousands of members, each
of whom may have several photos on file, search times become significant. One way around this is to
design a directory tree, containing hundreds of subdirectories arranged in some logical manner so that
you can navigate rapidly to the right subdirectory.

Letting your DBMS do the work is a much more elegant and attractive way to find the image files. A big
advantage of object relational database management Systems, after all, is that they are designed
specifically for this kind of thing.

Chapter 14:Using Blobs and Clobs to Manage Images and Documents

-375-

The servlet of Listing 14-8 shows how you can retrieve an image from a DBMS as a Blob and write it as
a byte array to the ServletOutputStream. The servlet also retrieves text as a Clob.

Caution

It is important when downloading non-html data to set the correct content type in the
response object. Some browsers are more sensitive to this than others.

Listing 14-8: A servlet that retrieves large objects

package JavaDatabaseBible.ch14;

import java.io.*;
import java.sql.*;

import javax.sql.*;
import javax.servlet.*;

import javax.servlet.http.*;

public class LobServlet extends HttpServlet{
 private String dbUserName = "sa";

 private String dbPassword = "dba";
 protected void doGet(HttpServletRequest request,HttpServletResponse

response)
 throws ServletException, IOException

 {
 ServletOutputStream out = response.getOutputStream();

 String dataType = request.getParameter("type");
 int memberID = Integer.parseInt(request.getParameter("id"));

 if(dataType.equalsIgnoreCase("blob")){
 response.setContentType("image/jpeg");

 out.write(getBlob(memberID));
 }else if(dataType.equalsIgnoreCase("clob")){

 response.setContentType("text/html");
 out.write(getClob(memberID));

 }
 out.flush();

 out.close();
 }

 public byte[] getBlob(int memberID){
 String query = "SELECT Image FROM Photos WHERE MemberID = ?";

 Blob blob = null;
 byte[] bytes = null;

 String description = "";
 try {

 Class.forName("com.inet.pool.PoolDriver");
 com.inet.tds.TdsDataSource tds = new com.inet.tds.TdsDataSource();

 tds.setServerName("JUPITER");

Chapter 14:Using Blobs and Clobs to Manage Images and Documents

-376-

 tds.setDatabaseName("MEMBERS");
 tds.setUser(dbUserName);

 tds.setPassword(dbPassword);

 DataSource ds = tds;
 Connection con = ds.getConnection(dbUserName,dbPassword);

 PreparedStatement pstmt = con.prepareStatement(query);

 pstmt.setInt(1, memberID);

 ResultSet rs = pstmt.executeQuery();
 ResultSetMetaData md = rs.getMetaData();

 while (rs.next()) {
 blob = rs.getBlob(1);

 }
 bytes = blob.getBytes(1, (int)(blob.length()));

 con.close();
 }

 catch(ClassNotFoundException e){
 e.printStackTrace();

 }
 catch(SQLException e){

 e.printStackTrace();
 }

 return bytes;
 }

 public byte[] getClob(int memberID){
 String query = "SELECT Document FROM Documents WHERE MemberID = ?";

 Clob clob = null;
 String text = null;

 try {
 Class.forName("com.inet.pool.PoolDriver");

 com.inet.tds.TdsDataSource tds = new com.inet.tds.TdsDataSource();
 tds.setServerName("JUPITER");

 tds.setDatabaseName("MEMBERS");
 tds.setUser(dbUserName);

 tds.setPassword(dbPassword);

 DataSource ds = tds;
 Connection con = ds.getConnection(dbUserName,dbPassword);

 PreparedStatement pstmt = con.prepareStatement(query);

 pstmt.setInt(1, memberID);

Chapter 14:Using Blobs and Clobs to Manage Images and Documents

-377 -

 ResultSet rs = pstmt.executeQuery();

 ResultSetMetaData md = rs.getMetaData();
 while (rs.next()) {

 clob = rs.getClob(1);
 }

 text = clob.getSubString(1,((int)clob.length()));
 con.close();

 }
 catch(ClassNotFoundException e){

 e.printStackTrace();
 }

 catch(SQLException e){
 e.printStackTrace();

 }
 byte[] bytes = null;

 if(text!=null)bytes = text.getBytes();
 return bytes;

 }
}

The large object servlet can be used to drive a Web page by combining images saved as Blobs and text
or HTML saved as Clobs. Listing 14-9 offers a simple illustration.

Listing 14-9: Creating a Blob-based and Clob-based Web page using frames

<html>
<head>

<title>Byron</title>
</head>

<frameset cols="50%,*">
<frame src="http://localhost/servlet/LobServlet?type=blob&id=1">

<frame src="http://localhost/servlet/LobServlet?type=clob&id=1">
</frameset>

<body>
</body>

</html>

In Figure 14-1, the image is a jpeg, previously stored using ID = 1, and the text is stored in HTML form
as a Clob using the same ID. The HTML frame set simply serves to format the page, and the content is
entirely database driven. This is a simple way to drive catalog pages and similar formats.

Chapter 14:Using Blobs and Clobs to Manage Images and Documents

-378-

Figure 14-1: Blob-based and Clob-based Web page using frames

Summary

In this chapter, you learned about handling large data objects. Specifically, you were introduced to these
topics:
§ Saving and retrieving images and other binary data as Blobs
§ Saving and retrieving documents and other text data as Clobs
§ Handling HTML image uploads using servlets
§ Creating Blob-based and Clob-based Web pages using a large object retrieval servlet.

In Chapter 15, you learn about retrieving data from a DBMS using scrollable ResultSets.

Chapter 15:Usi ng JSPs, XSL, and Scrollable ResultSets to Display Data

-380-

Chapter 15: Using JSPs, XSL, and Scrollable
ResultSets to Display Data

In This Chapter

One of the limitations of the JDBC ResultSet is that the user is restricted to scrolling forwards through
the rows. The JDBC 2.0 API adds the ability to define a ResultSet as scrollable so you can move the
cursor in either direction or to a particular row.

This enhancement is particularly when you need to add a graphical user interface to the ResultSet.
The ability to move through a ResultSet in only one direction would be very restrictive.

Scrollable ResultSets

In the ResultSet object defined in the JDBC Core API, the only way to scroll through the rows was to
use the next() method, which moves the cursor forward to the next row. One of the features added in
the JDBC 2.0 API is the ability to define a ResultSet as scrollable. Unlike the basic ResultSet,
which only lets you move the cursor forward, the scrollable ResultSet lets you move the cursor in
either direction or to a particular row. In addition, the scrollable ResultSet lets you get the cursor
position.

Creating a Scrollable ResultSet

The type of ResultSet a java.sql.Statement object returns is defined when the Statement is
created by the Connection.createStatement method. There are two forms of the
Connection.createStatement method.

This basic version of createStatement()gets you a nonscrollable default ResultSet:

public Statement createStatement()

The second variant allows you to create scrollable and updateable ResultSets, as shown here:

public Statement createStatement(int rsType, int
rsConcurrency)

The first argument, rsType, must be one of the three following constants added to the ResultSet
interface to indicate the type of a ResultSet object:
§ TYPE_FORWARD_ONLY
§ TYPE_SCROLL_INSENSITIVE
§ TYPE_SCROLL_SENSITIVE

If you want a scrollable ResultSet object, you must specify either TYPE_SCROLL_INSENSITIVE or
TYPE_SCROLL_SENSITIVE. A ResultSet defined using TYPE_SCROLL_INSENSITIVE does not
reflect changes made while it is still open. A TYPE_SCROLL_SENSITIVE ResultSet does reflect
changes made while it is still open. Of course, you can always see changes, regardless of the type of
ResultSet by closing the ResultSet and then reopening it.

If you specify TYPE_FORWARD_ONLY, you will get a nonscrollable result set, where the cursor moves
forward only. If you also specify CONCUR_READ_ONLY for the second argument, you will get the default
ResultSet identical to the ResultSet created with the no argument variant.

The second argument must be one of the two following ResultSet constants for specifying whether a
ResultSet is read-only or updateable:
§ CONCUR_READ_ONLY
§ CONCUR_UPDATABLE.

Chapter 15:Usi ng JSPs, XSL, and Scrollable ResultSets to Display Data

-381 -

Note

If you specify a ResultSet type, you must also specify whether the ResultSet is
read-only or updateable.

You can check the type of ResultSet you have using the ResultSet.getType() method, as shown
here:

if(rs.getType()==ResultSet.TYPE_FORWARD_ONLY)

 System.out.println("FORWARD_ONLY");
else

 System.out.println("SCROLLABLE");

Moving the Cursor in a Scrollable ResultSet

Once you have a scrollable ResultSet object, you can move the cursor both backward and forward in
the ResultSet by using these methods:
§ ResultSet.next(), which moves the cursor forwards to the next row
§ ResultSet.previous(), which moves the cursor back one row

Both methods return false when the cursor goes beyond the result set, so you can easily use these
methods in a while loop.

In addition to using the next() and previous() methods to scroll forward and backward, you can
move the cursor to a designated row using these methods:
§ first(), which moves the cursor to the first row
§ last(), which moves the cursor to the last row
§ beforeFirst(), which moves the cursor to a point just before the first row
§ afterLast(), which moves the cursor to a point just after the last row
§ absolute(int rowNumber), which moves the cursor to the specified row
§ relative(int rowNumber), which moves the cursor the specified number of rows

The method absolute(int rowNumber) moves the cursor to the row number indicated in the
argument. If the number is positive, the cursor moves to the given row number from the beginning. If the
number is negative, the cursor moves to the given row number from the end, so absolute(1) moves
the cursor to the first row, and absolute(-1) moves it to the last row.

The method relative(int rowNumber) lets you specify how many rows to move from the current
row and in which direction to move. A positive number moves the cursor forward the given number of
rows; a negative number moves the cursor backward the given number of rows. The effect of the first
four of these is apparent from the method names.

Note

As with the default ResultSet that is not scrollable, a scrollable ResultSet's cursor
is initially positioned before the first row.

Using Scrollable ResultSets to Create a Search Page

In the course of the last couple of chapters, you have learned how to use servlets and JSP pages to
handle HTML forms and to save form data, images, and documents to a database. This chapter
concentrates on retrieving data from the database and presenting it as a Web page.

Chapter 13 illustrates how to create and handle HTML forms using JSP pages. The chapter goes on to
develop examples showing how to handle a simple registration form. This chapter extends these
concepts to a database driven web site which members can use to buy and sell vehicles.

The Web site features a search capability, allowing members to enter search criteria and scroll through
a formatted ResultSet. Clicking a selection takes the user to a detail page displaying more
information about an item in the database

TE
AM
FL
Y

Team-Fly®

Chapter 15:Usi ng JSPs, XSL, and Scrollable ResultSets to Display Data

-382-

The starting point for a search is another form in which the user sets up his or her search criteria. A
simple search form is illustrated in Figure 15-1. The search criteria this form defines are collected using
a JSP page and a JavaBean. The search criteria are passed as inputs to a SQL stored procedure of the
form shown in Listing 15-1.

Figure 15-1: Search form

Listing 15-1: SQL stored procedure to return matching database items

CREATE PROCEDURE SEARCH @BODY VARCHAR(50),
@ZIP VARCHAR(10), @MAKE VARCHAR(50),

@MODEL VARCHAR(50), @ENGINE VARCHAR(50),
@TRANSMISSION VARCHAR(50), @PRICE INT, @YEAR1 INT,

@YEAR2 INT AS SELECT TOP 50 *
 FROM VEHICLES

 WHERE BODY LIKE @BODY AND
 ZIP LIKE @ZIP AND MAKE LIKE @MAKE AND

 MODEL LIKE @MODEL AND
 ENGINE LIKE @ENGINE AND

 TRANSMISSION LIKE @TRANSMISSION AND
 PRICE <= @PRICE AND YEAR BETWEEN

 @YEAR1 AND @YEAR2;

The stored procedure uses the LIKE comparator so that wild cards can be used. This approach allows
a great deal of flexibility in searching the database. The HTML snippet below shows how the SELECT
element is defined to return the wild card character '%' when the OPTION Any is selected:

<TR>

 <TD>Make: </TD>
 <TD>

 <SELECT name=Make size=1>
 <OPTION VALUE="%" SELECTED>Any</OPTION>

Chapter 15:Usi ng JSPs, XSL, and Scrollable ResultSets to Display Data

-383 -

 <OPTION VALUE="Acura">Acura</OPTION>
 <OPTION VALUE="Audi">Audi</OPTION>

 <OPTION VALUE="BMW">BMW</OPTION>
 </SELECT>

 </TD>
</TR>

Notice also the use of the TOP 50 clause in the stored procedure of Listing 15-1. The TOP 50 clause
is used to limit the number of hits the search returns. If a large database is searched for common criteria,
you will get a lot of hits, which means big ResultSets using lots of memory. In all probability, your
users won't scroll through more than a few pages before tightening up the search criteria, so giving
them a huge ResultSet is a waste of resources.

If you return the ResultSet to a JavaBean, and make it scrollable, it will be easy to create pages of,
say, five database items per page that the user can scroll. You can always offer the user the option of
requesting additional blocks of 50 results based on the original search criteria by ordering the search on
the primary key and specifying that subsequent ResultSets have higher primary key values.

The search form shown in Figure 15-1 calls a simple JSP page, ProcessSearchForm.jsp, which
uses a JavaBean to handle the query and return the results. As you can see from Listing 15-2, the JSP
page is very simple. It loads the bean, set its properties, and calls the
SearchFormBean.getMatches() method, which executes the query. It then forwards the user to
SearchFormResultsPage.jsp, which displays the search results.

Listing 15-2: JSP page that loads a JavaBean to query the database

<%@ page language="java"%>
<jsp:useBean id="SearchFormBean"

class="JavaDatabaseBible.ch15.SearchFormBean" scope="session"/>
<jsp:setProperty name="SearchFormBean" property="*"/>

<%SearchFormBean.getMatches();%>
<jsp:forward page="SearchFormResultsPage.jsp"/>

The SearchFormBean itself is shown in Listing 15-3.

Listing 15-3: JavaBean to handle database query from a JSP page

package JavaDatabaseBible.ch15;

import java.sql.*;
import javax.sql.*;

public class SearchFormBean extends java.lang.Object{

 private static String dbUserName = "sa";
 private static String dbPassword = "dba";

 protected int price;
 protected int year;

Chapter 15:Usi ng JSPs, XSL, and Scrollable ResultSets to Display Data

-384-

 protected String id;
 protected String make;

 protected String model;
 protected String color;

 protected String body;
 protected String engine;

 protected String transmission;
 protected String zip;

 protected int index = 0;

 protected int pageSize = 5;
 protected int rowCount = 0;

 protected ResultSet rs = null;

 public SearchFormBean(){
 }

 public void setYear(int year){
 this.year = year;

 }
 public void setMake(String make){

 this.make = make;
 }

 public void setZip(String zip){
 this.zip = zip;

 }
 public void setModel(String model){

 this.model = model;
 }

 public void setColor(String color){
 this.color = color;

 }
 public void setBody(String body){

 this.body = body;
 }

 public void setEngine(String engine){
 this.engine = engine;

 }
 public void setTransmission(String transmission){

 this.transmission = transmission;
 }

 public void setPrice(int price){
 this.price = price;

 }

Chapter 15:Usi ng JSPs, XSL, and Scrollable ResultSets to Display Data

-385-

 public String getId(){
 return id;

 }
 public String getMake(){

 return make;
 }

 public String getZip(){
 return zip;

 }
 public String getModel(){

 return model;
 }

 public String getColor(){
 return color;

 }
 public String getBody(){

 return body;
 }

 public String getEngine(){
 return engine;

 }
 public String getTransmission(){

 return transmission;
 }

 public int getPrice(){
 return price;

 }
 public int getYear(){

 return year;
 }

 public int getIndex(){
 return index;

 }
 public int getRowCount(){

 return rowCount;
 }

 public String getPage(){
 return ""+(index/pageSize+1)+" of "+(rowCount/pageSize+1);

 }
 public boolean pageForward(){

 boolean validRow = false;
 if(index<0||index+pageSize>rowCount){

 index=0;

Chapter 15:Usi ng JSPs, XSL, and Scrollable ResultSets to Display Data

-386-

 }else{
 index += pageSize;

 }
 try {

 validRow = rs.absolute(index+1);
 }catch(SQLException e){

 System.err.println(e.getMessage());
 }

 return validRow;
 }

 public boolean pageBack(){
 boolean validRow = false;

 if(index<pageSize){
 index=rowCount/pageSize*pageSize;

 }else if(index>=pageSize){
 index -= pageSize;

 }
 try {

 validRow = rs.absolute(index);
 }catch(SQLException e){

 System.err.println(e.getMessage());
 }

 return validRow;
 }

 public boolean selectRow(int row){
 boolean validRow = false;

 try {
 validRow = rs.absolute(index+1);

 if(validRow){
 if(row > 0)validRow = rs.relative(row);

 if(rs.getRow()<0)validRow=false;

 if(validRow){
 id = rs.getString("ID");

 year = rs.getInt("year");
 make = rs.getString("make");

 zip = rs.getString("zip");
 model = rs.getString("model");

 body = rs.getString("body");
 engine = rs.getString("engine");

 transmission = rs.getString("transmission");
 price = rs.getInt("price");

 }

Chapter 15:Usi ng JSPs, XSL, and Scrollable ResultSets to Display Data

-387 -

 }
 }catch(SQLException e){

 System.err.println(e.getMessage());
 }

 return validRow;
 }

 /*
 getMatches uses the stored procedure SEARCH:

 CREATE PROCEDURE SEARCH @BODY VARCHAR(50),

 @ZIP VARCHAR(10), @MAKE VARCHAR(50),
 @MODEL VARCHAR(50), @ENGINE VARCHAR(50),

 @TRANSMISSION VARCHAR(50), @PRICE INT, @YEAR1 INT,
 @YEAR2 INT AS SELECT TOP 50 *

 FROM VEHICLES
 WHERE BODY LIKE @BODY AND

 ZIP LIKE @ZIP AND MAKE LIKE @MAKE AND
 MODEL LIKE @MODEL AND

 ENGINE LIKE @ENGINE AND
 TRANSMISSION LIKE @TRANSMISSION AND

 PRICE <= @PRICE AND YEAR >= @YEAR;
 */

 public int getMatches(){
 try {

 Class.forName("com.inet.pool.PoolDriver");
 com.inet.tds.TdsDataSource tds = new com.inet.tds.TdsDataSource();

 tds.setServerName("JUPITER");
 tds.setDatabaseName("VEHICLES");

 tds.setUser(dbUserName);
 tds.setPassword(dbPassword);

 DataSource ds = tds;

 Connection con = ds.getConnection(dbUserName,dbPassword);

 // clean up parameters from free format text fields for
CallableStatement

 if(model==null)model="%";
 if(zip==null)zip="%";

 CallableStatement cs = con.prepareCall("{call

SEARCH(?,?,?,?,?,?,?,?)}");
 cs.setString(1,body);

 cs.setString(2,zip);

Chapter 15:Usi ng JSPs, XSL, and Scrollable ResultSets to Display Data

-388-

 cs.setString(3,make);
 cs.setString(4,model);

 cs.setString(5,engine);
 cs.setString(6,transmission);

 cs.setInt (7,price);
 cs.setInt (8,year);

 rs = cs.executeQuery();

 rs.last();
 rowCount = rs.getRow();

 con.close();
 }catch(ClassNotFoundException e1){

 System.err.println(e1.getMessage());
 }catch(SQLException e2){

 System.err.println(e2.getMessage());
 }

 return rowCount;
 }

}

In addition to the normal getter and setter methods for its properties, the JavaBean has a number of
methods to retrieve the data and to navigate around the scrollable ResultSet. These methods include:
§ getMatches(). This method sets the parameters of the SQL stored procedure and calls it to get

the scrollable ResultSet. It then gets the row count by navigating to the end of the ResultSet
and getting the row number using getRow(). The ResultSet is now stored in the JavaBean for
access by the other methods.

§ selectRow(int row). The selectRow() method moves the cursor to the selected row. The
row argument refers to the row number within the displayed JSP page, and the integer index
provides the offset to the row corresponding to the beginning of the current JSP page. The
selectRow() method navigates to the desired row using ResultSet.absolute(index) to
move the cursor to the row corresponding to the first row in the displayed JSP page. It then uses
ResultSet.relative(row) to move to the row corresponding to the relative row within the
displayed JSP page. Finally, it sets the JavaBean's properties by getting the appropriate data from
the ResultSet.

§ pageForward(). The pageForward() method moves the row index to the row corresponding
to the top of the next page.

§ pageBack(). The pageBack() method moves the row index to the row corresponding to the top
of the previous page.

§ getRowCount(). The getRowCount() method returns the rowCount.
§ getPage(). The getPage() method returns a String representation of the current page number

in the form "Page 1 of n".

The only slightly tricky logic involved in Listing 15-3 is in the area of moving the cursor. It is important to
remember that absolute row numbers start at 1 and that relative row numbers can never be zero.

The JSP page used to display the search results is kept separate from the JSP page that instantiates
the bean and executes the query. It includes two HTML form elements containing the page buttons and
calls separate JSP pages to handle navigation through the ResultSet. The code for the display page
is shown in Listing 15-4.

Listing 15-4: Search-results page JSP

Chapter 15:Usi ng JSPs, XSL, and Scrollable ResultSets to Display Data

-389-

<%@ page language="java"%>
<jsp:useBean id="SearchFormBean"

class="JavaDatabaseBible.ch15.SearchFormBean" scope="session"/>
<html>

<head>
<title>Summary</title>

</head>
<body bgcolor="#ffffff">

<BASEFONT FACE="Arial">

<TABLE BORDER="2">
 <TR BGCOLOR="#E0E0E0">

 <TD COLSPAN="2">

 <!-- header -->
 <TABLE WIDTH=100%>

 <TR BGCOLOR="#E0E0E0">
 <TD>

 Found <%=SearchFormBean.getRowCount()%> vehicles matching query.
 </TD>

 <TD ALIGN="RIGHT">
 Page <%=SearchFormBean.getPage()%>

 </TD>
 </TR>

 </TABLE>
 </TD>

 </TR>

<!-- results -->

<%
if(SearchFormBean.getRowCount()>0){

 for(int i=0;i<3;i++){
 if(SearchFormBean.selectRow(i)){

 %>
 <TR>

 <TD>
 <A HREF="GetDetailPage.jsp?memberId=<%=SearchFormBean.getId()%>">

 <img src="http://192.168.0.2/servlet/LobServlet?type=blob
 &id=<%=(i+5230001)%>&description=Thumbnail">

 </TD>

 <TD>

Chapter 15:Usi ng JSPs, XSL, and Scrollable ResultSets to Display Data

-390-

 <TABLE CELLPADDING = 4 width = 100%>

 <TR>
 <TD>

 <%=SearchFormBean.getYear()%> <%=SearchFormBean.getMake()%>
 <%=SearchFormBean.getModel()%>, <%=SearchFormBean.getBody()%>.

 <%=SearchFormBean.getEngine()%>,
<%=SearchFormBean.getTransmission()%>.
 </TD>

 </TR>
 <TR>

 <TD>
 Asking $<%=SearchFormBean.getPrice()%>.

 Location (zip code): <%=SearchFormBean.getZip()%>.
 </TD>

 </TR>
 </TABLE>

 </TD>

 </TR>
 <%

 }
 }

}
%>

<!-- footer -->

<TR BGCOLOR="#E0E0E0">
<TD COLSPAN="2">

 <TABLE WIDTH=100%>

 <TR BGCOLOR="#E0E0E0">
 <TD WIDTH="60%">

 </TD>
 <TD>

 <form METHOD="POST" ACTION="SearchFormPageBack.jsp" target= "_self">
 <input type="submit" value="Prev Page"></td>

 </form>
 </TD>

 <TD>
 <form METHOD="POST" ACTION="SearchFormPageForward.jsp" target= "_self">

 <input type="submit" value="Next Page"></td>
 </form>

Chapter 15:Usi ng JSPs, XSL, and Scrollable ResultSets to Display Data

-391 -

 </TD>
 <TD ALIGN="RIGHT">

 </TD>
 </TR>

 </TABLE>

</TD>
</TR>

</TABLE>

</TABLE>
</body>

</html>

The JSP pages that support the Prev Page and Next Page buttons are as simple as the basic
ProcessSearchForm JSP page. SearchFormPageForward.jsp calls the bean's PageForward()
method to increment the page index variable by an amount equal to the page size. Here's an example:

<%@ page language="java"%>
<jsp:useBean id="SearchFormBean"

class="JavaDatabaseBible.ch15.SearchFormBean" scope="session"/>
<%=SearchFormBean.pageForward()%>

<jsp:forward page="SearchFormResultsPage.jsp"/>

SearchFormPageBack.jsp calls the SearchFormBean.pageBack() method to decrement the
index by the page size. Both methods wrap the index to handle transitions through the beginning and
end of the ResultSet as shown here:

<%@ page language="java"%>

<jsp:useBean id="SearchFormBean"
class="JavaDatabaseBible.ch15.SearchFormBean" scope="session"/>

<%=SearchFormBean.pageBack()%>
<jsp:forward page="SearchFormResultsPage.jsp"/>

The page that SearchFormResultsPage.jsp creates is shown in Figure 15-2.

TE
AM
FL
Y

Team-Fly®

Chapter 15:Usi ng JSPs, XSL, and Scrollable ResultSets to Display Data

-392-

Figure 15-2: Search-results page

As you may have noticed in Listing 15-4, the images are obtained from a servlet that returns Blobs from
the Photos Table in the database. This servlet is derived from the Large Object servlet example of
Chapter 14, Listing 14-8.

If you refer to Listing 15-4, you will notice that the images can be clicked to access a detail page for the
vehicle. The next section discusses the creation of both the detail page and an edit page from the same
XML formatted result set using an XSL transform

Using XSL to Create a Web Page from a SQL Query

The previous example shows how to create a Web page using JSP to manage its formatting. This
approach has the disadvantage that you have to understand how to use Java Server Pages to modify
your display format. Another way to manage database-driven Web page formatting is to use an XSL
stylesheet to transform XML data into HTML. A simple change to the XSLT transforms the same page
of XML into a completely different HTML page.

How XSLT Works

Extensible Stylesheet Language (XSL) provides the user with a means of transforming XML documents
from one form to another. In practice, this means you can retrieve information from a database as basic,
content-oriented XML and use an XSL stylesheet to convert it into a human-readable document.

XSL actually combines two major components: a transformation language and a formatting language.
Each of these is an XML dialect. The transformation language, XSLT, is used to define rules for the
conversion of one XML document into another, and the formatting component deals with formatting the
output.

From the viewpoint of generating HTML, the important component is the XSL Transformation Language
(XSLT). To perform a transformation, an XSLT processor reads both an XML document and an XSLT
stylesheet and outputs a new XML document.

Applying an XSL transform in Java is very simple, as you can see from the example in Listing 15-5. The
xalan library methods do most of the work.

Chapter 15:Usi ng JSPs, XSL, and Scrollable ResultSets to Display Data

-393-

Listing 15-5: Applying an XSL transform

import org.xml.sax.SAXException;
import org.apache.xalan.xslt.XSLTProcessorFactory;

import org.apache.xalan.xslt.XSLTInputSource;
import org.apache.xalan.xslt.XSLTResultTarget;

import org.apache.xalan.xslt.XSLTProcessor;

/**
 * Sample code to apply a stylesheet to an xml document to create an

HTML page.
*/

public class SimpleXSLTransform

{
 public static void main(String[] args)throws org.xml.sax.SAXException

 {
 XSLTProcessor processor = XSLTProcessorFactory.getProcessor();

 processor.process(new XSLTInputSource("MemberInfo.xml"),

 new XSLTInputSource("MemberInfo.xsl"),
 new XSLTResultTarget("MemberInfo.html"));

 }
}

XSL stylesheets can be used either on the server side or on the client side. In practice, server-side
transforms work better; different browsers implement different subsets of the specification, so results
are unpredictable. The main drawback of using XSL transforms on the server is that they tend to be
resource intensive. It is worth experimenting with different XSL transform libraries, as some perform
transforms very much faster than others.

Retrieving Data from a Database as an XML Document

Of course, before you can transform it, you need to get your ResultSet and turn it into XML. The data
set used to create the search-results page of Figure 15-2 is derived from a single table. To create a
more detailed page, information must be combined from several different tables.

The tables accessed for the detail page include the Vehicles table, which holds the basic information
about each vehicle, and the Options table, which contains information about accessories and options.
As discussed in Chapter 11, these tables are set up so that they correlate well to the forms used for
adding vehicles to the database, as well as being more convenient for searches.

A significant aspect of the way the Options table is designed is that it contains a number of columns
representing check box selections with YES/NO values, as well as a single text entry labeled "Other" on
the HTML form. When the form data is saved to the table, the data from all of these HTML form inputs is
combined into a column labeled LIST. Designing the table this way makes it easy to search for specific
YES/NO attributes without incurring extra overhead creating a text summary of the attributes.

Cross-
Reference The design and layout of the member database used in the Web-

applications part of this book is discussed in Chapter 11.

Chapter 15:Usi ng JSPs, XSL, and Scrollable ResultSets to Display Data

-394-

As shown in the SQL snippet of Listing 15-6, the ResultSet for the detail page is based on the LIST
columns from the attribute tables. These columns are combined with information from the individual
columns of the Vehicle table. Listing 15-6 shows the SQL code required to create the stored procedure
GET_DEATIL_PAGE, which the JavaBean used to create the XML document will call.

Listing 15-6: Stored procedure for detail page

CREATE PROCEDURE GET_DETAIL_PAGE @id int
AS SELECT v.*, o.list OPTIONS

 FROM Vehicles v, Options o
 WHERE o.id = v.id AND

 v.id = @id;

Listing 15-7 shows a JavaBean that calls the stored procedure of Listing 15-6 and formats the
ResultSet as XML. A ResultSetMetaData object is used to get the column names that are used as
tag names for the XML elements. The column data Strings are appended to the XML elements as text
nodes.

Listing 15-7: JavaBean that returns a ResultSet as XML

package JavaDatabaseBible.ch15;

import java.io.*;
import java.sql.*;

import javax.sql.*;

public class DetailPageXMLBean{
 protected static String dbUserName = "sa";

 protected static String dbPassword = "dba";
 protected String xmlHeader = "<?xml version=\"1.0\"?>";

 protected int id;

 public DetailPageXMLBean(){

 }
 public void setId(int id){

 this.id=id;
 }

 public String getXmlString(){
 String xml = new String(getVehicleData());

 return xml.trim();
 }

 public byte[] getVehicleData(){
 String rootTag = "VehicleData";

 ByteArrayOutputStream os = new ByteArrayOutputStream();
 try {

Chapter 15:Usi ng JSPs, XSL, and Scrollable ResultSets to Display Data

-395-

 Class.forName("com.inet.pool.PoolDriver");
 com.inet.tds.TdsDataSource tds = new com.inet.tds.TdsDataSource();

 tds.setServerName("JUPITER");
 tds.setDatabaseName("VEHICLES");

 tds.setUser(dbUserName);
 tds.setPassword(dbPassword);

 DataSource ds = tds;

 Connection con = ds.getConnection(dbUserName,dbPassword);

 Statement stmt = con.createStatement();

 CallableStatement cs = con.prepareCall("{call GET_DETAIL_PAGE
(?)}");

 cs.setInt(1,id);

 ResultSet rs = cs.executeQuery();
 ResultSetMetaData md = rs.getMetaData();

 os.write(xmlHeader.getBytes());

 os.write(("<"+rootTag+">").getBytes());

 String xml = "";
 int columns = md.getColumnCount();

 rs.next();
 for(int i=1;i<=columns;i++){

 if(md.getColumnType(i)==Types.VARCHAR){
 xml="<"+md.getColumnLabel(i)+">"+

 rs.getString(i)+
 "</"+md.getColumnLabel(i)+">";

 os.write(xml.getBytes());
 }else if(md.getColumnType(i)==Types.INTEGER){

 xml="<"+md.getColumnLabel(i)+">"+
 rs.getInt(i)+

 "</"+md.getColumnLabel(i)+">";
 os.write(xml.getBytes());

 }
 }

 os.write(("</"+rootTag+">").getBytes());
 }catch(Exception e){

 e.printStackTrace();
 }

 return os.toByteArray();

Chapter 15:Usi ng JSPs, XSL, and Scrollable ResultSets to Display Data

-396-

 }
 public static void main(String args[]){

 File f = new File("Detail.xml");
 int id = 1000;

 DetailPageXMLBean xmlBean = new DetailPageXMLBean();
 xmlBean.setId(id);

 try {
 FileOutputStream fos = new FileOutputStream(f);

 fos.write(xmlBean.getVehicleData());
 }catch(Exception e){

 e.printStackTrace();
 }

 }
}

Although this is a simple approach to generating XML, it saves the overhead of building a DOM object
and serializing it. The getXmlString() method is simply a convenience for use in the simple JSP
page shown in Listing 15-8. Similarly, the main method is included to let you check out the XML by
dumping it to a file.

Cross-
Reference The advantages of the DOM-based approach to handling XML are

discussed in Part IV, which deals with XML and Java databases.

The resulting XML can be displayed in a browser using the simple JSP page shown in Listing 15-8.
Notice the use of the contentType attribute in the <% @ page %> directive. This attribute is required
so that the browser can recognize the data as XML and display it accordingly.

Listing 15-8: JSP page using a JavaBean to display a ResultSet as XML

<%@ page language="java" contentType="text/xml"%>

<jsp:useBean id="DetailPageXMLBean"
 class="JavaDatabaseBible.ch15.DetailPageXMLBean" scope="session"/>

<jsp:setProperty name="DetailPageXMLBean" property="*"/>
<%=DetailPageXMLBean.getXmlString()%>

The resulting XML is shown in Listing 15-9. Although the structure shown here is very simple, with no
nested elements, everything discussed in the examples applies equally to more complicated XML
documents.

Listing 15-9: ResultSet formatted as XML

<?xml version="1.0"?>
 <VehicleData>

 <ID>1000</ID>
 <Make>Honda</Make>

 <Body>Coupe</Body>
 <Model>Civic</Model>

 <Year>1996</Year>

 <Color>Red</Color>

Chapter 15:Usi ng JSPs, XSL, and Scrollable ResultSets to Display Data

-397-

 <Zip>21144</Zip>
 <Engine>4-Cylinder</Engine>

 <Transmission>5-Speed</Transmission>
 <Price>4500</Price>

 <OPTIONS>
 AM_FM_Radio,

 Cassette,
 Power Windows,

 Power Locks,
 Air Conditioning,

 Tilt Steering,
 Power Steering,

 ABS,
 Moon Roof,

 Bucket Seats
 </OPTIONS>

</VehicleData>

Transforming the XML Using an XSL Stylesheet

Stylesheets are valid XML documents that contain a set of XSL commands used to transform a
document. XSL stylesheets start with the xsl:stylesheet declaration, which forms the root node of
the XML document. The stylesheet declaration consists of a version and namespace. The namespace
declares the stylesheet tag prefix and the URL of tag definitions, as shown here:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

</xsl:stylesheet>

The namespace prefix xsl: is used in the body of the XSL document to identify XSL processing
statements. Tags that are not prefixed with xsl: are simply copied to the output without being
processed, so you can embed HTML tags in the XSL stylesheet, and they will be sent to the output
stream unchanged.

XSLT is unlike conventional programming languages such as Java because XSLT is a rule-based,
declarative language. XSL rules define templates that specify how an XML document should be
processed. These template rules can be defined in any order.

XSL templates are used to select XML elements for processing using the match operator. Here's a
typical example of the use of the xsl:template tag:

<xsl:template match="VehicleData">
 ...

</xsl:template>

The argument of the match operator is defined using an XPath expression. XPath simply defines the
path to a child node in much the same way as a file path defines a path to a file. For example, to select
an entire document for processing, you can match the root node, using match="/". Alternatively, you can
match the document element tag, in this case 'VehicleData'.

Caution

The difference between matching the root node, defined with "/", and matching the
document node, defined in this case with "VehicleData", is that the XPath to a
child node is different in each case. For example, if you match the root node, using

Chapter 15:Usi ng JSPs, XSL, and Scrollable ResultSets to Display Data

-398-

<xsl:template match="/">, the XPath from the root node to the ID node in
Listing 15-8 is "MemberInfo/ID". On the other hand, if you use <xsl:template
match="MemberInfo"> to match the document node, the XPath is simply "ID".

The only other XSL used in this example is the xsl:value-of expression. This expression returns the
value of the node selected using the XPath expression defined in the select attribute. For example, to
get the vehicle's color, use the following xsl:value-of expression:

<xsl:value-of select="Color"/>

This returns the value "Red" from the corresponding node in the XML document of Listing 15-8:

<Color>Red</Color>

In addition to selecting values from XML documents, XSLT allows you to use your XML data in
calculations or to create and manipulate strings. An example of string manipulation to create an image
URL is shown in the following code snippet:

<xsl:variable name="imageUrl"

 select="string('http://192.168.0.2/servlet/BlobServlet?id=')"/>
<xsl:variable name="id" select="ID"/>

 <xsl:attribute name="src">

 <xsl:value-of select="concat($imageUrl,$id)"/>
 </xsl:attribute>

This code snippet illustrates how you can define a String variable and concatenate the value of an XML
element to the string to create a URL. This URL is then set as the value of the src attribute of an HTML
img tag. The complete stylesheet is shown in Listing 15-9. Note how the stylesheet freely combines
XSL and HTML tags as required.

Listing 15-9: XSL stylesheet

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">
<xsl:output method="html"/>

<xsl:preserve-space elements="*"/>
<xsl:template match="VehicleData">

<HTML>
<HEAD>

<TITLE>Detail Page</TITLE>
<BASEFONT FACE="Arial"/>

</HEAD>
<BODY>

<P/>
<TABLE BORDER="1" WIDTH="480" CELLPADDING="4">

<TR>
<TD ALIGN="CENTER" VALIGN="TOP">

<xsl:variable name="imageUrl"

Chapter 15:Usi ng JSPs, XSL, and Scrollable ResultSets to Display Data

-399-

select="string('http://192.168.0.2/servlet/BlobServlet?id=')"/>
<xsl:variable name="id" select="ID" />

 <xsl:attribute name="src">

 <xsl:value-of select="concat($imageUrl,$id)"/>
 </xsl:attribute>

</TD>

<TD>
<xsl:value-of select="Color"/>

<xsl:text> </xsl:text>
<xsl:value-of select="Year"/>

<xsl:text> </xsl:text>
<xsl:value-of select="Make"/>

<xsl:text> </xsl:text>
<xsl:value-of select="Model"/>.

<P/>
<xsl:value-of select="Engine"/>, <xsl:value-of select="Transmission"/>

Transmission.
<P/>

<xsl:value-of select="OPTIONS"/>
<P/>

$<xsl:value-of select="Price"/>.
<P/>

Vehicle is located in Zip code: <xsl:value-of select="Zip"/>.
</TD>

</TR>
<TR>

<TD COLSPAN="2">
<FORM method="post" action="/jsp/ProcessMessageForm.jsp" target="_self"

id="form1" name="form1">
<INPUT type="hidden">

<xsl:variable name="id" select="ID" />
<xsl:attribute name="memberId">

 <xsl:value-of select="$id"/>
</xsl:attribute>

</INPUT>
<TABLE BORDER="1">

<TR>
<TD>

Contact the seller:

Chapter 15:Usi ng JSPs, XSL, and Scrollable ResultSets to Display Data

-400-

</TD>
</TR>

<TR>
<TD>For more information, or to arrange to see the vehicle, send a

message to the seller:</TD>
</TR>

<TR>
<TD ALIGN="CENTER">

<textarea name="Message" cols="48" rows="4" />
</TD>

</TR>
<TR>

<TD ALIGN="CENTER">
<input type="submit" value="Click here to send" />

</TD>
</TR>

</TABLE>
</FORM>

</TD>
</TR>

</TABLE>
</BODY>

</HTML>
</xsl:template>

</xsl:stylesheet>

Applying an XSL Transform in a JSP Page

To apply the XSL stylesheet on the server side, you need to create a JSP page. Listing 15-10 illustrates
the use of a second JavaBean to transform the XML document produced by the JavaBean of Listing 15-
7. The only property the JSP page expects is the member id.

Listing 15-10: Applying an XSL stylesheet in a JSP page

<%@ page language="java"%>
<%@ page language="java"%>

<jsp:useBean id="DetailPageXMLBean"
 class="JavaDatabaseBible.ch15.DetailPageXMLBean"/>

<jsp:useBean id="DetailPageTransformBean"
 class="JavaDatabaseBible.ch15.DetailPageTransformBean"/>

<jsp:setProperty name="DetailPageXMLBean" property="*"/>
<%

DetailPageTransformBean.setXslFileName("DetailPage.xsl");
%>

<%=new String(

Chapter 15:Usi ng JSPs, XSL, and Scrollable ResultSets to Display Data

-401-

DetailPageTransformBean.applyTransform(DetailPageXMLBean.getVehicleData
()))%>

The JavaBean required to apply the XSL transform is shown in Listing 15-11. For ease of checkout, a
main method is included.

Caution

The only deployment problem you are likely to encounter is that the path for the
stylesheet defaults to Tomcat's/bin directory unless you specify the path fully.

Listing 15-11: XSL transform bean

package JavaDatabaseBible.ch15;

import java.io.*;
import org.xml.sax.SAXException;

import org.apache.xalan.xslt.XSLTProcessorFactory;
import org.apache.xalan.xslt.XSLTInputSource;

import org.apache.xalan.xslt.XSLTResultTarget;
import org.apache.xalan.xslt.XSLTProcessor;

public class DetailPageTransformBean{

 private String xslFileName = null;
 private byte[] xmlSource = null;

 private ByteArrayInputStream xmlInputStream = null;

 public DetailPageTransformBean(){
 }

 public void setXmlSource(byte[] xmlSource){

 this.xmlSource=xmlSource;
 xmlInputStream = new ByteArrayInputStream(xmlSource);

 }

 public void setXslFileName(String xslFileName){
 this.xslFileName=xslFileName;

 File f = new File(xslFileName);
 if(!f.exists())System.out.println("Cannot find file: "+xslFileName);

 }

 public byte[] applyTransform(byte[] xmlSource){
 setXmlSource(xmlSource);

 return applyTransform();
 }

 public byte[] applyTransform(){

TE
AM
FL
Y

Team-Fly®

Chapter 15:Usi ng JSPs, XSL, and Scrollable ResultSets to Display Data

-402 -

 ByteArrayOutputStream outputStream = new ByteArrayOutputStream();

 try{
 XSLTProcessor processor = XSLTProcessorFactory.getProcessor();

 processor.process(new XSLTInputSource(xmlInputStream),

 new XSLTInputSource(xslFileName),
 new XSLTResultTarget(outputStream));

 }catch(Exception e){
 System.err.println(e);

 }
 return outputStream.toByteArray();

 }

 public static void main(String args[]){
 File f = new File("Detail.html");

 int id = 1000;
 DetailPageXMLBean xmlBean = new DetailPageXMLBean();

 DetailPageTransformBean transformBean = new
DetailPageTransformBean();

 xmlBean.setId(id);
 transformBean.setXslFileName("DetailPage.xsl");

 try {
 FileOutputStream fos = new FileOutputStream(f);

 fos.write(transformBean.applyTransform(xmlBean.getVehicleData()));
 }catch(Exception e){

 e.printStackTrace();
 }

 }
}

Assuming you have deployed everything correctly, you should see a Web page that looks like Figure
15-3 when you call the JSP page. The simplest way to do this for checkout purposes is with a simple
HTML form, like the following:

Chapter 15:Usi ng JSPs, XSL, and Scrollable ResultSets to Display Data

-403 -

Figure 15-3: Web page created by applying an XSL transform to an XML document built from a
ResultSet

<html>

<head><title>Get Web Page</title></head>

<body>

<form METHOD="POST" ACTION="GetDetailPage.jsp" target= "_self">

 <table><tr><td align="center" colspan="3">

 <input type="text" name="id">

 </td></tr>

 <tr><td align="center" colspan="3">

 <input type="submit" value="Show Web Page">

 </td></tr></table>

</form>

</body>

</html>

To call up the detail page in a practical application, make a simple modification to the JSP page of
Listing 15-4, so that when the user clicks the thumbnail image in the search form, he or she is forwarded
to the detail page.

To forward the user to the detail page in response to a mouse click on the thumbnail image, all you
need to do is wrap the thumbnail image in an HTML anchor element as shown here:

 <TR>

 <TD>
 <A HREF="GetDetailPage.jsp?memberId=<%=SearchFormBean.getId()%>">

 <img src="http://192.168.0.2/servlet/LobServlet?type=
 blob&id=<%=(i+1)%>&description=Thumbnail">

 </TD>

Chapter 15:Usi ng JSPs, XSL, and Scrollable ResultSets to Display Data

-404 -

Note the use of the <%=SearchFormBean.getId()%> tag to supply the member id to the JSP page.

Using an Updatable ResultSet with an XSL Stylesheet

In addition to using the ResultSet for display purposes, it is very useful to be able to update the
database using the ResultSet itself. Updatable ResultSets offer just this capability, in that they can
be updated directly. In other words, you can make updates to the values in the ResultSet itself, and
these changes are reflected in the database.

The XML-based and XSLT-based approach to creating a Web page lends itself well to use with
updatable ResultSets. One of the advantages of XS L is that you can create a completely different
Web page from the same XML by simply applying a different stylesheet. To illustrate this capability, try
applying the stylesheet shown in Listing 15-12 to the original XML of Listing 15-9.

Listing 15-12: Creating a different Web page from the same XML

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<xsl:output method="html"/>

<xsl:template match="VehicleData">

<HTML>
<HEAD>

 <TITLE>
 Edit Detail Page

 </TITLE>
</HEAD>

<BASEFONT FACE="Arial"/>
<BODY>

<FORM method="post" action="ProcessVehicleUpdateForm.jsp">

<TABLE BORDER="1" CELLPADDING="4">
<TR>

<TD>Color</TD>
<TD>

<INPUT type="text" name="color">
<xsl:attribute name="value">

 <xsl:value-of select="Color"/>
</xsl:attribute>

</INPUT>
</TD>

</TR>
<TR>

<TD>Year</TD>
<TD>

Chapter 15:Usi ng JSPs, XSL, and Scrollable ResultSets to Display Data

-405-

<INPUT type="text" name="year">
<xsl:attribute name="value">

 <xsl:value-of select="Year"/>
</xsl:attribute>

</INPUT>
</TD>

</TR>
<TR>

<TD>Make</TD>
<TD>

<INPUT type="text" name="make">
<xsl:attribute name="value">

 <xsl:value-of select="Make"/>
</xsl:attribute>

</INPUT>
</TD>

</TR>
<TR>

<TD>Model</TD>
<TD>

<INPUT type="text" name="model">
<xsl:attribute name="value">

 <xsl:value-of select="Model"/>
</xsl:attribute>

</INPUT>
</TD>

</TR>
<TR>

<TD COLSPAN="2">
<INPUT type="submit" value="CLICK HERE TO SUBMIT CHANGES"/>

</TD>
</TR>

</TABLE>

</FORM>
</BODY>

</HTML>
</xsl:template>

</xsl:stylesheet>

This stylesheet generates the form shown in Figure 15-4. It uses the same <xsl:value-of> tags to
get the data from the XML file, but this time it wraps them in an HTML form, using the
<xsl:attribute> tag, so that rather than just displaying the vehicle data, the stylesheet uses the
data to preload a form.

Chapter 15:Usi ng JSPs, XSL, and Scrollable ResultSets to Display Data

-406 -

Figure 15-4: Form generated from the XML of Listing 15-9 using the stylesheet of listing 15-12

Caution

Bean properties are case sensitive. Use lowercase for the property names.

Note that this example only displays a small number of elements from the underlying XML. Obviously,
you can create a single large form to display the entire document for editing, or you can create a series
of smaller forms like the example in Figure 15-4, processing them sequentially.

The JSP page required to handle the update is shown in Listing 15-13. It simply passes the attributes
picked up from the form to the UpdateXMLBean and calls the bean's updateVehicleData()
method. On completion, the user is forwarded to the detail Web page to view the results of the change.

Listing 15-13: JSP to process the database update form

<%@ page language="java" contentType="text/html"%>

<jsp:useBean id="UpdateXMLBean"
class="JavaDatabaseBible.ch15.UpdateXMLBean" scope="session"/>

<jsp:setProperty name="UpdateXMLBean" property="*"/>
<%UpdateXMLBean.updateVehicleData();%>

<%
String id = UpdateXMLBean.getVehicleId();

String nextPage = "GetDetailPage.jsp?DetailId="+id;

%>
<jsp:forward page="<%=nextPage%>"/>

The JavaBean that updates the vehicle data is shown in Listing 15-14. This JavaBean is similar to the
code of Listing 15-7, with the exception that it creates an updatable ResultSet and includes a method to
perform the update.

Listing 15-14: Updatable ResultSet bean

package JavaDatabaseBible.ch15;

import java.io.*;
import java.sql.*;

import javax.sql.*;

public class MemberUpdateXMLBean{
 protected static String dbUserName = "sa";

 protected static String dbPassword = "dba";
 protected String xmlHeader = "<?xml version=\"1.0\"?>";

Chapter 15:Usi ng JSPs, XSL, and Scrollable ResultSets to Display Data

-407-

 protected String memberId;
 protected String eyecolor;

 protected String haircolor;
 protected String build;

 protected String height;

 protected Connection con;
 protected Statement stmt;

 protected ResultSet rs;
 protected ResultSetMetaData md;

 public MemberUpdateXMLBean(){

 }
 public void setMemberId(String memberId){

 this.memberId=memberId;
 }

 public String getMemberId(){
 return memberId;

 }
 public void setEyecolor(String eyecolor){

 this.eyecolor=eyecolor;
 }

 public void setHaircolor(String haircolor){
 this.haircolor=haircolor;

 }
 public void setBuild(String build){

 this.build=build;
 }

 public void setHeight(String height){
 this.height=height;

 }
 public String getMemberXmlString(){

 String xml = new String(getMemberData());
 return xml.trim();

 }
 public String updateMemberData(){

 String status = "Update successful";
 System.out.println("ResultSet = "+rs);

 try {
 if(rs.getConcurrency()==ResultSet.CONCUR_UPDATABLE){

 System.out.println("UPDATABLE");
 int nColumns = md.getColumnCount();

 rs.updateString("eyecolor", eyecolor);

Chapter 15:Usi ng JSPs, XSL, and Scrollable ResultSets to Display Data

-408-

 rs.updateString("haircolor", haircolor);
 rs.updateRow();

 }
 else{

 System.out.println("READ_ONLY");
 status = "Update failed";

 }
 }catch(Exception e){

 e.printStackTrace();
 }

 return status;
 }

 public byte[] getMemberData(){
 String rootTag = "MemberInfo";

 String SQLQuery = "SELECT i.*, "+
 "m.list MUSIC, g.list GOING_OUT, f.list FOODS, "+

 "ph.list SPORTS, p.list PERSONALITY, a.list
ACTIVITIES "+

 "FROM personalinfo i, MUSIC m, goingout g, foods
f, "+

 "physicalactivities ph, personality p, activities
a "+

 "WHERE m.id = g.id AND m.id = f.id AND m.id =
ph.id AND "+

 "m.id = p.id AND m.id = a.id AND m.id = i.id AND
"+

 "m.id = '"+memberId+"';";

 ByteArrayOutputStream os = new ByteArrayOutputStream();
 try {

 Class.forName("com.inet.pool.PoolDriver");
 com.inet.tds.TdsDataSource tds = new com.inet.tds.TdsDataSource();

 tds.setServerName("JUPITER");
 tds.setDatabaseName("MEMBERS");

 tds.setUser(dbUserName);
 tds.setPassword(dbPassword);

 DataSource ds = tds;

 con = ds.getConnection(dbUserName,dbPassword);

 stmt = con.createStatement(

 ResultSet.TYPE_SCROLL_SENSITIVE,

Chapter 15:Usi ng JSPs, XSL, and Scrollable ResultSets to Display Data

-409 -

 ResultSet.CONCUR_UPDATABLE);

 rs = stmt.executeQuery(SQLQuery);
 md = rs.getMetaData();

 if(rs.getConcurrency()==ResultSet.CONCUR_UPDATABLE){
 System.out.println("UPDATABLE");

 }else{
 System.out.println("READ_ONLY");

 }
 os.write(xmlHeader.getBytes());

 os.write(("<"+rootTag+">").getBytes());

 String xml = "";
 int columns = md.getColumnCount();

 rs.next();
 for(int i=1;i<=columns;i++){

 if(md.getColumnType(i)==Types.VARCHAR){
 xml="<"+md.getColumnLabel(i)+">"+

 rs.getString(i)+"</"+md.getColumnLabel(i)+">";
 os.write(xml.getBytes());

 }
 }

 os.write(("</"+rootTag+">").getBytes());

 }catch(Exception e){
 e.printStackTrace();

 }
 return os.toByteArray();

 }
}

To create an updatable ResultSet object, you need to call the createStatement method with these
ResultSet constants:
§ TYPE_SCROLL_SENSITIVE
§ CONCUR_UPDATABLE

The Statement object that is created produces an updatable ResultSet object when it executes a
query. Once you have an updatable ResultSet object, you can insert a new row, delete an existing
row, or modify one or more column values.

Here are several considerations to bear in mind when using updatable ResultSets:
§ An updatable ResultSet object does not necessarily have to be scrollable.
§ An updatable ResultSet must generally specify the primary key as one of the columns selected.
§ Requesting a ResultSet be updatable does not guarantee that the ResultSet you get will actually

be updatable. Drivers that do not support updatable ResultSets return one that is read-only.
§ If the driver does not support the definition of UpdatableResultSet, the Statement object

may throw a SQL "Optional feature not implemented" exception.

Chapter 15:Usi ng JSPs, XSL, and Scrollable ResultSets to Display Data

-410-

Caution

Since requesting an UpdatableResultSet does not guarantee that you will
actually get one, depending on the driver in use, you should check whether the
ResultSet is updatable using ResultSet.getConcurrency().

Note that setter methods are shown for the properties in the HTML form. If you don't include a setter
method for each form property, Tomcat will give you a "method not found" error message.

Notice that I leave in a couple of System.out.println() statements. Before assuming that the
update works correctly, it is important to ensure that you actually have an updatable ResultSet.
Drivers that do not support updatable ResultSets go through the motions, but they return a
READ_ONLY ResultSet.

Cross-
Reference Chapter 4 discusses the uses of updatable ResultSets at greater length,

although the examples are not as detailed as the JavaBean example given
here.

Summary

In this chapter, you learned how to combine ResultSets, Java Server Pages, and XML and XSL to
create database-driven Web pages. Specifically, you learned the following:
§ Using scrollable ResultSets to search a Web site
§ Creating an XML document from a ResultSet
§ Applying XSL stylesheets to create different Web pages from a single XML document
§ Using an updatable ResultSet with an HTML form to update a database record

Chapter 16 explains how to use the JavaMail API with JDBC to send e-mail from a database and to
receive and store e-mail to a database.

Chapter 16:Using the JavaMail API with JDBC

-411-

Chapter 16: Using the JavaMail API with JDBC

In This Chapter

In the earlier days of the Internet, e-mail mainly consisted of text messages that were handled using
simple Java applications. As the popularity of e-mail has grown, its capabilities have expanded
dramatically to the point where most e-mails these days are sent in both text and HTML formats and
can include a wide range of different content types. The JavaMail API has been developed to simplify
the task of handling these more complex e-mail messages using Java. This chapter gives a brief
overview of the JavaMail API and illustrates the use of JDBC and JavaMail to send and receive e-mail.

Using E-mail Protocols

The backbone of e-mail is a network of interconnected Simple Mail Transfer Protocol (SMPT) servers,
which store and forward e-mails. To send an e-mail, you connect to your local SMTP server and send
the e-mail using SMTP. The e-mail is then forwarded to the recipient's server and held in the recipient's
e-mail folder. Th e recipient later retrieves the e-mail, usually using the Post Office Protocol (POP). As
the complexity of e-mail messages has grown, so has the need to manage the different data types
contained in e-mail messages. This has led to the development of the Multipurpose Internet Mail
Extensions.

Multipurpose Internet Mail Extensions (MIME)

The Multipurpose Internet Mail Extensions (MIME) define the content of e-mail messages, attachments,
and so on. The MIME data type is defined in a Content-Type header field, used to specify the type and
subtype of data in the body of a message. These are the common MIME types:
§ "text" — used to represent standard text content
§ "multipart" — used to combine several body parts, possibly of differing types, into a single

message
§ "application" — used to transmit application data or binary data
§ "image" — used for transmitting still-image (picture) data
§ "audio" — used for transmitting audio or voice data
§ "video" — used for transmitting video or moving-image data

As a user of the JavaMail API, you are able to retrieve the MIME type from the header and to use it in
deciding how to process the message.

Simple Mail Transfer Protocol (SMTP)

The SMTP is used for sending e-mail to an SMTP server, which your Internet Service Provider (ISP)
usually manages. That SMTP server relays the e-mail message on to the recipient's SMTP server,
where it is held in an e-mail store for the recipient's retrieval. The SMTP is defined in RFC 821,
available at http://www.faqs.org/rfcs/rfc821.html.

Post Office Protocol (POP)

Since the current revision is version of POP is 3, the protocol is also known as POP3. Supporting a
single mailbox for each user, POP3 is the most widely used way to download e-mail. POP3 is defined in
RFC 1939, available at http://www.faqs.org/rfcs/rfc1939.html.

Note

POP3 supports only basic storage and download of e-mails. Features such as tracking
new e-mails are handled by clients such as Eudora.

The next section explains how the JavaMail API works, and how to use it.

Using the JavaMail API

TE
AM
FL
Y

Team-Fly®

Chapter 16:Using the JavaMail API with JDBC

-412-

The best way to handle e-mail is to use the JavaMail API. The JavaMail API makes handling e-mail very
straightforward, as it is designed to provide a protocol-independent means of sending and receiving
messages. You can download the JavaMail API from Sun. In addition, you need to download the Java
Activation Framework (JAF), which provides the basic MIME-type support used in most e-mail
applications.

The first step in sending an e-mail using JavaMail is to get a JavaMail Session. Within the context of
the Session, you create a new Message object, set its properties, and send it. These are the core
JavaMail API classes needed to do perform these tasks:
§ Session — defines a basic mail session
§ Message — in most cases you will use javax.mail.internet.MimeMessage.
§ Address — normally, you use the javax.mail.internet.InternetAddress.
§ Transport — performs the protocol-specific tasks involved in sending the message
§ Store — to receive e-mail messages, you first connect to a Mail Store.
§ Folder — a Mail Store contains folders of messages that can be downloaded and read.

The session, message, address and transport classes of the core JavaMail API are
explained below, and are illustrated in the first example, which shows you how to send an e-mail
message. The remaining classes are used when receiving e-mails messages, and are explained and
illustrated in the second example which illustrates how to receive e-mail messages.

The Session object defines a basic mail session. It uses a java.util.Properties object to hold
application-level information such as the mail server, username, and password. In most cases, you can
just use the shared session, even if you are working with multiple-user mailboxes.

The Message object represents the e-mail message. Properties of the Message object include the
subject, the content, and the addresses of the sender and the recipient. A Mime Message is an e-mail
message that understands different MIME types and headers.

E-mail addresses are implemented using the Address object. Normally, you use the
javax.mail.internet.InternetAddress class. The Address object has constructors that let
you set just an e-mail address or set an e-mail address and the name of the sender or recipient.

Note

The JavaMail API does not check the contents of an Address object, so unless your
mail server prevents you, there is nothing stopping you from sending a message that
appears to be from anyone.

The Transport object handles the protocol-specific language for sending the message (usually
SMTP). You can use the default version of the class by calling the static send() method, or you can
get a specific instance from the session. Here's an example:

Transport transport = session.getTransport("smtp");
transport.connect(host, username, password);

transport.sendMessage(message, message.getAllRecipients());
transport.close();

Note

The basic send() mechanism makes a separate connection to the server for each
method call. When you need to send multiple messages, it is better to get a specific
instance of Transport; this keeps the connection with the mail server active between
messages.

The first example explains how to use these classes to send an e-mail message. Receiving e-mail
messages is covered in the second example.

Using JavaMail with JDBC to Send an E-mail Message

Chapter 16:Using the JavaMail API with JDBC

-413 -

Apart from the endless stream of advertising messages one seems to receive, one of the most common
uses of database-driven e-mail is to help a user who has forgotten his or her password. This is a fairly
simple application, and a JSP page and JavaBean can handle it easily.

To send an e-mail to a member who has lost his or her password, it is necessary to query the
ContactInfo Table to retrieve the member's e-mail address. The query also retrieves the password from
the Login Table. This is the SQL query required to retrieve the member's password and e-mail address
from the Login and ContactInfo Tables:

SELECT l.password, c.email
FROM LOGIN l, CONTACTINFO c

WHERE l.username = 'garfield' AND
 l.MemberID = c.MemberID;

For the purposes of this example, all that is required is a simple message containing the member's
password, together with a small amount of explanatory text, as the content. The member's e-mail
address, retrieved from the ContactInfo Table in the database, is plugged in to the Message object's
recipient property.

For simplicity, this example is developed in the context of a JSP application, using the member login
database developed in Chapter 12. The login JSP page can be set to redirect a user who fails the login
check to a JSP page that uses the SendMailBean developed in the example that follows.

Cross-
Reference The use of JSP pages and JavaBeans in database-driven Internet

applications is discussed in Chapter 12.

Using a JSP Page and JavaMail to Send E-mails

The basic SendMailBean is similar to the LoginBean example in Listing 12-9, with the addition of the
JavaMail component. The example uses a DataSource object to connect to the database and retrieve
the member's password and e-mail address. If the e-mail address is not null, the emailPassword()
method is called to send the password to the user.

The inner workings of the JavaMail-based emailPassword() method are simple. The first step is to
get the System properties object and insert the name of the e-mail host serving the account to be
used to send the e-mail:

props.put("mail.smtp.host", host);

The next step is to get the Session object, which provides the context in which the e-mail is sent:

Session session = Session.getDefaultInstance(props, null);

Once you have a Session object, use it to create a MimeMessage object as shown here:

MimeMessage message = new MimeMessage(session);

All that remains now is to set the properties of the Message object and to send it. In addition to the
Message.Recipient.TO recipient type, the Message object defines these types:
§ Message.Recipient.CC
§ Message.Recipient.BCC

message.setFrom(new InternetAddress(from));
message.addRecipient(Message.RecipientType.TO,new InternetAddress(email));

message.setSubject("Password Reminder");

message.setText("Hi "+memberName+",Your password is: "+password);

Chapter 16:Using the JavaMail API with JDBC

-414-

Finally, call Transport.send() with the populated Message object as the argument, as shown here:

Transport.send(message);

The details of the SendMailBean are shown in Listing 16-1.

Listing 16-1: Sending e-mail by using the JavaMail API and JDBC

package JavaDatabaseBible.ch12;

import java.util.Properties;
import javax.mail.*;

import javax.mail.internet.*;
import java.sql.*;

import javax.sql.*;
import javax.servlet.*;

import javax.servlet.http.*;

public class SendMailBean {
 private static String dbUserName = "sa";

 private static String dbPassword = "dba";

 private Connection con = null;
 protected String username;

 public SendMailBean(){

 }
 public void setUsername(String username){

 this.username = username;
 }

 public String getUsername(){
 return username;

 }
 public String getPasswordAndEmailAddress(){

 String password = null;
 String email = null;

 try {

 Class.forName("com.inet.pool.PoolDriver");
 com.inet.tds.TdsDataSource tds = new com.inet.tds.TdsDataSource();

 tds.setServerName("JUPITER");
 tds.setDatabaseName("MEMBERS");

 tds.setUser(dbUserName);
 tds.setPassword(dbPassword);

Chapter 16:Using the JavaMail API with JDBC

-415-

 DataSource ds = tds;
 Connection con = ds.getConnection(dbUserName,dbPassword);

 Statement stmt;
 ResultSet rs = null;

 String SQLQuery = "SELECT l.Password, c.Email FROM LOGIN l, "+

 "CONTACTINFO c WHERE l.MemberID = c.MemberID "+
 "AND UserName = '"+username+"';";

 stmt = con.createStatement();
 rs = stmt.executeQuery(SQLQuery);

 while(rs.next()){
 password = rs.getString("Password");

 email = rs.getString("Email");
 }

 con.close();

 }catch(ClassNotFoundException e1){
 System.err.println(e1.getMessage());

 }catch(SQLException e2){
 System.err.println(e2.getMessage());

 }

 if(email==null){
 return "Bad Email";

 }else{
 emailPassword(email,username,password);

 return "OK";
 }

 }

 public void emailPassword(String email,String memberName,String
password){

 String host = "mail";
 String from = "webmaster@j-machines.com";

 Properties props = System.getProperties();

 props.put("mail.smtp.host", host);

 // Get session

 Session session = Session.getDefaultInstance(props, null);

 // Define message

Chapter 16:Using the JavaMail API with JDBC

-416-

 MimeMessage message = new MimeMessage(session);

 try{
 // Set the sender and recipient addresses

 message.setFrom(new InternetAddress(from));
 message.addRecipient(Message.RecipientType.TO,new

InternetAddress(email));

 // Set the subject
 message.setSubject("Password Reminder");

 // Set the message content

 message.setText("Hi "+memberName+",\nYour password is: "+
 password+"\nregards - "+from);

 // Send it

 Transport.send(message);
 }catch(AddressException ae){

 }catch(MessagingException me){
 }

 }
}

The SQL query in this example is fairly efficient, since the Login Table is indexed by UserName and the
ContactInfo Table is indexed by MemberID. However, you can make the query faster by forwarding the
MemberID from the previous page, so that you need only query the ContactInfo Table.

A JSP Page for Use with the SendMailBean

Using the SendMailBean requires a JSP page to set the UserName argument and to call the method
SendMailBean.getPasswordAndEmail() to query the database and send the e-mail. The JSP
page required to use the SendMailBean looks something like the example in Listing 16-2.

Listing 16-2: A JSP page for use with the SendMailBean

<html>

<head>
<title>Email Password</title>

</head>
<body>

<%@ page language="java"%>
<jsp:useBean id="SendMailBean" scope="application"

class="JavaDatabaseBible.ch12.SendMailBean"/>
<jsp:setProperty name="SendMailBean" property="*"/>

<%
 String userName = request.getParameter("username");

Chapter 16:Using the JavaMail API with JDBC

-417 -

 String emailStatus = SendMailBean.getPasswordAndEmail();
 if(emailStatus.equals("OK")){

%>
Hi <%=userName%>,

Your password is being emailed to the address we have on file.
<%

 }else{
%>

Sorry, <%=userName%>,

Your email address is not on file.

<%
 }

%>
</body>

</html>

Deployment

To deploy JavaBeans for use with JSP pages, put the class files for the beans into the appropriate
directory. For a simple Tomcat installation, the usual path is as follows:

TOMCAT/WEBAPPS/ROOT/WEB-INF/CLASSES

Recall that servlet deployment requires you to put any jar files you need into a suitable directory and to
modify Tomcat's class path in the tomcat.properties file in the Tomcat/conf directory. In this example,
the jar file is saved in the /lib directory, and Tomcat's class path is modified by adding the following
lines to the tomcat.properties file:

wrapper.classpath=lib/jdbc2_0-stdext.jar

wrapper.classpath=lib/activation.jar

wrapper.classpath=lib/mail.jar
wrapper.classpath=lib/Opta2000.jar

The store and folder classes of the core JavaMail are explained and illustrated in the next example
which illustrates how to receive e-mail messages.

Receiving E-mail Using the JavaMail API

Receiving e-mail with the JavaMail API is only a little more complicated than sending e-mail. In addition
to the JavaMail objects used to send an e-mail, receiving e-mails involves the use of the Store and
Folder objects. The following sequence of events is similar to sending an e-mail:

1. Get the default e-mail session.
2. Get the POP3 message store object.
3. Connect to the store, using the server name, mail-user name, and password.
4. Get the default folder.
5. Get the INBOX.
6. Open the INBOX and read the messages.

The process is started in much the same way as sending a message, but, after getting the session, you
connect to a Store instead of a Transport. Here's an example:

Store store = session.getStore("pop3");
store.connect(host, username, password);

Chapter 16:Using the JavaMail API with JDBC

-418-

After connecting to the Store, get a folder and open it. Using POP3, the only folder available is the
INBOX. Once the folder is open, you can read messages from it, as shown here:

Folder folder = store.getFolder("INBOX");
folder.open(Folder.READ_ONLY);

Message message[] = folder.getMessages();

The folder.getMessages() method uses lazy data retrieval. In other words, the message content is
only downloaded when specifically requested. You can get the content of a message with
getContent() or write the content to a stream with writeTo(). The getContent() method only
gets the message content, and writeTo() output includes headers. Here's an example:

System.out.println(((MimeMessage)message).getContent());

Notice that the INBOX is opened in READ_ONLY mode. Write access can be used to mark messages as
received or to delete them from the server. Listing 16-3 illustrates how easy it is to receive e-mail
messages using the JavaMail API.

Listing 16-3: Reading e-mail using JavaMail and saving it to a database

import javax.mail.*;
import javax.mail.internet.*;

import java.util.*;

import java.io.*;
import java.sql.*;

import javax.sql.*;

public class JavaMailReceiver{
 static String server="mail.home.com";

 static String username="user";
 static String password="password";

 static MailSaver db = new MailSaver();

 public static void main(String args[]){

 try {
 receive(server, username, password);

 }catch (Exception e){
 System.err.println(e);

 }
 System.exit(0);

 }

 public static void receive(String server,
 String username, String password){

 Store store=null;
 Folder folder=null;

Chapter 16:Using the JavaMail API with JDBC

-419-

 try{

 // -- Get the default session --
 Properties props = System.getProperties();

 Session session = Session.getDefaultInstance(props, null);

 // -- Get a POP3 message store, and connect to it --
 store = session.getStore("pop3");

 store.connect(server, username, password);

 // -- Get the default folder --
 folder = store.getDefaultFolder();

 if (folder == null) throw new Exception("No default folder");

 // -- Get its INBOX --
 folder = folder.getFolder("INBOX");

 if (folder == null) throw new Exception("No POP3 INBOX");

 // -- Open the folder for read only --
 folder.open(Folder.READ_ONLY);

 // -- Get the message wrappers and process them --

 Message[] msgs = folder.getMessages();
 int msgNum = msgs.length;

 while(processMessage(msgs[--msgNum]));
 }

 catch (Exception e){
 e.printStackTrace();

 }
 finally{

 try{
 if (folder!=null) folder.close(false);

 if (store!=null) store.close();
 }

 catch (Exception e) {
 e.printStackTrace();

 }
 }

 }

 public static boolean processMessage(Message message){
 Calendar today = Calendar.getInstance();

 try{

Chapter 16:Using the JavaMail API with JDBC

-420-

 // Get the header information
 String subject = message.getSubject();

 String dateString = "unknown date";
 String to

 =
 ((InternetAddress)message.getAllRecipients()[0]).getPersonal();

 String toEmail
 =

 ((InternetAddress)message.getAllRecipients()[0]).getAddress();
 String from =

((InternetAddress)message.getFrom()[0]).getPersonal();
 String email =

((InternetAddress)message.getFrom()[0]).getAddress();

 if (to==null) to = toEmail;
 if (from==null from = email;

 java.util.Date date=message.getSentDate();

 Calendar mDate = Calendar.getInstance();

 if(date!=null){
 dateString = date.toString();

 mDate.setTime(date);
 if(mDate.get(Calendar.DAY_OF_MONTH)<

 today.get(Calendar.DAY_OF_MONTH)-3)return false;
 }

 System.out.println("DATE: "+dateString);

 System.out.println("TO: "+to+" <"+toEmail +">");
 System.out.println("FROM: "+from+" <"+email +">");

 System.out.println("SUBJECT: "+subject);

 // -- Get the message --
 Part messagePart=message;

 Object content=messagePart.getContent();

 if (content instanceof Multipart){
 for(int i=0;i<((Multipart)content).getCount();i++){

 messagePart=((Multipart)content).getBodyPart(i);
 String contentType=messagePart.getContentType();

 if (contentType.startsWith("text/plain") ||
 contentType.startsWith("text/html")){

 String msg = readMsg(messagePart);

Chapter 16:Using the JavaMail API with JDBC

-421 -

 db.saveEmail(dateString,from,email,subject,contentType,msg);
 }

 }
 }else{

 String contentType=messagePart.getContentType();
 if (contentType.startsWith("text/plain") ||

 contentType.startsWith("text/html")){
 String msg = readMsg(messagePart);

 db.saveEmail(dateString,from,email,subject,contentType,msg);
 }

 }
 }

 catch (Exception ex){
 ex.printStackTrace();

 }
 return true;

 }
 private static String readMsg(Part messagePart){

 String message = "";
 try{

 String contentType=messagePart.getContentType();
 if (contentType.startsWith("text/plain")||

 contentType.startsWith("text/html")){
 InputStream is = messagePart.getInputStream();

 BufferedReader reader = new BufferedReader(new
InputStreamReader(is));

 String line = reader.readLine();
 while(line!=null){

 message = message + line;
 line = reader.readLine();

 }
 }

 }catch(Exception e){
 System.err.println(e);

 }
 return message;

 }
}

class MailSaver{

 private static String dbUserName = "dbUser";
 private static String dbPassword = "dbPwd";

 Connection con = null;

TE
AM
FL
Y

Team-Fly®

Chapter 16:Using the JavaMail API with JDBC

-422-

 public MailSaver(){

 try{
 Class.forName("com.inet.pool.PoolDriver");

 com.inet.tds.TdsDataSource tds = new com.inet.tds.TdsDataSource();
 tds.setServerName("MARS");

 tds.setDatabaseName("EMAIL");
 tds.setUser(dbUserName);

 tds.setPassword(dbPassword);

 DataSource ds = tds;
 con = ds.getConnection(dbUserName,dbPassword);

 }
 catch(Exception e){

 System.err.println("SQL Exception registering driver");
 }

 }

 public void saveEmail(String date,String sender,String senderEmail,
 String subject,String mimeType,String msg){

 String cmd = "INSERT INTO EMAIL "+

"(MsgDate,Sender,SenderEmail,Subject,ContentType,Message) "+
 "VALUES(?,?,?,?,?,?)";

 try {
 PreparedStatement pstmt = con.prepareStatement(cmd);

 pstmt.setString(1, date);

 pstmt.setString(2, sender);
 pstmt.setString(3, senderEmail);

 pstmt.setString(4, subject);
 pstmt.setString(5, mimeType);

 pstmt.setString(6, msg);
 pstmt.executeUpdate();

 }
 catch(SQLException e){

 e.printStackTrace();
 }

 }
}

The example of Listing 16-3 is a straightforward JavaMail application. It logs on to the SMTP server and
uses the getMessages() method to get all the messages on the server, as shown here:

Message[] msgs = folder.getMessages();

Chapter 16:Using the JavaMail API with JDBC

-423-

int msgNum = msgs.length;
while(processMessage(msgs[--msgNum]));

The processMessage() method does the actual message processing. Note that messages are
processed in reverse order until the processMessage() method returns false. I do this for the
eminently practical reason that I am more interested in recent messages and do not want to loop
through the hundreds of messages on my e-mail server.

The processMessage() method parses out the date, subject, and sender information for display to
the console. It then checks the date against today's date, returning false if the message is more than
three days old.

If the MIME content type of the message is text or HTML, the message is saved as a Clob to a simple
E-mail Table. The table includes columns for the following items:
§ Date
§ Sender
§ Sender E-mail Address
§ Subject
§ Mime Type
§ Content

Note that the individual parts of a single message are saved as separate rows, so a message may be
saved over more than one row. Using an automatically incremented message id in the table helps
identify message parts separately, as does the Mime-type field.

Summary

This chapter provided an overview of the JavaMail API. Specific topics discussed were:
§ Developing e-mail applications using the JavaMail API
§ Sending e-mails from database-driven applications by using JavaMail
§ Receiving e-mails by using the JavaMail API and saving them to a database

This chapter concludes Part III, in which the JDBC Extension API has been discussed in the context of
Web applications. Part IV focuses on using Java databases with XML.

Part IV:Using Databases, JDBC, and XML

-424-

Part IV: Using Databases, JDBC,and
XML
Chapter List

Chapter 17: The XML Document Object Model and JDBC

Chapter 18: Using Rowsets to Display Data

Chapter 19: Accessing XML Documents Using SQL

Part Overview

XML is a text-based markup language that is fast becoming a standard for data management and
interchange, both within an application and between applications on and off the Web. Although at first
glance an XML document looks much like an HTML Web page, there are significant differences
between the two. The foremost of these can be summed up as follows:
§ HTML is primarily used to mark up text and other data with formatting information.
§ XML is primarily used to structure data, either for transport or for an application's local use.

In other words, HTML documents are primarily document-centric (that is, they are designed primarily for
human consumption). XML documents, on the other hand, are primarily data-centric (that is, they are
primarily intended for machine use where some degree of human readability is desirable).

Web pages, obviously, are typical examples of document-centric applications. Examples of typical data-
centric XML applications include:
§ Messaging between applications via the SOAP protocol. This is primarily used by the new Web-

services paradigm.
§ Remote procedure calls over HTTP using XML-RPC
§ Data transport, such as the delivery of stock quotes or news headlines over the Internet
§ Initialization functions that used to be handled by .ini or .properties files.Tomcat's web.xml

is a good example of an initialization file implemented with XML.
§ Scripting in such applications as the build language ANT. The ANT build file is XML based.

Data-centric documents are also typically characterized by a regular structure, frequently because they
are machine generated. Document-centric material is frequently less regularly structured, as humans
generate it. The content of data-centric documents frequently either originates in a database, in which
case the XML document is used to publish it, or is intended to be stored in a database, in which case
the XML is used to transport it there.

In some instances, an XML document, being a data repository, can be a database in itself. For example,
the contact lists on my Linux-based PDA are saved as XML documents.

The chapters in Part IV discuss working with databases and XML. Chapter 17 reviews retrieving data
from a table and formatting the ResultSets as XML, as well as fetching XML data from the Internet
and saving the data to a table. The JDBC RowSet is discussed in Chapter 18, and Chapter 19 goes on
to look at creating a simple JDBC driver that allows you to access XML documents using SQL.

Note

This distinctions drawn between HTML and XML deliberately overlook the fact that well-
formed HTML is a particular application of XML. In terms of common usage, the
distinction is valid.

Chapter 17:The XML Document Object Model and JDBC

-425-

Chapter 17: The XML Document Object Model and
JDBC

In This Chapter

XML is fast becoming a universal standard for exchanging data between applications. Today, many
major organizations are using XML in the daily course of business. The International Press
Telecommunications Council, for example, has defined an XML DTD to simplify news distribution and
publishing. Even local phone companies are using XML as the basis of a computerized order placement
and billing system.

This means that XML processing is steadily becoming more and more important to Java programmers.
Typically XML documents are used as a means of transferring database records between businesses.
This chapter starts with a brief introduction to XML, and then goes on to discuss how to generate XML
documents from a SQL query, and how to populate a database from an XML document.

XML versus HTML

The eXtensible Markup Language (XML) is a text-based markup language that is fast becoming a
standard for data interchange both on the Web and between applications. XML is similar to the
HyperText Markup Language (HTML) in that it uses tags enclosed in angle brackets (<>) to identify data,
as shown in Listing 17-1.

Listing 17-1: XML example

<?xml version="1.0"? >

 <CONTACT_INFO>
 <FIRST_NAME>Vito</FIRST_NAME>

 <LAST_NAME>Corleone</LAST_NAME>
 <STREET>123 Main</STREET>

 <CITY>New York</ CITY >
 <STATE>NY</STATE>

 <ZIP>12345</ZIP>
 </CONTACT_INFO>

Unlike HTML tags, XML tags identify and describe data rather than specifying how to display it. The
tags used to identify and describe data are application dependent, so you can use any tags you like, as
long as they follow the rules the W3C XML standard defines.

A major difference between XML and HTML is that an XML document must always be well formed.
Among other things, this means that every tag has a closing tag. For example, in HTML, you frequently
see dangling paragraph <P> and break
 tags. These are illegal in XML, which requires that a
closing tag be provided, either by using the form <P></P> or <P/>.

Another frequent usage in HTML, but illegal in XML, is incorrect nesting. Most browsers can handle
HTML with elements closed in arbitrary order, as in the following example, which combines incorrectly
closed elements with elements that simply aren't closed at all. This example displays just fine in a
browser but is unreadable as XML:

<HTML>

 <BODY>
 <CENTER>

 Hello World

Chapter 17:The XML Document Object Model and JDBC

-426-

 </CENTER>

Caution

XML documents must always be well formed. Most browsers can be used to check
that HTML documents are well formed, as can XML tools such as XML-Spy.

From a programming viewpoint, XML can be handled either as a character stream, or as an object. In a
stream based parser, XML elements are identified sequentially and used to trigger an event driven
processor. When the Document Object Model is used, the entire document is parsed into a document
object, in which the various elements and attributes can be accessed by name and path in much the
same way as files are accessed in a directory tree. The next section discusses the Document Object
Model.

XML and the Document Object Model

The Document Object Model (DOM) represents an XML document as a tree. The document element is
the top level of the tree. The document element has a number of child nodes that represent the
branches of the tree. Figure 17-1 shows an XML document displayed as a tree.

Figure 17-1: XML document displayed as a tree

The most basic component of the DOM is the Node interface. Every constituent component in a DOM
representation of an XML document is a node. The Node interface is extended by other interfaces such
as the Element interface and the Document interface. In the example shown in Figure 17-1, the
document element is the CUSTOMERS element, highlighted in the JTree representation. You can see
in the text representation on the right-hand side that the CUSTOMERS element contains the attribute
node DBNAME= "CONTACTS".

CUSTOMERS is an element node, as are CUSTOMER, FIRST_NAME, and so on. The JTree
represents elements as folders. Within the element nodes are additional element nodes, as well as text
nodes, represented by a document icon, with the actual text printed next to the icon.

Representing the XML document as a tree structure of Java objects allows the Java programmer to
create, access, and modify XML documents and their contents through one of a number of widely
available APIs. Before discussing the DOM, it is appropriate to review the structure of an XML
document.

The XML Header

An XML file must always start with a declaration that identifies the document as an XML. The minimal
header looks like this:

<?xml version="1.0"?>

Chapter 17:The XML Document Object Model and JDBC

-427 -

The declaration may contain additional information identifying the character set or encoding the
presence or absence of additional reference documents such as a document type definition and other
related information:

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>

In this example, the header contains the following information:
§ The XML version number is 1.0
§ The character encoding is ISO-8859-1, the HTTP default character encoding
§ The documentis a standalone document, or one which requires no supporting documents such as

an external Document Type Definition

Everything that comes after the XML header constitutes the document's content.

Note

The XML version attribute is required. An XML parser will report an error if no version
attribute is supplied.

Tags and Attributes

The tags in the example of Listing 17-1 identify the content as a whole, as well as the individual
elements: the contact's first name, last name, street, city, and zip. These data elements are contained in
a hierarchical structure, defined by nesting them inside the <CONTACT_INFO> tag. The capability of one
tag to contain others permits XML to represent hierarchical data structures

The format of an XML document on the printed page is largely a matter of convenience. As is the case
with HTML, whitespace is not considered significant.

In addition to the tag name, XML tags can contain attributes within the tag's angle brackets. Attributes,
as in HTML, are generally used to provide additional information about an element. A good example of
a tag with attributes is the HTML tag shown here, which contains attributes describing the font
face, size, and color:

Hello World

As in HTML, attributes are defined as key = value pairs, separated by spaces. Unlike HTML, however,
XML requires that attribute values be quoted, separated only by whitespace. In other words, the FONT
tag shown above complies with the requirements for defining xml attributes, while the example below,
which works fine as HTML, is invalid as XML:

Hello World

Since you can design a data structure like <message> equally well using either attributes or tags, it can
take a considerable amount of thought to figure out which design is best for your purposes. The last part
of this tutorial, "Designing an XML Data Structure," includes ideas to help you decide when to use
attributes and when to use tags.

Elements and Nodes

The DOM represents an XML document as a tree structure, where each node contains one of the
components of the XML document. Using DOM methods, you can create and remove nodes, change
their contents, and traverse the node hierarchy.

The DOM defines a number of different types of nodes in the org.w3c.dom.Node interface. The most
commonly used of these are summarized in Table 17-1.
Table 17-1: org.w3c.dom Interface Node

org.w3c.dom Node_Type Application Example

ATTRIBUTE_NODE Attribute key="value"

COMMENT_NODE Comment <-- This is a comment --

Chapter 17:The XML Document Object Model and JDBC

-428-

Table 17-1: org.w3c.dom Interface Node

org.w3c.dom Node_Type Application Example

>

DOCUMENT_NODE Document The enclosing Document

ELEMENT_NODE Element <NAME>...</NAME>

TEXT_NODE Body Text within element Hello world

The next section shows how to use some of the widely available DOM parsing tools to process XML
documents.

Using a Java XML API — Xerces and JDOM

A number of tools are available for working with XML in Java. Among the most widely used are the
Xerces package, available for download from apache.org., and JDOM, available from jdom.org.

Xerces includes fully-validating parsers, implementing the W3C XML and DOM (Level 1 and 2)
standards, as well as the de facto SAX (version 2) standard. Xerces is a large, comprehensive
implementation of the full standard.

JDOM is a totally Java-oriented approach to working with XML. It seeks to provide a robust, light-weight
means of reading and writing XML data. It is certainly rather more intuitive to work with than the Xerces
API, but the differences are minor.

Having worked extensively with both, as well as with my own light-weight, custom XML API, I have
selected Xerces for the examples in the book for several reasons:
§ Xerces is intended as a complete implementation of the DOM.
§ The sample code is built around Xbeans, from Xbeans.org. The origianl Xbean code uses

Xerces.
§ The Xerces jar contains everything you need to implement all the examples.

Having said all that, I should point out that translating the examples from one API to the other is
relatively simple, since the sample code uses only a small part of the API. The following code snippet
shows the creation of an XML document using the Xerces API. This code is taken from the SystemTime
bean example that you'll find later in this chapter under "Using XBeans as Pluggable XML Processing
Blocks."

Document doc = new DocumentImpl();
Element root = (Element) doc.createElement("SYSTEMDATE");

doc.appendChild (root);

Element year = (Element) doc.createElement("YEAR");
root.appendChild(year);

year.appendChild(doc.createTextNode(""+calendar.get(Calendar.YEAR)));

The following JDOM equivalent is similar, but quite a bit simpler than the Xerces example, since it is
specifically designed to be a Java-oriented way of working with XML:

Element root = new Element("SYSTEMDATE");
Document doc = new Document(root);

Element year = new Element("YEAR");

root.addContent(year);
year.setText(""+calendar.get(Calendar.YEAR));

Chapter 17:The XML Document Object Model and JDBC

-429-

One of the main advantages of using the DOM approach to handling XML documents is that once you
have parsed the document into a DOM object, you can access any element as required. This feature is
illustrated in the next section on using Xbeans to process XML documents.

Using Xbeans as Pluggable XML Processing Blocks

One of the most straightforward ways to work with XML documents in Java is to use Xbeans. Xbeans
are the brainchild of Bruce Martin, whose work lies at the core of Xbeans.org, an open-source project,
where you can read Bruce's excellent white paper "Creating Distributed Applications Using Xbeans."
You can also download the basic Xbean interface library from this site.

Essentially, Xbeans are pluggable XML-processing blocks. They are intended to be connected in chains,
where each Xbean performs one logical step in processing an XML document. The Xbean then passes
the document to the next Xbean in the chain as the event object in a bean event, as illustrated in Figure
17-2.

Figure 17-2: Xbean connectivity

Connectivity is the primary key to the Xbean concept. Each Xbean in a chain performs one processing
step; then it passes the processed XML document to the next bean for further processing. This
approach makes it easy to break a project down into simple, frequently repeated operations, each of
which can be implemented as a reusable component.

Xbean connectivity is implemented using the delegation event model to communicate with other Xbeans.
The delegation event model is implemented using the DOMEvent interface, which defines a DOM
document as the event object. By firing a DOMEvent, the event source Xbean passes an XML
document as the DOMEvent object to the EventListener bean.

The Xbean connectivity model is defined by two interfaces included in the package org.Xbeans:
§ DOMSource defines two methods, setDOMListener() and getDOMListener(), for setting

and getting the Xbean that receives the output.
§ DOMListener defines a single method, documentReady(DOMEvent e), which is called by the

event source Xbean to pass the XML document encapsulated in the DOMEvent.

Conventionally, the documentReady() method calls a processDocument(DOMEvent e) method,
which processes the XML document and returns it. If there is another Xbean in the chain, the processed
document is wrapped in a new DOMEvent and passed on to the next Xbean in the chain.

In practice, the simplest way to use Xbeans is to create a base class with an empty
processDocument() method. Then extend the Xbean base class as required, overriding the
processDocument() method to implement the desired functionality. Listing 17-2 illustrates the Xbean
base class.

Listing 17-2: XBean base class

package JavaDatabaseBible.ch17.Xbeans;

import org.Xbeans.*;
import org.w3c.dom.Document;

/**

Chapter 17:The XML Document Object Model and JDBC

-430-

* XBean base class implements org.Xbeans interfaces.
*

* extend XBean to create useful Xbeans.
*/

public class XBean implements org.Xbeans.DOMListener,
org.Xbeans.DOMSource{

 protected DOMListener DOMListener;
 protected Document processedXmlDoc = null;

 public XBean(){

 }
 public void setDOMListener(DOMListener newDomListener) {

 DOMListener = newDomListener;
 }

 public DOMListener getDOMListener(){

 return DOMListener;
 }

 public void documentReady(DOMEvent evt) throws XbeansException {

 processedXmlDoc = processDocument(evt.getDocument());
 if(DOMListener!=null)

 DOMListener.documentReady(new DOMEvent(this, processedXmlDoc));
 }

 public void processDocument() throws XbeansException {

 }

 public Document processDocument(Document doc) throws XbeansException {
 return doc;

 }
}

Xbeans are normally used in chains, which implicitly have a beginning and an end. An extremely useful
ending Xbean, which extends the basic XBean of Listing 17-1, is the SerializerBean shown in
Listing 17-3. This bean simply outputs a document to a stream, defaulting to System.out.

Listing 17-3: SerializerBean

package JavaDatabaseBible.ch17.Xbeans;

import java.io.*;

import org.Xbeans.*;
import org.w3c.dom.Document;

import org.apache.xml.serialize.OutputFormat;

Chapter 17:The XML Document Object Model and JDBC

-431 -

import org.apache.xml.serialize.XMLSerializer;

/**
* Serialize a document to a stream or writer

*/

public class SerializerBean extends JavaDatabaseBible.ch17.Xbeans.XBean
{

 protected OutputStream os = System.out;
 protected Writer writer = null;

 protected XMLSerializer serializer;

 public SerializerBean(){
 }

 public void setOutputStream(OutputStream os){

 this.os = os;
 }

 public void setWriter(Writer writer){

 this.writer = writer;
 }

 public Document processDocument(Document doc) {

 OutputFormat fmt = new OutputFormat("xml",null,true);
 if(writer!=null){

 serializer = new XMLSerializer(writer,fmt);
 }

 else{
 serializer = new XMLSerializer(os,fmt);

 }

 if(doc!=null){
 try{

 serializer.asDOMSerializer().serialize(doc);
 }

 catch (Exception e){
 e.printStackTrace();

 }
 }

 return doc;
 }

}

TE
AM
FL
Y

Team-Fly®

Chapter 17:The XML Document Object Model and JDBC

-432-

An Xbean chain starts with an Xbean that either reads an existing document from a stream or creates
one from some data source. Listing 17-4 illustrates a simple Xbean that creates an XML document from
the system clock.

Listing 17-4: SystemTime bean

package JavaDatabaseBible.ch17.Xbeans;

import java.io.*;
import java.util.Calendar;

import java.util.GregorianCalendar;
import org.Xbeans.*;

import org.w3c.dom.Document;
import org.w3c.dom.Element;

import org.apache.xerces.dom.DocumentImpl;
/**

* Create a w3c.dom.Document containg system time and date.
*/

public class SystemTimeBean extends JavaDatabaseBible.ch17.Xbeans.XBean{

 protected String textFileName = "";

 public SystemTimeBean() {
 }

 public void processDocument() throws XbeansException{

 GregorianCalendar calendar = new GregorianCalendar();
 try{

 Document doc = new DocumentImpl();

 Element root = (Element) doc.createElement("SYSTEMDATE");
 doc.appendChild (root);

 Element year = (Element) doc.createElement("YEAR");

 root.appendChild(year);
 year.appendChild(doc.createTextNode(""+calendar.get(Calendar.YEAR)));

 Element month = (Element) doc.createElement("MONTH");

 root.appendChild(month);
 int mon = calendar.get(Calendar.MONTH)+1;

 month.appendChild(doc.createTextNode(String.valueOf(mon)));

 Element day = (Element) doc.createElement("DAY");
 root.appendChild(day);

Chapter 17:The XML Document Object Model and JDBC

-433-

 int mDay = calendar.get(Calendar.DAY_OF_MONTH);
 day.appendChild(doc.createTextNode(String.valueOf(mDay)));

 Element dayOfWeek = (Element) doc.createElement("DAY_OF_WEEK");

 root.appendChild(dayOfWeek);
 int wDay = calendar.get(Calendar.DAY_OF_WEEK);

 dayOfWeek.appendChild(doc.createTextNode(String.valueOf(wDay)));

 Element hour = (Element) doc.createElement("HOUR");
 root.appendChild(hour);

 int h = calendar.get(Calendar.HOUR_OF_DAY);
 hour.appendChild(doc.createTextNode(String.valueOf(h)));

 Element min = (Element) doc.createElement("MINUTE");

 root.appendChild(min);
 int m = calendar.get(Calendar.MINUTE);

 min.appendChild(doc.createTextNode(String.valueOf(m)));

 DOMListener.documentReady(new DOMEvent(this,doc));
 }

 catch (Exception e){
 throw(new XbeansException("","SystemTimeBean",

 e.toString(),e.getMessage()));
 }

 }
}

Now you have enough Xbeans to create a chain and experiment with the technology. Listing 17-5 is a
simple test program that illustrates how to instantiate and interconnect the Xbeans.

Listing 17-5: Using Xbeans to create an output of an XML document

import java.io.*;
import java.beans.Beans;

import JavaDatabaseBible.ch17.Xbeans.*;

public class SysTimeBeanTest {
 static public void main(String args[]) {

 try{

 SystemTimeBean timeBean = (SystemTimeBean)Beans.instantiate(null,

"JavaDatabaseBible.ch17.Xbeans.SystemTimeBean");
 SerializerBean serializer =

(SerializerBean)Beans.instantiate(null,

Chapter 17:The XML Document Object Model and JDBC

-434-

"JavaDatabaseBible.ch17.Xbeans.SerializerBean");

 timeBean.setDOMListener(serializer);
 serializer.setOutputStream(new FileOutputStream("TimeStamp.xml"));

 timeBean.processDocument();
 }catch(Exception e){

 System.err.println(e);
 }

 }
}

As you can see from the example in Listing 17-5, using Xbeans to create and process xml documents is
a simple, two-step process:

1. Instantiate the Xbeans and set any required properties,
2. Call the processDocument() method of the first Xbean in the chain, the SystemTimeBean.

The sequence of events that follows is as follows. The SystemTimeBean first creates a new XML
document using the following code:

Document doc = new DocumentImpl();

It then creates a root element and appends it to the document, as shown here:

Element root = (Element) doc.createElement("SYSTEMDATE");

doc.appendChild (root);

Then it creates elements for year, month, day, and so on, appending them to the root. Here's an
example:

Element year = (Element) doc.createElement("YEAR");

root.appendChild(year);
year.appendChild(doc.createTextNode(""+calendar.get(Calendar.YEAR)));

Finally, it calls the documentReady() method of its registered listener, the SerializerBean, passing
it the new XML document, as shown here:

DOMListener.documentReady(new DOMEvent(this,doc));

The SerializerBean, in turn, calls its own processDocument() method to serialize the document
to the stream defined in its outputStream property. The resulting XML is shown in Listing 17-6.

Listing 17-6: XML TimeStamp generated and serialized using Xbeans

<?xml version="1.0"?>
<SYSTEMDATE>

 <YEAR>2002</YEAR>
 <MONTH>3</MONTH>

 <DAY>17</DAY>
 <DAY_OF_WEEK>1</DAY_OF_WEEK>

 <HOUR>15</HOUR>
 <MINUTE>43</MINUTE>

</SYSTEMDATE>

Chapter 17:The XML Document Object Model and JDBC

-435-

A much more common application for Xbeans is in converting JDBC ResultSets to XML documents, as
illustrated in the next section.

Creating XML Documents by Querying a Database

Creating XML documents from a database is every bit as simple as creating them from a source such
as the system clock. If you refer to the XML document shown in Figure 17-1, you will notice that it bears
a structural resemblance to a DBMS Table. This is not surprising, since document is derived from one.

There are two basic ways to create XML documents. The first is illustrated in Chapter 15, where a JSP
is used to extract data from a database and output it as XML in much the same way as JSPs are used
to output HTML. Although this approach produces perfectly valid XML, another, more flexible approach
is to create a DOM representation of the document, which can be processed as desired before
serialization.

An Xbean designed to create DOM documents using SQL queries is shown in Listing 17-7. The
processDocument() method of this Xbean first creates a DOM document with a root element that
identifies the table name and the database in use. It then calls the method appendDataNodes(),
which executes the SQL query and appends an element for each row in the ResultSet. The Customer
Number is inserted into this element as an attribute. Nested in each row are elements with tag names
set to the column name and containing the column data as a text node. This example happens to use
the jdbc-odbc bridge driver, but you can easily substitute the DataSource code from any of the
examples in Part III of this book.

Listing 17-7: Creating an XML document using a SQL query

package JavaDatabaseBible.ch17.Xbeans;

import java.io.*;

import java.sql.*;
import org.Xbeans.*;

import org.w3c.dom.Document;
import org.w3c.dom.Element;

import org.apache.xerces.dom.DocumentImpl;

/**
* Query a database and return the ResultSet as an XML document

*/
public class SQLQueryBean extends XBean{

 private String databaseName = "";
 private String tableName = "";

 private String SQLQuery = null;

 Document document;

 public SQLQueryBean(){

 }

 public void setDatabaseName(String databaseName){
 this.databaseName = databaseName;

Chapter 17:The XML Document Object Model and JDBC

-436-

 }

 public void setTableName(String tableName){
 this.tableName = tableName;

 }

 public void setSQLQuery(String SQLQuery){
 this.SQLQuery = SQLQuery;

 }

 public void processDocument() throws XbeansException{
 try{

 document = new DocumentImpl();
 if(databaseName.length()>0&&tableName.length()>0){

 String d = databaseName.toUpperCase();
 String t = tableName.toUpperCase();

 Element root = (Element)document.createElement(t);
 document.appendChild (root);

 root.setAttribute("DBNAME",d);
 appendDataNodes();

 }
 else{

 throw new XbeansException("SQLQueryBean",
 null,"DBName/TableName Undefined",null);

 }
 DOMEvent domEvt = new DOMEvent(this,document);

 DOMListener.documentReady(domEvt);
 }

 catch (Exception e){
 e.printStackTrace();

 }
 }

 public void appendDataNodes() {

 String url = "jdbc:odbc:"+databaseName;

 if(SQLQuery==null)SQLQuery="SELECT * FROM "+tableName;

 try {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 Connection con = DriverManager.getConnection(url,"user","pwd");
 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery(SQLQuery);

Chapter 17:The XML Document Object Model and JDBC

-437-

 ResultSetMetaData md = rs.getMetaData();

 int nColumns = md.getColumnCount();
 Element root = document.getDocumentElement();

 while(rs.next()){

 Element record=(Element)document.createElement("CUSTOMER");
 root.appendChild (record);

 for(int i=1;i<=nColumns;i++){

 String fName = md.getColumnLabel(i);
 String data = rs.getString(i);

 if(fName.equals("CUSTOMER_NUMBER")){
 record.setAttribute("CUSTOMER_NUMBER",String.valueOf(data));

 }else{
 Element fld = (Element)document.createElement(fName);

 record.appendChild(fld);
 fld.appendChild(document.createTextNode(data));

 }
 }

 }
 con.close();

 }
 catch (Exception e){

 e.printStackTrace();
 }

 }
}

The SQLQueryBeanTest code shown in Listing 17-8 is nothing more than a modified version of Listing
17-5, with the SQLQueryBean plugged in place of the SystemTimeBean. This also serves to illustrate
how simple it is to use Xbeans to process XML data.

Listing 17-8: Using the SQLQueryBean

package JavaDatabaseBible.ch17.Xbeans;

import java.io.*;

import java.beans.Beans;
import JavaDatabaseBible.ch17.Xbeans.*;

public class SQLQueryBeanTest {

 static public void main(String args[]) {
 String databaseName = "SQLServerContacts";

 String tableName = "CUSTOMERS";

Chapter 17:The XML Document Object Model and JDBC

-438-

 String SQLQuery = "SELECT * FROM CUSTOMERS WHERE STATE = 'NY'";
 try{

 SQLQueryBean queryBean = (SQLQueryBean)Beans.instantiate(null,

"JavaDatabaseBible.ch17.Xbeans.SQLQueryBean");
 SerializerBean serializer =

(SerializerBean)Beans.instantiate(null,

"JavaDatabaseBible.ch17.Xbeans.SerializerBean");

 queryBean.setDatabaseName(databaseName);
 queryBean.setTableName(tableName);

 queryBean.setSQLQuery(SQLQuery);

 queryBean.setDOMListener(serializer);
 serializer.setOutputStream(new FileOutputStream("Customers.xml"));

 queryBean.processDocument();
 }catch(Exception e){

 System.err.println(e);
 }

 }
}

The output from this example is shown in Listing 17-9. You should be able to recognize it as the XML
document shown in Figure 17-1, which is created using an Xbean designed to output a JTree.

Listing 17-9: DOM document serialized from the Customer Table

<?xml version="1.0"?>
<CUSTOMERS DBNAME="CONTACTS">

 <CUSTOMER CUSTOMER_NUMBER="100">
 <FIRST_NAME>Michael</FIRST_NAME>

 <MI>A</MI>
 <LAST_NAME>Corleone</LAST_NAME>

 <STREET>123 Pine</STREET>
 <CITY>New York</CITY>

 <STATE>NY </STATE>
 <ZIP>10006</ZIP>

 <PHONE>201-555-1212</PHONE>
 </CUSTOMER>

 <CUSTOMER CUSTOMER_NUMBER="101">
 <FIRST_NAME>Fredo</FIRST_NAME>

 <MI>X</MI>
 <LAST_NAME>Corleone</LAST_NAME>

 <STREET>19 Main</STREET>

Chapter 17:The XML Document Object Model and JDBC

-439-

 <CITY>New York</CITY>
 <STATE>NY </STATE>

 <ZIP>10007</ZIP>
 <PHONE>201-555-1213</PHONE>

 </CUSTOMER>
 <CUSTOMER CUSTOMER_NUMBER="103">

 <FIRST_NAME>Francis</FIRST_NAME>
 <MI>X</MI>

 <LAST_NAME>Corleone</LAST_NAME>
 <STREET>17 Main</STREET>

 <CITY>New York</CITY>
 <STATE>NY </STATE>

 <ZIP>10005</ZIP>
 <PHONE>201-555-1215</PHONE>

 </CUSTOMER>
</CUSTOMERS>

Just as you can generate XML from a database, you can also populate a database using an XML data
feed. The Internet offers many sources of XML data which can be used in this way. The next section
shows the use of an Internet data source to populate a database.

Populating a Database Using XML Data Sources

XML's rise to prominence as a B2B solution has led to the introduction of a number of XML-based
services accessible over the Internet. An excellent example of such a service is the XML-based news
service on the demonstration portal maintained by Moreover.com.

Listing 17-10 illustrates the format of the top stories headline link page available at:

http://www.moreover.com/cgi-local/page?o=xml&query=top+stories.

The XML document contains the root tag <moreovernews>, which, in turn, contains a number of
<article> elements. Each of these elements contains 11 child elements. Together, the <article>
elements and their nested child elements can be envisaged as the rows of a database table with 11
columns corresponding to the 11 child elements.

Listing 17-10: XML top stories headline format from Moreover.com

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE moreovernews SYSTEM

"http://p.moreover.com/xml_dtds/moreovernews.dtd">
 <!-- by using this feed you have read and agree to our terms and

conditions
 at http://w.moreover.com/site/about/termsandconditions.html

 If the presence of this comment has caused an error in your parser
you may

 use the older uncommented version by using &o=xml_1 or +xml_1 in
the URL.

 Using the xml_1 version still means that you have read and agree to

Chapter 17:The XML Document Object Model and JDBC

-440-

our terms
 and conditions above -->

 <moreovernews>
 <article id="_34226715">

 <url>http://c.moreover.com/click/here.pl?x34226715</url>
 <headline_text>

 Assistant fire chief ascends to departments top role
 </headline_text>

 <source>Springfield News-Leader</source>
 <media_type>text</media_type>

 <cluster>moreover...</cluster>
 <tagline></tagline>

 <document_url>
 http://www.springfieldnews-leader.com/news/

 </document_url>
 <harvest_time>Mar 20 2002 2:30AM</harvest_time>

 <access_registration></access_registration>
 <access_status></access_status>

 </article>
 ...

 </moreovernews>

The SQLInsertBean used to insert the content of an XML document into a database table is an
extension of the basic Xbean base class of Listing 17-2. The processDocument() method first calls
the prepareStatement() method, which creates a PreparedStatement to handle the SQL
INSERT command. The PreparedStatement is simply a SQL INSERT command with 11
placeholders, one for each data node in the article element (10 child elements, plus the id attribute).

Cross-
Reference PreparedStatements reduce the processing overhead of compiling a

SQL statement when it is to be used repetitivley. The advantages of using
the PreparedStatement object when performing multiple repetitions of a
SQL command is discussed in Chapter 4, with a brief example in Chapter
13.

The getValues() method is passed an <article> element, which it parses to retrieve the id
attribute and the child elements. These are returned in a String array, which is passed to the
insertHeadline() method. Note that a Java null is specifically inserted into the array for empty
child elements. These nulls are converted automatically to SQL NULLs on insertion.

The insertHeadline() method sets the parameters of the PreparedStatement from the String
array and then calls the PreparedStatement's executeUpdate() method to insert the data from
the XML document.

After looping through all the <article> elements, the Connection object's close() method is called to
close the connection to the DataSource. If you fail to close the connection, the garbage collector will
close it for you. Listing 17-11 illustrates the use of a PreparedStatement object to insert news
headlines into the database.

Listing 17-11: SQLInsertBean

Chapter 17:The XML Document Object Model and JDBC

-441 -

package JavaDatabaseBible.ch17.Xbeans;

import java.io.*;
import java.sql.*;

import javax.sql.*;

import org.Xbeans.*;
import org.w3c.dom.Document;

import org.w3c.dom.Element;
import org.w3c.dom.Node;

import org.w3c.dom.NodeList;

/**
* Parse an xml document and insert into a database table using a

* PreparedStatement
*/

public class SQLInsertBean extends JavaDatabaseBible.ch17.Xbeans.XBean{

 static String moreoverUrl =
 "http://www.moreover.com/cgi-local/page?o=xml&query=top+stories";

 private static String dbUserName = "sa";
 private static String dbPassword = "dba";

 Connection con = null;

 PreparedStatement pstmt = null;

 public SQLInsertBean(){
 }

 public Document processDocument(Document doc) throws XbeansException {

 prepareStatement();
 Element root = doc.getDocumentElement();

 NodeList articles = root.getElementsByTagName("article");
 for(int i=0;i<articles.getLength();i++){

 Element article = (Element)articles.item(i);
 insertHeadline(getValues(article));

 }
 closeConnection();

 return doc;
 }

 private String[] getValues(Element article){

 String[] values = new String[11];

TE
AM
FL
Y

Team-Fly®

Chapter 17:The XML Document Object Model and JDBC

-442-

 values[0] = article.getAttribute("id");
 NodeList dataNodes = article.getChildNodes();

 for(int i=0,j=1;i<dataNodes.getLength();i++){
 Node dataNode = dataNodes.item(i);

 if(dataNode.getNodeType()==Node.ELEMENT_NODE){
 Node textNode = ((Element)dataNode).getFirstChild();

 if(textNode!=null)
 values[j++] = textNode.getNodeValue();

 else
 values[j++] = null;

 }
 }

 return values;
 }

 private void prepareStatement(){

 try {
 Class.forName("com.inet.pool.PoolDriver");

 com.inet.tds.TdsDataSource tds = new com.inet.tds.TdsDataSource();
 tds.setServerName("MARS");

 tds.setDatabaseName("MOREOVERNEWS");
 tds.setUser(dbUserName);

 tds.setPassword(dbPassword);

 DataSource ds = tds;
 con = ds.getConnection(dbUserName,dbPassword);

 String SQLCmd = "INSERT INTO HEADLINES

VALUES(?,?,?,?,?,?,?,?,?,?,?);";
 pstmt = con.prepareStatement(SQLCmd);

 }catch(ClassNotFoundException e){
 System.err.println(e.getMessage());

 }catch(SQLException e){
 System.err.println(e.getMessage());

 }
 }

 private void closeConnection(){

 try {
 con.close();

 }catch(SQLException e){
 System.err.println(e.getMessage());

 }

Chapter 17:The XML Document Object Model and JDBC

-443-

 }

 private int insertHeadline(String[] values){
 int rowsInserted = -1;

 try {
 for(int i=0;i<values.length;i++){

 pstmt.setString(i+1, fixApostrophes(values[i]));
 }

 rowsInserted = pstmt.executeUpdate();
 }catch(SQLException e){

 System.err.println(e.getMessage());
 }

 return rowsInserted;
 }

 private String fixApostrophes(String in) {

 if(in!=null){
 int n=0;

 while((n=in.indexOf("'",n))>=0){
 in = in.substring(0,n)+"'"+in.substring(n);

 n+=2;
 }

 }
 return in;

 }

 public static void main(String[] args){
 try{

 DOMParserBean parser = new DOMParserBean();
 SQLInsertBean insertBean = new SQLInsertBean();

 SerializerBean serializer = new SerializerBean();

 parser.setUrlString(moreoverUrl);
 parser.setDOMListener(insertBean);

 //insertBean.setDOMListener(serializer);

 parser.processDocument();
 }catch(Exception e){

 System.err.println("Exception in SQLInsertBeanTest");
 }

 }
}

Chapter 17:The XML Document Object Model and JDBC

-444-

The DOMParserBean referenced in the example of Listing 17-11 is shown in Listing 17-12. Again, this
class is a simple extension of the XBean base class. Its getXml() method returns a byte array
containing an XML document read from a file or a URL or simply passed as a String. The
processDocument() method uses a Xerces DOMParser to convert the byte array to a DOM
representation of the document. The DOM document is then sent to the DOMListener defined in the
XBean base class, using a DOMEvent.

Listing 17-12: DOMParserBean

package JavaDatabaseBible.ch17.Xbeans;

import java.io.*;
import java.net.*;

import org.Xbeans.*;
import org.w3c.dom.Document;

import org.xml.sax.InputSource;
import org.apache.xerces.parsers.DOMParser;

public class DOMParserBean extends JavaDatabaseBible.ch17.Xbeans.XBean{

 protected String UrlString = null;
 protected String XmlString = null;

 protected String XmlFileName = null;

 public DOMParserBean(){
 }

 public void setXmlString(String XmlString){

 this.XmlString = XmlString;
 }

 public void setUrlString(String UrlString){

 this.UrlString = UrlString;
 }

 public void setXmlFileName(String XmlFileName){
 this.XmlFileName = XmlFileName;

 }

 public void processDocument(){
 try{

 byte[] xml = getXml();
 if(xml.length > 0){

 ByteArrayInputStream x = new ByteArrayInputStream(xml);
 DOMParser p = new DOMParser();

 InputSource s = new InputSource(x);

Chapter 17:The XML Document Object Model and JDBC

-445-

 p.parse(s);
 Document doc = p.getDocument();

 DOMEvent e = new DOMEvent(this,doc);
 DOMListener.documentReady(e);

 }
 }

 catch (Exception e){
 e.printStackTrace();

 }
 }

 private byte[] getXml() {
 byte[] xml = new byte[4096];

 if(XmlFileName!=null){
 File f = new File (XmlFileName);

 xml = new byte[(int)f.length()];
 try {

 FileInputStream is = new FileInputStream(f);
 is.read(xml,0,(int)f.length());

 } catch (Exception e) {
 e.printStackTrace();

 }
 }else if(UrlString!=null){

 URL fileURL = null;
 String buffer = "";

 try {
 fileURL = new URL(UrlString);

 InputStream inputStream = fileURL.openStream();

 int byteCount;
 while((byteCount = inputStream.read(xml))>0){

 buffer += new String(xml,0,byteCount);
 }

 xml = buffer.getBytes();
 }

 catch(Exception e){
 e.printStackTrace();

 }
 }else{

 if(XmlString!=null) xml = XmlString.getBytes();
 }

 return xml;
 }

}

Chapter 17:The XML Document Object Model and JDBC

-446-

The combination of XML as a transport mechanism and relational databases as a storage medium will
become more and more common as Web-based architectures proliferate. The two technologies are
complimentary, each offering capabilities not found in the other.

Summary

In this chapter, you learn how to use the DOM to work with XML and JDBC. The main topics covered
include the following:
§ Using DOM parsers to parse XML documents
§ Creating and processing XML documents by using Xbeans
§ Creating XML documents by querying a database
§ Populating tables from XML data sources

Chapter 18 shows you how to apply this knowledge in a real-world XML application. Also, it discusses
JDBC RowSets.

Chapter 18:Using Rowsets to Display Data

-447 -

Chapter 18: Using Rowsets to Display Data

In This Chapter

RowSets add significant new capabilities to JDBC by adding JavaBeans support to the JDBC API.
Rowsets make it easy to send tabular data over a network. They can also be used as a wrapper,
providing scrollable ResultSets or updatable ResultSets when the underlying JDBC driver does not
support them.

This chapter discusses RowSets, comparing them with the ResultSets of the JDBC core API and
illustrating the features of the different types of RowSets.

Understanding RowSets

A RowSet is an object that contains a set of rows from a ResultSet or some other source of tabular
data, like a file or spreadsheet. The RowSet object is an extension of ResultSet, with the added
benefit of incorporating JavaBeans support. The RowSet object is supported by the RowSetMetaData
interface, which extends the ResultSetMetaData interface.

A RowSet differs significantly from a ResultSet in that it provides a set of JavaBeans properties to
connect to a JDBC data source and to read data from the data source for making connections,
executing commands, and reading and writing data to and from the data source. These properties
include the following:
§ rowSet.setUrl(url);
§ rowSet.setUsername(login);
§ rowSet.setPassword(password);
§ rowSet.getConnection();
§ rowSet.setCommand("SELECT * FROM sysusers");
§ rowSet.execute();

Since RowSets are JavaBeans, notice that they follow the JavaBeans model for setting and getting
properties such as the Username and Password. They also follow the JavaBeans API to handle events
such as changes in a column value. Being JavaBeans, RowSets use the Java event model to notify
listeners when the RowSet is changed.

Rowsets make it easy to send tabular data over a network. They can also be used as a wrapper,
providing scrollable ResultSets or updatable ResultSets when the underlying JDBC driver does not
support them.

There are two main types of RowSets — connected and disconnected. A connected RowSet, like a
ResultSet, maintains a connection to a data source for as long as the RowSet is in use. A
disconnected RowSet gets a connection to a data source to load data or to propagate changes back to
the data source, but most of the time it does not have a connection open.

While it is disconnected, a RowSet does not need a JDBC driver or the full JDBC API, so its footprint is
very small. Since it is not continually connected to its data source, a disconnected RowSet stores its
data in memory. It also maintains metadata about the columns it contains and information about its
internal state.

Creating and Using a RowSet

The simplest way to explain how a RowSet works is to use an example. Listing 18-1 illustrates the use
of a JdbcRowSet to retrieve some names and e-mail addresses from the Contacts Table created as
part of the LEDES database in Chapter 2.

Chapter 18:Using Rowsets to Display Data

-448-

The first thing you will notice is that the entire example centers on the methods of the RowSet. If you
are working with a ResultSet, you will have to create and work with the following objects:
§ java.sql.Connection
§ java.sql.Statement
§ java.sql.ResultSet

When using a RowSet such as the one in Listing 18-1, set the required properties of the RowSet itself.
Then use the RowSet.execute() method to execute the SQL command. The JdbcRowSet is
implemented as a wrapper around a ResultSet object that makes it possible to use the ResultSet as a
JavaBeans component. Because a JdbcRowSet is a connected RowSet, continually maintaining its
connection to the database using a JDBC driver, it effectively makes the driver a JavaBeans component.

Listing 18-1: Using a RowSet

package JavaDatabaseBible.ch18;

import java.sql.*;
import com.inet.tds.JDBCRowSet;

public class JDBCRowSetExample{

 public static void main(String[] argv){

 String url = "jdbc:inetdae7:localhost:1433?database=LEDES";
 String login = "jod";

 String password = "jod";

 try {
 Class.forName("com.inet.tds.TdsDriver").newInstance();

 JDBCRowSet rowSet = new JDBCRowSet();

 //set url,login and password;

 rowSet.setUrl(url);
 rowSet.setUsername(login);

 rowSet.setPassword(password);

 //get the driver version

 DatabaseMetaData dbmd = rowSet.getConnection().getMetaData();
 System.out.println("Driver Name:\t" + dbmd.getDriverName());

 System.out.println("Driver Version:\t" + dbmd.getDriverVersion());

 //set the sql command
 rowSet.setCommand("SELECT ID,FName,LName,EMail FROM CONTACTS");

 //execute the command

Chapter 18:Using Rowsets to Display Data

-449-

 rowSet.execute();

 // read the data and put it to the console
 while (rowSet.next()){

 for(int j=1; j<=rowSet.getMetaData().getColumnCount(); j++){
 System.out.print(rowSet.getObject(j)+"\t");

 }
 System.out.println();

 }
 rowSet.close();

 } catch(Exception e) {
 e.printStackTrace();

 }
 }

}

The results of the JDBCRowSetExample of Listing 18-1 returns are shown in Table 18-1.

Table 18-1: Results the JDBCRowSetExample Returns

ID FName LName EMail

2001 Oliver Dewey o.dewey@dsh.com

2002 Ichabod Cheatham i.cheatham@dsh.com

2003 Anne Howe a.howe@dsh.com

Making a RowSet Scrollable and Updatable

Among the enhancements of the JDBC Extension API was the ability to make ResultSets scrollable
and updatable. The same capabilities can be added to a RowSet by setting the appropriate properties.
Listing 18-2 shows how simply the RowSet created in Listing 18-1 can be made scrollable.

Listing 18-2: Making a RowSet scrollable

package JavaDatabaseBible.ch18;

import java.sql.*;
import com.inet.tds.JDBCRowSet;

public class JDBCRowSetExample{

 public static void main(String[] argv){

 String url = "jdbc:inetdae7:localhost:1433?database=LEDES";
 String login = "jod";

 String password = "jod";

 try {

Chapter 18:Using Rowsets to Display Data

-450-

 Class.forName("com.inet.tds.TdsDriver").newInstance();

 JDBCRowSet rowSet = new JDBCRowSet();

 //set url,login and password;
 rowSet.setUrl(url);

 rowSet.setUsername(login);
 rowSet.setPassword(password);

 //make the rowset scrollable

 rowSet.setType(ResultSet.TYPE_SCROLL_INSENSITIVE);

 //set the sql command
 rowSet.setCommand("SELECT ID,FName,LName,EMail FROM CONTACTS");

 //execute the command

 rowSet.execute();

 // read the data and put it to the console
 while (rowSet.next()){

 for(int j=1; j<=rowSet.getMetaData().getColumnCount(); j++){
 System.out.print(rowSet.getObject(j)+"\t");

 }
 System.out.println();

 }
 while (rowSet.previous()){

 for(int j=1; j<=rowSet.getMetaData().getColumnCount(); j++){
 System.out.print(rowSet.getObject(j)+"\t");

 }
 System.out.println();

 }
 rowSet.close();

 } catch(Exception e) {
 e.printStackTrace();

 }
 }

}

The output of the example in Listing 18-2 is the same as the output of Listing 18-1, except that the
results are printed again in reverse order using the RowSet.previous() method to step backwards
through the rows. You can use the other cursor-control and scrolling methods inherited from the
ResultSet in exactly the same way.

In much the same way, you can very easily make a RowSet updatable. An updatable RowSet allows
you to make updates to the values in the RowSet itself. These changes are reflected in the database

Chapter 18:Using Rowsets to Display Data

-451-

when the RowSet.updateRow() method is called. A RowSet is made updatable by setting its
concurrency property to ResultSet.CONCUR_UPDATABLE. Once you have an updatable RowSet, you
can insert a new row, delete an existing row, or modify one or more column values.

Since requesting an updatable RowSet does not guarantee that you will actually get one, you should
check whether the RowSet is updatable by using RowSet.getConcurrency(). Listing 18-3 illustrates
the use of the rowSet.setConcurrency(ResultSet.CONCUR_UPDATABLE) method to make a
RowSet updatable and the use of RowSet.getConcurrency() to ensure that the RowSet actually is
updatable.

Listing 18-3: Making a RowSet updatable

package JavaDatabaseBible.ch18;

import java.sql.*;
import com.inet.tds.JDBCRowSet;

public class JDBCUpdatableRowSet{

 public static void main(String[] argv){

 String url = "jdbc:inetdae7:localhost:1433?database=LEDES";

 String login = "jod";
 String password = "jod";

 try {

 Class.forName("com.inet.tds.TdsDriver").newInstance();

 JDBCRowSet rowSet = new JDBCRowSet();

 //set url,login and password;
 rowSet.setUrl(url);

 rowSet.setUsername(login);
 rowSet.setPassword(password);

 //make the rowset scrollable and updatable

 rowSet.setType(ResultSet.TYPE_SCROLL_INSENSITIVE);
 rowSet.setConcurrency(ResultSet.CONCUR_UPDATABLE);

 //set the sql command

 rowSet.setCommand(
 "SELECT ID,FName,LName,EMail "+

 "FROM CONTACTS WHERE FName = 'Ichabod'");

 //execute the command
 rowSet.execute();

TE
AM
FL
Y

Team-Fly®

Chapter 18:Using Rowsets to Display Data

-452 -

 // check whether the RowSet can be updated
 if(rowSet.getConcurrency()==ResultSet.CONCUR_UPDATABLE)

 System.out.println("Rowset is UPDATABLE");
 else

 System.out.println("Rowset is READ_ONLY");

 // update the record and output it to the console
 while (rowSet.next()){

 rowSet.updateString("FName", "Igor");
 rowSet.updateRow();

 for(int j=1; j<=rowSet.getMetaData().getColumnCount(); j++){
 System.out.print(rowSet.getObject(j)+"\t");

 }
 System.out.println();

 }
 rowSet.close();

 } catch(Exception e) {
 e.printStackTrace();

 }
 }

}

Updating a RowSet

As you can see from the code in Listing 18-3, the use of an updatable RowSet is considerably simpler
than using the SQL UPDATE command with a conventional Statement.executeUpdate().This is
particularly true when you consider that updates made to an updatable RowSet always affect the
current row, so there is no need to find the row to update. Of course, this does mean that you must
make sure you have moved the cursor to the correct row prior to making an update.

RowSet updates use the update methods inherited from the ResultSet. Most of the
ResultSet.update methods take two parameters: the column to update and the new value to put in
that column. The column may be specified using either the column name or the column number.

Table 18-2 summarizes the update methods for the ResultSet, showing only the variant using column
name as the specifier for reasons of space.
Table 18-2: ResultSet Update Methods

Data Type Method

BigDecimal updateBigDecimal(String columnName, BigDecimal x)

boolean updateBoolean(String columnName, boolean x)

byte updateByte(String columnName, byte x)

byte[] updateBytes(String columnName, byte[] x)

double updateDouble(String columnName, double x)

float updateFloat(String columnName, float x)

int updateInt(String columnName, int x)

Chapter 18:Using Rowsets to Display Data

-453 -

Table 18-2: ResultSet Update Methods

Data Type Method

java.io.InputStream updateAsciiStream(String columnName, InputStream x, int length)

java.io.InputStream updateUnicodeStream(String columnName, InputStream x, int length)

java.io.InputStream updateBinaryStream(String columnName, InputStream x, int length)

java.sql.Date updateDate(String columnName, Date x)

java.sql.Time updateTime(String columnName, Time x)

java.sql.Timestamp updateTimestamp(String columnName, Timestamp x)

long updateLong(String columnName, long x)

Object updateObject(String columnName, Object x)

Object updateObject(String columnName, Object x, int scale)

short updateShort(String columnName, short x)

String updateString(String columnName, String x)

NULL updateNull(String columnName)

Caution

After updating a column value, you must call the updateRow() method to make a
permanent change in the database before moving the cursor, since changes made
using the update methods do not take effect until updateRow() is called. If you
move the cursor to another row before calling updateRow(), the updates will be
lost, and the row will revert to its previous column values.

Inserting a New Row

In addition to supporting updates, an updatable RowSet supports the insertion and deletion of entire
rows. The updatable RowSet object inherits from ResultSet the insert row, which is, in effect, a
dedicated row buffer in which you can build a new row.

The new row is created in a manner very similar to the row updates discussed earlier. The following
steps are involved:

1. Move the cursor to the insert row by calling the method moveToInsertRow().
2. Set a new value for each column in the row using the appropriate update method.
3. Call the method insertRow to insert the new row into the ResultSet and, simultaneously, into

the database.

Listing 18-4 demonstrates the use of the updatable RowSet to insert a new row into a database.

Listing 18-4: Inserting a new row in an updatable RowSet

package JavaDatabaseBible.ch18;

import java.sql.*;

import com.inet.tds.JDBCRowSet;

public class JDBCUpdatableRowSetInsert{

 public static void main(String[] argv){

Chapter 18:Using Rowsets to Display Data

-454 -

 String url = "jdbc:inetdae7:localhost:1433?database=LEDES";
 String login = "jod";

 String password = "jod";

 try {
 Class.forName("com.inet.tds.TdsDriver").newInstance();

 JDBCRowSet rowSet = new JDBCRowSet();

 //set url,login and password;

 rowSet.setUrl(url);
 rowSet.setUsername(login);

 rowSet.setPassword(password);

 //make the rowset scrollable and updatable
 rowSet.setType(ResultSet.TYPE_SCROLL_INSENSITIVE);

 rowSet.setConcurrency(ResultSet.CONCUR_UPDATABLE);

 //set the sql command
 rowSet.setCommand("SELECT * FROM CONTACTS");

 //execute the command

 rowSet.execute();

 if(rowSet.getConcurrency()==ResultSet.CONCUR_UPDATABLE)
 System.out.println("Rowset is UPDATABLE");

 else
 System.out.println("Rowset is READ_ONLY");

 // move to the Insert Row

 rowSet.moveToInsertRow();

 // update the fields of the Insert Row
 rowSet.updateInt("company_id", 1050);

 rowSet.updateInt("address_info_id", 1004);
 rowSet.updateString("FName", "Nigel");

 rowSet.updateString("LName", "Thornebury");
 rowSet.updateString("phone", "555-456-0123");

 rowSet.updateString("fax", "555-456-0129");

 // insert the Insert Row into the table
 rowSet.insertRow();

Chapter 18:Using Rowsets to Display Data

-455-

 // output all rows to the console
 rowSet.beforeFirst();

 while (rowSet.next()){
 for(int j=1; j<=rowSet.getMetaData().getColumnCount(); j++){

 System.out.print(rowSet.getObject(j)+"\t");
 }

 System.out.println();
 }

 rowSet.close();

 } catch(Exception e) {
 e.printStackTrace();

 }
 }

}

If you insert a row without supplying a value for every column in the row, the default value for the
column will be used if there is one. Otherwise, if the column accepts SQL NULL values, a NULL will be
inserted. Failing either of those, a SQLException will be thrown.

Caution

A SQLException will be thrown if a required table column is missing in the
updatable RowSet, so the query used to get the updatable RowSet object should
generally select all columns.

Deleting a Row

Deleting a row in an updatable RowSet is very simple. All you have to do is move the cursor to the row
you want to delete and call the method deleteRow(). The example in the following code snippet
shows how to delete the third row in a ResultSet by moving the cursor to the third row and using the
deleteRow() method:

rowSet.absolute(3);
rowSet.deleteRow();

Seeing Changes Made to an Updatable RowSet

Changes made to an updatable RowSet are not necessarily visible, either to the RowSet itself or to
other open transactions. An application can determine if the changes a ResultSet makes are visible
to the ResultSet itself by calling the appropriate DatabaseMetaData methods.

One way to get the most recent data from a table is to use the method refreshRow() , which gets the
latest values for a row straight from the database. This is done by positioning the cursor to the desired
row and calling refreshRow(), as shown here:

rs.absolute(3);
rs.refreshRow();

Note

The RowSet should be TYPE_SCROLL_SENSITIVE; otherwise, refreshRow() does
nothing.

RowSet Events

Chapter 18:Using Rowsets to Display Data

-456 -

A RowSetEvent is generated when something significant happens in a RowSet, such as a change in a
column value. Being JavaBeans, RowSets can use the Java event model to notify listeners when the
RowSet is changed.

These are the RowSetListener methods:
§ rowSetChanged — Called when the rowset is changed, for example, when a SQL command is

executed
§ rowChanged — Called when a row is inserted, updated, or deleted
§ cursorMoved — Called when a rowset's cursor is moved

The example of Listing 18-5 illustrates the use of RowSet events to monitor changes to a RowSet. In
this example, a RowSetListener is used to report the insertion of a new row in the Contacts Table.
Note the use of the method RowSet.moveToCurrentRow() in the RowSetListener. This method is
used to return to the current row when the cursor is on the insertRow. This allows the
RowSetListener to report the contents of the row just added.

Listing 18-5: Using RowSet events

package JavaDatabaseBible.ch18;

import java.sql.*;

import javax.sql.*;
import com.inet.tds.JDBCRowSet;

public class JDBCUpdatableRowSetInsert{

 public static void main(String[] argv){

 String url = "jdbc:inetdae7:localhost:1433?database=LEDES";
 String login = "jod";

 String password = "jod";

 try {
 Class.forName("com.inet.tds.TdsDriver").newInstance();

 JDBCRowSet rowSet = new JDBCRowSet();

 //set url,login and password;

 rowSet.setUrl(url);
 rowSet.setUsername(login);

 rowSet.setPassword(password);

 //make the rowset scrollable and updatable
 rowSet.setType(ResultSet.TYPE_SCROLL_INSENSITIVE);

 rowSet.setConcurrency(ResultSet.CONCUR_UPDATABLE);

 // add a RowSetListener
 rowSet.addRowSetListener(new RowSetChangeListener());

Chapter 18:Using Rowsets to Display Data

-457-

 //set the sql command

 rowSet.setCommand("SELECT * FROM CONTACTS");

 //execute the command
 rowSet.execute();

 // read the data and put it to the console

 rowSet.moveToInsertRow();

 rowSet.updateInt("company_id", 1050);
 rowSet.updateInt("address_info_id", 1004);

 rowSet.updateString("FName", "Nigel");
 rowSet.updateString("LName", "Thornebury");

 rowSet.updateString("phone", "555-456-0123");
 rowSet.updateString("fax", "555-456-0129");

 rowSet.insertRow();

 //close the RowSet

 rowSet.close();

 } catch(Exception e) {
 }

 }
}

class RowSetChangeListener implements RowSetListener{
 public void rowSetChanged(RowSetEvent event){

 }
 public void rowChanged(RowSetEvent event){

 RowSet rowSet = (RowSet)event.getSource();
 try{

 rowSet.moveToCurrentRow();
 for(int j=1; j<=rowSet.getMetaData().getColumnCount(); j++){

 System.out.print(rowSet.getObject(j)+"\t");
 }

 System.out.println();
 }catch(Exception e){

 }
 }

 public void cursorMoved(RowSetEvent event){
 RowSet rowSet = (RowSet)event.getSource();

 try{

Chapter 18:Using Rowsets to Display Data

-458-

 System.out.println("cursor moved to row "+rowSet.getRow());
 }catch(Exception e){

 }
 }

}

One of the neatest features of RowSets is that, in addition to using them like ResultSets, as
discussed in this section, you can also use them as data containers disconnected from the database.
The use of disconnected RowSets is discussed in the next section.

Disconnected RowSets

As mentioned at the beginning of this chapter, there are two main types of RowSets: connected and
disconnected. Connected RowSets maintain a connection for as long as the RowSet is in use.
Disconnected RowSets get a connection to a data source as needed.

Sun released a number of RowSet implementations as an early access release. These implementations
include the following:
§ CachedRowSet
§ JdbcRowSet
§ WebRowSet

The CachedRowSet is a disconnected RowSet, intended for use as a means of caching a ResultSet
object's rows in memory, so it doesn't require the continuous use of a database connection. All
CachedRowSets are scrollable and updatable, and, just like any other JavaBean, they can be
serialized. This provides a means of serializing ResultSets and sending them to remote clients to be
updated and sent back to the server.

Being disconnected means that a CachedRowSet connects to its data source only while it is reading
data to load rows and while it is sending changes back to its underlying database. The rest of the time, it
is disconnected, even while changes are being made to it. In effect, a CachedRowSet object can be
thought of as simply a disconnected set of rows cached in a JavaBean.

Being thin and serializable, a CachedRowSet can easily be sent across a wire, and it is well suited to
sending data to a thin client, such as a PDA, because, while a CachedRowSet object is disconnected,
it can be much leaner than a ResultSet object with the same data. The CachedRowSet class
provides a means of working with the rows of a ResultSet without the overhead associated with using
the full JDBC API.

Updating a CachedRowSet object is similar to updating a JDBCRowSet, but because the rowset is not
connected to its data source while it is being updated, one extra step is required to make a change in
the underlying data source. After calling the method updateRow() or insertRow(), a
CachedRowSet object must also call the method acceptChanges()in order to make a connection
and write the updates to the data source.

The Sun implementation of the CachedRowSet also requires that you specifically set the name of the
table you are working with. If you fail to do this, any attempts to update the table will throw a SQL
exception.

Note

After making changes to a CachedRowSet using updateRow() or insertRow(), you
must also call acceptChanges()to make a connection and write the updates to the
data source. When you are changing or inserting several rows, you need only call
acceptChanges() once after all calls to updateRow() and insertRow() have been
made.

Using a CachedRowSet with a PDA

Chapter 18:Using Rowsets to Display Data

-459 -

Since CachedRowSets are JavaBeans, they can be serialized just like any other JavaBean This makes
them very useful when working with a remote client, such as a PDA.

You may recall that the database design examples in Chapter 2 revolve around a database for
managing and invoicing projects or, as lawyers prefer to call them, "matters" for a law firm. A part of this
example included the creation of a number of tables to handle contact information. It would obviously be
useful for the employees of the firm to have a copy of the contact names and addresses in their PDAs.
An elegant way to do this is through the use of a CachedRowSet, since a CachedRowSet only needs
to connect to its data source while it is reading or updating data.

The first thing to consider in creating the contact list is the SQL query required to build the RowSet. The
contact information required for the RowSet is distributed across the three following tables because of
the nature of the application:
§ The client is frequently a corporation, represented by several individuals.
§ A corporation may operate out of a number of different locations.
§ Each individual may have a different phone number, mail drop, or cell phone, but all may have the

same mailing address.

Since one of the principles of database design is to avoid storing the same item of information in two or
more places, this means that the information about a client has to be divided among a number of
different tables. The structure and relationships of these tables is shown in Figure 18-1.

Figure 18-1: Tables containg contact information

Server-side code

The best way to retrieve the required contact information is to define a SQL stored procedure called
GET_CONTACT_LIST and to call it to get the data. As you can see from Listing 18-6, the stored
procedure is relatively simple.

Listing 18-6: Stored procedure to retrieve contact data

CREATE PROCEDURE GET_CONTACT_LIST AS

SELECT c.fName, c.lName, f.name AS firm, a.address_1 as street, a.city,
a.state_province AS state, a.zip_postal_code AS zip, c.phone

FROM CONTACTS c, Address_info a, clients f
WHERE f.address_id = a.id AND c.company_id = f.id

Table 18-3 shows the ResultSet returned by the query. Obviously, you can include the contact's cell
phone number, e-mail address, and so on.

Chapter 18:Using Rowsets to Display Data

-460-

Table 18-3: Contact List RowSet

fName lName firm street city state zip phone

Oliver Dewey Dewey,Cheatham
and Howe

123
Penny
Lane

New
York

NY 10006 555-
123-
4567

Ichabod Cheatham Dewey,Cheatham
and Howe

123
Penny
Lane

New
York

NY 10006 555-
123-
4568

Anne Howe Dewey,Cheatham
and Howe

123
Penny
Lane

New
York

NY 10006 555-
123-
4569

Michael West Acme Insurance 211 Elm
St

New
York

NY 10007 555-
213-
2346

James Nateland Acme Insurance 211 Elm
St

New
York

NY 10007 555-
213-
2347

Bob Guppy Nigel Watson and
Sons

17 Main
St

New
York

NY 10007 555-
213-
1114

Nigel Watson Nigel Watson and
Sons

17 Main
St

New
York

NY 10007 555-
213-
1115

Seamus Maloney Maloney's Pizza
Pub, Inc

211 Pine
St

New
York

NY 10007 555-
233-
3335

To retrieve the data as a CachedRowSet, create a CachedRowSet object and use it to execute the
stored procedure. The example shown in Listing 18-7 uses the CachedRowSet implementation from
the Sun rowset jar file, loading it using the jdbc:odbc bridge. As you can see, the code is very similar
to the JDBCRowSet examples, with the exception that rather than displaying the CachedRowSet, the
serializeRows() method serializes the entire CachedRowSet bean to a file.

Listing 18-7: Executing a SQL query in a CachedRowSet

package JavaDatabaseBible.ch18;

import java.io.*;
import java.sql.*;

import javax.sql.*;
import sun.jdbc.rowset.*;

public class CachedRowSetSerializer{

 String fName = "ContactRowSet.ser";
 public static void main(String[] argv){

 CachedRowSetSerializer crs = new CachedRowSetSerializer();
 crs.serializeRows();

Chapter 18:Using Rowsets to Display Data

-461 -

 }
 public CachedRowSetSerializer(){

 }
 public void serializeRows(){

 String url = "jdbc:odbc:LEDES";
 String login = "jod";

 String password = "jod";
 try {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 CachedRowSet rowSet = new CachedRowSet();

 //set url,login and password;

 rowSet.setUrl(url);
 rowSet.setUsername(login);

 rowSet.setPassword(password);

 //make the rowset scrollable and updatable
 rowSet.setType(ResultSet.TYPE_SCROLL_INSENSITIVE);

 rowSet.setConcurrency(ResultSet.CONCUR_UPDATABLE);

 //set the sql command
 rowSet.setCommand("GET_CONTACT_LIST");

 //execute the command

 rowSet.execute();

 FileOutputStream fOut = new FileOutputStream(fName);
 ObjectOutput out = new ObjectOutputStream(fOut);

 out.writeObject(rowSet);
 out.flush();

 out.close();

 //close the RowSet
 rowSet.close();

 }catch(Exception e) {
 System.err.println(e.getMessage());

 }
 }

}

Client-side code

The code at the client side is even simpler. The serialized CachedRowSet bean is deserialized, and the
RowSets are output to the console, as shown in Listing 18-8. A practical application would probably use
the CachedRowSet bean as a component driving a simple GUI.

TE
AM
FL
Y

Team-Fly®

Chapter 18:Using Rowsets to Display Data

-462-

Listing 18-8: Using a CachedRowSet

package JavaDatabaseBible.ch18;

import java.io.*;
import sun.jdbc.rowset.*;

public class CachedRowSetDeserializer{

 public static void main(String[] argv){
 CachedRowSetDeserializer crd = new CachedRowSetDeserializer();

 crd.deserializeRows(argv[0]);
 }

 public CachedRowSetDeserializer(){

 }

 public void deserializeRows(String fName){
 try {

 FileInputStream fIn = new FileInputStream(fName);
 ObjectInputStream in = new ObjectInputStream(fIn);

 CachedRowSet rowSet = (CachedRowSet)in.readObject();

 while(rowSet.next()){
 for(int j=1; j<=rowSet.getMetaData().getColumnCount(); j++){

 System.out.print(rowSet.getObject(j)+"\t");
 }

 System.out.println();
 }

 rowSet.close();

 }catch(Exception e) {
 System.err.println(e.getMessage());

 }
 }

}

Despite its name, the distinguishing feature of the WebRowSet is that it is designed to serialize and
deserialize itself in XML. The details of how it works are discussed in the next section.

Generating XML from a RowSet

The designers of the RowSet object realized that RowSets had the potential to be very useful in XML
applications. One of the sample implementations in Sun's rowset jar is the WebRowSet. The
WebRowSet is an extension of the CachedRowSet designed to serialize and deserialize a RowSet in
XML format. The class stores an XmlReader object that it uses to read a RowSet in XML format and
an XmlWriter object that it uses to write a RowSet in XML format.

Chapter 18:Using Rowsets to Display Data

-463-

Chapter 2 discusses the design of a database intended to implement an XML-based billing standard
known as LEDES 2000 — the Legal Electronic Data Exchange Standard. Since the database structure
is quite complex, it is not discussed here. Suffice it to say that the query required to retrieve information
about billable items to be inserted in an invoice is defined in the stored procedure called
Itemise_Fees, shown in Listing 18-9.

Listing 18-9: Stored procedure to retrieve billable item data

CREATE PROCEDURE ITEMISE_FEES @Matter_Id INT AS
SELECT bi.date AS charge_date, bi.tk_id,

 bi.description AS charge_desc, bi.task_code AS acca_task,
 bi.activity_code AS acca_activity, rc.value AS charge_type,

 bi.units, fc.rate, bi.units * fc.rate AS base_amount,
 dc.value AS discount_type, br.discount AS discount_percent,

 (bi.units * fc.rate) * (1 - br.discount / 100)
 AS total_amount

FROM Billings b, Billable_Items bi, Billing_Rates br,
 Discount_Codes dc, Timekeeper tk, Fee_Codes fc,

 Rate_Codes rc
WHERE b.matter_id = bi.matter_id AND

 dc.code = br.discount_type AND bi.rate_code = br.id AND
 fc.code = tk.rate_code AND tk.id = bi.tk_id AND

 rc.code = bi.rate_code AND bi.invoice_number IS NULL AND
 b.status = 1 AND bi.matter_id = @Matter_Id;

Listing 18-10 illustrates the use of the stored procedure to retrieve billable items for Matter_Id 10001. As
you can see, the XML is written to a file called fees.xml.

Listing 18-10: Writing XML with a WebRowSet

package JavaDatabaseBible.ch18;

import java.io.*;
import java.sql.*;

import javax.sql.*;
import sun.jdbc.rowset.*;

public class WebRowSetExample{

 public static void main(String[] argv){

 String url = "jdbc:odbc:LEDES";
 String login = "jod";

 String password = "jod";

 try {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Chapter 18:Using Rowsets to Display Data

-464-

 WebRowSet rowSet = new WebRowSet();

 //set url,login and password;

 rowSet.setUrl(url);
 rowSet.setUsername(login);

 rowSet.setPassword(password);

 //set the sql command
 rowSet.setCommand("Itemise_Fees 10001;");

 //execute the command

 rowSet.execute();

 // write the RowSet as XML
 FileWriter xmlFileWriter = new FileWriter("fees.xml");

 rowSet.writeXml(xmlFileWriter);

 //close the RowSet
 rowSet.close();

 } catch(Exception e) {

 System.err.println(e.getMessage());
 }

 }
}

Listing 18-11 shows the format of the XML generated by the WebRowSet. Since the WebRowSet is
actually serialized in XML format, it contains not only the row data but all the associated metadata
required to reconstruct the RowSet in its entirety.

Listing 18-11: XML generated by WebRowSet

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE RowSet PUBLIC '-//Sun Microsystems, Inc.//DTD RowSet//EN'
'http://java.sun.com/j2ee/dtds/RowSet.dtd'>

<RowSet>

 <properties>
 <command>Itemise_Fees 10001;</command>

 <concurrency>1008</concurrency>
 <datasource><null/></datasource>

 <escape-processing>true</escape-processing>
 <fetch-direction>0</fetch-direction>

 <fetch-size>0</fetch-size>

Chapter 18:Using Rowsets to Display Data

-465-

 <isolation-level>2</isolation-level>
 <key-columns>

 </key-columns>
 <map></map>

 <max-field-size>0</max-field-size>
 <max-rows>0</max-rows>

 <query-timeout>0</query-timeout>
 <read-only>true</read-only>

 <rowset-type>1004</rowset-type>
 <show-deleted>false</show-deleted>

 <table-name><null/></table-name>
 <url>jdbc:odbc:LEDES</url>

 </properties>
 <metadata>

 <column-count>12</column-count>
 <column-definition>

 <column-index>1</column-index>
 <auto-increment>false</auto-increment>

 <case-sensitive>false</case-sensitive>
 <currency>false</currency>

 <nullable>0</nullable>
 <signed>false</signed>

 <searchable>true</searchable>
 <column-display-size>23</column-display-size>

 <column-label>charge_date</column-label>
 <column-name>charge_date</column-name>

 <schema-name></schema-name>
 <column-precision>23</column-precision>

 <column-scale>3</column-scale>
 <table-name></table-name>

 <catalog-name></catalog-name>
 <column-type>93</column-type>

 <column-type-name>datetime</column-type-name>
 </column-definition>

 <-- the next 11 column-definition elements have been removed -->
 </metadata>

 <data>
 <row>

 <col>1018929600000</col>
 <col>1001</col>

 <col>Replace File</col>
 <col>L140</col>

 <col>A110</col>

Chapter 18:Using Rowsets to Display Data

-466-

 <col>F</col>
 <col>0.1</col>

 <col>400.0</col>
 <col>40.0</col>

 <col>percent</col>
 <col>12.5</col>

 <col>35.0</col>
 </row>

 </data>
</RowSet>

The XML file generated by the WebRowSet object is divided into the three following main sections:
§ <property> — This section contains all the property data associated with the WebRowSet bean.
§ <metadata> — This section contains a metadata element describing each of the columns.
§ <data> — This section contains the actual data.

Note that only one column-definition element is shown in Listing 18-11, since all 12 are very similar.

As it stands, this XML output does not meet the requirements of the LEDES 2000 specification. There
are three obvious ways to deal with this:
§ Apply an XSL transform to generate the desired XML from the WebRowSet XML.
§ Write a custom XmlWriter to generate the desired XML directly.
§ Generate an XML document directly from a CachedRowSet.

The approach used for this example is to generate the XML directly from a CachedRowSet. The reason
for this is that the WebRowSet XML, designed to serialize the entire bean, contains far more data than is
needed for the application. Moreover, the data is organized in such a way as to make reconstitution of
the RowSet easy rather than to make it suitable for this application.

Using an XSL transform is a very heavyweight solution. Similarly, writing a custom XmlWriter is much
more complex than just writing the required XML for the application; unless you design it to write out all
the data required to serialize the bean and support it with a corresponding XmlReader, it negates the
advantages of XML serialization without giving you any obvious benefits.

Since the XML is intended for transmission to the client as a file, it is generated by writing strings to an
OutputStream, as shown in Listing 18-12. If you intend to do any additional processing, you can use
a Xerces Document object and build it as a DOM.

Listing 18-12: Generating XML using a CachedRowSet

package JavaDatabaseBible.ch18;

import java.io.*;

import sun.jdbc.rowset.*;

public class CachedRowSetToXML{

 public static void main(String[] argv){
 String url = "jdbc:odbc:LEDES";

 String login = "jod";
 String password = "jod";

Chapter 18:Using Rowsets to Display Data

-467 -

 String fName = "fees.xml";
 try {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 CachedRowSet rowSet = new CachedRowSet();

 PrintWriter out = new PrintWriter(new FileOutputStream(fName));

 //set url,login and password;
 rowSet.setUrl(url);

 rowSet.setUsername(login);
 rowSet.setPassword(password);

 //set the sql command

 rowSet.setCommand("Itemise_Fees 10001;");

 //execute the command
 rowSet.execute();

 out.println("<?xml version=\"1.0\" encoding=\"UTF-8\"?>");
 out.println(" <matter>");

 // read the data and put it to the console

 while(rowSet.next()){
 out.println(" <fee>");

 for(int j=1; j<=rowSet.getMetaData().getColumnCount(); j++){
 out.print(" <"+

 rowSet.getMetaData().getColumnLabel(j)+">");
 out.print(rowSet.getObject(j));

 out.println("</"+rowSet.getMetaData().getColumnLabel(j)+">");
 }

 out.println(" </fee>");
 }

 out.println(" </matter>");

 //close the RowSet
 rowSet.close();

 out.close();
 } catch(Exception e) {

 e.printStackTrace();
 }

 }
}

Chapter 18:Using Rowsets to Display Data

-468-

The XML generated by this example is much closer to the LEDES 2000 specification, as you can see
from Listing 18-13. It still needs a little cleanup, particularly in terms of tidying up the date String. The
rest of the LEDES 2000 invoice document can be generated in much the same way.

Listing 18-13: XML invoice elements

<?xml version="1.0" encoding="UTF-8"?>
 <matter>

 <fee>
 <charge_date>2002-04-16 00:00:00.0</charge_date>

 <tk_id>1001</tk_id>
 <charge_desc>Replace File</charge_desc>

 <acca_task>L140</acca_task>
 <acca_activity>A110</acca_activity>

 <charge_type>F</charge_type>
 <units>0.1</units>

 <rate>400.0</rate>
 <base_amount>40.0</base_amount>

 <discount_type>percent</discount_type>
 <discount_percent>12.5</discount_percent>

 <total_amount>35.0</total_amount>
 </fee>

 <fee>
 <charge_date>2002-04-12 00:00:00.0</charge_date>

 <tk_id>1000</tk_id>
 <charge_desc>Review File</charge_desc>

 <acca_task>L110</acca_task>
 <acca_activity>A101</acca_activity>

 <charge_type>U</charge_type>
 <units>1.5</units>

 <rate>600.0</rate>
 <base_amount>900.0</base_amount>

 <discount_type>percent</discount_type>
 <discount_percent>15.0</discount_percent>

 <total_amount>765.0</total_amount>
 </fee>

 <fee>
 <charge_date>2002-04-15 00:00:00.0</charge_date>

 <tk_id>1000</tk_id>
 <charge_desc>Analyse Case</charge_desc>

 <acca_task>L120</acca_task>
 <acca_activity>A104</acca_activity>

 <charge_type>U</charge_type>
 <units>1.0</units>

Chapter 18:Using Rowsets to Display Data

-469-

 <rate>600.0</rate>
 <base_amount>600.0</base_amount>

 <discount_type>percent</discount_type>
 <discount_percent>15.0</discount_percent>

 <total_amount>510.0</total_amount>
 </fee>

 <fee>
 <charge_date>2002-04-15 00:00:00.0</charge_date>

 <tk_id>1000</tk_id>
 <charge_desc>Consult Expert</charge_desc>

 <acca_task>L130</acca_task>
 <acca_activity>A108</acca_activity>

 <charge_type>U</charge_type>
 <units>2.0</units>

 <rate>600.0</rate>
 <base_amount>1200.0</base_amount>

 <discount_type>percent</discount_type>
 <discount_percent>15.0</discount_percent>

 <total_amount>1020.0</total_amount>
 </fee>

 </matter>

Summary

This chapter compared RowSets with ResultSets and discussed some of the advantages of
disconnected RowSets. Among the topics discussed are the following:
§ Using RowSets to add functionality to ResultSets
§ Using disconnected RowSets to transfer data between devices
§ Generating XML from a RowSet

Chapter 19 shows you how to create a simple JDBC driver for XML documents. This driver allows you
to create and query XML documents using SQL.

Chapt er 19:Accessing XML Documents Using SQL

-470-

Chapter 19: Accessing XML Documents Using SQL

In This Chapter

XML (or eXtensible Markup Language) has become increasingly popular for a variety of applications
ranging from platform-independent data transfer, exemplified by the legal invoicing example illustrated
in Chapters 11 and 18, to use in configuration files such as the web.xml file used by the Tomcat server.
XML documents are in many ways similar to the HTML documents familiar from Web applications.

The primary difference between XML and HTML is that XML documents are based on user-defined tags,
whereas HTML tags are predefined for use by the browser. An important secondary difference is that
XML documents must be well formed in order to be machine readable.

To be well formed, a document must follow a few simple rules. The most important of these are that all
tags must be properly closed, and that when tags are nested they must be nested correctly. A properly
closed tag is a tag that either has a closing tag after its contents, or is self-closing. The following code
snippet shows examples of two properly closed tags:

<text>Some text</text>

<element attrib="value"/>

Proper nesting requires that nested tags be closed in the opposite order to the order in which they were
opened. In the example below, the nested element is nested inside the tag element, and is closed
before the tag element is closed:

<tag>

 <nested>
 </nested>

</tag>

These rules are similar to the rules a programmer is used to following when using braces or
parentheses. However, it is important to realize that unlike HTML, which lets you get away with breaking
these rules, the XML parser requires that the rules be obeyed.

By enforcing the basic rules of well-formed documents, XML defines a structure which can be parsed
very easily with no knowledge of the content of a document. HTML parsers, on the other hand, can
handle ill formed documents because a knowledge of the meanings of the HTML tags is built into the
parser.

Because XML documents are well formed, they can have an inherently tabular structure, which makes
them ideal for representing data tables. This chapter explores the design of a simple JDBC driver that
exploits this structure to use XML documents as the data storage element of a simple database.

Reasons for Accessing XML Documents with SQL

Although the primary use of XML is to provide a platform-independent way to structure data for transfer
between applications, an important secondary use of XML is for local data storage. Common examples
include the following:
§ XML as a replacement for properties files or INI files
§ XML as a replacement for comma-delimited CSV files in text databases
§ XML as a small, downloadable database for the delivery of stock quotes or news headlines

In some instances, an XML document, being a data repository, can be a database in itself. For example,
the contact lists on my Linux-based PDA are saved as XML documents.

Since the data in an XML file is stored in two different node types, there are two obvious ways to set up
a database using an XML file:
§ Store each record as an element, with the field data in attributes.

Chapt er 19:Accessing XML Documents Using SQL

-471 -

§ Store each record as an element, with field data in child elements.

The advantage of using attributes is that the XML file is shorter, since the attribute name occurs only
once. If you store the data in an element, the name occurs twice: once in opening the element and once
in closing it. The attribute-based approach is shown here:

<CUSTOMER FIRST_NAME=" Michael" MI="A" LAST_NAME="Corleone" STREET="123
Pine"/>

The alternative approach, which uses child elements for each data item, is more verbose but more
structured, as shown in Listing 19-1.

Listing 19-1: Customer data record in XML

<?xml version="1.0"?>

<CUSTOMERS>
 <CUSTOMER CUSTOMER_NUMBER="100">

 <FIRST_NAME>Michael</FIRST_NAME>
 <MI>A</MI>

 <LAST_NAME>Corleone</LAST_NAME>
 <STREET>123 Pine</STREET>

 <CITY>New York</CITY>
 <STATE>NY</STATE>

 <ZIP>10006</ZIP>
 <PHONE>201-555-1212</PHONE>

 </CUSTOMER>
</CUSTOMERS>

Clearly, as exemplified by the CUSTOMER_NUMBER field in Listing 19-1, you can also use a combination
of these two approaches. There is no "best" way. My Linux PDA uses the attribute-oriented approach,
presumably to save space. Most XML documents used as INI files use the element-based approach,
presumably for readability.

The JDBC driver described in this chapter supports the insertion of data as an attribute by defining a
custom data type: ATTRIBUTE. Other data types are always inserted as child elements. In practice,
there can really only be one other type: VARCHAR, since all data in an XML document is represented as
a String. The details of the JDBC driver are discussed in the next section.

Building a JDBC-accessible XML DBMS

There are two main components required to build an XML database system incorporating a JDBC
programming interface: JDBC driver classes and the SQL engine.

In designing the JDBC API, Sun foresaw the need for implementations of a subset intended for
lightweight databases that would not provide full support for the API and SQL 92 Entry Level. The
method jdbcCompliant() is defined in the java.sql.Driver interface, specifically to indicate
compliance or noncompliance with the standard.

Although building a highly efficient, fully compliant JDBC driver is a significant undertaking,
implementing a useful subset is a much simpler task.

The Implementation Base Classes

TE
AM
FL
Y

Team-Fly®

Chapt er 19:Accessing XML Documents Using SQL

-472-

JDBC was designed to be a rich API. In other words, there are dedicated methods to handle anything
you might want to do. These methods are specified in a set of interface classes. To create a JDBC
driver that can be registered with the DriverManager, all of these interface methods must be
implemented. This is done using implementation base classes.

The implementation base classes implement all the methods defined in the interfaces in a minimal form.
These methods simply throw an exception when called. The JDBC driver classes are simply extensions
of the implementation base classes, which override the methods required to get the job done. The first
few lines of one of these implementation classes is shown in Listing 19-2 to give you the idea.

Listing 19-2: Typical implementation base class

package JavaDatabaseBible.ch19.JDBCImpl;

import java.sql.*;

public class JDBCStatementImpl implements java.sql.Statement {

 public JDBCStatementImpl() {

 }

 public void setFetchSize(int fetchSize) throws SQLException {
 throw new SQLException("not supported");

 }

 public int getFetchSize() throws SQLException {
 throw new SQLException("not supported");

 }

If you don't feel like typing literally hundreds of methods that only throw exceptions, you can download
the implementation classes from the Web site. Alternatively, if your application doesn't need to register
the driver with the java.sql.DriverManager, you can simply remove the extends clause from the
class definitions.

Our SQL engine is also limited, but it, too, is expandable. The SQL engine handles the basic, generic
parsing of the SQL commands themselves. This code is applicable to any SQL application. Our
application implements only a subset of possible commands, allowing us to process common queries as
well as document creation and updating.

Our XML document handlers extend the basic SQL engine classes to provide XML-specific data access
and update capabilities. Obviously, if you want to create your own storage-medium handlers, perhaps
for use with arrays rather than as XML documents, you can simply plug them in place of ours.

Implementing the JDBC Classes

The inner workings of JDBC have been discussed at some length in earlier chapters — in particular, in
Chapter 4. The following brief overview discusses how the classes work together.

The XMLDriver class

The function of the DriverManager is to provide basic services for managing JDBC drivers. Drivers
can be loaded either during initialization or on request, using Class.forName(). All drivers contain a
static initializer, as specified in Sun's JDBC API guide, that creates an instance of the driver and

Chapt er 19:Accessing XML Documents Using SQL

-473-

registers the newly created instance with the DriverManager. Listing 19-3 shows how simple the
XMLDriver is.

Listing 19-3: XMLDriver class

package JavaDatabaseBible.ch19.JDBCforXML;

import java.sql.*;
import java.util.Properties;

import JavaDatabaseBible.ch19.JDBCImpl.JDBCDriverImpl;

public class XMLDriver extends JDBCDriverImpl{
 protected XMLConnection con;

 static {

 try {
 java.sql.DriverManager.registerDriver(new XMLDriver());

 }catch(SQLException e) {
 System.err.println(e);

 }
 }

 public XMLDriver() {

 }

 public boolean acceptsURL(String url) throws SQLException {
 return url.endsWith(".xml");

 }

 public Connection connect(String url, Properties info)
 throws SQLException {

 con = new XMLConnection(url);
 return con;

 }
}

In addition to loading JDBC drivers, the DriverManager attempts to locate a suitable driver for the
specified URL and returns a connection to the appropriate driver. It does this by polling the registered
drivers' acceptsURL(String url) methods.

The DriverManager is also responsible for getting a java.sql.Connection to the database. It
does this by calling the driver's connect() method, passing the URL for the database. The driver then
creates a Connection object and returns it to the DriverManager.

The XMLConnection class

Chapt er 19:Accessing XML Documents Using SQL

-474-

A java.sql.Connection represents a session with a specific database or, in this case, with a
specific XML document. The XML document is defined by the URL passed to the Connection object.
The Connection object now attempts to connect to the URL. Depending on the URL protocol, this may
be done in one of the following ways:
§ If the URL protocol indicates that the document is a file, the Connection attempts to open the file.
§ If the URL protocol indicates an HTTP connection, the Connection attempts to connect to the

URL and to open the XML document that way.

Once a connection to an existing file or to an HTTP data source has been established, the XML
document is parsed to a DOM document. In the case of a file URL where the file does not exist, a new
DOM document is created. Listing 19-4 illustrates the XMLConnection class.

Listing 19-4: XMLConnection class

package JavaDatabaseBible.ch19.JDBCforXML;

import java.io.*;
import java.net.*;

import java.sql.*;
import org.w3c.dom.Document;

import org.w3c.dom.Element;
import org.xml.sax.InputSource;

import org.apache.xerces.parsers.DOMParser;
import org.apache.xerces.dom.DocumentImpl;

import JavaDatabaseBible.ch19.JDBCImpl.JDBCConnectionImpl;

/**
* Set up interface to xml document & create XMLStatement on request

*/

public class XMLConnection extends JDBCConnectionImpl{
 private URL url;

 private Document xmlDoc;

 public XMLConnection() throws SQLException{
 }

 public XMLConnection(InputSource xml) throws SQLException{

 try{
 DOMParser p = new DOMParser();

 p.parse(xml);
 xmlDoc = p.getDocument();

 }
 catch (Exception e){

 System.err.println(e);
 }

Chapt er 19:Accessing XML Documents Using SQL

-475-

 }

 public XMLConnection(URL url) throws SQLException{
 this.url = url;

 xmlDoc = setXmlDoc(url);
 }

 public XMLConnection(String UrlString) throws SQLException{

 try{
 xmlDoc = setXmlDoc(new URL(UrlString));

 }
 catch (Exception e){

 System.err.println(e);
 }

 }

 private Document setXmlDoc(URL url){
 Document xmlDoc = null;

 // if the URL points to a file, and the file does not exist,

 // create a new DOM document and return
 if(url.getProtocol().equalsIgnoreCase("file")){

 File f = new File(url.getFile());

 if(!f.exists()){
 String rootTag = f.getName();

 rootTag =
 rootTag.substring(rootTag.lastIndexOf("/")+1,

 rootTag.indexOf("."));
 return createXmlDoc(rootTag);

 }
 }

 // otherwise parse the file to the DOM document
 try{

 InputStream s = url.openStream();
 if(s!=null){

 DOMParser p = new DOMParser();
 p.parse(new InputSource(s));

 xmlDoc = p.getDocument();
 }

 }catch (Exception e){
 System.err.println(".."+e);

 }

Chapt er 19:Accessing XML Documents Using SQL

-476-

 return xmlDoc;
 }

 // create an XML Document with the specified root tag

 private Document createXmlDoc(String rootTag){
 xmlDoc = new DocumentImpl();

 Element root = (Element)xmlDoc.createElement(rootTag);
 xmlDoc.appendChild (root);

 return xmlDoc;
 }

 // methods to return an XMLStatement

 public Statement createStatement(){
 return new XMLStatement(xmlDoc);

 }

 public XMLStatement createStatement(URL url){
 return new XMLStatement(xmlDoc);

 }
}

In addition to connecting to a data source, the Connection object is also responsible for returning a
Statement object when its createStatement() method is called. The createStatement()
method creates a new Statement object, passing it the DOM document contained in the Connection.

The XMLStatement class

The java.sql.Statement object acts as a top-level command interpreter for execute() and
executeQuery() methods. In this implementation, the simpler CREATE and INSERT commands are
handled locally, and queries are handled by an XMLQuery object.

The primary methods of the Statement object are:
§ public ResultSet executeQuery(String sqlQuery) - executeQuery() creates a

new XMLQuery object, using it to process the SQL query. The XMLQuery object is illustrated in
Listing 19-10.

§ public int executeUpdate(String sqlString) – executeUpdate() creates a new
XMLCommand object, passing it to either the createTable() method or the insert() method.

§ private boolean createTable(XMLCommand sql) – createTable() uses
the splitColumns() method of XMLCommand to return the column list as a Vector of
columns, which it then uses to create the table. The table is defined in the Vectors
columnNameVector and columnTypeVector.

§ private boolean insert(XMLCommand sql) - insert() uses columnNameVector
and columnTypeVector to create an XML element for each data field, nesting them inside a row
element representing the inserted row.

Note the reference to a custom data type: ATTRIBUTE, which specifies that the data be added as an
attribute. The XMLStatement object handles SQL INSERT commands in one of two ways. If the data
type is ATTRIBUTE, the data String is inserted into the XML element as an attribute. Otherwise, it is
appended as an element. Listing 19-5 shows the code for the XMLStatement object.

Listing 19-5: XMLStatement class

Chapt er 19:Accessing XML Documents Using SQL

-477 -

package JavaDatabaseBible.ch19.JDBCforXML;

import java.util.Vector;

import java.sql.*;
import org.w3c.dom.Document;

import org.w3c.dom.Element;
import org.w3c.dom.Node;

import org.w3c.dom.NodeList;
import org.w3c.dom.NamedNodeMap;

import org.xml.sax.InputSource;
import JavaDatabaseBible.ch19.JDBCImpl.JDBCStatementImpl;

public class XMLStatement extends JDBCStatementImpl{

 private InputSource xml;
 private Document xmlDoc;

 private Vector columnNameVector = new Vector();
 private Vector columnTypeVector = new Vector();

 public XMLStatement(){

 }

 public XMLStatement(InputSource xml){
 this.xml = xml;

 }

 public XMLStatement(Document xmlDoc){
 this.xmlDoc = xmlDoc;

 }

 public ResultSet executeQuery(String sqlQuery) throws SQLException{
 XMLQuery query = new XMLQuery(sqlQuery);

 return query.processDoc(xmlDoc);
 }

 public int executeUpdate(String sqlString){

 XMLCommand sql = new XMLCommand(sqlString);
 if(sql.cmd.equals("CREATE")){

 createTable(sql);
 }

 if(sql.cmd.equals("INSERT")){
 insert(sql);

 }

Chapt er 19:Accessing XML Documents Using SQL

-478-

 return 0;
 }

 private boolean createTable(XMLCommand sql){

 Vector columnVector = sql.splitColumns(sql.columns);
 for(int i=0;i<columnVector.size();i++){

 String columnDef = ((String)columnVector.elementAt(i)).trim();
 int space = columnDef.indexOf(" ");

 if(space>=0){
 String colName = columnDef.substring(0,space);

 String colType = columnDef.substring(space+1);
 columnNameVector.addElement(colName);

 columnTypeVector.addElement(colType);
 }

 }
 return true;

 }

 private void initColumnData(XMLCommand sql){
 NodeList records = xmlDoc.getElementsByTagName(sql.tableName);

 Element record = (Element)records.item(0);
 NamedNodeMap attribs = record.getAttributes();

 for(int i=0;i<attribs.getLength();i++){
 Node n = attribs.item(i);

 if(n.getNodeType()==Node.ATTRIBUTE_NODE){
 columnNameVector.addElement(n.getNodeName());

 columnTypeVector.addElement("ATTRIBUTE");
 }

 }
 NodeList fields = record.getChildNodes();

 for(int i=0;i<fields.getLength();i++){
 Node n = fields.item(i);

 if(n.getNodeType()==Node.ELEMENT_NODE){
 Element field = (Element)n;

 columnNameVector.addElement(field.getTagName());
 columnTypeVector.addElement("VARCHAR");

 }
 }

 }

 private boolean insert(XMLCommand sql){
 if(columnNameVector.isEmpty())initColumnData(sql);

 Vector data = sql.splitValues(sql.values);

Chapt er 19:Accessing XML Documents Using SQL

-479-

 try{
 Element root = xmlDoc.getDocumentElement();

 Element row = (Element)xmlDoc.createElement(sql.tableName);
 root.appendChild(row);

 for(int i=0;i<data.size();i++){
 String cName = (String)columnNameVector.elementAt(i);

 String cType = (String)columnTypeVector.elementAt(i);
 String cData = (String)data.elementAt(i);

 if(cData.startsWith("'")&&cData.endsWith("'")){
 if(cData.length()>1){

 cData=cData.substring(1,cData.length()-1);
 }

 }
 if(cType.equals("ATTRIBUTE")){

 row.setAttribute(cName,cData);
 }else{

 Element column = xmlDoc.createElement(cName);
 row.appendChild(column);

 column.appendChild(xmlDoc.createTextNode(cData));
 }

 }
 }catch(Exception e){

 System.err.println("Insert error: "+e);
 }

 return true;
 }

 public Document getXmlDocument(){

 return xmlDoc;
 }

}

The XMLQuery object returns an XMLResultSet, which implements java.sql.ResultSet. The
ResultSet is a container for the data the query returns. Since this application deals with XML, the
ResultSet is maintained as a DOM document containing the specific elements and child elements
requested.

The XMLResultSet

The most important methods of XMLResultSet are next() and getString(). The next() method
uses the NodeList rows to iterate through the nodes making up the ResultSet. When next() is first
called, it initializes the NodeList from the ResultSet document. It then maintains a cursor pointing to
the current row in the int rowIndex.

The getString() method shown in Listing 19-6 is implemented using only the column-name variant.
There are two reasons for this:

Chapt er 19:Accessing XML Documents Using SQL

-480-

§ Since XMLResultSet is intended to support data stored either as attributes or as elements;
position is meaningless.

§ XML processors frequently reorder child nodes; once again, position is rendered meaningless.

Notice how getString() first looks for an attribute node and then looks for a matching element. It is
usually quicker to retrieve an attribute.

Listing 19-6: The XMLResultSet class

package JavaDatabaseBible.ch19.JDBCforXML;

import java.io.*;

import java.sql.*;
import org.w3c.dom.Document;

import org.w3c.dom.Element;
import org.w3c.dom.Node;

import org.w3c.dom.NodeList;
import org.apache.xerces.dom.DocumentImpl;

import org.apache.xml.serialize.OutputFormat;
import org.apache.xml.serialize.XMLSerializer;

import JavaDatabaseBible.ch19.JDBCImpl.JDBCResultSetImpl;

/**
* XMLResultSet is based on a document which is built by

* XMLStatement.executeQuery().
* This class provides the tools to traverse the document

* and return nodes by row & column.
*/

public class XMLResultSet extends JDBCResultSetImpl {
 private int rowIndex = -1;

 private int rowCount = 0;
 public Document xmlDoc;

 private Element root = null;
 private Element currentRow = null;

 private NodeList rows = null;

 public XMLResultSet() throws SQLException {
 xmlDoc = new DocumentImpl();

 root = (Element)xmlDoc.createElement("RESULTSET");
 xmlDoc.appendChild (root);

 }

 private void initialise(){
 if(rows==null){

 root = xmlDoc.getDocumentElement();

Chapt er 19:Accessing XML Documents Using SQL

-481 -

 rows = root.getChildNodes();
 rowCount = rows.getLength();

 }
 }

 public boolean next(){

 if(rows==null){
 initialise();

 }
 if(++rowIndex == rowCount){

 return false;
 }else{

 currentRow = (Element)rows.item(rowIndex);
 return true;

 }
 }

 // scrollable ResultSet methods

 public boolean previous(){
 if(rows==null){

 initialise();
 rowIndex = rowCount;

 }
 if(--rowIndex < 0){

 return false;
 }else{

 currentRow = (Element)rows.item(rowIndex);
 return true;

 }
 }

 public boolean absolute(int row) throws SQLException {

 if(row == 0)throw new SQLException("invalid row number");
 boolean onValidRow = true;

 if(rows==null){

 initialise();
 }

 if(row > 0)rowIndex = row - 1;
 else if(row < 0){

 rowIndex = rowCount + row;
 }

 if(rowIndex<-1){

TE
AM
FL
Y

Team-Fly®

Chapt er 19:Accessing XML Documents Using SQL

-482-

 rowIndex=-1;
 onValidRow = false;

 }
 if(row > rowCount){

 rowIndex = rowCount;
 onValidRow = false;

 }
 currentRow = (Element)rows.item(rowIndex);

 return onValidRow;
 }

 public boolean relative(int row) throws SQLException {

 boolean onValidRow = true;
 if(rows==null){

 initialise();
 }

 return absolute(row + rowIndex + 1);
 }

 public void beforeFirst() throws SQLException {

 if(rows==null){
 initialise();

 }
 rowIndex = -1;

 }

 public void afterLast() throws SQLException {
 if(rows==null){

 initialise();
 }

 rowIndex = rowCount;
 }

 public boolean first() throws SQLException {

 if(rows==null){
 initialise();

 }
 return absolute(1);

 }

 public boolean last() throws SQLException {
 if(rows==null){

 initialise();

Chapt er 19:Accessing XML Documents Using SQL

-483 -

 }
 return absolute(-1);

 }

 // first look for an attribute matching the columnName,
 // then look for a child element

 public String getString(String columnName)throws SQLException{
 if(currentRow==null)

 throw(new SQLException("Invalid row: "+currentRow));
 String value = currentRow.getAttribute(columnName);

 if(value.length()>0){
 return value;

 }else{
 NodeList cols = currentRow.getElementsByTagName(columnName);

 if(cols.getLength()>0){
 Node column = cols.item(0);

 NodeList children = column.getChildNodes();
 for(int i=0;i<children.getLength();i++){

 if(children.item(i).getNodeType()==Node.TEXT_NODE){
 return (String)children.item(i).getNodeValue();

 }
 }

 }
 }

 return null;
 }

 public ResultSetMetaData getMetaData() throws SQLException {

 return new XMLResultSetMetaData(this);
 }

 // utility method for serializing the result set document

 public void serializeAsFile(String fileName){
 try {

 OutputFormat fmt = new OutputFormat("xml",null,true);
 XMLSerializer serializer =

 new XMLSerializer(new FileWriter(fileName),fmt);
 serializer.asDOMSerializer().serialize(xmlDoc);

 }
 catch (Exception e){

 e.printStackTrace();
 }

 }

Chapt er 19:Accessing XML Documents Using SQL

-484-

}

Implementing a scrollable ResultSet

As you can see from the code in Listing 19-6, it is relatively easy to implement the necessary methods
to create a scrollable ResultSet. All that is required to convert the XMLResultSet to a scrollable
ResultSet is the addition of the following methods:
§ previous(), which moves the cursor back one row at a time
§ first(), which moves the cursor to the first row
§ last(), which moves the cursor to the last row
§ beforeFirst(), which moves the cursor to a point just before the first row
§ afterLast(), which moves the cursor to a point just after the last row
§ absolute(int rowNumber), which moves the cursor to the specified row
§ relative(int rowNumber), which moves the cursor the specified number of rows

These methods are pretty self-explanatory. The absolute() method moves the cursor to the row
number indicated in the argument. If the number is positive, the cursor moves to the given row number
from the beginning. If the number is negative, the cursor moves to the given row number from the end,
so absolute(1) moves the cursor to the first row, and absolute(-1) moves it to the last row.

The method relative(int rowNumber) lets you specify how many rows to move from the current
row and in which direction to move. A positive number moves the cursor forward the given number of
rows; a negative number moves the cursor backward the given number of rows.

The absolute() method is used in Listing 19-7 to handle all the other cursor movements by passing it
the computed value of the target row. For example, the method first() is implemented by calling the
absolute() method with the argument 1. Similarly, the relative() method is implemented by
computing the target row and passing it in a call to absolute().

Cross-
Reference Scrollable ResultSets are described in more detail in Chapter 4. Chapter

15 gives an example of the use of scrollable ResultSets.

Listing 19-7: Scrollable ResultSet methods

 // scrollable ResultSet methods
 public boolean previous(){

 if(rows==null){
 initialise();

 rowIndex = rowCount;
 }

 if(--rowIndex < 0){
 return false;

 }else{
 currentRow = (Element)rows.item(rowIndex);

 return true;
 }

 }

 public boolean absolute(int row) throws SQLException {
 if(row == 0)throw new SQLException("invalid row number");

 boolean onValidRow = true;

Chapt er 19:Accessing XML Documents Using SQL

-485-

 if(rows==null){

 initialise();
 }

 if(row > 0)rowIndex = row - 1;
 else if(row < 0){

 rowIndex = rowCount + row;
 }

 if(rowIndex<-1){
 rowIndex=-1;

 onValidRow = false;
 }

 if(row > rowCount){
 rowIndex = rowCount;

 onValidRow = false;
 }

 currentRow = (Element)rows.item(rowIndex);
 return onValidRow;

 }

 public boolean relative(int row) throws SQLException {
 boolean onValidRow = true;

 if(rows==null){
 initialise();

 }
 return absolute(row + rowIndex + 1);

 }

 public void beforeFirst() throws SQLException {
 if(rows==null){

 initialise();
 }

 rowIndex = -1;
 }

 public void afterLast() throws SQLException {

 if(rows==null){
 initialise();

 }
 rowIndex = rowCount;

 }

 public boolean first() throws SQLException {

Chapt er 19:Accessing XML Documents Using SQL

-486-

 if(rows==null){
 initialise();

 }
 return absolute(1);

 }

 public boolean last() throws SQLException {
 if(rows==null){

 initialise();
 }

 return absolute(-1);
 }

A more complete implementation of the scrollable ResultSet requires additional methods to report
the cursor position. It also requires a mechanism to handle requests for different ResultSet typessuch
as TYPE_FORWARD_ONLY or TYPE_SCROLL_SENSITIVE.

The XMLResultSetMetaData class

XMLResultSet is supported by XMLResultSetMetaData, an implementation of the interface
ResultSetMetaData. This provides such utility information as column counts, column names, column
data types, and so on. The code is shown in Listing 19-8.

Listing 19-8: XMLResultSetMetaData class

package JavaDatabaseBible.ch19.JDBCforXML;

import java.sql.*;
import java.util.Vector;

import org.w3c.dom.Document;
import org.w3c.dom.Element;

import org.w3c.dom.Node;
import org.w3c.dom.NodeList;

import JavaDatabaseBible.ch19.JDBCImpl.JDBCResultSetMetaDataImpl;

public class XMLResultSetMetaData extends JDBCResultSetMetaDataImpl{

 private XMLResultSet rs;
 private NodeList rows = null;

 private NodeList cols = null;
 private Vector columnNameVector = new Vector();

 public XMLResultSetMetaData(XMLResultSet rs){

 this.rs = rs;
 Element root = rs.xmlDoc.getDocumentElement();

 rows = root.getChildNodes();
 Element currentRow = (Element)rows.item(0);

Chapt er 19:Accessing XML Documents Using SQL

-487 -

 NodeList children = currentRow.getChildNodes();
 for(int i=0;i<children.getLength();i++){

 if(children.item(i).getNodeType()==Node.ELEMENT_NODE){

columnNameVector.addElement(((Element)children.item(i)).getTagName());
 }

 }
 }

 public int getColumnCount()throws java.sql.SQLException{

 return columnNameVector.size();
 }

 public String getColumnLabel(int column)throws java.sql.SQLException{

 return (String)columnNameVector.elementAt(column);
 }

 public String getColumnName(int column)throws java.sql.SQLException{

 return (String)columnNameVector.elementAt(column);
 }

 public int getColumnType(int column)throws java.sql.SQLException{

 return java.sql.Types.VARCHAR;
 }

 public String getColumnTypeName(int column)throws java.sql.SQLException{

 return "VARCHAR";
 }

 public String getTableName(int column)throws java.sql.SQLException{

 return ((Element)rows.item(0)).getTagName();

 }
}

Implementing the SQL Engine

The SQL engine handles the parsing of the SQL commands into their various components, as well as
performing more detailed processing such as evaluating the logic of compound WHERE clauses. This
application implements only a tiny subset of the SQL-92 command set, but these are enough to process
common queries as well as to create and update XML documents.

The query subset is limited to handling the types of queries listed in Table 19-1:

Table 19-1: Supported Query Operators

Function Operator Comment

Chapt er 19:Accessing XML Documents Using SQL

-488-

Table 19-1: Supported Query Operators

Function Operator Comment

Equality = String.equals()

Inequality <>

Comparison LIKE Supports the % wildcard character

Negation NOT Supports all the above

The base class used to process SQL commands is XMLCommand. This class is not XML specific,
despite its name. XML-specific functionality is handled by extending the class. That way, the class can
be used as the basis of any other SQL engine you may wish to build.

The XMLCommand class

One of the key methods of the XMLCommand class is the parseSQLCmd() method, which is used to
split the command into its main components clauses. These include the command itself, the table name,
the column names, and the WHERE clause. Additional utility methods such as splitFields()split
these clauses into vectors of subclauses for further processing. Listing 19-9 shows the XMLCommand
class.

Listing 19-9: XMLCommand class

package JavaDatabaseBible.ch19.JDBCforXML;

import java.sql.*;
import java.net.*;

import java.util.*;

/**
* XMLCommand is an implementation independent SQL command preprocessor

*/
public class XMLCommand {

 protected String SQLString;
 protected String cmd = null;

 protected String tableName = null;
 protected String columns = null;

 protected String values = null;
 protected String fields = null;

 protected String where = null;
 protected String orderBy = null;

 public XMLCommand() {

 }

 public XMLCommand(String SQLString) {
 this.SQLString = SQLString.toUpperCase().trim();

Chapt er 19:Accessing XML Documents Using SQL

-489-

 parseSQLCmd(SQLString);
 }

 protected void parseSQLCmd(String SQLCmd){

 cmd = SQLCmd.substring(0,SQLCmd.indexOf(" "));
 tableName = getTableName(SQLCmd);

 int tNameEnds = SQLCmd.indexOf(tableName) + tableName.length();

 int columnsEnd = SQLCmd.indexOf(" VALUES");
 int valuesIndex = SQLCmd.indexOf(" VALUES");

 int fromIndex = SQLCmd.indexOf(" FROM ");
 int whereIndex = SQLCmd.indexOf(" WHERE ");

 int orderIndex = SQLCmd.indexOf(" ORDER ");
 int orderByIndex = SQLCmd.indexOf(" BY ",orderIndex);

 if(whereIndex>-1) whereIndex += " VALUES".length();

 if(valuesIndex>-1)valuesIndex += " VALUES".length();

 if(cmd.equals("CREATE")){
 columns = SQLCmd.substring(tNameEnds).trim();

 }
 else if(cmd.equals("INSERT")){

 columns = SQLCmd.substring(tNameEnds,columnsEnd).trim();
 values = SQLCmd.substring(valuesIndex).trim();

 }
 else if(cmd.equals("SELECT")){

 fields = SQLCmd.substring("SELECT".length(),fromIndex).trim();
 if(whereIndex>-1){

 if(orderIndex>-1){
 where = SQLCmd.substring(whereIndex,orderIndex);

 }else{
 where = SQLCmd.substring(whereIndex);

 }
 where = where.trim();

 }

 if(orderIndex>-1){
 orderBy = SQLCmd.substring(orderByIndex).trim();

 }
 }

 }

 private String getTableName(String SQLCmd){

Chapt er 19:Accessing XML Documents Using SQL

-490-

 String tableName = null;
 if(SQLCmd.startsWith("SELECT")){

 tableName = wordAfter(SQLCmd, "FROM");
 }

 else if(SQLCmd.startsWith("INSERT")){
 tableName = wordAfter(SQLCmd, "INTO");

 }
 else if(SQLCmd.startsWith("UPDATE")){

 tableName = wordAfter(SQLCmd, "UPDATE");
 }

 else if(SQLCmd.startsWith("DELETE")){
 tableName = wordAfter(SQLCmd, "FROM");

 }
 else if(SQLCmd.startsWith("CREATE")){

 tableName = wordAfter(SQLCmd, "TABLE");
 }

 return tableName;
 }

 protected Vector splitFields(String fields){

 Vector fieldVector = new Vector();
 fields = fields.trim();

 if(fields.startsWith("("))fields = fields.substring(1);
 if(fields.endsWith(")"))

 fields = fields.substring(0,fields.length()-1);

 int comma = fields.indexOf(",");
 while(comma >= 0){

 String field = fields.substring(0,comma).trim();
 fieldVector.addElement(field);

 fields = fields.substring(comma+1).trim();
 comma = fields.indexOf(",");

 }
 fieldVector.addElement(fields.trim());

 return fieldVector;
 }

 protected Vector splitColumns(String columns){

 return splitFields(columns);
 }

 protected Vector splitValues(String values){

 return splitFields(values);

Chapt er 19:Accessing XML Documents Using SQL

-491 -

 }

 protected String wordAfter(String SQLCmd, String after){
 String word = SQLCmd.substring(SQLCmd.indexOf(after)+

 after.length()).trim();
 if(word.indexOf(" ")>-1)word = word.substring(0,word.indexOf(" "));

 return word.trim();
 }

}

The XMLQuery class

The XMLQuery class extends the basic XMLCommand class. An XMLQuery object is created by the
XMLStatement when the Statement.executeQuery() method is called. In its constructor,
XMLQuery calls the parseSQLCmd() method of its base class. Listing 19-10 shows the XMLQuery
class.

Listing 19-10: XMLQuery class

package JavaDatabaseBible.ch19.JDBCforXML;

import java.io.*;

import java.util.StringTokenizer;
import java.util.Vector;

import java.sql.SQLException;
import org.w3c.dom.Document;

import org.w3c.dom.Element;
import org.w3c.dom.NodeList;

import org.w3c.dom.Node;
import org.xml.sax.InputSource;

import org.apache.xerces.parsers.DOMParser;

/**
* XMLQuery extends XMLCommand to provide XL specific query processing

*/
public class XMLQuery extends XMLCommand{

 private Document xmlDoc;

 public XMLQuery(String SQLString) {
 this.SQLString = SQLString.toUpperCase().trim();

 parseSQLCmd(SQLString);
 }

 // process xml doc and build ResultSet doc

 public XMLResultSet processDoc(Document xmlDoc) throws SQLException{

TE
AM
FL
Y

Team-Fly®

Chapt er 19:Accessing XML Documents Using SQL

-492-

 this.xmlDoc = xmlDoc;
 XMLResultSet resultSet = new XMLResultSet();

 NodeList records = xmlDoc.getElementsByTagName(this.tableName);

 if(where==null){
 for(int i=0;i<records.getLength();i++){

 Element record = (Element)records.item(i);
 Node importedNode = resultSet.xmlDoc.importNode(record,true);

 if(!fields.equals("*"))pruneFields(importedNode);
 resultSet.xmlDoc.getDocumentElement().appendChild(importedNode);

 }
 }else{

 Vector whereClauses = splitWhereClause(where);
 XMLWhereEvaluator evaluator = new XMLWhereEvaluator(whereClauses);

 for(int i=0;i<records.getLength();i++){

 Element record = (Element)records.item(i);
 if(evaluator.testRecord(record)){

 Node importedNode = resultSet.xmlDoc.importNode(record,true);
 if(!fields.equals("*"))pruneFields(importedNode);

 resultSet.xmlDoc.getDocumentElement().appendChild(importedNode);
 }

 }
 }

 return resultSet;
 }

 // split the WHERE clause into a Vector of individual tests

 protected Vector splitWhereClause(String whereClause){
 Vector where = new Vector();

 String subTest = "";

 String token = "";
 StringTokenizer st = new StringTokenizer(whereClause," ()",true);

 while (st.hasMoreTokens()) {
 token = st.nextToken();

 if(token.equals("AND")||token.equals("OR")||
 token.equals("(")||token.equals(")")){

 subTest = subTest.trim();
 if(subTest.length()>0)where.addElement(subTest);

 where.addElement(token);
 subTest="";

 }else{

Chapt er 19:Accessing XML Documents Using SQL

-493-

 subTest += token;
 }

 }
 if(subTest.trim().length()>0){

 where.addElement(subTest.trim());
 }

 return where;
 }

 // prune to include only selected fields

 private void pruneFields(Node record){
 Vector fieldClauses = splitFields(fields);

 NodeList nodes = record.getChildNodes();
 for(int i=0;i<nodes.getLength();i++){

 Node n = nodes.item(i);
 if(n.getNodeType()==Node.ELEMENT_NODE){

 String tagName = ((Element)n).getTagName();
 if(!fieldClauses.contains(tagName))record.removeChild(n);

 }
 }

 }
}

After creating the XMLQuery object, the XMLStatement calls XMLQuery's processDocument()
method, passing it a reference to the document being queried.
XMLQuery.processDocument()handles the actual processing of the query. It does this by first
creating an XMLResultSet and then retrieving the XML elements corresponding to the table and
evaluating them against the WHERE clause.

Since the database is contained in an XML document, the XMLResultSet is also returned as an XML
document. XML elements that match the WHERE clause are imported into the newly created document
and pruned of element nodes that are not itemized in the column list of the SQL query. Attribute nodes,
on the other hand, are returned without pruning in this implementation, though, of course, you can easily
change this if you wish.

The final step is to append the selected and pruned node to the root element of the XMLResultSet.
Once the entire XMLResultSet has been created, it is returned in the normal way.

The XMLWhereEvaluator class

The SQL query engine itself is implemented in the XMLWhereEvaluator class, shown later in this
section. The protected element record contains the record currently being tested, and the vector
testVector contains the Strings representing the individual subtests. For example, a SQL query might
look like this:

"SELECT * FROM CUSTOMER

WHERE (FIRST_NAME LIKE 'M%' OR CUSTOMER_NUMBER = '102')"

The WHERE clause is split into subtests as follows:

(

Chapt er 19:Accessing XML Documents Using SQL

-494-

FIRST_NAME LIKE 'M%'
OR

CUSTOMER_NUMBER = '102'
)

The XMLWhereEvaluator evaluates the test vector against each row element in the XML table
document to create a result String. The result String is created from the test vector by appending parens
and boolean operators such as AND and OR directly to the result String and by evaluating the subtests
containing operators. Evaluation of the subtests occurs by calling the appropriate test method for the
operator in the subtest. Only two test methods are implemented here, though implementing additional
tests is quite simple:
§ isLike(), which parses out the '%' wildcard and performs the appropriate String comparison
§ isEqual(), which simply compares the Strings

These test methods return a boolean result. Negation is handled by set a boolean flag used to toggle
the true/false value the test returns. For example, if the WHERE clause is evaluated against a row
containing this element:

<FIRST_NAME>Michael</FIRST_NAME>

The returned result String will be this:

(true OR false)

This result String, which is in infix notation, is passed to the method evaluate(String infix).
This method uses a simple two-stack approach to evaluate the result String and to return a boolean
result for the overall test, as shown in Listing 19-11.

Listing 19-11: XMLWhereEvaluator class

package JavaDatabaseBible.ch19.JDBCforXML;

import java.io.*;

import java.util.*;
import java.sql.SQLException;

import org.w3c.dom.Document;
import org.w3c.dom.Element;

import org.w3c.dom.NamedNodeMap;
import org.w3c.dom.NodeList;

import org.w3c.dom.Node;
import org.xml.sax.InputSource;

import org.apache.xerces.parsers.DOMParser;

public class XMLWhereEvaluator{
 Element record = null;

 Vector testVector = null;

 public XMLWhereEvaluator(Vector testVector){
 this.testVector = testVector;

 }

Chapt er 19:Accessing XML Documents Using SQL

-495-

 public boolean testRecord(Element record){
 String test;

 String results = "";
 for(int i=0;i<testVector.size();i++){

 test = (String)testVector.elementAt(i);
 if(test.equals("OR")||test.equals("AND")||

 test.equals("(")||test.equals(")")){
 results += " "+test;

 }else {
 if(testWhereClause(record, test))results += " true";

 else results += " false";
 }

 }
 return evaluate(results.trim());

 }

 // test individual where clauses
 private boolean testWhereClause(Element record, String whereClause){

 boolean not = false;
 boolean retval = false;

 String fieldName =
 whereClause.substring(0,whereClause.indexOf(" ")).trim();

 whereClause = whereClause.substring(fieldName.length()).trim();
 String test =

 whereClause.substring(0,whereClause.indexOf(" ")).trim();
 if(test.equals("NOT")){

 not = true;
 whereClause = whereClause.substring(test.length()).trim();

 test = whereClause.substring(0,whereClause.indexOf(" ")).trim();
 }

 String operand = whereClause.substring(test.length()).trim();

 operand = operand.replace('\'',' ').trim();
 String nodeValue = record.getAttribute(fieldName);

 if(nodeValue.length()==0){
 NodeList fields = record.getElementsByTagName(fieldName);

 Element field = (Element)fields.item(0);
 nodeValue = field.getFirstChild().getNodeValue();

 }
 if(test.equals("LIKE")){

 retval = isLike(operand,nodeValue);
 }

 if(test.equals("=")){

Chapt er 19:Accessing XML Documents Using SQL

-496-

 retval = isEqual(operand,nodeValue);
 }

 if(test.equals("<>")){
 not = true;

 retval = isEqual(operand,nodeValue);
 }

 if(not)retval = !retval;
 return retval;

 }

 private boolean isEqual(String operand,String nodeValue){
 boolean retval = false;

 operand = operand.trim();
 if(nodeValue.equals(operand))retval = true;

 return retval;
 }

 private boolean isLike(String operand,String nodeValue){

 boolean retval = false;
 if(operand.startsWith("%")){

 if(operand.endsWith("%")){
 operand = operand.replace('%',' ').trim();

 if(nodeValue.indexOf(operand)>-1)retval = true;
 }else{

 operand = operand.replace('%',' ').trim();
 if(nodeValue.endsWith(operand))retval = true;

 }
 }else if(operand.endsWith("%")){

 operand = operand.replace('%',' ').trim();
 if(nodeValue.startsWith(operand))retval = true;

 }else{
 operand = operand.trim();

 if(nodeValue.equals(operand))retval = true;
 }

 return retval;
 }

 protected boolean evaluate(String infix){

 int parens = 0;
 Stack ops = new Stack();

 Stack args = new Stack();
 infix = infix.trim();

Chapt er 19:Accessing XML Documents Using SQL

-497 -

 StringTokenizer st = new StringTokenizer(infix," ()",true);
 while (st.hasMoreTokens()) {

 String token = st.nextToken();
 if(!token.equals(" ")){

 if(token.equals("AND")||token.equals("OR")){
 if(ops.size()>parens)evaluate(ops,args);

 ops.push(token);
 }else if(token.equals("(")){

 if(args.size()>0)++parens;
 }else if(token.equals(")")){

 --parens;
 }else {

 args.push(token);
 }

 }
 }

 while(!ops.empty()){
 evaluate(ops,args);

 }
 String result = (String)args.pop();

 return (result.equals("true"))?true:false;
 }

 private void evaluate(Stack ops,Stack args){
 boolean a = (((String)args.pop()).equals("true"))?true:false;

 boolean b = (((String)args.pop()).equals("true"))?true:false;
 boolean c = false;

 String o = (String)ops.pop();
 if(o.equals("AND"))c = a & b;

 if(o.equals("OR")) c = a | b;
 args.push(c?"true":"false");

 }
}

Testing the JDBC/XML Database

You can check out the JDBC/XML database using code similar to any of the DriverManager-based
examples in earlier chapters. Listing 19-12 shows a typical example using all the features of a scrollable
ResultSet implemented by adding the optional scrollable ResultSet methods of Listing 19-7 to the
basic XMLResultSet of Listing 19-6.

Listing 19-12: JDBC/XML database test code

import java.io.*;

import java.net.*;
import java.sql.*;

Chapt er 19:Accessing XML Documents Using SQL

-498-

import java.util.*;
import org.w3c.dom.Document;

import org.apache.xml.serialize.OutputFormat;
import org.apache.xml.serialize.XMLSerializer;

public class XMLDBTest{

 static String UrlString = "file:///c:/projects/CustomerDB.xml";

 static String SQLQuery =
 "SELECT * FROM CUSTOMER WHERE "+

 "(FIRST_NAME LIKE 'M%' OR CUSTOMER_NUMBER = '102') "+
 "AND LAST_NAME = 'Corleone'";

 static String[] SQLCmd =

 { "INSERT INTO CUSTOMER VALUES('101','Vito', 'Q','Corleone',"+
 "'137 Main', 'New York','NY','10006','201-555-1213')",

 "INSERT INTO CUSTOMER VALUES('102','James', 'J','Corleone',"+
 "'123 Pine', 'New York','NY','10006','201-555-1214')",

 "INSERT INTO CUSTOMER VALUES('103','Raquel','S','Corleone',"+
 "'123 Pine', 'New York','NY','10006','201-555-1215')",

 "INSERT INTO CUSTOMER VALUES('104','James', 'J','Witherspoon',"+
 "'17 Oak','New York','NY','10006','201-555-1216')",

 "INSERT INTO CUSTOMER VALUES('105','Fred', 'Q','Bloggs',"+
 " '22 Walnut','New York','NY','10006','201-555-1217')"};

 public String cNum = null;

 public String fName = null;
 public String lName = null;

 public String street = null;
 public String city = null;

 public String state = null;
 public String zip = null;

 public String phone = null;

 Document xmlDoc = null;

 public XMLDBTest(){
 try{

 Class.forName("JavaDatabaseBible.ch19.JDBCforXML.XMLDriver");
 }

 catch (Exception e){
 System.out.println(e);

 }

Chapt er 19:Accessing XML Documents Using SQL

-499-

 }

 public static void main(String args[]){
 XMLQueryTest test = new XMLQueryTest();

 serializeDocumentAsFile(test.createTable(),UrlString);
 serializeDocumentAsFile(test.updateTable(SQLCmd),UrlString);

 serializeDocumentAsFile(test.queryTable(SQLQuery),
 "file:///c:/projects/ResultSet.xml");

 }
 public Document createTable(){

 try{
 Connection con = DriverManager.getConnection(UrlString);

 Statement stmt = con.createStatement();

 stmt.executeUpdate("CREATE TABLE CUSTOMER "+
 "(CUSTOMER_NUMBER ATTRIBUTE, "+

 "FIRST_NAME VARCHAR(30), "+
 "MI VARCHAR(30), "+

 "LAST_NAME VARCHAR(30), "+
 "STREET VARCHAR(30), "+

 "CITY VARCHAR(30), "+
 "STATE VARCHAR(30), "+

 "ZIP VARCHAR(30), "+
 "PHONE VARCHAR(30))");

 stmt.executeUpdate("INSERT INTO CUSTOMER VALUES("+

 "'100','Michael','A','Corleone',"+
 "'123 Pine','New York','NY','10006','201-555-
1212'");
 xmlDoc =

((JavaDatabaseBible.ch19.JDBCforXML.XMLStatement)stmt).getXmlDocument();
 }
 catch (Exception e){

 System.out.println(e);
 }

 return xmlDoc;
 }

 public Document updateTable(String[] SQLCmd){
 try{

 Connection con = DriverManager.getConnection(UrlString);

 Statement stmt = con.createStatement();
 for(int i=0;i<SQLCmd.length;i++){

Chapt er 19:Accessing XML Documents Using SQL

-500-

 stmt.executeUpdate(SQLCmd[i]);
 }

 xmlDoc =

((JavaDatabaseBible.ch19.JDBCforXML.XMLStatement)stmt).getXmlDocument();
 }
 catch (Exception e){

 System.out.println(e);
 }

 return xmlDoc;
 }

 public Document queryTable(String SQLQuery){
 ResultSet rs = null;

 try{
 Connection con = DriverManager.getConnection(UrlString);

 Statement stmt = con.createStatement();

 rs = stmt.executeQuery(SQLQuery);
 while(rs.next()){

 getRowData(rs);
 }

 while(rs.previous()){
 getRowData(rs);

 }
 rs.first();

 getRowData(rs);

 rs.last();
 getRowData(rs);

 rs.absolute(2);

 getRowData(rs);

 rs.relative(-1);
 getRowData(rs);

 }
 catch (Exception e){

 System.out.println(e);
 }

 return ((JavaDatabaseBible.ch19.JDBCforXML.XMLResultSet)rs).xmlDoc;
 }

 private void getRowData(ResultSet rs){
 try {

Chapt er 19:Accessing XML Documents Using SQL

-501 -

 cNum = rs.getString("CUSTOMER_NUMBER");
 fName = rs.getString("FIRST_NAME");

 lName = rs.getString("LAST_NAME");
 street = rs.getString("STREET");

 city = rs.getString("CITY");
 state = rs.getString("STATE");

 zip = rs.getString("ZIP");
 phone = rs.getString("PHONE");

 }catch (Exception e){
 System.out.println(e);

 }
 }

 public static void serializeDocumentAsFile(Document xmlDoc,String
UrlString){
 String fileName = "XMLOut.xml";

 try {
 URL url = new URL(UrlString);

 if(url.getProtocol().equals("file")){
 fileName = url.getFile().substring(1);

 }
 OutputFormat fmt = new OutputFormat("xml",null,true);

 XMLSerializer serializer =
 new XMLSerializer(new FileWriter(fileName),fmt);

 serializer.asDOMSerializer().serialize(xmlDoc);
 }

 catch (Exception e){
 e.printStackTrace();

 }
 }

}

This test code creates the XML database shown in Listing 19-13. The createTable() method creates
the XML document and inserts the first record. Calling the updateTable() method results in the
insertion of the other records.

Listing 19-13: XML database created using XMLDBTest class

<?xml version="1.0"?>
<CustomerDB>

 <CUSTOMER CUSTOMER_NUMBER="100">
 <FIRST_NAME>Michael</FIRST_NAME>

 <MI>A</MI>
 <LAST_NAME>Corleone</LAST_NAME>

 <STREET>123 Pine</STREET>

TE
AM
FL
Y

Team-Fly®

Chapt er 19:Accessing XML Documents Using SQL

-502 -

 <CITY>New York</CITY>
 <STATE>NY</STATE>

 <ZIP>10006</ZIP>
 <PHONE>201-555-1212</PHONE>

 </CUSTOMER>
 <CUSTOMER CUSTOMER_NUMBER="101">

 <FIRST_NAME>Vito</FIRST_NAME>
 <MI>Q</MI>

 <LAST_NAME>Corleone</LAST_NAME>
 <STREET>137 Main</STREET>

 <CITY>New York</CITY>
 <STATE>NY</STATE>

 <ZIP>10006</ZIP>
 <PHONE>201-555-1213</PHONE>

 </CUSTOMER>
 <CUSTOMER CUSTOMER_NUMBER="102">

 <FIRST_NAME>James</FIRST_NAME>
 <MI>J</MI>

 <LAST_NAME>Corleone</LAST_NAME>
 <STREET>123 Pine</STREET>

 <CITY>New York</CITY>
 <STATE>NY</STATE>

 <ZIP>10006</ZIP>
 <PHONE>201-555-1214</PHONE>

 </CUSTOMER>
 <CUSTOMER CUSTOMER_NUMBER="103">

 <FIRST_NAME>Raquel</FIRST_NAME>
 <MI>S</MI>

 <LAST_NAME>Corleone</LAST_NAME>
 <STREET>123 Pine</STREET>

 <CITY>New York</CITY>
 <STATE>NY</STATE>

 <ZIP>10006</ZIP>
 <PHONE>201-555-1215</PHONE>

 </CUSTOMER>
 <CUSTOMER CUSTOMER_NUMBER="104">

 <FIRST_NAME>James</FIRST_NAME>
 <MI>J</MI>

 <LAST_NAME>Witherspoon</LAST_NAME>
 <STREET>17 Oak</STREET>

 <CITY>New York</CITY>
 <STATE>NY</STATE>

 <ZIP>10006</ZIP>

Chapt er 19:Accessing XML Documents Using SQL

-503 -

 <PHONE>201-555-1216</PHONE>
 </CUSTOMER>

 <CUSTOMER CUSTOMER_NUMBER="105">
 <FIRST_NAME>Fred</FIRST_NAME>

 <MI>Q</MI>
 <LAST_NAME>Bloggs</LAST_NAME>

 <STREET>22 Walnut</STREET>
 <CITY>New York</CITY>

 <STATE>NY</STATE>
 <ZIP>10006</ZIP>

 <PHONE>201-555-1217</PHONE>
 </CUSTOMER>

</CustomerDB>

Note that although the SQL CREATE command specifies type VARCHAR (30) for most of the fields, this
type specification defaults to String. The reason for this is that all data is stored as a String, and the only
significance attached to data type is to check for the custom type ATTRIBUTE, which is used to denote
that the field should be added to the row element as an attribute.

Note also that the XML document must be saved after each update. The XML database actually exists
as a DOM document in memory, so it must be serialized after changes are made.

Tests are carried out using a variety of different queries. These queries include the following:

SELECT * FROM CUSTOMER

SELECT * FROM CUSTOMER WHERE FIRST_NAME LIKE 'M%'
SELECT * FROM CUSTOMER WHERE FIRST_NAME NOT LIKE 'M%'

SELECT * FROM CUSTOMER WHERE FIRST_NAME NOT = 'Michael'
SELECT * FROM CUSTOMER WHERE FIRST_NAME <> 'Michael'

SELECT * FROM CUSTOMER WHERE FIRST_NAME LIKE 'M%' OR FIRST_NAME LIKE 'F%'
SELECT * FROM CUSTOMER WHERE (FIRST_NAME LIKE 'M%' OR FIRST_NAME LIKE 'V%')

SELECT * FROM CUSTOMER WHERE (FIRST_NAME LIKE 'M%' OR CUSTOMER_NUMBER =
'102')

In addition to supporting the ResultSet.getString() method used to set the String variables in
Listing 19-12, the XMLResultSet can also be retrieved as an XML document. Listing 19-14 shows the
XMLResultSet generated by running this query:

SELECT * FROM CUSTOMER WHERE

(FIRST_NAME LIKE 'M%' OR CUSTOMER_NUMBER = '102') AND LAST_NAME =
'Corleone'

Listing 19-14: XMLResultSet

<?xml version="1.0"?>

<RESULTSET>
 <CUSTOMER CUSTOMER_NUMBER="100">

 <FIRST_NAME>Michael</FIRST_NAME>
 <MI>A</MI>

 <LAST_NAME>Corleone</LAST_NAME>

Chapt er 19:Accessing XML Documents Using SQL

-504 -

 <STREET>123 Pine</STREET>
 <CITY>New York</CITY>

 <STATE>NY</STATE>
 <ZIP>10006</ZIP>

 <PHONE>201-555-1212</PHONE>
 </CUSTOMER>

 <CUSTOMER CUSTOMER_NUMBER="102">
 <FIRST_NAME>James</FIRST_NAME>

 <MI>J</MI>
 <LAST_NAME>Corleone</LAST_NAME>

 <STREET>123 Pine</STREET>
 <CITY>New York</CITY>

 <STATE>NY</STATE>
 <ZIP>10006</ZIP>

 <PHONE>201-555-1214</PHONE>
 </CUSTOMER>

</RESULTSET>

The advantage of returning the entire XMLResultSet as an XML document is that many applications
are designed to work with XML. In this form, the XMLResultSet can be transferred between
applications or manipulated using an XSL transform.

Since the target database is defined by a URL, you are not restricted to using local XML files as
databases. Try substituting the URL http://www.moreover.com/cgi-
local/page?o=xml&query=top+stories.

Cross-
Reference Chapter 17 discusses working with XML sources over the Internet.The

examples are based on accessing the http://www.moreover.com/ Web
site.

Summary

In this chapter, you learn to create a JDBC driver and a simple SQL engine. The examples can be
expanded and modified to form the basis of any custom application requiring a JDBC API. The main
topics covered included the following:
§ Detailed operation of a JDBC driver
§ A simple, String-oriented SQL query engine
§ Examples of working with XML documents

This chapter ends Part IV. Part V explores persistence in the context of Enterprise Java Beans and JDO.

Part V:EJBS, Databases, and Persistence

-505-

Part V: EJBs, Databases, and
Persistence
Chapter List

Chapter 20: Enterprise JavaBeans

Chapter 21: Bean-Managed Persistence

Chapter 22: Container-Managed Persistence

Chapter 23: Java Data Objects and Persistence

Part Overview

Part V is a discussion of the use databases in the context of J2EE applications using Enterprise
JavaBeans. The first chapter gives a brief overview of Enterprise JavaBeans, including descriptions of:
§ The three types of Enterprise JavaBeans: session beans, entity beans, and message-driven

beans.
§ Activation and passivation
§ Bean-managed persistence and container-managed persistence
§ Enterprise JavaBean transactions

After reading this chapter, you should have a good understanding of Enterprise JavaBeans and of the
ways they interact with databases.

Subsequent chapters discuss bean-managed persistence and container-managed persistence, with
extensive examples. They include sections on the use of JDBC and SQL in bean-managed persistence
and of the Enterprise JavaBean query language (EJBQL).

The final chapter in Part V covers Java data objects and transparent persistence. This is a new
technology that handles persistence in a manner that is completely transparent to the developer.

Chapter 20:Enterprise JavaBeans

-506 -

Chapter 20: Enterprise JavaBeans

In This Chapter

This chapter gives a brief overview of Enterprise JavaBeans (EJBs). The features and purposes of three
types of EJBs are discussed. The fundamentals of transaction and persistence management are
reviewed. After reading this chapter, you should have a good understanding of Enterprise JavaBeans
(EJBs) and of the ways they interact with databases.

Enterprise JavaBeans Overview

The Enterprise JavaBeans Specification defines EJBs as follows: "Enterprise JavaBeans is an
architecture for component-based distributed computing. EJBs are components of the distributed
transaction-oriented enterprise applications." In a nutshell, EJBs are server-side components that
encapsulate the business logic of an application. The business logic is the code that fulfills the purpose
of the application. For example, in an online shopping application, the EJBs might implement the
business logic in methods called searchCatalog and checkOut. By invoking these methods, remote
clients can access the online shopping services the application provides.

An EJB typically communicates with Enterprise Information Systems (EIS) such as databases and
legacy systems and other EJBs. At the same time, different types of clients access EJBs requesting
services. The clients can be other EJBs, Web applications, servlets, or application clients.

At runtime, an EJB resides in an EJB container. An EJB container provides the deployment and runtime
environment for EJBs, including services such as security, transaction, deployment, concurrency
management, and instance life-cycle management. The process of installing an EJB in an EJB
container is called EJB deployment. EJB containers are typically part of an application server. EJBs by
nature are portable components; therefore, the application assembler can build new applications from
existing beans with minimum effort. These applications can run on any J2EE-compliant application
servers.

EJBs are designed to simplify the development of large, distributed applications. Because the EJB
container provides system-level services to enterprise beans, the bean developer can concentrate on
solving business problems. The EJB container, not the bean developer, is responsible for system-level
services such as transaction management and security authorization. Furthermore, since the
application's business logic is contained in EJBs instead of in clients, client developers can focus on the
presentation of the client. The client developer does not have to code the routines that implement
business rules or access databases. As a result, clients are thinner. This is particularly beneficial for
clients that run on small devices such as cell phones or PDAs.

EJBs are especially suitable for applications that have the following requirements and characteristics:
§ Scalablability. To accommodate a growing number of users, one may need to distribute an

application's components across multiple machines. Not only can the EJBs of an application run on
different machines, but their location remains transparent to clients.

§ Transactions-oriented. EJBs support transactions through container services, the mechanisms
that manage the concurrent access of shared objects and ensure data integrity.

§ Multiple types of clients. With just a few lines of code, remote clients can easily locate enterprise
beans. These clients can be thin, various, and numerous.

The EJB 2.0 Specification specifies the three following types of EJBs:
§ Session beans
§ Entity beans
§ Message-driven beans

The features, as well as the appropriate uses of each type of EJB, are discussed in more details in the
following sections.

Session Beans

Chapter 20:Enterprise JavaBeans

-507 -

A session bean represents a single client inside the J2EE server and performs tasks on behalf of the
client. This type of bean manages sessions (or conversations between the client and the server) on
behalf of the client. A typical session is transient, and its state is usually not persistent. An example of a
session is tracking your courier package using a Web-based status-query application. If, for some
reason, the Web server dies or the session times out, the session terminates, and the user is required
to start a new session. Most online transactions are session oriented, with the user initiating a session
performing a set of actions and then terminating a session. Hence, a session bean generally stores its
state in transient variables.

Not all sessions are conversational. Some sessions involve only one interaction between the client and
server. For example, getting a stock quote does not need the multiple invocations of the service the
stock-quote server provides. These sessions are stateless, and their management can be significantly
simplified. To address these different scenarios, the EJB specification specifies two types of session
beans: stateful and session.

In general, the use a session bean is appropriate if the following circumstances hold:
§ At any given time, only one client has access to the bean instance.
§ The state of the bean is not persistent, existing only for a short period (perhaps a few hours).

Once the session bean is chosen, we still need to decide which one to use, stateless or stateful, based
on whether a conversational state needs to be held in the session bean.

Stateless Session Beans

Stateless session beans are components that implement a single-use service. That service can be
invoked many times, but since the component does not maintain any state, the effect is that each
invocation provides a single use. In a lot of ways, stateless session beans provide a reusable single-use
service.

Although a stateless session bean does not maintain a conversational state for a particular client, it may
contain a transient state in the form of its instance variables, as shown in the code example. When a
client invokes the method of a stateless bean, the values of the bean's instance variables represent
such a transient state but only for the duration of the invocation. When the method is finished, the state
is no longer retained. Except during method invocation, all instances of a stateless bean are equivalent,
allowing the EJB container to assign an instance to any client. Most of application servers take
advantage of this feature and pool the stateless session beans to achieve better performance.

Because stateless session beans can support multiple clients and usually are pooled in the EJB
container, they can offer better scalability for applications that require large numbers of clients. Typically,
an application requires fewer stateless session beans than stateful session beans to support the same
number of clients. At times, the EJB container may write a stateful session bean to secondary storage
(called passivation, discussed later). However, stateless session beans are never written to secondary
storage. This further makes stateless beans offer better performance than stateful beans.

The major advantage of stateless session beans over stateful session beans is performance. A
stateless session bean should be chosen if one of following is true:
§ The bean's state has no data for a specific client.
§ In a single-method invocation, the bean performs a generic task for all clients. For example, you

might use a stateless session bean to retrieve stock quotes at any time.
§ The bean fetches from a database a set of read-only data that is often used by clients. Such a

bean, for example, can retrieve the table rows that represent the inventory that currently below
certain level.

In general, the steps for developing EJBs include:
1. Write the remote interface.
2. Write the home interface.
3. Write the EJB implementation class.
4. Compile the EJB and all its supporting files.
5. Write the deployment descriptors.
6. Package and deploy.

Chapter 20:Enterprise JavaBeans

-508-

Note

Many of the preceding steps can be performed automatically by a variety of IDEs. Don't
write everything from scratch.

Although your favorite IDE may complete many steps for you, let's go through these steps manually in
the development of our stateless session bean example. To keep things less confusing, a naming
convention should be adopted for all the Java classes involved. A commonly accepted naming
convention is listed in Table 20-1.

Table 20-1: EJB Name Convention

Item Name Example

Remote Interface <name> Customer

Home Interface <name>Home CustomerHome

Implementation Class <name>Bean CustomerBean

EJB Name <name>EJB CustomerEJB

EJB Jar Display Name <name>Jar CustomerJar

Remember the first program you have ever written in Java? Is it the "Hello, world"? The first EJB
example developed in this chapter is a stateless session bean called HelloEJB. When it is invoked, a
welcome message is delivered to the calling client.

Although the business logic is defined in the implementation class, the client can never directly access
implementation-class instances. Instead, the client calls an EJB's remote interface to get its service. In
other words, the remote interface defines the business methods that a remote client may invoke. The
bean developer defines the types of the method arguments, the return type, and the exceptions the
methods throw. The signatures of these methods must be identical to the signatures of the
corresponding methods in the EJB implementation class.

Remote interface

Every EJB remote interface extends the java.ejb.EJBObject interface. Since EJBs are meant to
work in a distributed system, the remote interface is a valid remote interface for RMI-IIOP, so each
method must throw the java.rmi.RemoteException. The source code for the HelloEJB remote
interface is shown in Listing 20-1. Three methods are defined by which a client can get all welcome
messages, a specific welcome message, or the number of messages.

Listing 20-1: Remote interface of HelloEJB

package java_database.ch20.HelloSLBean;

import javax.ejb.*;
import java.rmi.RemoteException;

public interface Hello extends EJBObject {

 public String[] getAllWelcomeMsgs() throws RemoteException;
 public String getWelcomeMsg(int i) throws RemoteException;

 public int getNumberOfWelcomeMsgs() throws RemoteException;
}

Home interface

Chapter 20:Enterprise JavaBeans

-509 -

The home interface controls the life cycle of the EJB objects. For a session bean, the purpose of the
home interface is to define the create methods that a remote client may invoke to create its reference
to the EJB object. You may define multiple create methods with different signatures. The default
method without any argument is used to instantiate EJB objects in the container.

Note that create methods are different from constructors. A constructor is an initializer for an object
(which may exist for a very long time). A create method is used by clients to initialize an EJB instance
in an EJB container. An EJB instance may be composed of one object or a variety of objects over its life
cycle. As such, it has different initialization mechanisms.

Understanding the life cycle is critical in mastering EJBs. Unfortunately, that is beyond the scope of this
book. The interested reader can find extensive discussions on EJB life cycles in numerous EJB books.

Note

Do not assume that create methods are the same as constructors.

As is the case for the remote interface, the signatures of the create methods defined in the home
interface must correspond to those of its corresponding ejbCreate methods in the implementation
class. The throws clause of the create method must include java.rmi.RemoteException and
the javax.ejb.CreateException. The home interface of the HelloEJB is shown in Listing 20-2.
Only one create method is defined in this example.

Listing 20-2: Home interface of HelloEJB

package java_database.ch20.HelloSLBean;

import javax.ejb.*;
import java.rmi.RemoteException;

public interface HelloHome extends EJBHome {

 public Hello create() throws CreateException, RemoteException;
}

Implementation class

Most of the work that you have to do as a bean developer occurs in the bean class itself. There are a
number of methods the bean class must provide. An important method, and perhaps the most confusing
one, is ejbCreate.

Because an enterprise bean runs inside an EJB container, a client cannot directly instantiate the bean.
Only the EJB container can instantiate an enterprise bean. During instantiation, the example program
performs the following steps:

1. The client invokes a create method on the home object
2. The EJB container instantiates the EJB instance.
3. The EJB container invokes the appropriate ejbCreate method in the implementation class;

typically, an ejbCreate method initializes the state of the EJB instance.

create and ejbCreate method guidelines

Typically, an ejbCreate method initializes the state of the EJB instance. The guidelines for writing
such methods are:
§ Each create method defined in the home interface must have a corresponding ejbCreate

method in the bean-implementation class.
§ The number of arguments and argument data types between the ejbCreate and the

corresponding create methods must be the same.

Chapter 20:Enterprise JavaBeans

-510-

§ Since the ejbCreate is called by the container, there is nothing to return so its return type is
void.

§ The create method returns the remote interface.

The bean class extends the java.ejb.SessionBean interface, which declares the ejbRemove,
ejbActivate, ejbPassivate, and setSessionContext methods. The HelloBean class does
not use these methods, but it must implement them (as empty functions). Later sections on stateful
session beans and entity beans explain the use of these methods.

EJBExceptions

The primary purpose of a session bean is to run business tasks for the client. The client invokes
business methods on the remote object reference that the create method returns. From the client's
perspective, the business methods appear to run locally, although they actually run remotely in the
application server's EJB container. All the business methods declared in the remote interface need to
be implemented. The signatures of these business methods are the same as those defined in the
remote interface. However, since the bean object is running inside of the container, it does not need to
throw the java.rmi.RemoteException.

To indicate a system-level problem, such as the inability to connect to a database, a business method
should throw javax.ejb.EJBException. When a business method throws an EJBException, the
container wraps it in a RemoteException, which is caught by the client. Since EJBException is a
subclass of RuntimeException, you do not need to explicitly include it in the throws clause of the
business method. The HelloBean class is shown in Listing 20-3. It should be noted that the method
getWelcomeMsg(int) is coded defensively to prevent the index from going out of range.

Listing 20-3: HelloBean class

package java_database.ch20.HelloSLBean;

import javax.ejb.*;
import java.util.*;

public class HelloBean implements SessionBean

{
 // instance variables

 private SessionContext ctx;
 private String[] msgList = new String[3];

 // default constructor – different from ejbCreate()

 public HelloEJBBean() {
 }

 // Life cycle methods called by EJB container

 public void setSessionContext(SessionContext c) {
 System.out.println("setSessionContext called.");

 ctx = c;
 }

 public void ejbCreate() {
 System.out.println ("ejbCreate() called.");

Chapter 20:Enterprise JavaBeans

-511 -

 msgList[0] = "Hello!";
 msgList[1] = "Welcome to the EJB world.";

 msgList[2] = "Enjoy reading.";
 }

 public void ejbRemove() {
 System.out.println ("ejbRemove called.");

 }
 public void ejbPassivate() {

 System.out.println("ejbPassivate called.");
 }

 public void ejbActivate() {
 System.out.println("ejbActivate() called.");

 }

 // Business methods serving the client's need
 public String[] getAllWelcomeMsgs() {

 return msgList;
 }

 public String getWelcomeMsg(int i) {

 // first make sure index is not out of range
 i = (i >= msgList.length) ? (msgList.length - 1) : i;

 i = (i < 0) ? 0 : i;
 // return welcome message

 return msgList[i];
 }

 public int getNumberOfWelcomeMsgs() {

 return msgList.length;
 }

}

Where is the database-access code? After all, this is a book on Java database programming. Since EJB
itself is complex enough, I have deliberately kept the first EJB example as simple as possible (the spirit
of the HelloWorld example). As soon as you have this piece of code running, you can easily extend it
to fulfill your needs, such as accessing databases using the JDBC programming skills you have learned
from previous chapters. For example, the welcome messages may be stored in a database table. Then
in the ejbCreate method, you do not need to initialize the msgList array; instead, an instance of
javax.sql.DataSource should be initialized. And the business methods access the DataSource
and retrieve the welcome message (or count the number of rows) from the message table. You can find
code samples of initializing and accessing DataSource objects in next chapter.

After the bean classes are coded, they need to be packaged and deployed. Most application servers
have built-in tools for EJB (and enterprise application) deployment. The key artifacts of the deployment
process are the deployment descriptors, the XML files that contain the declarative information about the
EJBs and the enterprise application. Most of the container vendors use some proprietary technology to
enhance the performance of their product. As a consequence, the deployment descriptor usually
contains two files: one is the strictly J2EE standard, and the other is vendor specific. As an example, the

TE
AM
FL
Y

Team-Fly®

Chapter 20:Enterprise JavaBeans

-512-

deployment-descriptor files for WebLogic application server (version 6.1) are listed in Listing 20-4. If you
use different application servers, the files may look different.

Listing 20-4: Deployment-descriptor files for HelloEJB

First file: J2EE standard
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise

JavaBeans 2.0//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_2_0.dtd">
<ejb-jar>

 <enterprise-beans>
 <session>

 <ejb-name>HelloEJB</ejb-name>
 <home>HelloSLBean.HelloHome</home>

 <remote>HelloSLBean.Hello</remote>
 <ejb-class>HelloSLBean.HelloBean</ejb-class>

 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>

 </session>
 </enterprise-beans>

</ejb-jar>

#Second file: WebLogic specific
<?xml version="1.0"?>

<!DOCTYPE weblogic-ejb-jar PUBLIC '-//BEA Systems, Inc.//DTD WebLogic
6.0.0 EJB//EN' 'http://www.bea.com/servers/wls60/ejb20/dtd/weblogic-ejb-

jar.dtd'>
<weblogic-ejb-jar>

 <weblogic-enterprise-bean>
 <ejb-name>HelloEJB</ejb-name>

 <jndi-name>Hello</jndi-name>
 </weblogic-enterprise-bean>

</weblogic-ejb-jar>

You can see that the first XML file specifies the EJB name, remote interface name, home interface
name, and bean class name. It specifies that HelloEJB is a stateless session bean, and the container
manages its database transaction (transaction management is discussed later). The second file
specifies the EJB's Java Naming and Directory Interface (JNDI) name, which the client uses to look up
the EJB.

Now that the EJB has been developed, it is time to code the client. The steps for a client to invoke EJB
services are as follows:

1. Instantiate an InitialContext instance.
2. Look up the home interface from JNDI.
3. Create a remote interface instance as the EJB reference.
4. Invoke EJB services via the reference.

These steps are illustrated in the JSP client listed in Listing 20-5. The output of the test is shown in
Figure 20-1. Bounds checking coded into the method getWelcomeMsg(int) prevent the array index

Chapter 20:Enterprise JavaBeans

-513-

from going out of range, so there is always a welcome message returned for any integers passed into
the method.

Figure 20-1: Test output after the JSP client shown in Listing 20-5

Listing 20-5: JSP client

<%@ page import="javax.naming.*, java.rmi.*,
java_database.ch20.HelloSLBean.*" %>

<%! private static Context ctx;

 // Instantiate InitialContext
 static {

 try {
 ctx = new InitialContext();

 } catch (Exception e) {
 System.out.println(e);

 System.out.println("Error trying to do one time initialization.");
 }

 }

 // A utility method that output a message to browser with a line
breaker

 public void toBrowser(String msg, JspWriter out) throws Exception {

 out.print(msg + "
");
 }

 // Action starts

 toBrowser("Beginning client.jsp", out);
 // Look up home interface

 HelloEJBHome home = (HelloEJBHome)ctx.lookup("Hello");

Chapter 20:Enterprise JavaBeans

-514-

 // Create remote interface
 HelloEJB bean = (HelloEJB)home.create();

 // Invoke EJB services through remote interface reference

 String[] messages= bean.getAllWelcomeMsgs();
 toBrowser("
Available messages:", out);

 for(int i=0; i<bean.getNumberOfWelcomeMsgs(); i++) {
 toBrowser(messages[i], out);

 }

 //Test out-of-range index
 toBrowser("
", out);

 toBrowser("Trying message No. -1", out);
 toBrowser("Message No. -1: " + bean.getWelcomeMsg(-1), out);

 toBrowser("
", out);

 toBrowser("Trying message No. 4", out);
 toBrowser("Message No. 4: " + bean.getWelcomeMsg(4), out);

}
%>

Stateful Session Bean

A stateful session bean typically implements a conversational business process. A shopping cart of an
online shopping application is a classical example of a stateful session bean. While a shopper searches
the catalog and keeps dropping items into his or her shopping cart, the item list must be maintained.
Obviously, different shoppers' shopping carts cannot be mixed. Only after a shopper finally checks out
are the purchased items transferred into a persistent data store (such as a database).

A shopping cart application differs from a catalog-search application, for example, because each time
the user searches the catalog, the search criteria are different. Such a service is usually implemented
by a stateless session bean. This means that, unlike stateless session beans, a stateful session bean
cannot serve multiple clients. An instance of a stateful session bean is associated with only one client.
The instance retains the state on behalf of the client across multiple method invocations.

There is a one-to-one correspondence between user sessions (maintained as HttpSession objects)
and the instances of a stateful session bean. The EJB container always delegates the method
invocation from a given client to the same stateful session bean instance. The instance variables of the
stateful session bean provide a convenient mechanism for the application developer to retain a client-
specific state on the server. Note that such a state is not persistent on any data store. If the session is
timed out, or if the server is crashed, the states are lost. If the states need to be persistent against
server crash, entity beans must be used.

A client initiates the life cycle of a stateful session EJB in the same way as stateless session beans: by
invoking the create method in its home interface. The EJB container instantiates the bean and then
invokes the setSessionContext and ejbCreate methods in the session bean. The bean is now
ready to have its business methods invoked.

Unlike stateless session beans, stateful session instances cannot be pooled because of the one-to-one
correspondence between bean instances and session objects. At the end of the client session (for
example, the online shopper checks out), the client invokes the remove method, and the EJB container
calls the bean's ejbRemove method. The bean's instance is then ready for garbage collection.

Chapter 20:Enterprise JavaBeans

-515-

Passivation and activation

A stateful session object lasts for the duration of the business process that typically spans multiple
client-invoked business methods. The process may last for several minutes, hours, or even days.
During its life cycle, the state of a stateful session instance may occupy a nontrivial amount of main
memory on the server. In addition, the state may include expensive resources such as database
connections. Because of these factors, it is important that the EJB container be able to reclaim the
resources (when the available resources become too low) by saving the state into some form of
secondary memory, such as a database or file systems. Later, when the state of the session object is
once again needed for the invocation of a business method, the EJB container can restore the state
from the saved image.

The process of saving the session objects' state to secondary storage is called passivation, whereas the
process of restoring the state is called activation. The container typically passivates a session object
when it needs to free resources in order to process requests from other clients or when it needs to
transfer the session bean instance to a different process for load-balancing purposes. The container
passivates the instance by invoking the ejbPassivate method and then serializing the instance and
moving it to some secondary storage. When it activates the session objects, it restores the session
bean's instance by deserializing the saved image of the passivated instance and then invoking the
ejbActivate method.

For many session beans, including the example YachtSessionEJB, the passivation and activation
processes do not require any programming effort from the bean developer. The bean developer has
only to ensure that the objects held in the session bean instance variables are serializable at
passivation. An object is serializable if it is an instance of a class that has implemented the
java.io.Serializable interface.

Business processes and rules

In this chapter and the next two, we build a simple example application to demonstrate the use of
stateful session beans and entity beans. Please note that these example EJBs are written for
educational purposes only. They may not represent the best (or even appropriate) approaches for the
hypothetical business process. The error and exception handling are not enough for these programs to
be used in any a production release. Nevertheless, once you have fully understood the example code
and have had it running, you can easily extend its functionality to meet your needs. In that sense, it
serves as a good starting point for your own EJB application development.

The example application is used for a yacht club in its yacht cruise operation. From time to time, the
club offers its members free yacht cruises. The business process includes the following tasks:
§ Operate the yacht such as start, stop, accelerate and decelerate.
§ Check the status of the yacht.
§ Pick up a club members as a passengers (only members can come on board).
§ Drop off passengers.

Since the business process involves multiple business-method invocations, it is implemented as a
stateful session bean: YachtSessionEJB. The yacht and club members are business entities and can
be modeled by entity beans. Although the MemberEJB and the YachtEJB are developed in the next
two chapters, the YachtSessionEJB code is listed in Listings 20-6 and 20-7.

Listing 20-6: Remote and Home interfaces of YachtSessionEJB

/** YachtSessionEJB YachtSessionEJB
 * @author: Andrew Yang

 * @version: 1.0
 */

package java_database.YachtSessionSFBean;

Chapter 20:Enterprise JavaBeans

-516-

import javax.ejb.*;
import java.rmi.*;

import java_database.common.*;
import java_database.MemberEBean.*;

public interface YachtSession extends EJBObject {

 public void start() throws RemoteException, YachtException;
 public void stop() throws RemoteException, YachtException;

 public int accelerate(int amount) throws RemoteException, YachtException;
 public int decelerate(int amount) throws RemoteException, YachtException;

 public void addPassenger(Member member) throws RemoteException,
YachtException;
 public boolean removePassenger(Member member) throws RemoteException;

 public YachtStatus getCurrentStatus() throws RemoteException;
}

/** YachtSessionEJB Home Interface

 * @author: Andrew Yang
 * @version: 1.0

 */
package java_database.YachtSessionSFBean;

import javax.ejb.*;

import java.rmi.*;
import java_database.YachtEBean.*;

public interface YachtSessionHome extends EJBHome {

 public YachtSession create(Yacht yacht) throws CreateException,
RemoteException;
}

Listing 20-7: YachtSessionEJB implementation class

/** YachtSessionEJB Implementation Class
 * @author: Andrew Yang

 * @version: 1.0
 */

package java_database.YachtSessionSFBean;

import javax.ejb.*;
import java.rmi.*;

import java.util.*;
import javax.naming.*;

import java_database.common.*;

Chapter 20:Enterprise JavaBeans

-517 -

import java_database.YachtEBean.*;
import java_database.MemberEBean.*;

public class YachtSessionBean implements SessionBean, SessionSynchronization
{
 private int currentVelocity;
 private boolean yachtRunning;

 private Vector passengers;
 private Yacht yacht; // Remote reference to the Yacht

 private InitialContext ctx;

 private SessionContext context;

 public YachtSessionBean() {
 try {

 ctx = new InitialContext();
 } catch (Exception e) {

 System.out.println("Could not obtain InitialContext");
 }

 }

 public void ejbCreate(Yacht Yacht) throws RemoteException {
 yachtRunning = false;

 currentVelocity = 0;
 passengers = new Vector(10);

 this.yacht = yacht;
 }

 public void setSessionContext(SessionContext c) { this.context = c; }

 public void ejbRemove() { }
 public void ejbActivate() { }

 public void ejbPassivate() { }
 public void afterBegin() { }

 public void beforeCompletion() { }
 public void afterCompletion(boolean committed) { }

 // business methods

 public void start() throws YachtException {
 if((passengers == null) || (passengers.size() == 0)) {

 throw new YachtException("Cannot start! No passengers in the
Yacht.");
 }

 yachtRunning = true;
 }

Chapter 20:Enterprise JavaBeans

-518-

 public void stop() throws YachtException {

 if(currentVelocity > 2) {
 throw new YachtException("Too fast to stop. Decelerate first!");

 }
 yachtRunning = false;

 }

 public int accelerate(int amount) throws RemoteException{
 if(yachtRunning) {

 currentVelocity = (currentVelocity + amount <
yacht.getMaxVelocity()) ?
 (currentVelocity + amount) :
yacht.getMaxVelocity();
 }
 return currentVelocity;

 }

 public int decelerate(int amount) {
 if(yachtRunning) {

 currentVelocity = (currentVelocity - amount > 0) ?
 (currentVelocity – amount) : 0;

 }
 return currentVelocity;

 }

 public void addPassenger(Member member) throws RemoteException,
YachtException {

 if(passengers.size() == yacht.getCapacity()) {
 throw new YachtException("Yacht is full (" + Yacht.getCapacity() +
")");
 }
 passengers.addElement(member);

 }

 public boolean removePassenger(Member member) {
 return passengers.remove(member);

 }

 public YachtStatus getCurrentStatus() throws RemoteException {
 YachtStatus status = new YachtStatus();

 status.setCurrentVelocity(currentVelocity);
 status.setYachtRunning(yachtRunning);

 status.setMaxVelocity(yacht.getMaxVelocity());

Chapter 20:Enterprise JavaBeans

-519-

 status.setMake(yacht.getMake());
 status.setModel(yacht.getModel());

 status.setCapacity(yacht.getCapacity());
 // Update the passenger list

 Passenger[] list = new Passenger[passengers.size()];
 int counter = 0;

 Enumeration enum = passengers.elements();
 while (enum.hasMoreElements()) {

 list[counter++] = (Member)enum.nextElement();
 }

 status.setPassengers(list);
 return status;

 }
}

You can see that a YachtSessionEJB instance is associated with a specific yacht, which is
represented by an entity-bean instance. The business rules encapsulated by this entity bean include the
following:
§ If there are any passengers on board, the yacht can be started.
§ If the speed has dropped to below a threshold (for example, 2 miles/hour), the yacht can be

stopped.
§ The yacht can be accelerat ed or decelerated between zero and maximum speed.
§ The status of the yacht can be checked by calling the getCurrentStatus method.
§ The session bean maintains a passenger list.
§ Only club members can board the yacht.
§ Whenever a new passenger is picked up, or a passenger leaves board, the passenger list is

updated.

The YachtSessionEJB uses other helper or utility classes such as YachtStatus, YachtException,
and so on. YachtException is the application exception that wraps the exceptions related to business
rules. Do not be distracted by these utility classes at this time. They are discussed in subsequent
chapters when we build the other parts of the example. Although the cruise process is implemented as
a session bean, the business entities such as Yacht and Club Member would be better implemented as
entity beans, as discussed next.

Entity Beans

An entity bean represents a business-entity object that exists in persistent storage mechanisms such as
relational databases, object stores, or file systems. In practice, the persistent storage mechanism is
usually a relational database. Typically, each entity bean has an underlying table in a relational
database, and each instance of the bean corresponds to a row in that table. In a more complex situation,
an entity bean may represent several related database tables, and each instance may correspond to a
record in the table join. Some examples of business objects are customers, purchase orders, and
products.

The syntax of the session bean and entity bean client-view API is almost identical. However, the two
types of EJBs have different life cycles, different persistent management, and provide different
programming styles to their clients.

Entity beans are normally used under the following conditions:
§ The bean represents a business entity, not a procedure. For example, MemberEJB is be an entity

bean, but MemberRegistrationEJB is likely a session bean.
§ The state of the bean is required to be persistent. If the bean instance terminates or if the server is

shut down, the bean's state still exists in persistent storage (for example, a database).

Chapter 20:Enterprise JavaBeans

-520-

§ The bean is shared (that is, accessed simultaneously) by multiple clients.

Primary keys

Similar to a row stored in a database table, each entity bean has a unique object identifier called a
primary key. A customer entity bean, for example, might be identified by a customer number. Note that
the primary key of an entity bean is an object. In most cases, it may be simply a String object,
although it can be more complex. If the number (or integer) is used in the underlying database table, the
Java wrapper classes (such as java.lang.Integer or java.lang.Long) need to be used for the
primary key class. The primary key object enables the client to locate a particular entity-bean instance.

Persistent Storage

When an entity bean is created, the data that the EJB represents is placed into the persistent storage,
typically through a database insert operation, and a copy of that data is stored in the memory as part of
the EJB instance. Whenever the attributes of the in-memory EJB instance are modified, their underlying
persistent counterparts are automatically updated by the EJB container.

Since an entity bean's value is stored in a persistent manner, multiple clients can access the same data
at the same time. In others words, entity beans allow shared access just as a relational database allows
multiple users to access its data simultaneously. EJB containers can implement two or more clients
requesting accesses to the same data in a variety of ways. Because these clients might want to change
the same data, it's important that entity beans work within transactions. Typically, the EJB container
provides transaction management. In this case, bean developers or application assemblers specify the
transaction attributes in the bean's deployment descriptor. A bean developer does not have to code the
transaction boundaries in the bean — the container marks the boundaries based on the transaction
attributes specified in the deployment descriptor. Transaction attributes are discussed later in this
chapter.

Because the state of an entity bean is saved in a persistent storage, it exists beyond the lifetime of the
application or the server process. For example, data stored in a database still exists even after you shut
down the database server or the applications it serves.

Bean-managed persistence

There are two types of persistence for entity beans: bean managed and container managed. With bean-
managed persistence (BMP), the EJB itself is responsible for writing all of the logic necessary for
synchronizing the data between itself and the persistent store. The entity bean code that a bean
developer writes contains all the calls that access the database. A BMP bean must manage the four
following operations:
§ Add an entry to the persistent store.
§ Remove an entry from persistent store.
§ Update the persistent store with the current attribute values of the entity bean instance.
§ Update the attributes of bean instance with values stored in persistent store.

Effectively, a bean developer is responsible for coding all of the database queries. However, the
container still controls the life cycle of the bean itself.

Cross-
Reference BMP entity beans are discussed in more detail in Chapter 21.

Container-managed persistence

Container-managed persistence (CMP) means that the EJB container handles all database access
required by the entity bean. The bean's code contains no database access (SQL) calls. As a result, the
bean's code is not tied to a specific persistent storage mechanism (database). Because of this flexibility,
even if you redeploy the same entity bean on different J2EE-compliant application servers that use
different databases, you will not need to modify or recompile the bean's code. In short, CMP entity
beans are more portable. To generate the data-access calls, the container needs information that a
bean developer provides in the entity bean's deployment descriptor.

Chapter 20:Enterprise JavaBeans

-521-

Like a table in a relational database, an entity bean may be related to other entity beans. For example,
in a college enrollment application, StudentEJB and CourseEJB are related because students enroll
in classes. With container-managed persistence, the EJB container takes care of the relationships. For
this reason, relationships in entity beans with container-managed persistence are often referred to as
container-managed relationships (CMRs).

Cross-
Reference You learn more on CMP entity beans in Chapter 22.

In addition to session beans and entity beans, the EJB 2.0 introduced a third type of EJB: message
driven bean, as discussed next.

Message-Driven Beans

A message-driven bean is a new type of EJB. It acts as a listener for the Java Message Service (JMS)
API and processes messages asynchronously. That means the client does not need to wait the
complete of the tasks it delegated to the message driven bean. Instead, it can continue on other tasks
as soon as it has dropped the message to the JMS. The Message-driven beans were introduced as
recently as late 2001 in EJB Specification 2.0 to fill up the gap in interactions between the J2EE
platform and the Java Message Service (JMS). The messages may be sent by any J2EE component
(such as an application client, another enterprise bean, or a Web component) or by a JMS application or
system that does not use J2EE technology at all.

A message-driven bean is similar to an event listener, except that it receives messages instead of
events. The calling client does not need to wait for the completion of the services it requests. As soon
as the message is dropped to the JMS message queue or the topic, the calling client moves on to other
tasks. Message-driven beans currently process only JMS messages, but in the future they may be used
to process other kinds of messages as well.

A visible difference between message-driven beans and session or entity beans is that clients do not
access message-driven beans through interfaces. In fact, clients do not directly access message-driven
beans at all. A message-driven bean can only be accessed by an EJB container once a JMS message
is received. As a consequence, message-driven beans have no home or remote interfaces. Only the
implementation class needs to be developed. As you can see from the example in Listing 20-8, there is
actually only one specific method, onMessage, that the bean developer needs to code.

Listing 20-8: MessageEchoEJB source code

package java_database.MessageEchoMDEJB;

import javax.ejb.*;
import javax.jms.*;

/**

 * This message driven bean echos the message text it received on the
standard output.
 * It can be extended to implement any business rules upon receiving the
message.
 * @author: Andrew Yang

 * @version: 1.0
 */

public class MessageEchoBean implements MessageDrivenBean, MessageListener {
 private MessageDrivenContext context;

TE
AM
FL
Y

Team-Fly®

Chapter 20:Enterprise JavaBeans

-522-

 /** Public, default constructor */
 public MessageEchoBean () {}

 /** Set the MessageDrivenContext */

 public void setMessageDrivenContext(MessageDrivenContext context) {
 this.context = context;

 }

 /** ejbCreate is required by EJB Specification */
 public void ejbCreate() { }

 /** ejbRemove is required by EJB Specification */

 public void ejbRemove() { }

 /**
 * Message handling, the business logic. The message text is printed on
the
 * output screen.
 It can be extended to implement any business rules
 * upon receiving the message.

 */
 public void onMessage(Message message) {

 TextMessage textmessage = (TextMessage)message;
 try {

 String s = textmessage.getText();
 System.out.println("A message received: " + s);

 } catch(JMSException e) {
 ex.printStackTrace();

 }
 }

}

In the following respects, a message-driven bean resembles a stateless session bean:
§ A message-driven bean's instances retain no data or conversational state for a specific client.
§ All instances of a message-driven bean are equivalent, allowing the EJB container to assign a

message to any message driven bean instance available. The container can pool these instances
to allow streams of messages to be processed concurrently.

§ A single message-driven bean can process messages from multiple clients.

The instance variables of the message-driven bean instance can contain some state across the
handling of client messages (for example, a JMS API connection, an open database connection, or an
object reference to an enterprise bean object).

When a JMS message arrives, the container calls the message-driven bean's onMessage method to
process the message. The onMessage method normally casts the message to one of the five JMS
message types and handles it in accordance with the application's business logic. The onMessage
method may call helper methods, or it may invoke a session or entity bean to process the information in
the message or to store it in a database.

Chapter 20:Enterprise JavaBeans

-523-

A message may be delivered to a message-driven bean within a transaction context, so that all
operations within the onMessage method are part of a single transaction. If message processing is
rolled back, the message will be redelivered.

Session beans and entity beans are able to send JMS messages and to receive them synchronously,
but not asynchronously. To avoid tying up server resources, it may be better not to use blocking
synchronous receives in a server-side component. To receive messages asynchronously, a message-
driven bean has to be used.

You can see that the development of a message-driven bean is fairly straightforward. The onMessage
method is the only method a bean developer has to write. Note that various application servers have
different mechanisms to write text to their council screen. Before deploying the MessageEchoEJB to
your favorite application server, you may need to replace println function in the following code with
function calls appropriate to the server you use:

System.out.println("A message received: " + s);

During the deployment phase, the bean is associated to a JMS destination, either a message queue or
a topic. The JMS destination is where the message-driven bean receives its message. It is specified in
the deployment descriptor as follows:

<message-driven-destination>

 <jms-destination-type>javax.jms.Topic</jms-destination-type>
</message-driven-destination>

<message-driven-descriptor>
 <destination-jndi-name>SimpleTopic</destination-jndi-name>

</message-driven-descriptor>

Notice that the MessageEchoEJB is associated to the JMS topic, "SimpleTopic".

So far you have learned all three types of EJBs. Let us moved to EJB transaction management.

EJB Transactions

Transactions are a big part of most enterprise applications. A transaction consists of multiple data-
updating steps as an indivisible unit of work. Execution of a transaction may end in two ways: commit or
rollback. When a transaction commits, the data modifications made by its statements are saved. If one
of the multiple steps within a transaction fails, the transaction rolls back, undoing the effects of all steps
in the transaction.

The EJB architecture provides for two kinds of transaction demarcation: container-managed transaction
and bean-managed transaction, as discussed in the following sections.

Container-Managed Transaction

For EJBs with container-managed transactions , the EJB container sets the boundaries of the
transactions. Container-managed transactions can be used with any type of EJBs: session bean, entity
beans, or message-driven beans. Container-managed transactions significantly simplify development
because the EJB code does not explicitly mark the transaction boundaries. The code does not include
statements that begin and end the transaction.

Typically, the container begins a transaction immediately before an EJB method starts. It commits the
transaction just before the method exits. Each method can be associated with a single transaction.
Nested or multiple transactions are not allowed within a method in the current EJB standard. Container-
managed transactions do not require all methods to be associated with transactions. When deploying
an EJB, one specifies which of the bean's methods are associated with transactions by setting the
transaction attributes.

Chapter 20:Enterprise JavaBeans

-524-

A transaction attribute specified in the deployment descriptor controls the scope of a transaction. A
transaction attribute may have one of the following values:
§ Required means that the container ensures that the bean method is invoked with a transaction.

If the calling client has a transaction, the container passes it to the bean method. If the calling client
does not have a transaction, the container starts one and then invokes the bean method.

§ RequiresNew means that the container always starts a new transaction when invoking the bean
method. If the calling client has a transaction, the container suspends it and starts a new one. This
is not a nested transaction because the outcome of the new transaction has no impact on the
suspended one. If the calling client does not have a transaction, the container creates a new
transaction and invokes the bean method.

§ Mandatory states that the calling client must have a transaction, which is propagated to the bean
method being invoked. If the calling method does not have a transaction, the container throws a
javax.transaction. TransactionRequiredException.

§ NotSupported means that the method cannot handle transactions. If the calling client has a
transaction, the container suspends it before invoking the bean method. If the calling client does
not have a transaction, the container immediately invokes the bean method.

§ Supports states that the bean method accepts a transaction if available but does not require the
container to create a new one. If the calling client has a transaction, the container propagates it to
the bean method. If the calling client does not have a transaction, the container just invokes the
bean method.

§ Never means that the bean method is not expecting a transaction. If the calling client has a
transaction, the container throws a java.rmi.RemoteException. If the calling client does not
have a transaction, the container just invokes the bean method.

Table 20-2 summarizes the behavior of the container for each of these transaction attributes.

Table 20-2: Transaction Attributes

Transaction Attribute Client Has Transaction Client Has No Transaction

Required Transaction Propagated New Transaction Started

RequiresNew Transaction Suspended New Transaction Started

Mandatory Transaction Propagated Throws
TransactionRequiredExceptio
n

NotSupported Transaction Suspended No Action

Supports Transaction Propagated No Action

Never Throws RemoteException No Action

Because transaction attributes are stored in the deployment descriptor, they can be changed during
several phases of J2EE application development: EJB creation, application assembly, and deployment.
However, an enterprise bean developer is responsible for specifying the attributes when the bean is first
created. The attributes should be modified only by other developers who are assembling components
into larger applications. Do not expect the person who is deploying the J2EE application to specify the
transaction attributes.

You can specify the transaction attributes for the entire enterprise bean or for individual methods. If
you've specified one attribute for a method and another for the bean, the attribute for the method takes
precedence. As an example, the transaction attribute of the YachtSessionEJB may be specified as
follows:

<enterprise-beans>
 <session>

 <ejb-name>YachtSessionEJB</ejb-name>
 <transaction-type>Container</transaction-type>

 </session>

Chapter 20:Enterprise JavaBeans

-525-

<enterprise-beans>

<assembly-descriptor>
 <container-transaction>

 <method>
 <ejb-name>YachtSessionEJB</ejb-name>

 <method-name>*</method-name>
 </method>

 <trans-attribute>Required</trans-attribute>
 </container-transaction>

</assembly-descriptor>

The asterisk (*) between the method-name tags indicates all methods. This listing specifies the
transaction attribute for all methods as Required. For finer granularity, you can assign each method a
different transaction attribute.

Bean-Managed Transaction

In a bean-managed transaction, the code explicitly marks the boundaries of the transaction. Note that
only session or message-driven beans can use bean-managed transactions. An entity bean cannot
have bean-managed transactions; it must use container-managed transactions instead. Although beans
with container-managed transactions require less coding, they have one limitation: when a method is
executing, it can be associated with either a single transaction or no transaction at all. If this limitation
makes coding your bean difficult, you should consider using bean-managed transactions. For example,
if multiple databases are accessed and a two-phase commit is required, a bean-managed transaction
should be used.

Note

Entity beans must use container-managed transactions. Session beans and message-
driven beans can use either container-managed transactions or bean-managed
transactions.

When coding a bean-managed transaction for session or message-driven beans, the bean developer
must decide whether to use Java Database Connectivity (JDBC) or Java Transaction Architecture (JTA)
transactions. The JDBC transaction has been discussed intensively in previous chapters and is not
repeated here. However, using JDBC transactions is not recommended in EJB development. JDBC
transactions are usually only used when wrapping legacy code inside a session bean.

In many enterprise applications, the client needs to combine the invocation of multiple methods into a
single transaction. The methods can be on the same EJB, or they can be on multiple EJBs. To
demarcate transactions across multiple method invocations, it is recommended that you use the JTA
APIs. Actually, only one interface in the JTA APIs, javax.transaction.UserTransaction, needs
to be used to demarcate a JTA transaction. This interface has a few useful methods, such as begin,
commit, and rollback. A bean method may look like this:

public void withdrawCash(double amount) {
 UserTransaction ut = context.getUserTransaction();

 try {
 // Start transaction

 ut.begin();
 // perform tasks

 updateChecking(amount);
 machineBalance -= amount;

 insertMachine(machineBalance);

Chapter 20:Enterprise JavaBeans

-526-

 // Commit when all tasks succeed
 ut.commit();

 } catch (Exception ex) {
 try {

 //Some tasks failed. Rollback.
 ut.rollback();

 } catch (SystemException syex) {
 throw new EJBException("Rollback failed: " + syex.getMessage())

 }
 throw new EJBException("Transaction failed: " + ex.getMessage());

 }
}

The preceding code snippet demonstrates the usage of UserTransaction methods. The begin and
commit invocations delimit the updates to the database. If the updates fail, the code invokes the
rollback method and throws an EJBException.

To summarize the discussions in this section, Table 20-3 lists the types of transactions allowed for the
different types of EJBs.

Table 20-3: Allowed Transaction Types for EJBs

EJB Type Container-
Managed
Transaction

Bean-Managed
Transaction
JTA Transaction

JBDC Transaction

Entity Allowed Not Allowed Not Allowed

Session Allowed Allowed and
Recommended

Allowed but not
Recommended

Message Driven Allowed Allowed and
Recommended

Allowed but not
Necommended

Summary

This chapter provides a brief introduction to the vastly broad area of EJB. You learn how to develop
EJBs by writing a simple session bean: HelloEJB. You also study a stateful session bean,
YachtSessionEJB. The following specific topics are discussed:
§ Session beans
§ Entity beans
§ Message-driven beans
§ EJB transactions

In the next chapter, you will learn about the entity beans using bean-managed persistence.

Chapter 21:Bean-Managed Persistence

-527-

Chapter 21: Bean-Managed Persistence

In This Chapter

Bean-managed persistence is discussed in detail in this chapter. The entity object persistence model is
explained. and the development of bean managed persistence EJBs are illustrated with examples. After
reading this chapter, you should be able to develop your own EJBs using bean managed persistence.

Entity-Object Persistence

A business entity is a business object representing some information an enterprise maintains. A
business entity has state, represented by the values of its data fields, and this state is kept persistently
in a persistent store, typically in a database. As discussed in Chapter 20, an entity-bean instance
represents a business-entity object stored in such persistent storage.

The methods of the entity bean class allow the client to access the business-entity object's state
through the bean instance. In other words, the state of an entity object is maintained and persisted
outside the bean instance, in persistent storage. This mechanism is illustrated in Figure 21-1.

Figure 21-1: Entity object's state maintained in persistent store

Separating the state of the entity-bean objects from the bean instances has the following advantages:
§ Facilitates data persistence. The separation permits the life cycle of the entity object's state to

go beyond the life cycle of the entity-bean instances and even beyond the life cycle of the JVMs in
which the instances are created.

§ Facilitates the transaction. Persistent stores (for example, relational databases), instead of the
EJB container, are responsible for the implementation of transaction behavior to keep the atomicity,
consistency, isolation, and durability (the so-called ACID properties). This takes advantage of the
built-in functionality of a relational database management system and greatly simplifies the
implementation of EJB container.

§ Promotes distributed component model. The separation makes it possible to implement the
entity object's state so that it is accessable concurrently from multiple JVMs running on different
network nodes. This is essential to the implementation of EJB server clusters that provide load
balancing and fail-over for large-scale applications.

§ Improves accessibility of non-Java applications. The separation makes it possible to
externalize an entity object's state in a representation suitable for non-Java applications. For
instance, if a relational database maintains the state of the entity objects, the state is available to
any application that can access the database via SQL statements.

The entity-bean architecture is flexible regarding the choice of the type of the persistent store. It can be
a relational database; a hierarchical database; an object-oriented database; an XML database; an
LDAP server; a file system; an application; and so on. In practice, however, most applications use
relational databases as persistent stores. When the state of an entity object is maintained in a persistent
data store, an entity-bean instance must use an API specific to the persistent store to access the state
of the associated entity object.

As you have learn in Chapter 20, an entity-bean instance can access the state of its associated entity
object using two access styles: BMP and CMP. The BMP implements the persistence in the EJB class
or in one or more helper classes, whereas the CMP delegates the handling of its persistence to the EJB
container. BMP is discussed in detail in following sections, and CMP is the topic of the next chapter.

Bean-Managed Persistence

Chapter 21:Bean-Managed Persistence

-528-

With bean-managed persistence, the bean developer writes database-access calls using a persistent
storage-specific API. In most cases, the persistent stores are relational databases, and the JDBC
provides a unified API for data access. Effectively, the bean developer is responsible for coding all of
the database queries. The data-access calls can be coded directly into the EJB implementation class,
as you see in the examples given later in this chapter, or can be encapsulated in a data-access object
(DAO).

If database queries are coded directly in the EJB class, it may be difficult to adapt the entity bean to
work with a different type of database or a database that has a different schema. Encapsulating data-
access calls in a DAO makes it easier to adapt the EJB's data access to different schemas or different
databases, since only the DAO, instead of the whole EJB, needs to be modified or rewritten. Detailed
discussion on DAO is beyond the scope of this book. Interested readers can find the use of DAOs in
many J2EE design-pattern books.

The main advantage of BMP is its simple deployment process. When an entity bean uses BMP, no
deployment tasks are necessary to adapt the bean to the database type or database schema.
Everything is hard coded in the implementation. As you can see, this is also the main disadvantage of
BMP, because an entity bean using BMP is generally tied up with the database type and schema. The
tight coupling between the EJB and database makes BMP entity bean less flexible and less reusable
across different operational environments.

However, an entity bean using BMP can achieve some degree of independence of the EJB code from
the database type and schema by using the DAOs discussed earlier in this section. Since the entity
bean uses the DAO to access the entity object's state stored in the database, the EJB implementation
class is not tightly coupled with the database. The DAO provides the appropriate interface for
customizing the data-access logic to a different database type or schema. For example, a
CustomerEJB may use a DAO to access the Customer Relationship database on Oracle and use
another DAO to access the Sales database on Sybase. If access to a new database schema (or
database type) is needed, you need only to code a new DAO and do not need to change the EJB code
at all.

BMP reduces the complexity of the deployment process, but the price you pay is the loss of flexibility.
You should choose BMP or CMP based on your own requirements.

Primary Key

Understanding primary keys is an essential part of understanding entity EJBs (both BMP and CMP
beans). One of the fundamental concepts of entity EJBs is that they must be accessible concurrently by
multiple clients. This does not mean that multiple clients need to access the same bean instance; rather,
they need to have access to the state of the same business-entity object stored in the database. To
achieve this, the EJB architects incorporate an entity bean primary key concept similar to the primary
key of a relational database. The primary key is a unique identifier for the entity object. The primary key
enables the client to locate a particular business entity it needs to access.

Since every entity bean must have a unique primary key, you can compare two entity EJB instances
without actually using the instances themselves. Rather, you can just compare the contents of their
primary keys. If two EJB instances with the same home interface have the same primary key, they are
considered identical, since they represent the same underlying entity object. For example, a customer
entity bean may be identified by a customer number. Two CustomerEJB instances with the same
customer number are considered identical because they represent the same customer. The
synchronization between these two instances and the state of the Customer object stored in the
database is the EJB container's responsibility.

Note that the primary key of an entity bean is a Java class object. In most cases, your primary key class
is a String, an Integer, or some other class that belongs to the J2SE or J2EE standard libraries. For
some entity beans, you need to define your own primary key class. For instance, if the bean has a
composite primary key (that is, one composed of multiple fields), you must create a primary key class.

For BMP entity beans, a primary key class must meet these requirements:
§ The class is serializable.

Chapter 21:Bean-Managed Persistence

-529-

§ All fields are declared as public.
§ The class has a public default constructor.
§ The accessors are public.
§ The class implements the hashCode() and equals(Object other) methods.

Listing 21-1 shows a primary class for the PartEJB that represents the business object stored in the
Part table in the database. The Part table has a composite key: the productId and vendorId fields.
The primary key class then has two attributes: productId and vendorId.

Listing 21-1: A primary key class example

public class PartKey implements java.io.Serializable {

 public String productId;
 public String vendorId;

 public ItemKey() { };

 public ItemKey(String productId, String vendorId) {

 this.productId = productId;
 this.vendorId = vendorId;

 }

 public String getProductId() { return productId; }
 public String getVendorId() { return vendorId; }

 public boolean equals(Object other) {

 if(other instanceof PartKey) {
 return (productId.equals(((ItemKey)other).productId)

 && vendorId.equals(((ItemKey)other).vendorId));
 }

 return false;
 }

 public int hashCode() {

 return productId.concat(vendorId).hashCode();
 }

}

With BMP, the ejbCreate method (to be discussed in next section) assigns the input parameters to
instance variables and returns the primary key object. A client can fetch the primary key of an entity
bean by invoking the getPrimaryKey method of the EJBObject class as follows:

 PartKey id = (PartKey)Part.getPrimaryKey();

The entity bean retrieves its own primary key by calling the getPrimaryKey method of the
EntityContext class as shown here:

 PartKey id = (PartKey)context.getPrimaryKey();

Chapter 21:Bean-Managed Persistence

-530-

At the deployment phase, you specify the primary key class in the entity bean's deployment descriptor,
as shown next:

<entity>
 <ejb-class>PartEBean.PartBean</ejb-class>

 <home>PartEBean.PartHome</home>
 <remote>PartEBean.Part</remote>

 <persistence-type>Bean</persistence-type>
 <prim-key-class> PartEBean.PartKey</prim-key-class>

 … …
</entity>

The entity bean's deployment descriptor specifies that the PartEJB uses bean-managed persistence
and that its primary key class is PartKey. In the next chapter, you see that the deployment descriptor
for a CMP entity bean contains much more contents than that for a BMP bean.

In the rest of this chapter, a BMP entity bean, MemberEJB, is built as an example. A MemberEJB
instance represents a row in the Member Table. The Member Table has four columns, as shown in
Table 21-1. Since the Member Table has a simple primary key, member_id, the java.lang.String
class is used as the MemberEJB's primary key class.

Table 21-1: Sample Data Stored in the Member Table

member_id last_name first_name membership_year

m001 Dole Jane 20

m002 Dole John 4

m003 Corleone Fredo 12

m004 Smith Mike 7

Create and Delete Entity Objects via Entity Beans

With BMP, the bean developer writes all the database-access calls. These database access-operations
include the creation and deletion of the business objects, the synchronization between the attribute
values of entity beans and the state of the corresponding business object, and the search for specific
business objects.

The EJBHome interface and EntityBean interface specify the life-cycle methods for these operations,
and the bean developer implements these methods by using database-access APIs such as JDBC. As
an example, the home interface of the MemberEJB is shown in Listing 21-2. A Member EJB represents
a row in the Member Table, which has these four columns, as seen in Table 21-1:
§ member_id
§ last_name
§ first_name
§ membership_year.

Listing 21-2: Home interface of MemberEJB

/** MemberEJB Home Interface

 * @author: Andrew Yang
 * @version: 1.0

 */
package java_database.MemberEBean;

Chapter 21:Bean-Managed Persistence

-531-

import java.rmi.*;

import java.util.*;
import javax.ejb.*;

public interface MemberHome extends EJBHome {

 public Member create(String id, String lastName, String firstName, int
membershipYear)

 throws CreateException, RemoteException;
 public Member findByPrimaryKey(String id)

 throws FinderException, RemoteException;
 public Collection findByMembershipYear(int minYear)

 throws FinderException, RemoteException;
}

The home interface may define one or more create methods. The overloaded create methods must
have different signatures. The home interface create methods all return the EJB's remote interface,
which in the preceding example is Member, and they all throw CreationException and
RemoteException. The bean developer may define a create method to throw additional application-
specific exceptions to address their specific requirement in exception handling.

Note that the MemberHome interface extends the EJBHome interface, which is listed in Listing 21-3. The
EJBHome interface defines two remove methods. The first method removes an EJB object identified by
a handle. A handle is an object that provides a reference to an EJB object and can be stored in
persistent storage. The second method removes an EJB object identified by its primary key.

Listing 21-3: EJBHome interface

Import java.rmi.RemoteExceptions;

Public interface EJBHome extends java.rmi.Remote {

 Void remove(Handle handle) throws RemoteException,
RemoveException;

 Void remove(Object primaryKey) throws RemoteException,
RemoveException;

 EJBMetaDate getEJBMetaData() throws RemoteException;
 HomeHandle getHomeHandle() throws RemoteException;

}

Like the session bean implementation discussed in the previous chapter, the BMP entity-bean
implementation class implements the create and remove methods defined in the home interface.
However, the corresponding methods for the create methods are named ejbCreate in the
implementation class, and they return a primary key object instead of the remote interface. The
corresponding methods for the remove methods are named ejbRemove in the implementation class,
and they do not take any argument. The differences in name and signature between the interface
methods and implementation class methods are due to the fact that the life cycle of an entity bean is
managed by the EJB container. It is critical to understand the EJB life cycles in order to master the use
of EJB.

TE
AM
FL
Y

Team-Fly®

Chapter 21:Bean-Managed Persistence

-532-

When a client invokes a create method, the EJB container invokes the corresponding ejbCreate
method. Typically, an ejbCreate method in an entity bean performs the following tasks:
§ Inserts the entity state into the database
§ Initializes the instance variables
§ Returns the primary key

Thus, when an entity bean is created, the data that the EJB represents is placed in the database, and a
copy of that data is stored in the EJB container's memory as part of the EJB instance. If a record with
the same primary key already exists in the database, a CreationException will be thrown, and the
EJB object will not be instantiated.

For each ejbCreate method, you must write an ejbPostCreate method in the entity-bean
implementation class. (The ejbPostCreate method is defined in the EntityBean interface that
discussed later.) The EJB container invokes ejbPostCreate immediately after it calls ejbCreate.
Unlike the ejbCreate method, the ejbPostCreate method can invoke the getPrimaryKey method.
In most of situations, however, your ejbPostCreate methods are empty.

A client deletes an entity bean by invoking the remove method. This invocation causes the EJB
container to call the ejbRemove method, which deletes the business-entity object from the database. It
should be noted that the business-entity object is deleted from the database. The entity-bean instance is
not necessarily garbage collected. It is just disassociated with a specific entity object and may be
returned to the EJB pool maintained by the EJB container and ready to represent another business-
entity object (for example, another row in the same table). If the ejbRemove method encounters a
system problem, it should throw the EJBException. If it encounters an application error, it should
throw a RemoveException.

Note

Calling ejbCreate creates a business entity (for example, a row in a database table) in
the persistent storage. Calling ejbRemove deletes a business-entity object from the
persistent storage.

You can find the implementation of the ejbCreate and ejbRemove methods for MemberEJB later in
this chapter, under "An Example BMP Entity Bean — MemberEJB." You can see that the SQL
commands are coded to insert into and delete from the database.

An entity object can also be created or deleted directly by native database operations. For example, if a
SQL script deletes a row from a table, the entity object represented by the row is deleted, and the
corresponding entity-bean instances become disassociated with the entity object. If a client attempts to
invoke a business method on an entity bean instance after its underlying business object has been
deleted from the database, the client receives NoSuchObjectException.

Find Entity Object

Calling the ejbCreate method creates a business entity in the database. In many situations, the
business entity already exists in the database, and you just need to instantiate an EJB instance to
represent it. The finder methods are designed just for this purpose.

All entity beans have finder methods. Similar to the select command in SQL statements, finder
methods are used by clients to locate business objects stored in the database and to associate them
with entity-bean instances. Each finder method can have different logic for locating the entity object.
The logic may find one entity object or a group of entity objects. If a finder method returns a single
reference to the remote reference, it will return the first valid occurrence of the bean that is located. If a
finder method returns the Collection interface, it will return zero or more references to entity beans.
The client can then iterate over the collection to access each of the available beans.

All home interfaces must have a findByPrimaryKey(PrimaryKeyClass key) method. Since
lookup operations are common for all entity beans, a standard mechanism for looking up one entity
bean by its unique identifier (that is, the primary key) is defined as the findByPrimaryKey() method.
All entity beans have this method available and return exactly one reference to a bean in the form of the

Chapter 21:Bean-Managed Persistence

-533-

bean's remote interface. In addition to the findByPrimaryKey()method, other findByxxx
methods can be defined in the home interface to implement application-specific business logic. As seen
in Listing 21-2, the MemberEJB's home interface defines two finder methods. The
findByPrimaryKey(String id) method returns the remote interface. But the
findByMembershipYear(int minYear) returns a Collection because there may be zero or
more members that have established their membership for a certain number of years.

Like the create methods, each finder method must have a matching method in the implementation
classes. The method name in the implementation class is the same as that in the home interface,
except a prefix ejb is added, for example, ejbFindByPrimaryKey. The method must have the same
signature. However, the return type may be different. If only one entity-bean reference is returned, the
ejbFindByxxx method returns the primary key, instead of the remote interface.

The implementation of the MemberEJB 's finder methods is shown in Listing 21-6. With BMP, the SQL
code is written in these implementations to locate the entity objects in the database. Th e implementation
of ejbFindByPrimaryKey method may look strange to you because it uses a primary key (String in
this case) for both the method argument and return value. However, remember that a client does not
call ejbFindByPrimaryKey directly. The EJB container calls the ejbFindByPrimaryKey method.
The client invokes the findByPrimaryKey method, which is defined in the home interface and returns
the remote interface.

The following list summarizes the rules for the finder methods you implement in an entity bean class
with BMP:
§ All finder methods defined in the home interface must be implemented.
§ At a minimum, the ejbFindByPrimaryKey method must be implemented.
§ A finder method name must match the name of the corresponding method in the home interface

and must start with the prefix ejb.
§ The method must be public and cannot be final or static
§ The return type must be the primary key or a collection of primary keys.

The throws clause may include the javax.ejb.FinderException and exceptions that are specific
to your application. If a finder method returns a single primary key but the requested entity does not
exist, the method should throw the javax.ejb.ObjectNotFoundException (a subclass of
FinderException). If a finder method returns a collection of primary keys, but it does not find any
objects, it should return an empty collection.

Synchronization of Bean Instance Variable and State of Persistent
Object

Recall from earlier in this chapter that the state of an entity object is kept in the database. The attribute
values of the EJB instance are merely the image of the entity object's state. Since multiple clients can
access the same entity objects via multiple EJB instances, the EJB container must keep the attribute
values of the EJB instances and the state of the corresponding entity object synchronized. The
synchronization mechanisms are different between the BMP and CMP entity beans. With BMP, the EJB
container maintains the synchronization by calling the ejbLoad and ejbStore methods you have
coded in the EJB implementation class.

The ejbLoad and ejbStore methods are defined in the EntityBean interface, which is shown in
Listing 21-4. The EntityBean interface defines a group of life-cycle methods for the EJB container to
use. All entity-bean implementation classes extend the EntityBean interface. You may have noticed
that the implementation class shown in Listing 21-6 (in Section: An Example BMP Entity EJB) extends
the EntityBean interface. Therefore, all the methods defined in the EntityBean interface must be
implemented in the EJB class. With BMP, you need to write a certain amount of code to implement the
ejbLoad and ejbStore methods. The other methods are typically empty or have only a few lines of
code.

Listing 21-4: EntityBean home interface

Chapter 21:Bean-Managed Persistence

-534-

public interface EntityBean extends EnterpriseBean{

 public void setEntityContext(EntityContext ctx)
 throws EJBException, RemoteException;

 public void unsetEntityContext()
 throws EJBException, RemoteException;

 public void ejbRemove()
 throws RemoveException, EJBException, RemoteException;

 public void ejbActivate()
 throws EJBException, RemoteException;

 public void ejbPassivate()
 throws EJBException, RemoteException;

 public void ejbLoad()
 throws EJBException, RemoteException;

 public void ejbStore()
 throws EJBException, RemoteException;

}

If the EJB container needs to synchronize the instance variables of an entity bean with the
corresponding values stored in a database, it invokes the ejbLoad and ejbStore methods. The
ejbLoad method refreshes the instance variables from the database, and the ejbStore method writes
the variables to the database. The client may not call ejbLoad and ejbStore directly. In fact, the
synchronization between the EJB instance variables and the entity-object state is completely
transparent to the client. From the client's point of view, the EJB instance is the same as the entity
object.

If a business method is associated with a transaction, the container invokes ejbLoad before the
business method executes. Immediately after the business method executes, the container calls
ejbStore. Because the container invokes ejbLoad and ejbStore, you do not have to refresh and
store the instance variables in your business methods. Since the EJB classes rely on the container to
synchronize the instance variables with the database, their business methods should be associated with
transactions.

Normally, the database resides on a different network node from the EJB container in which EJBs are
deployed. Because the implementation of a business method typically accesses the entity object's state,
each invocation of a business method may result in a network trip to the database. If a transaction
includes multiple business invocations, the resulting multiple accesses to the database over the network
may increase the transaction overhead. Many bean developers want to reduce such overhead. To
accomplish this, the EJB architecture allows the entity bean to cache the entity object's state, or part of
the state, within a transaction. Rather than making repeated calls to the database to access the entity
object's state, the EJB instance loads the object's state at the beginning of a transaction and caches it in
its instance variables. The database is not updated until the transaction is ready to commit.

To facilitate such caching, the EJB container invokes the ejbLoad method on the instance prior to the
first business method invocation in a transaction. The instance can utilize the ejbLoad method to load
the entity object's state, or part of its state, into the instance's variables. Then, subsequent calls to
business methods on the instance read and update the cached state instead of making calls to the
database. When the transaction ends, the EJB container invokes the ejbStore method on the
instance. If the previously invoked business methods update the state cached in the instance variables,
calling the ejbStore will resynchronize the entity object's state stored in the database with the cached
state.

Chapter 21:Bean-Managed Persistence

-535-

The container invokes the ejbLoad and ejbStore methods, plus the business methods between the
ejbLoad and ejbStore methods, in the same transaction context. When, from these methods, the
EJB instance accesses the entity object's state in the database, the database properly associates all the
multiple database accesses with the transaction.

Because the EJB container needs a transaction context to drive the ejbLoad and ejbStore methods
on an EJB instance, caching of the entity object's state in the instance variables works reliably only if
the entity-bean methods execute in a transaction context.

The ejbLoad and ejbStore methods must be used with great caution for entity beans that do not
execute with a defined transaction context. These are entity beans with methods that use transaction
attributes NotSupported, Never, and Supports (the transaction attribute in Chapter 20). If the
business methods can execute without a defined transaction context, the instance should cache only
the state of the immutable entity objects. Fore these entity beans, an instance can use the ejbLoad
method to cache the entity object's state but should never call the ejbStore method.

Cross-
Reference See the section "Container-Managed Transaction" in Chapter 20 for

discussions of the transaction attributes.

If the ejbLoad and ejbStore methods cannot locate an entity in the underlying database, they should
throw the javax.ejb.NoSuchEntityException. This exception is a subclass of
java.ejb.EJBException. Because EJBException is a subclass of RuntimeException, you do
not have to include it in the throws clause. When NoSuchEntityException is thrown, the EJB
container wraps it in a RemoteException before returning it to the client.

Like stateful session beans, the entity bean instances may be passivated and activated, that is, saved
into the secondary storage and moved back to the memory. The EJB container calls the
ejbPassivate and ejbActivate (both defined in EntityBean interface) for EJB passivation and
activation. To maintain synchronization, the ejbStore is called before calling ejbPassivate so that
the latest version of the EJB instance variable is saved to the database. The ejbLoad is called
immediately after calling the ejbActivate; thus, the variables of the activated EJB instance are
refreshed with the current state of the entity object.

Business Methods

The business methods contain the business logic you want to encapsulate within the entity bean.
Usually, the business methods do not access the database, allowing you to separate the business logic
from the database-access code. All business methods that can be invoked by clients are defined in the
remote interface. Note that some utility methods that are not meant for the client to use are typically not
defined in the remote interface. Instead, they are normally declared as private (or protected)
methods and are implemented in the bean class.

Listing 21-5 shows the remote interface of the example MemberEJB. In this simple example, only
getters and setters of the instance variables are defined. Because the client can get the primary
key by calling the context.getPrimaryKey() method, the getter for the primary key is not
necessary. Since the bean should not change its unique identifier during its life cycle, the setter for
the primary key is not defined.

Listing 21-5: Remote interface of MemberEJB

/** MemberEJB Remote Interface

 * Note: It does not provide accessor for memberId since it is the
primary key and will

 * be accessible by the context.getPrimaryKey() method on the client.
 * @author: Andrew Yang

Chapter 21:Bean-Managed Persistence

-536-

 * @version: 1.0
 */

package java_database.MemberEBean;

import java.rmi.*;
import javax.ejb.*;

public interface Member extends EJBObject {

 // accessors
 public String getLastName() throws RemoteException;

 public String getFirstName() throws RemoteException;
 public int getMembershipYear() throws RemoteException;

 // mutators

 public void setLastName(String s) throws RemoteException;
 public void setFirstName(String s) throws RemoteException;

 public void setMembershipYear(int n) throws RemoteException;
}

Note that the MemberEJB is a simplified example intended to illustrate the fundamentals of EJB. For a
real-life entity bean, more business methods are defined in the remote interface. For example, the yacht
club may allow the members who leave the club and then rejoin to reinstate their seniority after they
have been members for more than three years recently. To implement this business logic, a business
method may be added as follows:

void reinstateMembershipYear(int formerYear) thorws YachtException
{

 if (membershipYear < 3) {
 throw new YachtException("Have not stayed 3 years this round!");

 }
 membershipYear =+ formerYear;

}

But then you have to add more logic to make sure the seniority is only reinstated once. The code must
prevent a member from reinstating his seniority multiple times.

The following requirements for the signature of an entity bean business method are the same as those
for session beans:
§ The method name must not conflict with a method name defined by the EJB architecture. For

example, you cannot call a business method ejbCreate or ejbActivate.
§ The methods must be public because clients call them.
§ The method modifier cannot be final or static.
§ The arguments and return types must be legal types for the Java RMI API. Typically, that means

the arguments and return types must either be Java datatypes or implement the Serilizable
interface.

§ The throws clause must include java.rmi.RemoteException.

The throws clause may include the exceptions that you define for your application. The
reinstateMembershipYear method, for example, throws YachtException. To indicate a system-
level problem, a business method should throw EJBException.

Chapter 21:Bean-Managed Persistence

-537 -

All the business methods defined in the remote interface must be implemented in the bean class. Th e
methods in the bean-implementations class must have the same function name, function signature, and
return type as the corresponding methods defined in the remote interface. You will see the
implementation of MemberEJB in the next section.

An Example BMP Entity Bean — MemberEJB

An example application is being built through Chapters 20-22. The example application is used by a
yacht club for its cruise operation. From time to time, the club offers its member free yacht cruises. The
cruising yacht allows only the club members on board. The business entity, club member, is
implemented as a BMP entity bean. The underlying database table, member, is illustrated in Table 21-1.
The home interface and remote interface of MemberEJB are shown in Listing 21-3 and Listing 21-5,
respectively. The implementation class is shown in Listing 21-6.

Listing 21-6: MemberEJB implementation class

/** MemberEJB Implementation class.
 * System.out.printline() is used to display the error message to the
standard output.
 * You should replace System.out.println() with approperate log functions of
the EJB
 * server you use, so that the error message will be written to the log file.

 * @author: Andrew Yang
 * @version: 1.0

 */
package java_database.MemberEBean;

import java.rmi.*;

import java.util.*;
import java.sql.*;

import javax.ejb.*;
import javax.naming.*;

public class MemberBean implements EntityBean {

 // instance attributes
 private String memberId;

 private String lastName;
 private String firstName;

 private int membershipYear;

 private InitialContext ctx;
 private EntityContext context;

 /** default constructor */

 public MemberBean() {
 try {

 ctx = new InitialContext();

Chapter 21:Bean-Managed Persistence

-538-

 } catch (NamingException ne) {
 System.out.println("Could not obtain InitialContext");

 }
 }

 public String ejbCreate(String id, String nLast, String nFirst, int mYear)

 throws CreateException {
 Connection con = null;

 PreparedStatement ps = null;
 try {

 con = getConnection();
 ps = con.prepareStatement("INSERT into member values(?, ?, ?, ?)");

 ps.setString(1, id);
 ps.setString(2, nLast);

 ps.setString(3, nFirst);
 ps.setInt(4, mYear);

 if (ps.executeUpdate() != 1) {
 System.out.println("Insert data failed!");

 throw new CreateException("JDBC could not create a row.");
 }

 // assign instance attrubute values
 memberId = id;

 lastName = nLast;
 firstName = nFirst;

 membershipYear = mYear;
 } catch (SQLException sqe) {

 // Check if the exception was due to an existing entry in the
database.
 try {

 ejbFindByPrimaryKey(id);
 } catch (ObjectNotFoundException e) {

 System.out.println("Ambiguous SQLException: " + sqe);
 throw new CreateException("Ambiguous SQLException");

 }
 System.out.println("A member with this ID already exists.");

 throw new DuplicateKeyException("A member with this ID already
exists.");
 } finally {

 cleanup(con, ps);
 }

 return memberId;
 }

 public void ejbPostCreate(String name, int age) {

Chapter 21:Bean-Managed Persistence

-539-

 // do nothing
 }

 /**

 * The ejbRemove gets the primary key from the context because it is
possible to do
 * a remove right after a find, and ejbLoad may not have been called.

 */
 public void ejbRemove() {

 Connection con = null;
 PreparedStatement ps = null;

 try {
 con = getConnection();

 memberId = (String) context.getPrimaryKey();
 ps = con.prepareStatement("DELETE FROM member WHERE member_id=?");

 ps.setString(1, memberId);
 if (ps.executeUpdate() < 1) {

 String error = "Member (" + memberId + ") not found";
 System.out.println(error);

 throw new NoSuchEntityException(error);
 }

 } catch (SQLException sqe) {
 System.out.println("SQLException: " + sqe);

 throw new EJBException (sqe);
 } finally {

 cleanup(con, ps);
 }

 }

 public String ejbFindByPrimaryKey(String pk) throws
ObjectNotFoundException {
 Connection con = null;

 PreparedStatement ps = null;
 try {

 con = getConnection();
 ps = con.prepareStatement("SELECT last_name, first_name,
membership_year " +
 "FROM member WHERE member_id=?");

 ps.setString(1, pk);
 ps.executeQuery();

 ResultSet rs = ps.getResultSet();
 if (rs.next()) {

 memberId = pk;
 lastName = rs.getString(1);

Chapter 21:Bean-Managed Persistence

-540-

 firstName = rs.getString(2);
 membershipYear = rs.getInt(3);

 } else {
 String error = "ejbFindByPrimaryKey: Member (" + pk + ") not
found";
 System.out.println(error);
 throw new ObjectNotFoundException (error);

 }
 } catch (SQLException sqe) {

 System.out.println("SQLException: " + sqe);
 throw new EJBException (sqe);

 } finally {
 cleanup(con, ps);

 }
 return pk;

 }

 public Collection ejbFindByMembershipYear(int minYear)
 throws ObjectNotFoundException {

 Connection con = null;
 PreparedStatement ps = null;

 Vector v = new Vector(); // returing object
 try {

 con = getConnection();
 ps = con.prepareStatement("SELECT memberId FROM member " +

 "WHERE membershipYear>?");
 ps.setInt(1, minYear);

 ps.executeQuery();
 ResultSet rs = ps.getResultSet();

 String pk;
 while (rs.next()) {

 pk = rs.getString(1);
 v.addElement(pk);

 }
 } catch (SQLException sqe) {

 System.out.println("SQLException: " + sqe);
 throw new EJBException (sqe);

 } finally {
 cleanup(con, ps);

 }
 return v;

 }

Chapter 21:Bean-Managed Persistence

-541-

 // methods defined in EntityBean interface
 public void ejbActivate() { }

 public void ejbPassivate() { }
 public void setEntityContext(EntityContext c) { this.context = c; }

 public void unsetEntityContext() { }

 public void ejbLoad() {
 Connection con = null;

 PreparedStatement ps = null;
 memberId = (String)context.getPrimaryKey();

 try {
 con = getConnection();

 ps = con.prepareStatement("Select last_name, first_name,
membership_year " +
 "FROM member WHERE member_id=?");

 ps.setString(1, memberId);
 ps.executeQuery();

 ResultSet rs = ps.getResultSet();
 if (rs.next()) {

 lastName = rs.getString(1);
 firstName = rs.getString(2);

 membershipYear = rs.getInt(3);
 } else {

 System.out.println ("Member EJB could not load data");
 throw new NoSuchEntityException("Could not locate Member with
ID:" +
 memberId);
 }

 } catch (SQLException sqe) {
 System.out.println ("SQLException: " + sqe);

 throw new EJBException(sqe);
 } finally {

 cleanup(con, ps);
 }

 }

 public void ejbStore() {
 Connection con = null;

 PreparedStatement ps = null;

 try {
 con = getConnection();

 ps = con.prepareStatement("UPDATE member SET last_name=?,
firstName=?, " +

TE
AM
FL
Y

Team-Fly®

Chapter 21:Bean-Managed Persistence

-542-

 "membership_year=? WHERE member_id=?");
 ps.setString(1, lastName);

 ps.setString(2, firstName);
 ps.setInt(3, membershipYear);

 ps.setString(4, memberId);

 if (ps.executeUpdate() < 1) {
 System.out.println("Could not locate member with ID: " +
memberId);
 throw new NoSuchEntityException("Could not locate member with ID:
" +
 memberId);

 }
 } catch (SQLException sqe) {

 System.out.println ("SQLException: " + sqe);
 throw new EJBException(sqe);

 } finally {
 cleanup(con, ps);

 }
 }

 // business methods defined in the remote interface

 public String getLastName() { return lastName; }
 public String getFirstName() { return firstName; }

 public int getMembershipYear() { return membershipYear; }

 public void setLastName(String s) { lastName = s; }
 public void setFirstName(String s) { firstName = s; }

 public void setMembershipYear(int n) { membershipYear = n; }

 // utility methods
 private Connection getConnection() throws java.sql.SQLException {

 try {
 javax.sql.DataSource ds = (javax.sql.DataSource)

 ctx.lookup("java:comp/env/jdbc/YachtClubDB");
 return ds.getConnection();

 } catch(NamingException ne) {
 System.out.println("UNABLE to get a connection!");

 throw new EJBException(ne);
 }

 }

 private void cleanup(Connection con, PreparedStatement ps) {
 try {

Chapter 21:Bean-Managed Persistence

-543-

 if (ps != null) {
 ps.close();

 }
 } catch (Exception e) {

 System.out.println("Error closing PreparedStatement: "+e);
 throw new EJBException (e);

 }
 try {

 if (con != null) {
 con.close();

 }
 } catch (Exception e) {

 System.out.println("Error closing Connection: " + e);
 throw new EJBException (e);

 }
 }

}

The implementation class uses all the methods defined in the home and remote interfaces, as well as
the methods defined in the EntityBean interface. Table 21-2 summarizes the database-access calls in
the MemberBean class.

Table 21-2: Database -access Operations in MemberBean

Method SQL Statement Functionality

ejbCreate INSERT Create entity object in database and
initialize instance variables

ejbRemove DELETE Delete entity object from database and
disacssociate bean instance

ejbFindByPrimaryKey SELECT Locate entity object with given primary key
and associate bean instance with the
object

ejbFindByMembershipYear SELECT Locate all entity objects that have been
members longer than a given number of
years

ejbLoad SELECT Refresh instance variables with current
object state stored in database

ejbStore UPDATE Update state stored in database with
current instance variable values

The business methods of the MemberBean class (such as getLastname(), setLastName(String),
and so on) are absent from this table because they do not access the database. Instead, these
business methods update the instance variables, which are written to the database when the EJB
container calls ejbStore. After the EJB container calls the ejbLoad method, the instance variables
are refreshed with the current entity-object state, and the getter function retrieves the refreshed
variables. Another developer might have chosen to access the database in the business methods of the
MemberBean class. This choice is one of those design decisions that depend on the specific needs of
your application. For the simple entity bean like the example MemberEJB, database access from
business methods is not warranted. But in some cases, the business logic may be complex, and there
may be a need to access the database from the business method.

Chapter 21:Bean-Managed Persistence

-544-

Before accessing a database, you must connect to it. With BMP, you must write the program to get a
database connection. In the MemberBean class, this is achieved by calling the utility method
getConnection(). Typically, you get a database connection by following these steps:

1. Specify the database name. In the example, the database name is
"java:comp/env/jdbc/YachtClubDB".

2. Obtain the DataSource associated with the logical name by searching the Java Naming and
Directory Interface (JNDI).

3. Get the Connection from the DataSource.

The database's JNDI name is specified in the deployment descriptor during the deployment phase as
shown here:

<entity>
 … …

 <resource-ref>
 <res-ref-name>jdbc/YachtClubDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>

 </resource-ref>
</entity>

When coding an EJB, you must decide how long it will retain the connection. Generally, you have two
choices: either hold the connection for the lifetime of the bean, or hold it only during each database call.
Your choice determines the method (or methods) in which your bean connects to a database.

With long-term connections, an EJB holds a database connection for its entire lifetime. Because the
bean connects and disconnects just once, its code is slightly easier to write. But there's a trade-off:
other components cannot acquire the connection. This is normally not recommended.

Briefly held connections allow many components to share the same connection. Because the EJB
container manages a pool of database connections, enterprise beans can quickly obtain and release
the connections. In the MemberBean class, all methods hold the connection briefly. Before the method
returns, another utility method, cleanup(), is called, which returns the connection to the EJB
container's connection pool by calling con.close(). In addition, the cleanup method closes
resources such as preparedStatement.

In almost all the application servers on the market today, the EJB container maintains a pool of
database connections. This pool is transparent to the enterprise beans. When an EJB requests a
connection, the container fetches one from the pool and assigns it to the bean. Because the connection
has already been made, the bean quickly gets a connection. The bean may release the connection after
each database call (as seen in MemberBean), since it can rapidly get another connection. Because
such a bean holds the connection for a short time, the same connection can be shared sequentially by
many beans. To further boost the performance of your application, consider using EJB design patterns
and best practices such as value objects (also called data transfer objects sometimes) as described
next.

Using Value Objects for Better Performance

You may have noticed that the MemberEJB has getters and setters for all the EJB instance
variables except the primary key (see Listing 21-5). The example is oversimplified for demonstrating the
basic concept of the entity bean. In practice, the member table usually has more columns, such as
street_address, city, state, zip_code, country, phone, fax, email,
last_due_payment_date, spouse_name, and so on. In that case, you may want to consider
different strategies to reduce the network-performance overhead.

Typically, the clients reside in different network nodes from the EJB container where entity beans and
their instances are deployed. It is important to realize that every invocation of an entity bean method is

Chapter 21:Bean-Managed Persistence

-545-

typically a remote call that requires using a network resource. (The local EJB specified in EJB 2.0 is an
exception). Even the entity bean caches the object state and therefore does not need to access the
database every time; the network trip from the client box to EJB container box cannot be avoided. A
client of an EJB needs to be aware of this potential performance hit when using an entity bean. More
important, entity-bean developers should consider this when designing and developing an entity bean.
You must look at how the bean's clients might use the methods in the bean's remote interface and then
design the bean to be used efficiently and effectively.

For certain applications, most of the clients may typically want access to only a few attributes of the
bean (or columns in a row of a database table), and they may usually only retrieve or update only one or
two attributes per interaction. That means that in the yacht club example, a given client may want to see
the member's ID and membership_year; another client may want to see only a member's phone and
e-mail; yet another client may only want to see a member's street_address, city, state and
zip_code.

In this situation, you can design the entity bean to promote individual access to each persistent attribute.
You design the bean's remote interface just as I do in the MemberEJB 's remote interface: there is a
separate getter and setter for each attribute. To address the real-life scenario, you add getters
and setters for other attributes such as streetAddress, city, state, zipCode, country,
phone, fax, e-mail, lastDuePaymentDate, spouseName, and so on.

In most real-life situations, it is difficult to predict how the clients will use the EJB. If an entity object has
many attributes, it is unrealistic to assume that the client only needs very few of them for every
invocation. If clients normally need most of the attributes when they invoke a bean's business method,
the multiple network trips may cause significant performance overhead. In addition to multiple network
trips, this approach has the following drawbacks:
§ Transaction overhead. The EJB architecture recommends letting the EJB container handle

transaction demarcation. Notice that each method invocation involves a separate transaction and
that the EJB container must perform some house keeping work such as calling ejbLoad and
ejbStore. If several attributes need to be updated, the separate methods cause the EJB
container a lot of unnecessary work. Although it is possible for the client to get around this by using
client-side transaction demarcation, the client developer must write transaction code that violates
the sprit of EJB architecture.

§ Difficulty in validating business logic. It is difficult to validate business logic when such
validation requires more than one attribute value. For example, suppose you need to add a new
business logic to the MemberEJB that invites the member and the member's spouse to a party if
the member has paid his due in the past month and lives in a specific city. Inside the
inviteMemberCouple method, you have to have code to check lastDuePayment, city, and
spouseName (to make sure it is not empty). This requires three invocations of the getter method.
For a large-scale system, since the entity objects are shared by many clients, the three separate
setters may have the risk of certain temporary data inconsistency.

A recommended practice to overcome such drawbacks is to use a value object. Rather than accessing
each entity attribute individually, you can set up your entity bean's remote interface to access all
attributes in one call. Essentially, the client makes one request to either retrieve or update all the
attributes of the bean instance. All persistent attributes are accessed via one remote call and within one
transaction. This reduces the network and transaction overhead to a minimum. This approach is
especially suitable for situations where clients generally require access to most (or even all) of the
attributes at the same time.

To access all persistent attributes in one method invocation, your entity bean uses a value object. A
value object is nothing more than a JavaBean, that is, a Java class with public getters and setters
that implement the Serializable interface. You basically remove the individual getters and
setters from the remote interface (and from the implementation class) and place the equivalent
methods in the value object class. Then you add methods to the EJB remote interface: one to retrieve
the entire value object and the other to set new values. Of course, you include the implementation for
these new methods in the EJB's implementation class.

Chapter 21:Bean-Managed Persistence

-546-

For the MemberEJB example, assuming the Member Table contains more columns, you may create a
value object called MemberInfoVO as shown in Listing 21-7. The remote interface is then modified as
shown in Listing 21-8.

Listing 21-7: Value object MemberInfoVO

/** Value object for MemberEJB. Class name is MemberInfoVO

 * @author: Andrew Yang
 * @version: 1.0

 */
package java_database.MemberEBean;

import java.util.*;

public class MemberInfoVO {

 // attributes
 private String memberId;

 private String lastName;
 private String firstName;

 private String streetAddress;
 private String city;

 private String state;
 private String zipCode;

 private String country;
 private String phone;

 private String fax;
 private String email;

 private String spouseName;
 private int membershipYear;

 private Date lastDuePaymentDate;

 // accessors
 public String getMemberId() { return memberId; }

 public String getLastName() { return lastName; }
 public String getFirstName() { return firstName; }

 public String getStreetAddress() { return streetAddress; }
 public String getCity() { return city; }

 public String getState() { return state; }
 public String getZipCode() { return zipCode; }

 public String getCountry() { return country; }
 public String getPhone() { return phone; }

 public String getFax() { return fax; }
 public String getEmail() { return email; }

 public String getSpouseName() { return spouseName; }

Chapter 21:Bean-Managed Persistence

-547-

 public int getMembershipYear() { return membershipYear; }
 public Date getLastDuePaymentDate() { return lastDuePaymentDate; }

 // mutators

 public void setMemberId(String s) { memberId = s; }
 public void setLastName(String s) { lastName = s; }

 public void setFirstName(String s) { firstName = s; }
 public void setStreetAddress(String s) { streetAddress = s; }

 public void setCity(String s) { city = s; }
 public void setState(String s) { state = s; }

 public void setZipCode(String s) { zipCode = s; }
 public void setCountry(String s) { country = s; }

 public void setPhone(String s) { phone = s; }
 public void setFax(String s) { fax = s; }

 public void setEmail(String s) { email = s; }
 public void setSpouseName(String s) { spouseName = s; }

 public void setMembershipYear(int n) { membershipYear = n; }
 public void lastDuePaymentDate(Date d) { lastDuePaymentDate = d; }

}

Listing 21-8: Remote interface of MemberEJB using value object

/** MemberEJB Remote Interface. It use a value object, MemberInfoVO, to
reduce network
 * and transaction overhead.

* @author: Andrew Yang
 * @version: 1.0

 */
package java_database.MemberEBean;

import java.rmi.*;

import javax.ejb.*;

public interface Member extends EJBObject {

 public MemberInfoVO getMemberInfo() throws RemoteException;
 public void updateMemberInfo(MemberInfoVO mInfo) throws
RemoteException;
}

In practice, you may need to address a variety of data-access requirements. The required granularity
may well fall between two extremes. Then you may want to design multiple value objects for your entity
bean. This approach gives you more fine-grain control for accessing an entity object's state and still lets
you retain the performance benefits that value objects provide. It works best for entity beans with many
individual attributes, but where the bean's clients typically need access to only a small number of them.

In this approach, you group those individual getters and setters into subsets that clients logically
want to access together. You can have duplicated getters and setters in different subsets. Then

Chapter 21:Bean-Managed Persistence

-548-

you set up separate value objects for each subset, that is, you define each value object to contain and
handle the attributes required by a particular client's use of the entity bean. In the MemberEJB example,
you may set up a value object to handle all the contact information (for example, address, phone
number, and so on) and another value object to handle all the membership related information (for
example, membership year, last due payment date, and so on).

It is important to keep performance considerations in mind when developing entity beans, especially for
BMP entity beans, since you are responsible for writing all database-access code. Using value objects
to improve performance is a proven best practice. Use it whenever you feel it is appropriate.

Summary

This chapter provides an overview of the following topics:
§ The implementation and use of the ejbCreate, ejbRemove, ejbLoad, and ejbStore

methods as well as finder methods
§ The implementation of EJB's business methods
§ The use of value objects for improved performance

Chapter 22:Container-Managed Persistence

-549-

Chapter 22: Container-Managed Persistence

In This Chapter

Extending the discussion in previous chapter, in this chapter you will learn the container managed
persistence in details. You also see how the EJBs developed since Chapter 20 can be put together to
build a simple application.

CMP Entity Bean — a Rebirth after EJB2.0

The term container-managed persistence means that the EJB container handles all database access
the entity bean requires. The bean's code contains no database-access (SQL) calls. As a result, the
bean's code is not tied to a specific persistent storage mechanism (database). Because of this flexibility,
even if you redeploy the same entity bean on different J2EE-compliant application servers that use
different types of databases, you will not need to modify or recompile the bean's code. In short, your
entity beans are more portable and easier to develop.

It sounds like a very nice concept. However, in the early stage of EJB adoption (up to EJB specification
version 1.1), CMP entity beans have been labeled as slow or even as a performance nightmare. The
persistent state was stored as bean-instance variables, and bean developers often had to use third-
party tools to map bean attributes to database fields (the so called O/R mapping). The integration
between such tools and application servers had given developers enough headaches. It was also
difficult to handle relationships between related objects such as Orders and Line-Items.

Fortunately, all these problems have been addressed in the EJB 2.0 specification released in
September 2001. With EJB 2.0, the EJB container uses the information that bean developers provide in
the entity bean's abstract schema to generate all the data-access calls. As part of an entity bean's
deployment descriptor, the abstract schema defines the bean's persistent fields as well as relationships.
The term abstract distinguishes this schema from the physical schema of the underlying data store.

Bean developers specify the name of an abstract schema in the deployment descriptor. This name is
referenced by queries written in the Enterprise JavaBeans Query Language (EJB QL). For a CMP entity
bean, you must define an EJB QL query for every finder method (except findByPrimaryKey). The
EJB QL query determines the database query the EJB container executes when the finder method is
invoked. You see the examples of EJB QL later in this chapter.

There are two types of container-managed fields in a CMP bean: persistent and relational. The
persistent fields of an entity bean are stored in the underlying data store. Collectively, these fields
constitute the state of the bean. At runtime, the EJB container automatically synchronizes this state with
the database. During deployment, the container typically maps the entity bean to a database table and
maps the persistent fields to the table's columns.

A relationship field is like a foreign key in a database table — it identifies a related bean. Like a
persistent field, a relationship field is virtual and is defined in the enterprise bean class with access
methods. But unlike a persistent field, a relationship field does not represent the bean's state.

According to EJB 2.0 specification, the implementation classes for CMP beans must be abstract. That
means no instance of these implementation classes can be directly instantiated. The EJB container
generates a concrete class based on the code you have written and all the information you have
provided in the deployment descriptor. These concrete classes contain all the database-access calls
that deal with the persistent state as well as the relationship between business entities. Instances of
such concrete classes are instantiated during runtime and invoked by the client. The generation and
instantiation of such concrete classes are totally transparent to bean developers and client
programmers.

To further boost the performance, EJB 2.0 also introduced the local (both home and remote) interfaces
that provide support for lightweight access by local clients. The local interfaces are standard Java
interfaces that do not inherit from RMI. When a client (it may be another EJB) accesses the EJB on the

Chapter 22:Container-Managed Persistence

-550-

same network note, going through the local interfaces avoids the network-service overhead and
significantly improves performance.

With all the new features introduced in EJB 2.0, the CMP bean has been proliferating rapidly in the past
year. For the first time, many enterprises are seriously considering using CMP entity beans in their
mission-critical applications. In 2002 JavaOne conferences, a significant number of technical sessions
are devoted to the development, deployment, and proper uses of CMP entity beans. It is fair to say that
EJB 2.0 has given CMP EJB a new life. You should probably consider using CMP beans instead of
BMP beans for all applications in which the use of entity bean is appropriate. Now let us move to the
development of CMP EJB.

Developing CMP EJBs

CMP and BMP entity beans are very similar. They both represent persistent business objects and have
the same client-side behavior. The major difference is the database- access code. In BMP, all database
access calls are implemented by the bean developer. In CMP, the implementation is generated by a
persistent manager.

A persistent manager is the software that takes care of persistence in place of the bean developer. It is
normally part of the EJB container. In many EJB books and documents (including this book), persistent
manager and EJB container are used interchangeably.

Home and Remote Interfaces

Since CMP entity beans have the same client-side views as BMP entity beans, there is no difference
between coding the remote interfaces and home interfaces. The home interface defines all the life-cycle
methods, whereas the remote interface defines all the business methods accessible by clients. You
have to define at least one create method and at least one finder (that is, the findByPrimaryKey)
method in the home interface. You may define as many optional create and finder methods as you
need.

The remote interface defines all the business methods that a client can invoke. You may also want to
define local interfaces for the local clients' access. The local home interface looks similar to the remote
interface, except that it extends EJBLocalHome instead of EJBHome; and the local interface is the
same as the remote interface, except that it extends EJBLocalObject instead of EJBObject. In
response to this similarity, I focus the discussion primarily on remote interfaces.

As an example, a CMP entity bean is developed in our yacht club application to represent a yacht entity.
There is a yacht table in the underlying database; the table has five columns, as seen in Table 22-1.

Table 22-1: Sample Data Stored in Yacht Table

yacht_name builder Engine_type capacity Max_velocity

Whaler Grand Banks Twin Diesel 12 35

Liberty Bristol Single Diesel 10 25

Yifei Eastbay Twin Diesel 8 27

Lighting Eastbay Twin Diesel 8 30

The yacht_name column is the primary key. All of the five columns are persistent and therefore have
corresponding persistent fields in the entity bean YachtEJB. The home interface and remote interface
of the YachtEJB are shown in Listing 22-1 and Listing 22-2, respectively.

Listing 22-1: Home interface of YachtEJB

/** YachtEJB Home Interface. CMP is used.

Chapter 22:Container-Managed Persistence

-551 -

 * @author: Andrew Yang
 * @version: 1.0

 */
package java_database.YachtEBean;

import java.rmi.*;

import java.util.*;
import javax.ejb.*;

public interface YachtHome extends EJBHome {

 public Yacht create(String yachtName, String builder, String
engineType,

 int capacity, int maxVelocity)
 throws CreateException, RemoteException;

 public Yacht findByPrimaryKey(String yachtName)
 throws FinderException, RemoteException;

 public Collection findAllYachts()
 throws FinderException, RemoteException;

 public Collection findYachtsCapacityMoreThan(int minCapacity)
 throws FinderException, RemoteException;

}

Listing 22-2: Remote interface of YachtEJB

/** YachtEJB Remote Interface. CMP is used.

 * @author: Andrew Yang
 * @version: 1.0

 */
package java_database.YachtEBean;

import java.rmi.*;

import javax.ejb.*;
import common.*;

import YachtSessionSFBean.*;

public interface Yacht extends EJBObject {
 public YachtSession createYachtSession() throws RemoteException;

 public String getBuilder() throws RemoteException;
 public String getEngineType() throws RemoteException;

 public int getCapacity() throws RemoteException;
 public int getMaxVelocity() throws RemoteException;

}

TE
AM
FL
Y

Team-Fly®

Chapter 22:Container-Managed Persistence

-552 -

Although multiple create methods can be defined, only one create method is defined in the home
interface for simplicity. The create method takes all of the five persistent fields as argument. The
remote interface defines the getters for four out of the five persistent fields, except the primary key
field. The client can get the primary key field, yachtName, by calling the getPrimaryKey method of
the EJBHome class or EntityContext class.

Three finder methods are defined in the home interface with different data-retrieval criteria. The
findByPrimaryKey is required and returns only one reference to YachtEJB that the primary key
identifies. It may return null if no match is found. The other two methods return a collection of references
to YachtEJB objects.

There are only getters; no setters are defined in the remote interface; therefore the YachtEJB is
apparently defined as read only (after created) from the clients' point of view. If the clients also need to
modify the persistent state, setters for the persistent fields must be defined in the remote interface.
Although getters and setters are defined in the remote interface, you do not need to code their
implementations, as you see in the next section.

Implementation Class with Minimum Code

In EJB 1.1, a persistent field was identified in the deployment descriptor and also identified as a public
instance variable of your bean implementation class. In EJB 2.0, this approach has been radically
changed. Persistent fields are still identified in the deployment descriptor, but they are not identified as
public-instance variables. Instead, they are identified through specialized getters and setters that
you must write.

For example, you have to write getYachtName, setBuilder, and so on in the YachtEJB
implementation class. What is intriguing is that these methods are declared as abstract and are
implemented automatically by the EJB container during the deployment phase. That makes the
implementation class also abstract; thus, no instance can be instantiated directly for the implementation
class. The EJB container uses the information you provide in the deployment descriptor to automatically
generate a concrete class with all the database-access implementations. The objects of these
container-generated, concrete classes are used at runtime for clients' invocation. The implementation
class of the example YachtEJB is shown in Listing 22-3.

Listing 22-3: Implementation class of YachtEJB

/** YachtEJB Implementation Class. CMP is used.
 * @author: Andrew Yang

 * @version: 1.0
 */

package java_database.YachtEBean;

import java.rmi.*;
import java.util.*;

import java.sql.*;
import javax.ejb.*;

import javax.naming.*;
import common.*;

import YachtSessionSFBean.*;

public abstract class YachtBean implements EntityBean {
 private EntityContext context;

Chapter 22:Container-Managed Persistence

-553 -

 private InitialContext ctx;

 public YachtBean() {
 try {

 ctx = new InitialContext();
 } catch (Exception e) {

 System.out.println("Problem getting InitialContext!");
 }

 }

 public void setEntityContext(EntityContext ctx) { this.context = ctx; }
 public void unsetEntityContext() { }

 public void ejbActivate() { }
 public void ejbPassivate() { }

 public void ejbLoad() { }
 public void ejbStore() { }

 public void ejbRemove() throws RemoveException { // nothing to code }

 // Container managed fields
 public abstract String getYachtName();

 public abstract String getBuilder();
 public abstract String getEngineType();

 public abstract int getCapacity();
 public abstract int getMaxVelocity();

 public abstract void setYachtName(String s);
 public abstract void setBuilder(String s);

 public abstract void setEngineType(String s);
 public abstract void setCapacity(int n);

 public abstract void setMaxVelocity(int n);

 public String ejbCreate(String yachtName, String builder, String
engineType,
 int capacity, int maxVelocity)

 throws CreateException {
 // You have to call accessor methods here.

 setYachtName(yachtName);
 setBuilder(builder);

 setEngineType(engineType);
 setCapacity(capacity);

 setMaxVelocity(maxVelocity);
 // If int values passed in are zero, pull the value from the constant
file.
 if(capacity <= 0) { setCapacity(YachtConstants.CAPACITY); }
 if(maxVelocity <= 0) { setMaxVelocity(YachtConstants.MAX_VELOCITY); }

Chapter 22:Container-Managed Persistence

-554 -

 // Always return null
 return null;

 }

 public void ejbPostCreate(String yachtName, String builder, String
engineType,
 int capacity, int maxVelocity) {

 // nothing to code
 }

 // Business Methods

 public YachtSession createYachtSession() {
 YachtSession session = null;

 try {
 YachtSessionHome home = (YachtSessionHome)ctx.lookup(

"java:comp/env/ejb/YachtSessionEJB");
 // In order to create a YachtSession instance, we must pass

 // in a reference to this Yacht EJB's remote stub.
 session = (YachtSession)home.create((Yacht)context.getEJBObject());

 } catch (Exception e) {
 System.out.println("Failed to create YachtSession: " + e);

 }
 return session;

 }
}

You may be impressed by how little you have to code. Compared with the BMP implementation given in
Listing 21-6, the CMP implementation class has much less code. This leads to one of the major
advantages of CMP entity bean — a fast development cycle.

From Listing 22-3, you see that the implementation classes have defined five abstract getters and
five abstract setters for the five persistent fields. The concrete implementation is automatically
generated by the EJB container based on the information provided in the deployment descriptor. As an
example, the YachtEJB 's deployment descriptor for WebLogic Application Server 6.0 is shown in
Listing 22-4. If you use another application server, your deployment descriptor files may look slightly
different. When your application contains multiple EJBs, and some other components such as servlets,
the deployment descriptor can be very long and complex. Therefore, you should never write your
deployment descriptors with a text editor. Instead, always use the deployment tool provided by your
application server. These XML files should always be generated by your application server, just as all
the concrete implementations of the abstract EJB methods are automatically generated by EJB
container.

Note

Do not use a text editor to write a deployment descriptor. Use the deployment tool
provided by your application server.

Listing 22-4: Deployment descriptor for YachtEJB

First DD File – J2EE Standard

Chapter 22:Container-Managed Persistence

-555-

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 2.0//EN"
"http://java.sun.com/j2ee/dtds/ejb-jar_2_0.dtd">

<ejb-jar>
 <enterprise-beans>

 <entity>
 <ejb-name>YachtEJB</ejb-name>

 <home>YachtEBean.YachtHome</home>
 <remote>YachtEBean.Yacht</remote>

 <ejb-class>YachtEBean.YachtBean</ejb-class>
 <persistence-type>Container</persistence-type>

 <prim-key-class>java.lang.String</prim-key-class>
 <reentrant>False</reentrant>

 <cmp-version>2.x</cmp-version>
 <abstract-schema-name>YachtBean</abstract-schema-name>

 <primkey-field>yachtName</primkey-field>
 <cmp-field><field-name>builder</field-name></cmp-field>

 <cmp-field><field-name>engineType</field-name></cmp-field>
 <cmp-field><field-name>capacity</field-name></cmp-field>

 <cmp-field><field-name>maxVelocity</field-name></cmp-field>
 <ejb-ref>

 <description>The YachtEJB does a lookup for YachtSession
beans.</description>
 <ejb-ref-name>ejb/YachtSessionEJB</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>
 <home>YachtSessionSFBean.YachtSessionHome</home>

 <remote>YachtSessionSFBean.YachtSession</remote>
 </ejb-ref>

 <query>
 <query-method>

 <method-name>findAllYachts</method-name>
 <method-params></method-params>

 </query-method>
 <ejb-ql><![CDATA[WHERE yachtName IS NOT NULL]]></ejb-ql>

 </query>
 <query>

 <query-method>
 <method-name>findYachtsCapacityMoreThan</method-name>

 <method-params>
 <method-param>int</method-param>

 </method-params>
 </query-method>

 <ejb-ql><![CDATA[FROM YachtBean cb WHERE cb.capacity > ?1]]></ejb-
ql>

Chapter 22:Container-Managed Persistence

-556 -

 </query>
 </entity>

 </enterprise-beans>
 <assembly-descriptor>

 <security-role>
 <description>The group of users allowed to access
YachtEJBs.</description>
 <role-name>ValidYachtClubUsers</role-name>
 </security-role>

 <container-transaction>
 <method>

 <ejb-name>YachtEJB</ejb-name>
 <method-intf>Remote</method-intf>

 <method-name>*</method-name>
 </method>

 <trans-attribute>Required</trans-attribute>
 </container-transaction>

 </assembly-descriptor>
</ejb-jar>

Second DD File – Weblogic Specific

<!DOCTYPE weblogic-ejb-jar PUBLIC '-//BEA Systems, Inc.//DTD WebLogic 6.0.0
EJB//EN'
'http://www.bea.com/servers/wls60/ejb20/dtd/weblogic-ejb-jar.dtd'>

<weblogic-ejb-jar>
 <weblogic-enterprise-bean>

 <ejb-name>YachtEJB</ejb-name>
 <entity-descriptor>

 <entity-cache>
 <max-beans-in-cache>150</max-beans-in-cache>

 </entity-cache>
 <persistence>

 <persistence-type>
 <type-identifier>WebLogic_CMP_RDBMS</type-identifier>

 <type-version>6.0</type-version>
 <type-storage>META-INF/weblogic-cmp-rdbms-jar.xml</type-storage>

 </persistence-type>
 <persistence-use>

 <type-identifier>WebLogic_CMP_RDBMS</type-identifier>
 <type-version>6.0</type-version>

 </persistence-use>
 </persistence>

 </entity-descriptor>
 <reference-descriptor>

Chapter 22:Container-Managed Persistence

-557 -

 <ejb-reference-description>
 <ejb-ref-name>ejb/YachtSessionEJB</ejb-ref-name>

 <jndi-name>YachtSessionEJB</jndi-name>
 </ejb-reference-description>

 </reference-descriptor>
 <jndi-name>YachtEJB</jndi-name>

 </weblogic-enterprise-bean>
 <security-role-assignment>

 <role-name>ValidYachtClubUsers</role-name>
 <principal-name>system</principal-name>

 </security-role-assignment>
</weblogic-ejb-jar>

Third DD File – Persistent Field Mapping, Weblogic Specific

<!DOCTYPE weblogic-rdbms-jar PUBLIC '-//BEA Systems, Inc.//DTD WebLogic
6.0.0 EJB RDBMS
Persistence//EN' 'http://www.bea.com/servers/wls600/dtd/weblogic-rdbms20-
persistence-
600.dtd'>
<weblogic-rdbms-jar>

 <weblogic-rdbms-bean>
 <ejb-name>YachtEJB</ejb-name>

 <data-source-name>yachtClub-datasource</data-source-name>
 <table-name>yacht</table-name>

 <field-map>
 <cmp-field>yachtName</cmp-field>

 <dbms-column>yacht_name</dbms-column>
 </field-map>

 <field-map>
 <cmp-field>builder</cmp-field>

 <dbms-column>builder</dbms-column>
 </field-map>

 <field-map>
 <cmp-field>engineType</cmp-field>

 <dbms-column>engine_type</dbms-column>
 </field-map>

 <field-map>
 <cmp-field>capacity</cmp-field>

 <dbms-column>capacity</dbms-column>
 </field-map>

 <field-map>
 <cmp-field>maxVelocity</cmp-field>

 <dbms-column>max_velocity</dbms-column>
 </field-map>

Chapter 22:Container-Managed Persistence

-558-

 </weblogic-rdbms-bean>
</weblogic-rdbms-jar>

Recall that the deployment-descriptor files are supposedly read by the EJB container, not by people. I
list them here just for the demonstration of some key concepts. Don't try to write or read these files
using a text editor. Use the deployment tools instead.

As you see from the Listing 22-4, you specify the abstract schema name (YachtBean), the primary key
field (yachtName), and all other persistent fields (builder, engineType, capacity and
maxVelocity) in the deployment descriptor, as follows:

<persistence-type>Container</persistence-type>

 <abstract-schema-name>YachtBean</abstract-schema-name>
 <primkey-field>yachtName</primkey-field>

 <cmp-field><field-name>builder</field-name></cmp-field>
 <cmp-field><field-name>engineType</field-name></cmp-field>

 <cmp-field><field-name>capacity</field-name></cmp-field>
 <cmp-field><field-name>maxVelocity</field-name></cmp-field>

You further declare the persistent type as CMP, as shown here:

<persistence-type>Container</persistence-type>

<persistence-type>
 <type-identifier>WebLogic_CMP_RDBMS</type-identifier>

 … …
</persistence-type>

You then define the mapping between YachtEJB and the underlying persistent store (yachtClub-
datasource) by specifying the mapping between each persistent field and its corresponding table-
column name (such as yachtName mapped to yacht_name, maxVelocity mapped to
max_velocity, and so on), as follows:

<ejb-name>YachtEJB</ejb-name>

<data-source-name>yachtClub-datasource</data-source-name>
<table-name>yacht</table-name>

<field-map>
 <cmp-field>yachtName</cmp-field>

 <dbms-column>yacht_name</dbms-column>
</field-map>

<field-map>
 <cmp-field>builder</cmp-field>

 <dbms-column>builder</dbms-column>
</field-map>

 … …

Such information tells the EJB container to implement the access calls for these persistent fields. Based
on the deployment information, the EJB container determines the approperate JDBC implementations
(that is, the SQL calls) for the persistent fields and keeps a CMP bean's persistent field synchronized
with the state of the database record it represents. After the concrete classes are generated during the

Chapter 22:Container-Managed Persistence

-559 -

deployment phase, the life cycle of these CMP bean instances are same as that of BMP instances
discussed in the previous Chapter 21.

For each create method defined in the home interface, you need to write a corresponding ejbCreate
method. As a bean developer, your job is to assign the persistent fields with their initial values by calling
the setters. You may find something weird by looking at the implementation shown in Listing 21-3.
Although the return type is supposed to be the primary key, the ejbCreate method actually returns
null at the end of the code. This is required by EJB specification. The rationale is that this method will
only be called by the EJB container and that the container always knows exactly what the primary key is
for each EJB.

Note

For a BMP bean, you must write code for the ejbRemove method. For a CMP bean,
since the database-access logic is implemented by the EJB container, you typically do
not need to write any code.

In the code shown in Listing 22-3, you do not see even the empty implementation of any finder
method defined in the home interface. How does the EJB container generate the implementation for
finder methods? For the method findByPrimaryKey, the container knows how to implement it by
looking at the primary key class type in the deployment descriptor and the corresponding database
column specified. For implanting all other methods, the EJB container follows your orders, given in the
form of EJB QL in the deployment descriptor. The EJB QL is discussed in detail later.

You still need to implement all the business methods defined in the remote interface, except for the
getters and setters. In the YachtBean, you only need to code the business method
createYachtSession. You first look up the YachtSessionEJB 's home interface from JNDI, then
create a remote interface handle. Since this will always be an EJB -to-EJB call, you may want to use
YachtSessionEJB's local interface for better performance.

To summarize this discussion, Table 22-2 lists major differences between coding a BMP bean
implementation class and coding a CMP implementation class. All the database-access calls by bean
developers for BMP beans are automatically generated by the EJB container. Since the bean-
implementation classes you write contain no implementations, it is important to declare them as abstract.
The corresponding concrete classes are automatically generated by EJB container at the deployment
phase.
Table 22-2: Coding Differences between CMP and BMP

Item CMP BMP

Class Definition Abstract Not abctract

Database access calls Generated by tools Coded by developers

Persistent state Represented by virtual persistent
fields

Coded as instance variables

Accessor to persistent and
relationship fields

Required None

Customized finder
methods

Handled by EJB container (but
the developer must define the
EJB QL queries)

Coded by developers

Select Methods (??) Handled by EJB container None

Return type of ejbCreate
method

null Primary key

With CM entity bean, no database code is needed. The database access functionality is specified by
EJB developers or application assemblers in description descriptor in EJB Query language that is
discussed next.

Chapter 22:Container-Managed Persistence

-560-

EJB Query Language

The EJB Query Language (EJB QL) is used to define query methods (for example, finder and
select methods) for CMP entity beans. EJB QL, which is based on SQL-92, can be compiled
automatically by the EJB container to a target language, such as SQL, of a database or other types of
persistent stores. This makes CMP entity beans more portable and much easier to deploy.

An EJB QL query has these three clauses:
§ SELECT
§ FROM
§ WHERE

The SELECT and FROM clauses are required, but the WHERE clause is optional. Here is the high-level
BNF syntax of an EJB QL query:

 EJB QL :: = select_clause from_clause [where_clause]

The SELECT clause defines the types of the objects or values that the query returns. A return type is a
remote interface, a local interface, or a persistent field.

The FROM clause defines the scope of the query by declaring one or more identification variables, which
may be referenced in the SELECT and WHERE clauses. An identification variable represents one of the
following elements:
§ The abstract schema name of an entity bean
§ A member of a collection that is the multiple side of a one-to-many relationship

The WHERE clause is a conditional expression that restricts the objects or values retrieved by the query.
Although this is optional, most queries have a WHERE clause.

You now may have found that the syntax of EJB QL is quite similar to the syntax of SQL. They do have
a lot of similarities. However, EJB QL is not like SQL in the following aspects:
§ SQL deals with tables and rows, but EJB QL deals with objects and instances.
§ SQL has many built-in functions that EJB QL does not have.
§ The result of an EJB QL is a remote interface or a collection of remote interfaces.

For each method (except the findByPrimaryKey method) in your CMP entity bean, there must be a
<query> tag that describes this finder method. In the deployment descriptor, the EJB QL must be
wrapped in an expression that looks like this:

 <!CDATA[expression]]>

expression is a valid EJB QL statement. The CDATA statement is not necessary but is recommended
because it escapes the reserved characters of XML. Since the object to be selected is obvious for these
finder methods, you do not need to put the SELECT clause into the expression. In many cases, if the
data is selected from a single entity bean object and there is no relationship that needs to be specified,
the FROM clause can be omitted too.

Look at the deployment descriptor shown in Listing 22-4. The EJB QL for the findAllYachts method
is as follows:

 <ejb-ql><![CDATA[WHERE yachtName IS NOT NULL]]></ejb-ql>

This is translated to the following SQL statement by EJB container at the deployment phase if, for
example, an Oracle database is used:

 SELECT * FROM yacht

The EJB QL for the findYachtsCapacityMoreThan method is as follows:

 <ejb-ql><![CDATA[FROM YachtBean cb WHERE cb.capacity > ?1]]></ejb-ql>

It may be translated into a SQL statement like this:

Chapter 22:Container-Managed Persistence

-561-

 SELECT * FROM yacht WHERE yacht.capacity > parameter_1

The parameter_1 is passed into the statement at runtime.

In addition to finder methods, you can use EJB QL to do any number of querying activities. EJB QL
allows you to do simple queries; compound queries; queries that invoke the persistent fields of more
than one EJB; queries that use finder methods on other EJBs; and queries that use persistent fields
accessible through a relationship to other EJBs. In other words, EJB QL is a very powerful tool.
However, it has also the following restrictions:
§ Comments are not allowed.
§ Date and time values are in milliseconds and use Java long data type. A date or time literal

should be an integer literal. To generate a millisecond value, you may use the
java.util.Calendar class.

§ Currently, CMP does not support inheritance. For this reason, two entity beans of different types
cannot be compared.

Note

This section covers only the simplified syntax of EJB QL. The full syntax is beyond the
scope of this book. Interested readers can find a detailed description on EJB QL in
many EJB books.

By now you have learnt how to develop and deploy CMP EJBs. Let us move on to run the example
application.

Running the Example Application

Remember the yacht club application discussed first in Chapter 20? It is uses by a yacht club to
manage its yacht-cruise operation. As a treat, the club offers its member free yacht cruises. The
business process includes the following:
§ Operating the yacht — such as starting, stoping, speeding up and slowing down
§ Checking the status of the yacht — such as current velocity, maximum velocity, current passenger

on board, and so on
§ Picking up club members if there is enough room
§ Dropping off passengers

Over the last three chapters, you have built these three EJBs:
§ Stateful session bean YachtSessionEJB
§ BMP entity bean MemberEJB
§ CMP entity bean YachtEJB.

You can use them to build the simple yacht club application.

As an example, Listing 22-5 shows a JSP client that allows you to manage the yachts that the club
owns.

Listing 22-5: YachtManager.jsp

<%@ page import="javax.naming.*, java.rmi.*, javax.ejb.*, YachtEBean.*,
common.*"
 session="true" %>
<%

{
 YachtHome home = (YachtHome)ctx.lookup("YachtEJB");

 if (request.getParameter("DestroyYacht") != null) {

 String pk = null;

TE
AM
FL
Y

Team-Fly®

Chapter 22:Container-Managed Persistence

-562-

 try {
 pk = request.getParameter("DestroyYacht");

 home.remove(pk);
 session.removeAttribute(pk); // destroy the associated session

 } catch (NumberFormatException e) {
 log("Failed to destroy a Yacht.", out);

 }
 }

 else if (request.getParameter("CreateNewYacht") != null) {
 String yachtName = request.getParameter("YachtName");

 if(yachtName == null) {
 yachtName = "DefaulName";

 }
 String builder = request.getParameter("Builder");

 if (builder == null) {
 builder = "Unknown";

 }
 String engineType = request.getParameter("EngineType");

 if (engineType == null) {
 engineType = "Unknown";

 }
 int capacity = 0;

 int maxVelocity = 0;
 try {

 capacity = Integer.parseInt(request.getParameter("Capacity"));
 } catch (Exception e) {

 capacity = 10;
 }

 try {
 maxVelocity = Integer.parseInt(request.getParameter("MaxVelocity"));

 } catch (Exception e) {
 maxVelocity = 25;

 }
 // finally create the Yacht

 try {
 Yacht yacht = (Yacht) home.create(yachtName, builder, engineType,
capacity,
 maxVelocity);
 } catch (CreateException e) {

 log("CreateException caught while trying to create a new yacht." +
e, out);
 }

 }

Chapter 22:Container-Managed Persistence

-563-

 Collection coll = null;
 if (request.getParameter("MinCapacity") != null) {

 int minCapacity = 0;
 try {

 minCapacity = Integer.parseInt(request.getParameter("MinCapacity"));
 } catch (Exception e) {

 minCapacity = 10;
 }

 coll = home.findYachtsCapacityMoreThan(minCapacity);
 } else {

 coll = home.findAllYachts();
 }

%>
 <html><head><title>Manage Yacht</title></head><body>

 Yachts

<%

 Iterator iter = coll.iterator();
%>

 <table width="400" border="thin" cellpadding="0" cellspacing="0">
<%

 while (iter.hasNext()) {
 Yacht yacht = (Yacht)iter.next();

%>
 <tr><td width="25%"><%= (String)yacht.getPrimaryKey() %></td>

 <td width="25%"><%= yacht.getCapacity() %></td>
 <td width="25%"><a href=YachtSessionManager.jsp?YachtPK=<%=

 (String)yacht.getPrimaryKey() %>&Action=View>View
Session</td>

 <td width="25%"><a href=YachtManager.jsp?DestroyYacht=<%=
 (String)yacht.getPrimaryKey() %>>Destroy</td></tr>

<%
 }

%>
 </table>

<%
}

%>

<FORM action=YachtManager.jsp>
Create a New Yacht:

 <table>
 <tr><td>Yacht Name:</td>

 <td><INPUT TYPE=TEXT NAME=YachtName></td>

Chapter 22:Container-Managed Persistence

-564-

 <td>Builder:</td>
 <td><INPUT TYPE=TEXT NAME=Builder></td></tr>

 <tr><td>Engine Type:</td>
 <td><INPUT TYPE=TEXT NAME=EngineType></td>

 <td>Capacity:</td>
 <td><INPUT TYPE=TEXT NAME=Capacity></td></tr>

 <tr><td>Maximum Velocity:</td>
 <td><INPUT TYPE=TEXT NAME=MaxVelocity></td>

 <td></td>
 <td>><INPUT TYPE=SUBMIT NAME="CreateNewYacht"
VALUE=Create></td></tr>
 </table>
Search Yachts Big Enough:

 <table>
 <tr><td>Find yachts with capacity more than: </td>

 <td><INPUT TYPE=TEXT NAME=MinCapacity></td>
 <td><INPUT TYPE=SUBMIT Value="Find"></td></tr>

 </table>
</FORM>

<%!

 private static Context ctx;
 static {

 try {
 ctx = new InitialContext();

 } catch (Exception e) {
 System.out.println("Error trying to do one time
initialization.\n" + e);
 }
 }

 public void log(String logMsg, JspWriter out) throws Exception {

 out.print(logMsg + "
");
 }

%>
</body>

</html>

This JSP client allow you to add a new yacht to the yacht club's possession, to remove a yacht, and to
search for yachts that have a capacity over a give number. The name and capacity of the yacht that
meet the searching criteria are listed at the top of the browser screen. By clicking the hyperlink marked
"Destroy," the corresponding yacht is removed from the database. When adding a new yacht, you need
to provide the five persistent attributes of the yacht, namely, yacht name, its builder, the engine type,
capacity, and maximum velocity. An output screen for running this JSP client is illustrated in Figure 22-1.

Chapter 22:Container-Managed Persistence

-565-

Figure 22-1: Output of ManageYacht client

By clicking the hyperlink marked "View Session," you should be able to view the session associated
with this yacht (that is, whether it is in an active cruise operation, the current status such as velocity and
passenger list, and so on). From the code in Listing 22-5, you can see that clicking the View Session
hyperlink sends a request to another JSP client: YachtSessionjManager. jsp, as shown here:

<a href=YachtSessionManager.jsp?YachtPK=<%= (String)yacht.getPrimaryKey() %>
 &Action=View>View Session

The code for YachtSessionjManager.jsp is not provided here, and I do it on purpose. By now you
should be able to write your own client to use these EJBs to meet your own needs. You have learned all
the skills you need to access these EJBs from your own client. Do this as an exercise!

Your yacht-session-management client should allow a user to check whether a cruise session is active.
If no active session is associated with the yacht the user has selected, the user should be prompt to
create a session. Once a cruise session is created (or retrieved), the user should be able to operate the
cruising yacht. That means the user is able to start, stop, accelerate and decelerate the yacht, check the
yacht status, drop off passengers, pick up members, and so on.

Because only members can come on board, you do need the help of MemberEJB to implement the
preceding functionality. You can write a JSP client, a Swing client, or a stand-along client. If you decide
to use the JSP client, you may be able to take advantage of the functionality provided by the
HttpSession interface. For example, once a YachtSessionEJB instance session is created, you can
save it to HttpSession as follows:

 session.setAttribute(yachtPrimaryKey, theYachtSession);

When a user wants to view the YachtSessionEJB instance for a specific yacht, you just need to
retrieve it as follows:

 myYachtSession = (YachtSession)session.getAttribute(yachtPrimaryKey);

When an active session is destroyed (that is, the cruise is completed), you remove the
YachtSessionEJB instance as follows:

 session.removeAttribute(yachtPrimaryKey);

The session.removeAttribute(yachtPrimaryKey) method is called in the
YachtManager.jsp shown in Listing 22-5. When a yacht is removed, its associated YachtSession
is also removed.

To give you more hints, you may write a JSP client that provides a user interface similar to what is
shown in Figure 22-2. The yacht name and current status are shown on the top of the screen. A user
can start and stop the yacht. He or she can also speed up or slow down the yacht by a certain velocity.

Chapter 22:Container-Managed Persistence

-566-

Remember that business logic is built into the YachtSessionEJB that you cannot accelerate a
stopped yacht. You must start the yacht and then speed it up. You cannot stop a yacht that is running
too fast. You must slow it down to certain speed before stopping it. If you want to add business logic,
you can revisit the YachtSessionEJB code listed in Chapter 20 and make any modification you need.

Figure 22-2: Possible output screen of your yacht-session client

This example application is simplified to demonstrate the fundamentals of CMP EJB. However, an
important feature of CMP entity bean brought by EJB 2.0 is missing: the container managed relationship.
You will learn it in the next section.

Container-Managed Relationship

The entity beans you have seen so far in this book are detached objects that do not relate with each
other. This type of entity bean has only limited use because in real life objects are often linked and
depend upon each other. This kind of behavior has always existed in databases through primary keys
and foreign keys. With EJB 1.1, CMP entity beans had no easy way of representing the natural
interaction between entity objects. This has partially contributed to the slow adoption of CMP entity
beans in the early stage. To address this problem, the EJB 2.0 specification introduces a way to support
simple and complex relationships by introducing the container-managed relationship through the
relationship fields.

Relationship Field

A relationship field is like a foreign key in a database table — it identifies a related bean. Like a
persistent field, a relationship field is virtual and is defined in the enterprise-bean class with access
methods. But unlike a persistent field, a relationship field does not represent the bean's state. For
example, each yacht has an engine. Assume an EngineEJB is developed; it has a one-to-one
relationship with the YachtEJB you have written. To model YachtEJB's relationship to EngineEJB, it
has a relationship field: engine. In the deployment descriptor, you specify this relationship as follows:

 <ejb-relation>

 <ejb-relation-name>Yacht-Engine</ejb-relation-name>
 <ejb-relationship-role>

 <ejb-relationship-role-name>Yacht-Has-Engine</ejb-relationship-role-
name>
 <multiplicity>one</multiplicity>

Chapter 22:Container-Managed Persistence

-567-

 <role-source>
 <ejb-name>YachtEJB</ejb-name>

 </role-source>
 <cmr-field>

 <cmr-field-name>engine</cmr-field-name>
 </cmr-field>

 </ejb-relationship-role>
 <ejb-relationship-role>

 <ejb-relationship-role-name>Engine-In-Yacht</ejb-relationship-role-
name>
 <multiplicity>one</multiplicity>

 <role-source>
 <ejb-name>EngineEJB</ejb-name>

 </role-source>
 </ejb-relationship-role>

 </ejb-relation>

This part of the deployment descriptor tells the EJB container that each YachtEJB has one engine and
each EngineEJB may belong to a yacht. Thus, this is a one-to-one relationship. Since you can only find
the EngineEJB instance through a YachtEJB instance, not vice verse, this relationship is
unidirectional. Although similar to the primary-key and foreign-key relationships in a database, the EJB
relationships do not work the same way as relationships in database. An EJB relationship binds two
EJBs together through object graphs to have in-memory object graphs mapped to an underlying
database schema. For example, the YachtEJB owns an EngineEJB; thus, when a YachtEJB
instance is instantiated, an associated EngineEJB instance must also be instantiated and placed in the
EJB container's memory for a client to access. In other words, the EJB relationship is enforced and
adhered to by the EJBs and the EJB container.

Cardinality and Direction of Relationship

The XML elements used in the deployment descriptor to describe the container managed can become
very complex, as they must deal with both the cardinality and direction (unidirectional vs. bidirectional)
of the relationships.

Cardinality indicates the number of EJBs. The four types of multiplicities are as follows:
§ One-to-one: Each entity-bean instance is related to a single instance of another entity bean. For

example, if each yacht has only one engine, YachtEJB and EngineEJB will have a one-to-one
relationship.

§ One-to-many: An entity-bean instance may be related to multiple instances of the other entity
bean. In real life, yachts have twin engines, and some have even more engines. To reflect this fact,
the YachtEJB has a one-to-many relationship with EngineEJB.

§ Many-to-one: Multiple instances of an entity bean may be related to a single instance of the other
entity bean. This multiplicity is the opposite of a one-to-many relationship. In the example
mentioned in the previous item, from the perspective of EngineEJB the relationship to YachtEJB
is many-to-one.

§ Many-to-many: The entity-bean instances may be related to multiple instances of each other. For
example, in college, each course has many students, and every student may take several courses.
Therefore, in an enrollment application, CourseEJB and StudentEJB have a many-to-many
relationship.

The direction of a relationship may be either bidirectional or unidirectional. In a bidirectional relationship,
each entity bean has a relationship field that refers to the other bean. Through the relationship field, an
entity bean's code can access its related object. If an entity bean has a relative field, we often say that it

Chapter 22:Container-Managed Persistence

-568-

"knows" about its related object. For example, if CourseEJB knows which StudentEJB instances it
has and, at the same time, StudentEJB knows which CourseEJB it is associated with, they have a
bidirectional relationship.

In a unidirectional relationship, only one entity bean has a relationship field that refers to the other. Look
at the snipet of the deployment descriptor given on the previous page; YachtEJB has a relationship
field that identifies EngineEJB, but EngineEJB does not have a relationship field for YachtEJB. In
other words, YachtEJB knows about EngineEJB, but EngineEJB doesn't know which YachtEJB
instances refer to it.

EJB QL queries often navigate across relationships. The direction of a relationship determines whether
a query can navigate from one bean to another. For example, a query can navigate from YachtEJB to
EngineEJB but cannot navigate in the opposite direction. For CourseEJB and StudentEJB, a query
can navigate in both directions, since these two beans have a bidirectional relationship.

Access to Relationship Field

During development, you implement the relationship fields in a similar way to persistent fields. They are
defined in the deployment descriptor, and they have their getters and setters defined in the bean-
implementation class. They can even be exposed in the remote interface. By following a strict syntax for
authoring relationship fields in the bean-implementation class and in the deployment descriptor, the EJB
container is able to implement the relationship automatically behind the scene.

The rules for writing relationship-field accessor methods in a bean-implementation class are listed
here:
§ Both getters and setters for every relationship field must exist in the implementation class.
§ These getters and setters must be declared as abstract and must contain no implementation

code.
§ These accessor methods must begin with get or set; and the text following get/set must

match the name of the relationship field as it is declared in the deployment descriptor.
§ These getters and setters that do not access Collections may be optionally placed in the

remote interface.

If you want the clients to use the relationship-field accessor method, put the getters or setters in
the remote interface. But the last rule says that you may only do this if the method does not access a
Collection of objects. Only the entity bean's other business methods can use its own Collection
relationship.

Why does such a restriction exist? It is imposed for better performance. For a one-to-many relationship,
a getter may return a Collection of the related EJB objects. For example, the OrderEJB and
LineItemEJB are linked by lineItem field of the OrderEJB. The getLineItems() method may
return tens or hundreds of LineItemEJB instances, but you may want to work only on one of these
LineItemEJB instances. Imagine the network traffic it produces! To avoid the potential performance
nightmare, the last rule given in the preceding list is imposed. If you really need to get the whole list of
the elements to the client, you must define your own (nonabstract) utility accessor method like this:

Public ArrayList getAlLineItems() {
 ArrayList list = new ArrayList();

 // call the abstract relationship field accessor and walk through the
Collection
 Iterator iter = getLineItems().iterator();

 While (iter.hasNext()) {
 List.add(iter.next())

 }
}

Chapter 22:Container-Managed Persistence

-569-

Inside your own utility accessor method, you can call the bean's abstract getter that returns a
Collection. This tells the EJB container that you really need to get the whole list and that it is not the
container's responsibility to ensure good performance.

The ejbPostCreate method in Listing 22-3 is empty. However, if there are any relationship fields, you
must put these fields' initialization code in this method. Although all the persistent fields must be set in
the ejbCreate method, it is important to not set any relationship fields in the ejbCreate methods.
When ejbCreate is called, the bean has not yet been inserted into the underlying database. When
calling a setter method, the other EJB in the relationship also tries to update its references in the
related fields. This is not possible, since the EJB that is having ejbCreate method invoked has not yet
been created. You should initialize the relationship fields in the ejbPostCreate method.

Thus, if the YachtEJB is related to EngineEJB, the ejbPostCreate method may look like this:

 public void ejbPostCreate(String yachtName, String builder, String
engineType,
 int capacity, int maxVelocity, Engine engine) {
 // initialize relationship field

 setEngine(null);
 }

In summary, implement relationships differently for BMP entity beans and CMP entity beans. With BMP,
the code you write implements the relationships. But with CMP, the EJB container takes care of the
relationships for you. Most information of the relationships is given in the deployment descriptor. A bean
developer needs to write very little code for the simple abstract getters and setters and some
initialization in the ejbPostCreate method. All these features make the CMP entity bean more
appealing because they are easier to develop and more flexible.

Summary

In this chapter, you learn how CMP entity beans handle the data persistence and object relationship.
Specifically, you learned:
§ The differences between CMP and BMP
§ How to achieve persistence through persistent fields
§ How to handle entity relationship through relationship fields
§ How to specify database access in EJB query language

This chapter concludes the discussion on EJBs. Over the past three chapters, three EJB have been
developed. You are encouraged to enhance their functionality and write your own client programs to use
these EJBs. In next chapter, you will learn another mechanism for data persistence: the Java data
object.

Chapter 23:Java Data Objects and Transparent Persistence

-570-

Chapter 23: Java Data Objects and Transparent
Persistence

In This Chapter

The focus of this chapter is on the transparent persistence and the standard way to achieve it: the Java
data object. After reading this chapter, you should have one more tool in you toolkit to design and
develop enterprise applications.

JDO for Transparent Persistence

So far, you have learned many ways to persist your application data such as Java serialization, JDBC,
entity EJBs, and so on. All these persistence mechanisms require that application programmers know
the details of the underlying database structure; most of them even require programmers to be
responsible for handling the details of persistence. To relieve application programmers from having to
know the details of the database structure, the recently released Java data object (JDO) specification
provides a high level of abstraction: transparent persistence.

Transparent persistence means that the persistence of data objects is automatic and that all logic for
processing persistent objects is expressed in pure Java language. The application programmers do not
need to know any database query languages such as SQL. The mapping of Java objects and the
persisted state of objects stored in the database is achieved behind the scene by the JDO provider
implementation and is totally transparent to application developers. From the application developer's
point of view, persistent objects are treated exactly the same as transient objects — instances that only
reside in JVM memory and do not persist outside of an application.

The two major goals of the JDO specification are:
§ Providing a standard interface between application objects and data stores (for instance, relational

databases, file systems, and so on)
§ Simplifying secure and scalable applications by providing developers with a Java-centric

mechanism for working with persistent data

Although lower-level abstractions for interacting with databases are still useful, the goal of JDO is to
reduce the need for explicit code for SQL and transaction handling in common business applications.

In addition to shielding the Java developers from the details of the underlying methods for providing
persistence, JDO acts as a standard layer between the application program and any back-end data
stores, whether it be a relational database, an XML database, a legacy application, a file system, or
flash RAM. Applications using the JDO interface can automatically plug in any data store that provides a
JDO implementation. This generally provides portability and increases the longevity of code.

JDO has come a long way to get here. It originated from Java Specification Request (JSR-012),
proposed in 1999. After three years of lengthy Java community process, it was finally approved as an
official specification in March 2002. In the meantime, many other requested specifications have become
standards, and the JDO work force has been dealing with the fact that JDO is able to be integrated into
the frameworks provided by these related specifications (mostly notably J2EE). Indeed, servlets and
session EJBs can directly manipulate JDO persistent instances instead of dealing with the underlying
data stores. Entity EJBs with bean-managed persistence can delegate business logic and persistence
management to JDO classes instead of forcing the developers writing all SQL commands in the
implementation classes. Integration of JDO with J2EE is discussed later in this chapter. First let us see
what makes JDO different from other data persistence mechanisms.

What Makes JDO an Unique Persistence Mechanism

In most cases, instances of Java classes reside in the memory of the running application. They are
destroyed when the program terminates. However, it is often desirable for the objects to persist even

Chapter 23:Java Data Objects and Transparent Persistence

-571 -

after applications terminate or sessions end so that their state may be saved for the next execution or
so that they may be shared between different applications.

You know several mechanisms to serve this purpose. The simplest way is through Java serialization.
The java.io.Serializable interface gives the programmer a way to explicitly persist objects to an
output stream and later retrieve them by calling, for example, writeObject(ObjectOutputStream
out) or readObject(ObjectInputStream in). As a developer, you only need to declare that the
class you are writing implements the Serializable interface; the JVM handles the lower-level details
for you transparently. Since the persisted data is coded as Java classes, serialization persistence
supports the object-oriented design and programming paradigm.

Although Java serialization provides a simple and transparent mechanism for persisting objects to an
output stream (mostly to a file system or local disk), it suffers from many limitations. It does not provide
query capability and cannot handle transaction. It does not support partial read and update. The whole
object is read or written in a single operation. Because of these limitations, it is usually not used to
persist business objects in enterprise applications.

JDBC provides a mechanism to store and retrieve data objects to and from a database. It allows an
application access to many types of relational databases through a standard API. The transaction API
ensures concurrency control and therefore allows multiple applications to share persisted data. In the
previous chapters of this book, you have learned how to use JDBC APIs and have seen what great
tools they are. The downside is that, as a Java programmer, you must know the database structure and
manually map your class attributes to database fields and write all the SQL commands in your Java
code. In other words, persistence is not transparent. In addition, because of the SQL variants among
different types of databases (for example, Oracle and Sybase), your code is not 100-percent portable.

Although Java is a highly object-oriented language, the JDBC uses the relational data model of SQL. It
is based on tables, rows, and columns. The relationships are specified as primary and foreign keys. As
a consequence, a developer has to struggle between the OO object model and the relational data
model. Although you may get used to it after while, the use of different models in the same application is
generally not considered the best approach, and a better approach using a unified model (most
favorably an object-oriented model) is always preferred.

In Chapters 20- 22, you learn that entity EJBs provide another mechanism for data persistence. If CMP
beans are used, you enjoy guaranteed portability because all the database-access calls are declared in
the deployment descriptor. With the so-called "write once, deploy everywhere" approach, you only need
to modify the deployment descriptor when the EJBs are deployed to a different database type or to a
different database schema. The Java code does not need to be modified or recompiled. The EJB
container provides many system-level services such as transaction, security, transparent remote
invocation, and so on. The synchronization between the instance variables and the persisted object
state is also handled by the EJB container in an automatic and optimized manner.

As Java classes (and interfaces), EJBs also support the object-oriented paradigm. However, the current
EJB specification does not support inheritance, and you cannot have a complex object model. Besides,
if BMP entity beans are used, you will have to write all SQL commands in your implementation class.

The JDO specification provides a new persistent mechanism. It has a set of very simple APIs to support
transparent persistence. The Java code is totally decoupled from the underlying data store, which leads
to the "write once, persist everywhere" approach. JDO is fully object oriented and hence is able to
support complex domain object models. The optimization of database read and update is performed at
the JDO implementation layer and is transparent to application developers. Unlike EJBs, it can be used
outside a container and used for batch processes. If combined with J2EE components (for instance,
servlets, JSPs, and EJBs), it enjoys the system-level services that containers provide.

As an example, the Yacht class listed in Listing 23-1 is all you need to code to persist Yacht objects. It
is basically a JavaBean class with some persistable attributes and access methods to these attributes.
Compared with the YachtEJB you see in Chapter 22, the code is much simpler, and there is not even a
slight hint of an underlying database as the persistent store. Similar to EJB's deployment descriptor, you
declare that the class Yacht is persistence-capable in an XML MetaData file. But you see later that an
XML MetaData file is normally much simpler and shorter than an EJB deployment descriptor.

TE
AM
FL
Y

Team-Fly®

Chapter 23:Java Data Objects and Transparent Persistence

-572-

Listing 23-1: A persistent class — Yacht

package java_database.jdo;

public class Yacht {
 private String yachtName;

 private String builder;
 private String engineType;

 private int capacity;
 private int maxVelocity;

 /** constructor */

 public Yacht(String yachtName, String builder, String engineType,
 int capacity, int maxVelocity) {

 this.yachtName = yachtName;
 this.builder = builder;

 this.engineType = engineType;
 this.capacity = capacity;

 this.maxVelocity = maxVelocity;
 }

 /** default constructor */

 public Yacht() { }

 // getters and setters
 public String getYachtName() { return yachtName; }

 public String getBuilder() { return builder; }
 public String getEngineType() { return engineType; }

 public int getCapacity() { return capacity; }
 public int getMaxVelocity() { return maxVelocity; }

 public void setYachtName(String v) { yachtName = v; }

 public void setBuilder(String v) { builder = v; }
 public void setEngineType(String v) { engineType = v; }

 public void setCapacity(int v) { capacity = v; }
 public void setmaxVelocity(int v) { maxVelocity = v; }

}

All these features — transparent persistence; extended query capability; adherence to the object-
oriented paradigm and support for the complex data model; simplicity; and so on — make the JDO a
unique persistent mechanism and should be in every enterprise application developer's toolkit. Table
23-1 summarizes the features of the persistence mechanisms discussed in this section. You learn the
details of JDO in the next section.

Chapter 23:Java Data Objects and Transparent Persistence

-573-

Table 23-1: Comparison of Major Persistence Mechanisms

 Serialization JDBC EJB JDO

Transparent
Persistence

Transparent Not transparent Session and BMP
entity bean is not
transparent. CMP EJB
is partially transparent.

Transparent

Domain Object
Model

Fully object
oriented.

Inherently not
object oriented.

Simple domain object
model. No inheritance.

Fully object
oriented.
Support
complex
domain
object model.

Query Not
supported

Supported by
writing SQL
code.

Supported by
declarative query by
CMP entity beans, and
SQL code by session
and BMP entity beans.

Extended
support via
JDO QL

Transaction Not surported Supported Supported Supported

Database
Portability

N/A Weak support
for relational
DBs. May have
to recode due
to SQL variant.
Do not suport
OO and XML
DBs.

Session and BMP
entity bean has same
level of support as
JDBC. CMP entity
bean has better
support.

Good support
– "write once,
persist
everywhere"

Major JDO APIs

Compared with other Java technologies, JDO has a set of very simple APIs. The package javax.jdo
contains 12 interfaces, five classes and nine exceptions. These interfaces and classes are all you need
when you develop Java classes whose instances are to be stored in persistence stores. These APIs
specify the contracts between your persistent-capable classes and the runtime environment that is part
of the JDO implementation. The JDO implementation is provided by JDO vendors, and there are
currently quite a few implementations available on the market. A set of contracts between application
developers and JDO vendors is defined in the JDO architecture and specified through these APIs.

The following sections discuss these interfaces:
§ PersistenceCapable
§ PersistenceManagerFactory
§ PersistenceManager
§ Query
§ Transaction

PersistenceCapable Interface

The javax.jdo.PersistenceCapable interface makes a Java class capable of being persisted by
a persistence manager through a JDO implementation. Every class whose instances can be managed
by a JDO PersistenceManager must implement the PersistenceCapable interface.

This interface defines methods that allow the implementation to manage the instances. It also defines
methods that allow a JDO-aware application to examine the runtime state of instances. For example, an
application can discover whether the instance is persistent, transactional, dirty, new, or deleted and can
get its associated PersistenceManager if it has one.

Chapter 23:Java Data Objects and Transparent Persistence

-574-

Unlike with the java.io.Serializable that makes a class serializable, you do not explicitly declare
your class as "implements PersistenceCapable". Look at the persistent class (Yacht) shown in
Listing 23-1; simply declare the class as follows, without mentioning the PersistenceCapable
interface:

public class Yacht {
 … …

}

This is the beauty of transparent persistence. In most JDO implementations, you specify that the class
meant to be persistent in an XML MetaData file read by the JDO enhancer. The JDO enhancer modifies
the class's bytecode to ensure that it implements PersistenceCapable prior to loading the class into
the runtime environment. The JDO enhancer also adds code to implement the methods defined by
PersistenceCapable.

As an example, the XML MetaData file for the persistent class Yacht is shown in Listing 23-2. The
document-type definition file, jdo.dtd, is provided by the vendor of the JDO implementation that you
use.

Listing 23-2: XML MetaData file for the persistent class Yacht

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jdo SYSTEM "jdo.dtd">
<jdo>

 <package name="java_database.jdo">
 <class name="Yacht" identity-type="datastore">

 </class>
 </package>

</jdo>

You tell the JDO enhancer that the class java_database.jdo.Yacht is to be persisted in a data
store. If you have a complex persistable object model with inheritance and other types of object
relationships, the XML MetaData file is, of course, more complex than what you see in Listing 23-2. But
it is almost never so lengthy and so complicated as a CMP entity bean's deployment descriptor.

Since the JDO enhancer does all the work behind the scenes, mapping your persistent classes with the
persistent store, you do not have to know the details of the PersistenceCapable interface.

PersistenceManagerFactory Interface

The javax.jdo.PersistenceManagerFactory interface obtains PersistenceManager
instances. All PersistenceManager instances obtained from the same
PersistenceManagerFactory have the same default properties.

PersistenceManagerFactory instances may be configured and serialized for later use. They may
be stored via the Java Naming and Directory interface (JNDI) and looked up and used later. Any
properties configured are saved and restored. Once the first PersistenceManager is obtained from
the PersistenceManagerFactory, the factory can no longer be configured.

The application acquires an instance of JDO PersistentManager by calling the
getPersistentManager method of an instance of JDO PersistenceManagerFactory. The code
may looks like this:

…

InitialContext ctx = new InitialContext();

Chapter 23:Java Data Objects and Transparent Persistence

-575-

PersistentenceManagerFactory pmf = (PersistenceManagerFactory) ctx.lookup(

"java:comp/env/jdo/JNDI_NAME_FOR_YOUR_PMF");
PersistenceManager pm = pmf.getPersistenceManager();
…

Most JDO-implementation vendors provide some proprietary APIs to instantiate instances of
PersistenceManagerFactory by other means such as properties.

PersistenceManager Interface

The javax.jdo.PersistenceManager interface is the primary one for JDO-aware application
components. It is the factory for Query and Transaction instances and contains methods to manage
the life cycle of PersistenceCapable instances. The most commonly used methods include the
following:
§ Make instances persistent

§ void makePersistent(Object pc)
§ void makePersistentAll(Object[] pcs)
§ void makePersistentAll(Collection pcs)

§ Delete persistent instances
§ void deletePersistent(Object pc)
§ void deletePersistentAll(Object[] pcs)
§ void deletePersistentAll(Collection pcs)

§ Make instance transient — disassociate the instance from the persistence manager. The data
stored in the data store is not deleted.
§ void makeTransient(Object pc)
§ void makeTransientAll(Object[] pcs)
§ void makeTransientAll(Collection pcs)

§ Handle persisted object IDs
§ Object GetObjectId(Object pc)
§ Object getObjectById(Object oid, boolean validate)

§ Give access to current transaction interface
§ Transaction currentTransaction()

§ Serve as the factory for the Query Interface
§ Query newQuery()
§ Query newQuery(java.lang.Class cls)
§ Query newQuery(A variety of parameters can be passed in)

The usage of some of these APIs is seen from the example test client of the Yacht class listed later in
this chapter under "A Test Client Example."

A JDO PersistenceManager instance supports one transaction at a time and uses one connection to
the underlying data source at a time. The JDO PersistenceManager instance might use multiple
transactions serially and might use multiple connections serially.

Normally, cache management is automatic and transparent. When instances are queried, navigated to,
or modified, instantiation of instances and their fields and garbage collection of unreferenced instances
occur without any explicit control. When the transaction commits in which persistent instances are
created, deleted, or modified, eviction is automatically handled by the transaction-completion
mechanisms.

Query Interface

The javax.jdo.Query interface allows applications to obtain persistent instances from the data store.
The PersistenceManager is the factory for Query instances. There may be many Query instances
associated with a PersistenceManager. Multiple queries might be executed simultaneously by

Chapter 23:Java Data Objects and Transparent Persistence

-576-

different threads, but the implementation might choose to execute them serially. In either case, the
implementation must be thread-safe.

There are three required elements in a query: the class of the results, the candidate collection of
instances, and the filter. There are optional elements: parameter declarations, variable declarations,
import statements, and an ordering specification.

The query namespace is modeled after these methods in Java:
§ setClass corresponds to the class definition.
§ declareParameters corresponds to formal parameters of a method.
§ declareVariables corresponds to local variables of a method.
§ setFilter and setOrdering correspond to the method body.

Note

You can find more details of these methods in the JDO document (visit
http://access1.sun.com/jdo).

The Query interface provides the following methods that execute the query based on the parameters
given:
§ Object execute()
§ Object execute(Object param)
§ Object execute(Object[] params)

They return a Collection that the user can iterate to get results. For future extension, the signature of
the execute methods specifies that they return an Object that must be cast to Collection by the
user. Any parameters passed to the execute methods are used only for this execution and are not
remembered for future execution.

All queries must conform to the object query language (OQL) grammar. Unlike SQL, the JDO OQL
operates on Java classes and objects and has a strong object-oriented flavor. A JDO OQL has at least
three elements: the class of results, the JDO instances' candidate collection (usually extent), and the
query filter. The query filter is where you specify the query criteria. Query filters use syntax very similar
to Java syntax such as: "name.startWith("Liberty")" or "getCapacity() > 12". The
following code snippet illustrates the use of some Query APIs.

…

Class target = Yacht.class;
Extent extent = pm.getExtent(target, false);

String filter = "getCapacity() > 12";
Query query = pm.newQuery(excent, filter);

Query.setClass(target);
Query.compile();

Collection result = (Collection) query.execute();
…

This piece of code searches the persistent store and returns a collection of Yacht objects that has a
capacity of more than 12 passengers.

Transaction Interface

Operations on persistent JDO instances at the user's choice might be performed in the context of a
transaction. That is, the view of data in the data store is transactionally consistent, according to the
standard definition of Atomicity, Consistency, Isolation, and Durability (ACID) transactions.

The javax.jdo.Transaction interface is used to mark the beginning and end of a application-
defined unit of work. The PersistenceManager allows the application to get the instance that
manages these transactional boundaries via the currentTransaction method.

Chapter 23:Java Data Objects and Transparent Persistence

-577-

Transaction-completion methods have the same semantics as
javax.transaction.UserTransaction and are valid only in the nonmanaged, nondistributed
transaction environment. Do not be surprised if you are told that the most useful methods in the
javax.jdo.Transaction interface are as follows:
§ void begin()
§ void commit()
§ void rollback()

You may use these APIs as follows:

… …

PersistentManager pm = pmf.getPersistentManager(); // get a PM instance
Transaction txn = pm.currentTransaction(); // get current
transaction context
pm.deletePersistent(pm.getObjectById(oid), false); // delete a persisted
object
txn.commit(); // commit the
transaction
pm.close();

… …

For operation in the distributed environment, Transaction is declared to implement
javax.transaction.Synchronization. This allows for flushing the cache to the data store during
externally managed transaction completion.

A Test Client Example

The most commonly used APIs are discussed in the preceding sections. To illustrate the use of these
APIs, a test client for the persistence-capable class Yacht is developed as shown in Listing 23-2. You
can see from this example that the coding for JDO applications is very simple and straightforward.

Listing 23-2: A test client for the persistent class Yacht

package java_database.jdo;

import java.util.*;

import javax.jdo.*;

import com.prismt.j2ee.connector.jdbc.ManagedConnectionFactoryImpl;

public class TestClient {
 private final static int SIZE = 4;

 private PersistenceManagerFactory pmf = null;
 private PersistenceManager pm = null;

 private Transaction transaction = null;

 private Yacht[] yachts; // Array of yachts for persistence
test
 private Vector id = new Vector(SIZE); // Vector of object identifiers

Chapter 23:Java Data Objects and Transparent Persistence

-578-

 /** constructor */
 public TestClient() {

 System.out.println("First initializing JDO PersistenceManagerFactory");
 try {

 Properties props = new Properties();
 props.setProperty("javax.jdo.PersistenceManagerFactoryClass",

"com.prismt.j2ee.jdo.PersistenceManagerFactoryImpl");
 // Following part uses vendor specif APIs. Modify it as needed!

 pmf = JDOHelper.getPersistenceManagerFactory(props);
 pmf.setConnectionFactory(createConnectionFactory());

 } catch(Exception ex) {
 ex.printStackTrace();

 System.exit(1);
 }

 }

 public static Object createConnectionFactory() {
 ManagedConnectionFactoryImpl mcfi = new ManagedConnectionFactoryImpl();

 Object connectionFactory = null;
 try {

 mcfi.setUserName("system");
 mcfi.setPassword("manager");

 mcfi.setConnectionURL("jdbc:oracle:thin:@localhost:1521:thedb");
 mcfi.setDBDriver("oracle.jdbc.driver.OracleDriver");

 connectionFactory = mcfi.createConnectionFactory();
 } catch(Exception e) {

 e.printStackTrace();
 System.exit(1);

 }
 return connectionFactory;

 }

 /** Create a group of Yacht objects for persistence test */
 public void yachtPersistor() {

 // Create an array of three yachts to persist
 yachts = new Yacht[SIZE];

 yachts[0] = new Yacht("Whaler", "Grand Banks", "Twin Diesel", 12, 35);
 yachts[1] = new Yacht("Liberty", "Bristol", "Single Diesel", 10, 25);

 yachts[2] = new Yacht("Yifei", "Eastbay", "Twin Diesel", 8, 27);
 yachts[3] = new Yacht("Lightning", "Eastbay", "Twin Diesel", 8, 30);

 // get a PM and set transaction
 pm = pmf.getPersistenceManager();

Chapter 23:Java Data Objects and Transparent Persistence

-579-

 transaction = pm.currentTransaction();
 // make all of the objects in the graph persistent

 pm.makePersistentAll(yachts);
 transaction.commit();

 // retrieve object ids for the persisted objects
 for(int i = 0; i < yachts.length; i++) {

 id.add(pm.getObjectId(yachts[i]));
 System.out.println("Object id is: " + id.elementAt(i));

 }
 // close current PM to ensure that objects are read from the datastore

 // rather than the PM's memory cache.
 pm.close();

 }

 /** Display the persisted objects' state on standard output */
 public void display(int endIndex) {

 Yacht aYacht;
 int max = endIndex <= SIZE ? endIndex : SIZE;

 System.out.println("\n--

");

 System.out.println(" Display: Persisted Yachts");
 System.out.println("--
-------");
 // get a new PM
 pm = pmf.getPersistenceManager();

 // retrieve objects from datastore and display their state
 for(int i = 0; i < max; i++) {

 aYacht = (Yacht)pm.getObjectById(id.elementAt(i), false);
 System.out.println("------------ " + i + " ------------");

 System.out.println("YachtName : " + aYacht.getYachtName());
 System.out.println("Builder : " + aYacht.getBuilder());

 System.out.println("Engine Type : " + aYacht.getEngineType());
 System.out.println("Capacity : " + aYacht.getCapacity());

 System.out.println("Max Velocity: " + aYacht.getMaxVelocity());
 System.out.println("-------------------------------");

 }
 pm.close();

 }

 /** Change a Yacht's name and make the change persistent */
 public void change() {

 Yacht aYacht;
 // get a PM and set transaction

Chapter 23:Java Data Objects and Transparent Persistence

-580-

 pm = pmf.getPersistenceManager();
 transaction = pm.currentTransaction();

 // change DataString field of the second persisted object
 aYacht = (Yacht)pm.getObjectById(id.elementAt(1), false);

 aYacht.setYachtName("New_Name");
 // commit the change and close the PM

 transaction.commit();
 pm.close();

 }

 /** Delete a Yacht object from persistent datastore */
 public void delete() {

 // get a PM and set transaction
 pm = pmf.getPersistenceManager();

 transaction = pm.currentTransaction();
 // delete the 2nd persisted object from datastore and its ID from
Vector id.
 pm.deletePersistent(pm.getObjectById(id.remove(1), false));
 // commit the change and close the persistence manager

 transaction.commit();
 pm.close();

 }

 /**

 * The main method of the Test Client program.
 */

 public static void main(String[] args) {
 System.out.println("Start Test");

 // Instantiate a TestClient
 TestClient aTestClient = new TestClient();

 // Setup and persist a group of yachts, then display tieir persised
state.
 System.out.println("\nThree yachts are persisted");
 aTestClient.yachtPersistor();

 aTestClient.display(SIZE);

 // Change a yacht'sname, and then display the yachts' state again.
 System.out.println("\nSecond yacht's name is changed");

 aTestClient.change();
 aTestClient.display(SIZE);

 // Delete a person and display the yachts'state again.

Chapter 23:Java Data Objects and Transparent Persistence

-581 -

 System.out.println("\nA yacht is deleted");
 aTestClient.delete();

 aTestClient.display(SIZE - 1);

 System.out.println("Test Completed");
 }

}

There are many JDO vendors on the market. The JDO implementation used in the example is the
OpenFusion JDO from Prism Technologies, but I am not endorsing any specific vendor. Choose the
vendor based on your specific requirements. For simplicity, the initialization of the
PersistenceManagerFactory instance part uses the vendor-specific APIs included in the package:
com.prism.j2ee.connector.jdbc.ManagedConnectFactoryImpl. This is the only place that
uses a JDO vendor-specific API; everything else uses the standard JDO APIs, with the vendor-specific
implementation behind the scenes. If you use another JDO implementation, you can simply modify that
portion of the code. If your application has access to a JNDI service, you can get a
PersistentManagerFactory instance via JNDI lookup. Then you do not need to modify code at all
when you switch to another vendor's JDO implementation.

The test client program first instantiates four Yacht objects and persists their state into a persistent
store. The persisted objects are then retrieved one by one, and their states are displayed on the
standard output screen. The program then changes the second yacht's name from "Liberty" to
"New_Name." You see the change when the program redisplays the persisted objects' states on the
screen. Finally, the test program deletes the second Yacht object from the persistent store. When the
display is refreshed, the second Yacht object is gone.

The business logic in the above example is very simple. In the real life, the business rules and logic are
much more complicated and complex domain objects must be handled. You will learn the support of
complex domain objects in the next section.

Support for the Complex Domain Object Model

As a Java developer, you must be familiar with object-oriented design and programming. In almost all
enterprise applications, the domain object models are fairly complex, with all kinds of relationships
between classes: association, aggregation, composition, inheritances, and so on. The most notable
relationships are extension or inheritance. These allow the abstraction of common attributes and
behaviors of a set of classes into a base class. All the subclasses inherit the fields and methods from
the super class.

If the objects are to be persisted, however, there is a gap between such an object model and the
relationship model used by relationship databases. Typically, object-to-relationship mapping (O/R
mapping) must be made, and developers must deal with low-level constructs of the database model,
such as rows and columns, and constantly translate them back and forth. In the previous chapters of
this book, you have learned all the tricks using JDBC APIs to couple your Java objects with underlying
database tables. It is not only tedious, but the code is not 100-percent portable due to the variant of
SQL flavors different databases use.

Container-managed entity EJBs partially solve this problem by postponing the O/R mapping to the
deployment phase. Since you do not need to write any data-store access code, the CMP entity beans
are decoupled from specific database type or even the specific database schema. As write once, deploy
everywhere components, they are portable and reusable. However, when you deploy them to a specific
database, you still have to know the relational data model in order to map the persistent fields to the
corresponding table columns and to specify the relational fields in the deployment descriptor.

Moreover, the current CMP entity-bean specification does not support inheritance, one of the most
important features of object-oriented design. This makes it impossible to build a complex domain object

TE
AM
FL
Y

Team-Fly®

Chapter 23:Java Data Objects and Transparent Persistence

-582-

model with CMP entity beans. Although quite a few design workarounds (or design patterns) have been
proposed in the recent years, none of them eliminates this fundamental limitation.

As a Java developer, you certainly favor a mechanism that abstracts away any persistent details and
has a clean, simple, object-oriented API to perform data persistence. With the recent official release of
the JDO specification, you finally have an object-oriented, data-persistent mechanism to use.

Since the JDO persistent classes are simply Java classes, you build your domain model as usual and
without worrying about the details of data persistence. This can be illustrated by using a classic example.
Assume you have three classes: Employee, ParttimeEmployee and FulltimeEmployee. Their
relationship is shown in Figure 23-1.

Figure 23-1: Class diagrams of the employee object model

The employee name is common for both part-time and full-time employees and thus is defined in the
base class. The part -time employee is paid by hour and has an attribute hourlyRate. The full-time
employ is paid by annual salary and hence has an attribute salary. An abstract method,
computeBiweeklyPay(), is defined in the base class, and the implementation is provided in the
subclasses. The implementations of this method are certainly different in two subclasses. For example,
the part-time employee may be paid simple by the hours worked multiplied by the hourly rate. For the
full-time employees, you may have to deduct all payroll deductions, and you may also have to handle
holidays and vacations differently from the working days.

The coding of these persistent classes is straightforward. After you have written these classes, you
need to tell the JDO enhancer that they should be persisted. Your XML MetaData file may look like the
following:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jdo SYSTEM "jdo.dtd">

<jdo>
 <package name="java_database.jdo">

 <class name="Employee">
 </class>

 <class name="ParttimeEmployee" persistence-capable-
superclass="Employee">

 </class>
 <class name="FulltimeEmployee" persistence-capable-
superclass="Employee">
 </class>
 </package>

</jdo>

Chapter 23:Java Data Objects and Transparent Persistence

-583 -

There may be slight variances in the XML MetaData file depending on the JDO implementation you use.
Basically, you specify the inheritance using the persistence-capable-superclass attribute within
the class tag. The JDO implementation handles all the persistence details for you transparently. It may
even create the database schema, with referential integrity enforced to implement the inheritance
relationship.

The client program accesses the JDO persistent class instances in the same way as it accesses any
Java class instance. As an example, your client code may have the following code snippet:

… …

PersistenceManager pm = pmf.getPersistenceManager();
Employee emp = (Employee) pm.getObjectById(empId);

emp.computeBiweeklyPay();
… …

When the client calls getObjectById method, the JDO implementation automatically instantiates an
instance of the correct class, either ParttimeEmployee or FulltimeEmployee. When the instance's
computeBiweeklyPay method is called, the correct version is invoked. The polymorphism of the
object-oriented paradigm makes the client-code simple and elegant. You cannot achieve such a level of
simplicity and elegance by using any other data-persistence mechanisms.

In addition to inheritance, your classes can have any type of object relationships such as aggregation
and composition, association, utilization, and so on. All you need to do is specify these relationships in
the XML MetaData file and feed the file to the JDO enhancer.

After leaning the nuts and bolts of JDO, you must be eager to learn how to develop applications using
JDO. This is discussed in the next section.

JDO Application Development Process

When designing a JDO-aware application, developers do not have to worry about the database type
and database schema; but there are some best practices you probably want to follow. You should divide
the Java classes into two categories: the persistent classes and business classes . The persistent
classes are those that contain the data managed in the database, and the business classes are those
that contain the business logic and query the persisted data. In the example code shown in Listing 23-1
and Listing 23-2, the class Yacht is persistent, and the class TestClient is business.

The persistent classes are very simple Java classes with data members, basic accessor methods, and
(if necessary) some data-manipulation methods. There is no restriction from the JDO specification that
you cannot put the business logic into these persistent classes. As a matter of fact, putting some
business logic into these classes is a more object-oriented approach. However, since the persistent
classes have to be further processed by the JDO implementation, as you will see later, it is
recommended as a best practice to separate business logic from date persistence. The separation
makes the data-persistent class more like simple JavaBean classes and can be generated automatically
by many integrated development environments (IDEs) such as Together Control Center, Forte for Java,
Visual Age, and so on.

The business classes contain all the business logic. They access the persisted data through the
instances of persistent classes. Since JDO provides transparent persistence, there are no database
calls (no SQL) in the business class code. You do not need to make these business classes persistent
capable, which reduces the runtime overhead of the JDO implementation and hence improves the
performance of the application.

The data represented by persistent objects are ultimately stored in the underlying database, and
therefore the objects must be mapped to database entities. This mapping is done by the JDO enhancer
based on the information provided in the XML MetaData file. In many cases, the JDO enhancer also
creates a database schema to support the persistence.

Chapter 23:Java Data Objects and Transparent Persistence

-584-

In the XML MetaData file, all persistent-capable classes, as well as their relationships, are defined.
Although the XML MetaData files can be created manually, many JDO implementations provide tools to
help you with their creation. You should use the tools whenever they are available.

After the persistent classes are compiled by a Java compiler into bytecode, the Java class files are fed
into the JDO enhancer, along with the XML MetaData file. The enhancer modifies the bytecode by doing
the following:
§ Making the class implement the javax.jdo.PersistenceCapable interface
§ Adding implementations of javax.jdo.PersistenceCapable required methods based on the

object relationship and underlying database structure
§ Creating a database schema, if needed, for data persistence
§ Adding any other necessary functionalities for optimized and transparent persistence

These JDO-enhanced classes are loaded into the JVM at the runtime. The XML MetaData file is also
read by the JVM at the runtime to guide data persistence. The JDO-aware applications' development
and execution process is shown in Figure 23-2.

Figure 23-2: The JDO application-development and execution process

You can see from Figure 23-2 that only JDO enhanced classes are loaded into the JVM. Since the
enhancer does all the persistence-support work, developers can focus on the implementation of
business logic. On the other hand, you have to pay attention to the so-called performance penalty.
Since the enhanced classes are generally larger than the plain class files, business logic is normally
separated from the persistent classes and instead placed into the business classes. The business
classes are not enhanced and thus have smaller footprints. At runtime, it is obvious that unnecessary
network traffic on the database (typically residing on another network note) deteriorates performance.
To overcome this potential weak point, most JDO implementations have a complex cache system.

Another important design target for all JDO enhancers is to provide compatibility among different
database vendors and different JDO implementations. As the technology matures, more and more high-
quality JDO implementations will become available.

In the previous chapters you learned about EJBs, the fundamental components of J2EE framework.
Can you fit the JDO int o the J2EE framework? Absolutely yes. The next section explains how it can be
achieved.

Integration of JDO with the J2EE Framework

Unlike J2EE components, JDOs do not need to run inside a container. They can be used in any
standalone applications. This makes them suitable for many batch processes.

On the other hand, JDOs do not enjoy the system-level support provided by containers such as
transaction, security, transparent remote invocation, and so on. Application developers may have to
code these system-lever services if they are needed, which prolongs the development cycle and may
make the application more vulnerable to all kinds of defects.

The best way to develop an enterprise application may be by combining the better of the two worlds:
using the container services provided by the J2EE framework and the transparent persistence provided

Chapter 23:Java Data Objects and Transparent Persistence

-585-

by the JDO specification. There are numerous ways to integrate the JDO into the J2EE framework. For
example, you can build a two-tier system servlet and JSP pages on the client tier and JDO and other
business processes on the second tier. You can also build a three-tier system with a servlet and/or JSP
at the client tier, the session EJB or BMP entity beans in the middle tier, and the JDO at the back end
(that is, the resource tier). You can certainly combine JDO with J2EE in any other innovative ways.

When you integrate the JDOs into the J2EE framework, the J2EE components typically take advantage
of JDO's simple, object-oriented, and transparent persistence service. The servlet, JSP, or EJBs access
the persisted object state via JDOs instead of by accessing the database directly. From these J2EE
components' points of view, accessing JDOs and accessing databases share a great deal of logical
similarity. This process is illustrated in Figure 23-3.

Figure 23-3: Data persistence with (a) JDBC and (b) JDO

Figure 23-3 (a) illustrates the scenario that session EJBs, servlet, or JSPs access the persisted data via
JDBC. The J2EE components first get a transactional Connection to the database from the
DataSource that represents the underlying database. The DataSource serves as a Connection
factory. The J2EE components then access the database through the Connection, which returns a
ResultSet object that wraps up the retrieved rows of data. The client then walks through the
ResultSet to access each record.

In Figure 23-3 (b), JDO is used for data persistence. Instead of getting a database Connection, the
J2EE clients first get a transactional PersistenceManager from the
PersistenceManagerFactory. They then access the persisted data through the
PersistenceManager. The PersistenceManager returns either a single persisted object or a
collection of persisted objects. The J2EE components retrieve or update the persisted object state using
the accessor methods (that is, getters and setters) of the persistent classes.

The code examples in the two scenarios illustrated in Figure 23-3 also share a great deal of similarity.
For the JDBC approach, the code may look like what is shown here:

… …

InitialContext ctx = new InitialContext();

Chapter 23:Java Data Objects and Transparent Persistence

-586-

DataSource ds = (DataSource) ctx.lookup("java:comp/env/jdbc/YachtClubDB");
Connection conn = ds.getConnection();

PreparedStatement pStmt = cx.preparedStatement("SELECT yacht_name,
engine_type FROM
 Yacht WHERE yacht_name=?")

PStmt.setString(1, yachtName);
ResultSet rs = pStmt.execute();

String engineType = rs.getString(2);

Note that the code snippet is for illustration only. When you develop real-life applications, you must code
more defensively against exceptions. For example, you should check whether the result is null before
you try to get the value of engine_type.

For the JDO approach, the code may look like this:

… …

InitialContext ctx = new InitialContext();
PersistenceManagerFactory pmf = (PersistenceManagerFactory) ctx.lookup(

"java:comp/env/jdbc/YachtClubPMF");
PersistenceManager pm = pmf.getPersistenceManager();

YachtKey yKey = new YachtKey(yachtName);
Yacht aYacht = (Yacht) pm.getObjectById(yKey);

String engineType = aYacht.getEngineType();
… …

Note that the code snippet is again simplified to demonstrate the core concept. The preceding code can
be part of the session EJBs, servlets, or JSPs, depending upon your application design. It is seen that
the session EJBs and servlets/JSPs use either JDBC or JDO in a similar manner.

Entity beans with bean-manager persistence can also take advantage of the simple and transparent
persistence JDO provides. Instead of writing SQL code, developers access persisted objects' states via
JDO-persistent class instances. Recall the discussion in Chapter 21 regarding that data-access codes
are mostly in the following methods: ejbCreate, ejbRemove, ejbFindByxxx, ejbLoad and
ejbStore. If JDO is used, you will write these methods using JDO APIs. For example, ejbCreate
creates a persistent instance by first instantiating a persistent object and then calling the
PersistenceManager's makePpersistent method. ejbRemove deletes a persistent instance by
calling the PersistenceManager's deletePersistent method. ejbLoad retrieves a persistent
instance by calling a getObjectByxxx method.

Entity beans with container-managed persistence have a unique method for persistence management.
The concrete bean class is automatically generated by the EJB container at the deployment phase
based on the information provided in the deployment descriptor. Database access is transparent to the
bean developer, although certain knowledge regarding database structure is required to map the
persistent and relational fields to corresponding database columns for deployment. There is typically no
need or viable mechanism to integrate CMP entity beans with JDO. You may have to choose either one
in your application based on your specific needs and constraints.

Summary

JDO bridges the gap between the Java object model and relational data model by providing a very
natural yet very simple object-oriented mechanism to store and retrieve java objects. In this chapter, you
have learned the following:

Chapter 23:Java Data Objects and Transparent Persistence

-587 -

§ How JDO achieves transparent persistence
§ How to develop JDO-aware applications using standard JDO APIs
§ How to integrate JDO into J2EE framework

This chapter concludes the discussion on data persistence. In the last four chapters, you have learned
various ways to persist an object's state. Every approach has its strengths and weaknesses. Therefore,
you should consider all options and choose the one that most suits your specific requirements and
constraints.

Part VI:Database Administration

-588-

Part VI: Database Administration
Chapter List

Chapter 24: User Management and Database Security

Chapter 25: Tuning for Performance

Part Overview

Part VI covers database-administration issues such as user management, security, and tuning.
Although these issues may lack the glamour of creating, updating, and querying a database, they are
nevertheless an important part of a practical application.

Good user management is one of the keys to database integrity. Understanding how and when to
assign privileges to a user can make all the difference in avoiding accidental wipeouts of valuable
databases and securing sensitive information from the prowling eyes.

Database tuning is the key to achieving great performance from a database-driven application. Badly
written statements and poorly designed queries can bring an application to its knees. The correct use of
indexes can make a huge difference to response times, and misusing them can make updates
incredibly slow. The use of joins and views can also help speed the execution of a query. Finally,
denormalization of the database is another key technique widely used to improve database
performance.

Chapter 24:User Management and Database Security

-589-

Chapter 24: User Management and Database Security

In This Chapter

This chapter discusses how to create and manage users and groups. It goes on to define a database
schema and shows how to create and manage these schemas. It further explains the concepts of user
privileges and the assignment of permissions to the schema objects. The grouping of privileges into
roles extend benefits such as ease of administration.

Groups, Users, and Roles

A user is a person who has been assigned certain privileges or permissions to perform certain tasks on
the database. A logical collection of these users is a group. Most database management systems
provide the capability of defining users and groups of users with different access privileges and
operational roles. Typically, there is always a database administrator with full access privileges, as well
as a number of other users who can access individual databases within the database management
system.

Many systems support the concept of groups, which allow the administrator to order certain users
logically. Database management systems allow you to manage these groups and the users within them
via the Structured Query Language (SQL). Database users are completely separate from the operating
system users, at least in concept. In practice, it might be convenient to maintain a correspondence, but
this is not required.

Cross-
Reference See Part II for discussions of SQL.

Groups have certain permissions assigned to them. Users that belong to the group inherit the
permissions of that group. A database role defines what operations a user or users in a group can
perform on the database, such as "Create Databases," "Backup Databases," and so on. A role is not
the same as a group. Role definitions are specific to a particular DBMS, so look at the documentation
provided with your specific database for these roles.

Working with Groups

A database management system uses the concepts of groups and users to assign certain privileges to
perform tasks. We create groups, then users, and finally we assign roles or privileges to the users.

Creating a group

The first task is to create a group within which you can put users. You must be a database super user or
administrator to use this command, which creates a group with no users:

CREATE GROUP group_name

Alternatively, you can create a group and assign users to it in one command; first, create users. If you
try to run the following command without creating users, you will get an error message.

CREATE GROUP group_name WITH USER user1, user2

The general syntax for CREATE GROUP is as follows:

CREATE GROUP name
 [WITH

 [SYSID gid]
 [USER username [, ...]]]

Dropping a group

Chapter 24:User Management and Database Security

-590-

Only database super users and administrators can use the DROP GROUP command. This command
deletes a group, not the users:

DROP GROUP group_name

The users are simply left as they are, without any group assignments. You can always add these users
to another group you create.

The JDBC code to create and delete a group is shown in Listing 24-1.

Listing 24-1: Working with groups

package jdbc_bible.part2;

import java.sql.*;
import sun.jdbc.odbc.JdbcOdbcDriver;

public class GroupMaker {

 static String jdbcDriver = "sun.jdbc.odbc.JdbcOdbcDriver";
 static String groupName = "";

 static String url = "jdbc:odbc:dummyDB";

 static String SQL_GroupCreate =

 "CREATE GROUP ";

 static String SQL_GroupDelete =
 "DROP GROUP ";

 public GroupMaker (){

 registerDriver();
 }

 public void setGroupName(String groupName){

 this.groupName = groupName;
 }

 public void registerDriver() {

 try
 {

 Class.forName(jdbcDriver);
 DriverManager.registerDriver(new JdbcOdbcDriver());

 }
 catch(ClassNotFoundException e){

 System.err.print(e.getMessage());

Chapter 24:User Management and Database Security

-591-

 }
 catch(SQLException e){

 System.err.println(e.getMessage());
 }

 }

 public void createGroup(){
 Connection con;

 Statement stmt;
 try

 {
 con = DriverManager.getConnection(url);

 stmt = con.createStatement();
 stmt.execute(SQL_GroupCreate + this.groupName);

 }
 catch(SQLException e){

 System.err.println(e.getMessage());
 }

 finally
 {

 try
 {

 if (con != null) {
 con.close();

 }
 if (stmt !=null) {

 stmt.close();
 }

 }
 catch (Exception ex) { // ignore }

 }
 }

 public void deleteGroup(){

 Connection con;
 Statement stmt;

 try
 {

 con = DriverManager.getConnection(url);
 stmt = con.createStatement();

 stmt.execute(SQL_GroupDelete + this.groupName);
 }

 catch(SQLException e) {

TE
AM
FL
Y

Team-Fly®

Chapter 24:User Management and Database Security

-592-

 System.err.println(e.getMessage());
 }

 finally {
 try

 {
 if (con != null) {

 con.close();
 }

 if (stmt !=null) {
 stmt.close();

 }
 }

 catch (Exception ex) { // ignore }
 }

 }

 public static void main(String[] args) {
 GroupMaker groupMaker = new GroupMaker ();

 groupMaker.setGroupName("Managers"); // which group to work with
 // Create a group

 groupMaker.createGroup();
 // Drop the group

 groupMaker.deleteGroup();
 }

}

Altering a group

Only database super users and administrators can use the ALTER GROUP command, which is useful
when you want to change the group assignments for users. You use the following ALTER GROUP ADD
command to add users to the group and ALTER GROUP DROP to delete users from the group:

ALTER GROUP group_name ADD USER username [, ...]
ALTER GROUP group_name DROP USER username [, ...]

Working with Users

This section describes the processes of creating, dropping, and altering users in a database.

Creating users

To create users and assign basic privileges to them, use the CREATE USER command. When you
create a user, you can assign a password, certain basic permissions, and an expiration date, all in one
command. You can also assign the group they belong to in the same command. However, if the group
does not exist, it will not be created by using this command. You will have to use the CREATE GROUP
command described earlier in this chapter.

The general syntax for the CREATE USER command is as follows:

CREATE USER username

Chapter 24:User Management and Database Security

-593-

 [WITH
 [SYSID uid]

 [PASSWORD 'password'']]
 [CREATEDB | NOCREATEDB] [CREATEUSER | NOCREATEUSER]

 [IN GROUP groupname [, ...]]
 [VALID UNTIL 'abstime']

The following code example creates a user with no password. This is not a very safe thing to do from a
security perspective, so we do not recommend using this command. Nevertheless, the command is
valid and creates a user with the given username, as shown here:

CREATE USER user_name

Next, create a user with a password, whose account is valid until the end of 2001. This user also has
permission to create other users but not to create other databases. Here's an example:

CREATE USER user_name WITH PASSWORD 'jw8s0F4' NOCREATEDB
CREATEUSER VALID UNTIL 'Jan 1 2002'

Recall that we can assign users to groups only if the user exists. Similarly, the CREATE USER command
allows us to assign users to groups only if the groups exist. For example, let us say we want to create a
new group called "Managers" and assign two users to the group, "John Doe" and "Jack Smith." Neither
of these users currently exists in the system. Here's one way to assign them to a group:

CREATE USER 'jdoe' WITH PASSWORD 'temppassword'
CREATE USER 'jsmith' WITH PASSWORD 'temppassword2'

CREATE GROUP 'managers' WITH USER jdoe, jsmith

Adding a user to a group does not create the user. Similarly, removing a user from a group does not
drop the user itself. To create a new group and assign two new users to that group, you have to issue
three separate commands to the database as shown below.

CREATE GROUP 'managers'

CREATE USER 'jdoe' WITH PASSWORD 'temppassword' IN GROUP managers
CREATE USER 'jsmith' WITH PASSWORD 'temppassword2' IN GROUP managers

Finally, you can use the ALTER commands to do the same as above.

CREATE GROUP 'managers'
CREATE USER 'jdoe' WITH PASSWORD 'temppassword'

CREATE USER 'jsmith' WITH PASSWORD 'temppassword2'
ALTER GROUP 'managers' ADD USER jdoe, jsmith

As you can see, there are several ways to create users. It is very hard to tell which method is better
than another other. This depends on how well defined are your requirements for the groups and users.
Is this something that will change frequently or is it something that you can define once? Depending on
your organizational structure and how well defined is your Org Chart, you can decide which
combinations of commands minimize your work.

Dropping a user

Only database super users and administrators can use the DROP USER command, which removes the
specified user from the database. It does not remove tables, views, or other objects the user owns. If
the user owns any database objects, you get an error message. Thus, to delete a user, you need to
delete all objects the user owns or to change the ownership of the objects the user owns. Here's the
general syntax for this command:

DROP USER user_name

Chapter 24:User Management and Database Security

-594-

For example, you will get the following error messages if the user does not exist or owns some object.

ERROR: DROP USER: user "user_name" does not exist

ERROR: DROP USER: user "user_name" owns database "name", cannot
be removed

Listing 24-2 displays the JDBC code to create and delete users.

Listing 24-2: Working with Users

package jdbc_bible.part2;

import java.sql.*;

import sun.jdbc.odbc.JdbcOdbcDriver;

public class UserManager {
 static String jdbcDriver = "sun.jdbc.odbc.JdbcOdbcDriver";

 static String url = "jdbc:odbc:dummyDB";

 static String SQL_UserDelete =
 "DROP USER ";

 public UserManager(){

 registerDriver();
 }

 public void registerDriver(){

 try
 {

 Class.forName(jdbcDriver);
 DriverManager.registerDriver(new JdbcOdbcDriver());

 }

 catch(ClassNotFoundException e){
 System.err.print(e.getMessage());

 }
 catch(SQLException e){

 System.err.println(e.getMessage());
 }

 }

 public void createUser(String username, String password) {
 Connection con;

 Statement stmt;
 try

 {

Chapter 24:User Management and Database Security

-595-

 con = DriverManager.getConnection(url);
 stmt = con.createStatement();

 stmt.execute("CREATE USER " + username + " WITH PASSWORD " +
password);

 }
 catch(SQLException e) {

 System.err.println(e.getMessage());
 }

 finally {
 try

 {
 if (con != null) {

 con.close();
 }

 if (stmt !=null) {
 stmt.close();

 }
 }

 catch (Exception ex) { // ignore }
 }

 }

 public void deleteUser(String username){
 Connection con;

 Statement stmt;
 try

 {
 con = DriverManager.getConnection(url);

 stmt = con.createStatement();
 stmt.execute(SQL_GroupDelete + username);

 }
 catch(SQLException e) {

 System.err.println(e.getMessage());
 }

 finally {
 try

 {
 if (con != null) {

 con.close();
 }

 if (stmt !=null) {
 stmt.close();

 }

Chapter 24:User Management and Database Security

-596-

 }
 catch (Exception ex) { // ignore }

 }
 }

 public static void main(String[] args) {

 UserManager userMgr = new UserManager ();
 // Create a user

 userMgr.createUser("john", "j23xqt3#");
 // Drop the user

 userMgr.deleteUser("john");
 }

}

Altering a user

The ALTER USER commands are useful for changing the permissions for a user, the password
assigned to the user, or the expiration date for the user. If the user does not exist, you will get a similar
error message as you will get if you try to delete a user that does not exist. The following command
shows examples of what you can do with the ALTER USER command.

ALTER USER user_name WITH PASSWORD 'hu8jmn3'

ALTER USER user_name VALID UNTIL 'Jan 31 2030'
ALTER USER user_name CREATEUSER CREATEDB

Understanding Database Schemas

A database schema defines the objects to be stored within the database. These objects generally are
tables that contain columns, indexes on these tables, views of tables, stored procedures and triggers,
and security instructions. Other objects such as synonyms, links, and sequences should also be part of
the schema, depending on whether they are implemented by the database vendor and used within the
database. A database schema also includes storage instructions for the objects that are often defaults
that go unnoticed.

A schema is a high-level abstraction of a container object that the SQL standard defines to contain other
database objects. In many database management systems, a schema is the same as the database
owner. In others, where a database can have multiple schemas, a schema denotes a collection of
objects a single user owns.

Schemas are a named entity and generally follow the dot-naming conventions (as for Java packages
and classes). Typically, schemas are named like this:

 OWNER_NAME.OBJECT_NAME

You can create a schema and assign an owner to it. By default, if the user John Doe logs into the
database and creates a bunch of objects, all the objects created belong to John's schema. A super user
can create objects and assign them to be owned by other users.

The following is the general syntax for the CREATE SCHEMA command.

CREATE SCHEMA AUTHORIZATION authorization_name

create_oject_statement
 [create_object_statement ...]

[permission_statement ...]

Chapter 24:User Management and Database Security

-597-

The following command creates a new schema for the user who is logged in. Thus, if user John Doe is
logged in to the database and issues this command, a new schema will be created, and John Doe will
be assigned as the owner of the schema.

CREATE SCHEME myschema

Now let us assume that our other friend Jack Smith is logged in to the database and wants to create a
schema for John Doe. Jack can issue the following command, which creates a new schema for John
Doe. It is traditional to use the first initial and last name as the user name. However, this is organization
specific.

CREATE SCHEMA johns_schema AUTHORIZATION jdoe

Alternatively, you can use the more complex form of the command by nesting several CREATE OBJECT
statements when you are creating a schema. You can also nest the appropriate GRANT and REVOKE
commands, described toward the end of this chapter.

CREATE SCHEMA johns_schema AUTHORIZATION jdoe

CREATE TABLE products (
 ProductID int (4) PRIMARY_KEY,

 ProductName varchar (40) NOT NULL,

 ProductPrice float(5) NOT NULL
)

GRANT ALL ON PRODUCTS TO jdoe // The GRANT command is explained later
in this chapter

We have just learned how to create a schema. Next, we will talk about how to delete and how to make
changes to the schema.

Managing a Schema

In most database management systems, you do not have to create a schema explicitly. If that is the
case, a schema simply becomes the collection of objects a particular user owns. As you change those
objects, you are, in effect, changing the schema for the user. When you explicitly create a schema as
shown in the preceding section, you are creating various objects as part of the schema. Again, changing
those objects changes the schema.

To manage objects within your schema, use one of the following ALTER OBJECT or DROP OBJECT
commands, such as:
§ ALTER VIEW|TABLE
§ DROP VIEW|TABLE

The ALTER VIEW command is used to alter a previously created view (created by executing CREATE
VIEW without affecting dependent stored procedures or triggers and without changing permissions. The
basic syntax of the ALTER View command is shown below:

ALTER VIEW [< database_name > .] [< owner > .] view_name
[(column [,...i])]

[WITH < view_attribute > [, ...i]]

AS

 select_statement

The ALTER TABLE command can be used to change the schema of the table that you create. The
following examples show various formats of the ALTER TABLE command:

1. Add a column to a table

ALTER TABLE [ONLY] table [*] ADD [COLUMN] column type

Chapter 24:User Management and Database Security

-598-

2. Rename a column within a table

3. ALTER TABLE table [*] RENAME [COLUMN] column TO newcolumn
4. Change the owner of a table

5. ALTER TABLE table OWNER TO new owner
6. Rename a table

7. ALTER TABLE table RENAME TO newtable

You can use the DROP SCHEMA or DROP VIEW command to drop a schema or view that you have
created. This is shown in the next example:

DROP SCHEMA schema_name

The DROP will command succeed only if the schema does not contain any objects. If the schema
contains database objects, the DROP SCHEMA command will return an error message.

User Privileges

Database management systems have a scheme of privileges that can be assigned to users. Privileges
are actions that can be performed on schema objects. This assignment of privileges allows granular
control of the database, allowing certain users to do certain tasks but not others tasks.

When you create a new database, you need to assign an owner for the database. By default, the owner
of the database is the user who executes the CREATE command. By default, only the owner and the
super user (administrator) can do anything on the database or on the object within the database.

To allow other users to work with the database, assign them the privileges to do so. Alternatively, you
can assign privileges at the group level, so that certain groups of users can or cannot do certain things
on specific database objects. This security schema is very flexible. If you have thousands of users, you
do not want to have to assign individual permissions to each of them. Thus, organizing them in groups
and assigning permissions to groups can help reduce the administrative effort.

Most database management systems support at least these three basic privileges:
§ Select (read)
§ Insert (append)
§ Update/delete (write)

Certain database management systems might support extended privilege types such as Alter, Create,
Process, Usage, and Shutdown. Refer to the documentation with the DBMS you are using for a
complete list of the privileges it supports.

Some commonly implemented privilege types include the following:
§ ALL (ALL PRIVILEGES)
§ FILE
§ RELOAD
§ ALTER
§ INDEX
§ SELECT
§ CREATE
§ INSERT
§ SHUTDOWN
§ DELETE
§ PROCESS
§ UPDATE
§ DROP
§ REFERENCES
§ USAGE

These privileges can be assigned to various objects in the database at the following levels:
§ Global privileges apply to all databases on a given server.

Chapter 24:User Management and Database Security

-599-

§ Database privileges apply to all tables in a given database.
§ Table privileges apply to all columns in a given table.
§ Column privileges apply to single columns in a given table.

Generally, you need to worry about only global or database privileges, and in most cases it is sufficient
to assign privileges at one of these levels. Your major aim should be to assign the privileges at the
highest level possible so that you save administration time. However, you do have the power to restrict
access or to grant access to some critical columns or tables.

Next, we will talk about the management of user roles.

User Roles

Most database management systems support user roles, which are simply a grouping of user privileges.
User roles are a neat administrative feature that saves time for the database administrator. The concept
of roles is similar to that of groups. Just as groups can contain other groups, roles can contain other
roles. Thus, a typical scenario where you would use all these concepts of users, groups, privileges, and
roles can be explained as follows.

Putting It All Together

Imagine that Company A has 100 employees, five of which make up the management team, with
access to all the information in the database. Another five make up the finance department, with access
to all financial information. The remaining 90 are normal employees, with no specific access to the
database except for their individual employee records.

For our example, assume a very simple database model, with the three following tables:
§ COMPANY_DATA
§ FINANCE_DATA
§ EMPLOYEE_DATA

The management team has access to all the data (that is all the tables), the finance team has access to
FINANCE_DATA and EMPLOYEE_DATA, and the employees can only view the EMPLOYEE_DATA.
How would you organize this data using groups and roles? In this scenario, one solution is to follow
these steps:

1. Create the 100 users in the database with the following syntax:

2. CREATE USER user1 with password 'temppassword'

CREATE USER user2 with password 'tempassword'
3. Create a MANAGEMENT group, and assign the five employees who are part of the management

team of the company to that group:

CREATE GROUP MANAGEMENT USERS user1, user2, user3, user4, user5
4. Create a FINANCE group, and assign the five employees who are part of the finance team to that

group:

CREATE GROUP FINANCE USERS user6, user7, user8, user9, user10
5. Create an EMPLOYEES group, and assign all the users to this group:

CREATE GROUP EMPLOYEES USERS user11, user12, user3, .. user100
6. Create an EMPLOYEE_ACCESS role, and assign the SELECT privilege for the EMPLOYEE_DATA

table to the role:

CREATE ROLE EMPLOYEE_ACCESS
7. Assign the role to the EMPLOYEES group:

8. GRANT EMPLOYEE_ACCESS
9. ON EMPLOYEE_DATA

 TO EMPLOYEES
10. Similarily, create a FINANCE_ACCESS role, and assign SELECT and UPDATE privileges for the

EMPLOYEE_DATA and FINANCE_DATA Table to the role:

Chapter 24:User Management and Database Security

-600-

CREATE ROLE FINANCE_ACCESS
11. Assign the role to the FINANCE group:

12. GRANT FINANCE_ACCESS
13. ON FINANCE_DATA, EMPLOYEE_DATA

 TO FINANCE
14. Finally, create a MANAGEMENT_ACCESS role, and assign ALL privileges for all tables to the role:

CREATE ROLE MANAGEMENT_ACCESS
15. Assign the role to the MANAGEMENT group:

16. GRANT MANAGEMENT_ACCESS
17. ON EMPLOYEE_DATA, FINANCE_DATA, COMPANY_DATA

18. TO MANAGEMENT
19. WITH ADMIN OPTION

The creation of roles is a very database dependent task. MS SQL server has a stored procedure call to
do this, whereas Oracle has a CREATE ROLE command. Thus, we are not explaining this syntax.

The GRANT Command

The GRANT command is used to give privileges to users so that they can perform certain tasks on the
database. Recall that there are many types of privileges and that they can be assigned at various
degrees of granularity (global, database, table, or column). It is important to note that the exact syntax
of this command might differ as per your database. Still, here is an example:

GRANT PRIVILEGE ON table_name TO user_name

The GRANT command is more powerful. For example, you can GRANT a privilege to a user and allow the
user to be able to grant that privilege to other users. Do this using the WITH GRANT OPTION clause.
Now the grantee can grant the privileges specified in the GRANT command to other valid users. The
following command gives user John Doe SELECT privileges on the Products Table and allows him to
GRANT this privilege to others:

GRANT SELECT ON PRODUCTS WITH GRANT OPTION TO jdoe

There is also a HIERARCHY option. However, this is not yet widely supported. It grants privileges on all
subtables and related tables. The complete syntax for the GRANT command is as follows:

GRANT priv_type [, priv_type]
 ON {tbl_name | * | *.* | db_name.*}

 TO user_name [, user_name]
 [WITH [GRANT OPTION | HIERARCHY OPTION]]

There is an equivalent GRANT ROLE command that enables you to grant roles instead of privileges. The
syntax is identical to that of the GRANT PRIVILIEGES command. The only difference is that instead of
GRANT OPTION, it is called ADMIN OPTION.

GRANT ROLE name [, role_name]

 ON {tbl_name | * | *.* | db_name.*}
 TO user_name [, user_name]

 [WITH ADMIN OPTION]

The REVOKE Command

The REVOKE command is used to take away privileges from users so that they cannot perform certain
tasks on the database. Just like the GRANT command, this command can be applied at various levels. It

Chapter 24:User Management and Database Security

-601-

is important to note that the exact syntax of this command might differ as per your database. For
example, the following command revokes the SELECT privileges from John Doe on the Products Table:

REVOKE SELECT ON PRODUCTS FROM jdoe

The general syntax of this command is as follows:

REVOKE priv_type [, priv_type]

 ON {tbl_name | * | *.* | db_name.*}
 FROM user_name [, user_name ...]

Summary

In this chapter, you have learned to create and manage users. Users are essential to any database
system in order to regulate access to the database and to allow for granular control of the data.
Furthermore, you have learned about the following topics:
§ Organizing users within groups
§ Creating and managing schemas
§ Working with user privileges and user roles
§ Granting and revoking these privileges or roles from users and groups

Chapter 25 shows you how to tune the database for enhanced performance.

TE
AM
FL
Y

Team-Fly®

Chapter 25:Tuning for Performance

－603－

Chapter 25: Tuning for Performance

In This Chapter

In this chapter, we talk about various performance enhancements that are possible to make on the
database. The database is generally the bottleneck in most data-intensive applications. Tuning the
database is the job of an experienced database administrator (DBA). As developers, there are many
simple operations we can perform to get the maximum performance from the database. These include
the appropriate use of indexes, joins, and views.

Database Tuning

It is hard to anticipate how the database will be used when we are initially designing it. Thus, tuning a
database after it has been designed and deployed is important. There is a subtle distinction between
designing and tuning a database. Generally, database design involves the database schema and a set
of indexes and clustering decisions. Any subsequent changes to the schema or indexes can be
considered database tuning. These changes include the addition of indexes and the adding or removing
of columns and tables. This distinction is not critical as long as we understand that database tuning will
usually be required even if the database design is excellent.

Database tuning involves the following types of activities:
§ Statement tuning involves tuning the SQL queries and stored procedures that are run on the

system.
§ Tuning of JOINS and indexes changes the ways the SQL queries are executed internally.
§ Denormalization or normalization changes the database schema to improve performance.
§ Horizontal partitioning breaks up the tables by month, year, and so on to reduce the size of each

table.
§ Vertical partitioning decomposes relations to improve queries that use few attributes.
§ Views create conceptual schemas for users.

Each of these is explained in more detail in the following sections.

Statement Tuning

Statement tuning is a complex operation on a database. In a DBMS, the query is passed through a
query optimizer, which is responsible for identifying an efficient execution path for evaluating the query.
These optimizers produce alternative plans, choosing the ones with the lowest cost in terms of
execution time. Figure 25-1 depicts this process

Chapter 25:Tuning for Performance

－604－

Figure 25-1: Typical execution path for a SQL query

To understand the details of these query plans, it is sufficient to realize that many database
management systems do some level of query optimization for you. However, they cannot change the
query or add indexes and so on. They can merely rearrange the order of execution of the query to use
the existing indexes and table structures more efficiently. The manual tasks of creating indexes,
rearranging the schema, and other operations are the focus of this chapter.

The first step in statement tuning is to define a database workload, which consists of the following
components:
§ A list of SQL statements and their frequenices, as a fraction of the total number of statements
§ A list of updates and their frequenices
§ Performance goals for each query and update

Once we have a representative database workload, we can identify which statements are not
performing as well as others. These statements need tuning. Most database management systems
provide tools to profile the SQL statements and see where the pain points lie. For example, you can use
tools such as TKPROF, the SQL trace facility, and Oracle Trace to find the problem statements and
stored procedures that are consuming the maximum resources. These resources generally indicate
central processing unit (CPU) or Disk input/output (I/O) problems. The execution paths the query
optimizer creates generally define the cost of a query based on the number of Disk I/O, since that is the
most expensive resource. You can always add hardware to solve the issue, but that can prove
expensive and is not the ideal solution to the problem.

Most database management systems allow you to see a graphical representation of the "Execution
Path" of your statement and highlight the percentage of time taken for each operation the statement
performs. This can be helpful in pinpointing the exact operations with a statement that need to be tuned
or that are the performance bottlenecks. Remember, the aim of statement tuning is to get your SQL
statements or stored procedures to be more efficient. So, when the query is passed through the query
optimizer, the query optimizer should return a more efficient path than was the case previously.

We have the two following options to improve the performance of the system as a whole:

Chapter 25:Tuning for Performance

－605－

§ Modify your statement so that it uses fewer resources — However, in many cases, it might
not be possible to solve the problem by only tuning the statements. The performance might be due
to the database design; thus, this might not always help.

§ Use slow statements less frequently — This is obviously the ideal solution, but frequently it is
not possible. We cannot base the performance of our system by restricting the users to certain
operations. This might be a feasible solution or the only solution at times; however, as technical
professionals, we should not dictate the business needs of an application.

We need to concentrate on the first option. There are three basic ways to achieve statement tuning, all
of which involve restructuring the following items:
§ Statements, working with JOINS (discussed next) and WHERE clauses
§ Restructuring Indexes, and choosing between clustered and non-clustered indexes
§ Data and rows that are being accessed. This is covered when we talk about normalization and

denormalization of the schema, later in this chapter under "Changing the Database Schema."

We will first talk about JOINS and the various ways of improving the performance of a SQL query by
working with JOINS.

Tuning JOINS

A JOIN is a SQL construct that allows a developer to obtain data from more then one table using a
single query. JOINS are the primary reasons for database performance-related issues. Optimizing JOIN
queries is extremely important for system performance, since relational databases make heavy use of
JOINS. The order in which we join tables can have a significant impact on performance. The main
objective of statement tuning is to avoid doing unnecessary work to access rows, which do not affect the
result. That is, it does not change the rows that would be returned by the query. JOINS should always
return the minimum number of rows so that they are manipulating the least amount of data.

These are the three rules of thumb involved when considering how to improve the performance of a
query:
§ Use indexes instead of doing full-table scans.
§ Use the appropriate indexes to retrieve the minimum number of possible rows.
§ Choose the join order so as to join fewer rows to tables later in the join order.

In general, you should follow these rules when using JOINS: :
§ All the columns being joined on should have their own indexes.
§ For maximum performance, always try to join on columns of similar data types.
§ For maximum performance, always try to join on numeric columns instead of on chars and

varchars.
§ If your JOIN contains four or more tables, consider denormalizing your database or using VIEWS.
§ Do not use SELECT * when performing JOINS.
§ JOINS should be performed on columns with unique values; otherwise, most database

management systems do a full table scan even if an index exists.
§ JOINS are generally faster than subqueries or nested queries.
§ Be careful of the type of JOIN you use, and determine whether it is the best JOIN for your goals. If

the outer table is larger than the inner table, OUTER JOINS might be the right choice, or vice versa.
The idea is to anticipate the JOIN that has to access the minimum number of records to produce
the desired result.

Cross-
Reference In Chapter 9, we talk about the various types of JOINS. Here we introduce

another category of JOINS based on the algorithms they use for
implementation.

There are cases in which the choice of JOINS can result in a significantly different number of rows,
which has a direct relation to the performance of the query. For example, instead of creating a LEFT
JOIN, a developer might use a CROSS JOIN. There can be a situation in which fewer than 1000 rows
should have resulted from the LEFT JOIN, but because a CROSS JOIN has been used, over 100,000
rows are returned instead. Then the developer uses a SELECT DISTINCT to filter the extra rows the
CROSS JOIN creates. This is clearly an example in which we need to watch for the type of JOIN used.
As a general caution, avoid using CROSS JOINS unless that is the only way to accomplish what you

Chapter 25:Tuning for Performance

－606－

need. The same is true for LEFT OUTER JOINS. This type of JOIN returns all rows from the outer table;
assuming that the outer table is large, we would get rows we would need to filter out using a DISTINCT
or some other method.

The choice of which JOIN algorithm is used is not always in the hands of the DBA or programmer. It is
generally decided by the DBMS. However, if you know how the underlying plumbing works, you can
make some intelligent decisions on the use of JOINS. We introduce the various algorithms later in this
chapter; however, a detailed explanation is out of scope for this book. Database Management Systems,
by Raghu Ramakrishnan, Mc-Graw Hill, August 1997, ISBN 0070507759, covers the internals of
database-performance concepts, using relational algebra techniques.

The following JOIN algorithms are discussed next:
§ Nested loop JOINS
§ Block nested loop JOINS
§ Index nested loop JOINS
§ Sort merge JOINS
§ Hash JOINS

Nested loop JOINS

This join algorithm forces the scan of the entire inner table for each row of the outer table. Basically, this
algorithm and its variants are computing a cross product. You can see that this can be a huge
performance hindrance.

Block nested loop JOINS

This is a refinement of the simple nested loop join algorithm, which allows the caching of the smaller
relation in memory, which can improve the performance of the query. If the smaller relation cannot fit
entirely in memory, the algorithm creates blocks of the table that can fit in memory and performs the
computations. Thus, even though we are still computing a cross product, we are using some caching
and buffering for performance.

Index nested loop JOINS

If there is an index on one of the relations in the join, the indexed relation can be treated as the inner
table. An in-memory hash is created on the inner table. This avoids the computation of a cross product.

Sort merge JOINS

This algorithm sorts both the relations on the join attribute and computes the matching rows. Thus, we
can consider only the chunk of rows from the outer table that match the criteria and do not have to
compute a cross product. This algorithm can be further refined to combine the merging phase of the sort
algorithm with the merging phase of the join.

Hash JOINS

Hash JOINS are similar to the sort merge join; however, they use hashing instead of sorting to avoid the
cross-product computation. We hash both relations on the sort attribute using the same hash function.
This way, we can read in the entire partition of the smaller relation and scan only the corresponding
rows from the larger relation.

In general, if we can control the JOIN algorithm, we should force the use of hash JOINS and sort merge
JOINSJOINS. There might be cases in which index JOINS are a good choice. However, this should be
left to a good DBA and the underlying database support.

Next, let us talk about how the choice of indexes, and the type of indexes can help improve the
performance of queries.

Tuning Indexes

Chapter 25:Tuning for Performance

－607－

The query optimizer most database management systems use first looks for indexes when creating the
query-execution paths. Indexes can be used in several ways and can lead to execution plans that are
significantly faster than plans that do not use indexes. The query optimizer would generate different
plans based on the indexes available and then use the plan that is the fastest in terms of execution time.
The underlying problems related to indexing and poor performance are as follows:
§ No indexes, or too few indexes on a table, causing a full table scan for query execution.
§ Existing indexes are not selective enough for a particular query, so the index is not used by the

optimizer.
§ Too many indexes are assigned to a table, so data modifications are slow. There is a cost

associated with creating and maintaining an index. We should try to keep this to a minimum.Drop
indexes that the query optimizer does not use and ensure that no duplicate indexes are present.

§ The index key is too large, so using the index generates high I/O. This generally happens when
we concatenate various columns in an index (composite indexes).

The optimizer consists of one of these four types of access paths:
§ Single-index access paths: If there are multiple indexes that match, due to a WHERE clause,

each index offers an alternative execution path. The optimizer chooses the access path that
requires the lowest disk I/O (or cost).

§ Multiple-index access paths: A query optimizer might choose an execution path where the
query is broken down to use multiple indexes for the selects and then use an intersect operation to
get the final data set.

§ Sorted-index access path: In cases in which a GROUP by or SORT option is part of the query,
the query optimizer might use a sorted index to retrieve the data and then filter by the select and
other operations on the query.

§ Index-only access path: If indexes exist on all the attributes the statement uses, an index-only
access path might be chosen.

Note

It is important to choose your indexes based on the types of JOINS and WHERE clauses
in the query.

Since we have decided that the use of indexes is important in query optimization, how do we decide
which indexes to use and whether these should be clustered or nonclustered?

Clustered indexes

In clustered indexes , the physical order of the rows in the table is the same as the logical order of the
index key values. Since most database management systems allow only one clustered index on each
table, it is important to choose the clustered index wisely. Choose the queries that run most frequently,
and decide the candidate for the clustered index. All tables should have a clustered index. By default,
the DBMS creates a clustered index on the primary key. However, in many cases, we want to change
this based on the following guidelines. Candidates for clustered indexes are the following kinds of
columns:
§ Ones used by the ORDER BY and GROUP BY clauses. The data is presorted for you, and

aggregates such as MAX, MIN, and predicates such as <, >, and BETWEEN are faster.
§ Ones that contain a limited number of distinct values, such as columns that hold country and state

information. However, distintive columns such as binary and sex should not be indexed at all.
§ Ones found in the SELECT clause
§ Ones that are not frequently changed
§ Ones used in JOINS

Nonclustered indexes

Candidates for nonclustered indexes are all cases in which a query does not meet the requirements for
a clustered index (just discussed). Since most database management sytems allow multiple
nonclustered indexes, you can have a nonclustered index for all columns that are using SQL statements.
The only considerations are space and the cost of the creation of indexes. Do not create indexes
unnecessarily, as the cost associated with the creation and maintainance of an index can become
prohibitively high.

Consider the following example:

Chapter 25:Tuning for Performance

－608－

SELECT E.employee_name, D.department_name FROM Employee E, Department D
WHERE E.salary BETWEEN 10000 AND 20000

AND E.hobby='Stamps' AND E.department_no = D.department_no

The question is which indexes to use on the Employee and Department Table for maximum query
performance. Based on the guidelines for each type of query, use a clustered index on Employee.salary
to increase the performance of range query. Use a non-clustered index on Employee.hobby,
Department.department_no, and Employee.department_no. However, for this query, indexes on
Employee.employee_name and Department.department_name are not required. We might decide to
create these to increase the performance of queries such as Find Employee by Employee Name, but
not for this specific query.

Composite indexes

Composite indexes include more than one column as the key to the index. The query optimizer will not
use the index if the first column is not the only column that the WHERE clause uses. Composite indexes
are also useful for accessing columns that are frequently accessed together, such as city and state.

Consider the following example, in which our primary query is a select on city and state and order by
city:

SELECT E.employee_name, E.employee_city, E.employee_state

FROM Employee E
WHERE E.employee_state = "Dummy State"

ORDER BY City

A composite index on city and state can improve the performance of the ORDER BY clause; however, it
cannot help the WHERE clause. A composite index on state and city can help the WHERE clause but not
the ORDER BY clause. Thus, in this case, we might just use two separate nonclustered indexes.
However, if we did not have the ORDER BY clause in this query, a composite index on state and city
might be useful.

The major advantages of composite indexes are that since more columns are used for a single index,
they can reduce the total number of indexes on a table. This reduces the overhead to create a larger
number of indexes. Composite indexes can serve more queries than simple indexes can.

Working with the database schema and performing normalization or denormalization is another
technique used to improve the performance of a database.

Changing the Database Schema

Another important aspect of database tuning is the identification of problem tables. Even by optimizing
JOINS and indexes, if the queries do not perform as well as we need them too, it is possible that the
schema is too normalized. We need to understand a trade off. Normalization is good and in theory the
right way to go. However, normalization comes at the cost of performance.

Normalization

It is good practice to normalize the database to at least second- or third-normal form during initial
database design and to denormalize parts of the database during database tuning, using a
representative database workload. This process is sometimes termed "schema evolution." The normal
forms are covered in detail in Chapter 2 of this book.

Denormalization

Once we identify which tables are leading to performance problems, they become candidates for
denormalization. Denormalization breaks a relation from a higher normal form into a lower normal form.

Chapter 25:Tuning for Performance

－609－

This might be breaking the tables into two or more tables, with some redundant data. We settle for the
problems of maintaining redundant data if the process improves the overall performance of the system.
Relational algebra concepts define how denormalization can be done using mathematics to preserve
referential integrity and minimize redundancy. We spare our readers such mathematics and concentrate
on some conceptual techniques that can be easily followed in the real world.

Multiple Data Tables

There is another technique often followed — we keep a set of normalized tables for updates and a set
of denormalized tables for the queries. We then have to manage at a database level the synchronization
of these two sets of tables. We allow the system to write to the normalized tables and then use triggers
to update the denormalized tables. The denormalized tables are read-only from the application, used to
serve the SQL queries.

The process of creating and maintaining the multiple data tables is described in the next section.

Creating Redundant Data

Repeating data in two tables can lead to producing redundant data. This, in turn, might lead to avoiding
the use of a JOIN to run a query. This process should only be used if it increases the overall
performance of the system. We can keep the normalized table for updates and use a trigger to update
the denormalized tables the queries use.

Consider Figure 25-2, in which we might choose to have some redundant data in order to avoid a JOIN.
This example uses City_Id in both the Customer and Customer_Order Tables and JOINS them with the
City Table.

Figure 25-2: Example of schema with redundant data

Suppose a query to retrieve all orders for a customer is leading to performance problems. In the tables
shown in Figure 25-2, we have to JOIN all the tables to return the results of the desired query. A simple
query to retrieve all orders needs a join of seven tables. This can clearly lead to performance issues.
Thus, we need to denormalize the data.

We decide to keep the city, state, and country names in the tables as redundant data. Furthermore, we
can also choose to keep some of the customer details such as Customer_Name in the Customer_Order
Table and so on. However, for this example, we just show you how to remove the City, State, and
Country Tables. This is shown in Figure 25-3.

Chapter 25:Tuning for Performance

－610－

Figure 25-3: Example of normalized data schema

As we see in Figure 25-3, this schema gets rid of the City, Country, and State Tables. This does lead to
redundant data. The names of the city, state, and country need to be stored individually for each
customer and twice for each order (shipping and billing address). However, to retrieve all orders for a
customer, we now need to JOIN only four tables. This is definitely faster than joining seven tables. With
the appropriate indexes on the four tables, the performance increase we achieve by reducing from
seven tables to four tables is well worth the efforts to maintain the redundant data.

We will now talk about derived columns and tables and how they affect database performance.

Using Derived Columns and Tables

Another technique used to improve performance is to create certain tables that maintain summary
information such as totals, collections of columns, and so on. These are used when the performance of
the queries is affected by the use of aggregations or operations. Operations such as summing data,
concatenating string, and so on as part of a SQL query can be time consuming. We can create tables
that are updated using triggers to maintain this aggregated data.

Consider Figure 25-4, which shows a table that maintains the price of a product by month. We create a
temporary average price table that is updated using a trigger. This table maintains the average price for
a product over a year. Another table maintains the average price by quarter. This is an example of a
derived table and is useful if there are many requests to know the average price of a product, generally
in reporting activities. Depending on the number and types of queries (average price by quarter and
average price by year), we can choose to have only the TMP_Avg_Price_Quarter Table and use that to
derive the TMP_Avg_Price_Year data. These are decisions we make after evaluating a good workload.

Chapter 25:Tuning for Performance

－611－

Figure 25-4: Data schema showing derived tables

Another commonly used technique to improve performance of a database is called data partitioning.

Data Partitioning

Data partitioning is the breaking up of large amounts of data, into small, more manageable chunks. It
comes in two flavors -

Horizontal Partitioning

Horizontal partitioning of data is used with large amounts of data to make the number of records per
table more manageable. Many systems that use horizontal partitioning need to build flexible SQL
statements to be able to manage these random tables. This practice is often called row partitioning.

In the tables shown in Figure 25-4, we see that the historic price table contains a row for each product
for each year. We can choose to partition this table horizontally to maintain the data, so that a separate
table maintains data for each year. Thus, for five years, we can have five tables. Another valid partition
option might be a table for each product. However, this does not sound feasible, as for 50 products we
need to have fifty tables. However, in the first case, it is feasible to have five tables, one for each year.

Vertical Partitioning

Vertical partitioning, or subsetting, allows you to create smaller tables in terms of the number of
attributes for a table. This makes smaller tables from which data can be retrieved faster. Row splitting
divides the original table vertically into tables with fewer columns. The decomposed tables generally
have one-to-one relationships with each other. The various types of relationships are covered in
Chapter 1 of this book.

Like horizontal partitioning, vertical partitioning allows queries to scan less data, hence increasing query
performance. For example, a table containing 10 columns, of which only the first four are frequently
accessed, may benefit from splitting the last six columns into a separate table. This way, we would the
table with four columns, instead of 10, increasing the performance of a query. However, we need to be
careful; when we need all 10 columns, we have to do a JOIN, and this might be expensive.

The last technique that we will talk about to improve the performance of a database is the use of Views.

Using Views

A view is a representation of some subset of data from a table. This is created at the database layer. To
increase the performance, we might define subsets of tables as views and run our queries of these

Chapter 25:Tuning for Performance

－612－

views. This is mainly useful for reporting components where the user wants to see different views (no
pun intended) of the data, based on some criteria.

All the techniques described in this chapter help us improve the performance of the database. However,
the database needs to be monitored closely on an on-going basis. The change is usage patterns of the
database, can arise the need for further tuning.

On-Going Monitoring

Now that you know how to tune your database, are you done? Most definitely not. It is important to
monitor your database and tune it based on the most current usage patterns. A good DBA maintains
logs of all queries on the system and is able to choose a good workload that represents usage patterns
of the database. For example, when you deploy a new system, the users are just starting to learn it,
entering profile information and so on. Tuning the system to optimize these operations might not reflect
the workload once the users are experts and as the data in the system continues to grow. Thus on-
going monitoring of the system is required to identify new performance bottlenecks.

Summary

In this chapter, you learned various ways to improve the performance of your database. These include
§ Statement tuning using JOINS and indexes
§ Normalization and De-normalization of the schema
§ Data partitioning
§ Use of views

The database tends to be the bottleneck for most applications. Thus, it is important to design and tune
your database properly to achieve the desired performance results. The tools DBMS provides can be
used efficiently to pinpoint the trouble points of a database and effectively tune them.

Appendix A: A Brief Guide to SQL Syntax

Overview

This guide is intended to serve as a handy reference to essential SQL syntax. In practice, much of what
the average Java database programmer needs to accomplish can be handled within the framework of
the core statements covered in this appendix. This appendix is not intended to be a comprehensive
summary of all the nonstandard variations that the various RDBMS suppliers implement.

Although standardization has been an important step in the universal adoption of SQL as the common
language of relational database systems, the ANSI SQL standard has turned out in practice to be little
more than a common starting point for a wide range of proprietary dialects. However, there is sufficient
commonality for the basic commands to work with most database management systems and to handle
most, if not all, SQL programming requirements.

The differences among SQL implementations arise from differences in their underlying design goals.
MySQL, for example, has not supported transactions until very recently. Stored procedures and triggers
are scheduled for implementation in future releases. The reason for this is that MySQL was originally
intended to fill the need for a fast database suitable for such applications as membership management
in Internet-based applications. Similarly, Oracle's goal of achieving pre-eminence at the high end of the
RDBMS market place is accompanied by a very rich implementation of the SQL language.

Since there are significant underlying differences among database systems, you are strongly advised to
refer to the documentation your DBMS supplier provides for the details of your own version. Bear in
mind, however, that writing SQL that relies heavily on the unique features of a given implementation
makes porting applications far more difficult.

Because it is intended to help you find the syntax of a SQL command you want to use, this appendix is
organized alphabetically. The following SQL commands are reviewed in this appendix:

TE
AM
FL
Y

Team-Fly®

Chapter 25:Tuning for Performance

－613－

§ ALTER PROCEDURE § CALL

§ ALTER TABLE § CASE

§ ALTER TRIGGER § CAST

§ ALTER VIEW § COMMIT

§ CREATE DATABASE § GRANT

§ CREATE FUNCTION § INSERT

§ CREATE INDEX § REVOKE

§ CREATE PROCEDURE § ROLLBACK

§ CREATE TABLE § SAVEPOINT

§ CREATE TRIGGER § SELECT

§ CREATE VIEW § SET TRANSACTION

§ DELETE § START TRANSACTION

§ DROP § UPDATE

ALTER

This section discusses the following ALTER commands:
§ ALTER PROCEDURE
§ ALTER TABLE
§ ALTER TRIGGER
§ ALTER VIEW

ALTER PROCEDURE

ALTER PROCEDURE is supported by Oracle and MS SQL Server but is not widely supported by other
database management systems. This is the basic syntax of the command:

ALTER PROCEDURE procedure_name
 [{ @parameter data_type }

] [,...n]
AS

 sql_statement [...n]

ALTER TABLE

ALTER TABLE provides a means of making changes to a table without losing the contents. It is
supported by most RDBMS systems. When adding a column, the datatype and attributes are exactly as
defined in the CREATE TABLE command shown below:

ALTER TABLE table_name

[ADD ColumnName DATATYPE[(LENGTH)][ATTRIBUTES]] |
[ALTER ColumnName SET | DROP ATTRIBUTE] |

[DROP ColumnName] |
[ADD TABLE_CONSTRAINT] |

[DROP TABLE_CONSTRAINT];

Chapter 25:Tuning for Performance

－614－

An example of this command might look like this:

ALTER TABLE CONTACTS ADD PHONE VARCHAR(20)

CHECK (PHONE LIKE '[0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9]');

There are a number of variations in the behavior of this command from system to system. It is important
to read your documentation.

ALTER TRIGGER

ALTER TRIGGER is supported by Oracle and MS SQL Server but is not widely supported by other
database management systems. This is the basic syntax of the command:

ALTER TRIGGER trigger_name

ON (table | view)
 {(FOR | AFTER | INSTEAD OF) { [DELETE] [,] [INSERT] [,]

[UPDATE] }
AS

 sql_statement [...n]

ALTER VIEW

ALTER VIEW is supported rather differently by Oracle and MS SQL Server but is not widely supported
by other database management systems. Use of the ALTER VIEW command is shown below:

ALTER VIEW [< db_name > .] [< owner > .] view_name [(column

[,...n])]
 [WITH < view_attribute > [,...n]]

AS
 select_statement

 [WITH CHECK OPTION]

CALL

The CALL command is used to invoke a stored procedure in Oracle and PostgreSQL. It is not supported
by MySQL or MS SQL Server. In SQL Server, stored procedures are simply invoked by name.

CASE

The CASE statement can be used in SELECT and UPDATE statements in many versions of SQL. Here's
an example of its usage:

SELECT First_Name, Last_Name,

 CASE WHEN Last_Name = 'Corleone' THEN 'Mafioso' ELSE '' END
 Comment

FROM CUSTOMERS;

This statement generates a result set like this:

First_Name Last_Name Comment

Michael Corleone Mafioso

Fredo Corleone Mafioso

Chapter 25:Tuning for Performance

－615－

First_Name Last_Name Comment

Francis Corleone Mafioso

Vito Corleone Mafioso

Tom Hagen

Kay Adams

Mario Puzo

Oracle does not support the CASE statement but provides similar functionality through the DECODE
statement.

CAST

The CAST command casts one data type to another. This is the basic syntax of the command:

SELECT CAST(ZIP AS INT)

FROM CUSTOMERS;

CAST is not widely supported by database management systems.

COMMIT

The COMMIT command closes an open transaction. It is supported by most DBMS systems, with the
notable exception of MySQL. This is the basic syntax of the command:

COMMIT [TRANSACTION | WORK]

Some systems allow you to name a transaction and to commit the transaction by name. This is a
feature you should check in your documentation, since it is not supported by Oracle and does not
commit the named transaction in SQL Server.

Note

Transactions can be opened explicitly with the BEGIN TRANSACTION command and
are opened implicitly by INSERT, UPDATE or DELETE statements.

CREATE

This section discusses the following CREATE commands:
§ CREATE DATABASE
§ CREATE FUNCTION
§ CREATE INDEX
§ CREATE PROCEDURE
§ CREATE TABLE
§ CREATE TRIGGER
§ CREATE VIEW

CREATE DATABASE

Although it is not a SQL-99 command, CREATE DATABASE is supported by most database
management systems. This is the basic syntax:

CREATE DATABASE dbName;

This command has implementation-specific variants used to define physical-storage attributes such as
file paths, so it is a good idea to look up the details in your documentation if you need to go beyond your
system defaults.

Chapter 25:Tuning for Performance

－616－

CREATE FUNCTION

The CREATE FUNCTION command is defined in SQL-99 as a means of creating user-defined functions.
The SQL-99 definition allows the user to define a function in any of a variety of programming languages.
PostgreSQL supports this capability, but MySQL supports only C/C++. SQL Server supports functions
defined in SQL, using syntax like this:

CREATE FUNCTION [owner_name.] function_name
 ([{ @parameter_name [AS] data_type [= default] } [,...n]])

RETURNS data_type
 [WITH < function_option> [[,] ...n]]

AS
 BEGIN

 function_body
 RETURN scalar_expression

 END

In MySQL, user-definable functions are written in C or C++ as dynamically loaded libraries. They are
then defined to MySQL using this syntax:

CREATE FUNCTION <function_name> RETURNS [string|real|integer]

 SONAME <shared_library_name.so>

The CREATE FUNCTION command is both useful and widely supported. However, it is supported in
such a variety of different forms that you have to look up your own system's version before you can
make any use of it.

CREATE INDEX

Although the basic CREATE INDEX command is supported by all major relational database
management systems, it, too, has many implementation-specific variants. The basic form of the
command, which is directly supported by most systems, is as follows:

CREATE INDEX Index_Name ON Table_Name(Column_Name);

Here's an example:

CREATE INDEX ZIP_INDEX ON CUSTOMERS(ZIP);

Most systems also support composite indexes, which are based on more than one column, as shown
here:

CREATE INDEX STATE_AND_ZIP_INDEX ON CUSTOMERS(STATE, ZIP);

CREATE PROCEDURE

The CREATE PROCEDURE command is used to create stored procedures. Stored procedures are
precompiled SQL statements, which offer better performance than statements that have to be compiled
at runtime.

The basic syntax defines the procedure name, followed by an argument list with data types, the key
word AS, and the SQL statement to be compiled, as shown here:

CREATE PROCEDURE INSERT_CONTACT_INFO

 @ID INT, @FName VARCHAR(20), @MI CHAR(1),
 @LName VARCHAR(30),@Street VARCHAR(50), @City VARCHAR(30), @ST CHAR(2),

 @ZIP VARCHAR(10), @Phone VARCHAR(20), @Email VARCHAR(50)

Chapter 25:Tuning for Performance

－617－

AS
INSERT INTO CONTACT_INFO

 (ID, FName, MI, LName, Street, City, ST, ZIP, Phone, Email)
VALUES

 (@ID, @FName, @MI, @LName, @Street, @City, @ST, @ZIP, @Phone, @Email);

Stored procedures are not supported by either PostgreSQL or MySQL, the second of which relies on
user-defined functions to support precompiled statements.

CREATE TABLE

The CREATE TABLE command is used to create tables and to define the columns they contain. It is
supported, with variations, by all database management systems. This is the basic form of the
command:

CREATE TABLE table_name

(ColumnName DATATYPE[(LENGTH)] // define datatype and length if applicable
[DEFAULT] // provide an optional default value

[CHECK] // perform a validity check
[REFERENCES] // validate against a look up table

[NULL | NOT NULL] // column can | can not contain NULL
[UNIQUE] // column values must be unique

[PRIMARY KEY] // column is primary key
[,...n]); // additional columns

An example of this command might look like this:

CREATE TABLE CONTACTS
(ID INT IDENTITY (1001, 1) PRIMARY KEY,

 FNAME VARCHAR(20),
 MI CHAR(1) NULL,

 LNAME VARCHAR(30) NOT NULL,
 STREET VARCHAR(30),

 CITY VARCHAR(20),
 STATE CHAR(2) REFERENCES STATES(STATE),

 ZIP CHAR(5) CHECK (ZIP LIKE '[0-9][0-9][0-9][0-9][0-9]'));

Minor constraint variants used by some popular DBMS systems include the following constraints for
MySQL and SQL Server, respectively:

AUTO_INCREMENT //a single autoincrementing integer may be assigned to

a table

IDENTITY (seed, increment)

The column definitions used in the CREATE TABLE command require a data type for each column.
Table A-1 lists common SQL data types, together with the corresponding Java data type.
Table A-1: SQL Data Types

SQL Type Java Type Description

CHAR String Fixed length character string. For a CHAR

Chapter 25:Tuning for Performance

－618－

Table A-1: SQL Data Types

SQL Type Java Type Description

type of length n, the DBMS will invariably
assign n characters of storage, padding
unused space.

VARCHAR String Variable length character string. For a
VARCHAR of length n, the DBMS will assign
upto n charcters of storage, as required.

LONGVARCHAR String Variable length character string. JDBC allows
retrieval of a LONGVARCHAR as a Java
input stream.

NUMERIC java.math.BigDecimal Arbitrary-precision signed decimal numbers.
Can be retrieved using either BigDecimal or
String.

DECIMAL java.math.BigDecimal Arbitrary-precision signed decimal numbers.
Can be retrieved using either BigDecimal or
String.

BIT boolean Yes / No or True / False value

TINYINT byte 8 bit integer values

SMALLINT short 16 bit integer values

INTEGER int 32 bit integer values

BIGINT long 64 bit integer values

REAL float Floating point number, mapped to float

FLOAT double Floating point number, mapped to double

DOUBLE double Floating point number, mapped to double

BINARY byte[] Retrieve as byte array

VARBINARY byte[] Retrieve as byte array

LONGVARBINARY byte[] Retrieve as byte array. JDBC allows retrieval
of a LONGVARCHAR as a Java input stream.

DATE java.sql.Date Thin wrapper around java.util.Date

TIME java.sql.Time Thin wrapper around java.util.Date

TIMESTAMP java.sql.Timestamp Composite of a java.util.Date and a separate
nanosecond value

The CREATE TABLE command is one of the richest in proprietary features in all DBMS systems,
particularly as regards defining physical storage. You are well advised to look these up in your
documentation. Oracle's variations on CREATE TABLE are so extensive that it may be the most
complex command in any programming language.

CREATE TRIGGER

Triggers are a special form of stored procedures, executed when a data item is modified. Triggers are
associated with data items in the following ways:
§ Specific tables
§ Specific data modification statements such as these:

§ INSERT

Chapter 25:Tuning for Performance

－619－

§ UPDATE
§ DELETE

§ Specific firing times such as these:
§ BEFORE processing a statement
§ AFTER processing a statement
§ INSTEAD OF processing a statement

For example, if you want to track changes of address by your clients, you can create a trigger as follows
to save the old data when a change is made to a customer address:

CREATE TRIGGER SavePreviousAddress ON CUSTOMERS FOR

INSERT,UPDATE
AS

 INSERT INTO PREVIOUS_ADDRESS
 SELECT * FROM Deleted

Like stored procedures, triggers can use variables, defined using the @VariableName convention.

Note

The example is written for SQL Server, which uses the keyword FOR instead of BEFORE.
This is yet another indication of the need to read the documentation relevant to the
specific DBMS you are using.

CREATE VIEW

CREATE VIEW is used to create temporary tables or views. Views are like tables in that they can be
queried and updated, but they are created using a query, so they can also be considered a way of
saving named queries. This is the basic form of the command:

CREATE VIEW ViewName AS

SELECT [* | ColumnList]
FROM TableName

WHERE ...

A simple example might look like this:

CREATE VIEW ViewCorleones AS

SELECT *
FROM CUSTOMERS

WHERE Last_Name = 'Corleone'

There are various restrictions on using views to update the underlying table or tables. Needless to say,
the capabilities and implementation of views differ from system to system.

DELETE

The DELETE command is used to delete rows from a table. It is supported by all versions of SQL. This
is the basic form of the command:

DELETE FROM TableName [WHERE ...]

Although optional, the WHERE clause is used in almost every instance of the DELETE command. Without
it, the entire content of the table is deleted.

DROP

All objects created with a CREATE statement can be destroyed with a DROP statement. These are the
main variants of the DROP command:

Chapter 25:Tuning for Performance

－620－

DROP DATABASE DatabaseName
DROP FUNCTION FunctionName

DROP INDEX IndexName
DROP PROCEDURE ProcedureName

DROP TABLE TableName
DROP TRIGGER TriggerName

DROP VIEW ViewName

Caution

You should never DROP a system-vendor-supplied table. These tables are essential
to the proper functioning of the system.

GRANT

The GRANT command is used to grant user privileges and roles and is supported by most major DBMS
systems. This is the basic syntax of the command:

GRANT {

ALL

| CREATE {DATABASE | DEFAULT | FUNCTION | PROCEDURE | TABLE | VIEW }
| SELECT

| INSERT [(ColumnName,...)]
| DELETE

| UPDATE [(ColumnName,...)]
| REFERENCES

ON TableName
| DOMAIN DomainName

| COLLATION CollationName
| CHARACTER SET CharacterSetName

| TRANSLATION
TO { user | PUBLIC }

[WITH GRANT OPTION]

As is true of most SQL commands, each RDBMS offers its own variations, depending on the system of
privileges implemented. Oracle, for example, supports a wide range of privileges, but PosgreSQL
supports far fewer ones.

INSERT

The INSERT command is used to insert data into a table. It is supported with variations by all RDBMS
systems. This is the basic syntax of the command:

INSERT INTO tableName (colName1, colName2, ...) VALUES (value1, value2,
 ...);

You can omit the column-name list if your VALUES list exactly matches the column data types and sizes
defined for the table.

The INSERT statement can also incorporate a SELECT statement, allowing you to transfer data from
one table to another, as shown here:

INSERT INTO TableName1

SELECT (colName1, colName2, ...)

Chapter 25:Tuning for Performance

－621－

FROM TableName2
WHERE ...;

Note

To insert a NULL, simply use the word NULL as the insert ed value.

REVOKE

The REVOKE command is used to revoke privileges granted with the GRANT command. The syntax of
the REVOKE command is similar to that of the GRANT command, as you can see here:

REVOKE {
ALL

| CREATE {DATABASE | DEFAULT | FUNCTION | PROCEDURE | TABLE | VIEW }
| SELECT

| INSERT [(ColumnName,...)]
| DELETE

| UPDATE [(ColumnName,...)]
| REFERENCES

ON TableName
| DOMAIN DomainName | COLLATION CollationName| CHARACTER SET

CharacterSetName | TRANSLATION
FROM { user | PUBLIC } {CASCADE | RESTRICT }

The CASCADE option revokes the specified privilege and any privileges dependent upon it, whereas the
RESTRICT option revokes only the specified privilege.

ROLLBACK

The ROLLBACK command undoes a transaction back to the previous savepoint or to its beginning if no
savepoint is specified. It also closes open cursors and releases locks. This is the syntax of the
command:

ROLLBACK [WORK] [TO SAVEPOINT SavepointName];

SAVEPOINT

The SAVEPOINT command identifies a named savepoint for use in rolling back transactions. This is the
basic syntax of the command:

SAVEPOINT SavepointName;

SAVEPOINT is not directly supported by most versions of SQL, so you should refer to your
documentation.

SELECT

One of the most important SQL commands, and one of the most powerful, SELECT is supported by all
versions of SQL. The syntax of the basic SELECT statement is straightforward, but it can be extended to
create very complex queries, as discussed elsewhere in this book. This is the basic form of the
command:

SELECT [DISTINCT] column1[,column2]

[INTO new_table]
FROM table1[,table2]

Chapter 25:Tuning for Performance

－622－

[WHERE "conditions"]
[GROUP BY "column-list"]

[HAVING "conditions]
[ORDER BY "column-list" [ASC | DESC]]

The SELECT clause specifies the columns the query is to return. It supports a number of variations.
Here's an example:

SELECT
 [ALL | DISTINCT][TOP n [PERCENT]

 { * | { column_name | expression } [[AS] column_alias]
 } [,...n]

Arguments

Here are explanations of the arguments:
§ ALL — Specifies that duplicate rows can be returned. ALL is the default, so it is rarely specified.
§ DISTINCT — Specifies that only unique rows be returned
§ TOP n [PERCENT] — Specifies that only the first n rows or n percent of rows matching the query

are returned. When using PERCENT, n must be an integer between 0 and 100. If the query
includes an ORDER BY clause, the filter is applied to the ordered result set.

Select list

The select list specifies the columns to be returned in the result set. It is supplied as a series of
expressions separated by commas.
§ * — Specifies that all columns should be returned. The columns are returned in the order in which

they exist in the tables or views specified in the query.
§ column_name — specifies the name of a column to return. Some implementations allow you to

remove ambiguities by qualifying a column name by prefixing its table name, followed by a period.
§ expression — specifies an expression evaluated to obtain the result to be returned.
§ column_alias — specifies the name to be returned as the column name in the result set.

Aliases are particularly useful for naming calculated columns.

INTO clause

The INTO clause creates a new table and inserts the result set the query returns into the new table.
Each column in the new table has the same name, data type, and value as the corresponding
expression in the select list. If a computed column is included in the select list, the corresponding
column in the new table will contain the values computed at the time SELECT...INTO is executed.

FROM clause

The FROM clause specifies the tables, views or JOINS from which to retrieve rows. This is the basic
syntax of the FROM clause:

FROM
 table_name [[AS] table_alias] |

 view_name [[AS] table_alias] |
 joined_table

A joined table is a result set that is the product of two or more tables. The syntax of a JOIN looks like
the following example:

SELECT *

FROM tab1e_1

TE
AM
FL
Y

Team-Fly®

Chapter 25:Tuning for Performance

－623－

 [INNER | { { LEFT | RIGHT | FULL } [OUTER] }] JOIN table_2
ON

 table_1.ID = table_2.ID

For a detailed discussion of JOINS, with plenty of examples of the different kinds of JOINS, please refer
to Chapter 9.

WHERE clause

The WHERE clause allows you to restrict the rows returned to those matching a specified search
condition. This is the basic syntax of the WHERE clause:

 WHERE search_condition

Comparison operators

Search conditions are defined by expressions using comparison operators. SQL supports the following
standard comparison operators, as well as a special operator used to test for a NULL value in a column:
§ Equality (=)
§ Inequality (<>)
§ Greater Than (>) and Greater Than or Equal To (>=)
§ Less Than (<) and Less Than or Equal To (<=)
§ IS NULL
§ IS NOT NULL

Some examples of simple comparisons are shown here:

SELECT * FROM Inventory WHERE Name = 'Corn Flakes';
SELECT * FROM Inventory WHERE Price >= 2.67;

SELECT * FROM Contact_Info WHERE Cell_Phone IS NOT NULL;

In addition to letting you use the comparison operators to work with Strings, SQL provides these
dedicated String operators for use with CHAR and VARCHAR variables:
§ LIKE
§ NOT LIKE

The LIKE operator supports wildcards to provide a very powerful tool for String comparison. The
wildcards are as follows:
§ Underscore (_), the single-character wild card
§ Percent (%), the multicharacter wild card

For example, to find all records in the Contact_Info Table with a last name starting with "C," write a
query using LIKE. Here's an example:

SELECT * FROM Contact_Info WHERE Last_Name LIKE 'C%';

Strings can also be concatenated. For example, to return a concatenated last name, comma (,), and a
first name, use this query:

SELECT Last_Name + ', ' + First_Name AS NAME FROM Contact_Info;

Logical operators

SQL provides these logical operators to combine two or more conditions in the WHERE clause of a SQL
statement:
§ AND
§ OR
§ NOT

The AND operator is used to combine two or more comparisons, all of which must evaluate to TRUE for
the comparison to be valid, as shown here:

Chapter 25:Tuning for Performance

－624－

SELECT * FROM Contact_Info WHERE Last_Name = 'Corleone' AND City = 'New
York';

The OR operator is used to combine two or more comparisons, any one of which can evaluate to TRUE
for the comparison to be valid. Here's an example:

SELECT * FROM Contact_Info WHERE City = 'New York' OR State = 'NJ';

Like arithmetic operators, logical operators can be combined using parentheses (()), as shown here:

SELECT * FROM Contact_Info
WHERE Last_Name = 'Corleone' AND (City = 'New York' OR State = 'NJ');

The NOT operator is used to reverse the result of a comparison as in this example:

SELECT * FROM Contact_Info
WHERE Last_Name = 'Corleone' AND NOT (City = 'New York' OR State = 'NJ');

Arithmetic operators

SQL supports the common arithmetic operators for addition (+), subtraction (-), multiplication (*), and
division (/). In addition, SQL supports the modulo operator (%), which returns the remainder of the
division of one integer by another.

IN and BETWEEN

The IN operator provides a simple way to compare fields against a list. For example, to find contacts in
New York State or New Jersey, you can use this query:

SELECT *
FROM Contact_Info

WHERE State IN ('NY', 'NJ');

The BETWEEN operator selects values between specified inclusive limits, as shown here:

SELECT *

FROM Inventory
WHERE Cost BETWEEN 1.03 AND 1.95;

Set operators

Set operators allow you to combine ResultSets returned by different queries into a single ResultSet.
These are the main set operators:
§ UNION returns the combined results of two queries.
§ INTERSECT returns only the rows both queries find.
§ EXCEPT returns the rows from the first query that are not present in the second.

UNION ALL returns the results of two queries, and UNION does the same thing, but it removes
duplicate results. Here's an example:

SELECT *

FROM Contact_Info
WHERE Last_Name = 'Corleone' AND (City = 'New York' OR

 State = 'NJ')
UNION

SELECT *
FROM contact_info

WHERE first_name = 'Kay';

Chapter 25:Tuning for Performance

－625－

UNION, used alone, returns the results of the two queries without any repetitions. UNION ALL, on the
other hand, returns the results of the two queries, including all repetitions.

Subqueries and the ANY, SOME, ALL, and EXISTS predicates

A query is a SQL command that uses the SELECT keyword to return an array of data fields from one or
more tables. A subquery is simply used as part of another SQL statement.

In many cases, a subquery used in a comparison returns more than one value, so special predicates
are required to operate on the results of the subquery before making the comparison.

ANY, SOME and ALL predicates

The ANY or SOME predicates, which are synonymous, can be used to retrieve records in the main query
that satisfy the comparison with any records retrieved in the subquery. The following example returns all
inventory items with a cost greater than the lowest-cost cookies in the Inventory Table:

SELECT * FROM INVENTORY

WHERE cost >= ANY
 (SELECT cost FROM inventory

 WHERE Description = 'Cookies');

The ALL predicate can be used to retrieve only those records in the main query that satisfy the
comparison with all records retrieved in the subquery. If you change ANY to ALL in the preceding
example, the query will return only those inventory items that cost more than all cookies.

EXISTS predicate

The EXISTS and NOT EXISTS predicates are used in true/false comparisons to determine whether the
subquery returns any records. Conventionally, you use an asterisk (*) with the EXISTS predicate
because EXISTS only returns true or false, so there is nothing to be gained by being more specific.
Here's an example:

SELECT *

FROM Customers
WHERE EXISTS

 (SELECT *
 FROM Orders

 WHERE Orders.Customer_Number = Customers.Customer_Number)

The EXISTS clause stops the search as soon as it finds a single match and is therefore much faster
and more efficient than a query that continues to check for additional rows that match.

Nesting subqueries

Just as you can use a subquery within a query, you can use a subquery within another subquery.
Subqueries can be nested as deeply as your implementation of SQL allows. The syntax for nesting
subqueries looks like this:

SELECT *

FROM Tables
WHERE

 (SUBQUERY
 (SUBQUERY

 (SUBQUERY)));

Chapter 25:Tuning for Performance

－626－

ORDER BY Clause

The ORDER BY clause specifies the sort for the result set. Multiple sort columns can be specified. The
sequence of the sort columns in the ORDER BY clause defines the sequence of the sorts. Here's an
example:

 [ORDER BY { order_by_expression [ASC | DESC] } [,...n]]

You can use the ASC and DESC keywords to define sort order:
§ ASC – defines sort order to be ascending
§ DESC – defines sort order to be descending

The ORDER BY clause can include items not appearing in the select list.

GROUP BY clause

The GROUP BY clause specifies how to group rows for aggregate calculations such as COUNT and
AVERAGE. Commonly supported aggregation functions include the following:
§ AVG — Average of the values in the numeric expression
§ COUNT — Number of selected rows
§ MAX — Highest value in the expression
§ MIN — Lowest value in the expression
§ STDEV — Statistical standard deviation for all values in the expression
§ SUM — Total of the values in the numeric expression

When GROUP BY is specified, columns other than aggregate calculations defined in the select list must
be included in the GROUP BY list.

HAVING clause

The HAVING clause specifies a search condition for a group or an aggregate. This example illustrates
the syntax for the HAVING clause:

SELECT State, COUNT(State)
FROM Customers

GROUP BY state
HAVING COUNT(State) > 3

SET TRANSACTION

The SET TRANSACTION command is used to set the properties of a transaction, such as the isolation
level. This is the syntax of the command:

SET TRANSACTION
{ READ_ONLY | READ_WRITE }

ISOLATION LEVEL
{ READ_COMMITTED

| READ_UNCOMMITTED
| REPEATABLE_READ

| SERIALIZABLE}

START TRANSACTION

The START TRANSACTION command, often implemented as BEGIN TRANSACTION, is used to set the
properties of a transaction, such as the isolation level, and to identify the point at which it starts. The
syntax is very similar to SET TRANSACTION, as you can see here:

Chapter 25:Tuning for Performance

－627－

SET TRANSACTION
{ READ_ONLY | READ_WRITE }

ISOLATION LEVEL
{ READ_COMMITTED

| READ_UNCOMMITTED
| REPEATABLE_READ

| SERIALIZABLE}

UPDATE

The UPDATE command is used to modify records. Records to be modified are usually selected using a
WHERE clause. This is the syntax of the statement:

UPDATE { TableName | ViewName }

SET ColumnName = { DEFAULT | expression }
WHERE conditions.

Appendix B: Installing Apache and Tomcat

Overview

Apache has been the most popular Web server on the Internet since April 1996. The January 2002
Netcraft Web Server Survey found that nearly 60 percent of the Web sites on the Internet are using
Apache, nearly double the number of sites using the second-rated Web server and exceeding all other
Web servers combined.

Tomcat is under ongoing development as an open-source project released under the Apache Software
License. Like all open-source development projects, Tomcat is intended to be a collaboration of the
best-of-breed developers from around the world. Tomcat has been selected as the JSP reference
implementation by Sun.

Installing an HTTP Server — Apache

The Apache HTTPD server is powerful, flexible, and HTTP/1.1compliant. It is extremely easy to install
on virtually any platform and offers a number of features such as support for virtual hosts. It is available
with full source code and comes with an unrestrictive license. Better yet, you can download and use it
free of charge. An open-source project, Apache development is driven by a genuine urge to produce a
better product.

The original Apache server evolved from the NCSA Web daemon developed at the National Center for
Supercomputing Applications, University of Illinois, Urbana-Champaign. Development of that had stalled,
and many Web masters had developed their own extensions and bug fixes that were in need of a
common distribution. A small group of these Web masters formed the foundation of the original Apache
Group. The name originally derived from the fact that Apache was "A PAtCHy server," as it was based
on some existing code and a series of "patch files."

Despite the name, Apache has been shown to be substantially faster, more stable, and more feature-full
than many other Web servers. According to the Netcraft Web Server Survey
(http://www.netcraft.com/survey/) of web server software usage, of over 37,000,000 sites
surveyed, more than 21,000,000 run Apache. It has been tested thoroughly by both developers and
users on sites that get millions of hits per day, with no performance difficulties.

Apache Features

Chapter 25:Tuning for Performance

－628－

Apache provides easily used support for a wide range of useful features through its configuration files.
Among these features are the following:
§ DBM databases for authentication
§ Customized responses to errors and problems
§ Virtual hosts

DBM databases for authentication

This feature allows you to set up password-protected pages with enormous numbers of authorized
users, without bogging down the server.

Customized responses to errors and problems

This feature allows you to set up custom files or even CGI scripts to be returned by the server in
response to errors and problems. This is a great help when you need to perform diagnostics during
Web-site development

Virtual hosting

Virtual hosting is an extremely useful and much requested feature that allows the server to distinguish
between requests made to different IP addresses or names mapped to the same machine. This means
you can use the same IP address for multiple domain names and have Apache resolve them to different
paths on a single host machine.

Downloading and Installing Apache

You can download the latest version of Apache directly from the Apache Web site at
http://www.apache.org/dist/httpd/. Apache is also available from a large number of mirror
sites, listed at http://www.apache.org/dyn/closer.cgi. These sites list the current release as
well more recent beta releases and have links to older versions and binary distributions for a variety of
platforms.

Windows installation

According to its developers, Apache 1.3 is designed to run on Windows NT 4.0, Service Pack 6, and
Windows 2000. In my own experience, it also runs fine on Windows 98; however, for reasons of
reliability, I would not use Windows 98 as a production platform. In all cases, TCP/IP networking must
be installed.

There are two ways to install Apache under Windows. If you want the source code, you can download
the binary build of Apache for Windows named apache 1_3_#-win32-src.msi. Otherwise, you can
simply download apache_1_3_#-win32-no_src.msi. Each of these files contains the complete
Apache runtime. You must have the Microsoft Installer version 1.10 installed on your PC before you can
install the Apache runtime distributions.

Run the Apache .msi file you have downloaded according to the information provided at the beginning
of this section. Doing so prompts you for various data about your installation, including the following:
§ Whether you want to install Apache as a service or to run it in a console window when you choose

the Start Apache shortcut
§ Your server name, domain name, and administrative e-mail account
§ The Apache installation directory. The default is C:\Program Files\Apache Group\Apache,

but I prefer C:\Apache because many programs, including many Windows programs, have trouble
handling path names containing spaces.

Caution

Avoid installing anything under C:\Program Files\ because many programs,
including many Windows programs, have trouble handling path names containing
spaces.

Chapter 25:Tuning for Performance

－629－

Apache uses configuration files to maintain configuration information. These configuration files are kept
in the conf directory. During the installation, Apache installs them in your chosen installation directory
path. However, if any of the files in this directory already exist, as might be the case if you are installing
an upgrade, they will not be overwritten. Instead, the new copy of the corresponding file is left with the
extension .default.conf. Similarly, if you already have a fi le called htdocs\index.html, Apache
will not overwrite it with the default version of htdocs\index.html. (htdocs\index.html is the file
which is sent to the browser when your server is first accessed, and no other file is specifically
requested.) This should mean it is safe to install Apache over an existing installation.

After installing Apache, you can edit the configuration files in the conf directory as required. The file
you are most likely to want to edit is httpd.conf, which defines such features of the server as default
file paths and virtual-host setups. However, to get started quickly, the files should work as installed.

Running Apache under Windows

There are two ways you can run Apache:
§ From a console window. (If you close the console window, Apache will terminate.)
§ As a "service," so that Apache starts automatically when your machine boots and keeps running

when you log off.

Using the console window

To run Apache from a console window, select the "Start Apache as console app" option from the Start
menu. This opens a console window and starts Apache running inside it. The window remains active
until you stop Apache. To stop Apache, press the "Shutdown Apache console app" icon option from the
Start menu.

In Apache 1.3.13 and above, you can also stop Apache by pressing Ctrl+C or Ctrl+Break. On Windows
NT/2000 with version 1.3.13, Apache stops if you select "Close" from the system menu or click the close
button in the top-right corner of the console window. The Close menu item and close (X) button also
work on Windows 95/98 as of Apache version 1.3.15.

Starting as a service

To start Apache as a service, it has to be installed as a service. The easiest way to do this is to install
the default Apache service when launching the Apache installation package. Once this is done, you can
start the "Apache" service by opening the Services window, selecting Apache, and clicking Start.
Apache is now running, hidden in the background.

Apache comes with extensive documentation, so you should have no problems installing and starting
Apache. I was pleasantly surprised at how smoothly it went the first time I tried it.

Linux installation

Apache was first developed to run on Unix-type operating systems and is available in a wide variety of
flavors from Apache.org. Figure B-1 displays the Apache download page, giving you an idea of the
varieties of binary available. To download a binary, point your browser at Apache.org's download site at
http://www.apache.org/dist/binaries and download the binary for your operating system.

Chapter 25:Tuning for Performance

－630－

Figure B-1: Flavors of Apache available for download

Now you need to uncompress the archive using gunzip and tar. You should end up with an
apache_1.3.x directory (x is the particular subversion of Apache 1.3 you have downloaded). Move into
the following newly created directory:

cd apache_1.3.x

As of Apache 1.3.11, binary distributions contain an install script. If your binary does not contain an
install script, refer to the README.bindist and/or INSTALL.bindist documents for further
information. Run the install script as follows:

./install.bindist.sh

This command should install the various components of the Apache distribution into the appropriate
locations. Usually, the default is to install everything under /usr/local/apache.

Running Apache under Linux

Become root, and type the following:

 /usr/local/apache/bin/apachectl start

Point your browser at your server, http://localhost, and you should see the Apache default home
page.

Installing a JSP Container — Jakarta Tomcat

The Jakarta Tomcat Servlet engine and JSP container has been chosen for these reasons:

Chapter 25:Tuning for Performance

－631－

§ Tomcat is the servlet container used in the official reference Implementation for the Java Servlet
and JavaServer Pages technologies.

§ Tomcat can be downloaded free from the Jakarta Web site, so, with Tomcat, there is no "barrier to
entry" in getting your JSP applications up and running.

Tomcat is developed in an open-source development project released under the Apache Software
License. Like all open-source development projects, Tomcat is intended to be a collaboration of the
best-of-breed developers from around the world.

Since Tomcat development is an ongoing project, there are several versions of Tomcat available for
download at any given time. The Jakarta Tomcat Web site tells you which is the current production
version. At the time of writing this, Tomcat 3.2.3 is the current production quality release.

Tomcat 4.0 is the next generation of Tomcat. The 4.0 servlet container (Catalina) has been developed
from the ground up for flexibility and performance. Version 4.0 implements the final released versions of
the Servlet 2.3 and JSP 1.2 specifications. As required by the specifications, Tomcat 4.0 also supports
Web applications built for the Servlet 2.2 and JSP 1.1 specifications with no changes.

Downloading and Installing Tomcat

All code in the book has been tested using Tomcat 3.3.1. You may, however, wish to download the
most recent version, which is available at http://jakarta.apache.org/tomcat/index.html.

Go to the Downloads page, and find the section headed "Release Builds." To quote the copy on the
download page: "Release Builds are those that are ready for Prime Time. This build is "as good as it
gets!" Select the highest numbered version of Tomcat. (There may be a legacy version with a lower
revision number available for those who need it.) This takes you to a file-index page that looks like
Figure B-2.

Figure B-2: Tomcat download directory

If you are running Windows, you need the zip file, in this case: jakarta-tomcat-3.2.3.zip. In my
experience, the Apache/Tomcat combination works flawlessly under Windows, offering more
capabilities and an easier installation than other available products. Linux users will want the tar.gz
version of the same file.

To unpack the zip file, you need a copy of Winzip or an equivalent decompression utility. Winzip is
available for download from http://www.winzip.com/. First, install Winzip by clicking the file icon
and following the directions. During installation, Winzip associates itself with all Zip format files, so you
will see the Winzip icon next to your Tomcat zip file in the download directory.

You also need a copy of the java jdk. You can download this from http://java.sun.com/j2se/.
The jdk is packaged as a self-extracting executable, so all you need is to execute it; it prompts you

Chapter 25:Tuning for Performance

－632－

through the installation. I normally create a C:\Java directory and install the jdk in a subdirectory with
a path like C:\Java\jdk1.3.

Installation

To unzip and install Tomcat, simply click on the Tomcat zip file, and Winzip opens a dialog box and
prompts you to select the install directory and then guides you through the installation. The actual
installation takes place in a subdirectory called jakarta-tomcat-3.2.3 or whatever the version
number of your copy may be. I normally just rename this directory "Tomcat" to avoid the problems
frequently encountered with long file names under Windows.

I prefer to install Tomcat in its own directory, either directly under C: or under Apache, since Tomcat and
Apache are designed to work well together. Do not install Tomcat under C:\Program Files\
because Tomcat's script files will not work properly. Frequently, you will find that a program appears to
work fine, but after a while you'll find a feature you haven't used before that objects to spaces in
directory names and fails to work properly.

Caution

Avoid installing anything under C:\Program Files\ because many programs,
including many Windows programs, have trouble handling path names containing
spaces.

Starting and Stopping Tomcat

Tomcat is a Java program, so it is possible to execute it from the command line. However, this involves
setting several environment variables. It is easier to use the scripts provided with the Tomcat distribution
to start and stop Tomcat.

For the average user, the most important scripts are listed in Table B-1:

Table B-1: Tomcat Scripts

Script Purpose

tomcat Sets the environment variables, including CLASSPATH, TOMCAT_HOME and
JAVA_HOME, and starts Tomcat with the proper command-line parameters

startup Starts tomcat in the background

shutdown Stops tomcat

The most important of these scripts is (tomcat.sh/tomcat.bat). The other scripts serve as a
simplified, single-task-oriented entry point to the tomcat script (set different command-line parameters
and so on).

Setting Environment Variables

Before you can use these scripts to start Tomcat, you need to set the following environment variables.

TOMCAT_HOME points to the root directory of your Tomcat hierarchy, and you should type the following:
§ On Win32, type "set TOMCAT_HOME= c:\apache\tomcat "
§ On UNIX , for bash/sh and tcsh, respectively, type the following:

§ "TOMCAT_HOME= apache\tomcat ; export TOMCAT_HOME"
§ "setenv TOMCAT_HOME apache\tomcat"

JAVA_HOME points to the root directory of your JDK hierarchy, and you should type the following:
§ On Win32, type "set JAVA_HOME= c:\java\jdk1.3"
§ On UNIX, for bash/sh and tcsh, respectively, type the following:

§ "JAVA_HOME= java\jdk1.3; export TOMCAT_HOME"
§ "setenv TOMCAT_HOME java\jdk1.3"

TE
AM
FL
Y

Team-Fly®

Chapter 25:Tuning for Performance

－633－

PATH points to the javac executable, and you should type the following:
§ On Win32, type

path=c:\java\jdk1.3;"%PATH%" - don't forget the quotes around %PATH% - Windows will get
confused by its own space separated path names without the quotes.

CLASSPATH points to the java classes required by Tomcat and you should type the following:
§ On Win32, type

SET CLASSPATH=.;C:\apache\tomcat\lib\servlet.jar;

SET CLASSPATH="%CLASSPATH%;C:\apache\tomcat\lib\jasper.jar;

The easiest way to do all this is to create your own script file containing these lines:

PATH=C:\JAVA\JDK1.3\BIN;"%PATH%"
SET TOMCAT_HOME=C:\APACHE\TOMCAT

SET JAVA_HOME=C:\JAVA\JDK1.3
SET CLASSPATH=.;C:\apache\tomcat\lib\servlet.jar;

SET CLASSPATH="%CLASSPATH%;C:\apache\tomcat\lib\jasper.jar;
STARTUP

The final command, "STARTUP", runs Tomcat's own startup.bat script. Save this script as
tcstart.bat. Now start Tomcat by typing "tcstart".

Note

The scripts are only a convenient way to start and stop Tomcat. You can modify them to
customize the CLASSPATH, environment variables such as PATH and
LD_LIBRARY_PATH, and so on, so long as a correct command line is generated for
Tomcat.

Test

To check out your installation, open your Tomcat/bin directory, and run the startup script. Tomcat
should start running. To check it out, open a browser window, and point it to:

http://localhost:8080/

You should see the Tomcat default home page. This page has links to a variety of servlet and JSP
examples, as well as to the API documentation for servlets and Java Server Pages. Now that you are at
this page, you can check out the JSP and servlet examples by clicking the links. The snoop example is
particularly worth looking at, since it shows the wealth of information the server receives from the
browser.

Notice the port number 8080 after "localhost". As a servlet/JSP container, Tomcat defaults to port
8080 so that a primary server can service the standard HTTP port at 80.

You probably also notice that your browser now points to this:

http://localhost:8080/index.html

If you look at the directory listing, you will notice that index.html is one of the files in the
tomcat\webapps\ROOT directory. This is the default Web directory for Tomcat Web pages.

Apache and Tomcat are frequently installed together, so that Apache can be used to serve static web
pages, while Tomcat handles dynamic web pages. The next section shows how to configure Tomcat to
work with Apache.

Configuring Tomcat to Work with Apache

Chapter 25:Tuning for Performance

－634－

The reason for using Apache and Tomcat together is that Apache is the premier Web server, but it
doesn't do servlets and JSP pages. Tomcat, on the other hand, is the reference servlet/JSP container,
but it doesn't do Web pages as well as Apache. Together, they qualify as the dream team.

The Web server's job is to wait for client HTTP requests and, when these requests arrive, to do
whatever is needed to serve the requests by providing the necessary content. Adding a servlet
container changes this behavior, adding the need to perform these tasks:
§ Load the servlet container adapter library and initialize it prior to serving requests.
§ Check and see if a certain request belongs to a servlet, and, if so, let Tomcat take the request and

handle it.

Tomcat needs to know what requests it is going to serve, usually based on some pattern in the request
URL, and where to direct these requests.

First, make sure that you can run Tomcat 3.x as a standalone, and be able to run the servlets and JSPs
from the examples. Now you can edit the various configuration files.

The following examples reflect my configuration, which uses an Apache directory under C, with the
Apache server and Tomcat in subdirectories:
§ Apache in c:/apache/apache/
§ Tomcat in c:/apache/tomcat/

You should modify the paths to reflect your own configuration.

When Tomcat starts up, it automatically generates a configuration file for Apache in the path:

TOMCAT_HOME/conf/jserv/tomcat-apache.conf

You need to edit the apache configuration files so Apache can find the file. To do so, edit httpd.conf.
Then add the following code to the end of the file:

Include c:/apache/tomcat/conf/tomcat.conf

This adds your Tomcat configuration to Apache.

Next, you need to copy the jserv module to the Apache libexec directory (for Win32, the modules
directory) and restart Apache. The jserv module acts as a Web server adapter to sit in Apache and
redirect requests to Tomcat. It should now be able to connect to Tomcat.

Note

You should refer to the documentation provided with the versions of Apache and
Tomcat you download, since there may be some changes as newer revisions are
released. You will also find troubleshooting information in the documentation.

Index
Numbers

4NF (fourth normal form), 15-19

A

abstract schema, entity beans, 570

ACID test, transaction management, 28
atomicity, 28
consistency, 28
durability, 29
isolation, 29

Chapter 25:Tuning for Performance

－635－

activationsession objects' state, 528

address class, JavaMail API, 417

Address object, JavaMail API, 417

aggregate functions, 252-254
query results, 87

aggregation functions, SQL, 27-28

aliases, 26, 76
table queries, 266-268
WHERE clause, 220-221

ALL operator, subqueries, 80

ALL predicate, SELECT command, 662

ALL predicate, subqueries, 224

ALTER command, DDL, 58

ALTER GROUP command, 621

ALTER PROCEDURE command, 648

ALTER TABLE command, 648

ALTER TABLE SQL command, 173, 174, 175

ALTER TRIGGER command, 649

ALTER USER command, 624

ALTER USER command, SQL, 30

ALTER VIEW command, 626, 649

altering tables, 61

AND operator, 73
WHERE clause, 217

ANSI (American National Standards Institute), SQL and, 56

ANY operator, subqueries, 80

ANY predicate, SELECT command, 662

ANY predicate, subqueries, 224

Apache
Jakarta Tomcat and, 676-677
Windows and, 669-670

Apache HTTPD server, installation, 667-671

Apache server
authentication and, 668
custom responses, 668
DBM databases, authentication and, 668
downloading, 668-670
installation

Linux, 670
Windows, 668-669

virtual hosting, 668

APIs, JDO APIs, 597-602

application JavaBean, 332

application layer, JDBC API, 108

architecture, 32
JDO, 33
three-tier model, 34-35
two-tier model, 33-34

Chapter 25:Tuning for Performance

－636－

arguments, SELECT command, 658

arithmetic operators, 74
calculated result columns, 75-76
WHERE clause, 218-219, 661

aliases, 220-221
BETWEEN operator, 661
calculated result fields, 219
IN operator, 661

ARRAY object type, 365

atomicity, transaction ACID test, 28

attributes
tables, 4
transactions, EJBs, 539
XML, 434

authentication, Apache server, 668

B

batch updates, JDBC, 131-132

BatchUpdateException, 132, 158

BCNF (Boyce-Codd normal form), 21

bean-managed persistence, 534-545

bean-managed transactions, EJBs, 540-541

beans
JSP, stored procedures, 349-354
ProcessNABean, stored procedures, 354-362

BETWEEN operator, 77
arithmetic operators (WHERE clause), 661

bidirectional relationships, 590

binary data, Blobs and, 367-368

Blob-based Web page with frames, source code, 380

BLOBs (binary large objects), 365
binary data storage, 367-368
upload test servlet source code, 371

BlobUploadServlet output source code, 373

block nested loop JOINS, 638

BMP (bean-managed persistence), 545
coding differences in CMP beans, 580
hard coding and, 545
primary keys, 545

browsers
documents, uploading from, 370-377
images, uploading from, 370-377
uploading documents from, 370-377
uploading images from, 370-377

business classes, JDO application development, 609

business methods, EJBs, 554-556

C

Chapter 25:Tuning for Performance

－637－

CachedRowSet, 467
PDAs, 468

client-side code, 471-472
server-side code, 469-471

query execution, 470
XML generation, 476-477

calculated result columns, arithmetic operators, 75-76

calculated result fields, WHERE clause, 219

calculated values
UPDATE statement, SQL, 66, 193

CALL command, 649

CallableStatement object, 341-345
JDBC, batch updates, 131-132
stored procecures

calling, 347-349
creating, 345-347
I/O parameters, 362-364
JSP beans, 349-354
ProcessNABean, 354-362

CallableStatements, JDBC, 124-127

cardinality, relationships, 589-592

Cartesian Products, joins, 98, 276

cascade() method, 282

CASE command, 649

CAST command, 650

CGI, parameters, JSP pages and, 330

CHAR operators, WHERE clause, 216-217

character comparisons, operators, 71

classes
DBManager, 282-288
implementation base classes, 481, 482
implementation class, EJBs, 522
JDBC, implementation, 482-489
MemberBean, 561-562
primary keys, source code, 546-547
SQLException, 158
SQLWarning, 158
XBean base class, 437-438
XMLCommand, 497-500
XMLConnection, 484-486
XMLDriver, 482-483
XMLQuery, 500-502
XMLResultSet, 489-495
XMLResultSetMetaData, 496-497
XMLStatement, 486-489
XMLWhereEvaluator, 503-506

client tier
JDBC API, 109
three-tier architecture, 35

client/server applications
DatabaseMetaData interface, 288-289
databases, 279-288

information retrieval, 289-297

Chapter 25:Tuning for Performance

－638－

DBManager class, 282-288
drivers, 279-288
Status Panel, code, 282
Window menu, code, 281

Clob-based Web page with frames, source code, 380

CLOBs (character large objects), 365
text data storage, 369-370

clustered indexes, 639
nonclustered indexes, 640

CMP beans
coding differences in BMP, 580
deployment descriptors, 575-579
development, 571-580
home interface, 571-573
implementation class, 573-575
overview, 569-570
persistent fields, 570
persistent manager, 571
primary keys, 545
relational fields, 570
remote interface, 571-573

Codd, E.F.
relational database model and, 4
tables, 4
tabular structure, 4

Codd's Rules, 5, 7
Distribution Independence (11), 32-33
Dynamic Catalog Rule, 8
Foundation Rule (0), 8
Guaranteed Access Rule (2), 10-11
High Level Language Rule (7), 21-28
Information Rule (1), 7-8
Physical Data Independence Rule (8), 8
primary keys, 10-11
rows, 8
Sub Language Rule (5), 21-28
Systematic Nulls Rule (3), 9
tables and, 7-8
View Update Rule (6), 14

Collections, relationships and, 591

column privileges, 628

columns, derived, tuning and, 644

columns, tables, data retrieval, 293

commands
ALTER GROUP, 621
ALTER PROCEDURE, 648
ALTER TABLE, 173-648
ALTER TRIGGER, 649
ALTER USER, 624
ALTER VIEW, 626, 649
CALL, 649
CASE, 649
CAST, 650
COMMIT, 650
CREATE, 650
CREATE DATABASE, 651

Chapter 25:Tuning for Performance

－639－

CREATE FUNCTION, 651
CREATE GROUP, 618
CREATE INDEX, 652
CREATE PROCE DURE, 652
CREATE SCHEMA, 625
CREATE TABLE, 169, 652-654

formatting, 89
CREATE TRIGGEr, 654-655
CREATE USER, 621-622
CREATE VIEW, 655
DELETE, 656
DROP, 656
DROP GROUP, 618
DROP INDEX, 256
DROP SCHEMA, 627
DROP TABLE, 175
DROP USER, 622-624
GRANT, 630, 656
INSERT, 657
REVOKE, 630, 657
ROLLBACK, 658
SAVEPOINT, 658
SELECT, 658

arguments, 658
FROM clause, 659
GROUP BY clause, 663-664
HAVING clause, 664
INTO clause, 659
ORDER BY clause, 663
select list, 659
subqueries, 662-663
WHERE clause, 660-662

SET TRANSACTION, 664
START TRANSACTION, 664
UPDATE TRANSACTION, 665

COMMIT command, 650
transaction management and, 195-198

commits, EJB transactions, 537

comparison operators, 71
DQL, 25
SQL

character comparisons, 71
concatenation operator, 73
LIKE operator, 72
NOT LIKE operator, 72
NULL operator, 72
numeric comparisons, 71

WHERE clause, 215-216, 660

composite indexes, 640-641

composite keys, 10

concatenation operator, 73

Connection createStatement method, 136

Connection object, JDBC, 112
JDBC distributed transactions, 120-121

ConnectionPoolDataSource interface, JDBC, 117-118

connections

Chapter 25:Tuning for Performance

－640－

DriverManager, 170
opening, JDBC and, 120

consistency, transaction ACID test, 28

constraints
DDL, 22-23
integrity constraints, 60

foreign key, 60
NOT NULL, 60
NULL, 60
primary key, 60
UNIQUE, 60

container-managed persistence, 534-535

container-managed relationships, relationship fields and, 588-589

container-managed transactions, EJBs, 538-540

Controller class, DatabaseManager, 203-205

controllers, Swing-based Table Builder, 176-178

correlated subqueries, 82-83, 231-232

CREATE command, 58, 650

CREATE DATABASE command, 59, 651

CREATE FUNCTION command, 651

CREATE GROUP command, 618

CREATE INDEX command, 652

CREATE INDEX statement, 255

CREATE PROCEDURE command, 652

CREATE SCHEMA command, 625

CREATE TABLE command, 60, 169, 652-654

CREATE TRIGGER command, 654, 655

CREATE USER command, 30, 100, 621-622

CREATE VIEW command, 655

createStatement method, 136

CreationException, entity beans, 550

CROSS JOINS, tuning and, 637

cursor, scrollable ResultSets, JDBC, 137-139, 384-385

D

DAO (data-access object), 545

data entry, membership Web site, 311-315

data manipulation, relational database model, 4

data partitioning, 645
horizontal partitioning, 645
vertical partitioning, 645

data retrieval, as XML document, 398-401

data source layer, three-tier architecture, 35

data types
DDL, 22
SQL, 56-58, 167-168

Chapter 25:Tuning for Performance

－641－

mapping, 151-152
SQL3, JDBC, 153-157

database design. See design

database layer, JDBC API, 108

database privileges, 628

database tuning, 633
index tuning, 638-641

clustered indexes, 639
composite indexes, 640-641
nonclustered indexes, 640

JOINS, 636-637
block nested loop JOINS, 638
hash JOINS, 638
nested loop JOINS, 637-638
sort merge JOINS, 638

schema, changing, 641
denormalization, 641
multiple data tables, 641
normalization, 641

statement tuning, 634-635
database workload, 635

Database Utilities source code (JDBC), 207

database workload, statement tuning, 635

DatabaseManager
Controller class, 203-205

DatabaseMetaData interface
client/server applications, 288-289

DatabaseMetaData object, 289-293
JTree and, 294-297
table types, 290-291

DatabaseMetaData, JDBC, 147-149

databases, 3
access, exceptions, 157-158
architectures, 32

JDO, 33
three-tier model, 34-35
two-tier model, 33-34

client/server applications, 279-288
creating using SQL, 59
creation, 165
data retrieval, as XML document, 398-401
information retrieval, 289-297
inserting data, 187-192
populating, XML data sources, 447-453
queries, XML documents, 442-446
schemas, 625-627
tables (see tables, databases)
URLs, JDBC and, 120
user management, 30

groups, 32
privileges, 31
roles, 32

views, 257-260

database-specific integrity rules, 53

DatabaseUtilities, 184-185

Chapter 25:Tuning for Performance

－642－

JDBC code, 244-247

DataSource interface, JDBC, 115
deployment, 116-117
directory interface, 115-116
implementation, 116-117
naming service, 115-116

data-source layer, JDBC API, 109

DataSource object, JDBC, 319-322

DBManager class, 282-288

DBMS (Database Management System), 4
database creation, 165

DCL (Data Control Language), 99-101
security and, 30-32
SQL and, 22, 56

DDL, 22, 58
ALTER command, 58
constraints, 23
CREATE command, 58
DROP command, 58
SQL and, 22, 56

declarative languages, SQL, 56

DELETE command, 24, 188, 656
subqueries and, 84, 231

DELETE statement
DML, 68
SQL, 198
Swing-based table editor, 198-203

denormalizing databases, 641

deployment descriptors, CMP beans, 575-579

derived colums/tables, tuning and, 644

design, 37
database-specific integrity rules, 53
LEDES 2000 sample invoice source code, 37-42
membership Web site, 308

data entry, 311-315
e-mail, 317
logins, 309-310
registration, 310
searches, 315-317

project specification, 38-42
referential integrity, 52-53
tables, 42-52

design considerations, 38

detail page, XML, stored procedure, 398

direction of relationships, 589-592

dirty reads, isolation levels and, 129

disconnected RowSets, 467

displayTableBuilderFrame() method, 176

DISTINCT keyword, query duplicates, 268-269

DISTINCT operator, 78
WHERE clause, 214

TE
AM
FL
Y

Team-Fly®

Chapter 25:Tuning for Performance

－643－

distributed transactions, 115
JDBC, 118-121

Connection object, 120-121

DML (Data Manipulation Language), SQL and, 22, 24
DELETE statement, 68
INSERT statement, 64

INSERT...SELECT statement, 65
WHERE clause, 65

SQL and, 56
UPDATE statement, 65

calculated values and, 66
indexed tables, 68
transaction management, 67
triggers for validation, 66-67

documents
uploading, from browser, 370-377
XML, SQL queries, 443-446

DOM (Document Object Model)
JDOM and, 435-436
Node interface, 433

elements, 435
Xerces and, 435-436
XML and, 432-435

domain object models, 606-609

DOMEvent interface, 437

DOMParserBean source code, 451-453

downloading
Apache server, 668-670
Jakarta Tomcat, 672-673
LOBs from a DBMS, 377-380

DQL (Data Query Language), 22, 68-99
SELECT statement, 69
SQL and, 24, 56

aggregation functions, 27-28
comparison operators, 25
query results, sorting, 25
table joins, 26

WHERE clause, 69-70

Driver object, JDBC, 112

DriverManager interface, JDBC, 112, 170
connection to database, 170
drivers, 113-114

drivers
client/server applications, 279-288
JDBC, 113-114

DROP command, 656
DDL, 58
SQL, 61

DROP GROUP command, 618

DROP INDEX SQL command, 256

DROP SCHEMA command, 627

DROP TABLE SQL command, 175

DROP USER command, 30, 622-624

Chapter 25:Tuning for Performance

－644－

dropping groups, 618

dropping tables, 61, 175

duplicates, table queries, 268-269

durability, transaction ACID test, 29

dynamic Web pages, servlets and, 321-322

E

Edit menu, Swing-based table editor, 199

editors, Swing-based table editor, 198-203

EIS (Enterprise Information Systems), 517

EJB containers, 517, 571. See also persistent manager

EJB deployment, 517

EJB QL (EJB Query Language), 580-582
queries, relationships, 590

ejbCreate method, 522, 547-549

EJBExceptions, 523-526

EJBHome interface, 549

ejbLoad method, 552-553

ejbPostCreate method, 550

EJBs (Enterprise JavaBeans)
business methods, 554-556
cardinality of relationships, 589
entity beans, 533
home interface, 521
implementation class, 522
instance variables, persistent object synchronization, 552-554
JSP client source code, 526
message-driven beans, 535-537
MessageEchoEJB source code, 535-537
naming conventions, 520
overview, 517-518
persistent storage, 533

bean-managed persistence, 534
container-managed persistence, 534-535

primary keys, 533-545
remote interface, 521
session beans, 518-533
transactions, 537

bean-managed, 540-541
container-managed, 538-540

value objects, 564-567

ejbStore method, 552-553

e-mail
membership Web site, 317
protocols, 415

MIME, 415
POP, 416
SMTP, 416

receiving messages, JavaMail and JDBC, 422-428
sending messages, JavaMail and JDBC, 418-422

entity beans, 533

Chapter 25:Tuning for Performance

－645－

entity integrity rule, 53

entity objects, 548-550

EntityBean interface, 552-553

EntityBeans, entity objects and, 548-550

entity-object persistence, 543-544

environment variables, Jakarta Tomcat, 674-675

equals operator, WHERE clause, 215

equi-joins, 91, 264-269

non-equi-joins, 92

error handling, ProcessNABean, 359-362

errors, Apache server custom responses, 668

escape sequences, 79
SQL, 222-223

events
RowSetEvents, 464-466
RowSets (JDBC), 147

EXCEPT operator, 99, 277
WHERE clause, 222

EXCEPT set operator, 77

exceptions, 157
BatchUpdateException, 132, 158
EJBExceptions, 523-526
SQLException class, 158
SQLWarning class, 158

executeUpdate() method, 344

EXISTS operator, subqueries, 82

EXISTS predicate, subqueries, 226-227, 663

F

fields
relationship fields, 590-592
tables, 166

fifth normal form, 19-20

filters, query results, 87

findByPrimaryKey method, 551

finder methods, 550-552
home interface, CMP beans, 573

first normal form, 15-16

foreign keys, 11, 60, 263
JOINs, 91

formatting, SELECT statement, 213

forms
HTML, upload form source code, 371
login form, JSP, 329
normal forms, 15

fourth normal form, 15, 18-19

frames

Chapter 25:Tuning for Performance

－646－

Blob-based Web page, 380
Clob-based Web page, 380

FROM clause, SELECT command, 659

FULL OUTER JOIN operator, 95, 272

full outer joins, 262

functions
aggregate, 252-254
aggregation, 27-28
reporting functions, SQL, 27

fuzzy reads, isolation levels and, 129

G

getColumns() method, 296

getConnection() function, 170

getDOMListener() method, 437

getGeneratedKeys() method, 355

getInt() method, 289

getMetaData() method, 290-291, 299

getString() method, 289

getTableTypes() method, 291

getter methods, RowSets, JDBC, 146-147

global privileges, 628

GRANT command, 31, 101, 630, 656

greater than (>) operator, WHERE clause, 215

GROUP BY clause, 251-252
SELECT command, 663-664

groups, 617-620
altering, 621
creating, 618
dropping, 618
query results, 251-252

HAVING clause, 254-255
user groups, 101

groups, users, 32

H

hash JOINS, 638

HAVING clause, 254-255
query results, 87
SELECT command, 664

headers, XML, 433

HelloBean class source code, 523-524

HelloEJB
deployment-descriptor files, 525
home interface, 522
remote interface, 521

high-level language, 21-28

Chapter 25:Tuning for Performance

－647－

home interface, EJBs, 521
CMP beans, 571-573
MemberEJB, 548

horizontal partitioning, 645

HTML
upload form source code, 371
XML comparison, 431-432

HTTP, Apache HTTPD server installation, 667-671

I

I/O, parameters, stored procedures and, 362-364

images, uploading
Blob upload servlet, 373-377
from browser, 370-377

implementation
base classes, JDBC-accessible XML DBMS, 481-482
EJB class, 522
JDBC classes, JDBC-accessible XML DBMS, 482-489
MemberEJG implementation class source code, 556-561
SQL engine, 497
XMLCommand class, 497-500
XMLQuery class, 500-502
XMLWhereEvaluator class, 503-506

implementation class, CMP beans, 573-575

IN operator, 77
arithmetic operators (WHERE clause), 661
subqueries, 81

IN predicate, subqueries, 225-226

index tuning, database tuning, 638-641
clustered indexes, 639
composite indexes, 640-641
nonclustered indexes, 640

indexed tables, UPDATE statement, 68

indexes
creating, 256-257
dropping, 256-257
queries and, 255-257
query results, 88-89

index-only access path, 639

INF (first normal form), 15-16

initialization, JavaBeans, 333

inner joins, 93-95, 262-264
Equi-Joins, 264-269
Non-Equi-Joins, 269

INNER JOINs, 62

input parameters, stored procedures and, 103

INSERT command, 657
subqueries and, 84, 230

INSERT statement
DML, 64

Chapter 25:Tuning for Performance

－648－

INSERT...SELECT statement, 65
WHERE clause, 65
SQL, 24, 188-189
JDBC, 189-191

INSERT...SELECT statement, SQL, 191-192
JDBC and, 192

insertData() method, 355

inserting data, 187-192

installation
Apache HTTPD server, 667-671
Apache server
Linux, 670
Windows, 668-669
Jakarta Tomcat, 672-673

instance variables, EJB, persistent object synchronization, 552-554

integration, JDO with J2EE framework, 611-614

integrity constraints, 60, 168-169
foreign key, 60
NOT NULL, 60, 168
NULL, 60, 168
primary key, 60
PRIMARY KEY, 169
UNIQUE, 60, 169

integrity
referential, design and, 52-53
relational database model, 4

interfaces
DatabaseMetaData, 288-289
EJBHome, 549
EntityBean, 552-553
home, CMP beans, 571-573
JDBC API, 112
ConnectionPoolDataSource, 117-118
DataSource, 115-117
DriverManager, 112-114
JNDI, 599
PersistenceCapable, JDO API, 598-599
PersistenceManager, JDO API, 599-600
PersistenceManagerFactory, JDO API, 599
Query, JDO API, 601-602
remote, CMP beans, 571-573
RowSetMetaData, 455
Serializable, 594
Transaction, JDO API, 602

INTERSECT operator, 99, 277
WHERE clause, 222

INTERSECT set operator, 77

INTO clause, SELECT command, 659

introspections, JavaBeans, 334-335

invisible updates, ResultSets (JDBC), 144

IS NOT NULL operator, WHERE clause, 216

IS NULL operator, WHERE clause, 216

isolation levels, JDBC transactions, 128-130

Chapter 25:Tuning for Performance

－649－

isolation, transaction ACID test, 29

J

J2EE JDO integration, 611-614

JAF (Java Activation Framework), 416

Jakarta Tomcat
Apache and, 676-677
downloading, 672-673
environment variables, 674-675
installation, 672-673
starting/stopping, 674
testing, 675-676

Java XML API, 435-436

JavaBeans
database queries, 387
initialization, 333
introspection, 334-335
JDBC LoginBean, 337-340
JSP and, 331

built-in JSP objects, 335-336
scope, 332

properties
design patterns, 333
getter methods, 333
setting methods, 333

ResultSet, JDBC, returning as XML, 398-400
stored procedures, calling, 355-358
type conversion, automatic, 336

JavaMail API, 415-416
Address object, 417
Message object, 417
receiving e-mail messages, 422-428
sending e-mail messages, 418-422
Session object, 417
Sessions, 416-417
Transport object, 417

JDBC
batch updates, 131-132
connections, opening, 120
data types, SQL data types and, 56-58
database URLs, 120
DataSource object, 319-320

servlets, 321-322
distributed transactions, 118-121

Connection object, 120, 121
functionality example source code, 106
INSERT statement, SQL, 189-191
INSERT...SELECT statement, SQL, 192
JavaMail, receiving e-mail messages and, 422-428
JavaMail, sending e-mail messages and, 418-422
MetaData, 147

DatabaseMetaData, 147-149
ParameterMetaData, 150
ResultSetMetaData, 149-150

overview, 105-108
queries and, 244

Chapter 25:Tuning for Performance

－650－

DatabaseUtilities, 244-247
RecordSets, queries, 234-236
ResultSet, 133-135

changes, 144-145
getter methods, 134-135
queries, 232-233
scrollable, 136-139
updatable, 139-143
update methods, 141-142

ResultSetMetaData
editing tables and, 206-209
queries, 234

RowSets, 145-146
creating, 146-147
events, 147
properties, 146-147

ScrollableResultSet, 136-139
SQL conformace, 110
SQL data types, mapping, 151-152
SQL statements, 121

CallableStatement, 124-127
PreparedStatement, 123-124
Statement object, 122

SQL3 data types, 153-156
object relational databases, 153
user defined, 156-157

transactions, 127-128
isolation levels, 128-130
multithreading, 131
savepoints, 130

UpdatableResultSet, 139-143
UPDATE statement, SQL, 193-195

JDBC API
DriverManager, 170
interfaces, 112

Connection object, 112
ConnectionPoolDataSource, 117, 118
DataSource, 115-117
Driver object, 112
DriverManager, 112-114
Statement object, 112

model, MVC, 184-185
Statement object, 171-173
table altering code, 174
table creation, 170-173
three-tier model, 109-110
two-tier model, 108-109

JDBC compliance, 110-112

JDBC Extension Package, 106

JDBC LoginBean, 337-340

JDBC/XML database test code, 506-510

JDBC-accessible XML DBMS, 481-512
implementation base classes, 481-482
JDBC class implementation, 482-489

jdbcCompliant() method, 111, 481

JDBC-ODBC bridge, 165

Chapter 25:Tuning for Performance

－651－

JdbcRowSet, 467

JDO (Java data object), 33
APIs, 597-602

source code, persistence class, 603-606
application-development process, 609-611
J2EE integration, 611-614
persistent mechanisms, 595
transparent persistence and, 33, 593-597

JDOM, 435-436

JFrame, Table Builder controller, 176-178

JInternalFrames, MVC and, 176

JMenu, MVC and, 176

JMS (Java Message Service), message-drive beans, EJBs, 535

JNDI (Java Naming and Directory interface), 106, 115-116, 599

JOIN statements
writing, 91-92
non-equi-joins, 92

joins, 261
Cartesian products, 98, 276
database tuning, 636-637

block nested loop JOINS, 638
hash JOINS, 638
nested loop JOINS, 637-638
sort merge JOINS, 638

DQL and, 26
inner, 93-95, 262-264

Equi-Joins, 264-269
Non-Equi-Joins, 269

outer, 93-95, 262, 270
FULL OUTER JOIN operator, 272
LEFT OUTER JOIN operator, 271
RIGHT OUTER JOIN operator, 271

Self-Joins, 96-97, 273-275
SQL, 89-91

equi-joins, 91
keys, 91

JSP
beans, stored procedures and, 349-354
built-in objects, JavaBeans and, 335-336
JavaBeans and, 331

built-in JSP objects, 335-336
JDBC LoginBean, 337-340
scope, 332

login form, 329
login servlets, 328-340
search results pages, source code, 392-394

JSP client, EJBs and, source code, 526

JSP pages
sending e-mail messages, JavaMail and, 418-421
SendMailBean, 421-422
XSL stylesheets, applying, 405
XSL transforms, 405

JTree, DatabaseMetaData, displaying, 294-297

JTS (Java Transaction Service), 106

Chapter 25:Tuning for Performance

－652－

K

keys
foreign keys, 263
primary keys, 263

L

language, high level language, 21-28

large objects. See LOBs

LEDES (Legal Electronic Data Exchange Standard), design and, 37

LEFT JOINS, tuning and, 637

LEFT OUTER JOIN operator, 94, 263, 271

less than (<) operator, WHERE clause, 215

LIKE operator, 72
WHERE clause, 216

Linux, Apache server installation, 670

LOBs (large objects), 365-370
downloading from DBMS, 377-380

logical operators
SQL, 73

AND operator, 73
combining with parentheses, 74
NOT operator, 73
OR operator, 73

WHERE clause, 217, 661
AND operator, 217
combining, 218
NOT operator, 218
OR operator, 218

login form, JSP, 329

login servlets, 322-328
deployment, 328
JSP and, 328-340
login page, 323-325
passwords, 322-323
source code, 325-328
usernames, 322-323

logins, membership Web site, 309-310

logs, 157-160

loops, PreparedStatement object, 343-344

M

many-to-many relationships, 14, 590

many-to-one relationships, 590

master-detail relationships, 14

MemberBean class, 561-562

MemberEJB
implementation class source code, 556-561
remote interface, 554

TE
AM
FL
Y

Team-Fly®

Chapter 25:Tuning for Performance

－653－

MemberEJB home interface, 548

membership Web site, 305, 322-323
database design, 308

data entry, 311-315
e-mail, 317
logins, 309-310
registration, 310
searches, 315-317

login page, 323-325
multi-tier system, 305-306
requirements, 307-308

message class, JavaMail API, 417

Message object, JavaMail API, 417

message-drive beans, EJBs, 535-537

MessageEchoEJB source code, 535-537

MetaData, JDBC, 147
DatabaseMetaData, 147-149
ParameterMetaData, 150
ResultSetMetaData, 149-150

methods
business methods, EJBs, 554-556
cascade(), 282
createStatement, 136
displayTableBuilderFrame(), 176
ejbCreate, 522, 547-549
ejbLoad, 552-553
ejbPostCreate, 550
ejbStore, 552-553
executeUpdate(), 344
findByPrimaryKey, 551
finder methods, 550-552
getColumns(), 296
getDOMListener(), 437
getGeneratedKeys(), 355
getInt(), 289
getMetaData(), 290-291, 299
getString(), 289
insertData(), 355
jdbcCompliant(), 111, 481
next(), 137-138
previous(), 137-138
readObject(), 594
registerOutParameter(), 362
ResultSet class, 494-495
selectDatabase(), 176
setDOMListener(), 437
tileHorizontally(), 282
update, RowSets, 461
writeObject(), 594

middle tier
JDBC API, 109
three-tier architecture, 35

MIME (Multipurpose Internet Mail Extensions), 415

miscellaneous operators, WHERE clause, 221

models, MVC, 184-185

Chapter 25:Tuning for Performance

－654－

multiple data tables, databas tuning, 641

multiple-index access paths, 639

multithreading, JDBC transactions, 131

multi-tier system, membership Web site, 305-306

MVC (Model View Controller)
model, 184-185
Table Builder and, 175

N

naming conventions, EJBs, 520

nested loop JOINS, 637-638
block nested loop JOINS, 638

nested subqueries, 83, 227, 663

next() method, 137-138

Node interface, DOM, 433, 435

nonclustered indexes, 640

Non-Equi-Joins, 269

normal forms, 15
4NF (fourth normal form), 15-19
BCNF (Boyce-Codd Normal Form), 21
fifth normal form, 19-20
INF (first normal form), 15-16
second normal form, 16-17
third normal form, 17-18

normalizing databases, 15, 641
denormalizing, 641
practical use, 21

not equals operator, WHERE clause, 215

NOT EXISTS operator, 95, 273
subqueries, 82

NOT EXISTS predicate, subqueries, 226-227

NOT IN operator, subqueries, 81

NOT IN predicate, subqueries, 225-226

NOT LIKE operator, 72
WHERE clause, 216

NOT NULL constraint, 60, 168

NOT operator, 73
WHERE clause, 218

NULL constraint, 60, 168

NULL operator, 72

nulls, 9
primary keys and, 11
tables, 9

numeric comparisons, operators, 71

O

object relational databases, JDBC, 153

Chapter 25:Tuning for Performance

－655－

objects
CallableStatement, 341, 345

stored procedures, 345-364
DatabaseMetaData, 289-293
domain object model, 606-609
entity objects, 548-550
JDBC API

Connection, 112
Driver, 112
Statement, 112

LOBs (large objects), 365-370
PreparedStatement, 341

creation, 342-343
loop, 343-344
values, 344-345

ResultsSetMetaData, 299-301
value objects, EJBs, 564-567

odbc subprotocol, JDBC distributed transactions and, 121

one-to-many relationships, 14, 590

one-to-one relationships, 13-14, 590

operators
AND, 73
arithmetic operators, WHERE clause, 661
comparison operators

DQL, 25
WHERE clause, 660

concatenation, 73
EXCEPT, 99, 277
FULL OUTER JOIN, 95, 272
INTERSECT, 99, 277
LEFT OUTER JOIN, 94, 271
LIKE, 72
logic operators, WHERE clause, 661
NOT, 73
NOT EXISTS, 95
NOT LIKE, 72
NULL, 72
OR, 73
RIGHT OUTER JOIN, 94, 271
set operators, WHERE clause, 662
SQL, 70

arithmetic operators, 74-76
comparison operators, 71-73
logical operators, 73-74
set operators, 76-77
special purpose operators, 77-78

UNION, 275-277
WHERE clause, 213

arithmetic operators, 218-221
CHAR operators, 216-217
comparison operators, 215-216
DISTINCT, 214
LIKE operators, 216
logical operators, 217-218
miscellaneous operators, 221
NOT LIKE operators, 216
set operators, 222
string operators, 216
TOP, 214-215

Chapter 25:Tuning for Performance

－656－

VARCHAR operators, 216-217

Opta2000 JDBC driver, login servlets, 322-328

OR operator, 73
WHERE clause, 218

Oracle Trace, facility statement, 635

ORDER BY clause, 85-86, 249-251
SELECT command, 663

outer joins, 93-95, 262, 270
FULL OUTER JOIN operator, 272
LEFT OUTER JOIN operator, 271
RIGHT OUTER JOIN operator, 271

output parameters, stored procedures and, 103-104, 362

P

page scope JavaBean, 332

ParameterMetaData, JDBC, 150

parameters, I/O, stored procedures, 362-364

parent-child relationships, 14

parentheses, combining logical operators, 74

passivation, session objects' state, 528

passwords, login servlets, 322-323

PDAs
CachedRowSets, 468

client-side code, 471-472
server-side code, 469-471

performance tuning
data partitioning, 645

horizontal, 645
vertical, 645

database schema, 641-642
database tuning, 633

JOINS, 636-638
statement tuning, 634-636

derived columns/tables, 644
index tuning, 638-641
queries, 636
redundant data, 642-643
views, 645

persistence
bean-managed persistence, 545
BMP (bean-managed persistence), 545
entity-object persistence, 543-544
major mechanisms comparison, 597
transparent, JDO and, 33, 593-597
Yacht class source code, 596-597

PersistenceCapable interface, JDO API, 598-599

PersistenceManager interface, JDO API, 599-600

PersistenceManagerFactory interface, JDO API, 599

persistent classes
JDO application development, 609

Chapter 25:Tuning for Performance

－657－

source code (JDO API), 603-606

persistent fields, CMP beans, 570

persistent manager, CMP beans, 571. See also EJB container

persistent object state, bean instance variable synchronization, 552-554

phantom reads, isolation levels and, 129

phenomena, isolation levels, 129

pluggable XML processing blocks, 436-442

POP (Post Office Protocol), 416

populating databases, XML data sources, 447-453

practical database management system, 3

predicates, subqueries, 224-227

PreparedStatement object, 341
creation, 342-343
JDBC, batch updates, 131-132
loop, 343-344
source code, 342
values, 344-345

PreparedStatement source code, 123-124

PreparedStatements, 448
JDBC, 123-124

previous() method, 137-138

PRIMARY KEYconstraint, 169

primary keys, 60, 263
class source code, 546-547
Codd's Rules and, 10-11
composite keys, 10
EJBs, 533, 545
JOINs and, 91
nulls and, 11
simple keys, 10

privileges, users, 100, 627-628

procedural languages, SQL, 56

procedures, stored procedures, 102-103
CallableStatements and, 345-364
input parameters, 103
output parameters, 103-104

ProcessNABean, stored procedures and, 354-358
error handling, 359-362

prohibited operations, isolation levels, 129

project specification, design and, 38-42

properties
JavaBeans, design patterns, 333
RowSets (JDBC), 146-147

protocols, e-mail, 415
MIME, 415
POP, 416
SMTP, 416

Q

Chapter 25:Tuning for Performance

－658－

queries, 68
CachedRowSets and, 470
combining, 98-99
indexes and, 255-257
JavaBeans, loading, 387
JDBC code, 244

Database Utilities, 244-247
JDBC RecordSets, SELECT statement, 234-236
JDBC ResultSetMetaData, 234
JDBC ResultSets, 232-233
performance tuning, 636
results

grouping, 251-252
HAVING clause, 254-255
sorting, 25, 85-86, 249-251
summarizing, 86-89

SELECT statement, 69, 211
formatting, 213
WHERE clause, 212

SQL
subqueries, 223-232
XML documents, 443-446

subqueries, 79
ALL operator, 80
ANY operator, 80
correlated, 82-83
DELETE command, 84
EXISTS operator, 82
IN operator, 81
INSERT command, 84
nested, 83
NOT EXISTS operator, 82
NOT IN operator, 81
SELECT command, 662-663
SOME operator, 80
UPDATE command, 84

Swing-based query pane, SQL, 236
TableQueryFrame, 238-243
View menu, 237

tables
aliases, 266-268
duplicates, 268-269
EXCEPT operator, 277
INTERSECT operator, 277
UNION operator, 275, 277

views, 257-260
Web pages from, 396-408
WHERE clause, 212

arithmetic operators, 218-221
miscellaneous operators, 221
operators, 213-218
set operators, 222

XML document creation, 442-446

Query interface, JDO API, 601-602

question marks, CallableStatements and, 125

R

RDBMS (Relational Database Management)

Chapter 25:Tuning for Performance

－659－

architecture, 32
JDO, 33
three-tier model, 34-35
two-tier model, 33-34

Codd's Rules, 5, 7
foreign keys, 11-13
high level language, 21-8
information retrieval, 297-299
normalization, 15-21
primary keys, 10-11
relationships, 13-14
tables, 7-8
transaction management, 28

ACID test, 28-29
SQL, 29

user management, 30
groups, 32
privileges, 31
roles, 32
views, 14

readObject() method, 594

records, tables, 166

RecordSets, JDBC, queries, SELECT statement, 234-236

redundant data, tuning and, 642-643

referential integrity, design and, 52-53

referential integrity rule, 53

registerOutParameter() method, 362

registration, membership Web site, 310

relational, definition roots, 4

Relational Database Management. See RDBMS

relational database model, 4
data manipulation, 4
integrity, 4
requirements, 4
structure, 4

relational databases
object, JDBC, 153
tables, 59, 166

altering, 61
creating, 60
dropping, 61
integrity constraints, 60

views
altering, 63
creating, 62

relational fields, CMP beans, 570

relationship fields
accessing, 590-592
container-manager relationships and, 588-589

relationships, 13
bidirectional, 590
cardinality, 589-592
container-managed, relationship fields, 588-589
direction, 589-592

Chapter 25:Tuning for Performance

－660－

many-to-many, 14, 590
many-to-one, 590
master-detail, 14
one-to-many, 14, 590
one-to-one, 13-14, 590
parent-child, 14
unidirectional, 590

remote interface, CMP beans, 571-573

reporting functions, SQL, 27

request scope JavaBean, 332

results, queries
sorting, 25, 85

ORDER BY clause, 85-86
summarizing, 86

aggregate functions, 87
filters, 87
HAVING clause, 87
indexes, 88-89

ResultSet class, methods, 494-495

ResultSet, JDBC
JavaBean to return as XML, 398-400
XML format, source code, 401

ResultSetMetaData, JDBC, 149-150
editing tables and, 206-209
queries, 234

ResultSets
JDBC, 133-135

changes, 144-145
getter methods, 134-135
queries, 232-233
scrollable, 136-139, 386-396
updatable, 139-143
update methods, 141-142

retrieving, source code, 133-134
updatable, XSL stylesheets and, 408-414

ResultsSetMetaData object, 299-301

retrieving data, as XML document, 398-401

reusable single-use service, stateless session beans, 519

REVOKE command, 31, 630, 657

RIGHT OUTER JOIN operator, 94, 271

right outer joins, 263

roles, 617
user roles, 32, 628-629

GRANT command, 630
REVOKE command, 630

ROLLBACK command, 658
transaction management and, 195-198

rollbacks, EJB transactions, 537

row partitioning, 645

rows, 8

RowSet, source code, 456-457

Chapter 25:Tuning for Performance

－661－

RowSetEvents, 464-466

RowSetMetaData interface, 455

RowSets, 455-456
CachedRowSet, 467
creating, 456-457
deleting rows, 464
disconnected, 467
inserting rows, 462-464
JDBC, 145-146

creating, 146-147
events, 147
properties, 146-147

JdbcRowSet, 467
scrollable, 458-460
updatable, 458-460

viewing changes, 464
update methods, 461
WebRowSets, 467
XML generation from, 472-478

S

SAVEPOINT command, 658

savepoints, transactions, 130

scalability, EJBs, 518

schemas, databases, 625-626
database tuning, 641

denormalization, 641
multiple data tables, 641
normalization, 641

management, 626-627

scope, JavaBeans, 332

scrollable ResultSets, JDBC, 383-384
cursor movement, 384-385
search pages, 385-396

scrollable RowSets, 458-460

scrollable XMLResultSet class, implementing, 493-495

ScrollableResultSet, JDBC, 136-139

searches
membership Web site, 315-317
results pages, JSP source code, 392-394
scrollable ResultSets, JDBC, 385-396

second normal form, 16-17

security, DCL (Data Control Language) and, 30-32

SELECT command, 24, 658
arguments, 658
FROM clause, 659
GROUP BY clause, 663-664
HAVING clause, 664
INTO clause, 659
ORDER BY clause, 663
select list, 659
subqueries, 662

ALL predicate, 662

Chapter 25:Tuning for Performance

－662－

ANY predicate, 662
EXISTS predicate, 663
nesting, 663
SOME predicate, 662

WHERE clause, 660
arithmetic operators, 661
comparison operators, 660
logic operators, 661
set operators, 662

SELECT list, subqueries, 229-230

SELECT statement, SQL, 69, 191
JDBC RecordSets, 234-236
queries and, 211

formatting, 213
WHERE clause, 212

selectDatabase() method, 176

self-joins, 96-97, 273-275

SendMailBean, 421-422

SEQUEL (Structured English Query Language), 55

Serializable interface, transparent persistence and, 594

SerializedBean source code, 438-439

servlets
dynamic Web pages, 321-322
login servlets, 322-328

deployment, 328
JSP and, 328-340
login page, 323-325
source code, 325-328

session beans, EJBs, 518
stateful session beans, 527-533
stateless session beans, 519-526

session class, JavaMail API, 417

Session object, JavaMail API, 417

session objects, state, 528

session scope JavaBean, 332

Sessions, JavaMail, 416-417

set operators
SQL, 76

EXCEPT operator, 77
INTERSECT operator, 77
UNION ALL operator, 76
UNION operator, 76

WHERE clause, 222, 662
EXCEPT, 222
INTERSECT, 222
UNION, 222
UNION ALL, 222

SET TRANSACTION command, 664

setDOMListener() method, 437

setter methods, RowSets, JDBC, 146-147

simple keys, 10

TE
AM
FL
Y

Team-Fly®

Chapter 25:Tuning for Performance

－663－

single tier applications, 33

single-index access paths, 639

SMPT (Simple Mail Transfer Protocol) servers, 415

SMTP (Simple Mail Transfer Protocol), 416

SOME operator, subqueries, 80

SOME predicate
SELECT command, 662
subqueries, 224

sort merge JOINS, 638

sorted-index access path, 639

sorting query results, 85, 249-251
ORDER BY clause, 85-86

source code
applying XSL transforms, 397
Blob upload servlet image upload, 373-377
Blob upload test servlet, 371
Blob-based Web page with frames, 380
BlobUploadServlet, 373
CallableStatement, stored procedures and, 124-126
Clob-based Web page with frames, 380
Controller class, DatabaseManager, 203-205
CREATE TABLE statement, 60
DatabaseUtilities (JDBC), 207
DOMParserBean, 451-453
HelloBean class, 523-524
HTML upload form, 371
JDBC funtionality example, 106
JDBC/XML database test code, 506-510
JSP search results page, 392-394
LEDES 2000 sample invoice, 39-42
logging erros to a file, 159-160
login servlet, 325-328
MemberEJG implementation class, 556-561
MessageEchoEJB, 535-537
output parameters from
stored procedures, 126
persistence class, JDO APIs, 603-606
PreparedStatement, 123-124
PreparedStatement object, 342
PreparedStatement object loop, 343-344
primary key class example, 546-547
ResultSet retreival, 133-134
ResultSet, JDBC formatted as XML, 401
RowSets, 456-457
SerializeBean, 438-439
servlet for retrieving large objects, 378-380
SQLInsertBean, 448-450
SQLQueryBean, 445-446
stored procedure to return matching database items, 386
stored procedures with input and output parameters, 126
SystemTime bean, 439-441
TableEditFrame, 200-203
WebRowSet, 472-473
XBean base class, 437-438
XMLCommand class, 498-500
XMLConnection class, 484-486

Chapter 25:Tuning for Performance

－664－

XMLDBTest class XML database, 510-511
XMLDriver class, 483
XMLQuery class, 500-502
XMLResultSet, 490-493
XMLResultSet class, 512
XMLResultSetMetaData class, 496-497
XMLStatement class, 487-489
XMLWhereEvaluator class, 503-506
XSL transform bean, 405-407
Yacht class, persistence, 596-597
YachtEJB home interface, 572
YachtEJB implementation class, 573-575
YachtEJB remote interface, 572
YachtManager.jsp, 582-588
YachtSessionEJB implementation class, 530-533
YachtSessionEJB interfaces, 529-530

special purpose operators, SQL, 77
BETWEEN operator, 77
DISTINCT operator, 78
IN operator, 77
TOP operator, 78

SQL (Structured Query Language), 22, 55
ANSI standards, 56
CallableStatements, JDBC and, 124-127
commands, formatting, 89
CREATE DATABASE command, 59
creating databases, 59
data types, 56-58, 167-168

mapping, 151-152
mapping to Java, 167-168

DCL and, 99-101
DDL and, 22-23
declarative languages, 56
DELETE command, 188
DELETE statement, 198

Swing-based table editor, 198-203
DML, 24
DQL, 24, 68-99

aggregation functions, 27-28
comparison operators, 25
query results, sorting, 25
table joins, 26

DROP command, 61
escape sequences, 222-223
INSERT statement, 188-191
INSERT...SELECT statement, 191-192
JDBC conformance, 110
joins, 89-91

equi-joins, 91
keys, 91

operators, 70
arithmetic operators, 74-76
comparison operators, 71-73
logical operators, 73-74
set operators, 76-77
special purpose operators, 77-78

PreparedStatements, JDBC and, 123-124
procedural languages, 56
queries

Chapter 25:Tuning for Performance

－665－

results, sorting, 85-86
results, summarizing, 86-89
SELECT statement, 211-213
subqueries, 79, 82-84, 223-232

reporting functions, 27
SELECT statement, 191
Statement object, JDBC and, 122
statements

CREATE INDEX, 255
JDBC and, 121-127

Swing-based query pane, 236
TableQueryFrame, 238-243
View menu, 237

syntax, 647-665
transaction management, 29
triggers, 23
UPDATE command, 188
UPDATE statement, 193

calculated values, 193
problems with, 193-195

XML document access, reasons for, 480-481

SQL engine, implementation, 497
XMLCommand class, 497-500
XMLQuery class, 500-502
XMLWhereEvaluator class, 503-506

SQL GRANT command, 31

SQL trace facility, statement tuning, 635

SQL3, large object data types, 366

SQL3 data types, JDBC, 153-156
object relational databases, 153
user defined, 156-157

DISTINCT type, 157
structured data types, 156

SQLException class, 158

SQLInsertBean source code, 448-450

SQLQueryBean source code, 445-446

SQLWarning class, 158

START TRANSACTION command, 664

stateful sesssion beans, 527-533

stateless sesssion beans, 519-526

Statement object
JDBC, 112, 122

batch updates, 131-132
JDBC API, 171-173

statement tuning, databases, 634-635

Status Panel, client/server applications, 282

stored procedures, 102-103
CallableStatement source code and, 124-126
CallableStatements

calling, 347-349
creating, 345-347
JSP beans, 349-354
ProcessNABean, 354-362

input parameters, 103

Chapter 25:Tuning for Performance

－666－

JavaBeans, calling from, 355-358
JSP Beans, 349-354
output parameters, 103-104, 362

source code for retrieving, 126
ProcessNABean, 354-358

error handling, 359-362
I/O parameters, 362-364

returning matching database items source code, 386
source code with input and output parameters, 126

string operators, WHERE clause, 216

structure, relational database model, 4

subqueries, 79
ALL operator, 80
ANY operator, 80
correlated subqueries, 82-83
DELETE command, 84
EXISTS, 82
IN operator, 81
INSERT command, 84
nesting, 83
NOT EXISTS, 82
NOT IN operator, 81
SELECT command, 662

ALL predicate, 662
ANY predicate, 662
EXISTS predicate, 663
nesting, 663
SOME predicate, 662

SOME operator, 80
SQL, 223-224, 229

correlated, 231-232
DELETE command, 231
INSERT command, 230
nesting, 227
predicates, 224-227
SELECT list, 229-230
testing, 228-229
UPDATE command, 231

UPDATE command, 84

summarizing query results, 86
aggregate functions, 87
filters, 87
HAVING clause, 87
indexes, 88-89

Swing-based query pane, SQL, 236
TableQueryFrame, 238-243
View menu, 237

Swing-based Table Builder, 175-176
controller, 176-178
TableBuilderFrame class, 181-184
TableMenu class, 179-181

Swing-based table editor
DELETE statement and, 198-203
TableEditFrame source code, 200-203

syntax, SQL, 647-665

System.err, logs and, 158

Chapter 25:Tuning for Performance

－667－

System.out, logs and, 158

systematic nulls, 9

SystemTime bean source code, 439-441

T

Table Builder, Swing-based, 175-176
controller, 176-178
TableBuilderFrame class, 181-184
TableMenu class, 179-181
view, 179-184

table privileges, 628

TableBuilderFrame class, 181-184

TableEditFrame source code, 200-203

TableMenu class, 179-181

TableQueryFrame, Swing-based query pane, 238-243

tables, 59, 166
ALTER TABLE SQL command, 173-175
altering, 61
Codd's Rules and, 7-8
column data, retrieving, 293
CREATE TABLE SQL command, 169
creating, 60
derived, tuning and, 644
design, 42-52
DROP TABLE SQL command, 175
dropping, 61
fields, 166
foreign keys, 11
indexed tables, UPDATE statement, 68
integrity constraints, 60, 168-169

foreign key, 60
NOT NULL, 60
NULL, 60, 168
primary key, 60
PRIMARY KEY, 169
UNIQUE, 60, 169

JDBC API, 170-173
joins, 261

DQL, 26
inner joins, 262-269
outer joins, 262-272
Self-Joins, 273-275

NOT EXISTS, 273
nulls, 9
queries

aliases, 266-268
duplicates, 268-269
EXCEPT operator, 277
INTERSECT operator, 277
UNION operator, 275, 277

records, 166
temporary tables, 62
types, retrieving, 290-291

tags, XML, 434

Chapter 25:Tuning for Performance

－668－

temporary tables, 62

testing, Jakarta Tomcat, 675-676

testing subqueries, 228-229

text data, Clobs and, 369-370

third normal form, 17-18

three-tier model, JDBC API, 109-110

tileHorizontally() method, 282

tileVertically() method, 282

TKPROF, statement tuning, 635

Tomcat. See Jakarta Tomcat, 672

TOP operator, 78
WHERE clause, 214-215

Transaction Control Commands, SQL and, 22

Transaction interface, JDO API, 602

transaction management, 28
ACID test, 28

atomicity, 28
consistency, 28
durability, 29
isolation, 29

COMMIT command, 195-198
ROLLBACK command, 195-198
SQL, 29
UPDATE statement, 67

transactions
distributed transactions, 115

JDBC, 118-121
EJBs, 537

bean-managed, 540-541
container-managed, 538-540

JDBC, 127-128
isolation levels, 128-130
multithreading, 131
savepoints, 130

transactions, EJBs, 518

transparent persistence, JDO, 33, 593-597

transport class, JavaMail API, 417

Transport object, JavaMail API, 417

triggers
SQL, 23
UPDATE statement validation, 66-67

tuning, database tuning, 633
index tuning, 638-641
JOINS, 636-638
schema, changing, 641
statement tuning, 634-635

tuples, 4

two-tier model, JDBC API, 108-109

type conversion, JavaBeans, 336

Chapter 25:Tuning for Performance

－669－

U

unidirectional relationships, 590

UNION ALL operator, WHERE clause, 222

UNION ALL set operator, 76

UNION operator, 275-277
combining queries, 98-99
WHERE clause, 222

UNION set operator, 76

UNIQUE constraint, 60, 169

unique identifiers, primary keys, 546

updatable ResultSets, JDBC
XSL stylesheets and, 408-414

updatable RowSets, 458-460
viewing changes, 464

UpdatableResultSet, JDBC, 139-143

UPDATE command, SQL, 24, 188
subqueries, 231
subqueries and, 84

update methods, RowSets, 461

UPDATE statement
DML, 65

calculated values and, 66
indexed tables, 68
transaction management, 67
triggers for validation, 66-67

SQL, 193
calculated values, 193
JDBC and, 193-195
problems with, 193-195

UPDATE TRANSACTION command, 665

upload test servelet source code, Blobs, 371

uploading
documents, from browser, 370-377
images

Blob upload servlet, 373-377
from browser, 370-377

URLs (Uniform Resource Locators), databases, 120

user defined data types, SQL3, 156-157
DISTINCT type, 157
structured data types, 156

user groups, 101

user management, 30
groups, 32
privileges, 31
roles, 32

user roles, 628-629
GRANT command, 630
REVOKE command, 630

usernames, login servlets, 322-323

Chapter 25:Tuning for Performance

－670－

users, 99, 617
altering, 624
creating, 621-622
dropping, 622-624
managing, 100
privileges, 100, 627-628

V

value objects, EJBs, 564-567

values
DDL, 22
PreparedStatement object, 344-345

VARCHAR operators, WHERE clause, 216
concatenation operator, 217

variables, Jakarta Tomcat, 674-675

vertical partitioning, 645

View menu, Swing-based query pane, 237

views
altering, 63
Codd's Rules and, 14
creating, 62
databases, 257-260
performance tuning and, 645

virtual hosting, Apache server, 668

visible updates, ResultSets (JDBC), 144

W

Web pages
Blob-based, with frames, 380
Clob-based, with frames, 380
SQL queries and, 396-408

Web sites
membership sites, 305, 322-323

database design, 308-317
login page, 323-325
multi-tier system, 305-306
requirements, 307-308

WebRowSets, 467
source code, 472-473
XML generated, 474-476

WHERE clause
arithmetic operators, 74
DQL, 69-70
INSERT...SELECT statement, SQL, 192
operators, 213

arithmetic operators, 218-221
CHAR operators, 216-217
comparison operators, 215-216
DISTINCT, 214
equals, 215
greater than (>), 215
IS NOT NULL, 216

Chapter 25:Tuning for Performance

－671－

IS NULL, 216
less than (<), 215
LIKE operator, 216
logical operators, 217-218
miscellaneous operators, 221
not equals, 215
NOT LIKE operator, 216
set operators, 222
string operators, 216
TOP, 214-215
VARCHAR operators, 216-217

SELECT command, 660
arithmetic operators, 661
comparison operators, 660
logic operators, 661
set operators, 662

SELECT statement, 212

WHERE clause, INSERT statement, 65

Window menu, client/server applications, 281

Windows, Apache server, 668-670

writeObject() method, 594

X

XBean base class code, 437-438

Xbeans, 436-442
XML document output, 441-442

Xerces, 435-436

XML
attributes, 434
data sources, populating databases, 447-453
detail page, stored procedure, 398
document access with SQL, reasons for, 480-481
document output, Xbeans and, 441-442
documents

database queries, 442-446
SQL queries, 443-446

DOM and, 432-435
generating

CachedRowSet, 476-477
RowSets and, 472-478
WebRowSet, 474-476

headers, 433
HTML comparison, 431-432
pluggable XML processing blocks, 436-442
ResultSet, JDBC

formatting, source code, 401
returning as, JavaBean for, 398-400

tags, 434
XSL stylesheets, 401-405

XML (eXtensible Markup Language), 479

XML DBMS, JDBC-accessible, 481-512

XMLCommand class, 497-500
source code, 498-500

XMLConnection class

Chapter 25:Tuning for Performance

－672－

implementation, 484-486
source code, 484-486

XMLDBTest class XML database creation source code, 510-511

XMLDriver class
implementation, 482-483
source code, 483

XMLQuery class, 500-502
source code, 500-502

XMLResultSet class
implementation, 489-495
source code, 490-512

XMLResultSetMetaData class
implementation, 496-497
source code, 496-497

XMLStatement class
implementation, 486-489
source code, 487-489

XMLWhereEvaluator class, 503-506

XSL (Exstensible Stylesheet Language)
transforms

applying, source code, 397
JSP pages, 405

Web pages from queries, 396-408
overview, 397-398

XSL stylesheets, 401-405
applying in JSP page, 405
updatable ResultSets, JDBC, 408-414

XSL transform bean source code, 405-407

Y–Z

Yacht class source code, persistence, 596-597

YachtEJB home interface source code, 572

YachtEJB implementation class source code, 573-575

YachtEJB remote interface source code, 572

YachtManager.jsp source code, 582-588

YachtSessionEJB implementation class source code, 530-533

YachtSessionEJB interfaces source code, 529-530

TE
AM
FL
Y

Team-Fly®

List of Figures

－673－

List of Figures

Chapter 1: Relational Databases

Figure 1-1: SQL Server creates application tables (uppercase) and system tables (lowercase) to
manage databases.

Figure 1-2: A two-tier client/server configuration is typical of office applications.

Figure 1-3: The three-tier model is typical of Web applications.

Chapter 2: Designing a Database

Figure 2-1: Foreign keys link the Client and Contacts Tables to the primary key of the Address_Info
table.

Figure 2-2: The Billable_Items table is linked to the Client_Matter and Timekeeper tables.

Figure 2-3: Invoices are generated by creating a list of billable items which have not been previously
invoiced.

Figure 2-4: These tables are used to create the invoice header.

Chapter 3: SQL Basics

Figure 3-1: Tables joined on customer number

Chapter 4: Introduction to JDBC

Figure 4-1: Two-tier client/server configuration

Figure 4-2: Three-tier model typical of Web applications

Figure 4-3: Printing rows from a scrollable result set

Chapter 5: Creating a Table withJDBC and SQL

Figure 5-1: TableBuilderFrame generates SQL from table entries.

Chapter 6: Inserting, Updating,and Deleting Data

Figure 6-1: Inserting data with SQL INSERT

Chapter 7: Retrieving Data withSQL Queries

Figure 7-1: Subquery using ALL

Figure 7-2: Subquery using IN

Figure 7-3: Subquery using EXISTS

Figure 7-4: Using nested subqueries

Figure 7-5: Subquery to find above average purchases

Figure 7-6: Using dubqueries in the SELECT clause

List of Figures

－674－

Figure 7-7: SQL Query Pane

Chapter 8: Organizing Search Results and Using Indexes

Figure 8-1: Using GROUP BY to count customers by state

Figure 8-2: Using GROUP BY on multiple columns

Figure 8-3: Using aggregate functions

Figure 8-4: Using the HAVING clause

Figure 8-5: Updating a view updates the underlying table.

Chapter 9: Joins and Compound Queries

Figure 9-1: Primary and Foreign keys are used to define intersecting data sets.

Figure 9-2: Using aliases to simplify queries

Figure 9-3: Returning calculated results from a Join

Figure 9-4: Using DISTINCT to eliminate duplicate records

Figure 9-5: Tables joined on customer number

Figure 9-6: Executing a LEFT OUTER JOIN

Figure 9-7: Full Outer Join

Figure 9-8: Using NOT EXISTS to find records in one table with no corresponding entry in another
table.

Figure 9-9: Using a Self-Join

Figure 9-10: Using an Outer Self-Join

Figure 9-11: Using the UNION operator to combine two result sets

Figure 9-12: Using ORDER BY on a UNION

Chapter 10: Building a Client/Server Application

Figure 10-1: Selecting different databases using a JComboBox

Figure 10-2: Tree view of tables in a database

Figure 10-3: Additional DatabaseMetaData information

Chapter 11: Building a Membership Web Site

Figure 11-1: Three-tier Internet application

Figure 11-2: Structure of Web site developed in Chapters 11-16

Figure 11-3: Data-entry form using combo-boxes to reduce data-entry errors

Figure 11-4: Data entry form using check boxes

List of Figures

－675－

Figure 11-5: Database searches are performed using an HTML Search Form

Figure 11-6: The Summary pages provide summaries of several of the items in the database.

Figure 11-7: The detail page displays a larger image and additional information.

Chapter 12: Using JDBC DataSources with Servlets and Java Server
Pages

Figure 12-1: HTML login form displayed in the Opera browser

Chapter 13: Using PreparedStatements and CallableStatements

Figure 13-1: A basic name and address form used to provide data for the Contact_info Table

Figure 13-2: Member-registration form with user data restored and error message displayed for user
name

Chapter 14: Using Blobs and Clobs to Manage Images and Documents

Figure 14-1: Blob-based and Clob-based Web page using frames

Chapter 15: Using JSPs, XSL, and Scrollable ResultSets to Display
Data

Figure 15-1: Search form

Figure 15-2: Search-results page

Figure 15-3: Web page created by applying an XSL transform to an XML document built from a
ResultSet

Figure 15-4: Form generated from the XML of Listing 15-9 using the stylesheet of listing 15-12

Chapter 17: The XML Document Object Model and JDBC

Figure 17-1: XML document displayed as a tree

Figure 17-2: Xbean connectivity

Chapter 18: Using Rowsets to Display Data

Figure 18-1: Tables containg contact information

Chapter 20: Enterprise JavaBeans

Figure 20-1: Test output after the JSP client shown in Listing 20-5

Chapter 21: Bean-Managed Persistence

Figure 21-1: Entity object's state maintained in persistent store

Chapter 22: Container-Managed Persistence

Figure 22-1: Output of ManageYacht client

List of Figures

－676－

Figure 22-2: Possible output screen of your yacht-session client

Chapter 23: Java Data Objects and Transparent Persistence

Figure 23-1: Class diagrams of the employee object model

Figure 23-2: The JDO application-development and execution process

Figure 23-3: Data persistence with (a) JDBC and (b) JDO

Chapter 25: Tuning for Performance

Figure 25-1: Typical execution path for a SQL query

Figure 25-2: Example of schema with redundant data

Figure 25-3: Example of normalized data schema

Figure 25-4: Data schema showing derived tables

Appendix B: Installing Apache and Tomcat

Figure B-1: Flavors of Apache available for download

Figure B-2: Tomcat download directory

List of Tables

－677－

List of Tables

Chapter 1: Relational Databases

Table 1-1: Codd's Rules

Table 1-2: Customers Table

Table 1-3: Inserting NULLs into a Table

Table 1-4: Inventory Table

Table 1-5: Ordered Items Table

Table 1-6: Orders Table

Table 1-7: View of New York Corleones

Table 1-8: Warehouse Inventory Table

Table 1-9: Inventory Table in 2NF

Table 1-10: Warehouse Table in 2NF

Table 1-11: Employee Table

Table 1-12: Normalised Employee Table

Table 1-13: Departments Table

Table 1-14: Phone Numbers Table which violates 4NF

Table 1-15: Phone Numbers Table

Table 1-16: SalesPersons

Table 1-17: SalesPersons by Vendor

Table 1-18: SalesPersons by Product

Table 1-19: Products by Vendor

Chapter 2: Designing a Database

Table 2-1: Address_Info Table

Table 2-2: Contacts Table

Table 2-3: Client Table

Table 2-4: Timekeeper Table

Table 2-5: Billable Items Table

Table 2-6: Client Matter Table

Table 2-7: Billing Rates Table

Table 2-8: Invoiced Items Table

List of Tables

－678－

Table 2-9: Invoice Table

Chapter 3: SQL Basics

Table 3-1: Standard SQL Data Types with Their Java Equivalents

Table 3-2: DDL Commands

Table 3-3: Part of a Database Table

Table 3-4: The CUSTOMERS Table

Table 3-5: Results of a Lexical String Comparison

Table 3-6: Inventory

Table 3-7: Calculated Result Fields

Table 3-8: Top n Records

Table 3-9: Records Sorted Using ORDER BY

Table 3-10: Customer Table

Table 3-11: Inventory Table

Table 3-12: Orders Table

Table 3-13: Ordered Items Table

Table 3-14: Results of Left Outer Join

Table 3-15: Results of FULL OUTER JOIN

Table 3-16: Employees Table

Chapter 4: Introduction to JDBC

Table 4-1: SQL-92 Isolation Levels

Table 4-2: Organization of a ResultSet

Table 4-3: ResultSet getter Methods

Table 4-4: ResultSet Update Methods

Table 4-5: Standard Mapping from SQL Types to Java

Table 4-6: SQL3 Data Type Reference Methods

Chapter 5: Creating a Table withJDBC and SQL

Table 5-1: Example of a Table

Table 5-2: Standard Mapping from SQL Types to Java

Chapter 7: Retrieving Data withSQL Queries

Table 7-1: The CONTACT_INFO Table

List of Tables

－679－

Table 7-2: ResultSet Containing the TOP 25 Percent of the Table

Table 7-3: Inventory

Table 7-4: Calculated Result Fields

Table 7-5: More Complex Calculated Columns

Table 7-6: ResultSet getter Methods

Chapter 8: Organizing Search Results and Using Indexes

Table 8-1: Records Sorted Using ORDER BY

Table 8-2: Commonly Supported Aggregate Functions

Chapter 9: Joins and Compound Queries

Table 9-1: Customer Table

Table 9-2: Inventory Table

Table 9-3: Orders Table

Table 9-4: Ordered Items Table

Chapter 10: Building a Client/Server Application

Table 10-1: Columns Returned by getTables()

Table 10-2: Column Information Provided by getColumns()

Table 10-3: ResultSetMetaData Methods

Table 10-4: Formatting a ResultSet using ResultSetMetaData

Chapter 11: Building a Membership Web Site

Table 11-1: Login Table

Table 11-2: Contact_Info Table

Table 11-3: Product_Info Table

Table 11-4: Part of Options Table

Chapter 12: Using JDBC DataSources with Servlets and Java Server
Pages

Table 12-1: Login Table Containing Usernames and Passwords

Table 12-2: Member Name and Address Table

Table 12-2: Automatic Type Conversions Supported by JSP

Chapter 13: Using PreparedStatements and CallableStatements

Table 13-1: Ordered_Items Table

List of Tables

－680－

Table 13-2: Contact_Info Table

Chapter 14: Using Blobs and Clobs to Manage Images and Documents

Table 14-1: SQL3 Large Object Data Types

Chapter 17: The XML Document Object Model and JDBC

Table 17-1: org.w3c.dom Interface Node

Chapter 18: Using Rowsets to Display Data

Table 18-1: Results the JDBCRowSetExample Returns

Table 18-2: ResultSet Update Methods

Table 18-3: Contact List RowSet

Chapter 19: Accessing XML Documents Using SQL

Table 19-1: Supported Query Operators

Chapter 20: Enterprise JavaBeans

Table 20-1: EJB Name Convention

Table 20-2: Transaction Attributes

Table 20-3: Allowed Transaction Types for EJBs

Chapter 21: Bean-Managed Persistence

Table 21-1: Sample Data Stored in the Member Table

Table 21-2: Database-access Operations in MemberBean

Chapter 22: Container-Managed Persistence

Table 22-1: Sample Data Stored in Yacht Table

Table 22-2: Coding Differences between CMP and BMP

Chapter 23: Java Data Objects and Transparent Persistence

Table 23-1: Comparison of Major Persistence Mechanisms

Appendix A: A Brief Guide to SQL Syntax

Table A-1: SQL Data Types

Appendix B: Installing Apache and Tomcat

Table B-1: Tomcat Scripts

List of Listings

－681－

List of Listings

Chapter 2: Designing a Database

Listing 2-1: LEDES 2000 sample invoice

Chapter 3: SQL Basics

Listing 3-1: CREATE TABLE Statement

Listing 3-2: Creating a table containing a foreign key

Chapter 4: Introduction to JDBC

Listing 4-1: Simple example of JDBC functionality

Listing 4-2: Using a PreparedStatement

Listing 4-3: Creating and using a stored procedure

Listing 4-4: Stored procedure with input and output parameters

Listing 4-5: Getting an output parameter from a stored procedure

Listing 4-6: Retrieving a ResultSet

Listing 4-7: Scrollable ResultSet

Listing 4-8: Opening an updatable ResultSet

Listing 4-9: Using UpdatableResultSet to insert a new row

Listing 4-10: Using ResultSetMetaData

Listing 4-11: Logging errors to a file

Chapter 5: Creating a Table withJDBC and SQL

Listing 5-1: Creating a table using JDBC

Listing 5-2: Altering a table using JDBC

Listing 5-3: Swing-based Table Builder — the main JFrame

Listing 5-4: DBMenu (the base class for TableMenu)

Listing 5-5: DBMenuItem (a convenience class for easy JMenuItem creation)

Listing 5-6: Table Menu

Listing 5-8: TableBuilderFrame

Listing 5-9: DatabaseUtilities — the JDBC code

Chapter 6: Inserting, Updating,and Deleting Data

Listing 6-1: Using INSERT with JDBC

List of Listings

－682－

Listing 6-2: Using INSERT ... SELECT with JDBC

Listing 6-3: Using UPDATE with JDBC

Listing 6-4: Edit menu with insert, update, and delete items

Listing 6-5: TableEditFrame

Listing 6-6: DatabaseManager — Controller class

Listing 6-7: DatabaseUtilities — JDBC code

Chapter 7: Retrieving Data withSQL Queries

Listing 7-1: Data Retrieval using JDBC

Listing 7-2: View menu with ResultSet item

Listing 7-3: TableQueryFrame

Listing 7-4: DBManager

Listing 7-5: DatabaseUtilities

Chapter 8: Organizing Search Results and Using Indexes

Listing 8-1: Creating and dropping indexes

Chapter 10: Building a Client/Server Application

Listing 10-1: The Window Menu

Listing 10-2: Status Panel

Listing 10-3: The DBManager class

Listing 10-4: Retrieving table types

Listing 10-5: Retrieving tables

Listing 10-6: Retrieving column data

Listing 10-7: Displaying DatabaseMetaData in a JTree

Listing 10-8: Retrieving information about the RDBMS

Listing 10-9: Using ResultSetMetaData

Chapter 11: Building a Membership Web Site

Listing 11-1: Generic form handling using an enumeration

Chapter 12: Using JDBC DataSources with Servlets and Java Server
Pages

Listing 12-1: A simple servlet

Listing 12-2: Using HTML to create a basic login form

TE
AM
FL
Y

Team-Fly®

List of Listings

－683－

Listing 12-3: Login servlet

Listing 12-4: A login form using JSP

Listing 12-5: Using a JSP page to display CGI parameters

Listing 12-6: Using a JSP with the <jsp:useBean/> tag

Listing 12-7: Simple JavaBean illustrating getter and setter methods

Listing 12-8: ProcessLogin.jsp

Listing 12-9: LoginBean

Chapter 13: Using PreparedStatements and CallableStatements

Listing 13-1: Using a PreparedStatement

Listing 13-2: Using a PreparedStatement in a loop

Listing 13-3: Creating a stored procedure

Listing 13-4: Calling a stored procedure that returns a ResultSet

Listing 13-5: Registration form NewMemberForm.jsp

Listing 13-6: ProcessNAForm.jsp

Listing 13-7: Calling a stored procedure from a JavaBean

Listing 13-8: ProcessNAForm.jsp modified for use as an error page

Listing 13-9: Using an output parameter with a stored procedure

Listing 13-10: Getting an output parameter from a stored procedure

Chapter 14: Using Blobs and Clobs to Manage Images and Documents

Listing 14-1: Inserting a Blob into a table

Listing 14-2: Saving a Clob to an RDBMS using a FileReader

Listing 14-3: HTML file-upload form

Listing 14-4: Blob upload test servlet

Listing 14-5: Edited view of the multipart data stream

Listing 14-6: Ouput of the BlobUploadServlet

Listing 14-7: Uploading images using a Blob upload servlet

Listing 14-8: A servlet that retrieves large objects

Listing 14-9: Creating a Blob-based and Clob-based Web page using frames

Chapter 15: Using JSPs, XSL, and Scrollable ResultSets to Display
Data

Listing 15-1: SQL stored procedure to return matching database items

List of Listings

－684－

Listing 15-2: JSP page that loads a JavaBean to query the database

Listing 15-3: JavaBean to handle database query from a JSP page

Listing 15-4: Search-results page JSP

Listing 15-5: Applying an XSL transform

Listing 15-6: Stored procedure for detail page

Listing 15-7: JavaBean that returns a ResultSet as XML

Listing 15-8: JSP page using a JavaBean to display a ResultSet as XML

Listing 15-9: ResultSet formatted as XML

Listing 15-9: XSL stylesheet

Listing 15-10: Applying an XSL stylesheet in a JSP page

Listing 15-11: XSL transform bean

Listing 15-12: Creating a different Web page from the same XML

Listing 15-13: JSP to process the database update form

Listing 15-14: Updatable ResultSet bean

Chapter 16: Using the JavaMail API with JDBC

Listing 16-1: Sending e-mail by using the JavaMail API and JDBC

Listing 16-2: A JSP page for use with the SendMailBean

Listing 16-3: Reading e-mail using JavaMail and saving it to a database

Chapter 17: The XML Document Object Model and JDBC

Listing 17-1: XML example

Listing 17-2: XBean base class

Listing 17-3: SerializerBean

Listing 17-4: SystemTime bean

Listing 17-5: Using Xbeans to create an output of an XML document

Listing 17-6: XML TimeStamp generated and serialized using Xbeans

Listing 17-7: Creating an XML document using a SQL query

Listing 17-8: Using the SQLQueryBean

Listing 17-9: DOM document serialized from the Customer Table

Listing 17-10: XML top stories headline format from Moreover.com

Listing 17-11: SQLInsertBean

Listing 17-12: DOMParserBean

List of Listings

－685－

Chapter 18: Using Rowsets to Display Data

Listing 18-1: Using a RowSet

Listing 18-2: Making a RowSet scrollable

Listing 18-3: Making a RowSet updatable

Listing 18-4: Inserting a new row in an updatable RowSet

Listing 18-5: Using RowSet events

Listing 18-6: Stored procedure to retrieve contact data

Listing 18-7: Executing a SQL query in a CachedRowSet

Listing 18-8: Using a CachedRowSet

Listing 18-9: Stored procedure to retrieve billable item data

Listing 18-10: Writing XML with a WebRowSet

Listing 18-11: XML generated by WebRowSet

Listing 18-12: Generating XML using a CachedRowSet

Listing 18-13: XML invoice elements

Chapter 19: Accessing XML Documents Using SQL

Listing 19-1: Customer data record in XML

Listing 19-2: Typical implementation base class

Listing 19-3: XMLDriver class

Listing 19-4: XMLConnection class

Listing 19-5: XMLStatement class

Listing 19-6: The XMLResultSet class

Listing 19-7: Scrollable ResultSet methods

Listing 19-8: XMLResultSetMetaData class

Listing 19-9: XMLCommand class

Listing 19-10: XMLQuery class

Listing 19-11: XMLWhereEvaluator class

Listing 19-12: JDBC/XML database test code

Listing 19-13: XML database created using XMLDBTest class

Listing 19-14: XMLResultSet

Chapter 20: Enterprise JavaBeans

List of Listings

－686－

Listing 20-1: Remote interface of HelloEJB

Listing 20-2: Home interface of HelloEJB

Listing 20-3: HelloBean class

Listing 20-4: Deployment-descriptor files for HelloEJB

Listing 20-5: JSP client

Listing 20-6: Remote and Home interfaces of YachtSessionEJB

Listing 20-7: YachtSessionEJB implementation class

Listing 20-8: MessageEchoEJB source code

Chapter 21: Bean-Managed Persistence

Listing 21-1: A primary key class example

Listing 21-2: Home interface of MemberEJB

Listing 21-3: EJBHome interface

Listing 21-4: EntityBean home interface

Listing 21-5: Remote interface of MemberEJB

Listing 21-6: MemberEJB implementation class

Listing 21-7: Value object MemberInfoVO

Listing 21-8: Remote interface of MemberEJB using value object

Chapter 22: Container-Managed Persistence

Listing 22-1: Home interface of YachtEJB

Listing 22-2: Remote interface of YachtEJB

Listing 22-3: Implementation class of YachtEJB

Listing 22-4: Deployment descriptor for YachtEJB

Listing 22-5: YachtManager.jsp

Chapter 23: Java Data Objects and Transparent Persistence

Listing 23-1: A persistent class — Yacht

Listing 23-2: XML MetaData file for the persistent class Yacht

Listing 23-2: A test client for the persistent class Yacht

Chapter 24: User Management and Database Security

Listing 24-1: Working with groups

Listing 24-2: Working with Users

List of Sidebars

－687－

List of Sidebars

Chapter 3: SQL Basics

Using Aliases

Escape Sequences

Cartesian Products

Chapter 9: Joins and Compound Queries

Understanding Cartesian Products

	sample.pdf
	sterling.com
	Welcome to Sterling Software

