

For Dummies
by Stef Maruch and Aahz Maruch
John Wiley & Sons © 2006 (434 pages)
ISBN:9780471778646
Looking for a powerful yet easy-to-read programming language? Then slither up to
Python! This friendly reference introduces you to Python, the portable, interactive
language that combines great power with clear syntax.

Table of Contents

Python for Dummies

Introduction

Part I - Getting Started

Chapter 1 - Introducing Python

Chapter 2 - Getting your Hands on the Keyboard—Using Help, Interactive Mode,
and IDLE

Chapter 3 - Basic Elements and Syntax

Chapter 4 - Grand Tour of the Python Language

Chapter 5 - Working Like a Programmer

Part II - Building Blocks

Chapter 6 - So This String Walks into a Bar

Chapter 7 - Counting your Way to Fun and Profit

Chapter 8 - Processing Lists and Tuples

Chapter 9 - Diving into Dictionaries

Part III - Structures

Chapter 10 - Staying in Control

Chapter 11 - Fun with Functions

Chapter 12 - Building Applications with Modules and Packages

Chapter 13 - Getting Classy

Chapter 14 - Introducing New-Style Classes

Chapter 15 - Feeling Exceptional

Chapter 16 - Tackling Some Advanced Features

Part IV - Libraries

Chapter 17 - Using Python's Primary Services

Chapter 18 - Processing Text

Chapter 19 - Digging into Disk Data

Chapter 20 - Accessing the Internet

Part V - The Part of Tens

Chapter 21 - Ten Critical Python Idioms

Chapter 22 - Ten Great Resources

1

Part VI - Appendixes

Appendix A - Getting and Installing Python

Appendix B - Python Version Differences

Index

List of Figures

List of Tables

List of Listings

List of Sidebars

Introduction
Congratulations! You're ready to discover the easiest-to-read powerful programming
language—or maybe the most powerful, easy-to-read programming language. That's
Python, of course.

With Python For Dummies, you can ferret out just a little or a lot. And with Python, you
can write a little program that picks a random quote from a file, or you can write a set of
programs that runs a complex business.

This book is for you whether you're a student, you're a hobbyist, you need to understand
more about what your programmer co-workers are talking about, or you're taking the first
steps on a new career path.

Python For Dummies gives you everything you need to get to an advanced-beginner level
of Python programming. And it points you to other resources so you can take your Python
programming skills even further.

About This Book

Python For Dummies is a reference book, which means
you can read it in any order, and you don't have to read
every chapter or section. However, to some extent, later
chapters about more complex Python features rely on
information introduced in earlier chapters. So if you
don't understand something you see in a later chapter,
go to Chapter 3, or go to the chapter on that feature to
find out more. You can also look in the index to find a
term or feature you want to know more about.

2

Conventions Used in This Book

This book contains Python code examples. All code examples are in monospaced font
so they are easy to recognize. Anything that you need to type is also indicated in
monospaced font so you know exactly which commas should be typed and which
commas are part of the surrounding sentence.

Python interactive mode examples include this prompt: >>>. If you don't see the prompt,
you can assume the code was written in a text editor.

Foolish Assumptions

We make the following assumptions about readers of this book:

• You know how to use your computer and its operating system.

It's helpful but not necessary to know how to set environment variables on your
computer. It's also helpful to have a Web browser with access to the Internet.

• You have and know how to use a text editor that can produce plain ASCII
text or files that end with the .txt extension.

If you don't have a text editor that can do this, we include instructions for setting
up Python's IDLE programming environment to work with the examples in this
book.

• You have had a minimal amount of exposure to programming.

We really do mean minimal. If you had a programming class in high school, or
wrote a few BASIC programs at one time, or even if you have used HTML tags,
that counts.

If you have absolutely no experience with programming, you can still find out
plenty from this book, but we recommend that you also look at a book or Web
tutorial designed to introduce programming to beginners. You'll benefit from the
extended explanations of some concepts that we don't have the space to discuss in
detail here.

• You might have done some programming in another language.

Programming knowledge is not required for this book, but people who have
programmed in other languages have their own sets of issues when transitioning
to Python, and we provide some material for such people.

3

• You know little to nothing about Python.

If you know Python, this book will still be helpful as a reference or a source of
tips and tricks you may not be aware of.

How This Book Is Organized

This book gives you an overview of Python; the lowdown about all of its major parts,
structures, and libraries; and a glimpse into some more advanced features. You also find
out where to go to discover more.

Part I: Getting Started

In this part, we introduce Python and situate it among the myriad other programming
languages available. Python is good for some things and not for others; you find out
which is which. We provide a hands-on introduction to some of Python's abilities, using
its helpful interactive mode and its IDLE programming environment. We briefly describe
each of Python's basic building blocks and show how all these blocks come together by
dissecting a working program. We sketch an overview of how professional programmers
design programs and debug code and show you how to put these practices to work to
make your own programming life easier.

Part II: Building Blocks

Python has six basic data types and many ways to work with each of them. In this part,
we describe how to work with strings (chunks of text), numbers, lists and tuples (both of
which store multiple data elements), dictionaries (which associate one element with
another), and sets (which always contain unique elements, never duplicates).

Part III: Structures

Python code usually comes in chunks, both small and big, and each chunk does a
particular thing. This part also includes a brief introduction to some advanced features
and the new features of Python 2.5.

Part IV: Libraries

Python comes with everything you need to write a very powerful program, and other
people have already solved lots of programming conundrums for you. Its libraries include
primary services such as communication with the operating system, text processing tools,
various ways of reading and writing information to disk, and Internet access methods.

4

Part V: The Part of Tens

All For Dummies books include The Part of Tens. In this part, we give you ten useful but
not-so-obvious programming idioms and ten resources where you can find out more
about Python.

Part VI: Appendixes

Here you find instructions on how to install Python and its documentation, as well as a
list of new features introduced with each new version of Python since 2.0.

Icons appear throughout the book to indicate special material. Here's what they mean:

Tip A Tip explains how to do something a little bit more easily and efficiently.
Warning A Warning gives you a heads-up about tricky stuff or common mistakes that

might cause data loss or some other sort of headache. It's best to read Warnings
to make sure a tricky feature doesn't "getcha."

TECHNICAL
STUFF

A Technical Stuff icon flags text that's of interest to readers who like
to know about the inner workings or history of a subject. You don't
need to read Technical Stuff material. After you've internalized a
little about a subject, reading this text might help you understand it
from a different angle.

REMEMBER Remember icons highlight important concepts or pieces of information to
keep in mind.

Where to Go from Here

If you want an overview of Python's history and what it can do, go to Chapter 1. If you're
new to Python and want to start working with it right away, go to Chapter 2. If you want
a brief overview of all of Python's building blocks, go to Chapter 3. If you know some
Python and you want a refresher or additional info on some of its tools, go to the specific
chapters you're interested in.

5

Part I: Getting Started

Chapter List

Chapter 1: Introducing Python
Chapter 2: Getting your Hands on the Keyboard—Using Help, Interactive Mode, and
IDLE
Chapter 3: Basic Elements and Syntax
Chapter 4: Grand Tour of the Python Language
Chapter 5: Working Like a Programmer

The 5th Wave By Rich Tennant

"The engineers lived on Jolt and cheese sticks putting this products together, but if you
wanted to just ‘cola and cheese sticks’ in the Users Documentation, that's okay too. We're
pretty loose around here."

In this part…

You get an overview of the Python programming language, an introduction to its
interactive and developer environment, and a walkthrough of the building blocks that
make up Python programs.

6

Chapter 1 describes the history of Python and all the exciting things it's being used for
today. You find out why computers are both the fastest and dumbest things around. Best
of all, you discover why it's called Python anyway.

Chapter 2 lets you talk to Python via its interactive mode and IDLE environment. You
write a few basic programs and find out how to get Python to carry out commands for
you, how to get Python to tell you things, and how to import tools that let you do even
more.

Chapter 3 introduces you to Python's data types and code blocks, the chunks you use to
build programs.

Chapter 4 shows you a working program. You see how all the chunks of a Python
program talk to each other, and you find out something about the design philosophies
behind Python programs.

Chapter 5 lets you try on a programmer's hat to understand how programmers work and
why they make the design decisions they do. (Unfortunately, it doesn't explain the
relevance of caffeinated sodas to this process—you'll have to figure that out for yourself.)
There's also a very useful section on strategies for debugging programs, which is a huge
part of every programmer's job.

Chapter 1: Introducing Python
Welcome to Python! If you're the type of person who wants to know what you're getting
into, this chapter is for you. We give you a quick history of Python and its community of
developers. You find out what Python is and isn't good for (the "is" section is much
longer than the "isn't" section) and the most important principles of good Python
programming. If you're new to programming, you'll see how it's very similar to a task
you're probably familiar with.

The Right Tool for the Job

Python is a general-purpose, high-level language that can be extended and embedded
(included in applications as a tool for writing macros). That makes Python a smart choice
for many programming problems, both small and large, and not so good for a couple of
computing tasks.

Good uses of Python

Python is ideal for projects that require quick development. It supports multiple
programming philosophies, so it's good for programs that require flexibility. The many
packages and modules already written for Python provide versatility and save you time.

The story of Python

7

Guido van Rossum created Python and is affectionately bestowed with the title
"Benevolent Dictator For Life" by the Python community. In the late 1980s, Guido liked
features of several programming languages, but none of them had all the features he
wanted. Specifically, he wanted a language that had the following features:

• Scripting language: A script is a program that controls other programs. Scripting
languages are good for quick development and prototyping because they're good
at passing messages from one component to another and at handling fiddly stuff
like memory management so that the programmer doesn't have to. Python has
grown beyond scripting languages, which are used mostly for small applications.
The Python community prefers to call Python a dynamic programming language.

• Indentation for statement grouping: Python specifies that several statements are
part of a single group by indenting them. The indented group is called a code
block. Other languages use different syntax or punctuation for statement
grouping. For example, the C programming language uses { to begin an
instruction and } to end it. Indentation is considered good practice in other
languages also, but Python was one of the first to enforce indentation. Indentation
makes code easier to read, and code blocks set off with indentation have fewer
begin/end words and punctuation to accidentally leave out (which means fewer
bugs).

• High-level data types: Computers store everything in 1s and 0s, but humans need
to work with data in more complex forms, such as text. A language that supports
such complex data is said to have high-level data types. A high-level data type is
easy to manipulate. For example, Python strings can be searched, sliced, joined,
split, set to upper- or lowercase, or have white space removed. High-level data
types in Python, such as lists and dicts (which can store other data types),
encompass much more functionality than in other languages.

• Extensibility: An extensible programming language can be added to. These
languages are very powerful because additions make them suitable for multiple
applications and operating systems. Extensions can add data types or concepts,
modules, and plug-ins. Python is extensible in several ways. A core group of
programmers works on modifying and improving the language, while hundreds of
other programmers write modules for specific purposes.

• Interpreted: Interpreted languages run directly from source code that humans
generate (whereas programs written in compiled languages, like C++, must be
translated to machine code before they can run). Interpreted languages run more
slowly because the translation takes place on the fly, but development and
debugging is faster because you don't have to wait for the compiler. Interpreted
languages are easier to run on multiple operating systems. In the case of Python,
it's easy to write code that works on multiple operating systems—with no need to
make modifications.

People argue over whether Python is an interpreted or compiled language.
Although Python works like an interpreted language in many ways, its code is
compiled before execution (like Java), and many of its capabilities run at full
machine speed because they're written in C—leaving you free to focus on making

8

your application work. Guido began writing Python during his Christmas vacation
in 1989, and over the next year, he added to the program based on feedback from
colleagues. He released it to the public in February 1991 by posting to the Usenet
system of newsgroups. In Guido's words: "The rest is in the Misc/HISTORY file."

Fast development

High-level features make Python a wise alternative for prototyping and fast development
of complex applications:

• Python is interpreted, so writing working programs and fixing mistakes in
programs is fast.
TECHNICAL
STUFF

Programs written in interpreted languages can be tested as
soon as they're written, without waiting for the code to
compile.

• Python takes care of such fiddly details as memory management behind the
scenes.

• Python has debugging features built in.

REMEMBER All these features make Python a good language for

• Off-the-cuff, quick programming
• Prototyping (sketching the design basics of complex programs, or

testing particular solutions)

• Applications that change, build on themselves, and add new
features frequently

Programming styles

Python is a multi-paradigm language (meaning it supports more than one style or
philosophy of programming). This makes it good for applications that benefit from a
flexible approach to programming. Python includes tools for the following paradigms:

• Object-oriented programming (OOP for short) is one of the popular programming
styles that Python supports. OOP breaks up code into individual units that pass
messages back and forth.
Tip Object-oriented programming is good for applications that have multiple

parts that need to communicate with each other.
• Python has features in common with the following languages. If you know these

languages, you'll find features in Python that you are familiar with, making
Python easier to learn:

o Java: An object-oriented language especially for applications used over
networks

9

o Perl: A procedural language used for text manipulation, system
administration, Web development, and network programming

o Tcl: Used for rapid prototyping, scripting, GUIs, and testing
o Scheme: A functional programming language (a language that focuses on

performing actions and calculations by using functions.

For more about functions, see Chapter 11, and for an intro to functional
programming, see Chapter 16.)

REMEMBER Python For Dummies includes a brief introduction to object-oriented
programming (Chapter 13), an overview of using Python for Web
development (Chapter 20), and tips for scripting and testing.

Versatility

Python modules (collections of features for performing tasks) let Python work with

• Multiple operating systems and user interfaces
Tip With Python For Dummies, you can write and run programs on Windows,

Mac, and Unix (including Linux). Python programmers have also written
code for other operating systems, from cell phones to supercomputers.

• Special kinds of data (such as images and sound)

Python comes with dozens of built-in modules. New modules can be written in either
Python or C/C++.

Companies that use Python

The main portal to Python and the Python community is http://www.python.org. This
portal contains a page that lists some companies that use Python, including

• Yahoo! (for Yahoo! Maps)
• Google (for its spider and search engine)
• Linux Weekly News (published by using a Web application written in Python)
• Industrial Light & Magic (used in the production of special effects for such

movies as The Phantom Menace and The Mummy Returns).

Other commercial uses include financial applications, educational software, games, and
business software.

Convenience

Most programming languages offer convenience features, but none boast the combination
of convenience and power that Python offers:

10

• Python can be embedded in other applications and used for creating macros.
For example, Python is embedded in Paint Shop Pro 8 and later versions as a
scripting language.

• Python is free for anyone to use and distribute (commercially or
noncommercially), so any individual or company can use it without paying
license fees.

• Python has powerful text manipulation and search features for applications
that process a lot of text information.

• You can build large applications with Python, even though it doesn't check
programs before they run. In technical terms, Python doesn't have compile-time
checking. Python supports large programs by connecting multiple modules
together and bundling them into packages. Each module can be built and tested
separately.

• Python includes support for testing and error-checking both of individual
modules and of whole programs.

Sometimes, Python isn't so hot

Python by itself isn't best for applications that need to interface closely with the
computer's hardware because

• Python is an interpreted language.

Interpreted languages are slower than compiled languages.

• Python is a high-level language that uses many layers to communicate with the
computer's hardware and operating system.

REMEMBER Python might not be the best choice for building the following types of
applications and systems:

• Graphics-intensive applications, such as action games

But some games use Python because specialized modules can be written to
interface with hardware. The pygame module is one such package. (Modern
computers are extremely fast, which means it's more important to be able to write
clean code quickly than to get maximum speed out of the software, except for the
most graphics-intensive games.)

• The foundations of an operating system

The Python developer community

Python has attracted many users who collectively make up a community that

• Promotes Python
• Discusses and implements improvements to the language

11

• Supports newcomers
• Encourages standards and conventions that improve Python's usability and

readability
• Values simplicity and fun (after all, Python was named after Monty Python, the

British comedy troupe)

The Python community has created words to describe its philosophy:

Pythonic identifies code that meets the following criteria:

• It includes interfaces or features that work well with Python.
• It makes good use of Python idioms (standard ways of performing tasks) and

shows understanding of the language.

Unpythonic code is roughly translated from other languages instead of following Python's
philosophy.

Pythonistas are knowledgeable users of Python (especially users who promote the
language).

Cooking Up Programs

Writing programs is a little bit like working with recipes. For example, you can

• Write a recipe to make bread from scratch.

In Python, you can build a program from scratch, writing all your own code and
using only Python's basic built-in functions.

• Use the product of one recipe in another recipe (for example, a recipe for
turkey stuffing uses bread as an ingredient).

After you write program that performs a basic task, you can insert it into other
programs the same way you add any ingredient to a recipe.

• Buy premade bread.

Python comes with many modules, which are sets of programs other people have
written that you can plug into your program, just like you can buy bread at the
store without baking it yourself.

Python's even better than bread because most Python modules are free!

12

When you write a program, you are telling the computer to do something. Python For
Dummies gives you step-by-step instructions that help you understand how to write the
way a computer "thinks."

REMEMBER Unlike you, computers are pretty stupid. They can do only a few things.
All the actions that humans make them do are the result of the computer's
doing those few things over and over, in different combinations, very
quickly.

Training your assistant

Imagine that you're a baker, and you have taken on an apprentice baker who is as stupid
as a computer. If you want to show your baker how to make bread from scratch, you need
to start with very basic steps. You've already started by putting warm water and sugar in a
small bowl. Then you and the apprentice have this conversation:

• You: "Add a package of yeast."
• Apprentice: "I can't find a package of yeast."
• You: "The refrigerator is over there. Inside the refrigerator is a little package

labeled Yeast. Go get it."
• The apprentice gets the package and says, "Now what?"
• You: "Put the package in the bowl."
• The apprentice puts the package in the bowl.
• You: "Hey! Open the package first!"

By now you might doubt the wisdom of hiring an apprentice baker who needs to be told
things that seem completely obvious to you. But if you persevere, you'll come out ahead.
If this apprentice is like a computer, then after finally figuring out how to bake bread in
your kitchen, your new baker will be able to prepare 100 loaves a minute!

Combining ingredients

When your apprentice baker knows all the procedures involved in baking bread, such as
finding the ingredients on the shelves, finding the pots and pans, mixing ingredients, and
operating the oven, you can assign other tasks that use those same procedures. Baking
bread involves combining ingredients in a bowl, so if you need to combine ingredients
for another recipe, the apprentice already knows how to do that. So when you want to
explain how to make cookies, you can now say "combine sugar, flour, and butter in a
bowl" without explaining where to find the bowls or the sugar.

REMEMBER In Python, after you've written a program to do something, you can import
it into another program. So the more you work with Python, the faster
you'll be able to write programs.

13

Chapter 2: Getting your Hands on the
Keyboard—Using Help, Interactive
Mode, and IDLE

Overview

Even if you haven't used Python or another programming language before, it's easy to get
up and running with Python. You don't even have to know how to write a complete
program because you can run Python in interactive mode. In interactive mode, you can
tell Python what to do one instruction at a time, or you can write small portions of code to
see how Python handles them. In this way you can learn by doing, trying things out at
your own pace.

If you've worked with other programming languages, you're probably eager to get into
the workings of Python and see how it compares. This chapter introduces you to some of
the tools you'll use as you develop Python programs, as well as some of Python's basic
syntax.

Ready for a full-on development experience? Or just curious what a debugger is? Then
go on to the "IDLE Musings" section about Python's very own development environment,
IDLE (Integrated DeveLopment Environment). This comprehensive set of tools supports
you when you are writing, testing, and finding or fixing mistakes in programs.

Tip In most of this book, you read and experiment on your own; it's structured so that
you can pick up information without reading sequentially. However, if you're new to
programming, you might find it useful to read all of this chapter and try some
examples before going on to the rest of the book. In the following sections, you get a
good "hands-on" foundation with Python's interpreter, which will make you more
comfortable when you move on to writing your own programs.

Tip If you want to get an overview of Python's features, jump ahead to Chapter 3. We'll
be waiting for you here when you want to find out more about interactive mode or
the IDLE editor/debugger.

If you need to install Python, Appendix A has the instructions.

Two Ways to Interact with Python

One of the reasons Python is easy to use is that it comes with tools that help you design,
write, and debug your programs.

This chapter describes two of these tools:

14

• Interactive mode: In interactive mode, you type instructions to Python one line
at a time—much the same way that an operating system (shell) accepts
instructions from a command line. You can also write short multiline programs or
import code from text files or from Python's builtin modules. Interactive mode
includes extensive help, too. With interactive mode, you can explore Python's
abilities.

• IDLE: The IDLE development environment includes Python's interactive mode
and more—tools for writing and running programs and for keeping track of
names.

IDLE is written in Python and shows off Python's considerable abilities.

Going One-on-One in Interactive Mode

You can do most anything in interactive mode that you can do in a Python program—
even write multiline programs. Think of interactive mode as

• A sandbox for experimenting safely with Python
• A tutor
• A tool to find and fix problems (bugs) in your programs

Warning You can't save what you type in interactive mode. If you want to keep a copy of
what you wrote, save your code and results in a file on your computer.

You can use interactive mode as a calculator. You can manipulate text and make
assignments in interactive mode. Finally, you can import modules, functions, or parts of a
longer program and test them. These features can help you

• Experiment with Python objects without writing long programs.
• Debug programs by importing parts of your program one at a time.

Starting interactive mode

To start Python's interactive mode, follow these steps:

1. Open a command window.
o If you're using Mac OS X, open the Terminal application and select File

New Shell.
o If you're using Windows, open the Command Prompt window.
o If you're using UNIX, either open a new shell window or just type in your

existing shell window.
2. Type python.

When Python opens, you see the text shown in Figure 2-1.

15

When Python's interactive mode starts up, it tells you what version is running, the date
the version was released, and a few hints about what to do next. Then it displays the
Python prompt: >>>

Figure 2-1: Python's interactive mode in a Terminal window.
Why computers are always saying "Hello, World!"

"Hello, World" programs are a computer programming tradition. According to the free
Internet encyclopedia Wikipedia (http://www.wikipedia.org), the first instance of a
computer program that printed "Hello, World" occurred in 1973, in a book called A
Tutorial Introduction to the Language B, by Brian Kernighan. Since then, a "Hello,
World!" program has been written for almost every computer language. Wikipedia lists
more than 170 "Hello, World!" programs written in languages from 4GL and ActionScript
to UNIX shell and XUL.

One reason that "Hello, World" programs are popular is that a program that prints a single
statement is usually the shortest working program in a language.

• In Python, the shortest working program is one line long.
• In Java, the program is five lines long.

Aren't you glad you're using Python?

Following the rules of engagement

The basic method for working with interactive mode is simply this:

1. Type a statement or expression.
2. Press the Return or Enter key.

When you press Return, Python interprets your input and responds if what you typed
calls for a response or if the interpreter doesn't understand what you typed.

In the following example, the statement tells Python to print a string. Because the
statement doesn't specify where to print the string, Python prints it to the screen (the
default behavior in interactive mode).

>>> print "Hello, World!"
Hello, World!

16

This statement is a whole Python program! Pretty simple, eh? When you use interactive
mode, Python processes each line of code you type as soon as you press Return (unless it
sees that you are writing a multiline chunk of code), and the results appear underneath.

Seeing information about a Python object

In interactive mode, there are two ways to see information about an object:

• Type the object (or its name) and press Return.
• Type the print command and the object (or its name) and press Return.

What you see depends on what the object is.

• With some data types (integers and lists, for example), the two methods of seeing
the value give the same result—as in this example, in which the name stores a list:

• >>> x = [3,2]
• >>> x
• [3, 2]
• >>> print x
• [3, 2]

• With strings, the result of typing print name and pressing Return is slightly
different from the result you get by typing name and pressing Return. When you
just type name and press Return, the value is surrounded by quotation marks, but
when you type print name and press Return, there are no quotation marks. (To
find out why, see the sidebar, "Representing data".)

This example shows the difference between using just the name and using the
print statement with the name:

>>> x = "mystring"
>>> x
"mystring"
>>> print x
mystring

• When the name refers to a code block (for example, a function, module, or class
instance), looking at the name shows you information such as the kind of data, the
name, and the storage location.

This example creates a class called Message and displays information about the
class:

>>> class Message:
... pass
...
>>> Message
<class ___main___.Message at 0x58db0>
>>> print Message

17

__main__.Message

Representing data

Why do you sometimes see different results when you type name and when you type
print name? Just typing name and pressing Return is a shortcut for using the function
repr() to display the result, whereas the print command uses the function str() to
display the result.

In technical terms, when you type an object name, literal, expression, or statement and
press Return, Python evaluates the object. That is, Python runs the code and
returns/displays the result.

According to Python's built-in documentation, the function str() returns a "nice" string
representation of an object. The function repr() returns the "canonical" string
representation of the object. Here's the difference between a "nice" and a "canonical"
representation of a floating point number:

>>> 3.2 # canonical
3.2000000000000002
>>> str(3.2) # nice
'3. 2'
>>> repr(3.2) # canonical
'3.2000000000000002'
>>> print 3.2 # nice
3.2

The canonical representation usually tries to be a chunk of text that, when pasted into the
interpreter, re-creates the object. This example shows how:

>>> mytuple = (3, 4)
>>> mylist = [1, "2", mytuple]
>>> print repr(mylist)
[1, '2', (3, 4)]
>>> mylist == [1, '2', (3, 4)]
True

(Note that some objects, such as files, can't be re-created by repr(). You can still use the
output of repr() as debugging info when working with such objects.)

Here's an example of what str() and repr() return when you give them a class as an
argument:

>>> class Message:
... pass
...
>>> str(Message)
'__main__.Message'
>>> repr(Message)
'<class __main__.Message at 0x58e40>'

18

Seeing the result of the last expression

When you type an expression by itself in interactive mode, or when Python returns an
expression as a result of something you typed, Python also stores the value of the
expression in a special name: _ (an underscore character). This name is available only in
interactive mode. To see the value stored, type _.

>>> "Hello, World!"
'Hello, World!'
>>> _
'Hello, World!'

TECHNICAL
STUFF

Note that _ doesn't store the results of any statements (assignments
such as x=25 or commands such as print). In the following example,
_ continues to hold the value of the expression even after a statement
was typed:

>>> "Hello, Nurse!"
'Hello, Nurse!'
>>> x = 35
>>> _
'Hello, Nurse!'

Warning Don't rely on _ in long segments of code. The value stored in _ may change
unexpectedly if you aren't paying close attention to the difference between
statements and expressions.

Manipulating strings and lists

You can use Python's interactive mode to see a few of the interesting tricks Python can do
with string and list data. (We cover strings and lists in Chapters 6 and 8.)

Of printing, commas, and space

When you want to print several strings, or a string and the value of a name, you can use a
comma to stand for a single space in the printed output. The following example shows the
comma in action:

>>> y = "The meaning of Life, the Universe, and Everything is"
>>> x = 42
>>> print y, x
The meaning of Life, the Universe, and Everything is 42

Measuring and splitting strings

The function len() returns the length of a string, as illustrated here:

>>> x = "supercalifragilisticexpialidocious"
>>> len(x)
34

REMEMBER len() works with other sequence data types, too—for example, if you

19

give it a list as an argument, it returns the number of items in the list.

The method split() breaks a string into separate words and returns a list
of the words, like this:

>>> x = "This is an ex-parrot!"
>>> x.split()
['This', 'is', 'an', 'ex-parrot!']

TECHNICAL
STUFF

The split() method actually breaks a string wherever it finds white
space, so sometimes it doesn't break the string where you expect—
for example:

>>> 'one and/or two'
['one', 'and/or', 'two']

Using interactive mode as a calculator

The Python interpreter can be used like a calculator. If you just want to do simple
calculations, you can type numbers and operators and press Return to see the result, as in
the following example:

>>> (1 + 3) * (2 + 2)
16
>>> 1 + 3 * 2 + 2
9

Warning Don't use an equals sign (=) when doing calculations like these. In Python, an
equals sign gives a name to a value. If you use = to try to get the result of a
calculation, Python gives you an error message:

>>> 1 + 3 * 2 + 2 =
 File "<stdin>", line 1
 1 + 3 * 2 + 2 =
 ^
SyntaxError: invalid syntax

You can also use names to do math in the Python interpreter. This is easier when doing
calculations with several steps, like the following:

>>> x = 1 + 3
>>> y = 2 + 2
>>> x * y
16

Warning If you type all whole numbers (integers) when you're doing arithmetic, Python
returns the result in integers. If you want precise results in calculations
involving division, be sure that at least one of the numbers in a calculation is a
decimal number, or type the statement from __future__ import division
before doing your calculations. Doing the latter imports the true division feature
from a special module called __future__, which contains improvements that
will be automatically activated in later versions of Python. To find out more

20

about using Python to do division, see Chapter 7.

These examples show how to get correct division results:

>>> 13/3 # That can't be right
4
>>> 13.0/3 # That's more like it.
4.333333333333333
>>> from __future__ import division
>>> 13/3
4.333333333333333

Working with built-in functions

In addition to the standard arithmetic operators such as + and *, you have access to a
number of math functions and other functions built into the Python interpreter, and more
such functions are available in the math module.

REMEMBER Functions are pieces of code that

• Carry out specific operations.

• Return the results of those operations.

To work with a function, you need to call it, and you usually need to pass it one or more
arguments—data you want it to act on. You call a function by adding parentheses at the
end of the function name. Any arguments you pass to the function go inside the
parentheses.

Getting help on a function

To get help on built-in functions, type help with the name of the function in parentheses.

The help usually tells you how many arguments the function takes. If an argument is in
square brackets ([]), it's an optional argument. If you leave out an optional argument, a
default value is used.

The help for round(), displayed here, shows that round() takes one required argument
and one optional argument (the number of digits to the right of the decimal point, which
defaults to 0):

>>> help(round)
Help on built-in function round:

round(...)
 round(number[, ndigits]) -> floating point number

21

 Round a number to a given precision in decimal digits (default 0
digits).
 This always returns a floating point number. Precision may be
negative.

The following examples call a built-in function named round(), which takes a decimal
(or floating point) number as an argument. It rounds off the number to the nearest whole
number and returns the result.

>>> round(9.9)
10.0
>>> round(9.3)
9.0

Examining names

When working in interactive mode, you sometimes need to be reminded what names
you've given to objects. The dir() function, which is built into interactive mode, lists the
names (such as names of data objects, module names, and function names) that are stored
in the interactive mode's namespace at any particular point in your coding session.
(Namespace is a Python term for a list of names that a particular part of a program knows
about.)

Tip You can also use the dir() function to examine the contents of modules.

Examining the namespace

The following example shows what happens when you start Python's interactive mode
(so you have not defined anything yet), use dir() to see what is defined, and then give a
value to a name and use dir() again:

% python
Python 2.5b1 (r25b1:47038M, Jun 20 2006, 16:17:55)

>>> dir()
['__builtins__', '__doc__', '___name___']
>>> too_many_cats = "Impossible!"
>>> dir()
['__builtins__', '__doc__', '___name___', 'too___many___cats']

After you give a value the name too_many_cats, the namespace remembers that name
and gives you the value if you ask for it, like this:

>>> too_many_cats
'Impossible'

22

Examining a module

The __builtins__ module defines some exceptions (error-handling code), functions,
and constants. To see what's in the __builtins__ module, simply type
dir(__builtins__).

There are a lot of things in that __builtins__ module! The following example shows the
contents of the credits constant for Python 2.5. (A constant, like a name, stores data, but
the data inside a constant shouldn't be changed.)

>>> credits
Thanks to CWI, CNRI, BeOpen.com, Zope Corporation and a cast of
thousands
for supporting Python development. See www.python.org for more
information.

The capitalized names in the __builtins__ module are exceptions, messages that Python
sends when it encounters errors and other unusual conditions. These are all part of a
module called exceptions, which you can see if you type one of the names into
interactive mode:

>>> ArithmeticError
<type 'exceptions.ArithmeticError']

Writing multiline programs in interactive mode

You can write multiline programs or parts of programs in interactive mode. However,
note that interactive mode doesn't let you save your work, so you might also want to save
the code in a text file.

The following example program prints some kilometer/mile conversions. Here's how it
looks when typed into a text editor. (If you don't understand everything the code does,
don't worry. String formatting is explained in Chapter 6.)

for miles in range(10, 70, 10):
 km = miles * 1.609
 print "%d miles --> %3.2f kilometers" % (miles, km)

Note that some lines are indented. Indentation is very important in Python because it's
how Python tells when you are using a code block (several lines of code that are grouped
together). Four spaces is standard for one level of indentation (the lines starting with km
and print), eight spaces for two levels, and so on.

Here's how the same program looks when you start to type it in interactive mode. When
you press Return after the first line, the interpreter recognizes that you're writing a code
block and displays a continuation prompt: … (three dots). Even though you see a
continuation prompt, you still need to indent the lines that are part of the code block, so
don't forget to add four spaces before starting the km assignment and the print statement.

23

>>> for miles in range(10, 70, 10):
... km = miles * 1.609
... print "%d miles --> %3.2f kilometers" % (miles, km)
...

Tip Okay, we admit it: We sometimes make our thumbs happier by adding only two
spaces when we're working in interactive mode. For actual programs that others
might see, though, it's a Good Idea to use four spaces.

When you are finished with the code block, you press Return at the continuation prompt
without typing anything. The interpreter runs the code, which gives this result:

10 miles --> 16.09 kilometers
20 miles --> 32.18 kilometers
30 miles --> 48.27 kilometers
40 miles --> 64.36 kilometers
50 miles --> 80.45 kilometers
60 miles --> 96.54 kilometers

When you run a code block in interactive mode, the names you've defined in the
namespace retain the values they were given last.

>>> print km
96.54
>>> print miles
60

Quitting interactive mode

To exit Python's interactive mode, press Control-D (on Mac or UNIX) or Ctrl-Z (on
Windows).

If you type quit, Python reminds you what to do, like this:

>>> quit
'Use Ctrl-D (i.e. EOF) to exit.'

Tip If you have Python 2.5, you can still use Control-D or Control-Z (depending on your
operating system) to quit, or you can type quit() or exit() (both work on all
operating systems). The reminder if you type quit without the parentheses is a little
different (this is the reminder on UNIX):

>>> quit
Use quit() or Ctrl-D (i.e. EOF) to exit

When you exit interactive mode, you return to the command prompt of your Terminal
window or Command Prompt window.

Warning When you quit the Python interpreter, all the values you've given names
disappear. If you want to keep your work, copy any code you want to save into
a text file.

24

Getting Help

Beyond Python For Dummies, many other sources of Python help are available to you.
One of the most complete sources is Python's built-in help system.

Tip The help built into Python assumes that you have some knowledge of programming
and about Python. If you're new to programming, some of the help topics might look
pretty daunting. But after you get a handle on some of the terminology, it gets easier!

Help in interactive mode

You can access Python's help system from interactive mode. There are two ways to use
help.

Entering the help program

You can run the help system as a separate program inside the Python interactive mode
environment. The help system has its own prompt. To go into help mode, follow these
steps:

1. Type help() at the Python prompt.

The help program opens, and you see a welcome message and some suggested
topics. Then it displays the help prompt:

help>

2. Type the name of an item you want to know about.

For example, you can get help about the list data type and its methods:

help> list

3. To quit help mode, type quit at the help mode prompt.

When you quit help, you go back to Python's interactive mode, and you see the
Python prompt again:

>>>

Using help without leaving interactive mode

You can also use help to get a tip about a particular item without leaving interactive
mode. To get help about a particular item, follow these steps:

25

1. At the Python prompt, type help followed by the name of the item you want
to find out about in parentheses.

For example, to get help about the list data type, type

>>> help(list)

If the information is less than one screenful, you go back to the interactive mode
prompt automatically.

If there's more information, follow Step 2.

2. If the information is longer than one screen, press the spacebar to see more.

When you finishe, type q to go back to the interactive mode prompt.

Tip Some installations of Python—for example, the installation on Mac OS X 10.3
(Panther) or 10.4 (Tiger)—don't come with all the Python help installed. If you see a
message in the help program that documentation cannot be found, you can install the
documentation (follow steps 1–3 in the next section, "Getting help in a Web
browser") and tell Python where to look for it. One way to do this, if you're using
Mac OS X or UNIX, is to set the PYTHONDOCS environment variable to the folder
path containing the documentation. The way you do this depends on which UNIX
shell (operating system) you are using. Here's how you do it in Mac OS X's Terminal
window, using the default bash shell (replace the path with the correct path for your
docs):

export PYTHONDOCS=/Library/PythonDocs

Getting help in a Web browser

If you want to keep Python documentation open in a separate window while you work,
you're in luck. The Python documentation is in HTML format, so you can keep it open in
a Web browser window.

Follow these steps to keep the Python documentation readily available for your use:

1. Open your Web browser.
2. Type http://www.python.org/doc/ in your browser's address box and press

Return.

This Web site archives documentation for every version of Python that has been
released. The documentation for the most recent version is available at
http://www.python.org/doc/current/.

3. Follow the online instructions to download the correct version of the help
files.

26

4. Make a bookmark in your Web browser to the location of the downloaded
help files.

Doing this sets up the Python documentation so you can access it quickly.

5. To open the help files in your Web browser while you're working with
Python, just select the help file bookmark from your Web browser's
bookmark list.

Using Scripts and Modules

Because Python's interactive mode doesn't save any of your work when you quit, you'll
want to store your important work in text files. Text files that contain Python code are
called scripts (if they are whole programs) or modules (if they contain chunks of code
meant to be imported into other programs).

Both scripts and modules end with the suffix .py.

TECHNICAL
STUFF

Actually, the distinction between scripts and modules is fuzzier than
that because some modules include code that lets them stand on their
own or that gives information about their status… and some
programs can be imported as modules.

Running a script from the command line

When you run a Python script from the command line of your shell or Terminal program,
it behaves like other programs you run from the command line—when it's finished
running, you get another command prompt. To run a script from the command line
(indicated by the command prompt %), type python and the name of the script, like this:

% python script.py

If you run a script from the command line, you use the -i modifier to tell Python to go
into interactive mode after you run it. To create a script and run it interactively on a
command line, follow these steps:

1. Use a text editor to write your script.

For example, you might type the following in a text editor:

print "testing how scripts and interactive mode communicate"
x = 500
print "The value of x is ", x

2. Save your script and give it a name.

27

REMEMBER Use the .py suffix for the name.

Our script is called tinyscript.py.

3. To run the script from the command line, type python -i followed by the
name of the script (including the .py suffix).

When you run the script, Python executes its code and then enters interactive
mode (you can tell because you see the >>> prompt).

% python -i tinyscript.py
testing how scripts and interactive mode communicate
The value of x is 500
>>>

The names that are part of tinyscript.py are now available in interactive mode.
To test this, type dir() and print the value of any of your script's names.

>>> dir()
['__builtins__', '___doc___', '___file___', '___name___', 'x']
>>> print x
500

Importing a module in interactive mode

Modules are text files containing Python code that's designed to be used inside another
program. To work with a module, you need to import it. When you import the module,
Python runs the module's code and stores the module's name in the namespace.

There are two ways to import modules: You can import the module name or you can
import one or more of the names defined inside the module.

The following examples import the module tinymodule.py, which includes the
following function:

def tinyfunction(x):
 print "testing how modules and interactive mode communicate"
 print "You passed me the parameter", x

z = x**2
print x, "squared is", z
return z

Importing by name

Importing a module by name stores the module name in the namespace. But it does not
directly import any names that are defined in the module.

28

To import a module by name, type import followed by the name of the module without
the .py suffix, like this:

>>> import tinymodule

To make sure that the module's name has been imported, type dir().

>>> dir()
['__builtins__', '___doc___', '___name___', 'tinymodule']

To use an item inside a module you've imported by name, you need to tell Python both
the module name and the name of the item. (The items inside modules are collectively
called attributes of the module.) This is similar to handing someone a book and telling
them to find a chapter inside it.

To access an attribute of a module, type the module name, a dot, and the attribute name.

In this example, we call the tinyfunction() attribute in the tinymodule module, and
we give a name to its result. This causes Python to run the code in the function. Here's the
result:

>>> x = tinymodule.tinyfunction(2)
testing how modules and interactive mode communicate
you passed me the parameter 2
2 squared is 4

The tinyfunction() function also returns a value. To see it, we print the name we gave
to the function:

>>> print x
4

Importing items from inside a module

Importing items from inside a module stores their names in the namespace, which gives
you direct access to the items—you don't have to type the module name to use them. But
this method doesn't store the name of the module in the namespace.

To import the function that's inside tinymodule, type this:

>>> from tinymodule import tinyfunction

To check what's stored in the namespace, type dir(). Note: If you didn't quit Python
after doing the example in the previous section, "Importing by name," you might see
other names as well when you type dir().

>>> dir()
['__builtins__', '___doc___', '___name___', 'tinyfunction']

29

Tip Importing a module by name is the recommended way of getting access to a module
and its functions. Although importing items from inside a module is useful in some
situations, this can cause problems if the items have the same names as other items
you're working with.

Using Python's standard modules in interactive mode

Python comes with dozens of modules that add functionality when you want it but stay
out of your way when you don't.

Listing Python's modules

To see the list of built-in modules, follow these steps:

1. In Python interactive mode, type help() and press Return to start the help
utility.

2. At the help> prompt, type modules, like this:
3. help> modules
4. Please wait a moment while I gather a list of all available

modules...

Why modularizing is a good idea

Why doesn't Python automatically import all of its built-in modules? First of all,
importing all of its modules would take a LOOOONG time. Second, if it did, there would
be thousands of names stored in the namespace, and you wouldn't be able to give those
names to your own data—or if you did use them, you might get unexpected results.
Because you need to import modules, stuff you don't use stays out of your way, like
storing your winter clothes in the attic until October.

Whoa! That's a lot of modules. But don't worry. You can drive a car without knowing
exactly how everything under the hood works, and the same goes for working with
Python. Python For Dummies explains the workings of many of Python's modules and
shows you where to go to discover more about the rest.

Tip The list of modules differs depending on your version of Python, your operating
system, and the third-party modules that may have been installed for Python.

Listing the contents of an imported module

The names inside a module might include value assignments, other modules that the
module imports, functions, classes, and so on.

To see the names that belong to a module you've imported—either a .py file you wrote
yourself or one of Python's modules—type dir() with the name of the module inside the

30

parentheses. For example, to import the math module that comes with Python and list its
functions, follow these steps:

1. At the Python prompt, type import math.
2. To list the names (functions and constants) that the math module defines, type

dir(math).

Python displays the contents of the math module.

Getting interactive help for a module's functions

The help information for a large module can be many pages long. If you know the
function you want, here's how to get help for that function specifically:

1. Make sure the module has been imported.
2. Type help(module_name . function_name).

Be sure to include the parentheses and the dot between the module name and the
function name.

This example shows the help for one of the functions in the math module:

>>> help(math.pow)
Help on built-in function pow in module math:

pow(...)
 pow(x,y)

 Return x**y (x to the power of y).

IDLE Musings

IDLE stands for Interactive DeveLopment Environment. (Other computer languages have
such environments too, but they're usually called IDEs. Python's is called IDLE after Eric
Idle of Monty Python fame.) IDLE is an editing program written entirely in Python by
Guido van Rossum.

TECHNICAL
STUFF

IDLE is installed when you install any recent version of Python, but
it doesn't always come with versions of Python that are preinstalled
on your computer, such as with the Mac OS X. You can find
instructions for installing Python in Appendix A.

Opening IDLE

When you open IDLE, you see a window called Python Shell, as shown in Figure 2-2.
Depending on your version of IDLE, you might also see other windows; you can safely
ignore them for now.

31

Figure 2-2: IDLE's Python Shell window on Mac OS.

The Python Shell window runs in interactive mode; it displays the Python prompt, >>>.

Typing statements and programs in the Python Shell

Interactive mode in IDLE works much the same as interactive mode in a shell window
running Python. Here are some differences:

• The code you type is colorized to make it easier to distinguish one part of a
statement from another.

• When you write multiline statements, IDLE does not display the …
continuation prompt.

• IDLE automatically indents lines for you.

Figure 2-3 shows IDLE's Python Shell window with the miles/kilometers conversion
program we introduce in the section, "Writing multiline programs in interactive mode,"
earlier in this chapter (colorizing is not shown—it's a black-and-white book!).

Figure 2-3: A program and its result in IDLE's Python Shell window on Mac OS.

Getting more help for IDLE

IDLE also has built-in help—look in the Help menu.

A good "getting started" Web page for a recent version of IDLE is here:

http://www.hkn.eecs.berkeley.edu/~dyoo/python/idle_intro

The following pages have additional documentation that you'll find useful, but they are
based on earlier versions:

32

• http://www.ai.uga.edu/mc/idle/index.html (based on IDLE 1.0.2)
• http://www.python.org/idle/doc (based on IDLE 0.5)

Clever Python Shell features

Here are a couple of time-saving features of IDLE's Python Shell:

• Putting your insertion point or cursor in a line of code and pressing Enter
inserts a copy of the code on a new line for editing.

• Typing the opening parenthesis for a function call or method call pops up a
small box with a helpful tip or a list of expected arguments.

Writing and editing code with IDLE's text editor

IDLE includes a text editor for opening, editing, and creating modules and scripts. Here
are some of its key features:

• To open a new text editing window, choose File New Window.
• To open an existing module or script for editing, choose File Open.
• The Format menu available when you're working in the text editing window

contains Python-specific formatting commands such as Indent Region.
• To run a program or module, make sure it is open in the text editor and

choose Run Run Module (on some versions, the command is File Run
Script).

The Python Shell restarts (clearing any names that it was storing from the
previous session) and Python executes the code.

Briefly meet a few other IDLE commands

IDLE has Find commands (in the Find menu or Edit menu) to search for text in the
frontmost IDLE window. It also has a Find in Files command that searches all files in the
Python search path or a subset of those files.

With the Path Browser (available from the File menu), you can examine and open any
Python code that is in the Python path. (The Path Browser is shown in Figure 2-4.) To
navigate the path, click the + buttons to expand a folder. To open a .py file in the text
editor, double-click it. To highlight a class or method in the .py file, double-click it in the
Path Browser.

33

Figure 2-4: The IDLE Path Browser.

Debugging in IDLE

When you run code in IDLE's interactive mode, it informs you of errors the same way
you've seen when using interactive mode in a Terminal or shell window.

When you run code from the text editor, IDLE also informs you of errors. Depending on
the kind of error and on your version of IDLE, the error message appears in a dialog box
or in the Python Shell window.

You can use the IDLE debugger to step through your program in various ways and
display the values of names. The IDLE debugger is shown in Figure 2-5.

Warning On the Mac OS, the IDLE debugger that comes with Python 2.4 and earlier has
a bug(!). When you open the debugger window, you must immediately resize it;
otherwise, IDLE will hang.

34

Figure 2-5: The IDLE debugger at work.

35

Chapter 3: Basic Elements and Syntax
This chapter briefly introduces some of the bits and pieces that make up the Python
programming language. You find out about names and the differences between statements
and expressions. We introduce several types of data and operators that work on these data
types. We also explain how to include documentation in your program as well as how to
understand error messages Python might give you. Finally, you get a taste of various
kinds of control structures, loops, and other code blocks available in Python.

Making Names and Storing Values

In most programming languages, there are ways to associate a name or variable with a
value. Here's an example of such a statement in Python:

num = 45

Many programming languages call a statement such as num = 45 "assigning a value to a
variable." But Python doesn't really have variables (you don't need to know why), so this
book uses the term name instead of variable.

TECHNICAL
STUFF

In Python, a name refers to an object. A name is actually a label for a
memory location in the computer that stores something—a value, a
chunk of code, or any sort of thing Python understands. All these
"things"—anything that's stored in a memory location—are called
objects in Python. Therefore, Python programmers often say that
when you enter a statement such as x = 5 in Python, you are binding
a name (x) to an object (5). You can have multiple names for the
same object.

The = symbol (a single equals sign) tells Python to associate a name with a value. When
making an assignment, the name is always on the left, and the value is on the right, as in
this example:

myname = "myvalue"

When you've given a name to a value, the name stands in for the value when you are
writing code. For example, if you've already created the assignment myname =
"myvalue", the following two statements do the same thing—they assign the name
mynewname to the value 'myvalue':

mynewname = "myvalue"
mynewname = myname

36

There are other ways to give a name to a value. For example, you can give a name to the
result of a calculation or the information that a function returns. The def statement
(which defines a function) and the class statement (which defines a class) also create
names.

Naming rules

You can use any names you want, as long as they follow these rules:

• Names must start with either a letter or an underscore character (_).
• You can't use any of Python's reserved words or keywords.

These are words that have specific meanings to Python, such as if (which begins
an if statement).

• Names are case-sensitive. num is different from NUM and nUm.
• By convention, most Python programmers use lowercase for names that

stand for values. They use other rules for names that stand for functions and
classes—you can find out more about these conventions in later chapters.

• It's a Good Idea to use meaningful names. If you name everything with a single
letter, for example, you may have trouble remembering what the name stands for
later.

TECHNICAL
STUFF

Statements and expressions: Seeing the difference

Python code consists of statements and expressions. Knowing these
terms isn't essential to writing basic code, but sometimes they help
you to understand an error in your code (for example, you can't use a
statement where an expression is required).

A literal is a chunk of text in a Python program that specifies the
value for one of the basic Python data types (such as a string or
number). When you run your program, Python creates an object with
the literal's value.

A statement is like a command—it tells Python to do something. For
example, the statement x = 25 tells Python to give the name x to the
value 25, and print x tells Python to display the value of x.

An expression is one or more operations that produce a result. The
operations can involve names, operators, literals, and function or
method calls.

It's easiest to show the difference between expressions and statements
by example. Note in these examples that when you enter an

37

expression in the interpreter, the interpreter prints it, but when you
enter a statement(which doesn't create any output—except for print
statements), nothing visible happens:

>>> "monty python" # This is an expression and a
literal.
'monty python'
>>> x = 25 # This is a statement. 25 is a
literal.
>>> x # This is an expression.
25
>>> 2 in [1, 2, 3] # This is also an expression.
True
>>> def foo(): # This is a statement.
... return 1 # return is a statement; 1 is an
expression.
...
>>> foo() # foo is a name; foo() is an
expression.
1

Note that Python allows you to put multiple statements on a line by
separating each statement with a semicolon, but you should avoid
this because it makes programs less readable:

>>> x = 1; y = 2
>>> x, y
(1, 2)

38

Data Type Does Matter

When you write computer programs, you usually want to give the computer information
(data) and have it do things with the data and give you results. Programming languages
like Python have several data types that you do different things with.

You decide which data type to use depending on what you want to do. For example, if
you want to do mathematical calculations, you might choose a number data type.

The following list briefly introduces some of Python's data types:

• Numbers are for data that you want to do math with.
• Strings are for text characters and for binary data.
• Sequences are for lists of related data that you might want to sort, merge, and so

on.
• Dictionaries are collections of data that associate a unique key with each value.
• Sets are for doing set operations (finding the intersection, difference, and so on)

with multiple values.
• Files are for data that is or will be stored as a document on a computer.

Numeric data

Python has four built-in numeric data types, as shown in Table 3-1.

Table 3-1: Python's Built-In Numeric Data Types
Open table as spreadsheet

Type (keyword) Example Used for…

Plain integers (int) and long
integers (long)

7 6666666666L Whole numbers (long integers
are very large whole numbers.)

Floating point numbers
(float)

1.1714285714285713 Real numbers

Complex numbers (complex) (3+4j) Imaginary numbers

Decimal numbers
(decimal.Decimal)

decimal.Decimal("181.2") Calculations requiring decimal
arithmetic

Except when you're doing division with integers or using the decimal module (see
Chapter 7), you don't have to worry about what kind of number data type you're using.
Python converts numbers into compatible types automatically. For example, if you
multiply an integer and a floating point number, Python automatically gives the answer as
a floating point number:

>>> x = 5

39

>>> y = 1.5
>>> x * y
7.5

For more information about numbers and number data types, see Chapter 7.

Sequential data

Sequential data types contain multiple pieces of data, each of which is numbered, or
indexed. Each piece of data inside a sequence is called an element.

REMEMBER The cool thing about sequential data types is that you can manipulate the
whole sequence, chunks of the sequence, or individual elements inside the
sequence.

Three sequential data types are built into Python:

• Lists can store multiple kinds of data (both text and numbers, for example). You
can change elements inside a list, and you can organize the data in various ways
(for example, by sorting).

• Tuples, like lists, can include different kinds of data, but they can't be changed. In
Python terminology, they are immutable.

• Strings store text or binary data. Strings are immutable (like tuples).

Table 3-2 introduces Python's built-in sequential data types.

Table 3-2: Python's Built-in Sequence Data Types
Open table as spreadsheet

Type
(Name)

Kind Example Used for…

str (String) Immutable x = "monty python" Storing text
tuple

(Tuple)
Immutable x = ("a", 2, "33") Storing a set of items you want fast

access to

list (List) Mutable x = ["here", "is",
"my", "list", 47]

Storing a set of items you want to be
able to change readily

To see the data type of a Python object, use the type() function, like this:

>>> type ('foo')
<type 'str'>

Dictionaries

Python's dictionary (its keyword is dict) is a data type that stores multiple data items
(elements) of different types. In a dictionary, each element is associated with a unique

40

key, which is a value of any immutable type. When you use a dict, you use the key to
return the element associated with the key.

You use a dictionary when you want to store and retrieve items by using a key that
doesn't change and when you don't care in what order Python stores the items. (In
dictionaries, elements aren't numbered.)

Tip Here's what a Python dictionary is not: A Python dictionary bears only a small
resemblance to the kind of dictionary that contains words and their definitions. In
Python, a dictionary is more like a list of employees and their employee numbers.
Because each employee number is unique, you can look up that employee by typing
his or her number.

REMEMBER Dictionaries are mutable, like lists, but their keys are immutable.

Here is an example of a dictionary with two key:value pairs:

swallow_velocity = {"european": "47", "african": "69"}

You can find out much more about using dictionaries in Chapter 9.

Sets

A set stores multiple items, which can be of different types, but each item in a set must be
unique. You can use Python sets to find unions, intersections, differences, and so on—just
like the sets that probably annoyed you in school.

One use for sets is when you have repetitious data and you want to ignore the repetition.
For example, imagine that you have an address database and you want to find out which
cities are represented, but you don't need to know how many times each city appears in
the database. A set will list each city in the database only once.

The syntax for a set is a little different from the syntax of the other data types described
in this section. You use the word set followed by a name (or a group of elements) in
parentheses. Here is a set that finds each unique element in a list. You'll notice that the
elements are out of order in the set. That's because Python doesn't store set elements in
alphanumeric order (the same is true for dicts):

>>> mylist = ['spam', 'lovely', 'spam', 'glorious', 'spam']
>>> set(mylist)
set(['lovely', 'glorious', 'spam']

Files

Python uses the file data type to work with files on your computer or on the Internet.
Note that the file type is not the same as the actual file. The file type is Python's
internal representation of a computer or Internet file.

41

REMEMBER Before Python can work with an existing file or a new file, you need to
open the file inside Python.

This example opens a file called myfile:

open("myfile")

You can do a lot with files in Python. Check out Part IV to find out more.

Data types have methods

In Python, each data type has built-in actions associated with it, which let you do various
things with the data. These actions are called methods. Methods are tailored to work
efficiently with their particular data types.

Calling a method—An example

Here's an example of how you use, or call, a method on a piece of data. Strings (text
characters inside quotation marks) come with a method called upper(), which makes all
the characters uppercase. To use the upper() method on a string, follow these steps:

1. Give a name to the string, like this:
2. >>> zed = "lowercase string"

3. Type the name, a dot, the method name, and a set of parentheses.

This example changes the zed string's characters to uppercase:

>>> zed.upper()
'LOWERCASE STRING'

TECHNICAL
STUFF

Incidentally, you can also use methods with values that haven't been
given names. For example, the code 'hi'.upper() gives the result
'HI'. One method that's commonly used this way is the string
method join(), which combines strings. Most of the time, however,
it's good practice to give names to values before using methods on
them.

Passing information to a method

The parentheses at the end of a method—for example, upper()—tell Python to perform
the action associated with the method (that is, to call the method).

Tip If you forget the parentheses, Python gives you some information about the method
object instead, as in this example:

>>> 'mystring'.upper
<built-in method upper of str object at 0x82071a0>

42

The parentheses have another use, too. When calling some methods, you sometimes need
to include additional information about how the method should act. You put this
information (also called the argument) inside the parentheses. This is called passing data
(or passing an argument) to the method.

For example, here's how you would use a list method called append() to get Python to
add an item to a list:

1. Give a name to a list with several text strings like this:
2. >>> shopping_list = ['eggs', 'bacon', 'spam']

3. To add an item to the shopping_list list, type the list name, a dot, the
method name, and a new item inside parentheses, like this:

4. >>> shopping_list.append('butter')

You can type the list name again to see the new contents of the list:

>>> shopping_list
['eggs', 'bacon', 'spam', 'butter']

Operators Are Standing By

Operators are another tool for working with data. You'll recognize arithmetic symbols
such as + and / for addition and division, but Python also comes with operators that cut
up text, check whether two objects have the same value, and so on. This section
introduces several kinds of Python operators:

• Arithmetic: The math symbols we're all familiar with as well as some less-well-
known ones.

• Comparison: These operators tell you which of several things is bigger.
• Logical or Boolean: These operators test whether things are true or false.
• Conditional: This operator allows you to choose one of two values based on a

logical test.

Arithmetic operators

Python understands a variety of math symbols. Here are a few of them:

• Plus (+): Addition
• Parentheses (()): Grouping
• Asterisk (*): Multiplication
• Double asterisk (**): Exponentiation (x to the power of y)

Tip Some of these operators also work on data types other than numbers, but they may
work differently. For example, + adds two numbers (2 + 2 gives the result 4), but it

43

concatenates strings ('2' + '2' gives the result '22'). You can't use an operator
with two incompatible data types. For example, if you try to use + with an integer
and a string, Python returns an error.

We discuss arithmetic operators in greater detail in Chapter 7.

Comparison operators

Comparison operators test the relative sizes of two pieces of data and give either True or
False as the result. The symbols for these operators are as follows:

• less than (<)
• greater than (>)
• equal to (==)
• not equal to (!= or <>)

You can use comparison operators by themselves or in combination. For example, you
can test whether something is less than or equal to something else by using the operator
<=.

REMEMBER You use == (two = symbols) to test whether something is "equal to"
something else. A single = symbol gives a name to a value.

You know about comparing the sizes of numbers—for example, 3 > 2. But Python can
compare values of most other data types, too. (There are a few types you can't compare,
such as complex numbers.) When you compare items by using these operators, the result
is either True or False (except or some special data types in third-party modules). Here
are a couple of examples:

• Strings are compared using alphabetical order, but all capital letters come before
(are smaller than) all lowercase letters.

• >>> 'a' < 'b'
• True
• >>> 'Z' < 'a'
• True

• Each item in a list or tuple is compared against the item with the same index
number in the other list or tuple.

• >>> [1] < [2]
• True

Also, lists and tuples are compared by length.

>>> [1, 2, 3] > [1, 2]
True

44

Boolean operators

Python has three operators that test whether expressions are true or false. These are called
Boolean operators (you might also see them referred to as logical operators).

The Boolean operators work as follows:

• and stops testing when it encounters a false condition.
• or stops testing when it encounters a true condition.

Python tests an expression with and and or operators from left to right and returns
the last value tested. (These operators don't return True and False unless the
expressions themselves use comparison operators.)

>>> '1' and 1 and 'one'
'one'
>>> '1' or 1 or 'one'
'1'
>>> (2 < 3) or (5 > 6)
True

• not returns True if the expression is false and False if the expression is true.
• >>> not 'one'
• False

(Stuff like this is why your grammar teacher told you to avoid double negatives.)

Tip In Python, false has a special meaning. It refers to anything that is zero or "empty."
For example, the number 0 is false, and so is a string with no characters ('') and a
list with no elements ([]). You usually use Boolean operators to test for "emptiness."

For more information about Boolean operators, see Chapter 10.

Conditional operations

Conditional expressions are new in Python 2.5. They use this form:

X if C else Y

They work like this: First, C is evaluated. If C is true, then X is evaluated to give the
result. Otherwise, Y is evaluated to give the result.

This example prints 'bar' because False evaluates as false:

>>> print 'foo' if False else 'bar'
'bar'

For more information on conditional expressions, see Chapter 16.

45

Order, please!

You probably remember from math class that when you do arithmetic, multiplication
takes place before addition (for example, 3 + 2 × 5 = 13 because 2 × 5 is evaluated first).
Likewise, operations in Python happen in a specific order, which is called operator
precedence. As in arithmetic, operations in parentheses come first.

Table 3-3 describes operator precedence in Python. Operators in higher rows are
evaluated before operators in lower rows. If multiple operators appear in a single cell in
the table, that means they are equal in precedence and are evaluated from left to right
when they appear in an expression.

Table 3-3: Operator Precedence
Open table as spreadsheet

Symbol Type of operator

(a,b), [a,b], {a:b} Creation of tuples (via the comma operator), lists, and dictionaries

s[i], s[i:j],
s[i:j:k]

Index and slice operations (on sequence data types); brackets are
also used to select mapping elements

f(…) Function calls
x**y Exponentiation (evaluated right to left)
x*y, x/y, x//y, x%y Multiplication, division, integer division, modulo (remainder)

x+y, x-y Addition, subtraction

x<y, x<=y, x>y, x>=y,
x==y, x!=y

Comparison and equality

x is y, x is not y Identity

x in y, x not in y Membership
not x Logical negation
x and y Logical and
x or y Logical or
if/else Conditional expression

Special powers of the = symbol

The = symbol might look like an operator, but in Python, it isn't. The = sign is used for
assignment—associating a value with a name.

REMEMBER In Python, don't use = to get the result of arithmetic operations in the way
you do when you use a calculator. Python stores the results of such
calculations automatically. Also, don't use = to test whether one thing is the
same as another (for that, you use == or is).

46

If We May Comment…

Python, like almost all programming languages, lets you add comments to your program.
Comments are text in your program that the Python interpreter ignores. Why would you
want to add stuff that the computer ignores? Comments help other people understand how
the program works. They also let you decipher your own code six months later!

To add a comment to your program, type # (a pound sign) and then type your comment.

You can type # either at the beginning of a line of code or after the code. If you write a
comment that spans more than one line, use # at the beginning of each line.

The example below shows comments in action:

These are lines from Monty Python's "Parrot Sketch"
live_parrot = "'E's pinin' for the fjords!" # Michael Palin
dead_parrot = "Bereft of life, 'e rests in peace!" # John Cleese

It pays to be conventional

Python programmers have conventions for how they add comments to their programs.
The conventions make the comments and code easier to read by other programmers.

Here are some of the guidelines for comments:

• Keep lines to fewer than 80 characters.

(This convention applies to the whole program, not just the comments.)

• Indent comments the same amount the code is indented.

For more information on indenting, see "Deciphering Code Blocks," later in this
chapter.

• Use inline comments (comments that come after a line of code) sparingly, and
only to explain things that aren't clear from reading the code.

The most important convention for comments is this one from the Style Guide for Python
Code (http://www.python.org/dev/peps/pep-0008):

Comments that contradict the code are worse than no comments. Always make a priority
of keeping the comments up-to-date when the code changes!

47

Documenting your program

Python supports a special kind of comment called a docstring.

As with other comments, you use docstrings to help others understand your code. What's
different about docstrings is that they work with Python's help utility so that someone can
figure out what your code does without having to look at the actual file.

A docstring is always the first line in a function. It can be more than one line if you begin
and end it with three quotation marks. Here's an example docstring for a function we
made up called printme():

def printme(me):
 """
 Prints its argument.
 """

Here's what you see if you ask for help on the printme() function:

>>> help(printme)
Help on function printme in module __main__:

printme(me)
 Prints its argument

For detailed instructions on writing docstrings, see Chapter 11.

Oopsies! Understanding Error Messages

When Python finds syntax mistakes or other errors in your code, it gives you error
messages to help you figure out what the problem is. For example, you get this error
message when you try to use an equals sign (=) to do an arithmetic calculation:

>>> 5 - 6 =
 File "<stdin>", line 1
 5 -6 =
 ^
SyntaxError: invalid syntax

The messages differ depending on the type of error but usually include these types of
information:

• The filename
REMEMBER When you work in interactive mode, the file is always '<stdin>'.

• The line of code where Python first figured out there was an error
• The kind of error

48

For a syntax error, a caret (^) points to the problem character (or to the place where the
interpreter first figured out there was a problem).

Some error messages include information about the conditions in which the error
occurred (this is called traceback information). The message you get when you try to
divide by zero is an example:

>>> x = 0
>>> 9 / x
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ZeroDivisionError: integer division or modulo by zero

Deciphering Code Blocks

In Python, you can write chunks of code, or code blocks, that perform a single function or
group together several related tasks. We discuss the several kinds of code blocks and how
to write them in the following sections.

The big deal about indentation

In many programming languages, you're encouraged—but not required—to indent a
chunk of code that works as a unit. Some programmers are notoriously lazy about making
their code readable to humans, and that means programs in those languages may not
include indentation.

In Python, however, indentation is built into the interpreter. Code that's part of a block
must be indented, or else you get an error message. This is one of the features that makes
Python especially readable.

Indentation is so important to Python that Pythonistas printed up a T-shirt:

Python:
 programming
 the way
 Guido
 indented it

Code block syntax

There are two simple syntax rules to remember about code blocks:

49

• The code on the first line of a code block always ends with a colon (:).
• The code underneath the first line of a code block is indented.

Python programmers almost always use four spaces for the first level of indentation, eight
spaces for the next level (a code block nested inside another code block), and so on.

The indentation must be the same for every line of a block. You get an
IndentationError message if you use, for example, four spaces on one line of a block
and three spaces on another line in the same block.

Basic code blocks: Control structures and loops

Basic code blocks in Python begin by testing whether a condition or expression is true.
Python carries out instructions depending on the result of the test.

In the following sections, we introduce several kinds of control structures and loops and
provide an example of each. Don't worry if you don't understand every bit of the code in
the examples right now; it's explained in more detail in Chapter 10.

If statements

An if statement carries out one or more tests in a specified order. The first line always
begins with if; subsequent tests begin with elif (which stands for "else if"), and you can
add an else clause that runs if all the tests fail.

Here's an example of an if statement that includes an else clause. The else: line is not
indented under the if: line because it's part of the structure of the if statement, as
opposed to being one of the blocks inside the statement:

if statement == "We're fresh out of red Leichester, sir":
 response = "Oh, never mind, how are you on Tilset?"
elif statement == "We have Camembert, yessir":
 response = "Fetch hither the fromage de la Belle France!"
else:
 response = "I'm going to have to shoot you."

For loops

A for loop repeats a block of instructions, usually a specific number of times.

This example takes each item in little_list one at a time and prints it.

>>> little_list = ['the', 'quick', 'brown', 'fox']
>>> for the_item in little_list:
... print the_item, "*",
...
the * quick * brown * fox *

50

Check out Chapter 10 for the lowdown on for loops.

While loops

A while loop repeats an instruction as long as a particular condition is true.

The following example code prints a number as long as the countdown value is greater
than zero. It also subtracts 1 from the countdown value each time around the loop.

countdown = 10
while countdown:
 print countdown,
 countdown -= 1
print "blastoff!"

Here's what it prints:

10 9 8 7 6 5 4 3 2 1 blastoff!

Try statements

A try clause attempts to run some code. It is accompanied by one of the following:

• One or more except clauses (which catch errors raised in the try block)

A try / except statement can also have an optional else clause.

• A finally clause

This clause runs automatically after the try clause and re-raises any errors.

Tip Starting in Python 2.5, a try clause can have all the above elements at once: try,
except, else, and finally.

Here's a try statement that receives some input, does one thing if the input is an integer,
and does another thing if it isn't:

user_input = raw_input("Enter an integer: ")
try:
 number = int(user_input)
 print "You entered", number
except ValueError:
 print "Integers, please!"

With blocks

The with statement (new in Python 2.5) executes a block in a particular context. This is
an advanced feature that we discuss in Chapter 16.

51

Code blocks that create a namespace

Some Python code blocks set up a special area to store the names they know about.
(Names are labels for areas of computer storage that hold particular values or other
objects.) These areas are called namespaces.

Each namespace is self-contained, so names from different parts of a program don't bump
into each other. This feature lets Python programmers create modular code that can be
extended in many different directions without having to worry about whether their new
code uses the same names as code in other blocks, modules, or programs.

Several kinds of code blocks create namespaces. Here is a brief introduction to some of
them.

Functions

A function is like a blender or a bread maker. You put data into it, it does things with the
information, and it returns a result.

Here is a small function (you may note there are no spaces at the end of the text strings.
The comma stands for a single space):

>>> def myfunction(x):
... y = x**x
... print x, "raised to the power of", x, "is", y
... return y
...

And here's how you might call it.

>>> result = myfunction(5)
5 raised to the power of 5 is 3125
>>> result
3125

Modules

A module is a text file that can contain any kind of Python code, but a module usually
organizes tools that work in a particular way. Sometimes it also includes names that store
particular values. You can make a module available to another program by importing it.

TECHNICAL
STUFF

Modules are the key to Python's portability and power. Python itself
is made up of modules.

For example, Python has a math module that includes a number of specialized
mathematical tools, and it also defines some names, including pi. Here's how you import
it:

52

>>> import math

Here's how you access the name pi that it defines:

>>> math.pi
3.1415926535897931

This book covers many of the important modules that come with Python. For instructions
on viewing the list of modules that Python comes with, see Chapter 2.

Classes

A class is similar to both a factory and a blueprint in that it makes copies of itself—but
the copies are what do the actual work. Here is an example of a class:

class SayMyName:
 def __init__(self, myname):
 self.myname = myname
 def say(self):
 print "Hello, my name is", self.myname

You use a class to create objects called instances that can do specific things. This code
creates an instance of the SayMyName class:

name1 = SayMyName("Aahz")

An instance has access to the class's methods (which are just functions attached to a
class). This code applies the say() method to the name1 instance:

>>> name1.say()
Hello, my name is Aahz

Classes are useful because they can combine both data and methods that operate on that
data. Python's data types—lists, strings, and so on—are based on classes.

53

Chapter 4: Grand Tour of the Python
Language
In this chapter, we present and analyze a whole Python program so you can see how all
the parts work together.

Tip You may want to keep a bookmark on the program so you can flip back and forth
between the whole program and the discussion.

The spider.py Program

Our sample program (Listing 4-1) finds all the pages within a Web site. When you run it
from the command line, it prints the results to stdout (the operating system's standard
output stream). You can also use it as a module to make it a building block in a larger
program.

REMEMBER The program doesn't check links to Web pages external to the site.

This program has three parts:

• The import statements
• The function and class definitions
• The body of the program, which calls the functions and class

Listing 4-1: spider.py

###
program: spider.py
author: aahz
version: 1.1
date: June 2006
description: start on command line with URL argument.
Finds pages within a web site.
###

These modules do most of the work.
import sys
import urllib2
import urlparse
import htmllib, formatter
from cStringIO import StringIO

def log_stdout(msg):
 """Print msg to the screen."""
 print msg

54

def get_page(url, log):
 """Retrieve URL and return contents, log errors."""
 try:
 page = urllib2.urlopen(url)
 except urllib2.URLError:
 log("Error retrieving: " + url)
 return ''
 body = page.read()
 page.close()
 return body

def find_links(html):
 """Return a list of links in html."""
 # We're using the parser just to
 writer = formatter.DumbWriter(StringIO())
 f = formatter.AbstractFormatter(writer)
 parser = htmllib.HTMLParser(f)
 parser.feed(html)
 parser.close()
 return parser.anchorlist

class Spider:

 """
 The heart of this program, finds all links within a web site.

 run() contains the main loop.
 process_page() retrieves each page and finds the links.

 """

 def __init__(self, startURL, log=None):
 # This method sets initial values
 self.URLs = set()
 self.URLs.add(startURL)
 self.include = startURL
 self._links_to_process = [startURL]
 if log is None:
 # Use log_stdout function if no log provided
 self.log = log_stdout
 else:
 self.log = log

 def run(self):
 # Processes list of URLs one at a time
 while self._links_to_process:
 url = self._links_to_process.pop()
 self.log("Retrieving: " + url)
 self.process_page(url)

 def url_in_site(self, link):
 # Checks whether the link starts with the base URL
 return link.startswith(self.include)

 def process_page(self, url):
 # Retrieves page and finds links in it

55

 html = get_page(url, self.log)
 for link in find_links(html):
 # Handle relative links
 link = urlparse.urljoin(url, link)
 self.log("Checking: " + link)
 # Make sure this is a new URL within current site
 if link not in self.URLs and self.url_in_site(link):
 self.URLs.add(link)
 self._links_to_process.append(link)

if __name__ == '__main__':
 # This code runs when script is started from command line
 startURL = sys.argv[1]
 spider = Spider(startURL)
 spider.run()
 for URL in sorted(spider.URLs):
 print URL

Examining a Python Program

First, we discuss how the program is organized. Then we show you some of the Python
features the spider uses.

Setting up the structure

The top of spider.py contains a bunch of import statements. Looking there gives you a
quick idea of what the program does and how it works, because most Python programs
rely heavily on imported modules.

If you know the modules that come with Python, you'll know from looking at the import
statements that this program is designed to read and process information from URLs
(Web site addresses). Here is what each module does in the program:

• The sys module retrieves a starting URL from the command line when
spider.py is run as a script. (Chapter 17 covers the sys module.)

• urllib2 retrieves data from URLs.(See Chapter 20.)
• The urlparse module slices and dices URLs and puts them back together. (See

Chapter 20.)
• htmllib and formatter are imported on the same line because they're used

together to parse information out of HTML files; in this program, we use them
only to get the links (anchors or HREFs). (See Chapter 20.)

• from cStringIO import StringIO imports an object that pretends a string is a
file. (See Chapter 18.)

56

Tip Note the from…import syntax. We recommend avoiding from…import *
because it can clutter up your program with conflicting names, but from…
import syntax is appropriate when the module exports a single class, as here.

Initializing the spider

Down near the bottom of the program is this statement:

if __name__ == '__main__':

All the code after that statement runs only when you start the program from the command
line.

TECHNICAL
STUFF

In Python programs, this code often contains testing instructions. If
ours did, typing python spider.py at the command prompt would
cause spider.py to test itself. In our program, the code processes a
command-line argument. You can start the program from the
command prompt and give it a URL to examine:

% python spider.py http://pythonfood.com/spider-test/

Between the top (the import statements) and the bottom (the command-line code) lies
the meat of the module. The spider.py script contains these blocks of code:

• Three functions: log_stdout(), get_page(), and find_links()
• One class: Spider

If you look back down at the bottom, you notice the following line:

spider = Spider(startURL)

This line creates an instance of the Spider class. This means the Spider class is the heart
of this module.

REMEMBER When trying to understand what a Python script does, it's best to start at
the bottom and work your way up because classes and functions have to be
created and named before they are called (before the program asks them to
run). So in a Python program, any def statements (which create functions)
and class statements (which create classes) always come before
statements that actually run the code inside the functions and classes they
define.

Running the spider

Figure 4-1 shows which parts of the spider.py program talk to each other (pass
information). You might find Figure 4-1 useful while reading this section or reading the
program itself.

57

Figure 4-1: Information passing in the spider.py program.
Reading the spider web

In the Spider class, the process_page() method is separate from run() because run()
is easier to understand when you don't have to look at all the code in process_page() at
the same time. This choice exemplifies two reasons behind Python's modular design
philosophy.

It's a good idea to separate out chunks of code that do different things:

• Separating tasks into chunks makes it possible to use each chunk on its own.
• Reading a chunk of code that does only one thing is easier than reading a chunk of

code that does multiple things.

The workings of the Spider class

To see how the heart of the spider.py program processes information, look at the
Spider class. To use this class, you have to create an instance of it.

REMEMBER Instances are objects created from classes (see Chapter 13 for the details):

• A class is like a template.

• An instance is like a document created from that template.

The parts of the Spider class perform the following tasks:

• The __init__() method sets up the instance.

58

• The run() method does the real work. It's a simple loop that
o Processes new pages (from the self._links_to_process list) until there

are no more pages
o Calls the process_page() method each time through the loop, using a

new item from the self.links_to_process list.
• The process_page() method contains a loop that includes an if statement. (See

Chapter 10 to find more about if statements and loops.)
• The loop sends a URL to the get_page() function, which opens the Web page,

reads it, and returns its contents. Then the loop sends the contents of the Web page
to the find_links() function, which logs and returns a list containing all the
links in that URL.

• The statement if link not in self.URLs and self.url_in_ site(link):
checks whether this link is already in the self.URLs set and whether it's part of
the Web site we're analyzing. (This spider only checks links internal to the Web
site of the original URL. If you want to check links to other Web sites, you need
some different code here.) If the link passes the tests, it's added to the self.URLs
set and the self._links_to_process list.

Designing for expansion

To understand another design decision in the spider.py program, look at the
url_in_site() method. It checks whether the link is part of the Web site.

Making url_in_site() a separate method doesn't make it easier to read the program,
because the method has only one line of code. We decided to make a separate method for
another reason: doing so makes it easier to subclass Spider. Subclassing is making a new
class that shares most of the features of a class but either overrides or extends some of its
functionality. (Chapter 13 has more about subclassing.) One way to subclass Spider is to
extend the behavior of url_in_site() so that it works with both HTTP and HTTPS
URLs at the same time. (The current program handles only one type at a time.) Having
url_in_site() separate from process_page() means that such a subclass is easier to
write. This illustrates another good programming practice.

REMEMBER When you're designing a program, think about the possibility that someone
might want to customize or subclass your program in the future. (But don't
overdesign or add features before they're needed. Python programs are
easy to change, so you can quickly add features when necessary.)

TECHNICAL
STUFF

The process_page() method combines the URLs returned from
find_links() with the base URL specified by url. We could have
put this functionality into the find_links() function. But leaving it
out makes find_links() more generally useful—we (or others) can
reuse it in programs that work with relative URLs in a different way
from this one. This is an example of the design philosophy described
in the preceding paragraph.

59

Using Building Blocks

This section describes how the spider.py program uses Python's most important
building blocks and tools—functions and methods, loops, containers, names, strings, and
error checking.

Function and method tidbits

The spider.py program illustrates key principles to keep in mind when writing functions
and methods.

Understanding default parameters

The __init__() method has the parameter log=None. This is called a default parameter.
(See Chapter 11.) It means that when you make an instance of the Spider class, you can
specify a parameter for log, but you don't have to. If you don't, the instance automatically
uses None as the value for log.

Default parameters give you choices and make your code more flexible. Because of the
default log parameter, a number of different options for logging can be used with the
Spider class.

REMEMBER The other side of the coin is that if you use a default parameter, you need
to write code to test for the default value. In the Spider class, this code is
part of the __init__() method. It assigns the log_stdout() function to
self.log (if the user doesn't specify a value for log). In contrast,
get_page() requires a log argument and therefore doesn't need to check
for a default value.

Recognizing bare naked functions
REMEMBER Most function/method calls have self or a module name in front of them,

followed by a dot. When you're reading a program, if you see a bare
function or method (or class)—one without self or a module name—it
usually means one of these:

• It was defined in the module (like get_page() and find_links()
are in this program).

• It was imported by using the from… import syntax (like
StringIO).

• It is a built-in function (like sorted(), down at the bottom).
REMEMBER Functions and methods are essentially the same thing—a code block that

60

performs an action and returns a result. Here's the difference:

• A function is by itself in a module.
• A method is part of a class.

Chapters 3, 11, and 13 describe how to use functions, methods, and
classes.

Looping around

The spider.py script contains three loops:

• Two for loops
REMEMBER Python programmers generally favor for loops, because for loops

can both assign values and provide one element at a time.
• One while loop

Tip A while loop is often better when you are both adding and deleting elements,
so we used a while loop in the section where the run() method deletes
elements from the self._links_to_process list (via the list method pop())
and also adds elements to the list (via process_page()).

Chapter 10 shows you more ways to use loops.

Collections of data

Sets, lists, and dicts are Python's data types for dealing with collections of data, especially
if the data change while the program is running.

Lists

Lists (described more fully in Chapter 8) are most efficient, which is one reason we used
a list (self._links_to_process) to keep track of all the links we're processing. Lists
are also good when you need to

• Maintain elements in a particular order.
• Allow duplicate elements.

Sets

Sets are a good way of handling data when you want to ignore or avoid duplicates.

Tip We used a set for the primary URL data in the Spider class (self.URLs) because we
wanted only one copy of each URL. Chapter 9 shows more ways to use sets.

61

Dicts

Dicts are good for data that will be stored and accessed by keys rather than ordered
alphabetically or numerically.

Tip If we had wanted to associate some data with each URL in the Web page, we would
have used a dict. Chapter 9 shows you how.

Naming names

If a good name is one that helps you understand what the named object is doing, then
there are some good names and some not-so-good names in spider.py. An early draft of
our program had functions named get_links() and find_links(). Those names don't
really make clear the differences between the two functions, so we renamed
get_links() to get_page().

Tip Programmers sometimes choose terse and not very explanatory names on purpose to
indicate that you shouldn't pay much attention to the name because it's just a
temporary name used to convey information (for example, it's used as an argument to
a function or method). Sometimes a temporary name makes a few lines of code
easier to read. Take, for example, the lines of code that use the name f in the
find_links() function:

f = formatter.AbstractFormatter(writer)
parser = htmllib.HTMLParser(f)

We could have gotten rid of f by writing the code this way instead:

parser = htmllib.HTMLParser(formatter.AbstractFormatter(writer))

But that's kind of long and hard to read, so we decided it was better to split the lines and
use a temporary name.

REMEMBER Give users of your modules information about which attributes, functions,
classes, and methods they should avoid accessing directly, passing to other
functions, subclassing, or rewriting. (Or, more colloquially, "Das ist nicht
für gefingerpoken!") Sometimes this information is conveyed by using a
single underscore character as the first character in a name, which means
the object is private. (See Chapter 13 for more about private attributes.)
For example, we chose to make self._links_to_process a private name
because it's valid only inside the Spider class. We could have made
url_in_site() a private name for the same reason, but we didn't in order
to send the message that it's suitable for overriding in a subclass.

Managing strings

There are a lot of ways you can work with strings in Python:

62

• Python strings have many methods built in.

For example, we use the startswith() string method in the url_in_site()
function. (Unsurprisingly, startswith() checks whether a string starts with a
particular substring.)

• Many Python modules include additional string-handling functions.

We use one of these in the process_page() method: urlparse. urljoin(url,
link). The urljoin() function (as the name suggests—see the benefits of
naming things well?) sticks together two parts of a URL, which we pass in as two
strings, url and link.

REMEMBER Before you start writing some special functionality to process strings,
check whether someone else has already done the work for you. The Cheat
Sheet lists the most commonly used string methods.

Handling errors

One error-handling tool in the spider.py program is this block of code in the
get_page() function:

try:
 page = urllib2.urlopen(url)
except urllib2.URLError:
 log("Error retrieving: " + url)
 return ''

This is called a try / except block (see Chapter 10). Its purpose is to catch errors from
the urllib2.urlopen() function, which tries to open a remote URL.

What spider.py doesn't have

The spider.py program works as-is, but it's missing a few elements that are necessary to
make it a fully functional Python program that follows the conventions of good
programming:

• Docstrings for each function and class method.
• Error checking. For example, if you try to run the program from the command

line without specifying a URL, the program fails messily. Here's what happens:
• % python spider.py
• Traceback (most recent call
• last):
• File "spider.py", line 91,
• in <module>
• startURL = sys.argv[1]
• IndexError: list index out of

63

• range

Why are we showing a program without these features when we reiterate ad nauseum in
this book that you should include these features in your program? Because lots of
programmers talk about the benefits of comments, documentation, and error-checking,
but lots of programs (some written by those same programmers) don't do as good of a job
on those things as they should. This is a "Do as we say, not as we do" situation.

A complete version of the program with documentation and error checking is on our Web
site:

http://www.pythonfood.com/

REMEMBER It's good practice to use try with I/O functions and user input or other
external input. For example, we could improve our program by moving the
body = page.read() line into the try block—because even if you can
open a Web page, you might still have trouble reading it. Similarly,
garbage in the HTML can cause the htmllib module's parser to choke, so
the line parser.feed(html) should be in a try block as well, like this:

try:
 parser.feed(html)
except htmllib.HTMLParseError:
 log("Error finding links: " + url)
 return []
finally:
 parser.close()
return parser.anchorlist

The sidebar, "What spider.py doesn't have," describes another spot where error-checking
would be useful.

64

Chapter 5: Working Like a Programmer

Overview

Professional programmers spend as little as 10 percent of their working time writing
code. This chapter focuses on what they do the rest of the time. These practices generally
consume about 60 percent of a programmer's time on a project:

• Analyzing problems
• Designing solutions and documenting decisions
• Debugging
• Maintaining and improving code

Warning The final 30 percent of a programmer's time is taken by meetings and wasted
time. (Sometimes, there's no difference between meetings and wasted time.)

The Three Ds

If you're writing a program that's more than a few lines long, don't just sit down and start
coding. You need to take three steps to make your program the best it can be. These are
the three Ds:

• Document: Making sure others can read your program
• Design: Making sure your program is solving the right problem and is organized

so that it's efficient and potentially reusable
• Debug: Making sure your program doesn't have any mistakes in it and that it

responds appropriately when given wrong input

Documenting

Documentation makes it possible to read, use, and maintain a program:

• In programming, documentation is all the writing associated with your program
that isn't code.

• With a language like Python, readability is a prime virtue. That means your code
is part of the documentation, too. For example, picking good names is part of
documentation!

REMEMBER Programming starts and ends with documentation:

65

• Start by writing the problem that your program is intended to
solve.

Before you even start writing your program, it's a good idea to
write notes about the goal of the program. Pretend you need to
explain it to someone else—and if you have someone to read the
notes, so much the better.

• End by making sure that the documentation still matches the
program.

Warning If you don't write documentation, you will find it difficult to use or maintain
your program after letting it sit for six months (even if you're the only person
who uses the program).

Designing

Designing is actually shorthand for two intertwined parts of programming: analysis and
design.

What do you really want?

Analysis is the process of determining what problem you're trying to solve. It's similar to
the process an architect makes you go through to remodel your kitchen: "What do you
really want?" For example, you might want to write a program to automate your data
backups. That's a general description, but you need a more specific list of tasks you want
the program to carry out, such as

• How often do you want to make backups?
• Do you want to back up all data or only data changed since the last backup?
• How long do you want to keep backups?

After you have some specific ideas of what you want, the design phase starts.

TECHNICAL
STUFF

If you're remodeling your kitchen, then this is the point where the
architect draws up a blueprint. The blueprint isn't the kitchen itself;
it's the plan that needs to be followed to build the new kitchen. If
you're writing a program, you start to build the outline of the
program, which is similar to a blueprint. In fact, people who focus on
the analysis and design of programs are often called software
architects.

66

Pseudo-coding your thoughts

One way to design your program is to create an outline of sorts, using what is called
pseudo-code. You write a sketch of what your program will do, using the structures you'll
need to use when you write the program (such as class and function definitions and if
statements), but you don't bother with the syntax details necessary to write working code.

TECHNICAL
STUFF

Pseudo-code tends to resemble real Python programs, so it takes less
effort to convert pseudo-code into working Python code. When the
pseudo-coding process is finished, the details are easy to fill in.

Here's an example of pseudo-code that almost works as Python code:

if today == sunday:
 full_backup()
else:
 incremental_backup()

Debugging

A bug is a mistake in a piece of software that causes it to work improperly or to return
incorrect results.

TECHNICAL
STUFF

Teaching an old bug new tricks

This use of the word bug was already common before software was
invented—for example, Thomas Edison used it in 1878 to describe
problems with his inventions. Some people will tell you, though, that
the term derives from an incident in which an actual insect was found
to be causing glitches inside an early computer in 1947.

Although bug is older than writing programs, debugging has been an
inherent part of writing software since people started writing
software. One of the first computer scientists, Maurice Wilkes, is
reputed to have said, "I can remember the exact instant when I
realized that a large part of my life from then on was going to be
spent in finding mistakes in my own programs."

The Zen of Python

Writing a complex program is something like designing a building. The architect's
constraints include time, money, good taste, and the structural limits of the materials.
Programming also requires balancing multiple needs—often including time, money, the
feature requests of multiple groups of people, and the availability of sufficient quantities
of caffeine.

67

Pythonista Tim Peters contributed 19 guidelines for good Python code. We consider them
the best distillation of the Python philosophy of programming. They're on this Web page:

http://www.python.org/doc/humor/#zen

These are design principles, not rules to be followed blindly. They're meant to encourage
you to think. In some cases the principles may appear contradictory. That's a reflection of
the fact that programming sometimes requires balancing conflicting requirements. It's
like the old saying: "Good, fast, cheap—pick any two." The principles can help you
decide how to prioritize these requirements.

The principles were originally written to guide the development of Python itself, but they
also apply to writing your own programs. That's how we discuss them here.

Some of the most important guidelines are these:

Explicit is better than implicit. Good code is as self-explanatory as possible:

• Use names that explain the purpose of the objects they represent.
• Include comments in your code when it isn't obvious what a particular line or

block does.
• Avoid hidden effects. (For example, printing to the screen shouldn't erase your

hard drive.)

Readability counts. A good program is easy for a human to read and understand. If two
blocks of code produce the same result, consider using the one that's easier to read.
(Sometimes cryptic code runs faster, but speed isn't the primary goal of most Python
programming.)

Errors should never pass silently. If you write code that doesn't alert the user of errors,
the errors might cause the program to give incorrect results:

• Build explicit error checking into your code.
• Write code to catch any errors that you haven't thought of.
• Report errors to the user of your program.

There should be one—and preferably only one—obvious way to do it. This guideline
("There's only one way," for short) is the most popular among people in the Python
community. This is partly in response to the motto of Perl programmers, which is,
"There's More Than One Way To Do It." The Python community creates and popularizes
standard coding idioms(preferred ways of performing certain tasks). Using standard
idioms saves time because the code is already mostly written; you just plug in your data
and variables. Python For Dummies includes many standard idioms to get you started.

Typing import this at the Python prompt in Python 2.1.2 or higher will print the entire
list:

68

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.

Readability counts.
Special cases aren't special enough to
 break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the
 temptation to guess.
There should be one-- and preferably only
 one --obvious way to do it.
Although that way may not be obvious at
 first unless you're Dutch
Now is better than never.
Although never is often better than special enough to
 right now.
If the implementation is hard to explain,
 it's a bad idea.
If the implementation is easy to explain,
 it may be a good idea.
Namespaces are one honking great idea --
 let's do more of those!

Most computer programs have bugs. When you discover problems with the way your
program works or the results it gives, you debug to

• Find the source of the mistake.
• Fix the lines of code causing the problem.

As you get comfortable with programming and Python, you get a better sense for how the
computer "thinks," which helps you figure out bugs more quickly. You'll become familiar
with common causes for common problems like:

• Syntax errors. Missing punctuation is the most common syntax mistake. For
example, if you try to create a string but forget a quotation mark, you'll get an
error like this:

• >>> mystring = "No! Not the Knights who say 'Ni'!
• File "<stdin>", line 1
• mystring = "No! Not the Knights who say 'Ni'!
• ^
• SyntaxError: EOL while scanning single-quoted string

Tip You'll have fewer syntax errors in your programs if you use a Python- aware

69

text editor that prints different syntax in different colors.
• Tips for avoiding common syntax errors can be found throughout Python for

Dummies.
• Misspelled names. If you name an object and then misspell the name when you

refer to it later, you'll get an error. For example:
• >>> lumberjack = "I'm OK"
• >>> print lumbrejack
• Traceback (most recent call last):
• File "<stdin>", line 1, in ?
• NameError: name 'lumbrejack' is not defined

• Using the wrong types of values. For example, if you have a number in string
format (perhaps from the raw_input() function, which converts the input into a
string) and you try to do arithmetic with it, you'll get a result you didn't expect,
like this:

• >>> x = raw_input("Enter a number: ")
• Enter a number: 45
• >>> x * 2
• '4545'

• Creating infinite loops. If you create a loop by using a condition that never
terminates, your program will try to run forever, like the brooms that the
Sorcerer's Apprentice creates:

• sorcerer = "asleep"
• def make_broom():
• print "another broom!"
• while sorcerer == "asleep":
• make_broom()

Tip Chapter 10 shows you how to create loops that you can control.
• Trying to open files that don't exist or are empty, for example:
• >>> myfile = open('foo.doc')
• Traceback (most recent call last):
• File "<stdin>", line 1, in <module>
• IOError: [Errno 2] No such file or directory: 'foo.

• Incorrect logic for Boolean expressions

To get the scoop on correct use of Boolean expressions in your programs, see
Chapters 3 and 10.

The best way to find out about common bugs (other than writing your own programs) is
to look at the bugs other people make. The comp.lang.python newsgroup or the Python
tutor mailing list are good resources. (See Chapter 22 to find out how to access these
resources.) The same errors come up over and over, and you'll soon be able to recognize
them on sight.

Tip For helpful debugging tips, see "Debugging Strategies," later in this chapter.

Maintaining Your Programs

70

Okay, you've written your program. Now what? Chances are you'll want to make some
changes soon. In fact, most programmers spend far more time changing existing
programs than writing new ones. When you want to update your code, you'll likely be
tempted to change it in a way that doesn't take a lot of time. But that might not be the best
way to go about it in the long run.

Suppose you've written a program to send yourself a daily e-mail with the top ten lines
from your calendar file. It might look like Listing 5-1.

Listing 5-1: daily_calendar.py

import smtplib # get the module for sending email
my_address = 'me@example.com'
headers = ['Subject: Daily calendar',
 'From: ' + my_address,
 'To: ' + my_address,
] # this list spans four lines for
readability
entries = open('my_calendar').
msg = '\r\n'.join(headers) + '\r\n' + ''.join(entries)

smtp = smtplib.SMTP('mail') # replace 'mail' with the name of your
mailhost
smtp.sendmail(my_address, [my_address], msg)
smtp.close()

Then you decide you want to send yourself a bigger chunk once a week. The simple, easy
—and wrong—way to do it, illustrated in Listing 5-2, is called cut-'n'-paste
programming. Note how most of the lines of the program are repeated in the if and else
statements. (By the way, another change made in the program was the addition of
sys.argv to get a command-line argument. That's not bad programming, we just wanted
to point it out.)

Listing 5-2: calendar.py
import smtplib, sys
my_address = 'me@example.com'
if sys.argv[1] == 'weekly':
 headers = ['Subject: Weekly calendar',
 'From: ' + my_address,
 'To: ' + my_address,
]
 entries = open('my_calendar').
 msg = '\r\n'.join(headers) + ''.join (entries)
 smtp = smtplib.SMTP('mail')
 smtp.sendmail(my_address, [my_address], msg)
 smtp.close()
else:
 headers = ['Subject: Daily calendar',
 'From: ' + my_address,
 'To: ' + my_address,
]

71

 entries = open('my_calendar').readlines()[:10]
 msg = '\r\n'.join(headers) + ''.join(entries)
 smtp = smtplib.SMTP('mail')
 smtp.sendmail(my_address, [my_address], msg)
 smtp.close()

The right way to upgrade your code avoids this repetition by taking the repeated code and
turning it into a chunk that gets called by another part of the program. This is called
refactoring the code.

Tip If you remember algebra, code refactoring is similar to algebraic factoring; for
example, breaking the number 12 into its factors 3 × 4.

Refactoring a program works like this:

1. Figure out the elements that are common to all the tasks the program
performs.

In this example, the common element is that both tasks (sending a daily calendar
and sending a weekly calendar) involve sending an e-mail.

2. Put the common elements into one or more functions.

In this example, these tasks go into a function called send_calendar().

3. Put the elements that are different for different tasks into an if/else block
(or perhaps a loop).

In this example, the if/else block determines whether a daily or weekly
calendar is being sent and how many lines of the calendar to include. It passes this
information to the send_calendar() function as arguments.

TECHNICAL
STUFF

Programming to the max

Smart programmers have come up with a variety of methods for
writing better programs. Many of those methods are combined under
the umbrella of Extreme Programming(XP). (Some programmers
have always wanted to be as cool as skateboarders. Maybe using a
term like this helps. Or maybe not.)

The idea behind XP is simple: If a programming method is a Good
Idea, take it to the max! For example, one of the best ways of getting
bugs out of a program is to have another programmer review the
code. Well, why not have the second programmer review the code
while you're writing it? That results in what "extreme programmers"

72

call pair programming.

Similarly, if writing unit tests is good, maybe you should write the
tests before you start writing code. That's called test-driven
development. This Web page, "Test-Driven Development in Python"
by Jason Diamond, has an example:

http://www.onlamp.com/pub/a/python/2004/12/02/tdd_pyunit.html

For more info about XP, see this Web site:

http://www.extremeprogramming.org

Not surprisingly, there is also a lot of hype about XP. Wikipedia to
the rescue! Here is a balanced article about Extreme Programming:

http://www.en.wikipedia.org/wiki/Extreme_Programming

Why refactor?

Although refactoring will take you longer the first time you change your program, it will
save you time in the long run, and it will also make your program more generally useful
and easier to read. The refactored version of the calendar.py program in Listing 5-1 is
easy to extend—all you have to do is write two-line elif blocks. Furthermore, if you
want to change the send_calendar() functionality, you have to change only one chunk
of code. But if you extended the program via the cut-'n'-paste method, your program
would get longer very quickly, and if you made changes to the code that reads the
calendar file and sends the e-mail, you'd have to make those changes multiple times.

A general rule to use: Refactor if at least three lines of code are duplicated in your
program.

The refactored program looks like Listing 5-3.

Listing 5-3: refactored_calendar.py
import smtplib, sys
my_address = 'me@example.com'

set up and send the email
def send_calendar(address, num_entries, subject):
 headers = ['Subject: ' + subject,
 'From: ' + address,
 'To: ' + address,
]

73

 entries = open('my_calendar').readlines()[:num_entries]
 msg = '\r\n'.join(headers) + '\r\n' + ''.join (entries)
 smtp = smtplib.SMTP('mail')
 smtp.sendmail(my_address, [my_address], msg)
 smtp.close()

parse the command-line argument
if sys.argv[1] == 'weekly':
 send_calendar(my_address, 50, 'Weekly calendar')
else:
 send_calendar(my_address, 10, 'Daily calendar')

Good Program Design Practices

There are a few good practices to keep in mind while you're designing and writing your
program. They'll help with documenting, debugging, and maintaining the program later.

Naming names
REMEMBER The names of values and functions should be self-explanatory to make

your code easier to read.

For example, if you want to write code that extracts a zip code from a customer entry in a
database, you might write this:

customer_zip = get_zip(Pandora)

It is easier to figure out what the preceding line of code is doing than it is to figure out the
following code:

z = getz(Pandora)

Following conventions

Python itself doesn't require you to write your code this way, but these conventions make
programs easier for programmers (and you) to read.

Tip The conventions are available on the python.org Web site under the name "PEP 8:
Style Guide for Python Code." See them here:

http://www.python.org/dev/peps/pep-0008

The following conventions are the most critical guidelines.

Naming rules

Follow these guidelines when naming objects in your program:

74

• Give modules and packages short, lowercase names without underscores:
• likethis

TECHNICAL
STUFF

The name of a module or package is also the name of a file on
the computer. Some computers don't handle long filenames or
names with special characters. This practice makes it easier
for users of other operating systems to use your program.

• Start class names with a capital letter and use embedded caps:
• LikeThis

TECHNICAL
STUFF

This format is sometimes called "StudlyCaps". Because, well,
geeks have to feel studly about something.

• End the names of error-type exceptions with Error.

This helps anyone reading or debugging your program to recognize exceptions
right away.

• Name functions and methods by using all lowercase characters.

Underscores, like_this, are OK.

TECHNICAL
STUFF

Using different styles for names of different types of object
helps distinguish functions and methods from modules,
packages, and classes at a glance. The underscore character
helps people read the name of the function or method if the
name includes more than one word (for example, get_zip is
slightly easier to read than getzip).

• Use all uppercase characters for constants, LIKETHIS.

Formatting rules

To improve readability, follow these guidelines when formatting your code:

• Indent each code block four spaces. Avoid tabs.
• Continue long lines by surrounding them with (), [], or {}.
• Continue strings by ending the line with \.

o Use \ to continue strings only when necessary.
o Make sure to use an extra indent for continuation lines, like so:
o parrot = "This parrot is no more! He has ceased to

be! He's expired \
o and gone to meet his maker!"

• Put spaces before and after =.

Warning But don't use spaces around = in default parameters of functions and
methods.

75

Don't forget to comment!

Include comments as you write the program. Comments should describe why the code is
written the way it is and not just what it does.

Chunks of code, such as functions, are usually preceded by comments that describe the
whole chunk (not comments that go with each line).

Tip If you've added comments to the program, collect them together when it's time to
write

• The main comment block at the beginning of the program.

This block includes the type of file, the name of the programmer, the date of
creation, the purpose of the file, and usage instructions.

• The docstrings that are used to build the program's help file.

Debugging Strategies

Some strategies that programmers use to debug their code are as follows:

• Three built-in functions — repr(), type(), and dir() — aid debugging by
helping you figure out what values and types your program uses.

See the following section, "Built-in functions," to find out about these three useful
functions.

• Traceback logs, print statements, and commenting out lines of code help you
keep track of what's going on when your program runs.

• Debugger tools let you step through your program one line, or one code block,
at a time. See "Using a debugger" later in this chapter.

The following sections describe ways to use these strategies effectively.

Built-in functions

Your three best friends in debugging are the built-in functions repr(), type(), and
dir().

The repr() function gives you useful information about what Python really thinks is in a
value; it is essential for debugging problems with strings because it shows the special
escape characters in strings, like this (see Chapter 6 for a full explanation):

76

>>> mystring = "the knights who say 'Ni!'"
>>> repr(mystring)
'"the knights who say \'Ni!\'"'

The type() and dir() functions give you additional information about a value. Even
when the bug in your program is a logic error, the symptom is often a wrong value
getting passed around. Finding out what that value is and where it came from usually
allows you to figure out the bug.

Here's a trivial case. Python's exception points you in the right direction for figuring out
the error:

>>> price = raw_input('Enter price: ')
Enter price: 12.99
>>> qty = raw_input('Enter quantity: ')
Enter quantity: 3
>>> price * qty
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: can't multiply sequence by non-int of type 'str'

The error message is clear enough, but it doesn't tell you what the "sequence" and the
"non-int" are. What you might do next is check what price and qty are by using repr()
and type(), as shown in the following example code. (So where's repr()? In interactive
mode, if you just type the name, Python automatically uses repr(). You need to actually
type repr() only when you're debugging in scripts.)

>>> price, type(price)
('12.99', <type 'str'>)
>>> qty, type(qty)
('3', <type 'str'>)

Ah-ha! Both price and qty are strings. (That's because the raw_input() function
always returns a string.) In order to multiply them, you need to turn them into numbers.
Here's how you do it:

>>> price = float(price)
>>> qty = int(qty)
>>> price * qty
38.969999999999999

Now suppose the user enters something that can't be turned into a number. This will
create another problem in the program:

>>> price = float(raw_input('Enter price: '))
Enter price: Good dog!
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid literal for float(): Good dog!

Tip The way to handle this problem is to write code that catches the exception and

77

reminds the user to enter a number. We discuss how to do this in Chapter 15.

Print statements and traceback logs

When debugging, add print statements whenever you give a name to a value or
manipulate something. You'll quickly discover at what point the name takes on the wrong
value.

Warning Don't suppress tracebacks (Python's information about errors or unusual
conditions it encounters). If you want your program to continue after an error
has occurred (instead of quitting), log or print the traceback and go back later.

Although print statements are useful in simple programs, wading through the output is
difficult if you have a lot of them. It's also difficult to selectively turn print statements
on and off. The logging module directs your debugging output to a file for later perusal.
To control the amount of output, just change the logging level.

Tip Chapter 17 shows how to use the logging module and also shows how to use the >>
operator with print to redirect output to a file.

Comments

To use comments for debugging, add lines to the code that print the values of various
names throughout the program. Then append a comment like # for debugging to these
lines of code so you know to remove them later.

Tip Using the comment character (#) at the beginning of a line of code disables that line.
In some cases, disabling individual lines helps you track down which line of code is
the source of a problem.

Using a debugger

A debugger lets you step through your code one line at a time or one code block at a time.
It displays all the values Python keeps track of, showing exactly where values change.

pdb

The pdb module is a debugger that's built into Python.

TECHNICAL
STUFF

The program we're debugging is called x.py, and it looks like this:

print "This function creates a list."
def makelist():
 a = []
 for i in range(1, 20):
 a.append(i)
 print "appending", i, ":", a

78

 return a
makelist()

To use pdb from the command line, follow these steps:

1. At the command prompt, type python -m pdb x .py, where x .py is the name
of your module.

You'll see something like this: The (1) on the first line indicates the first line of
the program. The text following -> is the actual code of this line. (Pdb) is the
prompt.

> /Users/stef/x.py(1)<module>()
-> print "This function creates a list."
(Pdb)

2. To run the current line of the program and go to the next line, type s.

Each time you press s (which is short for "step"), you see the next line number
and its code. In this example, you also see the result of the print statement on the
first line.

(Pdb) s
This function creates a list.
> /Users/stef/x.py(2)<module>()
-> def makelist():
 (Pdb)

Tip If you type s again at this point, the program jumps to line 8:

(Pdb) s
> /Users/stef/x.py(8)<module>()
-> makelist()
(Pdb)

That's because the first time Python sees a function definition, it reads (defines)
the whole function. This process is considered a single step.

3. When you want to check that the program is storing the correct values, type
p and the name to see its value.

We got this result after we'd stepped through the program ten times:

(Pdb) p a
[1, 2]

Tip To see available commands while you run pdb, type help. For help on a single
command or topic, type help and the name of the command or topic, like this:

(Pdb) help a
a(rgs)

79

Print the arguments of the current function.

The most useful pdb commands are:

• s (step)—Run the current line of the program and go to the next line.
• If the line is a def statement for a function, define the function (if it hasn't already

been defined), then go to the first line after the function. If the line is a function
call, go to the first line inside the function.

• n (next)—Run the current line of the program and go to the next line. But if the
line is a function call, run the whole function and go to the next line after the
function call.

• c (cont)—Continue running the program until the next break point (see the
following section, "Break points").

• r (return)—Run the program until the current function returns.
• l (list)—Display the source code around the current line.
• a (args)—Display the current function's arguments.
• p (print), pp (pretty-print)—Display the value of an expression.
• q (quit)—Quit the debugger and the program.

Break points

If you know that most of your program is working but you suspect a problem in one part,
you can set a break point where you think the problem is. In pdb, you do this by typing b
and the line number you want to set a break point at:

(Pdb) b 3
Breakpoint 1 at Users/stef/x.py:3

In pdb, to run the program until it comes to the break point, type c (for "continue"). To
see the values your program is storing at this point, type p and the name whose value you
want to see.

The following example sets a break point at line 5 of our program, runs the program until
it reaches the break point, and examines the values at that point. Note that the break
occurs before Python runs line 5.

(Pdb) b 5
Breakpoint 2 at /Users/stef/x.py:5
(Pdb) c
appending 2 : [1, 2]
> /Users/stef/x.py(5)makelist()
-> a.append(i)
(Pdb) p a
[1, 2]
(Pdb) p i
3

80

Part II: Building Blocks

Chapter List

Chapter 6: So This String Walks into a Bar
Chapter 7: Counting your Way to Fun and Profit
Chapter 8: Processing Lists and Tuples
Chapter 9: Diving into Dictionaries

The 5th Wave By Rich Tennant

"Ms. Gretsky, tell the employees they can have internet games on their computer again."

In this part…

You discover how to manipulate Python's many data types, from simple text strings,
through all the different kinds of numbers you can work with (but don't worry, you won't
have to remember high school algebra), to lists, tuples, dictionaries, and sets.

81

Chapter 6: So This String Walks into a
Bar

Overview

In most computer languages, including Python, a string consists of text characters—just
one character, a few lines, or a whole text file. In this chapter, you find out how strings
work in Python, including

• The various ways to use quotation marks to delimit strings
• How to use index numbers and slices to get at parts of strings
• Magic ways of formatting string output

We also introduce you to the mysteries of Unicode.

Stringing Them Along

Inside Python, a string literal is surrounded by quotation marks, which distinguish it from
other kinds of data, such as integers or names. You see the quotation marks when you
type the name of a string in the interpreter. But when you print a string, the quotation
marks don't appear.

>>> y = '234'
>>> y
'234'
>>> print y
234

TECHNICAL
STUFF

The Python interpreter calls repr() to display the result of an
expression—this display itself is usually a valid expression. The
print statement uses str(), which displays a "prettier" version.
(Chapter 2 has more details.)

The following sections describe several ways to quote strings and how to use special
characters inside strings (or how not to use them).

Just the quotes, ma'am

You can surround a string with single, double, or triple quotes. Which you use depends on
the string contents and formatting you want.

82

One quote or two

When you create a string, Python lets you to use either a pair of single quotes or a pair of
double quotes. Both mean "a string is inside." This example shows a double-quoted string
and a single-quoted string:

>>> penguin = "on top of the television set"
>>> what_it_is_doing =

If your text includes single quotation marks or apostrophes, it's easiest to make it into a
string by surrounding it with double quotes, like this:

>>> knights = "We are the Knights Who Say
>>> print knights
We are the Knights Who Say 'Ni'!

Likewise, if your text includes double quotes, it's easiest to make a string by surrounding
it with single ones.

Triple-scoop

To make a string that prints exactly as you type it, use triple quotes, either single (""") or
double ("""). Python prints the string with line breaks and spaces exactly as you enter
them, as shown:

>>> spam = """
... spam spam spam spam spam
... and spam
... """
>>> print spam

 spam spam spam spam spam
 and spam

Triple quotes are most commonly used to create docstrings. A docstring is a short
description of a code block, such as a function. Python's help function automatically
formats and returns the text of the docstring when you ask for help on the code block. For
more about docstrings, see Chapter 11.

Tip Triple quotes are also useful for surrounding text that has both single and double
quotation marks.

Ways to escape

To tell Python to give special treatment to a character in a string literal, precede it with a
backslash character (\), also called the escape character.

83

Table 6-1 lists some of the characters that do special things when preceded by a
backslash. (These are commonly called escape codes.)

Table 6-1: Some Python Escape Codes
Open table as spreadsheet

Character Meaning

\ as last character on a line Text on the next line goes with the text on this line.
\\ Backslash
\' Single quote
\" Double quote
\e Escape key
\n Linefeed
\t Tab

\0 nn Octal character (nn is a two-digit number)

\x nn Hexadecimal character (nn is a two-digit number)

One way to use the backslash is to tell Python to treat a quotation mark as a regular
character rather than as a "string starter or ender," as in this example:

>>> whiteRabbit = 'Where\'s my pocket-watch?'
>>> print whiteRabbit
Where's my pocket-watch?

Tip It's easier to read strings that don't have escape characters within the code, so avoid
them if you can. If you have text with both single and double quotes, consider using
triple quotes to designate it as a string.

To tell Python that a backslash is part of your string and not an escape character, precede
it with a second backslash, as shown:

>>> path = "C:\\Applications"
>>> print path
C:\Applications

Raw strings

To tell Python not to look for any escape codes in a string, specify the string as a raw
string. You might want to do this when handling Windows pathnames, which include the
backslash character.

Tip Raw strings also simplify regular expression searches, which also use backslashes as
special characters. See Chapter 18.

To specify a raw string, type r before the first quotation mark, like this:

84

>>> path = r"C:\Applications"
>>> print path
C:\Applications

Warning There's one case in which raw strings aren't completely raw. It's an error to end
a raw string with a backslash because Python thinks you're using the backslash
to escape the quote mark that ends the string. To type a string that ends with a
backslash, you must use a regular string. You can add it to the raw string simply
by typing it on the same line. If you type several strings on the same line, you
don't need to use a concatenation operator:

>>> print r'C:\data\myprogams' '\\'
C:\data\myprograms\

Being wordy

There are several ways to create a string that will span more than one line.

• To write a string that will print exact as you entered it, surround the string with
triple-quotes (""" or """).

• To write text that will print on several lines, add the linefeed escape code \n
where you want a new line to start, like this:

• >>> cheese = "cheeses available:\nsavoyard\nboursin"
• >>> print cheese
• cheeses available:
• savoyard
• boursin

• To turn two strings on two lines into a single string, surround them with
parentheses. We recommend this method for entering long strings because it's
easy to read. For example:

• >>> x = ("hello"
• ... "world")
• >>> print x
• helloworld

• To create a long string, type a backslash character (\) at the end of a line. What
you type after you press Return counts as part of the same line.

• >>> longline = "this is a very long line a very long \
• ... line a very long line"
• >>> print longline
• this is a very long line a very long line a very long line

Warning The end-of-line backslash doesn't work if you add spaces after the
backslash.

How a string looks inside Python

To see how Python internally represents a string, type the name of the string and press
Return. In this example, Python represents a newline character with the escape character
\n:

>>> modernlife = "as i was surfing on the air\n\

85

... i saw a spam that wasn't
>>> modernlife
"as i was surfing on the air\ni saw a spam that

When you ask Python to print a string, it interprets the newline character. So the
modernlife string is printed on two lines, like this:

>>> print modernlife
as i was surfing on the air
i saw a spam that wasn't there

"Please repeat": String operators

Several of Python's operators work with strings. This section covers the following
operators:

• Concatenation (+): Sticks strings together.
• Repeating (*): Copies a string several times.
• Size testing (<, >): Determines which of two strings is bigger or smaller.

Combine and repeat

To concatenate strings, type the first string, the + symbol, and the second string, like so:

>>> hello = "hello"
>>> world = "world"
>>> hello + world
'helloworld'

Tip If you're working with string literals rather than strings that have names, you don't
have to use the + operator to stick them together. You can just put them next to each
other on a line, like so:

>>> "It don' mean a thing " "if it ain't got that swing"
"It don' mean a thing if it ain't got that swing"

To repeat a string, type the string, the * symbol, and the number of times you want to
repeat the string, as shown here:

>>> "It don' mean a thing " * 3
"It don' mean a thing It don't mean a thing It don' mean a thing"

To concatenate and repeat at the same time, combine the operations, like so:

>>> toaster1 = "would you like some toast? "
>>> toaster2 = "or how about muffins??? \n"
>>> annoying_toaster = (toaster1 + toaster2)* 3
>>> print annoying_toaster
would you like some toast? or how about muffins???
would you like some toast? or how about muffins???
would you like some toast? or how about muffins???

86

The augmented assignment operators += and +* also work with strings. These operators
let you perform an operation and give the result to a name at the same time. They are very
useful in loops because they make the assignment statement easy to read.

REMEMBER The + and * operators work differently on strings than they do on numbers.
You can't add a string and a number together—you must first convert the
string to a number (for example, by using the int() or float()
functions). And if you try to use * on a string and an integer, you get a
repeated string, not multiplication, like this:

>>> "5" * 6
'555555'
>>> int("5") + 6
11

Mine's bigger than yours! Comparing strings

When you're working with numbers, it's usually obvious what the smallest and largest
numbers are. But it's less clear what smallest and largest mean when you're talking about
characters.

TECHNICAL
STUFF

A character's ASCII or Unicode value (a number) determines the
character's order. So it would also be correct to talk about one
character coming "before" (smaller) or "after" (larger) another
character in a numbered list of characters. The following list
describes how Python orders (assigns sizes to) characters:

• Letters at the beginning of the alphabet are smaller than
letters at the end.

A is smaller than Z.

• Capital letters come before (are smaller than) lowercase
letters.

Y and Z are both smaller than a.

• Digits are smaller than letters.

5 is smaller than A.

• Most punctuation marks come before digits or letters.

! is smaller than 5. The exceptions are curly braces ({}), the
pipe character (|), and the tilde (~), which are larger than
letters.

To determine which of two strings is larger, use the < and > operators.

87

>>> 'A' < 'Z'
True
>>> 'b' > 'a'
True
>>> 'a' > 'z'
True

Looping through strings—You can, but why would you want to?

Because a string is a sequence data type, you can use it in a loop; that is, you can
iterateover it. But there are very few reasons to do this. In fact, code that does this
probably has a bug. Python doesn't have a built-in error or warning message for iterating
over a string, but external debugging tools such as PyChecker often flag it as a bug.

The PyChecker tool looks for common problems in Python code. It doesn't come with
Python, but you can download it from http://www.pychecker.sourceforge.net/.

A few more methods for working with strings

You use a string method to perform actions on a string. To use a string method, type the
name of your string, a dot, and the method. Then inside parentheses, pass any parameters
that the method needs. In this example, the parameter is the string you want to count the
occurrences of:

>>> mystring = "mississippi"
>>> mystring.count('s')
4

Testing the content of strings

Python lets you test whether strings have certain content. These tests return True or
False (Boolean results).

To test whether text is anywhere in a string, type the text you're searching for in quotation
marks, followed by in and the name of the string. This example gives a name to a string
and tests for the string 'goose' inside the string.

>>> mystring = 'the quick brown fox'
>>> 'goose' in mystring
False

To test whether text is not in the string, use not in rather than in.

Tip Python 2.2 and earlier don't have the in keyword. In those versions, you can test for
text in a string by using the find() or count() method.

88

To test whether text is at the end of a string, use the endswith() method, as shown here.
(The startswith() method works the same way but finds text at the beginning of a
string.)

>>> mystring.endswith('fox')
True

Converting data to a string

To turn data other than a string into a string, use the built-in function str(), as in this
example, which converts an integer to a string:

>>> str(2345)
'2345'

Sorting a list of strings

To sort a list of strings, use the sort() method of lists. Type the name of the list, a dot,
and sort(), like this:

>>> mylist = ['whiskey', 'tango', 'foxtrot']
>>> mylist.sort()
>>> mylist
['foxtrot', 'tango', 'whiskey']

Tip Because small letters are "bigger" than (come after) capital letters, if you need to
alphabetize some text, you should convert it to all lowercase first. To convert a string
to lowercase, type the name of the string, a dot, lower, and parentheses, as shown:

>>> x = "THIS IS A STRING"
>>> x.lower()
'this is a

Finding out more about string methods
Tip For more information on string methods, type help(str) at the Python prompt.

The string methods work with both regular strings and Unicode strings (see the upcoming
section, "Unraveling Unicode"). They include the following types of actions:

• Case manipulation (capitalize, upper, lower, swapcase, title)
• Counting (count—number of times substring is in string)
• Manipulating text encoding (encode, decode)
• Search and replace (find, replace, rfind, index, rindex, translate)
• Tests that return Boolean (True or False) values (startswith, endswith,

isalnum, isalpha, isdigit, islower, isspace, istitle, isupper)
• Joining and splitting (join, partition, rpartition, split, splitlines)
• Formatting (center, ljust, lstrip, rstring, rjust, strip, zfill,

expandtabs)

89

Tip The Cheat Sheet attached to the front of this book briefly describes how most of the
above methods work.

The string module versus the str type

Early versions of Python implemented string operations as functions in the string
module. In Python 2.0, most of those functions were duplicated as methods of the str
type. The string module still works, but use of the string module usually indicates an
old program (except for string.maketrans(), for which there is no equivalent method).

Cat's Cradle: Indexing and Slicing

Strings (and other sequential data types) are divided into pieces called elements that are
stored in order (in a sequence). In a string, each character is one element. You manipulate
the individual elements by using operations called indexing and slicing.

An index number specifies the location of a particular element, and a range of index
numbers specifies a slice of several elements.

This section describes the basics of indexing and slicing. You also find out some shortcuts
and discover how to use slices to make copies of strings.

REMEMBER Strings can't be changed. But you can use slicing to make a new string
based on part of an existing string.

Basic syntax

You use indexing to find an element of a sequence object (such as a character in a string)
based on the element's index number. You use slicing to find a range of elements.

Indexing

To find an item corresponding to a particular index number, type the name of your string
(or other sequence object) followed by an index number in brackets. Note that the first
index number is 0. This example finds the third character, which has the index number 2:

>>> mystring = "truly, madly, deeply"
>>> mystring[2]
'u'

Slicing

To find items corresponding to a particular slice, you use the name of the string and
brackets, as above. Inside the brackets, you enter a slice expression: the beginning of the
slice, a colon, and the end of the slice. The end of the slice means "up to but not

90

including" this element. In the example below, five elements are returned (index numbers
7, 8, 9, 10, and 11).

Here's an example:

>>> mystring[7:12]
'madly'

A step (sometimes called a stride) skips over some items in the sequence. To specify a
step, type a second colon and the step number, like so:

>>>> mystring = '123456789'
>>> mystring[0:9:2]
'13579'

Steps aren't supported in versions of Python earlier than 2.3.

Figuring out the tricks

Following are some shortcuts you can use with slicing and indexing syntax. The
examples all use this string:

alpha = 'abcde'

• The beginnings and ends of slices are like notebook dividers—they sit between
the elements.

• If you are counting from left to right when indexing or slicing, the first index
number is 0, not 1, as shown:

• >>> alpha = 'abcde'
• >>> alpha[0]
• 'a'
• >>> alpha[0:3]
• 'abc'

Tip When slicing, the first index defaults to 0. If you leave out the first index,
Python uses the first item in the sequence, like this:

>>> alpha[:2]
'ab'

• When slicing, the last index defaults to "the length of the sequence." You can
access the last item when slicing by leaving out the number after the colon, like
this:

• >>>> alpha[1:]
• 'bcde'

Tip If you use a number larger than the size of the sequence, "the length of the
sequence" replaces it.

• >>> alpha[3:10]
• 'de'

91

• However, this doesn't work with indexing. If you use a number larger than the
size of the sequence, Python raises an IndexError.

• >>> alpha[10]
• Traceback (most recent call last):
• File "<stdin>", line 1, in <module>
• IndexError: string index out of range

• If you are slicing, and the second index number is smaller than the first, you get
an empty sequence (for example, an empty string).

• >>> alpha[3:2]
• ''

• You can also count from right to left when indexing or slicing. (This is called
negative indexing.) When indexing, the first index number, from the right, is -1,
the next is -2, and so on—but the leftmost index is still 0.

• >>> alpha[-1]
• 'e'

• If you are making a slice, however, -1 points before the last element. To get at the
last element, you need to use ":]":

• >>> alpha[-3:-1]
• 'cd'
• >>> alpha[-3:]
• 'cde'

• To get the whole sequence as a slice, use [:] (which makes a copy).
• >>> alpha[:]
• 'abcde'

• Specifying a negative step when slicing is one way to reverse a string.
• >>> 'hello'[::-1]
• 'olleh'

Figure 6-1 shows the relationship of index numbers and elements in a string or other
sequence object.

Figure 6-1: Relationship of indexes, slice indexes, and elements in a sequence object.

92

Changing the immutable string

Strings are immutable (cannot be changed). But you can use slicing and the + operator to
make a new string, using some of the content from an existing string. To make a new
string by slicing, follow this example, which uses slicing to take all but the first four
characters of the candy string and concatenates it to the string 'milk':

>>> candy = 'dark chocolate bars'
>>> morecandy = 'milk' + candy[4:]
>>> print morecandy
milk chocolate bars

Interpolating Between the Lines

To format the output of strings, you can use the string methods mentioned in "Finding out
more about string methods," earlier in this chapter. But there is another, more common
way to format strings: the % operator. When used with strings, this operator is sometimes
called the interpolation operator.

When we use the word formatting, we aren't referring to word processor–type formatting
—changing fonts, colors, styles, and the like. We mean specifying what happens when a
value is inserted into a string. For example, we might specify how many digits to display
to the right of a decimal point.

The interpolation operator also lets you insert data in specific places in a string. This
means you can calculate your data in one part of your program and print it or save it to a
file in another part.

Using the interpolation operator

You can use the % operator in several ways:

• To include a single data item in a string
• To include multiple data items in a string by using a tuple
• To include multiple data items in a string by using a dictionary as a mapping key

Meanings of the formatting codes

A formatting code consists of the % character followed by a character called a conversion
type. Each character stands for a particular type of data to be included in a string.

93

The %s formatting code (to indicate string data) is the most popular code, because it
works on almost all types of data—if you use something other than a string as your data,
Python converts it to a string automatically.

Here are some characters that stand for other kinds of data:

• %c: Single character (works with an integer or single-character string)
• %d, %i: Signed integer decimal
• %f, %F: Floating point decimal
• %r: A repr() representation of the data
• %%: Percent sign; used with other codes as an escape character for a real percent

sign, as in the example below:
• >>> "50%% of nothing is still %i" % 0
• '50% of nothing is still 0'

Optional modifiers of the formatting code

You can add several optional modifiers to % codes. You must type the formatting
modifiers and code without spaces and use this order:

1. The % operator
2. A mapping key in parentheses (described in "Formatting with a dictionary," later

in this chapter).
3. Conversion flags, so-called because they affect how some kinds of data are

converted when they're included in the string. They mostly specify how to handle
+ and -- signs.

To find out more, see the FORMATTING topic in Python's help utility by typing
help("FORMATTING").

4. The minimum amount of space to allow for the data (minimum field width)—a
positive integer.

5. How many digits to include to the right of the decimal point of a decimal number
(precision)—a dot (.) followed by the precision value.

6. The formatting code

The first and last of the preceding steps are required; the rest are optional.

This example prints pi to a precision of 10 decimal places:

 >>> import math
 >>> "The value of pi is about %.10f" % math.pi
'The value of pi is about 3.1415926536'

94

Formatting with one data item

If you have a single data item (for example, mystring = "swallow") and you want to
include it in a string, follow these steps to write the code to do it:

1. Type your string up to the point where you want your data to go, like this:
2. >>>> "An African or European

3. On the same line, type % followed by the formatting code; for example,
4. >>> "An African or European %s

In the above example, %s indicates that you will insert string data.

5. On the same line, type the rest of your string, a space, another %, a space, and
the data item that you want to include.

Your final line might look something like this:

>>> "An African or European %s?" % mystring
'An African or European swallow?'

Formatting with multiple data items in a tuple

To include multiple pieces of data in a string, you use multiple formatting codes and pass
the arguments in a tuple (that is, inside parentheses, with the values separated by
commas; see Chapters 3 and 8 for a refresher on tuples).

This section works with line 4 of the following code, which calculates and prints a table
of powers:

print "%2s %5s %12s" % ('x', 'x**2', 'x**x')
print "=" * 21
for x in range(1,6):
 print "%2d %5d %12d" % (x, x**2, x**x)

To insert multiple data items into a string, follow these steps:

1. Type print, followed by a formatting code for each item you want to include,
like so:

2. print "%2s %5s %12s"

The numbers in this formatting code specify minimum field widths.

3. On the same line, type a space, %, a space, and a tuple that includes one data
item for each formatting code in the string, as shown here:

4. print "%2s %5s %12s" % ('x', 'x**2', 'x**x')

The code prints the following results:

95

x x**2 x**x
=====================
1 1 1
2 4 4
3 9 27
4 16 256
5 25 3125

It's easy to forget to use tuples when formatting with multiple data items. If you
remember to do this consistently, you'll be ahead in the debugging game. Even
experienced Python programmers make this mistake, so if you see an error message like
this, you're in good company:

>>> '%s %s' % 'the', 'larch'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: not enough arguments for format string

Here's the right way to do it:

>>> '%s %s' % ('the', 'larch')
'the larch'

Formatting with a dictionary

You can get data out of a dictionary and include it in your string by using the % operator.
You use a mapping key to stand for the value to be used from the dictionary. Follow these
steps to create a line of code that gets the value of the mathematical constant e from a
dictionary and prints it as part of a string.

1. Type your string up to the point where you want to include your data, like so:
2. "The value of e is approximately

3. Type % and (in parentheses) the dictionary key for the value you want to
include.

4. "The value of e is approximately %(e)

5. Type the formatting code (so that the whole chunk of code looks something
like this):

6. "The value of e is approximately %(e) f

7. Type the rest of your string, a space, the % operator, a space, and the name of
the dictionary.

8. "The value of e is approximately %(e)f " % mydict

Here's the line of code in context:

>>> math_const = {'pi': 3.141592, 'e': 2.718282}
>>> "The value of e is approximately %(e)f" % math_const
'The value of e is approximately 2.718282'

96

A formatting example using string methods

You can also use string methods to write code that prints a table of powers, similar to the
one in the previous section, "Formatting with multiple data items in a tuple." The
rjust() method right-justifies the string within an area the size of the number of spaces
specified in its argument.

Note that this code has more lines than the code written with the % operator and tuples. If
you're concerned about reducing the size of your programs, the % operator might be the
way to go.

x = 'x'
y = 'x**2'
z = 'x**x'
print x, y.rjust(4), z.rjust(6)
print "=" * 14
for n in range(1,6):
 nn = str(n**2)
 nnn = str(n**n)
 print n, nn.rjust(4), nnn.rjust(6)

Here's what it prints:

x x**2 x**x
==============
1 1 1
2 4 4
3 9 27
4 16 256
5 25 3125

Unraveling Unicode

So far, you have been using strings that work with English text (and some Western
languages, like French and German). But what if you need to use Russian or Japanese?
Python 2.0 introduced a special string type called Unicode strings that let you manipulate
strings in any language or alphabet.

Unicode strings work mostly the same way as regular strings. Here are a few of their
unique features:

• Unicode strings in Python are specified with a lowercase u.
• In most installations of Python, a four-digit hexadecimal number represents each

Unicode character.

Regular (ASCII) characters use a two-digit hexadecimal number.

97

Creating a Unicode string

To create a Unicode string, precede the string with u, like so:

>>> z = u"Fruit bats pollinate the flowers of many fruits."

To create a Unicode string that uses a non-ASCII Unicode character, follow these steps:

1. Type u to specify a Unicode string and then start typing the string.
2. u'Libert

3. To specify a character that you want to represent by using Unicode, type \u
and the character's hexadecimal value, like so:

4. u'Libert \u00e9

5. Type the rest of the string and the ending quotation mark:
6. u'Libert\u00e9 '

The value 00e9 stands for the é character.

TECHNICAL
STUFF

What is Unicode and why do we care about it?

When people started teaching computers how to talk, the computer
geeks came up with a system called ASCII (American Standard Code
for Information Interchange). ASCII characters are encoded by using
7 bits of information, which allows for only 128 (0–127) characters.
That wasn't enough for non-English languages, accented characters,
and other common symbols.

Enter Unicode. Unicode will eventually be able to encode every
character set, including those for non-European languages, alphabets
used by scholars, and mathematical and linguistic symbols. See
http://www.unicode.org to find out more.

TECHNICAL
STUFF

Location, location, location

How Python stores and displays your Unicode string depends on
your locale, which is Python's idea of what language and character
set you're using. The locale also determines the default character
encoding that Python uses. The encoded string must match that
encoding.

Here's how to see your default locale and encoding:

 >>> import locale
 >>> locale.getdefaultlocale()
 ['en_US', 'utf']

98

Locales are tricky because all (repeat, all) character input and output
must go through the encode/decode process. When you print a
Unicode string, Python automatically tries to do this conversion so
that you see the characters you expect. Here's an example of this
conversion in action:

 >>> print u'Libert\u00e9'
 Liberté

But you'll see an error if you try printing a Unicode string that
contains characters that don't exist in your current locale. For
example, if you try to print a Hebrew character with a locale that
doesn't support any Hebrew encodings, you'll see this error:

 >>> print u'\u05d0' # Hebrew aleph character
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 __builtin__.UnicodeEncodeError: 'ascii' codec
can't encode character u'\u05d0' in
 position 0: ordinal not in range(128)

Note that many modern operating systems support multiple
encodings, so you might not see this error if you try it yourself.

A twisty maze of codes

Unicode lets you process text by using only one code. But Unicode can't be used directly
with character input and output, so you need to encode output and decode input.

Beginners tend to think of Unicode as another encoding of the character set they are used
to using. Thus, they think that they need to encode "regular" text into Unicode and
decode Unicode into regular text. That's backward. Here's the correct way to think about
it:

When you start using Unicode, whatever regular character set you're using is a part of
Unicode. Therefore, you need to encode Unicode characters into your regular character
set, and decode your regular character set into Unicode.

Encoding, decoding, and other Unicode methods

All the regular string methods also work with Unicode strings. A couple of methods apply
especially to Unicode: encode() and decode().

The list of standard encodings is available at
http://www.python.org/dev/doc/devel/lib/standard-encodings.html.

99

Converting Unicode to an encoded string

To convert a Unicode string to an encoding, such as UTF-8 or Latin-1, you use the
encode() method. Follow these steps:

1. Create a Unicode string, like so:
2. y = u"Libert\u00e9, \u00e9galit\u00e9, fraternit\u00e9"

3. Type the name of the string, a dot, encode, and (in parentheses) the encoding
you want to convert to.

4. y.encode('utf-8')

This example shows the difference between the encoded and printed strings:

>>> q = y.encode('utf-8')
>>> q
'Libert\xc3\xa9, \xc3\xa9galit\xc3\xa9, fraternit\xc3\xa9'
>>> print q
Liberté, égalité, fraternité

Tip Python's file objects and StringIO objects don't support raw Unicode; the usual
workaround is to encode Unicode text as UTF-8 before saving it to a file or StringIO
object.

Decoding a string into Unicode

The decode() method, new in Python 2.2, assumes that a string is in the specified
encoding and turns it into Unicode. To decode a string into Unicode, follow these steps:

1. Create an encoded string, like so (this string is encoded using UTF-8):
2. q = 'Libert\xc3\xa9'

3. Type the name of the string, a dot, decode, and (in parentheses) the encoding
that the string currently uses.

4. q.decode('utf-8')

The Midas touch—Unicode versus str

In Python, Unicode behaves a bit like Midas, the character in Greek legend who turned
everything he touched (including his daughter) into gold. When you use a Unicode string
and a regular string together, the results are always Unicode.

>>> myunicodestring = u"Midas is coming! "
>>> mystring = "Don't touch me, Midas!"
>>> myunicodestring + mystring
u"Midas is coming! Don't touch me,
Midas!"

This example shows the difference between the encoded and decoded strings.

• Encoded string

100

• >>> 'Libert\xc3\xa9'

• Decoded (Unicode) string
• u'Libert\xe9'

\xe9 is Python's shorthand way of representing Unicode character \u00e9, which
prints as é.

Both strings look the same when printed:

>>> print q
Liberté
>>> print q.decode('utf-8')
Liberté

101

Chapter 7: Counting your Way to Fun
and Profit
In Python, numbers come in several different data types. Chapter 3 introduces the number
types and their operators. This chapter gives you more information on integers, binary
floating point numbers, and complex numbers, and provides guidance for using Python's
augmented assignment operators. It also introduces Python's built-in math modules,
including the decimal module for doing true decimal arithmetic, and the random module
for generating random numbers.

Integrating Integers

Integers are positive and negative whole numbers (numbers without a value to the right of
the decimal point). We give you a brief overview of integers in Chapter 3; the following
sections describe some finer points about Python's integers.

Why Python has two kinds of integers

Because of how computers store numbers in memory, Python uses two kinds of integers:

• Regular integers
• Long integers

In the recent past, most computers used 32 bits of memory to store an integer. But
integers larger than a certain value (2,147,483,647, to be exact) take up more than 32 bits
of memory. So Python uses a different mechanism to store them. Python represents long
integers with the suffix L.

TECHNICAL
STUFF

In future versions of Python, all integers will be handled the same
way. For now, if you're writing programs that manipulate very large
integers, each version of Python handles integers a bit differently.
Your results may vary depending on the version. If you're using
Python 2.2 or later, regular integers automatically convert to long
integers, so you can mostly ignore the issue.

Avoiding unexpected results with integer division

If you enter only integers when you do arithmetic, Python returns the results in integers.
This can give unexpected results if you're doing division with the / operator—you get
only the integer part of the result.

TECHNICAL
STUFF

In math terms, the / operator performs floor division, not true
division.

102

For example, your math teacher would not let you get away with this result:

>>> 13 / 3
4

Tip If you want true division, use one of the following solutions:

• Use the decimal module, like this:
• >>> from decimal import Decimal
• >>> Decimal(13) / Decimal(3)
• Decimal("4.333333333333333333333333333")

The decimal module was introduced in Python 2.4. See the section, "Turning
Python into a Calculator with decimal," later in this chapter, for details.

• Make sure that at least one of the numbers in a calculation is a floating point
(decimal) number, like this:

• >>> 13.0 / 3
• 4.333333333333333

Use the division feature from the __future__ module, like this:

>>> from __future__ import division
>>> 13 / 3
4.333333333333333

Using __future__ activates code that will become the default in Python 3.0;
in this case, it activates true division for the / operator. For integer division,
use the // operator.

Floating Along

The standard format for computers to store real numbers is called binary floating point,
which is different from the format most people are used to. For example, if you type 0.1
into Python's interpreter, you see that Python's internal representation of the number is
different from what you typed:

>>> 0.1
0.10000000000000001

TECHNICAL
STUFF

This happens because a computer can't accurately represent some
decimal numbers as floats. For more information than you really
need to know about why, see Appendix B of the Python Tutorial at
http://www.python.org. (For detail nuts only: The decimal numbers
that can be represented accurately have a fractional component
containing only sums of powers of two.)

103

Automatic conversion

Python automatically converts different types of numbers so that you (usually) don't need
to think about the compatibility of different number types. For example, if you do a math
operation with both integers and floats, Python converts the integers to floats and gives
the result as a float.

Formatting floats

If you don't want to look at weird numbers with 16 decimal places, use the str()
function to display the number as a string.

>>> 4.1
4.0999999999999996
>>> str(4.1)
'4.1'

Warning You might be tempted to use the round() function to handle floating point
numbers. But round() requires you to specify a precision (the number of digits
to the right of the decimal point) and defaults to a precision of 0 (which
removes all the digits to the right of the decimal point). This probably isn't what
you want if you're working with decimal numbers!

Size limits on floats

Python's binary floating point numbers have a finite range. Python stores binary floats
using at most 17 decimal digits of accuracy. In addition, the largest float you can store is
1.79769_10 308 (which Python represents as 1.79769e+308). If you try to calculate or
store a larger number, you may get a result such as this:

>>> x = 2.79769e+308
>>> x
inf

Long integers can be larger than floats, so you might get an "overflow error" or incorrect
results when using large integers with binary floats or with the float() function (which
converts numbers to binary floats). The following code attempts to convert 10 1,000 to a
float. Because the resulting number is too big for Python and the computer to handle, it
raises an error:

>>> float(10**1000)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
OverflowError: long int too large to convert to float

The following code also gives an incorrect result because of the 17-digit size limit on
floats. (A number doesn't equal itself plus 1, no matter how big it is!)

>>> 10.0 ** 100 == (10.0 ** 100) + 1

104

True

Imagining Complex Numbers

Complex numbers have a real and imaginary part, both of which are floats.

TECHNICAL
STUFF

A complex numeric literal is the sum of a real part and an imaginary
part.

In Python, to specify an imaginary number, or the imaginary part of a complex number,
append j to the number.

To separate the real or imaginary part of a complex number, type x.real for the real part
or x.imag for the imaginary part, like this:

>>> x =(3+6j)
>>> x.real
3.0
>>> x.imag
6.0

Augmented assignment

Use augmented assignment operators to perform actions such as addition, concatenation,
subtraction, and multiplication on an object and store the result using the same name. (An
"augmented" assignment statement has an extra feature—an addition or concatenation
operation—built in.) Here's why:

• Augmented assignment statements are easier to debug.

The statement counter +=1 clearly uses only one object. If you use the statement
counter = counter + 1, you must read the statement carefully to make sure the
two objects are the same. If you're trying to debug someone else's thousand-line
program, you'll appreciate the simplicity!

• Augmented assignment statements are more efficient.

These statements evaluate an object only once and change mutable objects in
place; regular assignment evaluates an object twice and creates a new copy in the
process. This can slow performance with large objects.

These are the most commonly used augmented assignment operators:

 += (addition or concatenation):
 counter += 1
 -= (subtraction):
 counter -= 1
 *= (multiplication):
 counter *= 1

105

Using Math Modules

Along with the arithmetic operators (covered in Chapter 3) and the basic math functions
of the __builtin__ module (introduced in Chapter 2) that's always available when you
use Python, Python has several modules that provide math functions.

Tip To import any of the math modules, type import followed by the name of the
module. Use the following list to guide you to the module you need:

• Real numbers: The math module has most of the functions you need for real
numbers. To see all the functions, type this into the interpreter:

• >>> import math
• >>> help(math)

• Complex numbers: The cmath module, for complex numbers, has most of
the same functions as the math module but returns results as a complex
number type (for example, 3+6j—see "Imagining Complex Numbers," earlier
in this chapter).

The cmath module also returns values for calculations such as the square root
of a negative number. (The math module treats such calculations as errors.)

•
Warning If you're working with both complex and real numbers, use the

module name (such as cmath.sqrt() or math.sqrt()) when
calling a function. Many of the two modules' functions have the
same names but work differently. The module name helps you keep
track of which function you're using.

Decimal numbers: The decimal module lets you work with decimal
numbers rather than binary floating point numbers.

•
Tip Decimal numbers give more accurate results for many calculations. See

"Turning Python into a Calculator with decimal," later in this chapter.
Random numbers: The random module includes tools for such tasks as
generating random numbers and choosing randomly from several elements.
For a fun introduction to the tricks up the sleeve of the random module, see
Chapter 21.

Turning Python into a Calculator with decimal

The decimal module, new in Python 2.4, supports decimal floating point arithmetic.

If you're writing applications that require control over precision and rounding (such as
financial software or statistics modules), this module is for you. Its results also match
calculations done by hand (math educators take note!).

106

The decimal module gives more accurate results than binary floating point math for
these types of calculations: Calculating a percentage, modulo calculations (which return
the fractional result of division), and equality tests.

Like other numbers, decimal numbers are immutable.

Tip To import the decimal module, use this statement:

from decimal import Decimal

Representing numbers by using the decimal module

To create a decimal number, type the following, substituting your number or object inside
the parentheses:

Decimal(numerical_object)

The numerical_object can be any of these types of data:

• An integer
• Decimal(3)

• A calculation
• Decimal(3*5)

• A number represented as a string
• Decimal("3.2")

• A float converted to a string with the str() function
• >>> x = 3.2
• >>> Decimal(str(x))
• Decimal("3.2")

Warning You can't use floating point numbers directly with the decimal module.
They must be converted to strings first.

• A three-item tuple
• >>> Decimal((0, (3, 1, 4), -2))
• Decimal("3.14")

Tip To create a decimal from a three-item tuple, use this format for the tuple:

1. The first item in the tuple is 0 (for positive) or 1 (for negative).
2. The second item is another (nested) tuple containing the digits of the

number, one element for each digit.

3. The third item is a positive or negative integer specifying the
exponent.

Decimal numbers work with Python's regular math functions. Give them names and use
the names as arguments, or insert them directly as arguments:

>>> pow(Decimal(9), 2)

107

 Decimal("81")

Viewing and changing parameters

The decimal module has parameters that control how it works with and displays
numbers. To see the parameters, type the following:

>>> import decimal
>>> decimal.getcontext()
Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999,
Emax=999999999,
capitals=1, flags=[], traps=[DivisionByZero, InvalidOperation,
Overflow])

One of the parameters is the maximum precision of decimal numbers (how many digits to
the right of the decimal point you see). To change the precision parameter, type
something like this:

>>> decimal.getcontext().prec = 7

Tip If you want to change the precision of a specific number without changing the
precision parameter for all the numbers, use the quantize() method. quantize()
rounds the number to a specific number of decimal places. This example rounds to
two decimal places:

>>> data = Decimal('7.324')
>>> data.quantize(Decimal('.01'))
Decimal("7.32")

108

Chapter 8: Processing Lists and Tuples
Lists and tuples are two of Python's compound data types, also called container objects.
Compound data types group collections of data.

Python has several kinds of compound data types. Lists and tuples are sequence types
because each element of data is numbered sequentially, starting with 0. Sequence types
support operations called indexing and slicing for working with individual elements or
subsets of elements. You can find out about indexing and slicing in Chapter 6.

A sequence data type is good when you want to operate on all the elements in a collection
or when the order of elements in a collection is important. (In contrast, the dictionary data
type—a mapping type—is for random access to elements, and a set is for comparing
collections of objects. Dictionaries and sets are covered in Chapter 9.)

This chapter shows you the syntax for lists and tuples, when to use them, how to work
with elements inside them, how to use them in loops, and how to avoid some of the
common errors programmers make when working with them.

Introducing Lists and Tuples

The following sections describe the features and syntax of lists and tuples and explain
when to use each.

What a list is

A list is a mutable data type, which means you can change the contents of a list without
creating a new list. The elements of a list can be of different data types. A single list can
contain numbers, strings, other lists, tuples—and even functions and classes.

In Python, a list literal (the actual data, not a name referring to the data) is defined by
square brackets surrounding zero or more elements. Elements are separated by commas.
Below are examples of lists:

a_list = ['this', 'is', 'a', 'list']
empty_list = []
another_list = [5]

Lists come with a variety of built-in methods that let you manipulate them. For example,
to sort a list, you write code like this:

>>> mylist = [8, 33, 29, 4, 1, 5, 98]
>>> mylist.sort()
>>> mylist
[1, 4, 5, 8, 29, 33, 98]

109

What a tuple is

A tuple is a sequence data type that can contain elements of different data types. Tuples
are different from lists because tuples are immutable. If you want to change the contents
of a tuple, you must create a new tuple that has the new content you want.

Warning If a tuple contains a mutable element (such as a list or dictionary), the mutable
element can be modified. However, some of the obvious ways of changing the
mutable element will cause errors because Python will attempt to modify the
tuple. We recommend that you avoid changing mutable elements in tuples.

Tuples don't include a lot of special methods, the way strings and lists do. But tuples do
include methods that support standard Python operators. For example, you can add
tuples, check whether an item is inside a tuple, slice elements in a tuple, compare a tuple
to other data, find a tuple's length, and so on.

Many Python functions, such as the time and date functions, return tuples.

Choosing between lists and tuples

Lists and tuples look similar at first glance, but they have intrinsic differences:

• A tuple is immutable, and a list is mutable.
• Tuples are more memory-efficient.
• Lists have several useful built-in methods.

Tuples are often better than lists for information that you don't want to change, for two
reasons: They use less memory, and (because they're immutable) they won't change
unexpectedly.

Lists are often better for information you want to change because there are more ways of
manipulating them.

Guido (Python's creator) and the Python community promote the following conventions
for choosing between lists and tuples:

• Tuples for heterogeneous data, lists for homogeneous data: Use a tuple if your
data includes several different data types, such as names and addresses; use lists
for elements that are all of the same type.

For example, if you're accessing a database, the fields of a record might be
returned as a tuple, but the records themselves should be returned as a list.
Therefore the overall database would be a list of tuples.

• Tuples for sequence keys: If you need to use a sequence as a dictionary key, you
must use a tuple because dictionary keys are immutable.

110

• Tuples for some functions: Some functions require arguments to be passed in
tuples.

• Lists for mutable objects: Avoid using mutable objects in immutable containers
because errors and unexpected results can occur if you attempt to change the
mutable objects.

A tuple literal is defined in one of three ways:

• A single element followed by a comma
• Multiple elements separated by commas
• An empty set of parentheses

When Python outputs a tuple, it encloses the elements in parentheses. You can (and
usually should) use parentheses when creating a tuple, but you don't have to. Below are
examples of tuples.

>>> a_tuple = ('this', 'is', 'a', 'tuple')
>>> tuple_2 = "this", "is", "another", "tuple"
>>> tuple_2
('this', 'is', 'another', 'tuple')
>>> empty_tuple = ()

A tuple (except for an empty tuple) must always use a comma, even if there is only one
element, because the comma is the operator that defines a tuple.

Tip Because the comma is overloaded (that is, it does more than one thing in Python) and
because it has low precedence (that is, most other operations are evaluated before
comma operations), it's usually a Good Idea to add parentheses to make it clear that
you are using a tuple.

Below are the results of using the * operator on a single-element tuple and on an integer.

>>> another_tuple = (3,)
>>> another_tuple * 3
(3, 3, 3)
>>> not_a_tuple = (3)
>>> not_a_tuple * 3
9

111

Manipulating Sequence Objects

The following sections describe how to compare, combine, and search the contents of
lists, tuples, and other sequence objects.

Comparing sequence objects

Sequence objects such as lists can be compared to other objects of the same data type. A
comparison tells you whether the objects are equal or whether one is smaller than the
other. Here's how it works:

• The first items of each sequence are compared, and then the second items, and so
on.

• If an item inside a sequence is itself a sequence, then each of its items is
compared against the item of the same number in the other sequence.

• If all items of two sequences are equal, the sequences are equal.
• If sequence 1 is the same as the beginning of sequence 2, sequence 1 is smaller

(lesser).
• Strings are compared based on the ASCII order of their characters. Chapter 6 has

more information about character order.

Table 8-1 shows the results of comparisons between sequences.

Table 8-1: Comparisons between Sequences
Open table as spreadsheet

Comparison Reason
(1, 2, 3) < (1, 2, 4), [1, 2,
3] < [1, 2, 4]

3 is less than 4

'ABC' < 'C' < 'Pascal' <
'Python'

ASCII order of characters

(1, 2, 4) > (1, 2, 3, 4), (1,
2) < (1, 2, -1)

First sequence is the same as the beginning of
second sequence

(1, 2, 3) == (1.0, 2.0, 3.0) Integers equal their float equivalents
(1, 2, ('aa', 'ab')) < (1, 2,
('abc', 'a'), 4)

Alphabetical order of characters in sub-sequence
(‘aa’ is smaller than ‘abc’)

If you compare objects of different types, the types are ordered alphabetically by their
names: Lists are smaller than strings, which are smaller than tuples. The rules for
comparing objects of different types may change in future versions of Python.

112

Operating on sequence objects

The following operators work on lists and tuples. Most of these operators also work on
other data types:

• Addition (+): Concatenates the contents of lists together to form a new list, or
concatenates the contents of tuples together to form a new tuple. (You can't
concatenate a list and a tuple.)

• >>> [1, 2, 3] + [2, 4]
• [1, 2, 3, 2, 4]

• Sequence multiplication (*): Repeats the contents of a list or a tuple.
• Augmented assignment (+= and *=): Simultaneously concatenates and assigns or

repeats and assigns. The statement mylist += newlist is the same as mylist =
mylist + newlist. The former works slightly faster and is easier to read.

• Comparison (< >, ==, !=): Tests whether the contents of two or more lists or two
or more tuples are the same.

• Contents test (in): The keyword in determines whether a list or tuple contains
the given element and returns True or False, as shown here:

• >>> phone_sounds = ('beep', 'ring', 'flight of the bumblebee')
• >>> y = 'beep' in phone_sounds
• >>> y
• True

Listcraft: Methods, Indexes, and Slices

In this section we describe important ways you can work with lists. You can turn other
data into lists, count items in lists, sort lists in various orders, and use indexing and
slicing to change, add, delete, and move individual list items.

Functions that work with or create lists

The list() function creates a copy of a list. It also turns any other sequence object or
iterable into a list. (An iterable is an object whose elements can be retrieved one at a
time.) This example turns a tuple into a list:

>>> mytuple = ('apple', 'orange', 'pear')
>>> mylist = list(mytuple)
>>> mylist
['apple', 'orange', 'pear']

If you feed a string to the list() function, it makes a separate list item out of each
character, as in this example.

>>> mystring = "Boo!"
>>> list(mystring)

113

['B', 'o', 'o', '!']

To find out the number of elements in a list, use the len() function (it also works on
other data types).

>>> len(mylist)
3

Methods of lists

A method is like a function except that it "belongs" with a particular object, and when
you call it, you qualify it with the name of the object. The method names are attributes of
the object.

List method syntax

To call a list method, type the list name, a dot, the method name, and parentheses. In the
parentheses, pass any arguments the method needs. (Some methods don't require or use
arguments.) Here's an example:

list_name.method_name(arguments)

The most popular list methods

The following are some of the most frequently used list methods:

• To add an item to the end of a list, use the append() method. This method
changes the list in place. It returns None.

This example adds the string 'apple' to a list:

basket = ['apple', 'banana', 'orange']
basket.append('apple')

• To find out the number of times a value occurs in a list, use the count(value)
method.

This example counts the number of times the string 'apple' appears.

>>> basket.count('apple')
2

• To add to a list the contents of another sequence object or iterable (an object
whose elements can be retrieved one at a time), use the extend() method. If the
iterable is a string, each character is added individually.

This example adds each character of the string 'pear'.

114

>>> x = ['apple', 'apple', 'banana', 'orange']
>>> x.extend('pear')
>>> x
['apple', 'apple', 'banana', 'orange', 'p', 'e', 'a', 'r']

• To delete the first occurrence of an item in a list, use the remove() method. It
raises a ValueError if the item isn't found.

This example removes the first 'apple' string.

>>> x.remove('apple')
>>> x
['apple', 'banana', 'orange', 'p', 'e', 'a', 'r']

• The sort() and reverse() methods both change the list itself.
o The sort() method's default ordering is alphabetical for lists containing

text, numerical for lists containing numbers, and so on.
o The reverse() method inverts the positions of items in a list.

•

Tip Python 2.4 and later also support these built-in functions:

o sorted(), which returns a sorted copy of the list (or other iterable).

o reversed(), which returns an iterator object that lets you use a loop
to process the items in the list in reverse order.

The following examples show the use of the sort() and reverse() methods on a
list of strings:

>>> x.sort()
>>> x
['a', 'apple', 'banana', 'e', 'orange', 'p', 'r']
>>> x.reverse()
>>> x
['r', 'p', 'orange', 'e', 'banana', 'apple', 'a']

List indexing and slicing

List and tuple elements have index numbers. Indexing and slicing operations on lists and
tuples work mostly the same way that they do with strings. Here's a quick review of how
index numbers work. For more about indexing and slicing, see Chapter 6.

• Working from left to right, the first element has the index 0, the next has the index
1, and so on.

This example shows the items at index 0 and 1 of the list x.

115

>>> x = ['apple', 'banana', 'pear']
>>> x[0]
'apple'
>>> x[1]
'banana'

• Working from right to left, the first element has the index -1, the next one -2, and
so on—but the leftmost element is still 0.

This example shows the items at index -1 and -2.

>>> x[-1]
'pear'
>>> x[-2]
'banana'

• The beginnings and ends of slices sit between the elements, like notebook
dividers.

This example shows that slice 0:1 contains just one element.

>>> x[0:1]
['apple']

How indexing and slicing are different with a list

Indexing and slicing work slightly differently with lists than they do with strings and
tuples because lists are mutable. You can change a list by using indexing and slicing.
With a tuple or a string, you need to give a new name to the changed object (or reassign
the same name).

Retrieving items from a list with slicing

Following is a brief review of slicing syntax. You can find more information in Chapter 6.

The syntax for slicing is as follows:

sequence_object_name[firstindex:lastindex:step]

These are the rules for slicing:

• You can leave out the first slice index (but not the colon following it). It
defaults to 0.

• You can leave out the last slice index. It defaults to the last item of the sequence.

To access the last sequence item in a slice, if you don't know the length of the
sequence, leave the index blank.

116

• You can leave out the step and the colon preceding it. The step defaults to 1.
• When you specify a range, it begins with the first slice index specified and

ends before the last slice index specified. This is because slices point between
elements. So [0:2] retrieves the first and second elements.

• The notation [:] returns a shallow copy of the whole sequence.

The section, "List references that unexpectedly change," later in the chapter, has
more on shallow copying.

The following example code creates a list of numbers and then, using slice syntax, selects
and displays all the even-numbered items.

>>> mylist = range(0,10)
>>> mylist[::2]
[0, 2, 4, 6, 8]

Changing a list item by using its index number

One way to change the contents of a list is to assign a new item to a particular index
number (also called an offset). This replaces whatever is already at that index number.

Gotcha! Assigning numbers and strings to slices

If you assign to a slice, you must assign an iterable. This means two things:

1. You can't assign a number to a slice.
2. >>> mylist = [1, 2, 3, 4, 5, 6]
3. >>> mylist [2:3] = 8
4. Traceback (most recent call last):
5. File "<stdin>", line 1, in ?
6. TypeError: can only assign an iterable

7. If you assign a string to a slice, each letter becomes a separate list item.
8. >>> mylist[2:4] = 'three'
9. >>> mylist
10.[1, 2, 't', 'h', 'r', 'e', 'e', 5, 6]
11.way around this second problem is to put the number

One way around this second problem is to put the number or string into a list. The
following example assumes you want to replace the numbers 3 and 4 with the strings
‘three’ and ‘four’:

>>> mylist = [1, 2, 3, 4, 5, 6]
>>> mylist[2:4] = ['three', 'four']
>>> mylist
[1, 2, 'three', 'four', 5, 6]

To assign a new item to a list by index number, follow these steps:

117

1. Type the list name and then, in square brackets, type the index number, like
this:

2. mylist[1]

3. On the same line, type = and the new list element, so your line looks
something like this:

4. mylist[1] = new_list_element

In the following example, the element at index 1 (the string 'eggs') is replaced with the
string "lovely spam".

>>> L = ['spam', 'eggs', 'ham']
>>> L[1] = 'lovely spam'
>>> L
['spam', 'lovely spam', 'ham']

You can't assign to an index number that doesn't exist. Python raises an IndexError, as
shown here:

>>> L[3] = 'green eggs'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
IndexError: list assignment index out of range

To add items to the end of a list, use the append() method:

>>> L.append('green eggs')
>>> L
['spam', 'lovely spam', 'ham', 'green eggs']

Assigning to a list with slicing

To assign several items in a row to a list, use a range of index numbers.

Assigning using a slice follows these rules:

• Python first deletes the items currently assigned to those index numbers and then
inserts the new items.

• You don't have to assign the same number of items that you delete.
• You must assign an iterable (see the sidebar, "Gotcha! Assigning numbers and

strings to slices").

To assign items to a list slice, follow these steps:

1. Type the name of the list and, in brackets, type the slice notation, like this:
2. L[1:4]

3. On the same line, type = and the items you want to assign.

118

If you assign items from another list, your whole line might look something like
this:

L[1:4] = ['spam', 'spam', 'spam']

The resulting list now looks like this:

['spam', 'spam', 'spam', 'spam']

The following example manipulates a list of words by using slice assignment:

>>> L = ['spam', 'eggs', 'ham', 'green eggs']
>>> L[:2] = ("don't", "want")
>>> L
["don't", 'want', 'ham', 'green eggs']
>>> L[2:] = ("green eggs", "and", "ham")
>>> L
["don't", 'want', 'green eggs', 'and', 'ham']

List indexing and slicing operations

The following operations use the indexing and slicing features of lists:

• To return the index number of a list item, use the index() method.

If the item isn't in the list, it raises a ValueError.

This example returns the index number of the second item in the list:

>>> mylist = [1, 'two', 3]
>>> mylist.index('two')
1

• To remove from a list the item(s) corresponding to the given index number or
slice, use the keyword del.

This example deletes two items.

>>> mylist2 = ['busy signal', 'fast busy signal', 'no such
number', 'at the
tone, the time will be']
>>> del mylist2[1:3]
>>> mylist2
['busy signal', 'at the tone, the time will be']

• To insert an item before a particular index number, use the insert() method.
• >>> basket.insert(0, 'peach')
• >>> basket
• ['peach', 'apple', 'banana', 'orange']

119

• To remove and return an item at a particular index number, use the pop() method.
The default index number for pop() is the last item in the list. This example
removes and returns the item 'baked beans' in the list breakfast:

• >>> breakfast = ['spam', 'spam', 'spam', 'baked beans', 'spam',
'spam']

• >>> breakfast.pop(3)
• 'baked beans'
• >>> breakfast
• ['spam', 'spam', 'spam', 'spam', 'spam']

The following code uses a while loop to return and delete all the list elements one
at a time:

>>> while breakfast:
... breakfast.pop()
...
'spam'
'spam'
'spam'
'spam'
'spam'
>>> breakfast
[]

Steering Clear of List Gotcha's

This section describes how to avoid some common list errors.

Simultaneous test/add/delete

If you're testing a list condition in a while loop or iterating over a list in a for loop,
avoid adding and deleting list elements at the same time. It's easy to lose track of how the
list is changing. An exception is the use of pop() in a while loop to remove all list
elements one by one.

List references that unexpectedly change

Because lists are mutable, you can change them without making a copy. But if you
reference a single list from several places in your code, it might change when you aren't
expecting it to.

Shallow copying

If a container object (an object—such as a list, tuple, or dictionary—that holds other
objects) contains lists, then making a copy of the container object by using
newcontainer = oldcontainer or newcontainer = oldcontainer[:] doesn't make a
copy of the lists it contains. The new container continues to refer to the original lists. This

120

is called shallow copying, and Python uses it because (among other reasons) it saves
resources. The following example illustrates shallow copying. The larder list changes
when one of the lists inside the food list is changed:

>>> breakfast = ['spam', 'baked beans']
>>> basket = ['peach', 'apple', 'gooseberries']
>>> food = [breakfast, basket]
>>> larder = food
>>> larder
[['spam', 'baked beans'], ['peach', 'apple', 'gooseberries']]
>>> del basket[0]
>>> larder
[['spam', 'baked beans'], ['apple', 'gooseberries']]

Deep copying
Tip Sometimes you want to make a full, or deep, copy of a list (or any item that contains

other items). To do so, import the copy module and use the copy.deepcopy()
function. In this example, when you copy the food list to the larder list by using the
deepcopy() function, changing the contents of one of the lists in food doesn't
change the contents of larder.

>>> food
[['spam', 'baked beans'], ['apple', 'gooseberries']]
>>> import copy
>>> larder = copy.deepcopy(food)
>>> larder

[['spam', 'baked beans'], ['apple', 'gooseberries']]
>>> del basket[0]
>>> food
[['spam', 'baked beans'], ['gooseberries']]
>>> larder
[['spam', 'baked beans'], ['apple', 'gooseberries']]

Disappearing lists

The list methods append() and sort() change a list in place but don't return the list.
They return None. Don't use these methods in assignment statements or else the list might
disappear, as in this example:

>>> L = ["my", "list"]
>>> L = L.append('x') # wrong!
>>> print L
None

To append to a list, just use the append() method by itself. Don't give the result a name.

>>> L = ["my", "list"]
>>> L.append('x')
>>> print L
['my', 'list', 'x']

121

That tricky asterisk

If you repeat (*) a list, you get a list with multiple copies of its elements. But if you
repeat (*) a list containing a list, you get multiple shallow copies of the contained list.
The following examples demonstrate both repeating a list and repeating a list that
contains a list:

• A repeated list:
• >>> mylist = [3, 'blind', 'mice']
• >>> x = mylist * 2
• >>> x
• [3, 'blind', 'mice', 3, 'blind', 'mice']

• Repeating a list containing a list:
• >>> y = [mylist] * 2
• >>> y
• [[3, 'blind', 'mice'], [3, 'blind', 'mice']]

In the preceding examples, if you change mylist, the value of y changes because y
contains references to mylist. But the value of x doesn't change because x only contains
copies of the elements of mylist. Here's what happens:

We change the first element of mylist:

>>> mylist[0] = 'two'

Here's the result:

• y reflects the new version of mylist:
• >>> y
• [['two', 'blind', 'mice'], ['two', 'blind', 'mice']]

• x doesn't change:
• >>> x
• [3, 'blind', 'mice', 3, 'blind', 'mice']

Performance problems

Manipulating large lists can cause performance problems. Here's how to avoid these
problems:

• Avoid copying long lists.

For example, avoid using loops that delete elements from the beginning of a list
(del mylist[0] or mylist.pop(0)) because doing so requires Python to make
multiple copies of the list.

• Avoid making multiple copies of the elements of a list.

122

Copying the list itself doesn't take a lot of time, but copying the elements does.

• Build lists when you need them. Populating a list with elements before you need
the list isn't necessary, and it might even waste memory.

Building Lists, Stacks, and Queues

This section describes two often-used list tasks: building a list one element at a time and
building stacks and queues.

Building lists incrementally

Because lists are mutable, you can build them one element at a time. It is often useful to
build lists from other iterable objects or to combine multiple lists. The easiest way of
doing this is to write a for loop and build the new list with the append() method, as in
the following example:

L1 = ['spam', 'spam', 'spam', 'baked beans', None, 'spam', 'spam']
L2 = []
for i in L1:
if i is not None:
L2.append(i)

After you run the above code, the value of L2 is ["spam", "spam", "spam", "baked
beans", "spam", "spam"].

Warning If you're iterating over a list in a for loop, it's best not to add elements to or
delete elements from that list—doing so can introduce errors. It's safer to use
code like the above example to build a new list and then change the elements of
the new list.

Python provides several other tools for building lists:

• To convert or copy sequences (and other iterable objects) to a list, use the list()
function (described earlier in this chapter).

• Another way to copy a whole list or other sequence and return a shallow copy is
to use this slice notation: mylist[:]

• Python includes a feature called a list comprehension, which works in much the
same way as a list-building for loop but is packaged more compactly. (See
Chapter 16 to find out about this advanced feature.)

• To loop over two or more sequences at the same time, use the zip() function. It
returns a list of tuples that associates the items in one sequence with the
corresponding items in another sequence. It also truncates the resulting list to the
length of the shortest sequence.

123

• >>> a = [8, 3, 5, 11]
• >>> b = ('eggs', 'spam')
• >>> c = zip(a, b)
• >>> print c
• [(8, 'eggs'), (3, 'spam')]

If you use zip() again with the *args style parameter, you get a list of tuples that
correspond to the original sequences you started with (but any items that were
truncated are missing).

Tip The *args style argument is explained in Chapter 11.

Here's what it could look like:

>>> zip(*c)
[(8, 3), ('eggs', 'spam')]

• To get tuples of list index numbers and their elements, use the enumerate()
iterator.

• >>> a = [8, 3, 5, 11]
• >>> for I, item in enumerate(a):
• ... print (I, item),
• ...
• (0, 8) (1, 3) (2, 5) (3, 11)

Stacking and queuing with lists

Stacks and queues are concepts that describe how items get added to and removed from
lists. Stacks and queues are not Python objects, but you can write code in which a list
behaves like a stack or a queue.

A stack is like a spring-loaded plate dispenser where the last item on is the first item off
(this is also called "last in, first out" order, which is inscribed in the Great Book of Geeky
Acronyms as "LIFO"). A queue, as folks familiar with British English know, is like a line
at a store checkout counter: The first person in is the first served (also called "first in, first
out," or "FIFO").

Adding items to a stack

To add an item to the top of a stack, use append().

This example puts six plates on the pile:

>>> plates = []
>>> for p in range(6):
... plates.append(p)
...
>>> plates

124

[0, 1, 2, 3, 4, 5]

Retrieving items from a stack

To retrieve an item from the top of a stack, use pop() without an argument (so it defaults
to the last item in the list).

To retrieve all the items, use pop() in a while loop. Get the plates off the pile, last-on,
first-off, like this:

>>> while plates:
... plates.pop()
...
5
4
3
2
1
0

Queuing up

To use a list as a queue to process items "in the order in which they were received"
(anyone who has tried to talk to a large company on the telephone will be familiar with
that phrase), follow these steps:

1. Use append() to add an item to the end of the queue.

In the following example, we create an empty list and then append six callers to it:

>>> callers = []
>>> for c in range(6):
... callers.append(c)
...
>>> callers
[0, 1, 2, 3, 4, 5]

2. Use pop(0) in a while loop to retrieve an item from the front of the queue,
like this:

3. >>> while callers:
4. ... callers.pop(0)
5. ...
6. 0
7. 1
8. 2
9. 3
10.4
11.5

Warning To avoid performance problems, don't use pop(0) with a large list (more
than about 100 elements).

125

Taking Tuples in Hand

This section describes some ways to work with tuples. We cover converting other objects
to tuples, several ways of creating tuples, using tuples to swap values, and efficiently
giving names to individual items in tuples.

Converting another object to a tuple

To convert another iterable object to a tuple, use the tuple() function:

>>> mylist = [1, 2, 3]
>>> tuple(mylist)
(1, 2, 3)

REMEMBER If you convert a list to a tuple, remember that the new tuple cannot be
changed.

Tuple packing

If you type some names separated by commas, you create a tuple. This is called tuple
packing. It works on either side of an assignment statement.

The following example creates a tuple containing two strings:

>>> q = 'blah, blah, blah'
>>> r = 'GINGER'
>>> what_they_hear = q, r
>>> print what_they_hear
('blah, blah, blah', 'GINGER')

To create a tuple containing more than two items, just use multiple comma operators.
This example creates a tuple containing four strings.

>>> q, r, q, r
('blah, blah, blah', 'GINGER', 'blah, blah, blah', 'GINGER')

Tuple unpacking

Unpacking a tuple means giving a different name to each element of the tuple.

Tuple unpacking is useful because many functions in Python, such as the zip() function
described in the previous "Building lists incrementally" section, return tuples. With tuple
unpacking, you can easily get at the individual items in these tuples.

To unpack a tuple, just assign multiple names on a single line. Put the names you want to
unpack into on the left side of the assignment statement and put the tuple on the right
side. You need one name for each item in the tuple.

126

The following example unpacks a tuple consisting of three lists:

>>> x = [('rock crushes', 'scissors'), ('paper covers', 'rock'),
('scissors
cut', 'paper')]
>>> rock, paper, scissors = x
>>> print rock
('rock crushes', 'scissors')

If you don't have the same number of names as tuple items, you get a ValueError, as
shown here:

>>> rock, paper = x
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: too many values to unpack

Tip You can actually unpack any sequence object in this way. The following example
unpacks a string:

>>> x = 'string'
>>> a, b, c, d, e, f = x
>>> a
's'
>>> print a, b, c, d, e, f
s t r i n g

However, unpacking is most commonly used with tuples because there are better ways to
get elements out of strings and lists.

Using a tuple to swap values

Because of the special way assignments work with tuples, tuples are the Pythonic way of
swapping values.

This example swaps the values associated with two names:

>>> q = 'blah, blah, blah'
>>> r = 'GINGER'
>>> q, r
('blah, blah, blah', 'GINGER')
>>> q, r = r, q
>>> q, r
('GINGER', 'blah, blah, blah')

127

Chapter 9: Diving into Dictionaries

Overview

In this chapter, we discuss dictionaries (dicts for short) and sets, two data types that store
multiple data elements. Here are some of the things you can discover in this chapter:

• What dictionaries and sets are and how they differ from sequences
• Some of the most useful dictionary tools and set operations
• How to convert other types of data into dictionaries and sets

Dictionaries are useful in the following general and specific circumstances:

• When you need random access to elements.
• When you want to focus on uniqueness.

But consider using sets if you are using Python 2.3 or later. See "Setting Them
Up," later in this chapter.

• For mapping several spellings of a term to a preferred spelling.
• For using a key to find a function to call (known as a dispatch table).
• For looking up zip codes or bank account numbers.
• For working with numeric indexes with only a few noncontiguous keys, when you

don't need to use slicing.

TECHNICAL
STUFF

Data that fits the preceding description is called sparse data.
You can also use a list in this case, but a dict is more
memory-efficient, which often makes things faster.

Defining the Dictionary

Here's how dictionaries (dicts) compare and contrast with other Python data types:

• Dictionaries are a container type that stores data, like lists and tuples.
• Dictionaries are a mapping data type — indexed by keys.

A dictionary's elements (the items it contains) are key:value pairs. In contrast, lists
and tuples store data by using numeric indexes (they are sequence data types) and
support indexing and slicing.

• Dictionaries are mutable.

128

That means a dictionary can be modified in place—you don't have to create a
copy of it to modify it (as you do with strings and tuples).

• However, a dict's keys must be immutable.

Creating a dictionary

The simplest dictionary is a pair of braces ({}), which defines an empty dict.

REMEMBER To create a dictionary with some data in it, follow these steps:

1. Type a left brace, a key, a colon, and a value (the information
you want to associate with the key), like this:

2. {"parrot": "Pining for fjords"

The key can be any immutable data type, such as a string or
integer. Most keys are strings. The value can be any data type.

3. For each additional element in the dictionary, type a comma to
separate it from the previous value and then type another key,
a colon, and a value:

4. {"parrot": "Pining for fjords", "Polly": "Ex-parrot"

5. Tip Repeat Step 2 for each element you want to add.To end
the dictionary, type a right brace: }

If you added two elements, your dictionary looks something like
this:

{"parrot": "Pining for fjords", "Polly": "Ex-parrot")

TECHNICAL
STUFF

Hash strings or hash browns?

Some other languages have dictionary structures; they are called
things like hashes, associative memories, or associative arrays. We
think dictionaryis a friendlier term.

Dict keys must be immutable because Python associates them with a
unique number called a hash. A hash value (or hash) is historically a
number generated from a string of text. Because the number and
string pair are unique, hashes prevent problems that might occur if
two different objects have the same value.

Hashes are used for space-efficient storage, for security and
cryptography, and so on. Another benefit of hashing is that after the
hash is computed, keys can be looked up directly—there's no need
for the computer to search through a whole list of keys. (In human
terms, hashes help a computer be smart in the same way a human is

129

smart when she knows to jump to the end of a physical dictionary to
look up a term that starts with Z.) In Python, this feature makes
dictionaries very fast.

In Python, most immutable objects have a hash, and the attributes of
all namespace objects are stored in dictionaries.

TECHNICAL
STUFF

Some details about dictionary keys:

• Keys must be an immutable data type—for example, a string,
integer, or tuple.

• If you use a tuple as a key, the tuple cannot have any mutable
elements.

For example, you can't use a tuple that contains a list.

• You can type a key directly into the dictionary, or you can
type the name of an object, like this:

• >>> x = "mydictkey"
• >>> mydict = {x: "mydictvalue"}

Order in the dict

Python doesn't store dictionary elements in any particular order. If you enter elements in
one order, they may be stored in another (essentially random) order inside Python. Here's
an example:

>>> lumberjack = {'sleep': "All night", 'work': "All day"}
>>> lumberjack
{'work': 'All day', 'sleep': 'All night'}

The steps to make a sorted list of dictionary keys depend on your Python version.

Python 2.4 and later

If you have Python 2.4 or later, follow these steps to get a sorted (usually alphanumeric)
list of the keys of a dictionary:

1. Type a list name and = sorted, followed by the name of your dict in
parentheses, like this:

2. >>> sorted_keys = sorted(lumberjack)

3. To see the sorted list of keys, type the name of the list.
4. >>> sorted_keys
5. ['sleep', 'work']

130

Earlier versions

If you have Python 2.3 or earlier, follow these steps to get a sorted list of the keys of a
dictionary:

1. Type a name, an = sign, the name of your dict, and .keys(), like so:
2. >>> list_of_keys = lumberjack.keys()

3. Use the sort() method to sort the list by typing this on the next line,
substituting the name you created in Step 1 for list_of_keys:

4. >>> list_of_keys.sort()

5. Type the list name again to see the sorted list of keys, like this:
6. >>> list_of_keys
7. ['sleep', 'work']

Warning Don't try to give a name to the result of list_of_keys.sort(). The sort()
method changes the list in place but returns None, not a list (to find out more
about list methods and what they return, see Chapter 8).

Doodling Around with Dicts

This section describes some of the common tasks you can do with dicts, such as storing,
extracting, adding, deleting, and searching for keys and values.

Popular dict operations

The main operations for a dictionary are storing a key and its associated value and using
the key to extract the value.

Storing a value

To store a key:value pair in an existing dictionary, follow these steps:

1. Type the name of the dict and a key in square brackets, like this:
2. >>> mydict['dracula']

REMEMBER The key can be new or it can be a key that's already in the
dictionary. If you use an existing key, the new value replaces the
old one.

3. Type = and the value you want to store.

Your line of code might look like this:

>>> mydict['dracula'] = 'stoker'

The following example code creates a dictionary and then creates a new key, 'dracula',
and gives it the value 'stoker':

>>> mydict = {'jabberwocky': 'carroll', 'sherlock holmes': 'doyle'}
>>> mydict['dracula'] = 'stoker'

131

>>> mydict
{'jabberwocky': 'carroll', 'dracula': 'stoker', 'sherlock holmes':
'doyle'}

Here, the existing key 'dracula' is given a new value, 'oldman':

>>> mydict['dracula'] = 'oldman'
>>> mydict
{'jabberwocky': 'carroll', 'dracula': 'oldman', 'sherlock holmes':
'doyle'}

Extracting a value

There are two ways of extracting a value based on a dictionary key. The best option
depends on a couple of factors:

• If you're certain the key is in the dictionary, or if you want to raise a KeyError
exception when the key is not in the dictionary, use the square brackets syntax.

• If many of the keys you're searching for aren't in the dictionary, or if you want
Python to return a value you specify rather than raise an exception when keys
aren't found, use the get() method.

To raise an exception on failure

If you want to raise an exception if the key you're searching for doesn't exist, type the
name of the dict followed by a key in square brackets, like this:

>>> mydict['jane eyre']
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
KeyError: 'jane eyre'

To return a value you specify on failure

To return a default value if the key doesn't exist, follow these steps:

1. Type the name of the dict, a dot, get(, and a key.

Your code might look like this:

>>> mydict.get('jane eyre'

2. (Optional) Type a comma and a string you want to return if the key doesn't
exist.

If you don't specify a string, the default value None is returned.

>>> mydict.get('jane eyre', 'key not found'

132

3. End the line by typing a right parenthesis:)

Your completed line of code will look something like this if the key doesn't exist:

>>> mydict.get('jane eyre', 'key not found')
'key not found'

Finding out about dict methods

Dictionaries come with built-in methods that allow you to perform the following tasks:

• Retrieve items from dicts by using items(), keys(), and values() methods.
• Use dicts in loops with iterkeys(), itervalues(), and iteritems() methods.
• Test whether a key is in a dict by using the in keyword.
• Delete items from dicts by using the del keyword and the popitem() and pop()

methods.
• Make shallow copies of dicts by using the copy() method.
• Add items to dicts by using the setdefault() method.

Retrieving items from dicts

The keys(), values(), and items() methods are good for list-processing operations
using the contents of dictionaries. The pop() and popitem() methods retrieve and delete
things at the same time, so they're good for processing a temporary dictionary you don't
need to keep or for processing items one at a time until there aren't any more.

items()

The items() method retrieves all the key:value pairs in a dictionary and returns them as
a list of tuples. Each key:value pair is a tuple.

To retrieve all the items in a dictionary, type the name of the dictionary, a dot, and
items():

>>> mydict = {'bed price': '800 pounds', 'bed length': '2 feet long'}
>>> print mydict.items()
[('bed length', '2 feet long'), ('bed price', '800 pounds')]

keys()

The keys() method retrieves all the keys in the dictionary. It returns a list, as shown
here:

>>> print mydict.keys()
['bed length', 'bed price']

values()

133

The values() method retrieves all the values in the dictionary. It returns a list, as shown
here:

>>> print mydict.values()
['2 foot long', '800 pounds']

popitem()

To retrieve a single key:value pair and remove it from the dict, use the popitem()
method, like this:

>>> mydict.popitem()
('bed length', '2 foot long')

Tip You can't use popitem() to specify which key:value pair to retrieve. It's most often
used in a while loop when you want to process items one at a time until there aren't
any more but you don't care what order they're processed in.

TECHNICAL
STUFF

The popitem() method was added in Python 2.1.

pop()

To remove a key:value pair and retrieve only the value, use the pop() method and pass
the key in the parentheses, like this:

>>> mydict.pop('bed price')
'800 pounds'

Getting loopy with dicts

You can use a dict's keys, values, or key:value pairs in a loop. This is called iterating
over the items.

TECHNICAL
STUFF

The keys(), values(), and items() methods also work in loops,
but the iterator methods are more efficient.

Here are several ways of looping with a dict.

Keys

To iterate over keys in Python 2.2 and later, create a for statement with the following
syntax, substituting the name of your dictionary (you can also use a different name for the
iterator, although key is standard for keys):

for key in mydict:

TECHNICAL
STUFF

The preceding code works only in Python 2.2 and later. It is
equivalent to the following in earlier versions:

134

for key in mydict.keys():

Values

To iterate over values, use this syntax in the for statement:

for value in mydict.itervalues():

Key:value pairs

To iterate over key:value pairs, use the following syntax:

for key, value in mydict.iteritems():

Testing a dict

How you test whether a single key appears in the dict depends on your version of Python.
(You might want to do this if, for example, you wanted to see if a customer number was
in your dictionary.)

Python 2.2 and newer

To check whether a single key is in the dictionary, use the keyword in within an if
statement, like this:

if 'bed price' in mydict:

Older versions

If you are using Python 2.1 or earlier, use the has_key() method instead:

if mydict.has_key('bed price'):

Deleting items from a dict

You can delete a specific key:value pair from a dict by using the del keyword. If you're
working with the dict in a loop and doing something with the dict data, using pop() or
popitem() is more efficient; they return and delete elements at the same time.

Key:value

To delete a key:value pair from a dictionary, use the del keyword and give the key in
square brackets. For example:

del mydict['bed price']

Individual elements

135

To delete elements from a dict one at a time in a loop, use either of these methods,
depending on whether you want the key:value pair or just the value returned:

• popitem(): The popitem() method returns the key:value pair and deletes the
pair from the dict.

• while mydict:
• key, value = mydict.popitem()

• pop(): The pop() method returns the value and deletes the key:value pair from
the dict.

• for key in mylist:
• if key in mydict:
• value = mydict.pop(key)

All elements

To delete all the elements of a dict at once, use the clear() method. This removes all the
elements at once (leaving an empty dict) and returns None:

mydict.clear()

Making a shallow copy of a dict

To make a shallow copy of a dict, use the copy() method.

mycopy = mydict.copy()

See the sidebar, "Understanding shallow copies," to find out more about shallow copies
of dicts.

Get or set: Adding items to a dict

The setdefault() method (Pythonistas call it get or set) is like get(), which extracts a
value by using a key. But setdefault() goes one step further: If the key is not found, it
adds the key to the dict.

Understanding shallow copies

To understand shallow copies, you need to know something about how Python stores
information. When you give a name to an object such as a list that stores some values,
Python creates a reference (the name) to that object (the stored values).

>>> mylist = ['my', 'list']

Now, say you create a dictionary that contains this list:

>>> mydict = {'mynumber': 1, 'alist': mylist, 'mytuple': (1,2)}

136

If you look at the dict, it looks like the values stored in the list are stored in the dict, too:

>>> mydict
{'mytuple': (1, 2), 'alist': ['my', 'list'], 'mynumber': 1}

But in fact the dictionary is not storing the actual values stored in the list. It is only
storing the reference to the list.

That means, if you change the list…

 >>> mylist.append('changed')

… your dict also changes.

>>> mydict
{'mytuple': (1, 2), 'alist': ['my', 'list', 'changed'], 'mynumber': 1}

When you make a shallow copy of something, you copy only the references, not the
actual values that the references point to. So if you make a copy of a dict by using the
copy() method, the copy reflects any changes made to the list that the dictionary is
referring to.

>>> mycopy = mydict.copy()
>>> mycopy
{'mytuple': (1, 2), 'alist': ['my', 'list', 'changed'], 'mynumber': 1}

To make a copy of the actual values so that these changes don't occur, import the copy
module and use the deepcopy() function. See Chapter 8.

The standard use for setdefault() is for adding a list (or other mutable data type) to the
dict and appending items to the list. Here's how the syntax looks:

mydict.setdefault(key, []).append(value)

Here's what happens:

1. If the key isn't in the dict, Python adds the key and uses an empty list as the value.
Then it appends the value you specified to the list.

2. If the key is in the dict, Python tries to append your value to that key's value. (For
this to work, the value must be a list because the append() method works only
with lists.)

REMEMBER If you don't specify a value, the value None is used.

The following code creates a key, 13, and pairs it with a value of an empty list. Then it
appends the string 'complaints' to the list:

137

>>> rooms = {'12A': ['argument clinic'], 12: ['abuse']}
>>> rooms.setdefault(13, []).append('complaints')
>>> rooms
{'12A': ['argument clinic'], 12: ['abuse'], 13: ['complaints']}

The following code appends the string 'don't bother' to the list that has the key 13.

>>> rooms.setdefault(13, []).append("don't bother")
>>> rooms
{'12A': ['argument clinic'], 12: ['abuse'], 13: ['complaints', "don't
bother"]}

The following syntax does the same thing with a set.

mydict.setdefault(key, sets.Set()).add(value)

Building Dictionaries

In Python, most compound data objects are created by processing data in a loop structure,
so you'll often build lists, dictionaries, and so on by writing loops. Following are some
loopy and non-loopy ways of building dicts.

Converting other data types into a dict

You have several ways to convert other data types into dicts. This section shows the
dict() constructor, the fromkeys() method, and a for loop.

Converting a list of tuples

To convert a list of two-item tuples (or any iterable containing two-item iterables) to a
dict, pass the list to the dict() method like this:

>>> list_of_tuples = [('spam', 1), ('eggs', 'green')]
>>> dict(list_of_tuples)
{'eggs': 'green', 'spam': 1}

Converting a sequence

To create a dict from a list or tuple and an optional mapping value, use the fromkeys()
method. (This works in Python 2.3 or later.) The items in the sequence become the keys,
and the mapping value (None by default) is used for the values. In this example, each item
in the list is turned into a key and given the value 'breakfast':

>>> mylist = ['spam', 'eggs', 'orange juice']
>>> print dict.fromkeys(mylist, "breakfast")
{'eggs': 'breakfast', 'orange juice': 'breakfast', 'spam': 'breakfast'}

138

You can do the same thing by using the dict() constructor and a list comprehension (a
line of code that creates a list from a range of items).

>>> dict([(i, 'breakfast') for i in mylist])
{'eggs': 'breakfast', 'orange juice': 'breakfast', 'spam': 'breakfast'}

Tip If you won't be working with values later, consider creating a set rather than a dict. A
set has only keys, no values. To create a set from a list or tuple, just type set() and
include the list or tuple in parentheses. For more information, see "Setting Them
Up," later in this chapter.

To create a dict from a two-element iterable, you can also use a list comprehension. This
code builds a dict of powers of 2:

>>> dict([(x, x**2) for x in (2, 4, 6)])
{2: 4, 4: 16, 6: 36}

You can get the lowdown on list comprehensions in Chapter 16.

Building a dict with keyword arguments

In Python 2.3 and later, you can pass keyword arguments (**kwargs) to the dict()
method and build a dictionary, like this:

>>> sack = dict(cats=7, kits=7)
>>> sack
{'kits': 7, 'cats': 7}

For more about **kwargs, see Chapter 11.

Building a dict out of another dict by using a for loop

To go through a dict while building a second one, use a for loop and assign each pair in
the old dict to the new dict, like this:

>>> mydict = {'bed price': '800 pounds', 'bed length': '2 foot long'}
>>> newdict = {}
>>> for key in mydict:
... value = mydict[key]
... newdict[key] = value
...
>>> newdict
{'bed length': '2 foot long', 'bed price': '800 pounds'}

TECHNICAL
STUFF

In Python 2.1 and earlier, the in keyword doesn't work with a
dictionary object; you need to use it with a dictionary method. So to
write the above loop, you could use this syntax:

for key, value in mydict.items():

139

Updating a dictionary

To replace the values in a dictionary with new values, use the update() method. The new
key:value pairs can come from either another dictionary (or other mapping object) or an
iterable of key:value pairs (such as a list of two- item tuples).

TECHNICAL
STUFF

The iterable (key:value) option requires Python 2.4 or later.

You can also replace values by using keyword arguments, as in this example:

>>> rooms = {'12A': 'argument clinic', 12: 'abuse'}
>>> rooms.update(A14='hit on the head lessons')
>>> rooms
{'12A': 'argument clinic', 12: 'abuse', 'A14': 'hit on the head
lessons'}

Here's code that updates one dict by using key:value pairs from a second dict. If a key
appears in both dicts, the second dict's values overwrite the first dict's values. The second
dict is not modified.

>>> rooms2 = {'A14': 'canceled by Flying Fox'}
>>> rooms.update(rooms2)
>>> rooms
{'12A': 'argument clinic', 12: 'abuse', 'A14': 'canceled by Flying Fox'}

When Only a Dict Will Do

This section gives brief examples of some real-world uses for dicts, including a game that
retrieves values associated with keys, a cache for storing frequently used items, and a
way of finding duplicate keys.

Storing and retrieving values

A dict is useful for storing and retrieving immutable objects and corresponding values,
like product prices, for example. Here's a small game that uses a dict for this purpose:

choice = raw_input("Choose scissors, rock, or paper: ")
results = {"scissors": "cut paper", "rock": "crushes scissors",
"paper": "covers
rock"}
print choice, results[choice]

Here's one round of the game:

Choose scissors, rock, or paper: paper
paper covers rock

140

You can also use if/elif/else statements for this purpose (see Chapter 10), but a
dictionary is often better because it's built when a program first runs (which is more
efficient) and it's easier to read if a lot of key:value pairs are involved. It's also easier to
maintain and modify.

Using a dict as a cache

If you're using a for loop to process some items, a dict can store the results for reuse.
This type of storage is called a cache. There are two ways to write caching code. The one
you use depends on whether you're processing a lot of different items or mostly multiple
copies of similar items.

Tip The following examples refer to a function called getValue(). This isn't a function
built in to Python; you'll have to write it yourself.

Different items

If many unique items probably won't be in the dict, write code like this:

result = []
cache = {}
for key in mylist:
 if key in cache:
 result.append(cache[key])
 else:
 value = getValue(key)
 cache[key] = value
 result.append(value)

Tip We use a cache because the getValue() function is expensive (that is, it takes a lot
of time). However, you should avoid optimizing code when you don't need to—it
makes code harder to read.

Similar items

The following code is efficient if you're processing many similar items, but it's harder to
read:

result = []
cache = {}
for key in mylist:
 if key in cache:
 result.append(cache[key])
 else:
 # Add to cache and append to result
 result.append(cache.setdefault(key, getValue(key)))

Tip If you think that the keys will almost always be in the dict, the following is even
more efficient. That's because try blocks take very little time if an exception isn't
raised, but exceptions take a lot of time to process:

141

result = []
cache = {}
for key in mylist:
 try:
 result.append(cache[key])
 except KeyError:
 # Add to cache and append to result
 result.append(cache.setdefault(key, getValue(key)))

Dealing with duplicate keys

Because setdefault() returns the value for a key, it's easy and efficient to write a loop
that converts a list of key:value tuples into a dict in which each key contains a list of
values. This is handy when you expect key duplications.

This code processes a list of tuples and finds that two values share a key:

>>> L = [(1, 'pear tree'), (5, 'golden rings'), (1, 'partridge')]
>>> d = {}
>>> for key,value in L:
... d.setdefault(key, []).append(value)
...
>>> d
{1: ['pear tree', 'partridge'], 5: ['golden rings']}

Setting Them Up

Sets are a data type that supports mathematical operations like union, intersection,
difference, and symmetric difference.

What sets are and aren't

Here's how sets fit in with the rest of Python's data types:

• The set() type is built into Python 2.4 and later. If you're using Python 2.3, you
must import the sets module before using sets. The data type in the sets module
is called Set() (with a capital S), not set().

• Like a dict, a set is an unordered collection of elements.
• Unlike a dict, a set contains only keys (that is, unique, immutable objects). A set

does not have values, and it is not a mapping type.
• Unlike a sequence, the elements in sets aren't stored in any particular order, so

sets don't support indexing or slicing.
• In sequences, an element can occur multiple times, but a set contains only unique

elements, no duplicates.

142

• Regular sets are mutable, and you can't use one as an element of another set or as
a dictionary key. (But see the section, "Immutable or frozen sets," later in this
chapter.)

Here's an example of a set based on a list that contains some duplicate elements. The set
contains no duplicates.

>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
>>> fruits = set(basket)
>>> fruits
set(['orange', 'pear', 'apple', 'banana'])

Membership testing with sets

A set is useful for comparing individual items against a group of elements. For example,
if you have a set that contains all states on the Atlantic coast, you can check whether a
user-entered state is on the Atlantic.

Checking elements

To test whether an element is in a set, use the in keyword, like this:

>>> 'Maine' in atlantic_states
True
>>> 'Oregon' in atlantic_states
False

Checking subsets and supersets

To test whether one set is a subset or superset of another, use the appropriate method
listed below. Both return True or False.

• a.issubset(b): Tests whether all the elements of set a are also in set b.
• a.issuperset(b): Tests whether set a contains all the elements in set b.

Finding set elements

Set operators and methods can be used to combine sets and find their intersections and
their unique elements.

TECHNICAL
STUFF

Set operations have corresponding methods. In some cases, using the
method syntax rather than the operator creates easier-to-read code.

The following operations are the most commonly used.

143

Difference

The difference operation compares two sets and returns a set containing the elements that
are in the first set but not in the second set. The difference operator - uses this syntax:

a - b

The difference method uses this syntax:

a.difference(b)

The following example finds the set of round things that aren't pink:

>>> roundthings = ['orange', 'gumball', 'egg', 'tire']
>>> pinkthings = ['lipstick', 'gumball', 'baby blanket']
>>> a = set(roundthings)
>>> q = set(pinkthings)
>>> a - q
set(['orange', 'egg', 'tire'])

Union

The | operator returns the union of the sets (all the elements from both sets). The union
method uses this syntax:

a.union(b)

This example finds the set of all round things and all pink things:

>>> a | q
set(['lipstick', 'tire', 'orange', 'gumball', 'egg', 'baby blanket'])

Intersection

The & operator returns the intersection of the sets (the elements that are present in both
sets). The intersection method uses this syntax:

a.intersection(b)

This example finds all the round pink things:

>>> a & q
set(['gumball'])

Symmetric difference

The ^ operator returns the symmetric difference of the sets—elements in

144

• Exactly one set
• Not both sets

The symmetric difference method uses this syntax:

a.symmetric_difference(b)

This example finds all the things that are either round or pink but not both:

>>> a ^ q
 set(['orange', 'egg', 'lipstick', 'tire', 'baby blanket'])

Immutable or frozen sets

Python 2.4 has a built-in data type called frozenset. It's similar to set, but it's
immutable (that is, after you've created one, you can't change it). Because a frozenset is
immutable, it can be used as a dict key or as an element in a set.

In the following example, a frozenset instance is used to associate a three-item set key
with the value None:

>>> mylist = ['foo', 'bar', 'spam']
>>> s = frozenset(mylist)
>>> s
frozenset(['foo', 'bar', 'spam'])
>>> d = {s: None}
>>> d
{frozenset(['foo', 'bar', 'spam']): None}

If you try to use a regular set as a dict key, Python builds an immutable set from your set
and uses that set as the dict key instead.

TECHNICAL
STUFF

Python 2.3 has a similar subclass of sets called ImmutableSet. It is
available if you import the sets module.

145

Part III: Structures

Chapter List

Chapter 10: Staying in Control
Chapter 11: Fun with Functions
Chapter 12: Building Applications with Modules and Packages
Chapter 13: Getting Classy
Chapter 14: Introducing New-Style Classes
Chapter 15: Feeling Exceptional
Chapter 16: Tackling Some Advanced Features

The 5th Wave By Rich Tennant

"We're here to clean the code."

In this part…

This part covers Python's code blocks, the chunks of code that manipulate data and return
results.

If you've ever seen a flow chart, you'll be comfortable with Chapter 10, which describes
if statements and loops… loops… loops….

146

Chapter 11 takes you inside the magic boxes called functions. You'll discover how to put
stuff into them and how to get stuff out of them.

Modules and packages are the Lego blocks of Python programs. Chapter 12 shows you
how to build and work with both module files, which store chunks of code that work
together, and packages, which are directories that contain related modules.

Lucky Chapter 13 inducts you into the temple of object-oriented programming. Classes,
like factories or templates, create other objects that do the actual work. After you read
this chapter, you'll understand what it's like to be a capitalist baron who controls the
means of production.

Classes are such an important concept that we couldn't get away with just one chapter
about them. Python 2.5 introduced new-style classes. You don't have to use them, but if
you want to, Chapter 14 is where they are.

What do you do when something weird happens in your Python program? Chapter 15
offers advice. Here, you find out how to anticipate and handle exceptions in your
programs.

If you've devoured the rest of the chapters in this part and you're still hungry, turn to
Chapter 16. Here, we introduce some advanced features of Python programming. Even if
you don't want to use these features yourself yet, you'll appreciate being able to recognize
them in other people's programs.

147

Chapter 10: Staying in Control

Overview

With Python, you use control structures to determine whether a chunk of code runs or
how many times to run that code.

TECHNICAL
STUFF

This kind of code is also called a compound statement. A compound
statement is a kind of code block (lines of code that perform an
action).

In this chapter, we show you

• The condition and comparison operators that control structures use
• Tests you can do on data to decide whether and how code should run
• How to use if blocks to test several specific conditions
• When and how to use for and while loops to execute code repeatedly

hings to Know about Control Structures

This section describes some general things you need to know about how control
structures work. It applies to all the structures in this chapter.

• A control structure starts with a keyword—if, for, try, while, or with. The first
line also contains an expression and ends with a colon.

• You can nest control structures. So an if statement can be nested inside a for
loop, and vice versa. (You can also nest for in for and if in if.)

• Python uses indentation to group statements together.

Each line within a code block must be indented by the same amount—the
convention is four spaces for the first block, eight spaces for any block nested in
the first block, and so on.

• When you enter a compound statement (a statement with more than one line) in
interactive mode (see Chapter 2 for instructions), you need to end it with a blank
line (a Return). This tells the parser that you have typed the last line of the block.

148

All about Conditions and Comparisons

Control structures use conditions and comparisons to tell Python when to carry out
actions. A condition tests whether some expression is true or false. A comparison tests
whether one value is larger than, equal to, or smaller than another. This section covers the
truth values of objects and the operators that you use for conditions and comparisons.

The value of truth

In Python, every object has a truth value—a Boolean value of true or false.

REMEMBER In Python, true and false don't work quite the same way they do in the rest
of life. For example, any string except an empty string evaluates as true.
So you could tell Python 'I am a billionaire', and it would be true!

True and False aren't true and false

Python 2.2.1 and later have built-in Boolean data types True and False, which are
associated with the bool() built-in function. (Other functions and methods also return
Boolean results, such as isdigit().) Comparison expressions, such as x < y, also return
True and False.

History geeks may be interested to know that previous versions of Python used 1 and 0
rather than True and False because that's how it works in the C programming language.
The odd result of this is that the True and False data types are integers:

>>> 1 + True
2

It's important to remember that the Boolean data types are not the same thing as the truth
values of objects returned by Boolean operators. When you check the truth value of
objects by using Boolean operators (for example, by using x and y), you are checking
whether the objects are empty. The Boolean operators return a Python object (for
example, in x and y, the object x or the object y is returned); they don't necessarily
return True or False.

False objects

All Python objects evaluate as true except for null, empty, and zero objects. The following
objects evaluate as false:

• False (one of the two Boolean objects)
• Zero (0) (for any numerical data type)

149

• Empty string ''
• Empty list []
• Empty tuple ()
• Empty dictionary {}
• Empty set set()
• None (a special Python object that stands for "no value")

Testing an object for truth

Testing whether an object is true or false is simple. Just use an if block:

1. Type if followed by a literal or the name of an object. Then type a colon and
press Return:

2. >>> if "a":

3. Type four spaces, and then type something for Python to do. Press Return
twice when you're finished.

4. >>> if "a":
5. ... print "yes!"
6. ...
7. yes!

Python performs the action only when the object evaluates as true. This test does not
assume that the object is any particular data type. Because you're not comparing the
object against anything else, you can think of it as "letting the object evaluate itself."

TECHNICAL
STUFF

if name_of_object: is short for if bool(name_of_object)
== True.

Testing the elements of a sequence object

In Python 2.5, new built-in functions allow you to test the truth values of multiple
elements of a sequence object (such as a list) or other iterables at once.

all()

The all() function returns True if all the elements are true. It also returns True if the
sequence object is empty. For example:

>>> mylist = [1, 2, 3]
>>> all(mylist)
True
>>> myotherlist = [0, 2, 3]
>>> all(myotherlist)
False
>>> myemptylist = []
>>> all(myemptylist)
True

150

any()

The any() function returns True if at least one element is true (the object must not be
empty). For example:

>>> any(mylist)
True
>>> any(myotherlist)
True
>>> any(myemptylist)
False

Boolean operators

You use Boolean operators to test the truth values of objects (to test whether objects are
empty). You can test more than one object at once, and you can set up conditions that
depend on the truth value of one object or the truth value of all the objects you're testing.

REMEMBER The Boolean operators are evaluated in this priority order:

1. not
2. and

3. or

The operators and and or are short-circuit operators. Python evaluates expressions with
these operators from left to right and stops as soon as the outcome is determined. Python
returns the object it evaluated last and skips the rest of the expression.

All about or

The or operator stops evaluating as soon as it finds something that's true. In the following
example, the first item is true, so processing stops there and Python returns the first value.

>>> 3 or 4 or 5
3

In the next example, the first item is false, but the second item is true, so processing stops
and Python returns the second value:

>>> 0 or 1 or 2
1

If no item evaluates as true, the last (false) item is returned.

>>> 0 or [] or ''
''

151

Embrace the power of and

The and operator requires all the conditions to be met for the expression to be true.
Evaluation stops either when an object tests false or when all items have been tested.

Tip The following examples show the results of two expressions using and:

• This example tests all the items and returns the last value:
• >>> 3 and 4 and 5
• 5

• This example stops after testing the second item (0) because it tests false:
• >>> 3 and 0 and 5
• 0

Comparison operators

Comparison operators test whether something is equal to and/or greater than or less than
something else. Table 10-1 lists the comparison operators.

Table 10-1: Python's Comparison Operators
Open table as spreadsheet

Operator Usage Meaning
< x < y x is less than y
<= x <= y x is less than or equal to y
> x > y x is greater than y
>= x >= y x is greater than or equal to y

!=, <> x != y, x <> y x is not equal to y
== x == y x is equal to y

REMEMBER All comparison operators have the same priority. Statements with multiple
comparison operators are evaluated from left to right.

The difference between equals and equals equals

In Python, = (the assignment operator) gives a name to an object. The = operator is part of
a statement. If you want to test whether something is equal to something else, you must
use the == operator.

Is you is or is you ain't my baby?

There are two special comparisons: is and is not. These don't test the values of x and y;
they test the identities of x and y—that is, whether x and y are bound to the same object.

Warning To avoid problems, make a habit of using == and != to compare objects' values

152

rather than using is and is not to compare their identities. Usually, you use is
and is not only when you want to test whether something has the special value
None. (There is only one None.)

Get in!

The comparison operators in and not in check whether a value occurs in a sequence
data type (a list, tuple, or string), a dict, or a set.

The following example checks for the text 'fox' in a set:

>>> data = set(["the", "quick", "brown", "fox"])
>>> if "fox" in data:
... print "Call out the hounds!"
...
Call out the hounds!

Tip If your program works with lots of data, it's a Good Idea to use dicts or sets to store
the data. Searching dicts and sets is faster than searching sequences.

Comparatively speaking

Comparisons can be linked in a chain. The follow example tests three values. Both tests
must be true for the comparison to be true.

>>> if 1 < 2 < 3:
... print "yes!"
...
yes!

TECHNICAL
STUFF

Linked comparisons can be hard to read. In some cases, combining
comparisons with Boolean operators (and, or, not) and parentheses
will improve readability of your code. Compare these pairs of
expressions and decide which are easier to read:

if a < b and b < c:
if a < b < c:
if a < b > c < d:
if (a < b) and (b > c) and (c < d):

The Boolean operators have lower priorities than comparison operators—that is, they are
evaluated after comparison operators. You can use parentheses to make sure comparisons
are evaluated in the order you want.

Feeling Iffy

An if statement is an instruction that Python carries out only if a condition is true. You
often use a comparison operator to test the condition in an if statement. The condition
must be either true or false (no gray areas here!). This is referred to as Boolean
comparison.

153

Tip You can translate an if statement into English as follows: "If this is true, then carry
out the instructions below."

Writing an if statement

To write an if statement, follow these steps:

1. Type if, a condition, and a colon, like so:
2. if weather == "raining":

3. On the next line, type an instruction about what to do if the condition is true.
4. if weather == "raining":
5. bring_umbrella = "yes"

Be sure to indent this line (and any other lines of the block) four spaces.

Warning You might see single-line code blocks combined on one line like this:

if weather == "raining": bring_umbrella = "yes"

We don't recommend using this style in your own code. It's harder to read, and probably
won't be allowed in Python 3.0 and later.

Adding another condition to an if block

If you want to test several conditions, you can include additional code blocks to an if
statement. These blocks begin with the keyword elif (which is short for "else if"). The
elif statement says, essentially, "Otherwise, if this other thing is true, then carry out this
other instruction."

Warning Crucial code that always has to run doesn't belong in if or elif code. Python
reads if blocks (if and elif statements) in order. As soon as it finds a true
condition, it stops evaluating. The rest of the block is not executed.

To write an if block that includes an elif statement, follow these steps:

1. Write an if statement.

Tip Use the instructions in the "Writing an if statement" section, earlier in this
chapter. Your code might look something like this:

if weather == "raining":
bring_umbrella = "yes"

2. Without indenting, on the next line, type elif, a condition, and a colon (:).
3. if weather == "raining":
4. bring_umbrella = "yes"
5. elif weather == "windy":

154

Tip If you are typing in a program that automatically formats Python code, you
might have to press Backspace or Delete one or more times to make sure that
this line is not indented. This is called dedenting.

6. On the next line, indent four spaces and type an instruction, like so:
7. if weather == "raining":
8. bring_umbrella = "yes"
9. elif weather == "windy":
10.bring_jacket = "yes"

You can type more instructions. Be sure to indent any additional instruction lines
four spaces.

Adding an else statement to an if block

An else statement always comes last in an if block. It means "If none of the preceding
statements was true, then carry out this final instruction."

Warning Don't put critical code in an else statement. The else code gets executed only
if none of the other statements in the if block is true.

To write an if block that includes an else statement, follow these steps:

1. Write an if statement.
Tip If you have only one condition to test, skip to Step 3.

2. If you have additional conditions to test, write one or more elif statements.
Use the instructions in the section "Adding another condition to an if block,"
earlier in this chapter.

3. On the next line, type else:.

This text should line up with if. You might have to dedent if you're typing in a
program that formats Python code automatically.

4. Go to the next line, indent four spaces, and type at least one instruction.
5. go_out = "now! what are you waiting for?"

Be sure to indent any additional instruction lines four spaces.

Your completed code block might look like this:

if weather == "raining":
bring_umbrella = "yes"
elif weather == "windy":
bring_jacket = "yes"
else:
go_out = "now! what are you waiting for?"

155

Combining tests

You don't always have to write elif statements when you want to test multiple
conditions. If you want to perform the same action in more than one condition, you can
combine the conditions in a single if or elif statement.

The code snippets in Listings 10-1 and 10-2 both test for the same conditions, but the
example combining multiple conditions in the if statement is easier to read:

Listing 10-1: elif block
if age < 18:
 print "Discount rate"
elif age > 65:
 print "Discount rate"
else:
 print "Adult rate"

Listing 10-2: Two conditions in an if statement
if (age < 18) or (age > 65):
 print "Discount rate"
else:
 print "Adult rate"

Staying in the Loop

Computers are good at doing things over and over again. Humans tend to find repetitious
tasks boring. That's why we program with loops. Loops are code blocks that tirelessly
repeat until the task is finished. Python has for loops and while loops. Both kinds of
loops have these things in common:

• They start with a keyword (for or while), followed by an expression and ending
with a colon.

• They are code blocks, and the code inside them is indented.

TECHNICAL
STUFF

The right loop for your task depends on several factors. See the
section "Choosing Your Loop" later in this chapter.

For a Good Time…

A for loop is a way to repeat some instructions (a code block) a number of times. In this
section, we explain the workings of the for loop and discuss iterables, which are objects
you can use to generate a for loop.

How for works

Here's a basic for loop:

156

for mychar in "hello!":
 print "the ascii value of", mychar, "is", ord(mychar)

The preceding example shows all the important features of a for loop:

• The keyword for
• A name that holds a value each time through the loop (this name is sometimes

called the loop target)
• The keyword in

TECHNICAL
STUFF

Note that in used in a for loop works differently from the
Boolean operator in (see the "Get in!" section earlier in this
chapter). Here, in is used to separate the loop target from the
iterable.

• An iterable (a sequence or iterator object)—in this case, the string 'hello!'
• A colon
• An indented statement

In a for block, Python gives the name to each element in the iterable, one at a time, in
order. It reuses the name each time through the loop. After Python gives the name to a
new element, it executes the instructions in the code block.

The example at the beginning of this section computes and prints the ASCII value of each
character in a string (using the ord() function):

the ascii value of h is 104
the ascii value of e is 101
the ascii value of l is 108
the ascii value of l is 108
the ascii value of o is 111
the ascii value of ! is 33

Iterables, getcher iterables!

A for loop works only with objects that have, or can generate, multiple elements. Such
objects are called iterables (because a for loop generates multiple iterations, or repeats,
using the elements in the object).

TECHNICAL
STUFF

Manipulating an object with a for loop is also called iterating over a
sequence or looping through a sequence.

Here are some of Python's objects that can be used with a for loop:

for element in range(1,4): # range
 print element
for element in [1, 2, 3]: # list
 print element
for key in {'one':1, 'two':2}: # dictionary
 print key
for line in open("myfile.txt"): # text file

157

 print line
for value in mydict.itervalues(): # iterator object
 print value
for key, value in mydict.iteritems(): # tuple unpacking
 print key, value

Home on the range

It's common to use a for loop to iterate over a sequence of numbers by using the function
range(), which generates lists of arithmetic progressions.

To use the range() function, feed it the following arguments:

• Required: An integer specifying the end of the range

REMEMBER The range() function generates a list of numbers up to but not
including the end-of-range number. For example, if you want a list
of all the single digits, you would use 10, not 9, as the end of the
range:

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

• Optional: An integer specifying the start of the range. It goes before the integer
that specifies the end of the range. If left out, it defaults to 0.

This example shows a range() function with a starting number of 2.

>>> range(2, 10)
[2, 3, 4, 5, 6, 7, 8, 9]
Optional: An integer to add to the current number

• Optional: An integer to add to the current number to generate the next number.
(This is called a step.) If left out, it defaults to 1.

If you include the step, you must include the start-of-range number.

This example shows a range() function with a step of 3.

>>> range(0, 10, 3)
[0, 3, 6, 9]

Tip You can use range() with negative numbers, too, as shown here:

>>> range(-10, -100, -30)
[-10, -40, -70]

Howdy, xrange-r!

158

The xrange() function is similar to range(), but instead of returning a list, it returns an
iterator object that generates the numbers in the range.

Loops using xrange() are a bit faster and use less memory.

You can see Python's internal difference between range() and xrange() by comparing
the following. Note that Python converts the xrange() object to an internal "equivalent":

>>> range(0, 10, 3)
[0, 3, 6, 9]
>>> xrange(0, 10, 3)
xrange(0, 12, 3)

Using the range() function with a list

To iterate over the index numbers of a sequence (such as a list), use a for statement with
range() and len() (which finds the number of elements in a sequence), like this:

for i in range(len(list_name)):

The enumerate() function, new in Python 2.3, works similarly. See the "Numbered and
approved" section, later in this chapter, to find out more.

Warning It isn't safe to modify the list you're iterating over! To duplicate selected items
or otherwise modify items in a list you're using in a loop, either

• Use a while loop (see the next section).
• Create a new list to store the modifications, as shown in this example:
• >>> man_from_st_ives = ['wives', 'sacks', 'cats', 'kits']
• >>> newlist = []
• >>> for i in man_from_st_ives:
• ... newlist += ['7', i]
• ...
• >>> newlist
• ['7', 'wives', '7', 'sacks', '7', 'cats', '7', 'kits']

Whiling Away

A while loop performs an action an indefinite number of times, as long as a condition is
true.

Warning If the condition is always true, the while loop never stops (unless a return or
break statement is encountered, or an exception is raised).

To write a while loop, follow these steps:

159

1. Type while, a Boolean expression, and a colon (:).

Here's an example:

while number_of_bottles > 0:

2. On the next line, type four spaces and then type the action you want
repeated, like this:

3. while number_of_bottles > 0:
4. print number_of_bottles, "bottles of beer on the wall"

If you add more lines, be sure to indent them.

Tip A while loop is useful in a program that waits for user input. The program in Listing
10-3 reports on the results of several "coin tosses." The while loop checks whether
the user has asked to quit the program.

Listing 10-3: Coin toss program
import random
headcount = tailcount = 0
userinput = ''
print "Now tossing a coin..."
while userinput.lower() != "q":
flip = random.choice(['heads', 'tails'])
if flip == 'heads':
headcount += 1
print "heads! the number of heads is now %d" % headcount
else:
tailcount += 1
print "tails! the number of tails is now %d" % tailcount
print "Press 'q' to quit",
userinput = raw_input("or another key to toss again:")
print "the total number of heads:", headcount
print "the total number of tails:", tailcount

160

Choosing Your Loop

Python has two kinds of loops: while loops and for loops. In general you should use a for
loop, but there are a few specific situations where a while loop is better. This section
explains when each type works best.

What for's for

Python emphasizes for loops, which are very flexible and powerful.

REMEMBER Most of the time, when you want to repeat a block of code more than once,
you should use a for loop. Use for loops in the following situations:

• When you want to iterate through a sequence one item at a
time

• When you want to repeat a loop a certain number of times

• When you're reading a text file
REMEMBER A for statement has two parts:

• An iterable, which provides elements one at a time

In this for statement, the iterable is range(10):

>>> for i in range(10):

• A loop target (a name), which is given to each value that the
iterator generates

In the above for statement, the loop target is i.

The for loop is so flexible because there are many ways to use the loop target name in
the body of the loop. For example, you can give a new value to the name inside the loop
(as long as you don't mind if that value goes away when the loop restarts). This code
gives a new value to i:

>>> for i in range(5):
... if i < 3:
... i = "more spam!"
... else:
... i = "bleargh!"
... print i,
...
more spam! more spam! more spam! bleargh! bleargh!

Warning The other side of the coin is that if you give a new value to the loop target, you
can't expect the value to stick. This code doesn't print what you might expect,

161

because i gets reassigned to a number when the loop restarts:

>>> for i in range(5):
... print i,
... if i < 3:
... i = "more spam!"
... else:
... i = "bleargh!"
...
0 1 2 3 4

Why to while

The while loop is useful for these situations:

• Event-driven programs: Many programs wait for a user to take an action (such
as clicking a mouse button), and then respond to the action. Often, a main while
loop collects user actions (events) and sends them to chunks of code that act on
particular events (event handlers).

• Loops that need to run an undetermined number of times: If you don't know
how much data you need to process—for example, when you're reading a binary
file—you might use a while loop that repeats its action until it detects that there
is no more data.

• Processing a container object while modifying it: The spider.py program in
Chapter 4 includes this kind of while block. The block uses the pop() list method
to removes items from the links_to_process list. A while loop is used because
no matter how long links_to_process is, it will run as long as there are items
left in the list. However, it's important that the while block removes items from
the list. If it didn't, the code would run forever.

• while self._links_to_process:
• url = self._links_to_process.pop()
• self.log("Retrieving: " + url)
• self.process_page(url)

The while loop, because it includes a Boolean expression, can stop unexpectedly if it
encounters data (such as None) that evaluates as false. This while loop stops in the
middle of processing the list because data is given the value None, which evaluates as
false:

>>> def process(a):
... print a,
...
>>> mylist = [1, 2, None, 4, 5]
>>> data = mylist.pop()
>>> while data:
... process(data)
... data = mylist.pop()
...
5 4

162

The correct way to process items from a list in a while loop is as follows:

>>> mylist = [1, 2, None, 4, 5]
>>> while mylist:
... process(mylist.pop())
...
5 4 None 2 1

Loopy Statements and Functions

This section describes some special statements that work with loops. It also details
several useful functions that work with loops. Some of these statements and functions
also work with other code blocks.

Useful looping statements

Several statements help you get the most out of loops. Each of the following statements
works as part of a loop code block and goes on a line by itself.

Take a break—or else!

The keyword break stops the processing of a loop and exits the loop. Any code in the
block that comes after the break statement is ignored (any else clause is also skipped).
If the loop is nested inside another code block, the program goes back to the block that
the loop was nested in.

In a loop, the break is usually part of a nested if statement. In the following example,
break exits the if loop when the element has the value 'n'.

>>> y = "astring"
>>> for i in y:
... if i == 'n':
... print "broke!"
... break
... print i,
... print "*",
...
a * s * t * r * i * broke!

You and who else?

Loops, like if statements, can have an else clause that executes when the condition in
the loop evaluates as false. One way to use the else clause is with a nested if sub-block
that has a break statement in it. It works like this:

1. Each time around the loop, the condition in the if statement is tested.

163

2. If the condition is true, the break statement causes everything else in the loop
(including the else block) to be skipped. Control exits the loop.

3. If the condition is false, the loop starts over again.
4. If the loop iterator runs out before the if condition evaluates as true, the for

loop's else clause gets executed.

The following code determines whether a string (in this case, 'larch') contains any
lowercase vowels:

mystring = "larch"
vowels = set('aeiou')
for a in mystring:
if a in vowels:
print mystring, "has a vowel"
break
else:
print mystring, "does not have a vowel"

The result is:

larch has a vowel

Let's continue

When Python sees a continue statement in the middle of a loop code block, it skips the
rest of the code in the block and goes back to the top of the loop. Here's how it works.
This code block prints both "5" and "five" because the print n, statement is executed
each time through the loop.

>>> for n in range(10):
... if n == 5:
... print "five",
... print n,
...
0 1 2 3 4 five 5 6 7 8 9

When we add continue to the if block, Python skips the last print n, statement when
the loop condition evaluates as true; therefore, it prints only "five":

>>> for n in range(10):
... if n == 5:
... print "five",
... continue
... print n,
...
0 1 2 3 4 five 6 7 8 9

Tip Use continue statements sparingly because they can make your code hard to read,
especially if they are nested in complex structures.

164

Thanks, but I'll pass

The pass keyword tells the Python interpreter to do nothing. It is usually used in class
statements, but you'll also find it useful in while or for loops when the program requires
no action. In this example, the argument_clinic() function does nothing if its argument
is greater than or equal to 5:

>>> def argument_clinic(minutes):
... if minutes >= 5:
... pass
... else:
... print "No it isn't!"
...
>>> minutes = 4
>>> argument_clinic(minutes)
No it isn't!
>>> minutes = 5
>>> argument_clinic(minutes) # nothing happens
>>>

Tip The pass statement is also useful when you are starting to build a program. You can
create the skeleton of the program's code blocks by using pass and then fill in what
the blocks do later. (But don't forget to take out pass!)

This example code will eventually solve all the world's problems, but for now it's just a
placeholder:

def grand_solution(problems):
""" solve all the world's problems here """
We will figure this out someday
pass

Loopy functions

This section describes some functions that are especially useful when working with
loops.

TECHNICAL
STUFF

All the functions described in this section work with iterables in
general, not just with sequences.

Numbered and approved

In Python 2.3 and later, use the enumerate() function in a loop to return the index
(position) and value of each element. Follow these steps:

1. Type the following, substituting your own iterable for the example list:
2. for i, v in enumerate(['tic', 'tac', 'toe']):

3. On the next line, indent four spaces and type some code that you want
Python to execute.

165

4. for i, v in enumerate(['tic', 'tac', 'toe']):
5. print i, v

Here's the result of the code:

0 tic
1 tac
2 toe

TECHNICAL
STUFF

Technically speaking, enumerate() returns an iterator that creates an
(index, value) tuple for each data item. The tuples generated by the
preceding code are (0, 'tic'), (1, 'tac'), (2, 'toe').

The two-loop tango

The zip() function, new in Python 2.0, loops over two or more sequences at the same
time. It returns a list of tuples in which an item in each sequence is paired with the
corresponding items in the other sequences.

Tip Think of a zipper zipping together two sets of teeth!

To write a for statement that zips two sequences, type the following (substituting your
own sequence names):

for a, b in zip(sequence_one, sequence_two):

The following example uses the zip() function in a for statement to explain the rules of
the game "rock, paper, scissors":

>>> mylist1 = ['rock', 'paper', 'scissors']
>>> mylist2 = ['scissors', 'rock', 'paper']
>>> mylist3 = ['paper', 'scissors', 'rock']
>>> for a, b, c in zip(mylist1, mylist2, mylist3):
... print "%s beats %s but not %s" % (a,b,c)
...
rock beats scissors but not paper
paper beats rock but not scissors
scissors beats paper but not rock

Gentlemen and ladies, unpack your tuples

A for loop is a convenient way to unpack the values in a tuple. A canonical example of
tuple unpacking uses the iteritems() method of dictionaries, which first turns each
key:value pair into a two-item tuple.

Tip We use items() in this example to show how the transformation to a list of two-item
tuples takes place. In actual code you should use the iteritems() method instead.
The result is the same, but it's more efficient.

This example shows how unpacking works:

166

>>> cheese_inventory = {'Red Windsor': 'the van broke down',
'Caerphilly': 'on order', 'Red Leicester': 'fresh out'}
>>> cheese_inventory.items()
[('Red Windsor', 'the van broke down'), ('Caerphilly', 'on
order'), ('Red Leicester', 'fresh out')]

You can use the following for loop with the iteritems() method to unpack the tuple
elements:

>>> for key, value in cheese_inventory.iteritems():
... print key, ":", value
...
Red Windsor : the van broke down
Caerphilly : on order
Red Leicester : fresh out

Going backward

The reversed() function returns an iterator that goes through the sequence items
backward. The reversed() function is new in Python 2.4.

The following example uses reversed() with the range() function as its argument to
count down through the sequence:

for f in reversed(range(1, 11)):
print f,
print "blastoff!"

Here's what it prints:

10 9 8 7 6 5 4 3 2 1 blastoff!

Out of sorts

The sorted() function returns a new sorted list while leaving the source list unchanged.
It works with both lists and immutable sequence objects. This function is new in Python
2.4.

>>> mylist = [1, 10, 2, 9, 3, 8, 4, 7, 5, 6]
>>> mynewlist = sorted(mylist)
>>> mynewlist
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> mylist # original list is unchanged
[1, 10, 2, 9, 3, 8, 4, 7, 5, 6]

TECHNICAL
STUFF

In contrast, the list method sort() changes the original list in place.

>>> mylist.sort()
>>> mylist
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

167

To use the sorted() function in a for statement, type the following (substituting the
name of your sequence object):

>>> mytuple = ("an", "african", "or", "european", "swallow", "?")
>>> for f in sorted(mytuple):
... print f,
...
? african an european or swallow

Chapter 11: Fun with Functions
A function is a block of code that performs a specific action and returns a result.

In this chapter, you find out about calling functions, writing functions and their
docstrings, and passing arguments to functions. You're also inducted into the arcane
mysteries of the namespace.

I Love Chunky Code

Here's how functions make your life easier as a programmer and make things easier on
people who read and use your code, too:

• Functions let you write code only once.

When you create code that you want to reuse, be sure to define it as a function.
This saves you from typing the same code over again when you want to use it in
another program.

• Functions hide unnecessary complexity from the user.

No one ever has to care what this function does unless it's included in your
program. And even if someone does use the function, they don't have to care how
it works, as long as it performs the way its documentation says it will.

• Functions make your code easier to understand.

If you name a function according to what its code does, then someone reading the
program just has to look at the name to get an understanding of what the program
is doing at that point. (Of course, you should also include comments in your
program and comments and docstrings in your function to further explain what's
happening.)

• Functions help you organize your program logically.

168

Writing most of your code chunks in functions helps you organize your program's
structure logically, and that can make your programs easier to understand.

Calling a function

Using a function is known as calling the function. When you call a function, the
function's code runs and returns a result.

To call a function, follow these steps:

1. Type a name to hold the result of the function followed by an equals sign (=).

You don't have to do this, but usually you want to do something with the function
result, and it's easier if a name has been given to the result.

2. Type the name of the function.
3. In parentheses, give the function information about what you want it to act

on.

Giving a function information is called passing arguments. Some functions don't
take any arguments, but most do.

You can pass the function a value or a name.

In the following example, the sum() function is given one argument: the name of a list
(purchases). The name total is given to the result:

Parameters versus arguments

In this chapter, we use the terms parameter and argument when discussing the data that a
function needs to do its work. Here's a way to understand the difference:

A parameter is a placeholder for the data. When you are writing a function, you use
parameters to tell the function to expect data to be passed. Then you use the parameter
name inside the function to stand for that data.

An argumentis the actual data that's passed when you call the function. Here's an
example:

>>> def a_function(a_param):
... print "my parameter is a_param
 and my argument is",
 repr(a_param)
...
>>> a_function("my arg")
my parameter is a_param and my argument
 is "my arg"

169

TECHNICAL
STUFF

Functions versus methods

What's the difference between a function and a method? Not much. A
method is a kind of function—both perform a specific action on some
information you give them. However, a method is associated with a
particular object and performs its action on that object. Often, that
object is a data type. For example, a list comes with the append()
method, which lets you add items to the end of the list. Whenever
you create a new list object by using a statement such as my_list =
[1,2,3], the object my_list has access to all the methods for list
objects.

Functions, on the other hand, stand on their own. You don't have to
create an object in order to use one.

You call functions and methods using different syntax:

• To use a function, type the function name:
• my_function(x)

• To use a method, append it to the name of the object,
separating the name and the method with a dot, like this:

• my_list.append(x)

>>> purchases = [13.02, 2.99, 4.45]
>>> total = sum(purchases)
>>> print total
20.46

Defining a Function

Unless you're using a built-in function, you need to define the function before you can
call it. These are the basic steps for writing a function:

1. On the first line, write the def statement for the function.

Follow these steps:

a. Write def and the function name.
b. In parentheses, add the names of parameters that the function will act on.

Separate parameters with commas.

If your function doesn't have parameters, it still needs the parentheses.

c. Type a colon at the end of the statement.

Your def statement might look something like this:

170

def my_function(arg1, arg2):

2. (Optional, but very important) On the next lines, write the docstring for the
function.

Follow these steps:

a. On a new line, indent four spaces and type three quotation marks (a triple
quote).

b. Type an explanation of what the function does and how to use it.

See the sidebar "What's up, Doc?" to find out what to include.

c. On the next line, indent four spaces and type a triple quote.

Your function and its docstring might look something like this:

def my_function(arg1, arg2):
 """
 Perform my function on arg1 using arg2. Return a list.
 """

3. Write the function's code.

Indent each line of code four spaces. (If your function contains another
subordinate or nested code block, such as an if statement, that block's code must
be indented an additional four spaces, and so on.)

When you're finished, the function might look like this (but containing Python
code, of course!):

def my_function(arg1, arg2):
 """
 my function does this
 """
 do something
 if this:
 do that
 return something else

Giving another name to a function

After you import a function, you can give it a new name. The additional name refers to
the same object at the same location as the old name, as this example shows:

>>> tinyfunction
<function tinyfunction at 0x61430>
>>> myfunc = tinyfunction

171

>>> myfunc
<function tinyfunction at 0x61430>

Tip It's important to remember the difference between giving a new name to a function
and calling a function while giving a name to the result. When you call a function,
you add parentheses at the end of the function name. These examples show the
difference:

>>> myfunction = tinymodule.tinyfunction # giving a new name to a
function
>>> myresult = tinymodule.tinyfunction(2) # calling a function

What's up, Doc?

If the first code in a function is a string, it becomes the docstring for the function. The
docstring defines what the function does and works with Python's help() utility. We
recommend writing doc-strings for all your functions.

A docstring usually spans multiple lines, so it begins and ends with triple quotes.

By convention among Python programmers, a basic docstring for a function looks like
this:

1. The first line (the only line for a simple function) is a description of what the
function does, or a summary if the function does several things or has several
options.

For example, take this function that prints something:

def printme(me):
 print me

This function does only one thing, so the docstring might look like this:

"""Print the argument"""

2. If the function needs more than one line of documentation, the second line should
be blank.

3. The third and subsequent lines explain options, defaults for optional arguments,
and other usage notes.

Say we change the printme() function so it takes an optional argument—a list of
words not to print:

def printme(me, bad_word_list=None):
 if bad_word_list and me in bad_word_list:
 print "How dare you!"
 else:
 print me

172

We might give it the following docstring:

 """
 Print argument. Optionally check against list of words not to print.

 Keyword argument:
 bad_word_list -- list of words not to print (default None)
 """

You can find out more about Python's docstring conventions by reading Python
Enhancement Proposal (PEP) 257 at:

http://www.python.org/dev/peps/pep-0257

Returning values from a function

Names you define inside a function disappear after the function exits. To get values out of
a function, you must do two things:

• Include a return statement in the function with a name or value, like this:
• def my_function(b):
• a = b + 42
• return a

• Use the function in an expression or in an assignment statement:
• my_value = my_function(3)

The name on the left side of the equals sign in the assignment statement now
stores the value that the function returned, as shown:

>>> my_value = my_function(3)
>>> print my_value
45

If a function has no return statement, or if the return statement doesn't specify what to
return, the function returns None (a built-in name). Here's a function without a return
statement.

>>> def no_return_function(b):
... print b
...
>>> my_value = no_return_function(3)
3
>>> print my_value
None

So why would you ever want a function without a return statement? Some functions
manipulate an item in place instead of returning a new item. Some functions perform an

173

action that doesn't need to return a result (for example, saving a message to a log). Such a
function might not need a return statement.

Tip The return statement not only passes a value out of the function, it also stops
Python from running the rest of the code in the function. So return either should be
the last statement in the function or should be used in conditional code, such as an if
block, to jump out of the function when a certain condition is met.

Argument Clinic: Passing Data

Parameters are placeholders for information that you give to a function so it can carry out
an action.

There are many ways to specify a function's parameters. This section introduces
specifying positional parameters, default-value parameters, and arbitrary numbers of
parameters. It also describes how to avoid the quirks of default-value parameters and
mutable objects.

Introducing parameters and arguments

Here are a few things to know about function parameters:

• A function can have any number of parameters (or no parameters).
• When you define a function, you specify how many parameters it has.

It can have a specific number of parameters or an indefinite number of
parameters.

• You can define default values for any or all of the parameters.

When you call a function, you need to give it a value corresponding to each parameter.
(This actual value is called an argument.) Here are a few things to know about arguments:

• Arguments are passed when you call the function.
• If the parameter has a default value, you don't have to pass an argument.
• You can pass an argument as a literal or as a name.

If you pass an argument as a name, the function acts on the object the name refers
to.

Specifying arguments when you call a function

The basic way of specifying arguments is to pass them when you call the function.

174

To pass an argument, type it between the parentheses of a function when you call the
function, like this:

>>> a_function(myarg)

The following example creates a function that prints the value of its argument, gives a
name to a tuple, and passes the name to the function:

>>> def a_function(x):
... print "you passed me the argument", repr(x)
...
>>> myarg = (1,2,3)
>>> a_function(myarg)
you passed me the argument (1, 2, 3)

The following example passes the same function a string literal without defining a name:

>>> a_function("hello")
you passed me the argument 'hello'

Specifying arguments with keywords and default values

A function can have default values for some of the parameters. (Such default-value
parameters are sometimes called keyword arguments.) Here are some circumstances in
which default-value parameters are useful:

• A particular value will be used more often than others.

For example, Python's round() function takes a required number argument and
an optional precision argument. The precision parameter defaults to 0 because,
most of the time, when you round a number, you want the integer closest to the
number rather than a decimal.

• The function is designed to work in more than one way, depending on which
arguments are passed.

For example, the open() function opens a file for reading by default. If you want
to open a file for writing, you need to specify a mode argument, 'w'.

When adding default-value parameters to function definitions, follow these rules:

1. Type any parameters that won't have keywords first.

Parameters without keywords are called positional.

2. Type keyword arguments in the form keyword=value.

175

The following function definition has one required (positional) parameter (ingredient)
and two default-value parameters:

def recipes(ingredient, servings=4, mode="Vegetarian"):

When calling a function that includes default-value parameters, follow these rules:

1. Pass values for all positional parameters first.

Use the same order in which the function's parameters are defined.

2. Pass values or names for any default-value parameters whose default values
you want to override.

Here are some additional guidelines for default-value parameters:

• Don't pass information for default-value parameters whose default values you
want to use. For example, this function call uses both defaults:

• >>> recipes('shiitake mushrooms')

• If you include default-value parameters in the order in which they were defined,
you can just pass their values, like this:

• >>> recipes('arugula', 8, "Carnivore")

• If you are including default-value parameters in a different order or skipping some
parameters, use the keyword=value format, as shown here:

• >>> recipes('arugula', mode="No peanuts")

Avoiding the quirks of default values

Default values are useful as function parameters, but you need to be aware of their quirks.

Immutable default values stay the same

Python evaluates default values in function definitions only once—when the function is
defined, that is, when the def statement first runs. (Another way to say this is that Python
binds the default to the parameter.) def is an executable statement; this is why you have
to define a function before you can call it. After that, if you change the value of a name
you used as a default in the function definition, the function will continue to use the
original value when the value is an immutable data type. In the example below, the def is
passed the value of the integer mynum. When mynum is changed later, the function still
uses the old value:

>>> mynum = 8 # Integers are immutable.
>>> def f(arg=mynum):
... return arg
...
>>> f()
8

176

>>> mynum = 10 # We're
>>> f() # ...but the function still uses 8.
8

Mutable default values can change

When you use a mutable object (such as a list, dictionary, or class instance) as a default
and change the object inside the function, then the next time you call the function, the
function uses the changed object. For example, the following function creates a list that
accumulates the arguments passed to it.

>>> def f(q, mylist=[]):
... mylist.append(q)
... return mylist
...
>>> print f('a')
['a']
>>> print f('b')
['a', 'b']
>>> print f('c')
['a', 'b', 'c']

Here's what's going on:

1. When the function is defined, it creates an empty list object named mylist.
2. Inside the function, the append() method adds an item to the list.

The append() method changes the contents of the list in place— that is, mylist
still refers to the same object after being changed.

3. When the function is called again, it grabs the same list from the same place and
uses the new contents.

Assignment (=) always changes

Assignment always causes a name to refer to a different object (that is, it rebinds), even if
the object is mutable. So if you use assignment (=) inside the function rather than the
append() method, mylist doesn't accumulate arguments.

>>> def f(q, mylist=[]):
... mylist = mylist + q
... return mylist
...
>>> a = [1]
>>> f(a)
[1]
>>> a = [2]
>>> f(a)
[2]

177

Augmented assignment (+=) doesn't rebind mutable data types

Augmented assignment operators (+= and *=) rebind when used with an immutable data
type, but don't rebind when used with a mutable data type, such as a list. When used with
a list, += is the equivalent of the extend() method; it adds items to the end of a list. So if
we rewrite the function to use augmented assignment, the function extends mylist
(which is mutable) by adding the argument to the end of the list:

>>> def f(q, mylist=[]):
... mylist += q
... return mylist
...
>>> a = [1]
>>> f(a)
[1]
>>> a = [2]
>>> f(a)
[1, 2]

Working on a copy of a mutable object

Because using mutable objects as arguments can have unexpected results, you're better
off operating on a copy of the object. This function creates a new copy of its list and then
adds a value to each list element:

def f(mylist, data):
 newlist = mylist[:] # make a copy of mylist
 for i in range(len(mylist)):
 newlist[i] = mylist[i] + data
 return newlist

Calling the above function doesn't change the original list:

>>> alist = [1, 2, 3]

>>> x = f(alist, 5)
>>> print x
[6, 7, 8]
>>> print alist
[1, 2, 3]

Using a default value of None to redefine a mutable object

If you want a function to redefine a list as empty each time you call it, use a default
parameter of mylist=None. None is immutable, so the function won't be referring to a list
object that might change.

The following code gives the parameter mylist a default value of None in its def
statement and then redefines mylist as an empty list inside the function:

178

def f(a, mylist=None):
 if mylist is None:
 mylist = []
 mylist.append(a)
 return mylist

When you call the above function several times, it doesn't accumulate arguments:

>>> a = 1
>>> f(a)
[1]
>>> a = 2
>>> f(a)
[2]

Specifying a function with an arbitrary number of arguments

To pass an arbitrary number of arguments to a function, use the parameter *args in the
def statement for the function. Here are tips and rules for using *args:

• The parameter *args stands for a set of positional arguments that aren't explicitly
named in the function definition.

• When you call the function and pass it arguments, *args automatically creates a
tuple out of the arguments.

• The parameter *args must come last in the function definition (or next-to-last if
there is also a **kwargs parameter).

To pass an arbitrary number of keyword=value pairs to a function, use the parameter
**kwargs in the function's def statement. Here's how it works:

• When you call the function and pass the keyword=value pairs, **kwargs
automatically creates a dictionary from them.

• The parameter **kwargs must come last in the function definition.

TECHNICAL
STUFF

The names don't have to be *args or **kwargs; Python cares only
that the * or ** operator comes first in the name. But Pythonistas
always use *args and **kwargs. This consistency makes programs
easier to read by humans.

This example program shows how *args and **kwargs work in a function that also has
two positional parameters:

def a_function(a, b, *args, **kwargs):
 print "a is", a
 print "b is", b
 print "*args is this tuple:", args
 print "**kwargs is this dictionary:", kwargs

It produces the following result:

179

>>> a_function(1, '2', 'three', 'blind', 'mice', see="how", they="run")
a is 1
b is 2
*args is this tuple: ('three', 'blind', 'mice')
**kwargs is this dictionary: {'see': 'how', 'they': 'run'}

Unpacking arguments

To pass the elements of a list, tuple, or dictionary as arguments in a function, use the *
operator (for lists and tuples) or the ** operator (for dictionaries) when calling the
function to unpack the elements.

To unpack, you need these things:

• A function

The function can have any kind of parameters—positional or default, *args, or
**kwargs… or even no parameters at all.

• A list, tuple, or dictionary with the same number of elements as the number
of parameters in the function

Unpacking lists or tuples

To pass the elements of a list or tuple as arguments in a function, use this line of code
(substituting your function name and list or tuple name):

myfunction(*my_list_or_tuple)

The following code defines and calls a function, passing a list as its argument, using the *
operator:

>>> def func_with_three_args(a, b, c):
... print "the arguments are:", a, b, c
...
>>> weapons = ['fear', 'surprise', 'ruthless efficiency']
>>> func_with_three_args(*weapons)
the arguments are: fear surprise ruthless efficiency

Unpacking dictionaries

To pass the key:value pairs of a dictionary to a function, use this line of code (substituting
your function name and dict name):

myfunction(**mydict)

180

The dictionary keys must have the same names as the function's parameters. The
following code passes a dictionary to func_with_three_args() using the ** operator.
The dictionary's keys match the argument names:

>>> not_in_stock = {"a":"Red Leicester", "b":"Jarlsberg",
"c":"Camembert"}
>>> func_with_three_args(**not_in_stock)
the arguments are: Red Leicester Jarlsberg Camembert

What's in a Namespace

A namespace, also called a symbol table or scope, is storage for the names of objects
Python knows about.

REMEMBER The most important thing to remember about function namespaces is this:
When you give a name to a value, you are always assigning within the
function's local namespace unless

• You explicitly say that the name is global

• You specify that the name is an attribute of a particular object

Discovering where Python looks for names

Python has three basic layers of namespaces, listed here in order of most specific to most
general. Python looks for names in this order and stops looking as soon as it finds the
name:

1. Local (names defined inside a class, function, or method)
2. Global (names defined inside a module—often function names and class names,

but can be other names, too)
3. Built-in (names that are always available)

If Python can't find a name in any of those places, it raises a NameError exception. If you
get an AttributeError, that means that Python found the leftmost (first) name but didn't
find the name after the dot. Each object has its own namespace that Python searches. For
more information about object namespaces, see Chapters 12 and 13.

Understanding function namespaces

When Python encounters a function definition in a chunk of code, it executes the
definition. That prepares the function for being called later. When Python executes the
definition, the following things happen:

• The function's name is stored in the current namespace.

181

If the function is part of a module, this is the module's namespace. If the function
was imported directly, it might be the main namespace in interactive mode.

• Python creates a new namespace for storing any local names defined within the
function.

REMEMBER Python searches from local to global for names, but it doesn't search from
global to local. That means global namespaces don't know about the names
inside local namespaces.

This behavior of Python's is useful for hiding complexity. It also prevents bugs that might
occur if all names were automatically global—if that were true, it would be easy to use a
name twice without realizing it, and unexpected things might happen. When names are
automatically local, they are less likely to conflict.

How local and global names work with assignment

Names are automatically local (unless you tell Python to treat them as global). This
means that if you give a name to a value (using an equals sign) inside a function, when
you exit the function, Python will forget about the name. Here's a program that
demonstrates this feature of namespaces using Groucho's famous saying. You could type
it into a text file and save it with the name groucho.py:

groucho.py
a_book = "man's best friend"
print "outside of a dog, a book is", a_book

def a_dog():
 a_book = "too dark to read"
 print "inside of a dog, it's", a_book

a_dog()
print "we're back outside of the dog again"
print "and a book is again", a_book

Figure 11-1 illustrates global and local names.

182

Figure 11-1: A global and a local name assignment.

If we run the program from the command line, it has this output:

% python groucho.py
outside of a dog, a book is man's best friend
inside of a dog, it's too dark to read
we're back outside of the dog again
and a book is again man's best friend

How local and global names work with references

Because Python searches for names first locally and then globally, you can reference a
global name inside the function—assuming the function doesn't contain a local name
that's the same as the global name. This example program (we call it brightdog.py) and
Figure 11-2 show that a function can access the name a_book defined outside the
function:

brightdog.py
a_book = "man's best friend"
print "outside of a dog, a book is", a_book
def a_bright_dog():
 print "inside of THIS dog, a book is still", a_book
a_bright_dog()

183

Figure 11-2: A global name referenced locally.

This code, run on the command line, produces the following result:

% python brightdog.py
outside of a dog, a book is man's best friend
inside of THIS dog, a book is still man's best friend

TECHNICAL
STUFF

You can also define a function inside another function. This creates a
new local namespace for the nested function. This namespace is
called a nested scope. Nested scopes are mostly useful for functional
programming. (Chapter 16 has some information on functional
programming.) Nested scopes work differently in Python 2.1 and
later than they work in earlier versions. We don't cover them in this
book.

Think globally, act locally

It's easy to explicitly tell a function that a name is global: You just use the keyword
global with the name. In the example program below, which we call colors.py,
defining the name eggcolor as global allows the function to change the value of that
name, and the changed value remains in effect after Python exits the function. In contrast,
the name meat, which isn't declared global, is changed only inside the function.

colors.py
eggcolor = "green"
meat = "ham"
print eggcolor, "eggs and", meat
def breakfast():
 global eggcolor
 eggcolor = "red"
 meat = "bacon"
 print eggcolor, "eggs and", meat
breakfast()

184

print eggcolor, "eggs and", meat

If you run this code on the command line, you get the following result:

% python colors.py
green eggs and ham
red eggs and bacon
red eggs and ham

REMEMBER It's usually a Bad Idea to use global names because they are more likely to
cause name conflicts in complex programs.

Sorting out module namespaces

Each module (a file with Python code, ending in .py) has its own namespace. All the
functions defined in the module use the module's namespace as their global namespace.
The functions won't look elsewhere (except for the built-in namespace) for names that are
referenced within them. This means that the author of a module can use global names in a
module without worrying about their conflicting with global names used elsewhere. In
other words, whenever you see "global" used in Python, think "module global."

Tip For more about modules, see Chapter 12.

When a module imports another module, the imported module's name becomes part of
the importing module's namespace. You can then access its functions and other
information by using the module name, a dot, and the function name, the same way you
can when you import a module into interactive mode.

Imagine you have a module called mymod.py that does nothing but import another
module:

module 'mymod'
import math

If you import this module into interactive mode, you can print the math.pi constant by
typing this code:

>>> import mymod
>>> mymod.math.pi
3.14159265359

But the name math and its constant pi are known only inside the module. The
surrounding namespace of interactive mode still doesn't know about the math module:

>>> print math.pi
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'math' is not defined

TECHNICAL
STUFF

It's possible to manipulate a module's global names by using the
same notation used to refer to its functions, modulename.itemname.

185

You should do this only if you know what you're doing. (It's an
advanced feature we don't cover in this book.)

Chapter 12: Building Applications with
Modules and Packages
Python provides ways to organize code into files and directories:

• Modules are the files that contain the building blocks and glue of your program,
including functions, import statements, classes, and so on.

• Packages organize modules in directory hierarchies that help users understand
how everything works together.

This chapter shows you how you can use modules and packages to organize your projects
and take advantage of all the tools available for Python.

Modular Living: Storing Your Code in Files

Python strongly encourages you to organize function definitions and other statements in
separate files. These files are called modules. A module is a text file containing Python
definitions and statements. The filename is the module name with the suffix .py
appended.

TECHNICAL
STUFF

Some Python modules are written in languages other than Python,
most commonly C or C++. Such a module is called an extension
module.

In the following sections, we give you the lowdown on creating your own modules,
getting access to the modules that come with Python, and using modules in your
programs.

TECHNICAL
STUFF

Better coding through modularity

Modules have several benefits that let you code more efficiently and
spend less time stomping bugs:

• Modules save time.

You can write code once and use it in many programs.

• Modules hide complexity.

186

Each module creates its own namespace, so its names won't
conflict with names defined elsewhere.

• Modules make debugging easier.

Storing chunks of code in modules makes it possible to write
shorter programs. Python's debugging tools specify which
module an error is found in.

Importing a module or its contents

To access a module's code, you import the module into either

• Interactive mode
Tip Importing a module in interactive mode is covered in Chapter 2.

• Another Python program

Both these ways of importing are similar. The only difference is where you type
the import statement.

The following sections cover how to import a module, what Python does when you
import a module, and ways of accessing the goodies in a module.

Importing a module

To import a module in interactive mode, or in another Python program, type import
followed by the name of the module without the .py suffix, like so:

import modulename

Initializing a module

Importing a module for the first time in a particular program, or in interactive mode,
causes Python to perform a series of actions called initializing the module. Here's how
initializing works:

1. Python creates a module namespace that stores the names defined in the module.
2. Python runs the code in the module.
3. Python stores the name of the module in the local namespace.

TECHNICAL
STUFF

Initializing happens only the first time the module is imported. If you
import the module again, the module code doesn't run, but the import
updates the current namespace.

187

Accessing functions and other items inside a module

When you import a module, all the functions and other information in the module
(collectively called the module's attributes) are available to you.

To access a module attribute, type the module name, a dot, and the attribute name. If you
are calling one of the module's functions (see Chapter 11) or creating a class instance (see
Chapter 13), also pass any arguments that are required. For example:

mymodule.myfunction(x)

TECHNICAL
STUFF

Other ways of accessing module attributes

You can import attributes from a module into the local namespace
directly by using one of the following lines of code:

• To import a specific item directly, type from, the module
name, import, and the item name, as shown:

• from mymodule import myfunction

• To import all of a module's functions directly, type from, the
module name, import, and an asterisk (*), a wildcard
character that stands for "all." For example:

• from mymodule import *

Warning! Most of the time it's a Bad Idea to use the import * syntax
because

• You can't control what you're importing.
• You risk polluting the local namespace with all the names

from the imported modules, which makes debugging much
more difficult.

When you access module attributes through the module name, you're
less likely to run into conflicts between the names inside one module
and the names inside another module. And your code will be easier to
read.

For example, you might have two modules that each have a function
to combine two values in some way. If each module's function were
named combine(), then if you tried to access each of these functions
directly, you might accidentally use the wrong one, or readers of your
code might not know which function you were using at any particular
time. But if you always use modulename.combine(), then which
function you're using is clear.

There's one situation, however, when it's appropriate to import an
item from a module directly. That's when a module is a wrapper

188

around a single class or function. For example, the module
cStringIO contains a single function called StringIO(). (See
Chapter 19 for details.) The simplest way to use StringIO() is to
import it with this line of code:

from cStringIO import StringIO

Tip If you don't remember the names of the functions inside a module, use the dir()
command in interactive mode to list them, like this:

>>> dir(mymodule)

Giving a local name to a module

In this section, you find out two ways to give a local name to a module or a module's
functions: You can give an extra name to a module or function, or you can give a module
a different name when you import it.

This section also explains the difference between giving an extra name to a function and
calling the function while giving a name to its result.

Giving an extra name to a module or function

To give an extra name to a function or module (so that both names refer to the same
thing), first make sure the object has been imported; then type the new name, =, and the
name of the function or module, like this:

myfunction = tinymodule.tinyfunction

Importing a module using a different name

To import a module (but not a function) using a different name, type import, the module
name, as, and the name you want to use. For example:

import tinymodule as mymod

Tip Although it's not common, you can also combine the from import and import as
syntax, as follows:

from tinymodule import myfunction as a_function

REMEMBER If you import a module using a different name, the local namespace won't
know the real module name; it will know the module only by the name
you used to import it.

REMEMBER The syntax for giving a local name to a function is different from the
syntax for calling a function and giving a name to the result. When you
call a function, you add parentheses at the end of the function name:

189

myresult = tinymodule.tinyfunction(2)

Rules for writing and naming modules

The same rules apply to naming modules that apply to naming other Python objects:
Hyphens and spaces aren't allowed, and you can't use a Python keyword as the name. If
you do any of these things, you'll get errors.

The Python community uses the following conventions for writing modules. The
conventions make Python code more standard and easier to read:

• Modules have short, lowercase names.
• Modules that exist mostly to export a single class are named after the class.

In this case, the module and class have the same name, but the module name is
lowercase and the class name is capitalized.

• All import statements come at the beginning of a module.
• The name of a non-public module (or function, class, method, name, or

attribute) should begin with a single leading underscore.

For example:

_myNonPublicModule

A non-public name is not imported when you type from modulename import *,
although you can still import it explicitly. See Chapter 13 for more about non-
public names.

Warning Avoid giving your module file the same name as a standard Python module.
Otherwise, the wrong module might be imported.

Module, module, where is the module?

Python keeps track of module files and other files it needs in several ways.

On most operating systems, the PYTHONPATH environment variable lists the paths
(directories or folders) where Python's modules are stored. PYTHONPATH uses the same
format as the shell variable PATH. The format depends on the operating system you are
using. For example, on UNIX or Mac OS, Python might be installed in
/usr/lib/python/ or /usr/local/lib/python/. On Windows it might be installed in
C:\Program Files\Python25.

When you import a module, Python searches possible module locations in the following
sequence until Python finds a file with that name and the suffix .py:

190

1. The current directory
2. The directories listed in PYTHONPATH
3. The directories in the PATH environment variable (which depends on your

operating system and account setup)

All the search paths that Python knows are stored in the list sys.path, which is part of
the sys module. This list stores these path names:

• The directory containing the input script (or the current directory)
• The contents of the PYTHONPATH variable
• The default search path

To modify sys.path, you use list methods. You need to import the sys module first. The
following example appends a path to sys.path:

>>> import sys
>>> sys.path.append('/ufs/guido/lib/python')

Warning Be careful not to remove important directories (such as the directory in which
Python is installed, or any subordinate directories) from the search path, or
Python may lose track of its modules.

Finding what's in standard modules

Python comes with a library of standard modules. Many of these modules are covered in
Part IV and elsewhere in this book.

Tip If you want to find out the gory details about any of the standard modules that we
don't cover, see the Python Library Reference at http://www.python.org (it's usually
also included when you install Python; instructions for installing Python
documentation are in Appendix A).

The built-in function dir() returns a sorted list of the names a module defines. To use it,
type dir followed by the module name in parentheses, like this:

>>> dir(modulename)

To get help on a named item in a module, type help; then type (in parentheses) the
module name, a dot, and the item name. For example:

>>> help(modulename.functionname)

191

Wrapping It Up in a Package

A package is a collection of related modules stored in a directory and subdirectories. This
section explains why packages are useful, the requirements for setting up packages, and
the ways to import packages.

A __name__ is a __name__, except when it's __main__

Within a module, the module's name (as a string) is stored in the global name __name__.
But there's an exception to this: If the module file is run as a program from the command
line, Python sets the module's __name__ to '__main__'.

This feature is useful for including code (usually test code) in a module file that runs only
when you start the module from the command line (by typing python modulename .py).
The code looks like this:

if __name__ == '__main__':
 do something

When you include code that runs only under these circumstances, you don't have to
remove the code when you import the module. That's because when a module is
imported, __name__ is the module's name, not '__main__'.

This code goes outside any function definitions or import statements in the module,
usually at the very end of the module.

Here's an example of a small function and some test code for it.

def f(x):
 y = x**x
 return y

if __name__ == "__main__":
 print "testing..."
 print "passing the value 2"
 z = f(2)
 print "the function returns", z

The purposes of packages

Packages are another way of taking advantage of Python's ability to hide complexity.

Tip Packages have some useful features:

192

• A package has its own namespace.

Names defined within a package—including module names—won't conflict
with names defined elsewhere.

• Packages can contain modules.
• Packages can contain subpackages.

Packages are ideal for storing and organizing a lot of related features.

Requirements for packages

These are the requirements and guidelines for packages:

• A package lives inside a directory, and its subpackages live inside
subdirectories of that directory (generally speaking).

• Store the package's main directory in either
o One of the two special package directories on your computer
o The directory of your application

See "About special package directories," later in this section.

• Just as a module file names the module, a package directory names the
package.

That allows you to import items in the package by using the import
packagename.modulename format.

• A package directory must contain a file called __init__.py.

In the simplest case, __init__.py is just an empty file. But it often contains code
that initializes the package. For example, the best way to import specific
submodules with a particular package or subpackage is to load them in the
__init__.py file.

The __init__.py file sometimes contains the __all__ list (see next item).

• Include an index of your package's contents in a list named __all__.

This list helps Python code run on different operating systems. When you include
module names in __all__, the command from packagename import * imports
only those modules.

TECHNICAL
STUFF

If no one will ever import * from your package, you don't
need the list.

193

About special package directories

When Python is installed, it sets up specific directories for packages. If you store
packages in one of these special package directories, you're less likely to run into trouble
if your package names are the same as module names elsewhere on the Python path.

There are two special directories for packages:

• lib/site-python/

• This directory is for packages that work the same way with all Python versions.
• lib/pythonXX/site-packages/

• This directory is for packages that depend on the Python version. XX changes to
represent the Python version number.

Example package structure

Here's an example structure for a package that handles graphics. More package help is
available at http://www.python.org/doc/essays/packages.html.

graphics/ Top-level package
 __init__.py Initialize the graphics package
 formats/ Subpackage for file format conversions
 __init__.py
 gifread.py
 gifwrite.py
 ...
 effects/ Subpackage for graphics effects
 __init__.py
 speckle.py
 swirl.py
 invert.py
 ...
 filters/ Subpackage for filters
 __init__.py
 noise.py
 mask.py
...

Importing items from packages

You can import items from packages in several ways.

TECHNICAL
STUFF

Importing with packages works in much the same way as importing
with modules, except that you sometimes have to include more levels
of names.

194

Individual modules and packages

You can import individual modules and packages in a couple of ways, depending on how
they will be used in your program.

Importing by full name

If you'll be using many parts of a complex package, use the following format to import an
individual item by its full name:

import graphics.effects.invert

This type of package import statement has a couple of rules:

• Each name except for the last must be a package.
• The last name must be a module or a package; it can't be a class, function, or

named object (attribute).

TECHNICAL
STUFF

To call a function from a module imported by its full name, type the
full name of the module and then the function name, like this:

graphics.filters.noise.edges(args)

Import by using from

If you'll be using only a few parts of a package, use the following format to import an
individual item by its full name:

from graphics.filters.noise import edges

Tip This format works for importing any of the following objects defined in the package:
submodule, subpackage, function, class, and named object.

Here are a couple of examples of importing an individual item:

• The following example imports the noise module:
• from graphics.filters import noise

If you import noise this way, you use this code to call its function:

noise.edges(args)

• The following example imports the edges() function:
• from graphics.filters.noise import edges

If you import edges() this way, you use this code to call it:

edges(args)

195

Import all items from a package

If you're sure that it won't cause namespace conflicts (for example, if you're using one
small package in your program and not importing other modules or packages), use the
following format to import all the items from a package:

from graphics import *

Using import * imports the items in the __all__ list.

TECHNICAL
STUFF

If no __all__ list is defined, the import * statement imports these
names from the package:

• The package name
• Names found in import statements in the file
• Names of modules and subpackages (but not submodules)

• Names defined in __init__.py files

The import * statement does not import any names with a single underscore prefix (for
example, _mymodule).

When packages contain subpackages, there's no shortcut to refer to submodules of sibling
packages (packages defined at the same level). You need to use the full name of the
subpackage (packagename.subpackagename). Python 2.5 has a shortcut for importing
from sibling modules. The shortcut is part of the absolute importing feature, which is
covered in the following section.

Absolute imports in Python 2.5

In Python 2.4 and earlier, type the whole package and subpackage hierarchy when you
import from a package (for example, from graphics.filters import noise). If you
don't, someone reading your import statement has no way of knowing whether it imports
another module from the package or a top-level package that's part of the Python
distribution.

TECHNICAL
STUFF

Although it's possible to use relative imports in Python 2.4 and
earlier, the rules are too complicated to document in this book.

Absolute importing, new in Python 2.5, addresses this problem. There's no ambiguity
about which module is being imported because Python searches for imported modules or
packages on sys.path only. To import sibling modules in a package, use relative imports
(see the following section). To access absolute importing, type this code into your module
or into interactive mode:

from __future__ import absolute_import

196

Relative imports in Python 2.5

When you turn on absolute importing in Python 2.5 (by using from __future__ import
absolute_import), new syntax is available for importing other modules in the package
directory your module is in. Follow these rules:

• Use the from…import syntax.
• Type one or more dots in front of the name of the package or module you're

importing from:
o The first dot stands for the current module's package.
o The second dot stands for the package containing the current module's

package (the parent package).
o The third dot stands for the parent of the parent, and so on.

Here are some relative import statements. If you write the swirl.py module in the
package hierarchy (described in "Example package structure," in this chapter), you
import other modules in the package as follows:

• This statement imports swirl.py 's sibling module, speckle.py:
• from . import speckle

• This statement imports the gifread module:
• from .formats import gifread

• This statement imports the edges() function from the noise module in the
filters package:

• from .filters.noise import edges

Chapter 13: Getting Classy

Overview

This chapter is about classes, a tool for creating new types of objects in Python. When
you create a class, you put data (also called state) and behavior in one suitcase. Programs
based on these suitcases of data-plus-behavior are easily customized.

Python also uses classes to organize many of its own features. For example, Python's
built-in data types, such as strings and lists, are classes. The use of classes hides
complexity from users who don't care about it. You can use a list without worrying about
how lists work, and you can perform an action such as sorting a list without worrying
about how sorting works. (And if you ever had to write a sort function, you know that's a
good thing.)

In this chapter, you find out how to create and use these Python objects:

197

• Classes, subclasses, and superclasses
• Class methods
• Class instances
• Class and instance attributes

You also find out why classes are important to Python's modular design.

Alley-OOP! Some Object-Oriented Programming
Concepts

Python is a language that supports object-oriented programming (OOP for short). In OOP
parlance, objects are bundles of data and actions (methods) that operate on the data. OOP
programs are built around such bundles.

TECHNICAL
STUFF

In contrast, languages such as C focus on procedural programming,
and the Scheme/Haskell languages focus on functional
programming. Python is a balanced language with good support for
both procedural and OOP styles and some support for functional
programming.

Objects and functions aren't mutually exclusive—in Python, methods are just functions
attached to objects. But considering a program in terms of data/action bundles is a
different approach than creating data objects and then using separate actions on them.

We don't describe object-oriented programming in detail in this book, but the following
concepts are important for understanding Python classes.

Objects

In object-oriented programming, an object is a thing that bundles data and behavior.

To use a real-world example, imagine you have a dog (you might not have to imagine).

• The dog belongs to a breed.
REMEMBER If the dog were a Python object, the breed would be its type or

class. As shown in "Using multiple inheritance," later in this
chapter, you can even create "mutt" types.

• The dog has characteristics associated with it: its name, age, and so on.
REMEMBER If the dog were a Python object, these characteristics would be its

data attributes.
• The dog can do actions—run, sit, bark, mutilate shoes, and so on.

REMEMBER If your dog were a Python object, these would be its method
attributes. All of the attributes "go with" the dog wherever it goes.

198

Likewise in Python, if you have an object—say, a list—you use the name of the specific
list object to access both

• Its data (the items in the list)
• The actions that list objects can do (slice, append, and so on)

Inheriting, overriding, and extending

Subclasses inherit behaviors, abilities, and properties from the general (parent) classes
they are based on. For example, Labrador Retrievers are a subclass of all dogs and inherit
the properties and abilities of dogs.

When a subclass changes the way a parent class works or changes its data attributes, the
subclass is overriding the properties of the parent class. The Lab is gentler than some
other kinds of dogs, so a Lab class might be said to override the gentleness quality of
dogs in general.

When your subclass includes new data or methods, it is extending the properties of the
parent class. A Lab has the built-in skill of retrieving. A Lab class might be said to extend
the abilities of dogs to include retrieving.

Tip One way to think of inheritance is to use the phrase is a. A Lab is a dog; that means a
Lab inherits properties and abilities of dogs.

Polymorphism and duck-typing

In some languages, a single function or method works only with specific types of objects.
In Python, many tools work with more than one type of object. For example, the in
keyword (which calls the special method __contains__()) acts on lists, tuples, and
dictionaries—objects of different types. This feature is called polymorphism.

Mirror, mirror on the wall, what's the object of this all?

Python terminology gets a little confusing at times, especially with all the different things
that the word object can stand for. In Python, the word object refers to any item in a
Python program that has its own storage space—from a simple name to a multi-megabyte
dictionary (or any of its elements) to a function, module, class, or instance. But in object-
oriented programming, the word object refers to any item that combines data and
behavior. These items (along with other items) are also objects in Python. Specifically,
they are called classes(or class objects) and instances (or instance objects). Any
objections?

Python's polymorphism is based on names. For example, file objects have three basic
methods named read(), write(), and close(). If you create a class that has those three

199

methods, then even though your class isn't officially a file object, you can use instances
of your class in many of the places that Python expects a file object. Pythonistas often
call this feature duck-typing because it's like the saying, "If it looks like a duck and
quacks like a duck, it must be a duck." In programming terms: If this object has the
attributes of a file and the read(), write(), and close() methods of a file, the program
accepts it in cases where the data type file is called for.

Now Class, for Instance …

In this section, we explain how classes fit in with other Python objects and, in general
terms, how classes and class instances work together. These are the most important things
to remember:

• A class is a general description of something.
• A class instance is a specific example of what the class describes.
• In order to do things with a class, you usually need to create an instance.

Classes, modules, and functions

Python classes are similar to Python modules and functions in these ways:

• Classes, modules, and functions all contain assignments and statements.
• Both classes and modules usually include function definitions—code blocks that

begin with a def statement and perform some action. (In classes, these are called
methods rather than functions.)

• Classes, modules, and functions all have their own namespaces.
• You call classes and functions by using the name followed by parentheses. Calling

a class does one thing: It creates an instance of the class.

A class is like a template

A class is a template for data and behavior. You use the template to make specific objects
called instances. The instances share the attributes of the class.

Say you have a copy of the American Kennel Club breed standard for a Labrador
Retriever. The AKC document is like a class because it describes the qualities and
abilities a Lab has. The data attributes for the Lab breed—its coat quality, size, eye color,
and so on—are described in the class, and so are the method attributes—its ability to
retrieve, to swim, and so on.

A Python class defining a Labrador Retriever might include this code:

class Lab:
 weight = 60 # data attribute
 def retrieve(self, thing): # method attribute
 return(thing)

200

Note that the AKC breed standard isn't a dog, it is just a description of the dog. Likewise,
in Python, the class isn't the actual object you manipulate. To work with the class, you
first tell the class to create an instance. (This is where our example breaks down—you
can't use the AKC breed standard document to create a dog; you need a couple of other
dogs for that!)

Telling the difference between a class object and a function object

The way you create a class instance looks superficially similar to the way you name the
result of a function. In fact, if you don't know whether the object is a class or a function,
you might not be able to tell which is being used by looking at the assignment. (Classes
frequently do not take arguments, and functions usually do, but this isn't universally true.)

>>> fido = Lab() # creating a class instance
>>> y = len('mystring') # calling a function

To determine what kind of object is associated with a name, use the type() function, like
this:

>>> type(fido)
<type 'instance'>
>>> type(y)
<type 'int'>
>>> type (Lab)
<type 'classobj'>
>>> type(len)
<type 'builtin_function_or_method'>

Note that a function can return an instance.

>>> def foo():
... return Lab()
...
>>> type(foo())
<type 'instance'>

An instance is a copy made from the template

An instance is a specific object, with its own name, that has the same attributes as the
class you use to create it.

Tip If you get a Lab from the animal shelter and name her Pilot, then your dog is like an
instance of the Labrador Retriever class. She has her own name, but she shares the
attributes of Labrador Retrievers in general.

So if you were to describe Pilot in Python code, you would type this, which creates an
instance (pilot) of the Lab() class:

201

>>> pilot = Lab()

All about class and instance attributes

Each thing that you name inside a class, whether it's a method, data, or some other kind
of code, is an attribute of the class.

REMEMBER When you create an instance of the class, it starts with the same attributes
as the class. You can add or alter instance attributes after that.

To see the value of a class or instance data attribute, type the class or instance name
followed by a dot and the attribute name, like this:

>>> Lab.weight
60
>>> pilot.weight
60

Use the same code to see how Python internally identifies a method attribute:

>>> Lab.retrieve
<unbound method Lab.retrieve>
>>> pilot.retrieve
<bound method Lab.retrieve of <__main__.Lab instance at 0x62300>>

Tip Object-oriented programmers say that Lab has a weight and has a retrieve()
method. See the sidebar, "When Not to Use Inheritance," later in this chapter.

Making and Calling Classes

The following sections cover the syntax of writing a class, calling a class to create an
instance, and using a method via an instance. These, along with assigning and changing
attributes (discussed in the previous section), are the most common class and instance
tasks.

In this section, we use the following example class:

class NameTag:
 def __init__(self, myname):
 self.myname = myname

 def say(self):
 print "Hello, my name is", self.myname

202

Creating a class

To write the first line of a class definition, type class, the name of the class, and a colon,
like this:

class NameTag:

Tip By convention, class names are capitalized and have embedded caps. By contrast,
function and method names are usually all lowercase. This makes it easier to tell at a
glance which object is being used at a particular point in a program.

Writing an __init__() method

Most classes have an __init__() method. This method runs when you make an instance
of a class. It specifies how many arguments the instance needs and puts the instance into
a known initial state.

Rules

A few key things to know about __init__() methods:

• The __init__() method is a special method called an initializer.

In Python, special methods begin and end with two underscore characters.

• It's conventional for the __init__() method to come first in the class
definition.

• The __init__() method, like other methods, needs a self parameter (which
stands for the instance), plus any other parameters that the class needs to
create an instance.

Basic syntax

To write a basic __init__() method that includes only the self parameter, follow these
steps:

1. On the line beneath your class definition header, indent four spaces.
2. Type def __init__(self):

Arguments

Many classes require you to pass arguments when you make instances from them.
Creating attributes for these parameters in the __init__() method lets other methods
access them easily.

To write an __init__() method that includes parameter attributes, follow these steps:

203

1. On the line beneath your class definition header, indent four spaces and type
this:

2. def __init__(self

3. On the same line, type a comma and the name of a parameter, like this:
4. def __init__(self, myname

5. Repeat Step 2 for each parameter you want to include.
6. Type an end parenthesis and a colon:):

Your def statement might look like this:

 def __init__(self, myname):

7. Go to the next line and indent four spaces past the def statement.
8. Create an attribute for the first parameter by typing self, a dot, the name of

the attribute, an equals sign, and the name of the parameter, like so:
9. def __init__(self, myname):
10. self.myname = myname

11. Repeat Step 6 for each parameter in the def statement.

Writing more methods

The __init__() method usually gives the class only some initial information. Most
classes also include methods that perform actions. You create methods by using the def
statement, exactly the way you write a function.

To write a method, follow these steps:

1. Making sure to indent 4 spaces, type def, the name of the method, and (self,
like this:

2. def say(self
3.

4. (Optional) Type any additional parameters the method requires. Separate
parameters with commas.

Don't use attributes as parameters—you access them through self.

5. End the line by typing):.
6. On the next line, indent four more spaces and type the code for the function.

If your code references class or instance attributes, be sure to use the self.name
syntax.

This example code includes only the self parameter.

def say(self):
 print "Hello, my name is", self.myname

Pure selfishness

204

When you work with Python classes, you encounter the name self a lot.

The easiest way to understand self is this: self stands for the instance that you create
from a class. For example, if you create an instance named pilot from the class named
Lab(), self stands for pilot.

When you are writing a class and you define a method in that class, you need to explicitly
include the self parameter in the method definition, as in the example below. Otherwise
the method wouldn't have any way of knowing which instance to use.

class NameTag:
 def __init__(self, myname):
 self.myname = myname

When you give a name to a value in a method definition, you use self. in front of the
name. The line self.myname = myname makes the myname parameter automatically
available to other instance methods. That means you can call those methods without
passing myname as an argument. Note the following code:

def say(self):
 print "Hello, my name is", self.myname

If this were a function, you would have to pass myname as an argument or else Python
would complain that myname isn't defined. But because it's a method and you've already
defined self.myname in the __init__ statement, the method can figure out the value of
myname by using the self object.

The self parameter also makes life easier when you create an instance. Python
automatically passes the self argument for you. For example, if you create an instance of
NameTag(), you only have to give it the value of myname. It automatically uses the name
of the instance as the value for self.

Static and class methods of new-style classes work differently. See the Chapter 14 for the
low-down on new-style classes.

Creating other class attributes

You can put any kind of code or assignment into a class. Anything inside a class that you
give a name to becomes an attribute of the class.

For example, we could add a favorite_color attribute to our NameTag class:

class NameTag:
 favorite_color = "Blue"

205

Then if we create an instance of the class, the instance also has this attribute:

>>> grail_seeker = NameTag('lancelot')
>>> grail_seeker.favorite_color
'Blue'

Creating an instance

To create an instance of a class (which is also known as calling a class), you give it a
name, and then type the class name, parentheses, and any parameters. Follow these steps:

1. Type a name for the instance, followed by an equals sign, like this:
2. hello =

3. Type the class name and (as shown:
4. hello = NameTag(

5. If your class requires parameters, include values or names for them. Separate
parameters with commas.

If you call the NameTag class created in the previous section, you need to pass a
value for one parameter, myname.

hello = NameTag('Arthur'

6. Type).

The completed code looks like this. The instance name is hello.

hello = NameTag('Arthur')

Calling a method via an instance

After you have created an instance (by using code like instance_name =
ClassName()), you can perform the actions defined by the class's methods.

REMEMBER To call a method via an instance, type this on one line:

• The name of the instance
• A dot
• The name of the method
• A pair of parentheses

Pass any needed arguments inside the parentheses.

For example, to call the retrieve() method of the pilot instance, type this code:

>>> pilot.retrieve("ball")
'ball'

REMEMBER You can't use this code to call the method by using the name of the class

206

because the class is only a template for the instance object. An AKC breed
standard document can't retrieve a ball—only the actual dog can. Here's
what happens if you try to call the method by using the name of the class:

>>> Lab.retrieve("ball")
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: unbound method retrieve() must be called with Lab
instance as first
 argument (got str instance instead)

TECHNICAL
STUFF

There is actually a way to call a method by using the name of a class.
This is known as calling an unbound method. It's mostly an advanced
programming technique, but it's also used to extend methods in
subclasses (see "Extending superclass methods," later in this
chapter). Briefly, you create an unbound method by using the name
of the class instead of the name of the instance (for example,
Lab.retrieve rather than pilot.retrieve). To call it, you pass it
an instance name along with any other arguments the method
requires—for example, Lab.retrieve(pilot, "ball").

Where did self go?

Does something seem to be missing in the code for calling a class? The __init__()
method in the class NameTag has two parameters—self and myname. Why do you need to
pass only one parameter when you create a class instance?

The answer is that self is a special parameter that essentially passes itself "behind the
scenes" when you use the class instance. So you don't have to pass self in this statement
(although there are some cases in which you do). In fact, if you do pass it in this
statement, you get an error:

>>> hello = NameTag(self, 'Arthur')
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
NameError: name 'self' is not defined

207

Getting Inside the Factory: How Class and Instance
Namespaces Interact

A class and an instance each have a namespace, which is storage for the names of objects
that Python knows about. When you create an instance of a class, the instance has its own
namespace, but it also shares the class's namespace.

Whenever Python encounters a name that's part of an instance, it looks for the value first
in the instance's namespace. If it can't find the value there, it looks in the class's
namespace.

Tip Function namespaces and global namespaces interact in similar ways. See Chapter
11.

So anything that you do to the class namespace (such as changing an attribute of the
class) is also reflected in the instance—except when the instance has already overridden
that value from the class namespace. The next section shows how it works.

Changing the values of class and instance attributes

You can change the values of a class's attributes. When you create an instance of your
class, you can also change (or override) the values of any class attributes it inherits. The
effect these changes have depends on what data types the attributes are, how you change
the values, and in what order you change the values.

When we first define our Lab instance, pilot, it has the same value for weight that the
Lab class defines:

>>> Lab.weight
60
>>> pilot.weight
60

Changing the value of the class attribute

To change the value of the class attribute, type the class name, a dot, the attribute name,
=, and a new value, like this:

>>> Lab.weight = 50

Warning Changing a class's attributes in code outside the class (and especially outside
the class's module) makes your code hard to read and to debug.

208

Changing the value of the instance attribute

To change the value of the instance attribute, type the instance name, a dot, the attribute
name, =, and a new value, like this:

>>> pilot.weight = 45

Effects of changing attribute values

The effects of changing attribute values are as follows:

• If you change the class attribute first, the instance value also changes:
• >>> Lab.weight = 50
• >>> pilot.weight
• 50

• If you change the instance attribute first, the class value does not change:
• >>> pilot.weight = 45
• >>> Lab.weight
• 60

Warning If the attribute is a mutable data type, such as a list, and you use a
method that changes the attribute in place (such as the append() method
of lists—see Chapter 8), then changing the instance attribute does
change the class attribute. Be sure to operate only on copies of mutable
instance attributes or avoid using change-in-place methods on them.

• Giving a new value to the instance attribute overrides the value it originally gets
from the class. So if you change the class attribute after you change the instance
attribute, the instance attribute does not change.

• >>> pilot.weight
• 45
• >>> Lab.weight = 100
• >>> pilot.weight
• 45

Adding an attribute to an instance

In "Making and Calling Classes," earlier in this chapter, we describe how to add an
attribute to a class, and the preceding section describes how to change the value of a class
or instance attribute. You can also add a data attribute (and value) to an instance that
you've created. Just write code like this:

>>> pilot.coat_color = "yellow"

REMEMBER This attribute is stored in the instance's namespace, so the class won't
know about this attribute, as illustrated here:

>>> Lab.coat_color
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
AttributeError: class Lab has no attribute 'coat_color'

209

Class and Instance Conventions

Python programmers use some important conventions when writing and implementing
classes. Python will understand your code if you don't use them, but humans who have to
read your code and figure out what it does will appreciate your using them. Some
conventions are as follows:

• Modules that exist mostly to export a single class should be named after the class.
• Class names begin with an uppercase letter. Attribute and method names begin

with lowercase letters.
• The name self is used to refer to the name of a class instance.

TECHNICAL
STUFF

A brief privacy note

When you're writing a class attribute, you specify that it is private by
naming it with a single leading underscore. Unlike private attributes
in modules and packages, however, Python doesn't treat private
attributes in classes in any special way. The single leading underscore
is just a convention that says to people reading your code, "don't
touch this!" (That is, don't try to rewrite it, change it, or use it in any
way, or else you might break something.)

Private attributes are most often used in large class hierarchies (but
you should use them any time you want to inform users of your class
that this is not part of the public interface).

If you name a class attribute with two leading underscores, that tells
Python to use name mangling so that base classes and subclasses
can't see the attribute (unless they manually do the name mangling
themselves). This is an advanced programming tool because it's hard
to use with inheritance.

Attributes with two leading and two trailing underscores (like
__getattr__) aren't private. They are special methods (discussed
earlier in this chapter).

Some OOP purists denigrate Python's privacy mechanisms because
the privacy mechanisms don't enforce privacy. Pythonistas counter
that anyone who really wants to break privacy can do it, and it's more
important to document things—and then get on with your work. (In
general, Pythonistas say, "Python is a language for consenting
adults." That is, Python usually won't prevent you from doing
something stupid or complex if you really want to.)

210

Inheriting the Farm: Overriding and Extending Classes

You can change the features of a class or create new features by creating a subclass (or
child class) that inherits attributes from its parent class and then changes some of the
attributes inherited from the parent class.

TECHNICAL
STUFF

Classes that subclasses inherit from are called parent classes,
superclasses, or base classes.

Creating a subclass

To create a class that inherits from another class, you type class, the name of the
subclass, and then, in parentheses, the name of the superclass the subclass inherits from.
To create a subclass of the NameTag class we work with earlier, you use a class statement
like this:

class GeekNameTag(NameTag):

Tip Python 2.5 adds a new feature: classes without base classes can use empty
parentheses (the same way functions can have no arguments). That is, you don't have
to specify a superclass in the parentheses. For example, you could just type class
C():

In general, when you create a subclass, you create only what you want to override or
extend about the superclass's behavior. So you don't need to write an __init__()
statement unless you want to make changes to the superclass's __init__() statement.

Overriding superclass methods

To create a subclass that overrides a method of a superclass, you write a method with the
same name as the superclass method you want to override, and you give this method
different behavior.

In the following example, the subclass defines a say() method that behaves differently
from the superclass's say() method.

class GeekNameTag(NameTag):
 def say(self):
 print "The current value of my name is", self.myname

Tip When not to use inheritance

In some cases, writing a subclass that inherits from a superclass isn't the best
solution. Suppose you are planning a conference, and you created a Registration
class. You might think of making Registration inherit from NameTag so you can

211

use the say() method. But it's better to make a nametag attribute for the registration
class that uses NameTag as a value, like this:

class Registration:
 def __init__(self, name):
 self.name = name
 self.nametag = NameTag(name)

Using an attribute that refers to an instance of a different class is called object
composition. One way to describe what's going on in the above example is to say that
an instance of the Registration class has an attribute that is an instance of the
NameTag class. To put it in material-world terms, if you produce a bunch of
registration packets for a conference, each packet is like an instance of the
Registration class, and each package has a name tag in it, which is an instance of
the NameTag class.

Here's what happens when you create an instance of the class and the subclass and call
each instance's say() method:

>>> superclass_inst = NameTag('Lucy')
>>> subclass_inst = GeekNameTag('Linus')
>>> superclass_inst.say()
Hello, my name is Lucy
>>> subclass_inst.say()
The current value of my name is Linus

Extending superclass methods

There are two basic ways to extend superclass methods. You can

• Extend a method that already exists in the superclass
• Write a new method that uses data from a superclass method

Extending an existing superclass method

Extending an existing method of a superclass is similar to overriding, except that you
also call the superclass method in the extended code. You extend a superclass method if
you want the method to perform as written and you also want to manipulate its result in
some way.

To create a subclass that extends the methods of a superclass, follow these steps:

1. Define a method with the same name as the superclass method you're
extending.

2. class WeirdGreeting(NameTag):

212

3. def say(self):

4. In that method's code, call the superclass method by typing the super-class
name, a dot, the superclass method name, and its argument in parentheses.

5. class WeirdGreeting(NameTag):
6. def say(self):
7. NameTag.say(self)

8. Perform some additional manipulations, either on the value returned by the
superclass method or on the subclass's instance data.

The following subclass extends the say() method of NameTag:

class WeirdGreeting(NameTag):
 def say(self):
 NameTag.say(self)
 print self.myname.swapcase()

You might call it like this:

>>> greet = WeirdGreeting('Totoro')
>>> greet.say()
Hello, my name is Totoro
tOTORO

Adding a new method

You write a new subclass method if you want the subclass to add some completely new
behavior to a parent class. The following example creates a new subclass of NameTag and
also creates a method on the subclass that extends the parent class by saving the NameTag
data in a database. (Note: This code is incomplete; it works only if a database file has
been created and opened.)

class PersistentNameTag(NameTag):
 def save(self):
 db.write(pickle.dumps(self))

Using multiple inheritance

A class with more than one superclass inherits its attributes from all its superclasses. Such
a class uses multiple inheritance.

REMEMBER To write a subclass that uses multiple inheritance, type the names of more
than one superclass in a class statement. For example:

class SubClassName(SuperClass1, SuperClass2):

And here's how you would create a "mutt" type of dog (this dog is probably easier to
create as a Python class than in real life):

class Heinz57Dog(Chihuahua, Greyhound, Mastiff, Dalmatian):

213

Namespace searching in classes and superclasses

Subclasses have access to the namespaces of all the classes they inherit from. When a
subclass inherits from parent classes, a namespace hierarchy is created. When other
classes (not direct parents of the subclass) get into the act, the namespace structure is
called a framework.

When you are working with classes, Python searches for names in the following order
and stops searching as soon as it finds the name:

1. Instance
2. Class
3. Superclasses that the class inherits from

Tip This is similar to how function and module namespaces work—Python searches the
function's local namespace first, and then the module's global namespace, and then
the main or built-in namespace.

This gives rise to the following behaviors:

Inheriting from a single superclass

The names and definitions in a subclass or its instance override the same names and
definitions in the superclass.

Inheriting from multiple superclasses

When a class has more than one superclass, Python searches first the instance, and then
the subclass, as usual. When Python starts searching the superclasses, it uses a method
called depth-first, left-to-right searching, which searches in the following order:

1. Leftmost superclass in the class statement

For example, in the class statement
TotallyBizarreGreeeting(WeirdGreeting, NameTag), searching would
begin with WeirdGreeting, the leftmost superclass named.

2. Subclasses of the leftmost class
3. Next class to the right in the class statement
4. Subclasses of this class
5. And so on …

Here is a simple example:

class A:
 def foo(self):

214

 print "foo called in A"

class B:
 def foo(self):
 print "foo called in B"

 def bar(self):
 print "bar called in B"

class C(A,B):
 pass

If you import the preceding example into interactive mode, here's what you get when you
create an instance of C and use it.

1. The instance of C looks in class A first and finds the foo() method there.

It executes that and never sees B's foo() method.

2. When you call the bar() method, the instance of C doesn't find it in class A, so it
looks in class B.

This example shows the result:

>>> x = C() # Create an instance of C
>>> x.foo() # Call the foo() method
foo called in A
>>> x.bar() # Call the bar() method
bar called in B

Operator interception and overloading

You can change the way Python operators work in your classes. This applies both to
expression operators (such as x * 3) and operations on objects (printing, calling a
function, and so on). Inheritance is one trick that makes this possible, but Python also has
some special tools to help:

Hooking into the power of special methods

Methods with names that begin and end with two underscores—special methods—are
also called hooks. They have special behaviors. When you use an operator such as +,
Python calls the special method __add__ behind the scenes. If you implement the
__add__() method for your class, Python will call it each time you use the + operator
with instances of your class.

Tip These methods are provided so you can make your own class instances work the
same way Python's built-in types do. It's good practice not to change the behavior of
the operators in ways users and readers of your program don't expect (such as
changing __add__ so that it subtracts!).

215

Table 13-1 lists some of the operator overloading methods. To see them in the
documentation for most of Python's built-in data types, type help(data_type),
substituting the name of the data type you need help with—for example, help(list).

Table 13-1: Some Commonly Used Special Methods
Open table as spreadsheet

Method Used For Syntax
__add__() + X + Y

__eq__(), __neq__() and
others

Comparing X == Y, X != Y, and so on

__getattr__() Looking up X.attribute

__getitem__() Retrieving an index or
key

X[key], X[index], X in Y, used in
loops and tests

__init__() Initializing objects MyClass()

__iter__() Creates iterables iter(X), for i in X:
__repr__() Printing, converting print X, X
__setattr__() Assigning a value to an

attribute
X.attr_name = value

__setitem__() Assigning an index or
key

X[key] = value
X[index] = value

__str__() Converting objects to
strings

str(X)

For a complete list of special methods, see "Special method names" in the Python
Language Reference: http://www.docs.python.org/ref/specialnames.html.

Super strings

The following example class includes a method that overrides Python's builtin
__str__() method. It checks whether one or two names were passed and returns the
names in first name–last name order:

class Employee:
 def __init__(self, lastname, firstname=None):
 self.lastname = lastname
 self.firstname = firstname

 def __str__(self):
 if self.firstname:
 return "%s %s" % (self.firstname, self.lastname)
 else:
 return self.lastname

216

When you create instances of this class and print them, the behavior of str() changes.
(The print command calls str(object).)

>>> a = Employee('Aahz')
>>> b = Employee('Maruch', 'Stef')
>>> c = 'Maruch, Stef'
>>> print a
Aahz
>>> print b
Stef Maruch
>>> print c
Maruch, Stef

When to Go to Class

You might benefit from creating classes in your program in the following situations:

• Several functions use the same parameters.

If your program's functions pass a lot of arguments back and forth, consider
creating a class and making the functions into methods. Methods can access their
data through the instance (self), so you don't have to pass the data.

You could do this by using globals, but there's more of a danger that things would
get changed when you don't want them to. Furthermore, globals don't allow you to
create multiple instances.

• Your program carries out the same operation multiple times.

Classes are ideal for this purpose because each instance you create is separate
from the others, and you don't have to reset everything to perform the operations
again.

• Your program is event-driven.

An event-driven program often has a function that collects events (user actions)
and sends them to other functions to be processed. If this event function is a
method of an Application class, application information doesn't have to be
passed as arguments.

• Your program uses a persistent database.

Class instances can be stored on disk by using the pickle or shelve modules.
(See Chapter 19.) The pickle feature creates an external file and saves an object
in it. pickle can also create a string suitable for storing in a database. The shelve
feature "pickles" objects by using a database that you access with keys.

217

• You want a data type that bundles several items.

An empty class definition can store data attributes. For more information, see
Chapter 21.

Chapter 14: Introducing New-Style
Classes
If you're new to Python and you have read Chapter 13 on classes, you might be groaning
at the prospect of yet another chapter on classes. Actually, almost everything in Chapter
13 also applies to the new-style classes we discuss in this chapter. New-style classes
simplify Python's object hierarchy in ways that save you effort if you want to make
changes to a built-in data type. They come with some new features that are of interest
mostly in advanced programming. We discuss them here so you'll recognize them in
programs.

This chapter provides an introduction to new-style classes and their features. You also
find out about method resolution order and two features you shouldn't use—static
methods and the __slots__ class attribute.

An Object's Object: Intro to New-Style Classes

The primary difference between a classic (or old-style) class and a new-style class is that
a new-style class always inherits from object, either directly (class
myclass(object):) or indirectly by inheriting from one of Python's built-in types
(class myclass(dict):), which inherits from object.

The original purpose of new-style classes was to allow subclasses based on built-in
Python data types, such as dict and list. They also fix some problems with classic
classes and add a bunch of new features (such as properties).

New-style classes were introduced in Python 2.2; however, they were somewhat
experimental in 2.2, and subtle but significant changes were made in Python 2.3. (In case
you're curious, most of the changes involved multiple inheritance features.) If you're
using Python 2.2, stick with classic classes.

Classic Coke or New Coke?

There is a controversy in the Python community about new-style classes. Some people
say you should use them for all the classes in your code. Others say you should use them
only where a regular class won't do. The controversy is based on the following facts:

• Regular classes will go away in Python 3.0.

218

Not to worry—the vast majority of Python code written with regular classes will
still work because classic class code isn't that different from new-style class code.

• Python 2.1 and earlier don't support new-style classes at all, and new-style
classes work differently in 2.2 than in 2.3 and later.

So if you use new-style classes, your code might have problems running in
Python 2.2 and earlier.

We focus on classic classes in this book because they're still the default and will remain
the default until Python 3.0; in addition, the vast majority of code in existence (including
the Python library) still uses classic classes.

Before Python 2.2, data types could be created only by using the C programming
language, and classes couldn't inherit from built-in or third-party data types. If you
wanted a new object that worked kind of like a Python dict, for example, you had to write
the whole thing from scratch. You couldn't write a subclass based on dict because C types
were very different from Python classes (specifically, classes were all of the class type,
and class instances were all of the instance type). Python 2.2 introduced the type/class
unification in the form of new-style classes.

In the new-style class tutorial found at http://www.python.org, Guido Van Rossum
(Python's creator) provides an example of a new-style class that extends the dict type by
providing a default value when a key is missing:

class defaultdict(dict):
 def __init__(self, default=None):
 dict.__init__(self)
 self.default = default

 def __getitem__(self, key):
 try:
 return dict.__getitem__(self, key)
 except KeyError:
 return self.default

The documentation for new-style classes hasn't yet been integrated with the rest of the
official Python documentation at http://www.python.org. Here's where to find
information about new-style classes:

http://www.python.org/doc/newstyle/

Everything comes from object

The basic rule for a new-style class is that it has to inherit from object. (We know what
you're thinking: "Oh no, another use of the term object!") In this case, object is a built-in

219

type. All the Python built-in data types are really subclasses of object. If you type
help(__builtin__) into the Python interpreter, part of what you see is a hierarchy of
classes, starting with object:

Help on built-in module __builtin__:
NAME
 __builtin__ - Built-in functions, exceptions, and other objects.
[....]
CLASSES
 object
 basestring
 str
 unicode
 buffer
 [...]

Methods of inheritance

There are two ways to set up inheritance for a new-style class. You can inherit directly
from object, or you can inherit from a built-in data type.

Inheriting from object

To write a class that inherits directly from object, start with this line:

class MyClass(object):

To make all classes in a single module new-style classes, put this statement at the top of
the module:

__metaclass__ = type

Inheriting from a built-in data type

Your class can inherit from a built-in data type (which inherits from object).

Use the following method if you want something that works a lot like a builtin data type
but has a few differences (like Guido's defaultdict example).

Warning Some functions return a specific data type. If you pass an instance of your
subclass to a function that returns a specific data type, it may return an instance
of a built-in type rather than an instance of your subclass.

In this example, we create a subclass of list and an instance of that subclass. When we
use the append() method on the instance, the changed instance still belongs to the
subclass we created. But when we use the list() function with the instance, it returns an
object of the list type.

220

>>> class MyList(list): pass
...
>>> ell = MyList()
>>> ell.append(1)
>>> ell
[1]
>>> type(ell)
<class '__main__.MyList'>
>>> ell2 = list(ell)
>>> ell2
[1]
>>> type(ell2)
<type 'list'>

New Improved Class Features

New-style classes provide several enhancements over old-style classes:

• The __getattribute__() method
• A new return value for type()
• The super() function
• The property type
• Class methods, including the __new__() class method
• Static methods
• The __slots__ class attribute

Getcher attributes!

With classic classes, one of the tools of subclassing is the special method
__getattr__(), which returns an attribute of an object. New-style classes add the
special method __getattribute__(). The difference between __getattr__() and
__getattribute__() is that __getattr__() is called only if an attribute isn't found, but
__getattribute__() is called for all attributes.

Hey, baby, what's your type?

New-style classes give you more specific information about the instances you create from
a class:

• If you create an instance of an old-style class, the value returned by
type(myinst) is <type 'instance'>.

• If you create an instance of a new-style class, the value returned by
type(myinst) is the same as the instance attribute myinst.__class__.

221

Calling the right superclass method

The super() function provides a way to get at a subclass's superclasses when you are
using multiple inheritance. You usually use it in a method to call a method in the
superclass. To use it, type super(classname, objectname). It returns a bound superclass
object.

Here's how to use the super() function to re-create the example NameTag class code in
Chapter 13. (Note that you must convert NameTag to a new-style class first.) The only
difference is that you use super() instead of explicitly using the NameTag class. Notice
that when you use super(), the class name argument must be the current class.

Tip Using super() makes it easier to change the name of a parent class. You only need
to change the class definition, not all the superclass calls in the methods.

Extended method using (classic) NameTag superclass:

class WeirdGreeting(NameTag):
 def say(self):
 NameTag.say(self)
 print self.myname.swapcase()

Extended method using the new-style NameTag class and super() function:

class WeirdGreeting(NameTag):
 def say(self):
 super(WeirdGreeting, self).say()
 print self.myname.swapcase()

The super() function has some limitations:

• It is a cooperative function: Each parent class that defines the method must also
call super().

• It works simply only when all methods have the same signature: That is, they
must have the same parameter lists. (It is possible to use super() when methods
have different signatures, but difficult.)

The traditional way of calling a superclass's method is to use the name of the superclass
you want when calling the method:

x = MySuperclass.its_method()

That's my property!

Properties are attributes that you manage by using various get and set methods, so they
are also called managed attributes. Before new-style classes came along, the only way to

222

customize attribute management was to override __getattr__ and __setattr__. This
was tricky and caused performance problems.

Set up properties

To set up properties in your class, follow these steps:

1. Define a new-style class and an __init__() method.

Usually, you set up a private attribute (self._x in this example) because it's only
used behind the scenes by the methods. See Chapter 13 for more on private
attributes.

class MyClass(object):
 def __init__(self):
 self._x = 0

2. Define class methods that get, set, or delete an attribute.

Tip It's a good idea for the names of these methods to include the words get, set,
and del so it's clear what's going on. For example:

 def getx(self):
 print "Getting _x"
 return self._x

 def setx(self, x):
 if x < 0:
 raise ValueError("Negative values prohibited: %r" %
x)
 self._x = x
 print "Setting _x"

3. Define a property and, in parentheses, pass the names of the methods you
defined, as in the following example.

Note that you do not call the methods (don't include parentheses after the method
names).

To include a doc attribute for a property (which shows up when you ask for help
on the property), type doc= and a string inside the parentheses.

 x = property(getx, setx, doc="no negative x")

223

Use properties

To use a property, create an instance of the class. To assign and retrieve values, pretend
that the property is a regular attribute—Python automatically calls the methods for you.
These examples show how:

>>> my_inst = MyClass()
>>> my_inst.x
Getting _x
0
>>> my_inst.x = 10
Setting _x
>>> foo = my_inst.x
Getting _x
>>> foo
10
>>> print MyClass.x.__doc__
no negative x
>>> my_inst.x = -10
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "a.py", line 11, in setx
 raise ValueError("Negative values prohibited: %r" % x)
ValueError: Negative values prohibited: -10

When only class matters

Class methods are passed the class of the object but not the object itself. They're useful
when

• A method needs to know only the class name and doesn't care about any
underlying data.

• You call methods directly on the class and you want to return an instance (for
example, the dict.fromkeys() method).

The following sections describe creating and calling class methods. You also find out
about the special __new__() method.

Creating class methods

You put class methods in your classes by defining a method (call it g()) and then typing
the code g = classmethod(g).

In this example, the g() class method returns the name of the class and a value x that it's
passed:

class E(object):
 def g(cls, x):
 return cls.__name__, x
 g = classmethod(g)

224

Tip Another way to create class methods is to use decorator syntax, like this:

@classmethod
def g(cls, x):

We tell you more about decorators in Chapter 16.

TECHNICAL
STUFF

Python programmers conventionally use the name cls (or
occasionally klass) to refer to the name of the class that gets passed
to a class method. (These weird names are used because class itself
is a keyword and can't be used as the name of an object.) This is
similar to the convention of using self to refer to the instance that a
class creates.

Calling class methods

To call a class method, use the class name, a dot, and the method name.

This example calls the class method g() from class E created by the preceding class
definition.

>>> print E.g(3)
('E', 3)

You can also call a class method on an instance, like this:

>>> print E().g(3)
('E', 3)

What's new in class methods

The __new__() class method deserves special mention.

When you create an instance with an old-style class, Python first creates the instance and
then calls the __init__() method to initialize it. But this doesn't work well for
immutable instances or with metaclasses. So new-style classes have a class method,
__new__(), that returns the instance. You can define both __new__() and __init__() in
a class. If you define both, __init__() is called after __new__().

Classes that use __new__() are different in several ways from classes that only use
__init__():

• The __new__() method creates a new instance, so it takes a cls parameter.

An __init__() method takes a self parameter because it is called after the
instance is created.

225

• The __new__() method must call its base class's __new__() method to create the
instance.

With an __init__() method, you can either call the base class's __init__() or
override it.

• The __new__() method must explicitly return the created instance via a return
statement.

• An __init__() method doesn't return anything.

Here's a trivial example of a __new__() method:

class derived_from(str):
 def __new__(cls, *args, **kwargs):
 instance = str.__new__(derived_from, *args, **kwargs)
 return instance

Unless you need to have a __new__() method in your class, it's conventional to use
__init__() to process the passed-in arguments and then raise an exception if they are
incorrect. It's a Bad Idea to use __new__() to return an error value rather than a correctly
created instance. (It's okay for __new__ to raise an exception, though.)

Cutting through the static about methods

Static methods are basically functions attached to a class rather than to a module. The
difference between a static method and a class method is that a static method has no cls
parameter. When a static method is called in a program, it looks just like a function call.

A static method begins with a def statement, has no self or cls parameter, and ends
with name_of_method = staticmethod(name_of_method). The line @staticmethod
before the def statement is decorator syntax that also indicates a static method. See
Chapter 16 for more information about decorators.

Warning Don't use static methods; they add unnecessary complexity to your programs.
Use functions if you want to do things with classes that don't require a class
instance.

Don't use the slots machine

The __slots__ class attribute provides a way of restricting the attributes of class
instances. It's intended as an advanced memory-saving technique for classes that will
have millions (yes, millions) of instances. It doesn't work well with inheritance.

Warning Simple rule: If you don't understand metaclasses, don't use __slots__.

If our warning isn't enough, take Guido's word for it:

226

__slots__ is a terrible hack with nasty, hard-to-fathom side effects that should only be
used by programmers at grandmaster and wizard levels. Unfortunately it has gained an
enormous undeserved popularity amongst the novices and apprentices, who should know
better than to use this magic incantation casually.

Island of Dr. MRO

In Python, MRO doesn't stand for Meals Ready to Open; it stands for Method Resolution
Order.

Tip The important thing to remember about MRO is this: If you use new-style classes,
you don't have to worry about method resolution order, because Python handles it
automatically.

MRO matters when you write a class that inherits from more than one parent class. For
example, assume your class inherits from two parent classes, and each parent class has a
write() method. If your class calls a write() method, Python looks for it first in the
class itself and then in the parent classes. But how will Python know which write()
method to use? And more important, how will you know which one gets used? If you
guess wrong, you might get the dreaded Unexpected Results.

With classic classes (see Chapter 13), Python looks for the method in this way:

1. It looks in the parent class listed first (leftmost) in the class definition.
2. It looks at that class's parent classes, and so on until there are no more parent

classes.
3. It goes to the next class listed in the class definition, and all of its parent classes,

and so on.

TECHNICAL
STUFF

This is called depth first and then left to right order.

Unfortunately, this order doesn't work with new-style classes, because they all inherit
from object. If this order were used, the same parent class would be examined multiple
times, and you'd still be in the position of not knowing which class's method was
discovered first. Even worse, sometimes a parent class is supposed to be overridden by a
subclass, but the parent class's method gets called instead!

So the way MRO works in new-style classes is this:

A new-style class has an __mro__ attribute that prescribes the order for searching parent
classes. It is created by a complicated algorithm that guarantees that each parent class
exists only once in the __mro__.

227

Best of all, Python generates a class's __mro__ attribute automatically, so you don't have
to worry about the "complicated algorithm!" Just examine the __mro__ attribute to see in
what order the superclasses are searched.

Tip The algorithm does still work left-to-right, so if you want a particular super-class to
get its method called first, make sure that it's listed first in the classes you inherit
from.

Exploding Your Head with Metaclasses

Python 2.2 and later have a functionality called metaclasses. Just as you use a class to
create instances, you use a metaclass to create classes.

Roles
REMEMBER A metaclass is just a class—but it creates classes rather than class

instances. In other words, it really is turtles all the way down.

A metaclass doesn't really create the class. Instead, Python executes the class code (just
like initializing a module) and then passes the class to the metaclass. The metaclass can
do whatever it likes, and the class name is given to what it returns.

Tip The Python community's wisdom about metaclasses is summed up by Python guru
Tim Peters: "Metaclasses are deeper magic than 99% of users should ever worry
about. If you wonder whether you need them, you don't." Therefore, read this section
to find out what a metaclass is and how to recognize one when you see it, but don't
worry about how to put one into your own program.

In a metaclass, the first argument for a method is conventionally called cls rather than
self. Metaclass methods operate on the class that the metaclass creates. A metaclass
doesn't create instances, and if you try to create an instance of a metaclass, you get an
error that looks like this:

Traceback (most recent call last):
TypeError: unbound method [...]

The default metaclass for all new-style classes is type(). (Surprise! type is really a
metaclass instead of the function we've been calling it all along. It just does a good job of
disguising itself until you need to use its other capabilities.)

Applications

To use a metaclass, use the __metaclass__ name either

• In the body of a class

228

• At the top of a module (if you want all the classes in that module to use that
metaclass).

Here's an example that sets up a class to use a metaclass. Notice that you only refer to
MyMetaClass; you don't call it (there are no parentheses).

class MyClass:
 __metaclass__ = MyMetaClass

Even if you want to write code that creates multiple classes, you rarely need to use
metaclasses. A function can return a class. A function that returns a class is called a class
factory. An example of a class factory called class_with_method() can be found in this
article on metaclass programming in Python:

http://www.-128.ibm.com/developerworks/linux/library/l-pymeta.html

The classobj() function of the new module also acts as a class factory.

Chapter 15: Feeling Exceptional
People who use your Python programs don't always do exactly what you want them to
do, and sometimes a program gets input it doesn't expect. Python has built-in tools for
handling these situations.

This chapter describes some of Python's error-handling features, including exceptions and
code blocks you write to capture exceptions. We also introduce you to writing your own
exception handlers and discuss two ways of approaching error handling.

All about Special Handling

In Python, as in English, an exception is a special case—something that needs special
handling. When the Python interpreter encounters something unexpected, it generates an
internal message, or raises an exception. You write code to tell Python what to do when
an exception occurs. Python's built-in exception code usually displays an on-screen error
message containing information about what kind of problem occurred and where.

Python also uses exceptions for control flow in non-error conditions, especially in for
loops, which we discuss in Chapter 10.

"I didn't think they would do that!"

When you write programs for other people to use, especially programs that ask users to
provide input of some kind, users may give your program input it doesn't expect.

229

For example, if your program asks the user to input a number, she might accidentally type
a letter instead. If your code is set up to work only with a number, this input would cause
your code to fail. Proper exception handling catches input of the wrong type, prints a
friendly reminder about what input to use, and lets the user try again. That way, the user
can correct the problem easily instead of having to restart the program or look at a
confusing error message such as this:

TypeError: cannot concatenate 'str' and
 'int' objects

Here's an example of Python's error handling. If you forget a colon when writing a for
statement, Python prints an error message called SyntaxError:

>>> for x in range(5)
 File "<stdin>", line 1
 for x in range(5)
 ^
SyntaxError: invalid syntax

This exception handling functionality makes debugging and using programs easier.
Without it, a program would just mysteriously quit whenever it encountered a bug.
You've probably used programs that do that and know how frustrating it can be!

But Python takes exception handling even further: You can write your own exception
handlers based on Python's built-in ones. For example, if you don't want an error message
displayed to the screen, you can design your program to catch specific errors your users
might make and then write exceptions that give users hints about how to use your
program correctly.

Trying Things Out

Python programmers handle exceptions in a code block that begins with the word try.
Blocks that use try are often nested inside each other to provide complete error handling.
There are two kinds of try blocks:

• try/except: If exceptions occur in the try code, the except clause captures and
handles the exceptions.

• try/finally: The try code and the finally code always run. If exceptions
occur in the try code, the finally clause re-raises the exceptions for handling
elsewhere in your program.

In Python 2.5, these two types can be combined into one block:
try/except/else/finally. See "try/except/else/finally: Together at last," later in this
chapter.

The following sections describe the inner workings of try blocks.

230

Using try/except statements

You use a try/except block if you want the except code to run only if there is an
exception. It looks like this:

try:
 some code
except SomeException:
 exception-handling code

Tracking down tracebacks

Python keeps track of what your program does. Each time you call a function, Python
adds the call to the call stack. Each function call adds another layer to the call stack.
When an exception is raised, Python stores the call stack as a traceback that tells you
exactly where the error occurred and the sequence of calls that got you there. (It doesn't,
however, list the function parameters—you need to do your own logging for that.)

The following example program contains an error. When you run it, Python raises an
exception, which generates a traceback:

Three functions that call each other
def a():
 b()
def b():
 c()
def c():
 1/0 # Attempt at division by
 zero, will raise exception
Run function a()
a()

When you run the program, the traceback lists the calls in the order they were received:

File "a.py", line 9, in <module>
 a()
 File "a.py", line 3, in a
 b()
 File "a.py", line 5, in b
 c()
 File "a.py", line 7, in c
 1/0 # Attempt at division by
 zero, will raise exception
ZeroDivisionError: integer division or
 modulo by zero

It works as follows:

1. Python runs the code in the try clause.

231

2. If no exception is found, Python finishes the try block and doesn't run the code in
the except block.

3. If an exception occurs in the try clause, Python skips the rest of the try code and
checks the exception against the exceptions named in the except statement. If
there is a match, Python runs the except clause.

4. If an exception occurs in the try clause that doesn't match the except statement,
Python looks for a matching exception handler in any code that the try block is
nested in. If Python doesn't find a matching exception handler, then Python uses
its built-in exception handler (that is, it prints those geekspeak error messages you
saw earlier).

Handling multiple exceptions

You can process several different kinds of exceptions by using try/except code. If you
want to catch more than one kind of exception in a try/except block, there are two
ways to do it:

• To handle all the exceptions the same way, list multiple exception classes
within a single except clause.

Pass the exceptions as a tuple (in parentheses, separated by commas), like this:

except (RuntimeError, TypeError, NameError):

• To handle each exception a different way, use multiple except clauses.

These clauses are tested in order; if there's a match in a clause, the rest of the
clauses are skipped. Here's what two except clauses might look like:

except RuntimeError:
 some code
except TypeError:
 some different code

Following is a small program that checks for correct user input. It uses a try/except
block with a single except clause that catches two kinds of exceptions.

try:
 x = raw_input("Enter an integer: ")
 y = int(x)
 print "Your number was", y
except (TypeError, ValueError):
 print "That didn't

Processing exception arguments

Some exceptions use arguments (associated data, like what functions and methods use):

232

• Exceptions usually have a string argument describing what sort of problem
occurred. Here's an example:

• try:
• x = int(x)
• except TypeError:
• raise TypeError("%r is not a valid integer" % x)

• A few exceptions also have a tuple argument that stores several bits of
information about the problem. This is an advanced feature we don't cover in this
book.

To print or log the details of an exception, specify a name in the except statement to hold
the exception instance. In the following example, the name detail is used to store the
exception instance:

>>> try:
... x = 1/0
... except ZeroDivisionError, detail:
... print "Oops,", detail
...
Oops, integer division or modulo by zero

Warning If you use more than one exception class in your except statement, put them in
parentheses to differentiate from the exception instance name. Otherwise you'll
get an unexpected result.

Dealing with exceptional exceptions

When using multiple except clauses, set up the last clause to catch any unexpected
exceptions. A "catch-all" except clause (commonly called a bare except) should go at
the highest level of your program. It should include code that logs the errors it catches. (It
could also print the error and send it to a logging function and then re-raise the
exception.) Logging is covered in Chapter 17.

Warning Include code in your except clause that logs or prints the errors the except
clause catches. Otherwise, Python swallows all the unexpected exceptions and
you won't know what kinds of errors your program is really generating, which
makes debugging harder.

When it comes to "or else"

A try/except block can have an else clause. The else clause runs only if the try block
runs successfully and completely:

• No exception is raised.
• No return or other block-exiting statement is executed.

Use an else clause for code that needs to run if the try clause doesn't raise an exception.
Put it after all the except clauses, like this:

233

try:
 some code
except SomeException:
 exception-handling code
else:
 necessary code

Using try/finally statements

If you need some code that always runs as part of a try block, and you want to handle
exceptions elsewhere in your program, use the try/finally block.

The finally block is good for cleaning up—closing open files and releasing memory,
for example. (Python usually does these things for you automatically, but in programs
handling lots of data, it's useful to clean up as you go along.)

TECHNICAL
STUFF

The try/finally block follows these steps:

1. Python runs the code in the try block.
2. If Python finds no errors, it leaves the try block and runs the

code in the finally block.
3. If a return, break, or continue statement is executed in the

try block, the finally clause runs on the way out.

4. If an exception occurs in the try block, Python skips the rest
of the block but saves the exception. It runs the finally
clause and then sends the exception up to higher levels of
your program (that is, it re-raises the exception), where you
should have exception-handling code.

A try/finally block looks like this:

try:
 some code
finally:
 cleanup code

Warning When you use a finally clause, don't put initializing statements (for example,
assignment statements) in the try block. In the following code, if open() raises
an exception, the name f doesn't actually get created. Then when the finally
clause runs, Python will produce a NameError complaining that f doesn't exist.

try:
 f = open('cheese_list')
 process(f) # This line is pseudo-code
finally:
 f.close()

To avoid the problem, put the open() line before the try/finally block, like this:

f = open('cheese_list')

234

try:
 process(f) # This line is pseudo-code
finally:
 f.close()

Because it's usually a good idea to do error-checking whenever you try to open a file, you
might want to wrap the open() line in a separate try/except statement.

try/except/else/finally: Together at last

Starting in Python 2.5, you can write a single block that includes all the components
discussed in the previous sections. This code works the same way as the old code did, and
the guidelines for how to use the statements are the same—the only difference is that you
don't have to nest two blocks if you want to use both except statements and a finally
statement together.

The following example uses try, except, and finally together to create a function that
tries to read a file and return its contents. But if there's an error reading the file, the
function returns None instead. Whether or not the file read is successful, the function
closes the file and returns a value:

def safe_read(filename):
 f = open(filename)
 try:
 data = f.read()
 except IOError:
 data = None
 finally:
 f.close()
 return data

It's easier to ask forgiveness than permission

Early in the history of programming, errors were often handled by trying to guess every
error that might occur and then writing a lot of if statements to process them. This
philosophy of error handling is called "Look Before You Leap" (LBYL for short). This is
expensive in computer processing power because the error checking occurs every time
the user does something (enters data, clicks something on the screen, chooses from a
menu, and so on).

The try statement lets you assume that users will use your program correctly. It handles
errors only when they actually occur. This philosophy of error handling is called "Easier
to Ask Forgiveness than Permission" (EAFP for short). Props to Alex Martelli for the
phrasing and tireless promotion of the philosophy, and to Admiral Grace Murray-Hopper,
architect of Cobol, who brought the concept into computers (albeit in a different context
—she was commenting on a techie's relations with bureaucrats).

EAFP is more efficient than LBYL in several ways:

235

• You can handle all the errors in one place (the except statements).
• You can handle unexpected errors by using an except statement with a "catch-all"

error handler.
• You handle errors only when they occur and not check for errors every time the

program gets some input.

Raising Your Code to New Levels

When your program determines an error condition (such as depositing a negative amount
to a bank account), the raise statement lets you force an exception even if Python
doesn't detect an error. Raising an exception "pushes the error higher" in your program's
code hierarchy.

To write a basic raise statement, type the word raise and the type of exception to raise.
This example raises the ValueError exception:

raise ValueError

To include a value with an exception, specify the value in parentheses after the exception.
The value is usually a string that gives a message about the error, as in this example:

raise NameError('What's your name again?')

You might also see this code written in the old style, with a comma rather than
parentheses (for example, raise NameError, 'What's your name again?'), but
parentheses are preferred, and the comma form won't be valid in Python 3.0 and later.

TECHNICAL
STUFF

A raise statement can also include a traceback object, but we don't
cover that in this book.

Sometimes, when Python has already raised an exception, you might want to do
something with it now and also force higher levels of the program to deal with it (in
geekspeak, this is known as "allowing the exception to propagate up the calling stack").
To save, or re-raise, an exception, type raise on a line by itself. For example, if you want
to send an exception to a logging function and re-raise it, your code might look
something like this:

try:
 some code
except ValueError:
 log_problem() # replace this with your logging code
 raise

REMEMBER Use a bare raise only when there is an existing exception—otherwise you
get an exception!

236

Making Your Program Exceptional

Python's exceptions are pretty general. Creating your own exceptions simplifies your
error handling. It's much easier for users and other programmers to understand your code
when you use an exception that describes what the error is, both at the point where the
error occurs and when you handle it in an except clause.

To create your own exceptions, write a new exception class or class hierarchy that's
derived from Python's Exception class or one of its subclasses.

Writing a base class for your exceptions

Here are some tips for writing an exception class:

• Use as a base class the Python exception that most closely resembles the
exception you're writing.

• Most exceptions have names that end in Error to maintain consistency with
Python's built-in error handling. Yours should, too.

• Keep exception classes simple. They should mostly only include attributes that
can store information about the error. Separate handlers can extract this
information and act on it.

For example, to define a class based on Python's Exception class, write something like
this:

class MyModuleError(Exception):
 pass

Developing an exception hierarchy

If you're creating more than one kind of exception—perhaps as part of a module that
handles several related functions—good practice is to start by creating a base class for the
exceptions. Usually, the base class doesn't do anything. The code looks something like
this:

class MyModuleError(Exception):
 """Base class for my exceptions."""
 pass

To make a subclass based on the base class, follow these steps:

1. Name the subclass after its corresponding module or class, plus "Error", like
this:

2. class InputError

TECHNICAL
STUFF

This helps you keep track of which modules your errors are
coming from.

237

3. Put the base class in parentheses in the class definition, and type a colon.
4. class InputError (MyModuleError):

5. On the next line, indent four spaces, and write code for what you want the
exception to do.

6. class InputError(MyModuleError):
7. pass

Chapter 16: Tackling Some Advanced
Features
This chapter describes some of the advanced features of Python, as well as some of the
new features of Python 2.5.

If you don't understand parts of this chapter, don't worry. We're describing these things
mainly so you will recognize them if you see them in someone else's code. As you work
with Python, your understanding will improve until you're ready to use these features
yourself!

What's That Idiom?

Table 16-1 shows you how some of the advanced and new features look in Python code.
All these features are described later in this chapter.

Table 16-1: Recognizing Advanced Python Coding Idioms
Open table as spreadsheet

Keyword or
Example

Feature Description

[X for X in
mylist]

List comprehension
(listcomp)

Creates a new list; allows
manipulation of list items)

((x*2) for × in
(2, 4, 6))

Generator expression
(genexp)

Creates a new iterator object; more
efficient than a listcomp

yield in a function
or method

Generator Makes a function that remembers
where it left off

with exp as name: with statement Adds context management to
try/finally blocks)

X if C else Y Conditional expression Easier truth testing
@ Decorator Creates function wrapper
lambda a, b: a**b Lambda expression or

anonymous function
An expression that returns a function

238

What to Do Next: Iterators and Generators

Lists are a useful Python feature that can take up a lot of memory and processing time.
Iterators are tools that help make lists more efficient, and generators make creating
iterators easy.

The itertools library

The itertools library, which was introduced in Python 2.3, includes functions for
making lists more efficient both to write and to use. Each of the itertools functions
creates a different type of iterator object. The objects are designed to work together. They
also work with the tools in the operator module to produce high-speed results.

Here are some simple examples of itertools code.

This itertools.imap() code takes two lists and passes their elements (one element
from each list at a time) to a lambda function (see the "Mary had a little lambda" section,
later in this chapter), which multiplies the elements:

>>> n = [1, 3, 6, 4, 3, 6, 3, 234]
>>> m = [1, 2, 3, 5, 6, 7, 8, 9]
>>> for i in itertools.imap((lambda x, y: x*y), m, n):
... print i,
...
1 6 18 20 18 42 24 2106

The inner lives of iterators

Iterators are used throughout Python, and if you understand them, you will have a good
grasp on what Python is all about.

An iterator is a Python object that produces elements one at a time. An iterable is an
object that can create an iterator. For example, the iterator created from a list returns the
list elements one at a time, in order. The iterator for a dict returns the keys one at a time,
unordered. Lists and dicts are examples of iterables.

As if things weren't confusing enough, some iterables (such as files) are also iterators.
For example, a file simply returns itself when asked for an iterator (technically, it returns
self). This means that all iterators are also iterables.

Finally, you can create functions and classes that either create iterators or are themselves
iterators.

Iterators are useful because they simplify code and reduce memory usage. They can also
make applications more responsive because they do only the calculations needed to
produce one element at a time instead of doing the work of producing all the elements
upfront.

239

The official Python tutorial available on the Python Web site at http://www.python.org
contains further explanation of the inner workings of iterators:

Behind the scenes, the for statement calls iter() on the container object. The function
returns an iterator object that defines the method next() which accesses elements in the
container one at a time. When there are no more elements, next() raises a StopIteration
exception which tells the for loop to terminate. This example shows how it all works:

>>> s = 'abc'
>>> it = iter(s)
>>> it
<iterator object at 0x00A1DB50>
>>> it.next()
a'
>>> it.next()
b'
>>> it.next()
c'
>>> it.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration

This itertools.count() code creates an iterator that returns consecutive integers
beginning with the argument you specify (0 by default). You can use
itertools.count() with itertools.imap() in the preceding example to generate one
of the lists, like this:

>>> n = [1, 3, 6, 4, 3, 6, 3, 234]
>>> for i in itertools.imap((lambda x, y: x*y), n, itertools.count()):
... print i,
...
0 3 12 12 12 30 18 1638

The itertools.islice() function works on a slice of a list of numbers. This code
creates a list of consecutive numbers between 0 and 61 (xrange(62)). It then takes a
slice of that list (the argument 6 specifies the beginning of the slice and the argument 62
specifies the end) and prints every third number from the slice (the argument 3 specifies
every third number):

>>> for i in itertools.islice(xrange(62), 6, 62, 3):
... print i,
...
6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

Generators: yield for faster processing

Generators look like functions—in fact, they are a special kind of function. They use the
yield statement to return data (whereas regular functions use the return statement).

240

Generators are a convenient way to create iterators because they simplify the record-
keeping needed for returning each element. (That is, you don't have to keep checking and
reassigning values because the generator remembers the values it was assigned last.)

Generators are different from functions in two other ways:

• Calling a generator always returns the same thing: an iterator (usually called a
generator iterator or geniter).

Calling a function can return any data type, depending on what the function does.

• When Python encounters a yield statement, it doesn't exit the generator iterator.
Instead, it remembers what was happening inside the function (including any
values that were assigned).

When Python encounters a return statement, it exits the function, and values
assigned in the function are forgotten.

Because they make iterators, generators are usually used in loops. Here's how a generator
works:

1. When you call a generator, you get a new iterator.
2. When you call the next() method of the generator iterator, the body of the

generator function executes until it hits a yield statement.

The for statement calls an iterator's next() method automatically.

3. The yield statement passes a new value to the next() method. The generator
iterator doesn't exit. Instead, it preserves or remembers the state of the function
body.

4. The next() method gets called again. Because the iterator remembers the state of
the function, the values that were in effect before, remain in effect.

5. The cycle repeats until Python runs off the end of the generator, a return
statement is executed, or an exception is raised.

6. If the generator ends normally, Python raises StopIteration.

TECHNICAL
STUFF

Generators are sometimes called resumable functions or generator
functions. People who call them generator functions usually call the
thing that they return a generator rather than a generator iterator.
(Python can add to your stock of tongue twisters as well as help you
become a better programmer!)

The following code creates a generator function that filters out repeated items in a
sequence—for example, repeated lines in a file. You prepare the file by reading it using
the readlines() method and then sorting the resulting list of strings:

241

def uniq(input):
 prev = object()
 for line in input:
 if line != prev:
 yield line
 prev = line

Tip In Python 2.4 and earlier, you can't use yield in the try clause of a try/finally
statement.

TECHNICAL
STUFF

Python 2.5 adds some esoteric features to generators. (We list them
here so you won't be surprised if you see them in other people's
programs.) All three features are new methods on geniters:

• send() allows you to pass values back into the generator.

A consequence of this change is that yield becomes an
expression in Python 2.5, so code like this is allowed (in
earlier versions, it raises an error):

foo = (yield foo)

Starting in Python 2.5, generators are also called coroutines.

• throw() raises an exception inside the generator.

• close() forces the generator to exit.

Expression and Comprehension: Listcomps and
Genexps

List comprehensions (listcomps) and generator expressions (genexps) let you focus on
data rather than control structures. (See also the "Focusing on Functions" section, later in
this chapter.) They replace a for loop with an expression.

List comprehension and generator expression code can look intimidating if you don't
know what's going on. But after you get used to them, you'll probably find them a lot
easier and quicker to use than the multi-line statements they replace. Remember that you
never have to use a listcomp or a genexp, but a lot of programmers use them, and it's best
to have a basic understanding of how they work.

List comprehensions

A listcomp is a nifty shorthand way of creating a new list. You can create a new list in
other ways, such as by using the map() function, but the listcomp syntax is more flexible,
simpler to create, and often easier to read.

242

A list comprehension is enclosed in square brackets and always includes the keywords
for and in.

As an example, if you have a list of strings and you want to make sure they are all
lowercase, you could do something like this:

mylist = ['ABC', 'fOO', 'bar']
tmp = []
for x in mylist:
 tmp.append(x.lower())
mylist = tmp

That's a lot of code for a simple task! (Well, Java programmers might not think it's a lot
of code, but Pythonistas are spoiled.) Plus, anyone reading the code would have to read
the whole for loop carefully to understand that it was creating a new list.

Fortunately, you can use a listcomp instead. It does the exact same thing as the for loop,
but it uses only one line of code.

Creating a simple listcomp

To create a simple listcomp, follow these steps:

1. Type a name, =, and [
2. mylist = [

3. Type the action you want done to create each list item.

For example, if you have a list of strings and you want to make sure they are all
lowercase, you might use the lower() method of lists. Your line of code would
now look like this:

mylist = [x.lower()

4. Type for and the same name you used in the action.
5. mylist = [x.lower() for x
6.

7. Type in, the name you typed at the beginning of the line, and]
8. mylist = [x.lower() for x in mylist]

REMEMBER You should use a listcomp rather than a for loop when you want to focus
on creating a list. That way, someone reading the code doesn't have to
examine the for loop to find the purpose of the code.

Creating a listcomp that applies a filter

You've seen that you can use a listcomp to do something to each item in a list. Another
thing you can do is apply filters to the items in a list to build a new list. The following
listcomp produces a list of numbers divisible by 5 by using the filter if x % 5 == 0.
Note that it uses the expression range(50) rather than a list name.

243

>>> filtered_list = [x for x in range(50) if x % 5 == 0]
>>> filtered_list
[0, 5, 10, 15, 20, 25, 30, 35, 40, 45]

Tip Listcomps can get complex rather quickly. If your code is getting hard to read, use a
for loop instead:

filtered_list = []
for x in range(50):
 if x % 5 == 0:
 filtered_list.append(x)

Generator expressions

In the earlier section, "Generators: yield for faster processing," we discuss generators,
which are a special kind of function that makes processing in loops more efficient.
Python 2.4 introduces generator expressions. Generator expressions (genexps for short)
are a shorthand way of creating generator iterators.

Genexps look like listcomps, but they use parentheses rather than brackets. (However, if
the generator expression is the only argument of a function, you can skip the
parentheses.)

The difference between a genexp and a listcomp is:

• A genexp creates a generator iterator (also called a geniter).
• A listcomp creates a list.

Tip One way to use a listcomp or a genexp is to give it as the argument to a function that
takes an iterable. For example, a genexp is a handy way of building a dictionary by
using the dict() constructor.

To write a simple genexp that creates a dict in which each number is associated with its
square, follow these steps:

1. Type the name of a function and (.

In this example we use the dict() function, which creates a dictionary out of
two-item tuples.

dict(

2. Type (, a name for one item in the tuple, and a comma.
3. dict((x,

4. Type an expression for the other item in the tuple, and then type)
5. dict ((x, x ** 2)

6. Type for and the name of the first item in the tuple.
7. dict ((x, x ** 2) for x

244

8. Type in and a tuple representing the values you want to assign to the first
item in the tuple. Then type)

9. dict((x, x ** 2) for x in (2, 4, 6))

If you typed the above code into interactive mode, you'd get this result:

>>> dict((x, x ** 2) for x in (2, 4, 6))
{2: 4, 4: 16, 6: 36}

Tip If the expression would evaluate to a tuple, it must be in parentheses. (This also
applies to listcomps.

With What, Your Bare Hands? (The Power of ‘with’
Statements)

In Python 2.5, the new with statement makes try/finally statements more powerful
and easier to use. (Maybe even powerful enough to slay a fierce green dragon!) The
syntax is as follows:

with EXPRESSION as NAME:
 BLOCK

The with statement works like this:

• EXPRESSION returns a value that the with statement uses to create a context (a
special kind of wrapper object). This is similar to the way a for loop
automatically creates an iterator. The context is used to execute the BLOCK. The
block might end normally, get terminated by a break or return, or raise an
exception. No matter which of those things happens, the context contains code to
clean up after the block.

• The as NAME part is optional. If you include it, you can use NAME in your BLOCK.
NAME is similar to the target of a for loop (that is, the i in for i in mylist).

To use the with statement in Python 2.5, put this code in your module:

from __future__ import with_statement

TECHNICAL
STUFF

In Python 2.6 and later, the with keyword will automatically be
recognized.

The protocol used by the with statement is called the context management protocol, and
objects implementing it are context managers.

You can create a context manager with a decorated generator (see the later section,
"Decorating Your Code"), like this:

from contextlib import contextmanager

245

@contextmanager
def opened(filename, mode="r"):
 f = open(filename, mode)
 try:
 yield f
 finally:
 f.close()

You might use the preceding code as follows:

with opened("/etc/passwd") as f:
 for line in f:
 print line.rstrip()

TECHNICAL
STUFF

This canonical (standard) example is from the Python docs at
http://www.python.org. The code creates a template for opening a file
that ensures the file is closed when Python leaves the with block.

Making Exceptions for Yourself

The way you use standard exceptions and write custom exceptions changes slightly in
Python 2.5. Here's the scoop:

• Python 2.5 turns all standard exceptions into new-style classes (see Chapter 14 for
more about new-style classes) and introduces a new superclass called
BaseException. All the standard exceptions you'll use in your programs still
inherit from the Exception class, but the Exception class in turn is a subclass of
BaseException.

• In Python 1.5 through 2.4, all standard exceptions are subclasses of the
Exception class, but any (classic) class can be raised as an exception.

TECHNICAL
STUFF

Two exceptions inherit from BaseException: KeyboardInterrupt
and SystemExit. But you have no business catching those
exceptions. You should let them behave the way they're supposed to
so that the user can interrupt your program.

REMEMBER Any custom exceptions you write should be subclasses of Exception.
(See Chapter 15 to find out how to write custom exceptions.) Although
this rule isn't enforced now, it will be enforced in Python 3.0.

Warning Early versions of Python (prior to 1.5) used string exceptions. Although Python
still lets you create string exceptions, they won't be supported in the future. In
Python 2.5 and later, string exceptions raise a PendingDeprecationWarning.
Use them only in the (extremely unusual) case of code that needs to be
compatible with versions earlier than 1.5.

Under One Condition

246

Conditional expressions were added to Python 2.5 to simplify choosing one of two
options in an expression. (See Chapter 10.)

A conditional expression takes the following form:

X if C else Y

It works like this:

1. C is evaluated.
2. Action depends on whether C is true:

o If C is true, then X is evaluated to give the result.
o If C isn't true, Y is evaluated to give the result.

You can use parentheses in conditional expressions. Because parentheses identify the
conditional expression as a single unit, they make it easier to read in context of other
code, as in this example:

x = ("tiger" if fruit=="redcurrant" else "crocodile")

Although you can write nested conditional expressions, you shouldn't because they are
hard to read. The following example is too hard to read as a single statement. It should be
written as an if block instead:

too-complex conditional expression
cleese = ("Hungarian tourist" if sketch == "Phrasebook Sketch" else
 ("Customer in search of parrot" if sketch == "Pet Shop Sketch" else
 "Fresh fruit sergeant")
)

easier-to-read if block
if sketch == "Phrasebook Sketch":
 cleese = "Hungarian tourist"
elif sketch == "Pet Shop Sketch":
 cleese = "Customer in search of parrot"
else:
 cleese = "Fresh fruit sergeant"

Decorating Your Code

Decorator syntax provides a way of modifying functions and methods. A decorator (also
called a function decorator or function wrapper) is a function that takes a function as an
argument and returns another function.

247

TECHNICAL
STUFF

Before decorator syntax made its way into Python, programmers
modified functions and methods by calling the decorator function and
assigning the result back to the original name of the function.

A standard use for decorators is to implement a cache that stores the results of function
calls. This is called memoizing. It works like this:

1. The first time you call the memoized function, the wrapper calls the original
function to get the result. It returns the result but also stores it in the cache.

2. When the program calls the memoized function again with the same arguments,
the stored value is returned.

This speeds up the program because the original function doesn't run again.

If you wrote a decorator function called memoize(), you would set it up to work with a
function by using the following syntax. The @ character indicates a decorator. The
decorator comes on the line before the function or method definition:

@memoize
def myfunc(myarg):
 some code

Without decorator syntax, you write the code this way:

def myfunc(myarg):
 some code
myfunc = memoize(myfunc)

REMEMBER When you pass myfunc as an argument to memoize() in the preceding
code, myfunc doesn't have parentheses after it. That is because you aren't
calling myfunc() as a function; you are passing the function itself as an
argument.

Some memoizing decorator functions can be found in the Python Cookbook:

http://www.aspn.activestate.com/ASPN/Cookbook

248

Focusing on Functions

Several Python tools are designed specifically to work with functional programming,
which is a kind of programming that works via functions.

Genexps, listcomps, and the itertools module are functional programming tools
covered earlier in this chapter. This section introduces some more esoteric tools, mostly
so you can recognize them in other people's programs.

Tip If you made an easy A in calculus, you might enjoy functional programming. If you
never made it to the calculus level, don't worry. The more complex types of
functional programming aren't necessary for most types of programming tasks.

Python's functional programming tools include these features:

• lambda expressions create functions you can define in other function calls (this is
useful if you don't want to create a whole separate function).

• Higher-order functions take functions as input and output a function.
Tip Decorators are an example of higher-order functions.

• First-class functions include functions that can be either
o Stored in a data structure (for example, using the pickle module)
o Passed as an argument to another function

• List comprehensions, which we discuss earlier in this chapter
• The map(), reduce(), zip(), and filter() functions

Mary had a little lambda

The lambda keyword creates anonymous functions—functions that don't have names.
(The name lambda comes from LISP programming.) It creates a function object the same
way the def keyword does, but the lambda function object has <lambda> in place of the
name of a function, as shown.

>>> lambda x: x%5 is 0
<function <lambda> at 0x8211844>

This code uses the above lambda expression to make a list of the numbers from 0 to 75
that are divisible by 5:

>>> filter(lambda x: x%5 is 0, xrange(76))
[0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75]

A couple of other differences between lambda functions and functions created with the
def keyword are as follows:

249

• A lambda is an expression, not a statement, and it can appear anywhere that an
expression is allowed.

• A lambda expression can't have statements in it (such as x = 2, or if or try
statements).

Mapping it out

Another functional programming tool is the map() function. In its simplest form, using
None as the first argument, it turns a sequence into a list, or multiple lists into a single list
of tuples.

In the following example, the map() function turns a string into a list of single-character
strings:

>>> mystring = "hello kitty"
>>> map(None, mystring)
['h', 'e', 'l', 'l', 'o', ' ', 'k', 'i', 't', 't', 'y']

• If you pass a function as the first argument, map() performs the function's action
on each element of the list or sequence and stores the result in another list.

• If you pass more than one sequence, the function needs a parameter for each
sequence.

• If the sequences have different lengths, map() substitutes None when there is no
corresponding value in the shorter sequence.

Tip If you don't need this sequence-extending behavior, you should use zip(), listcomps,
or genexps rather than map(). They're simpler.

Applying filters

The filter() function takes a function (which can be a lambda) and a sequence. It
processes each element using the function and returns a sequence of the items for which
the result of the function is True. For example:

>>> data = [10, 2, 7, 5]
>>> filter(lambda x: x>5, data)
[10, 7]

Tip You can also filter elements with listcomps. See "Creating a listcomp that applies a
filter," earlier in this chapter.

Reductionism

The reduce() function takes a function (which can be a lambda) and a sequence. It
returns a single value constructed as follows:

1. It calls the function by using the first two items of the sequence as arguments and
returns the result.

250

2. It calls the function by using the result just returned and the next item of the
sequence.

3. And so on until it runs out of items.

This example performs x * y on a list of 4 items:

>>> mylist = [2, 4, 6, 8]
>>> reduce(lambda x, y: x*y, mylist)
384

Tip For most purposes, reduce() has been replaced by the built-in function sum(). The
sum() function takes a sequence of numbers and adds them, as shown:

>>> sum(range(20))
190

251

Chapter 17: Using Python's Primary
Services
In this chapter, you find out about many of the tools built into every installation of
Python.

We call this the "primary services" chapter because almost every non-trivial program uses
some (but not all) of the features listed in this chapter.

Python: Batteries Included

The tools that come with Python are collectively called the standard library. The standard
library contains commands, modules, and packages.

TECHNICAL
STUFF

Sometimes you'll see modules or packages that come with Python
referred to as libraries, which is short for standard library module.
This book uses module and package, though. Chapter 12 explains the
difference between modules and packages.

The standard library is like a basic education for Python, allowing it to work with
different operating systems (UNIX, Windows, and Mac OS, for example), to handle
many kinds of data, to navigate the Internet, to work with different human language
systems, and so on.

There are so many features that people often say that Python comes with "batteries
included."

REMEMBER Remember to import modules

Python's abilities come packaged in modules so you don't have to think
about tools you aren't using right now. To use a tool, you usually have to
import the module it's stored in.

The recommended way to import modules is to import the whole module
by typing

import modulename

We describe other ways to import tools in Chapter 12.

REMEMBER This key point will save you many many many hours of coding:

252

Before you start writing a Python program to perform a function, check
whether the function already exists in Python's libraries. Hundreds of
programmers have developed these tools so you don't have to.

Each new version includes lots of feature upgrades and additions. So when you upgrade
to a new version of Python, be sure to read the "What's New" Web page for the version at
http://www.python.org/. The new features of Python 2.5 are available here:

http://www.docs.python.org/

You Get All This!—The __builtin__ Module

The tools in the __builtin__ module are available whenever you use Python. You don't
have to import them. To see what's in the module, type dir(__builtins__). (Don't
forget the ‘s’—although the module is called __builtin__, the alias for the module is
__builtins__. If that bothers you, you can type import __builtin__ to use the actual
module name.)

If you don't recognize most of the names, that's okay. A lot of what's in __builtin__
works behind the scenes, at least when you're just starting out. Curious? Get a description
of a particular item in the library by typing help(name of item).

Most of the __builtin__ tools that you need to know about are described elsewhere in
this book. This section describes a few additional tools you might find useful.

Seeing what's inside Python objects

The dir() function returns an alphabetized list of an object's attributes, such as functions
or methods, constants, and the name of the object.

Here's how to use the dir() function:

• To see the names in the current namespace, type dir().

If you type dir() immediately after starting Python's interactive mode, you will
see something like this:

>>> dir()
['__builtins__', '__doc__', '__name__']

253

• To see all the attributes (named items) belonging to an object, type dir(name of
object). For example:

• >>> dir(ArithmeticError)
• ['__class__', '__delattr__', '__dict__', '__doc__',

'__getattribute__',
• '__getitem__', '__hash__', '__init__', '__new__',

'__reduce__',
• '__reduce_ex__', '__repr__', '__setattr__',

'__setstate__',
• '__str__', '__unicode__', 'args', 'message']

• To see the attributes of a specific attribute, separate the object name and the
attribute name with a dot, like this:

• dir(ArithmeticError.__doc__)

Tip You can also see some attributes by typing help with the name in
parentheses, for example:

>>> help(ArithmeticError)

The dir() function shows you these types of attributes:

• For a module, it returns the module's attributes.
• For a type or class object, it returns the object's attributes and those of its base

classes.
• For any other object, it returns the object's attributes and the attributes of its class

and base classes.

Reading and writing files

The open() function sets up a file object in Python. It returns a file data type.

Warning The built-in documentation for open() for Python 2.2 through 2.4 has an error.
It states (or implies) that because open() is an alias for file(), you should use
file(). This is incorrect. Use open() rather than file() so that your code will
work with all versions of Python.

The following sections describe most of the argument options and the methods of the
open() function.

Options for the open() function

Here are the rules and options for open():

• You should give a name to the file you're opening, or else it will be difficult to do
anything with it.

• The first item in the parentheses is a string containing the filename. If the file
belongs in a particular directory, type the path to the directory. For example:
'my_dir/my_file'

254

• The second item in parentheses is a string representing the mode. If you leave this
out, the mode defaults to 'r' for "read-only." The modes are described in Table
17-1.

Table 17-1: Modes of the open() Function
Open table as spreadsheet

Mode Meaning
'r' Open the file as read-only (allowing no changes). This is the default.
'w' Open the file for writing. Create the file if it doesn't already exist.

Warning Using 'w' erases anything currently in the file.
'a' Open the file for appending. Create the file if it doesn't already exist.
'b' Treat the file's contents as binary.

This code is used mostly with Windows. Most other OSes these days don't
differentiate between text and binary files.

'+' Allow both reading and writing. Add it to the 'r' or 'w' mode like this:
'r+'

'U' Use universal newline support; for reading text files created on Mac, UNIX,
or Windows. Works only with 'r'; doesn't work with ‘ +'. Type it on its
own or add it to 'r' mode like this: 'rU'

So to open a file for reading, type code like this:

myfile = open(filename, 'r')

Saving changes to disk

To save file changes to disk, you need to use one or both of these methods:

• The flush() method forces Python to take data in the internal buffer and save it
to the file. Use it when you want to write changes to disk without closing the file.

• The close() method closes the file object that is created with the open()
method. You can't read from or write to the file after you close it. Use it when
you're finished with the file.

Reading file contents

You can read the contents of a file in several ways. Which one you use depends on the
format you want for the file's contents:

• For a string, use the read() method. It returns the whole file or up to a specified
number of bytes as a string. This example returns 27 bytes:

• >>> myquote = open('quotes.txt')

255

• >>> myquote.read(27)
• 'If you like laws and sausag'

• For a list of strings (each string is one line of the file), use the read-lines()
method. The following example reads the whole file.

• >>> myquote.readlines()
• ['If you like laws and sausages, you should \n', 'never watch
• either one being made. \n', '-- Prince Otto von Bismarck

(attrib.)\n',
• '\n', 'Not to mention web sites. \n', '-- SJM\n']

• For a string representing each line, use a for loop—which is also best if you want
to read a file piecemeal rather than in a big gulp.

• >>> for line in myquote:
• ... print line.rstrip()
• ...
• If you like laws and sausages, you should
• never watch either one being made.
• -- Prince Otto von Bismarck (attrib.)
•
• Not to mention web sites.
• -- SJM

Tip In the preceding example, the string method rstrip() removes white space
and the end-of-line character (\n) from the strings. Because print also
appends \n, if you don't use rstrip(), the output will be double-spaced.

Writing information to a file

The write() method writes a specified string to the file. (The file must have been opened
for writing or appending.)

Tip Information written to a file may not appear in the disk copy of the file until you
have flushed the buffer and closed the file.

This example creates a file object (pithy_sayings) and writes a string to it:

>>> pithy_sayings = open('myquote', 'w')
>>> mystring = "Entropy isn't what it used to be."
>>> pithy_sayings.write(mystring)
>>> pithy_sayings.close()

TECHNICAL
STUFF

File objects don't support Unicode strings (see Chapter 6). To write a
Unicode string to a file, you need to encode it as UTF-8 first, like
this:

myfile.write(mystring.encode('utf-8'))

Tip If you have a file (or file-like object) open for writing, you can use the >> operator
with the print statement to redirect output to the file. The print >> statement is
useful for logging or to make sure that a command-line program prints output to the
screen when stdout is redirected elsewhere, like this:

256

print >> sys.stderr, "Danger! Danger!"

Working with attributes

To examine, specify, and change an object's attributes indirectly, you use the hasattr(),
getattr(), and setattr() functions. One use for these functions is converting user
input into an attribute of a class.

• To find out whether an object has a particular attribute, type hasattr and then, in
parentheses, specify the name of the object and the attribute name as a string
(separated by commas).

• >>> hasattr(math, 'cosh')
• True

The result is True if the string matches the name of one of the object's attributes
and False if not.

• To find out the value of an object's attribute, use getattr() with the object name
and attribute name (again, as a string). If the attribute exists, Python returns its
value.

• >>> getattr(math, 'pi')
• 3.1415926535897931

If the attribute doesn't exist, Python raises an AttributeError by default. But
you can specify a third argument to the function: a value you want returned if the
attribute isn't found. This value is often None.

>>> x = getattr(math, 'mary poppins', None)
>>> print x
None

Tip An easier way to get the value of an attribute is by typing the object name, a
dot, and the attribute name: math.pi. This returns an AttributeError if the
attribute doesn't exist, so if you want to return a value instead, use
getattr().

• To assign a value to an object's attribute or to create a new attribute and assign a
value at the same time, use the setattr() function.

In the parentheses, type the object name, the attribute name as a string, and the
attribute's value, like this:

setattr(myobject, 'my attribute', 'my value')

If the attribute exists, the new value is assigned to it. If the attribute doesn't exist,
Python creates it and assigns the new value.

257

Finding largest and smallest items

To find the largest item, use the max() function. In the parentheses, specify a sequence,
like this:

>>> a = [1, 5, 3, 7]
>>> max(a)
7

To find the largest of several items, specify them all as arguments to the max() function.
Separate arguments with commas. Here's an example:

>>> a = [1, 5, 3, 7]
>>> b = [100, 200, 500]
>>> max(a, b)
[100, 200, 500]

The min() function works the same way but returns the smallest item or argument.

Getting input from users

The raw_input() and input() functions read information from Python's standard input
file (sys.stdin). You usually use them to collect input that a user types in response to a
prompt or question.

raw_input()

The raw_input() function prints a prompt string to Python's standard output file,
sys.stdout. (By default it writes output to the screen.) The function returns the user's
input as a string. (The prompt string is optional, but you'll usually want to include one.)

You specify the prompt string as the argument, like this:

raw_input("How old are you? ")

input()

The input() function expects the user to enter a valid Python expression and then it
evaluates that expression.

Unlike raw_input(), the input() function can return any valid Python object, not just a
string.

Warning It's safer to use raw_input() and have your program convert the string into a
Python expression. Because the input() function calls eval(), it could be used
to run malicious code. (See "Evaluating a string," later in this chapter.)

258

If input() doesn't receive a valid Python expression, it raises an exception, as in this
example, in which the user input is pi:

>>> input("What is 3.1415? ")
What is 3.1415? pi
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<string>", line 1, in <module>
NameError: name 'pi' is not defined

Finding an object's type

To find an object's data type, use the type() function. In parentheses, give it the name of
the object. It returns the object's data type—for example, string or function. This example
returns the type of the function round().

>>> type(round)
<type 'builtin_function_or_method'>

Reloading a module

The reload() function allows you to re-import a module without quitting and restarting
Python. Reloading is useful when debugging a program that takes a long time to start up,
when programming a GUI, or when Python is embedded in another application.

Warning The reload() function should never be used in a live application because it
does not modify existing references to the contents of a module.

Evaluating a string

The eval() function takes a Python expression in the form of a string, converts it into a
code object, runs the code, and returns the result. You use it when you want to give your
users direct access to Python.

Warning The eval() function is a security risk, so if your code needs to be secure, it's
better to use some other approach (for example, setattr() or a dictionary).

TECHNICAL
STUFF

The eval() function also works with a code object, but that's an
advanced feature we won't be documenting in this book.

This example uses eval() to solve an expression. (You wouldn't use this code in a real
program, though—you'd simply type print x+1!)

>>> x = 1
>>> print eval('x+1')
2

You can use either of these optional arguments with the eval() function. They go after
the string. You must pass them in this order:

259

• A dictionary of global names, used as the global namespace for evaluating the
expression. This defaults to the current global namespace's dictionary.

• A dictionary of local names, used as the local namespace for evaluating the
expression.

But Wait, There's More—The sys Module

The sys module is for interacting with and controlling the Python interpreter. It includes
information about the operating system and the version of Python you're using. Most of
the time, you don't interact directly with what's in the sys module, but you should know
about a few tools it offers.

REMEMBER You must import the sys module before you use it.

import sys

To work with a feature in the sys module, type sys, a dot, and the name:

sys.exit()

These are the items in the sys module you'll probably use most often:

• sys.exit() function: Tells the Python interpreter to quit. It's the most direct way
to end a Python script while it's running.

• sys.argv list: Stores any command-line arguments passed when you started
Python. Also includes the name of the program you're running.

Use sys.argv when writing utility scripts that accept parameters on the command
line. This example shows the contents of sys.argv after you run a program called
add.py and pass it the parameter 3.

% python -i add.py 3
>>> import sys
>>> sys.argv
['add.py', '3']

The sys module also contains the following types of objects:

• Input, output, and error files
o stdin: Used by the input() and raw_input() functions; accepts input

from user
o stdout: Used by the print statement; in interactive mode, prints to the

screen
o stderr: Stores error messages

260

• Objects that store information specific to your version of Python. Examples
include pathnames, the list of available modules, and character encodings.
Functions beginning with get and set let you access and change this information.

• Debugging and exception-handling tools.

Solving OS Incompatibility—The os and subprocess
Modules

The os and subprocess modules include code that lets Python work with your operating
system—they even run operating system commands.

These modules give Python ways of accessing the operating system that don't require you
to write code specific to a particular operating system. Therefore, you should import and
use them if you're writing a program that needs to work on more than one operating
system.

The os module is best for the following tasks:

• Working with paths and permissions (test for access to a path, changing
directories, changing access permissions and user/group IDs)

• Working with files (open, close, write, truncate, create links)

Tip Another module that's useful for copying and moving files is shutil (which
stands for "shell utility"). See Chapter 19.

The subprocess module, new in Python 2.4, lets you safely interact with the operating
system to run commands and get information out of them.

Think of the os and subprocess modules as the way that Python does the same things
you do with your operating system directly (such as starting programs and manipulating
files). If you work on more than one operating system, you must remember different
commands and syntax for filenames, for example. Python's os module helps Python
remember these things. For example, the os.path module handles pathnames, so you
don't have to write special code to handle both UNIX pathnames (which have forward
slashes) and Windows pathnames (which have backslashes).

Working with the os module
Tip This section lists some useful os functions and data. To find out more about the

abilities of the os module, type help(os).
REMEMBER Except where indicated in the following sections, all the tools of the os

module work with UNIX, Mac, and Windows operating systems.

261

Manipulating directories and their files

Use these functions to work with directories and files on a computer system.

• os.chdir() changes the current working directory to the specified path. Specify
the path as a string, like this:

• os.chdir('/users/stef/Quote')

• os.getcwd() returns the current working directory as a string, like so:
• >>> os.getcwd()
• '/users/stef/Quote'
•
• os.mkdir() creates a directory with the path you specify. Specify the path as a

string, as follows:
• os.mkdir('MyNewDictory')

To set a directory's permissions, specify a four-digit octal permissions mode as the
second argument. The default mode is usually 0777, which gives everyone full
access to the directory, but your operating system might override this default.
Here's how to specify the default:

os.mkdir('MyNewDictory', mode=0777)

• os.makedirs() works like os.mkdir(), but it creates directories recursively. For
example, if you're in directory A and you want to create directory B that holds
directory C that holds directory D, type this:

• os.makedirs('B/C/D')

Warning os.makedirs() doesn't work with Windows Universal Naming
Convention (UNC) paths, which use the \\host\path format.

• os.remove() deletes the item on the path specified. Specify the path as a string. It
doesn't remove directories. In Windows it raises an error if the file is in use. The
code looks like this:

• os.remove('R/test')

• os.rmdir() removes a single directory on the path specified, and
os.removedirs() removes multiple directories. We recommend using
shutil.rmtree() rather than these functions. See Chapter 19.

• os.walk() creates a generator object that lists the files in a directory tree. It
generates a three-item tuple (directory path, directory names, filenames) and
examines the directory in top-down (default) or bottom-up order. To make and use
the generator object, write code like this:

• >>> for root, dirs, files in os.walk('quotes'):
• ... print root, dirs, files

You use three ames in the loop because the generator makes a three-item tuple.

• os.tmpfile() creates a new temporary file. The file is opened for writing and is
binary ("w+b"). It's automatically deleted when you close it.

262

Tip The tempfile module provides more tools for creating temporary files; use
that instead of os.tmpfile() if you want more than the basics.

Wandering down the os.path

The os.path module is a submodule of os. It contains tools that handle filenames so that
your program can work on multiple platforms.

Tip We recommend that you import the whole os module when you need to use os.path.
If you don't, Murphy's Law dictates that you'll need something else in the os module
and forget you didn't import it and get an annoying error.

TECHNICAL
STUFF

Many of the os.path functions don't work with Windows Universal
Naming Convention (UNC) paths, which use the \\host\path
format.

Descriptions of some important os.path tools follow. All these tools take pathnames as
arguments. Use strings to specify pathnames.

• os.path.join() is one of the most important os.path tools. It takes one or more
paths and joins them by using the current operating system's path separator. If any
component is an absolute path, all previous components are thrown away. Here's
an example:

• >>> os.path.join('users', 'stef', 'Quote')

On UNIX this produces:

'users/stef/Quote'

On Windows it produces:

'users\\stef\\Quote'

Tip On Windows, os.path.join("c:", "foo") creates a path relative to the
current directory on drive C: instead of creating c:\\foo. To get an absolute
path on Windows, use this syntax:

os.path.join('c:\\', 'foo')

• os.path.abspath() takes a relative pathname and returns the corresponding
absolute pathname, like so:

• >>> os.path.abspath('Quote')
• '/users/stef/Quote/'

• os.path.normpath() converts path names in nonstandard formats to standard
format. For example:

• >>> os.path.normpath('stef//./Quote')
• 'stef/Quote'

• os.path.split() takes a pathname and returns it in two parts: the directory part
and the filename.

263

• >>> os.path.split('/users/stef/Quote/quote2.new')
• ('/users/stef/Quote', 'quote2.new')

If you specify a directory, it returns the path and an empty string, like this:

>>> os.path.split('/users/stef/Quote/')
('/users/stef/Quote', '')

Tip On Windows systems using UNC, use os.path.splitunc() instead.

os.path.split() has two related functions:

o os.path.dirname() returns the directory name of the path (the first half
of the pair that os.split() returns).

o os.path.basename() returns the filename (the second half of the
os.split() pair). If no file was specified, the os.path.basename()
function returns an empty string.

• os.path.splitext() (which stands for "split extension") splits the pathname
into a pair of pathnames:

o The first part is the pathname, including the part of the filename before the
extension.

o The second part includes a period and the file's extension.
o >>> os.path.splitext('/users/stef/Quote/quote2.txt')
o ('/users/stef/Quote/quote2', '.txt')

TECHNICAL
STUFF

If there is no extension or no file, the second part is an
empty string.

o This example puts os.path.split() and os.path.splitext() together:
o >>> dirname, filename =

os.path.split('users/stef/Quote/quote2.txt')
o >>> basename, extension = os.path.splitext(filename)
o >>> dirname, filename
o ('users/stef/Quote', 'quote2.txt')
o >>> basename, extension
o ('quote2', '.txt')

• os.path.exists() returns True if the specified path exists; otherwise, it returns
False. It also returns False for broken symbolic links.

• os.path.isdir() returns True if the specified path is an existing directory. It
follows symbolic links.

Seeing environment variables

The os module includes a dictionary, os.environ, that stores your operating system's
environment variables (which contain user and system preferences). The variables and
their values are stored as strings. The dictionary is set up when you start Python. If you
change your environment variables outside Python, the dictionary doesn't reflect the
changes until you restart Python.

To see the value of an environment variable, type os.environ and then, in square
brackets, type the name of the variable in quotation marks, like this:

264

>>> os.environ['HOME']
'/users/stef'

Warning Although it's possible to change environment variables by changing the
os.environ dictionary, it's not safe to do so. Use the Popen() function of the
subprocess module to change environment variables instead. (The changes
affect only the subprocesses.)

Subprocessing

The subprocess module, new in Python 2.4, lets you interact with the operating system
to create new processes, pass information into and out of them, and get their return codes.
It replaces a number of functions and modules available elsewhere in Python, including
the following:

os.system
os.spawn
os.popen
popen2
commands

The subprocess module is safer than the preceding methods of starting new processes
because its default is to create a new process directly rather than creating them through
the shell. That means that, with subprocess, you can safely pass shell special characters.

There are two ways to use the subprocess module: by creating a Popen instance and by
using the call() function. The Popen method is more complicated, so we only document
the call() function here.

Introducing the call() function

The function subprocess.call() is a shortcut for one of the more common uses of the
subprocess module. It runs a command, waits for the command to finish, and then
returns its return code. This simple example lists the contents of a directory. The 0 after
the directory listing is a return code—a status message that the subprocess sends. On
UNIX, 0 indicates that the subprocess completed successfully.

>>> subprocess.call(['ls', 'MyDir'])
copyy.py helloworld.pyc mystuff.zip stuff.zip
copyy.pyc myspider.py pagecount.py stuff2.zip
helloworld.py myspider.pyc pagecount.pyc x
0

Useful calling parameters

Here are some of the more useful parameters of the call() function:

265

• args, a string or sequence of program arguments. The program is the first item in
the sequence, and the other items are any command-line arguments the program
takes.

In the above example, args is a list. The program is 'ls' and the command-line
argument is 'MyDir'.

TECHNICAL
STUFF

On Windows, args is converted to a string; the converted
value may not work with all Windows applications. (It works
with applications that support the rules of MS C runtime.)

• shell=True specifies to run the command through the shell. The default shell is
sh (UNIX) or whatever is specified by COMSPEC (Windows). To specify a
different shell, use the executable parameter.

• env defines environment variables for the subprocess. These only apply to the
subprocess; they don't change any environment variables defined in your main
shell.

• stdin, stdout, and stderr define how data and error messages are transmitted to
and from the child process. Values for these parameters include PIPE, an existing
file descriptor (a positive integer), an existing file object, or None. PIPE creates a
new pipe to the child. None specifies not to redirect messages (the child's file
handles are inherited from the parent). To send error messages to the same place
as other output, set stderr=STDOUT.

• cwd specifies a directory to change to before the child process runs.

Trying an OS command with call()

This example code tries to run a command using call() and prints information about the
success or failure of the attempt. The name retcode stands for the return code that the
command sends. To use this try block in your own code, just fill in your command and
argument in place of "mycmd" + "myarg":

try:
 retcode = subprocess.call("mycmd" + " myarg", shell=True)
 if retcode < 0:
 print >>sys.stderr, "Child was terminated by signal", -retcode
 else:
 print >>sys.stderr, "Child returned", retcode
except OSError, e:
 print >>sys.stderr, "Execution failed:", e

266

Staying on Time with the datetime and time Modules

Computers usually store time as the number of seconds that have passed since some
specific date (called the epoch). The exact date varies depending on the operating system.
The UNIX operating system usually uses January 1, 1970.

Humans don't think of dates in terms of large numbers of seconds, so one of the functions
of the datetime and time libraries is to convert this machine time into date and time
information you can use.

Python has two primary modules with date and time tools:

• The datetime module includes tools for working with dates, times, and
combinations thereof. It supports several different calendar systems and ways of
presenting time zone information (but we don't cover time zones in this book).

• The time module includes tools for working with times and dates in the recent
past to near future. It focuses mostly on manipulating time based on the
computer's internal representations of time. For example, the time module
includes a sleep() method, which lets you pause execution of your program
while the computer counts down for you.

Using the datetime module

When you import the datetime module, you have available a datetime() object that
stores both date and time information. You can also work with dates and times separately
by using date() objects and time() objects. They work much the same way as the
datetime() object, so we don't cover them here.

Components of a datetime() object

An object that stores date and time information looks like this:

datetime.datetime(1969, 7, 20, 22, 56)

Here's more information about the components:

• datetime.datetime is the type of object.
• The arguments are integers, separated by commas, in this order:

o Required arguments: year, month, and day of month
o Optional arguments (which default to 0): hours, minutes, seconds,

microseconds. Another optional argument is time zone information, which
defaults to None. (Using time zones in Python is an advanced feature
beyond the scope of this book.)

267

The preceding object leaves out seconds, microseconds, and time zone
information.

When you specify optional arguments, you must specify all arguments down to
the level of precision you need by typing a number for any arguments to the left
of the ones you want to specify. It's okay to leave out arguments to the right. For
example, to specify no hours and 59 minutes, you type 0 for the hours and 59 for
the minutes. You can leave out the seconds. The code looks like this:

datetime.datetime(1961, 12, 31, 0, 59)

Formatting date and time information

Python stores a datetime() object in exactly the same way you entered it:

>>> moonwalk = datetime.datetime(1969, 7, 20, 22, 56, 0)
>>> moonwalk
datetime.datetime(1969, 7, 20, 22, 56)

If you want the date and time in another format, you have a few built-in options,
including the str() function, the ctime() method, and the isoformat() method (we
don't document the latter two).

Tip The most flexible way to display a datetime() object, however, is to use the
strftime() method ("strftime" stands for "string-format time"). This method takes a
string as an argument and uses % codes inside the string to specify how to format
each element of the datetime() object. (The strftime codes work like the string
interpolation codes described in Chapter 6, but the meanings of the codes themselves
are different.) The datetime() formatting codes vary slightly by operating system.

Here's one way to format the moonwalk object:

1. Type moonwalk.strftime.
2. On the same line, in parentheses, type the following string:
3. ("%A, %B %d, %Y %I:%M:%S")

This string tells Python to display the time using a long day of the week (%A), long
month (%B), date of month (%d), four-digit year(%Y), and time. It uses commas and
colons as punctuation.

Here's the line of code and the result:

>>> moonwalk.strftime("%A, %B %d, %Y %I:%M:%S")
'Sunday, July 20, 1969 10:56:00'

268

Adding time

When you perform arithmetic on datetime() objects, you get the result in a
timedelta() object. Its attributes are days, seconds, and microseconds.

TECHNICAL
STUFF

Here is the timedelta() object you get when you subtract the date
of the moon walk from today's date (in this example, "today" is May
21, 2006, approximately 5:25 p.m.). The example shows that 13,453
days elapsed between the first moon walk on July 20, 1969, and May
21, 2006:

>>> now = datetime.datetime.today()
>>> moonwalk = datetime.datetime(1969, 7, 20, 22, 56)
>>> now - moonwalk
datetime.timedelta(13453, 66596, 407968)
>>> print now - moonwalk
13453 days, 18:29:56.407968

The timedelta() object works with the following operations: addition, subtraction,
multiplication, floor division, and absolute value. The timedelta() object is immutable,
so it works as a dictionary key.

REMEMBER When you create a timedelta() object, you don't have to use days,
seconds, and microseconds. (That would be tedious for large time
differences!)

Follow these steps to specify a timedelta:

1. Type datetime.timedelta.
2. On the same line, in parentheses, specify any of the following keyword

arguments, separated by commas:
3. weeks, days, hours, minutes, seconds, microseconds, milliseconds

All the arguments are optional and if left out default to 0. For example, to specify
one day, five minutes, and three seconds, type this:

datetime.timedelta(days=1, minutes=5, seconds=3)

This is the timedelta object created and Python's result. The result doesn't look exactly
like what you entered because Python internally converts your data to days, seconds, and
microseconds.

>>> datetime.timedelta(1,3,0,0,5)
datetime.timedelta(1, 303)

When printed as a string, the preceding timedelta() object looks like this:

>>> str(datetime.timedelta(1, 303))

269

1 day, 0:05:03

Taking your time

The time() module includes tools for working with the computer's internal
representation of time. Tools depend on your operating system.

The time() module doesn't handle times or dates in either

• The far past (before 1900 A.D.)
• The far future

TECHNICAL
STUFF

The future time and date of the cutoff depends on your
operating system; for UNIX systems, it's 2038 A.D.

To work with far past or far future dates, use the datetime() module instead.

Using the time() object

A time() object is stored as a sequence of nine integers: year, month, day of month, hour,
minute, second, weekday, day of year, and whether daylight savings time is on (1) or off
(0).

The time() object is a tuple in Python 2.1 and earlier. In later versions, it is another data
type called struct_time(). (We're telling you this because you might see an error
message referencing struct_time() objects.) Time is also expressed as a floating point
number, for example, by the time.time() method.

To create a time() object that stores the current time and date, type this (you'll get a
different result, of course):

>>> time.localtime()
(2006, 2, 1, 18, 9, 4, 2, 32, 0)

To see the local time as a string, type this:

>>> time.asctime()
'Wed Feb 1 17:35:29 2006'

To format a time object as a string, use the strftime() method. See "Formatting date
and time information," earlier in this chapter.

270

Let's pause for a moment

The time module's sleep() method is useful for programs that need built-in pauses.
(Quiz shows, anyone?) The sleep() method pauses the execution of a program for a
specified number of seconds.

The following example uses the sleep() method:

import time
for x in range(3):
 print "The time is now", time.asctime()
 print "Now sleeping for 2 seconds..."
 time.sleep(2)

This is the result of running the example code:

The time is now Sat Feb 4 17:28:08 2006
Now sleeping for 2 seconds...
The time is now Sat Feb 4 17:28:10 2006
Now sleeping for 2 seconds...
The time is now Sat Feb 4 17:28:12 2006
Now sleeping for 2 seconds...

Keeping Track with the logging Module

The logging module is new in Python 2.3. Use it to set up log files or displays for the
errors and debugging information for your programs. Python has very flexible logging
features; we get you started with a few basic ways to use logging.

Getting started with basic logging

The tool that processes messages is called a logger. The default logger is called "root."

Log messages are tagged with priority codes, and each priority code has a method that
produces a log message of that priority. The code methods are

debug(), info(), warning(), error(), critical()

To log a message, follow these steps:

1. Type logging, a dot, and the method corresponding to the message priority,
for example:

2. logging.warning

Tip By default, the root logger doesn't do anything with debug or info messages.
If you want to see your message without reconfiguring the logger, use one of
these methods that indicate a higher priority message: warning(), error(),

271

or critical().
3. On the same line, in parentheses, type a message as a string.
4. logging.warning("Watch out!")

The following example tells the root logger to log a warning message and shows
the result you get if you type this in interactive mode:

>>> logging.warning("Watch out!")
WARNING:root:Watch out!

TECHNICAL
STUFF

The default behavior of the root logger is as follows:

• Process warning messages and higher, ignore debug and info
messages

If you try to use the info() method with the default root
logger, you get no response:

>>> logging.info("Try and see me")
>>>

• Print messages as strings
• Log messages to sys.stderr

In interactive mode, sys.stderr prints to the screen.

Changing the configuration of a logger

To change the default configuration of the root logger, or to set up the configuration of a
logger you write yourself, use the basicConfig() function. Figure 17-1 illustrates some
example basicConfig() code.

Figure 17-1: Example of logging. basic Config() code.

The keyword arguments for basicConfig() require Python 2.4 and later.

Designing your own logging system

If different parts of your program have different logging requirements, here's some
guidance to get you started creating your own loggers.

272

Tip Name your loggers according to the part of the program you're logging errors from
and then configure your logger in these basic ways:

• Levels of messages to process

The levels are associated with integers, as follows:

o CRITICAL: 50
o ERROR: 40
o WARNING: 30
o INFO: 20
o DEBUG: 10

• Format of the messages
• Handlers that determine where the messages should be logged.

Most handlers are of the type StreamHandler or FileHandler. There's also
SMTPHandler (sends error messages via e-mail), HTTPHandler (sends
messages to an HTTP server), and more.

Seeing a few logging functions

These are the most useful basic functions available in the logging module:

• log()

Logs a message. Specify options in this order, separated by commas: priority level
(as an integer), message (a formatting string with % codes), and the arguments to
include in the string. Add exc_info at the end to include exception information in
the message. This example logs a warning message by using % formatting:

>>> logging.log(30, "hello, is that %s?", "you")
WARNING:root:hello, is that you?

• disable()

Disables messages at the specified priority level and below. Overrides the levels
specified in loggers. Specify the priority level as an integer.

• shutdown()

Shuts down the logging system. Flushes and closes all handlers.

Chapter 18: Processing Text

Overview

273

There are whole books on Python's text-processing capabilities, so this chapter covers
only the basics—three of the most important text-processing modules that come with
Python. In this chapter, you find out about

• The re module, which brings the power of regular expression text searches to
Python

• The StringIO library, which lets you work with strings as if they were files
• The textwrap library, which includes various tools for tidying up paragraphs

Tip More text-processing information can be found in Chapter 6.

A Million Ways to re, You Know That There Are

The re module supports searching text files by using regular expressions (regexes for
short)—strings that specify a set of match rules.

The following sections describe

• The character codes that you use to build regexes
• The search abilities of Python's re library

Tip When not to use a regex

Python's data types include a number of easy-to-use text-search methods. We
recommend that you get familiar with these methods and use them rather than the re
module if they will fit your needs.

Regular expressions are complex and hard to use, and it's easy to make mistakes
when using them.

For example, if you have a file of quotations, each separated by '%%\n', you could
use a regex to split the file into separate quotes. But it would be better to use the
split() method of strings.

Writing a basic regex

To create a regex, just write it as a string—that is, enclose some text in quotation marks.
You can use single or double quotation marks, or even triple quotes. Your string can be
just a set of characters to look for, or it can include special instructions.

274

The following string, if used with one of the re methods or functions, uses the []
characters to give special instructions to search for either monty or minty (but not
mointy, a city in Kazakhstan):

'm[oi]nty'

Tip Both regexes and Python strings often use the backslash (\) to indicate special
treatment for a character. The re module recognizes Python's \ codes, like \n for
newline. (We discuss these codes in Chapter 6.) But to avoid conflicts, you should
usually write regexes as raw strings by prepending r to the string. The r tells
Python's string data type to ignore any backslashes inside the string and save them
for the re method or function to process.

Setting up a basic regex search

The following code gives the name zipcode to a regex (specified as a raw string) that
looks for the text Zip: followed by any number of white space characters (\s*) and five
digits (\d):

>>> zipcode = r'Zip:\s*\d\d\d\d\d'

TECHNICAL
STUFF

To use the zipcode regex to search for a zip code in a string, type
code like this:

>>> addr = "Street address: 342 Anywhere Rd \n Zip:
32433"
>>> re.search(zipcode, addr)

• If the search is successful, it returns an object of the type
_sre.SRE_Match, like this:

• <_sre.SRE_Match object at 0x8202640>

• If there is no match, it returns None.
• >>> mystring = "foo"
• >>> print re.search(zipcode, mystring)
• None

Regular expression characters and codes

The search rules in a regular expression can be simple (the simplest useful regex is a
single character) or complex. Complex rules are implemented by using characters that
have special meanings in regular expressions. We describe these characters and codes in
the following sections.

Special characters

Table 18-1 shows the most commonly used of the characters that have special meanings
in regexes.

275

Table 18-1: Regular Expression Special Characters
Open table as spreadsheet

Character Action Example and Notes

. (dot) Matches any single character except a
newline.

'p.thon' matches python,
p!thon, p2thon, but not
pyython.

[] Encloses a set of characters to match (a
character class). A match occurs if any one
of the characters is found. You canenclose
specific characters or a range of characters,
such as all the uppercase letters: [A-Z]

'T[iy]ger' matches Tiger or
Tyger (but not Tiyger).

If you want to match a hyphen
inside a character class, it must
be the first or last character.

[\s.-] matches space, period,
or hyphen.

⁁ (caret) At the beginning of a character class, ⁁ stands
for "not." Outside of a character class, ⁁
matches the beginning of a line.

'[⁁a]' matches any character
that isn't ‘a’.

'⁁A' matches 'America' but
not 'Canada'.

$ Matches the end of a line or string, depending
on the MULTIMODE flag. (See Table 18-3.)

't$' matches 'bright' but
not 'tender'.

regex1 |
regex2

Matches either of two regexes, starting with
the leftmost and stopping when it finds a
match. You can use multiple | characters to
join several regexes.

'python' | 'asp' first looks
in a string for 'python'. If
'python' is not found, it then
looks for 'asp'.

{ number } Matches the preceding regex only if the regex
occurs a certain number of times
consecutively.

'y{3}' matches 'pyyython'
but not 'python'

() Encloses a regex group. You can refer to
groups by number. The first group is referred
to by \1, the second by \2, and so on.

r 'Phone: (\d{3})-(\d{3}-

\d{4})' looks for a phone
number, with the area code in
group 1 and the number in
group 2.

\1 refers to the area code group
in the above regex.

\ Escape code—treats the character that
follows as special, or treats a special
character as text. See the following section.

'\$' searches for the $
character in text instead of
treating $ as an "end of line or
string" code.

276

Table 18-2: Regex Codes with Special Meanings
Open table as spreadsheet

Code Action
\ number Matches the contents of the group with that number
\A Matches only at the start of a string
\b Matches an empty string at the beginning or end of a word
\B Matches an empty string in the middle of a word
\d Matches any digit (0-9)
\D Matches any character that is not a digit
\s Matches any white space character
\S Matches any character that is not white space
\w Matches any alphanumeric character
\W Matches any character that is not alphanumeric
\Z Matches only at the end of a string

Table 18-3: Optional Flags for Regexes
Open table as spreadsheet

Long Name Short
Name

Meaning

IGNORECASE I Matches are case-insensitive.

LOCALE L Matches depend on the current locale.

MULTILINE M Allows ⁁ and $ to match linefeeds (\n) inside a string. Without
it, they match only the beginning (⁁) and end ($) of a string.

DOTALL S Dot (.) matches any character including newline.

UNICODE U Matches depend on the Unicode locale.

VERBOSE X Allow spaces and comments in regexes. This makes them
easier for humans to read.

Escape codes with special meanings

When you use \ in front of some characters in a regex, it creates a code with a special
meaning. Table 18-2 lists these special regex codes. The re module also recognizes the
Python escape codes—for example, \n for newline.

Finding repeats

One common regex task is to find repeats of a character or other match. You write a regex
to find repeats by using the characters +, *, ?, or {}.

Python lets you search for repeated characters in a number of ways:

277

• * matches the previous character any number of times, including none.

py*thon matches pthon, python, pyython, and so on.

• + matches the previous character one or more times.

py+thon matches python and pyython, but not pthon.

• ? matches the previous character zero or one times.

py?thon matches pthon and python, but not pyython.

Numbers enclosed in curly braces ({}) create a range of repeated characters, like this:

• py{5}thon matches an exact number of repeats: pyyyyython
• py{1,3}thon matches a range of repeats: python, pyython, and pyyython. It

doesn't match pthon or pyyyython.

Tip If you leave out the first number of the range (for example, py{,3}thon), the
first range defaults to 0. This example would match pthon, python, pyython,
or pyyython. If you leave out the last number of the range (for example,
py{1,}thon), any number of repeats equal to or larger than the first number
will match.

Regexes support two kinds of repeating searches: Greedy and non-greedy.

Greedy searches

A greedy search tries to match as many of the search characters as possible.

The following regex greedily searches for one or more y characters in a row. It finds all
three y characters in the string 'pyyython':

>>> p = 'pyyython'
>>> greedy_re = 'y+'
>>> mymatch = re.search(greedy_re, p)
>>> mymatch.group()
'yyy'

Non-greedy searches

A non-greedy search stops after it finds one match.

To specify a non-greedy search, add ? after either

• The repeat character
• The end brace of a range

278

The following regex searches for one or more y characters in a row, but the ? character
specifies a non-greedy search. As soon as this search finds one y, it's finished:

>>> p = 'pyyython'
>>> non_greedy_re = 'y+?'
>>> mymatch = re.search(non_greedy_re, p)
>>> mymatch.group()
'y'

Regex groups

Regexes can be complicated to read and to type. One way of making regexes easier to
read is to enclose a portion of a regex inside parentheses to make a regex group. This also
makes the regex easier to use later because you can refer to the group by typing a number
or name instead of retyping the whole regex.

Python deals with two types of regex groups:

• Numbered groups: Whenever you group part of a regex inside parentheses, it
automatically gets a number—1 for the first group, 2 for the second, and so on.

• Named groups: To name a group, begin the statement inside parentheses with
this code (substituting your name):

• ?P<groupname>

Follow it with the regex and then type a closing parenthesis.

The following example creates a group named zip that searches for the text Zip:
followed by any number of spaces and exactly five digits.

(?P<zip>Zip:\s*\d\d\d\d\d)

You can refer to a numbered or named regex group in several ways:

• You can refer to a group in any MatchObject method that takes a regex as an
argument. In the examples below, the groupdict() method returns a dictionary
containing the group name 'zip' and its matches. The group() method returns
the matches of the second group:

• >>> my_regex = r'(?P<zip>Zip:\s*\d\d\d\d\d)\s*(State:\s*\w\w)'
• >>> addrs = "Zip: 10010 State: NY"
• >>> y = re.search(my_regex, addrs)
• >>> y.groupdict('zip')
• {'zip': 'Zip: 10010'}
• >>> y.group(2)
• 'State: NY'

• When writing a regex, you can refer to the 'zip' group by using the following
syntax: (?P='zip')

• You can use a group when specifying replacement text: \g<zip>.

279

Tip For an example of a regex with multiple groups, see "Making regexes more
readable," later in this chapter.

Using the regular expression module

There are two ways to use the re module:

• Use functions to perform regex operations on a string.
• With the compile() function, turn the regex into an object (called a regular

expression object; in some Python messages, it's called an SRE_Pattern object)
and use the object's methods to work with the regex.

Functional versus methodical
Tip If you want to use a simple regex only once, it's okay to use the functions. But for

code that uses regexes heavily, we recommend using the compiled form of regexes
for two reasons:

• The compiled object works faster.

• Remembering the order of arguments is easier if you always use the compiled
form.

Using a regex function

To use a regex function, type these elements:

• The function name
• Parentheses

Pass any arguments inside the parentheses, separated by commas. The regex is
always the first argument.

This example uses the findall() function to return a list of all the vowels in a string.

>>> mystring = 'Your father smelt of elderberries!'
>>> print re.findall('[aeiou]', mystring)
['o', 'u', 'a', 'e', 'e', 'o', 'e', 'e', 'e', 'i', 'e']

Some regex functions return a match object. See "Querying the match object," later in
this chapter.

Using a regex method

To use a regex method, type these elements:

• The name of the regex object that you created by using the compile() function

280

See the next section, "Compiling regular expressions."

• A dot
• The method name
• Parentheses

Pass any arguments inside the parentheses, separated by commas.

This example creates a regex object that finds vowels and uses the findall() method to
return a list of all the vowels in a string.

>>> mystring = 'Your father smelt of elderberries!'
>>> vowels = re.compile('[aeiou]')
>>> vowels.findall(mystring)
['o', 'u', 'a', 'e', 'e', 'o', 'e', 'e', 'e', 'i', 'e']

Compiling regular expressions

To turn a regex string into a regular expression object, you use the compile() function.
compile() takes a regex string and optional flags (see Table 18-3) as arguments. Here's
an example:

>>> my_regex = re.compile('py+thon', re.IGNORECASE)
>>> my_regex
<_sre.SRE_Pattern object at 0x82200e0>

The object contains the following data attributes:

• flags: A number corresponding to the flag used when the re object was
compiled. See Table 18-3. This is 0 if no flags were used.

• >>> my_regex.flags
• 2

• groupindex: A dictionary mapping any group names to group numbers. The
dictionary is empty if no group names were specified.

• pattern: The regex from which the object was compiled.
• >>> my_regex.pattern
• 'py+thon'

Tools of the re module

The following regex functions and methods are the most useful.

findall()

findall() returns a list of all the occurrences of a regex in a string. It also takes an
optional flag argument (Table 18-3 lists the flags).

281

Tip finditer() does the same thing as findall() but returns an iterator object rather
than a list.

match()

To find a single occurrence of a regex at the start of a string, use match():

• match() takes a string and an optional flag as arguments (Table 18-3 lists the
flags).

• match() returns either
o A MatchObject instance (if there is a match)

See "Querying the match object," later in this chapter.

o None (if there is no match)

REMEMBER It's easy to confuse match(), which matches only at the beginning of a
string, and search(), which matches anywhere in a string. (See the
following section.) One way around this problem is to always use
search(), specifying ⁁ in your regex to match only at the beginning of a
string.

search()

To find a single occurrence of a regex anywhere in a string, use search().

• search() takes a string and an optional flag as arguments (Table 18-3 lists the
flags).

• search() returns either
o A MatchObject instance (if there is a match)

See "Querying the match object," later in this chapter.

o None (if there is no match)

split()

To split a string wherever a regex is found, use split().

• split() takes these arguments:
o A string
o An optional integer specifying the maximum number of times to split the

string
• split() returns a list of the substrings.

This example shows the workings of the split() function:

282

>>> cow1 = "I never saw a purple cow, @@ I never hope to see one;"
>>> re.split('', cow1) # function
['I never saw a purple cow, ', ' I never hope to see one;']

This example uses the split() method with the same regex:

>>> cow2 = "But I can tell you anyhow, @@ I'd rather see than be one."
>>> sep = re.compile('')
>>> sep.split(cow2)
['But I can tell you anyhow, ', " I'd rather see than be one."]

sub()

To find all occurrences of some text in a string and substitute other text, use sub():

• When sub() finds a match, it substitutes the replacement string.
• sub() returns either

o The changed string (if any changes were made)
o The original string (if no changes were made)

sub() takes these arguments:

• A replacement string
• The original string
• An optional integer

The integer specifies the maximum number of replacements. If you leave the
integer out, all matches are replaced.

The following code shows the result of replacing part of a string:

>>> mystring = "European swallow"
>>> myregex = re.compile("European")
>>> myregex.sub("African", mystring) # method
'African swallow'
>>> re.sub('European', 'African', mystring) # function
'African swallow'

Querying the match object

A successful regex search returns a Python object called a MatchObject, as illustrated in
the following example:

>>> my_regex = re.compile('py+thon')
>>> mystring = "pyyython is a suuuper programming language"
>>> mymatch = my_regex.match(mystring)
>>> mymatch
<_sre.SRE_Match object at 0x82c6c28>

283

The MatchObject stores information about where in the string the match starts and ends,
the substring(s) that were matched, and so on. To get access to this information, you use
the following methods:

• group(): Takes the group index number as an argument; this defaults to 0, or the
first group, which returns the matched string.

• >>> mymatch.group(0)
• 'pyyython'

• groups(): Returns a tuple containing the match found for each regex group.
Takes an optional argument to return for the regex groups that didn't match
anything; this defaults to None.
Tip The regex for the following MatchObject has two groups, one named group

for zip code and one numbered group for the string 'USA'.
• >>> y.groups()
• ('Zip: 94101', 'USA')

• groupdict(): Returns a dictionary containing all the named subgroups of the
match. The keys are the subgroup names. Takes an optional argument to return for
nonparticipating groups; this defaults to None.

• >>> y.groupdict()
• {'zip': 'Zip: 94101'}

• span(): Returns a tuple containing the starting and ending index numbers that
were matched. Takes the group index number as an argument; this defaults to 0, or
the first group.

• >>> mymatch.span(0)
• (0, 8)

You can get just the starting position with start() and just the ending position
with end(). Both of these also take the group index number argument.

Tip Additional regex resources

The "Regular Expression HOWTO" Web page at
http://www.amk.ca/python/howto/regex/ includes a basic tutorial on regular
expressions.

Regex debuggers can help clarify regex problems. Kodos, the Python Regular
Expression Debugger (available at http://www.kodos.sourceforge.net/), is one such
tool.

A tool for practicing and testing regexes comes with Python 2.4. It's part of the GUI
tool kit Tkinter, and it's usually installed at Tools/scripts/redemo.py.

Kiki, which comes with the WxPython installer, has nice coloring for grouping in
regexes. More info about WxPython can be found at http://www.wxpython.org/.

284

When you're writing a program that uses a regex to search a string, you usually want to
check whether there was a match. To do this, you check whether the match object is
None. For example, you might use this code (remember that if mymatch is short for if
mymatch is not None):

if mymatch:
 print 'Match found'
else:
 print 'No match'

Making regexes more readable

You can use the VERBOSE flag when you write a regex to make it more readable. With this
flag, you can use comments and white space in your regex. Here's how it works:

• The regex interpreter ignores any white space that is outside square brackets.
• Anything following the # character on a line—as long as # isn't inside square

brackets—is considered a comment rather than part of the regex.
• Using a raw string with triple-quotes is the simplest way to write a multi-line

regex with comments.

This example searches text for a phone number. It finds numbers with or without
parentheses around the area code, and with or without a space, period, or hyphen as a
separator.

>>> phone_re = re.compile(r'''
... \(? # optionally match begin parenthesis
... (?P<area>\d{3}) # match/name group for area code
... \)? # optionally match end parenthesis
... [\s.-]? # optionally match space, period, or hyphen
... (?P<prefix>\d{3}) # match/name group for prefix
... [\s.-]? # optionally match space, period, or hyphen
... (?P<suffix>\d{4}) # match/name group for suffix
... ''', re.VERBOSE)
>>> phone_re.sub(r'\g<area>-\g<prefix>-\g<suffix>', '(213)555-1212')
213-555-1212
>>> phone_re.sub(r'\g<area>-\g<prefix>-\g<suffix>', '213.555.1212')
213-555-1212

Strings Disguised as Files

The cStringIO and StringIO modules support "string buffers" (also called memory
files) that let you pretend that a string is a file. This is useful because some Python library
modules, such as the tarfile module, work with files but not with strings. Python holds
the "file" in memory instead of writing the file to disk.

285

StringIO versus cStringIO

The cStringIO module implements the same functionality as StringIO. cStringIO is
faster, but it has a couple of limitations:

• cStringIO doesn't support subclassing. Use StringIO if you need to write a
subclass of StringIO.

• If you give Unicode strings to cStringIO, you must encode them as UTF-8 (see
Chapter 6).

Creating a StringIO object

There are two ways to create a StringIO object:

• Pass it a string as an argument. This is called initializing the buffer.

Do this if you want to read or otherwise process an existing string.

• Leave out the argument, which creates the object with an empty buffer.

Do this if you want to write to the object.

To create a StringIO object, follow these steps:

1. Type from cStringIO import StringIO.
2. On the next line, type code like one of the following lines.

Substitute the name of your file and your string (or its name).

To create an empty buffer, type this:

pretend_file = StringIO()

To initialize the buffer with an existing string, type this:

pretend_file = StringIO("mystring")

StringIO special methods

The methods for working with StringIO files are the same as the methods for working
with regular files (described in Chapter 17).

Here are two differences:

286

• The StringIO object includes the getvalue() method, which returns the entire
contents of the memory file as a string:

• >>> pretend_file.getvalue()
• 'mystring'

• The StringIO close() method frees up the memory buffer.

A regular file object's close() method writes the contents to disk.

Paragraph Dumplings: Filling and Wrapping Text

The textwrap module, new in Python 2.3, is for formatting paragraphs of text. You can
perform three basic formatting tasks with it: unindenting ("dedenting"), wrapping, and
filling. You can also create a customized TextWrapper object.

Removing indentation from strings

To remove white space that appears in front of every line of the string, use the dedent()
function. It takes a string as an argument.

TECHNICAL
STUFF

Dedent is meant to be the opposite of
indent.

One use for this function is to make triple-quoted strings in a Python program—
docstrings for example—line up with the left margin, even though they are indented in
the source code. Here's an example:

>>> mystring = ''' Tyger, Tyger, burning bright
... In the forests of the night'''
>>> print mystring
 Tyger, Tyger, burning bright
 In the forests of the night
>>> print textwrap.dedent(mystring)
Tyger, Tyger, burning bright
In the forests of the night

Wrapping text by splitting it up

To turn a long string into a list of strings, one for each line of text, use the wrap()
function. It takes a string as an argument, and it also takes an optional width argument,
specifying the maximum length of any line (it defaults to 70 characters). The strings
returned don't have newline characters.

The following example shows the use of the wrap() function on a long string:

>>> metaphor = """\
... Worse, many abandon the pearl which exists in the present in favor
... of a caravan of dreams which always recedes across the desert. --
Mixed

287

... Metaphor Hall of Fame"""
>>> m = textwrap.wrap(metaphor, width=40)
>>> m
['Worse, many abandon the pearl which', 'exists in the present in favor
of
a','caravan of dreams which always recedes', 'across the desert. --
Mixed
Metaphor', 'Hall of Fame']

Tip You could use a for loop to print the result of the wrap() function:

>>> for i in m:
... print i
...
Worse, many abandon the pearl which
exists in the present in favor of a
caravan of dreams which always recedes
across the desert. -- Mixed Metaphor
Hall of Fame

Here's a shorter idiom for accomplishing the same thing:

print '\n'.join(m)

Wrapping text by adding newline characters

To add newline characters to a long string, use the fill() function. It takes a string as an
argument and returns a string. It also takes an optional width argument, specifying the
maximum length of any line (it defaults to 70 characters).

Here's an example of wrapping text with the fill() function:

>>> longstring = '''
... But once you build some islands of peace into your daily routine,
they
... help serve as beachheads against the full-court press of life.
... --Mixed Metaphor Hall of Fame'''

>>> wrappedstring = textwrap.fill(longstring, width=40)
>>> wrappedstring

' But once you build some islands of\npeace into your daily routine,

they help\nserve as beachheads against the full-\ncourt press of

life. --Mixed Metaphor\nHall of Fame'
>>> print wrappedstring
But once you build some islands of
peace into your daily routine, they help
serve as beachheads against the full-
court press of life. --Mixed Metaphor
Hall of Fame

288

Creating a TextWrapper object

The wrap() and fill() functions work by creating a TextWrapper instance and calling
a single method on it.

TECHNICAL
STUFF

This instance goes away after you use it, so for applications that
format many text strings, it's more efficient to create your own
TextWrapper object.

TextWrapper attributes

When you create a TextWrapper object, you can specify any of the following arguments.
You can also use them as keyword arguments for the wrap() and fill() functions.

• width: The maximum length of a wrapped line. The default is 70 characters.
• expand_tabs: Changes tabs to an equivalent number of spaces (between 1 and 8).

Default True. If set to False, tabs are treated as single characters.
• replace_whitespace: Changes all white space characters to spaces. Default

True.

What counts as a white space character is defined by the whitespace data
attribute of the string module. This depends on your locale and operating
system. Here's our result:

>>> import string
>>> string.whitespace
'\t\n\x0b\x0c\r '

The meanings of the codes are: \t (tab), \n (newline), \x0b (vertical tab), \x0c
(form feed), \r (carriage return), ' ' (space).

Warning If you set expand_tabs to False and replace_whitespace to True,
tabs are converted to single space characters.

• initial_indent: Set this to a string of five spaces or so to get an indented line at
the beginning of a paragraph. The default is an empty string.

• subsequent_indent: This string is added at the beginning of all wrapped lines
after the first. Default is an empty string.

• fix_sentence_endings: Puts two spaces between sentences.
Warning What textwrap thinks a sentence is might not match what you think a

sentence is. For example, fix_sentence_endings puts two spaces after
"Dr." Default is False.

• break_long_words: Breaks words longer than the width attribute. If set to
False, lines with long words may exceed the specified width. Default is True.

289

Example of a custom TextWrapper object

Here's an example of a custom TextWrapper object. This object specifies a 40-character
line and indents each line after the first one 4 spaces.

>>> mywrapper = textwrap.TextWrapper(width=40, subsequent_indent=" ")
>>> indented_string = mywrapper.fill(longstring)
>>> print indented_string
 But once you build some islands of
 peace into your daily routine, they
 help serve as beachheads against the
 full-court press of life. --Mixed
 Metaphor Hall of Fame

290

Chapter 19: Digging into Disk Data
Python includes a variety of modules and packages for working with data files on disk. In
this chapter, you find out how to

• Use Python to work with files on your hard drive, including compressed Zip files.
• Use Python to communicate with databases.
• Turn Python objects (such as dictionaries) into formats that can be stored or sent

over the Internet.

Shell Game: Copying and Moving Files

The shutil module lets you use Python to manipulate, copy, and remove files on your
hard drive ("shutil" stands for "shell utility").

Tip You can use the os module to work with hard drive files, but shutil is usually
simpler because it does a lot of the path manipulation behind the scenes.

Warning If you're working on a Mac or your program will run on a Mac, use the
macostools module, not shutil, to copy files and directories. On Mac OS, the
shutil module does not recognize resource forks and other metadata. If you
use shutil to copy files on a Mac, the files' resources, file types, and creator
codes may not be correct.

Some of the useful shutil functions are described in the following list. All the functions
take pathname arguments (as strings)—source pathname first, followed by destination
pathname (if any):

• copy(): Copies the source file and its permissions to the destination.

TECHNICAL
STUFF

The copy() function has these rules:

o The destination can be a file or a directory.

o If the destination is a directory, the copy has the same
name as the source file.

This example copies the file 'myspider.py' to 'copyy.py' within the same
directory:

>>> import shutil
>>> shutil.copy('myspider.py', 'copyy.py')

• copy2(): Like copy(), but also copies the last access time and last modification
time.

291

• copymode(): Copies the permissions of the source file to the destination file.
Does not change the file contents, owner, or group.

• copytree(): Copies the entire contents of the source directory to the destination.
The destination cannot already exist. Uses copy2() to copy files. This example
copies the contents of 'MyDir' to 'MyNewDir':

• >>> shutil.copytree('MyDir', 'MyNewDir')

This function also takes an optional third argument, symlinks, specifying what to
do with symbolic links:

o True creates symbolic links in the new directory tree.
o False (the default) copies the contents of symlinked files.

TECHNICAL
STUFF

Starting in version 2.3, Python raises an OSError if any problems occur
while implementing copytree(). (In earlier versions, Python printed a
message.) The OSError looks something like this:

>>> shutil.copytree('MyDir', 'MyNewDir')
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File
"/System/Library/Frameworks/Python.framework/Versions/2.3/lib/
python2.3/shutil.py", line 102, in copytree
OSError: [Errno 17] File exists: 'MyNewDir'

• move(): New in Python 2.3. Moves the source to the destination.

TECHNICAL
STUFF

The move() function has these rules:

o The destination cannot already exist.
o If the source and the destination are on different file

systems, move() first does a copy to the destination
and then deletes the source.

o The paths can be files or directories.

This example moves a directory:

shutil.move('MyNewDir', '../MyNewDir')

• rmtree(): Deletes the specified directory and its contents.

Error messages depend on the optional argument ignore_errors:

o When set to True, ignore_errors suppresses any error messages.
o The default is False, which causes Python to raise an exception if it

discovers an error while executing rmtree().

292

An advanced feature also lets you customize the exception handling.

This example removes the directory that we moved in the previous example:

shutil.rmtree('../MyNewDir')

Zipping and Unzipping

The zipfile and gzip modules support data compression and expansion.

zipfile

The zipfile module provides access to Zip files, which are created with WinZip (the
most common Windows file compression utility), the Mac OS "Create Archive"
command, or the UNIX zip utility.

TECHNICAL
STUFF

In Windows XP, Mac OS, and UNIX, Zip files are similar to folders
(because they can hold files and folders). If you select a folder in
Windows XP and make it a compressed folder, it's compressed as a
Zip file.

The zipfile module lets you use Python to create, read, write, append, and list a
compressed Zip file.

Warning The zipfile module doesn't work with either

• Zip files with appended comments

• Zip files that span multiple disks

Finding out whether a file is a Zip file

To identify a file as a Zip file, import zipfile and use the is_zipfile() function:

• Its argument is a pathname string.
• It returns True if the file is a valid Zip file.

This example checks a file called 'stuff.zip':

>>> import zipfile
>>> zipfile.is_zipfile('MyDir/stuff.zip')
True

Warning Don't make incorrect assumptions if is_zipfile() returns False. It also
returns False if the file doesn't exist.

293

Creating a ZipFile object for reading or writing

To read or write to a compressed Zip file, you create a ZipFile() instance.

To create a ZipFile object, follow these steps:

1. Type a name for the object and = zipfile.ZipFile(.
2. Type the path to your Zip file (as a string).
3. If you want to write to the Zip file, type a comma and 'w'.

Warning Using 'w' erases whatever is currently in the file, so make doubly sure
that you don't need to keep what is already in the Zip file before you go
appending 'w'.

4. There is another mode, 'a' for append. This is an advanced feature we don't
expound on in this book.
Tip If you don't want to compress the stored data, skip to Step 5.

5. If you want to compress the data, specify a compression type by typing a
comma and compression= ZIP_DEFLATED.

ZIP_STORED (the default) stores data without compression.

TECHNICAL
STUFF

The zlib module must be available if you want to compress
the data.

6. End by typing).

If you fill in both optional parameters, your instance might look like this:

>>> myz = zipfile.ZipFile('MyDir/x.zip', 'w',
 compression=zipfile.ZIP_DEFLATED)
>>> myz
<zipfile.ZipFile instance at 0x780a8>

Working with a ZipFile object

ZipFile instances are similar to file objects. They have these methods:

• close() and read(): Work like the file() object methods of the same names
(see Chapter 17).

• getinfo(): Takes a string specifying the name of an item in the archive and
returns a ZipInfo() object containing information about the item.

• >>> myz.getinfo('pagecount.py')
• <zipfile.ZipInfo instance at 0x79fa8>

One way to see the attributes of the ZipInfo() object is to use the dir()
function. The following example looks at the contents of a ZipInfo() object
called myinfo and then looks at its file size:

294

>>> dir(myinfo)
['CRC', 'FileHeader', '__doc__', '__init__', '__module__',
'comment',
'compress_size', 'compress_type', 'create_system',
'create_version',
'date_time', 'external_attr', 'extra', 'extract_version',
'file_offset',
'file_size', 'filename', 'flag_bits', 'header_offset',
'internal_attr',
'orig_filename', 'reserved', 'volume']
>>> myinfo.file_size
4220L

• infolist(): Returns a list of ZipInfo() objects for all items in the order they're
stored in the archive.

• namelist(): Returns a list of strings—the names of the items in the archive—like
so:

• >>> myz.namelist()
• ['copyy.py', 'helloworld.py', 'myspider.py', 'pagecount.py', 'x']

• printdir(): Lists the items in the archive to sys.stdout.
• >>> myz.printdir()
• File Name Modified

Size
• copyy.py 2006-03-07 16:56:54

4220
• helloworld.py 2005-07-05 15:01:28

22
• myspider.py 2005-11-06 21:29:02

4220
• pagecount.py 2005-10-10 15:01:10

367
• x 2006-02-24 13:49:46

0

• testzip(): Examines the checksums (CRCs) of all the items in the archive.
Returns as a string the name of the first bad file detected; if all files are good,
returns None.

• write(): Takes as an argument a string specifying a pathname and writes the
specified file to the archive.

The archive must be open for writing or appending. write() takes two optional
arguments:

o arcname, a string specifying the name for the file in the archive (it defaults
to the filename)

o A compression type, either ZIP_STORED or ZIP_DEFLATED

This example writes the file 'helloworld.py' to the archive and stores it with
the name 'foo':

myz.write('MyDir/helloworld.py', arcname='foo')

295

• writestr(): Writes a data string to the archive. The archive must be opened with
mode 'w' or 'a'. Takes two arguments:

o A string specifying the name that the written data string will have in the
archive (or a ZipInfo() instance with at least a filename, a date, and a
time)

o A string containing the data to store
• myzipf.writestr(info, "my_data")

The ZipFile() instance has a data attribute, debug, which specifies the level of debug
output to print to sys.stdout. The options range from 0 (no output) to 3 (the most
output). The default is 0.

Zipping up a Python library

PyZipFile() instances create zip archives containing Python libraries. Python can
import modules from Zip files. Putting the modules your program uses into Zip files is
one way of delivering a smaller program.

To create a zip archive with Python files, follow these steps:

1. Create a PyZipFile() instance.

Use the instructions in "Creating a ZipFile object for reading or writing," earlier
in this chapter. Open the archive for writing or appending.

Your code will look something like this:

mypz = zipfile.PyZipFile('foo.zip', 'w')

2. On the next line, type the name of your instance, a dot, and writepy(.
3. On the same line, type a file or directory pathname and).

If you type a filename, the suffix must be .py. This example uses a directory
pathname:

mypz.writepy('MyDir')

How writepy() works depends on the pathname you type:

• If you type a filename, the file is added to the archive.
• If you type a directory name, all the Python files in the directory with the suffixes

.py, .pyo, or .pyc are added to the archive. The file locations depend on the
path's location:

296

o If the path is a regular directory, the files are added to an archive at the top
level of the directory.

o If the path is a package directory, the files are added under the package
name and subdirectory names (if any).

REMEMBER PyZipFile() objects use the same methods as ZipFile() objects.

gzip

The gzip module reads and writes compressed files that are compatible with the GNU
program gzip. To your program's users, the contents of these files look like ordinary files
(that is, not zipped).

TECHNICAL
STUFF

The gzip module doesn't support all the formats that the GNU gzip
utility supports. For example, compress and pack aren't supported.

To use Python's gzip module, use its open() function to create a GzipFile() instance.
The instance works like a file object, but with these differences:

• The GzipFile() instance doesn't support the readinto() or truncate()
methods.

• The close() method does not close the file object the instance is using. It closes
the instance only.

This feature allows you to do something to the file object after working with it as
a GzipFile() instance. For example, if the file object is a StringIO object, you
can use the StringIO.getvalue() function to retrieve the contents after closing
the GzipFile() instance.

To create a GzipFile() instance from a file on disk, follow these steps:

1. Type gzip.open(
2. On the same line, type the path to your gzipped file as a string. For example,
3. gzip.open('filename.gz'

Tip If you don't want to write to the file, skip to Step 4.
4. If you want to write to the file, type a comma and 'w'.

Warning Using the 'w' mode erases whatever is currently in the file, so make
sure that you don't need to keep what is already in the file before you go
appending 'w'.

5. There is another mode, 'a' for append. This is an advanced feature we don't
document in this book.

Tip If you want the file to open and close faster, you can tell gzip to create a
faster, larger file:

a. Type a comma.

297

b. Type compresslevel=.

c. Type an integer from 1 (fastest, largest file) to 9 (slowest, smallest
file).

By default, the compresslevel value is 9 (slowest, smallest file).

6. End the line of code by typing).

If you fill in both optional parameters, your code and the result might look like
this:

>>> import gzip
>>> myfile = gzip.open('quote2.new.gz', mode='w', compresslevel=8)
>>> myfile
<gzip open file 'quote2.new.gz', mode 'wb' at 0x4b5c0 0x5d490>

TECHNICAL
STUFF

It's also possible to create a GzipFile() instance from a file or file-
like object (such as a StringIO object) already opened in Python.
This works much like using the open() function, but the order of the
arguments is different:

1. Mode (optional, defaults to the mode of the Python file
object)

2. Compression level (optional, defaults to 9 or
slowest/smallest)

3. The name of the Python file object (required)

The creation of a GzipFile() instance might look something
like this:

>>> gfile = gzip.GzipFile(mode='w',
compresslevel=8, fileobj=myfile)

298

Sussing Out SQL Databases

The sqlite3 module gives you an easy way to store your data by using the SQLite
library, an implementation of the universal database language SQL. (SQL is pronounced
"sequel" and stands for Structured Query Language. SQLite is pronounced "sequel-ite").
sqlite3 is a new standard module in Python 2.5. If you have Python version 2.2 through
2.4, you can download the essentially similar pysqlite module from
http://www.pysqlite.org/.

We don't have the space for detailed information on using SQL—SQL is a whole
programming language all by itself. But in the sections that follow, we show you the
basics of using sqlite3 as well as some quick tricks for using SQL. (SQL For Dummies,
5th Edition, by Allen Taylor has more information.) The Web site http://www.sqlite.org/
also has lots of documentation.

Installing SQLite and sqlite3

The sqlite3 module is automatically installed when you install Python 2.5. On
Windows, the Python 2.5 installation also includes SQLite itself. On other platforms,
make sure that SQLite is installed before you build Python 2.5. See the README file in
your Python download for details.

Setting up a SQLite database

To create or use a SQLite database, you open a connection to the database (it's like
opening a file) and create a cursor to access the database.

You can open a connection in two ways:

• Disk-based connection: Allows you to write changes to the database file on disk.
• In-memory database: The connection works faster, but you can't write changes

to disk. It's most useful for loading some data into memory and then running a
bunch of queries.

To open a connection to a database on disk, follow these steps:

1. Type import sqlite3.
2. On the next line, type the code to open the connection:

o For a disk-based connection, type the name of the database in the
parentheses:

o conn = sqlite3.connect('my_database')

o For an in-memory database, type the special string ':memory:' in the
parentheses.

299

You can type a pathname to an existing database or type a new filename to
create a new database.

conn = sqlite3.connect(':memory:')

3. On the next line, create a cursor by typing code like this:
4. cursor = conn.cursor()

The cursor is like a bookmark telling you where you are in the database.

Working with a SQLite database

This section describes some basic tasks you can do with the database: creating a table,
adding data to a table, and getting data out of a table.

Creating a table

A table is an area in a database where you store related information. A table consists of
records (sets of information), which in turn contain fields (each field is one bit of
information of a particular type). To create a table, you write a query (instructions to the
database), and then use the cursor's execute() method to run the query. To create a table
to store addresses, you might use code like this:

query = """ -- sqlite queries are strings; comments use
"--"
 create table address -- create a table named "address"
 (-- begin creating a record
 name varchar, -- create a field called "name", with type
"varchar"
 street varchar,
 city varchar
) -- end of this record
 """ # end of query

The above code is formatted so that it's easier for humans to read. SQL doesn't care about
indentation in query strings. The text after -- on each line represents comments. Python
ignores these.

REMEMBER The code varchar in the preceding example is a type (a declaration of the
kind of information to be stored in that field). varchar specifies that the
field contains text of varying length. SQLite requires you to define a type
for each field. (SQLite doesn't care much about types, but most other SQL
databases do.)

Tip Think of SQL tables as being like Python classes except that they only contain data,
not methods. A SQL database can have multiple tables. A record or row (the section
within parentheses in the above example) is like a class instance. The fields or
columns of a record (each line inside the parentheses is one field) are like instance
data attributes, except that all records have exactly the same attributes (the data

300

associated with the fields can be different). In contrast, class instances can have
different attributes, although most of the time they don't.

TECHNICAL
STUFF

Actually, most modern SQL databases do allow for creating methods,
but they're an advanced and complicated feature. So pretend we
didn't mention them.

Populating a table with data

After you have a table, you can populate the table (add data to it), like this:

1. Create a list of tuples.

Each element in a tuple should correspond to a field in one of the database's
records. For example:

addresses = [
 ('Pet Shops Ltd', '123 Main St', 'Notlob'),
 ('Similar Pet Shops Ltd', '321 First St', 'Bolton'),
]

Tip For help arranging data into the proper format, see Chapter 8.

2. Use the execute() method in a for loop to write the addresses into the
database.

3. for addr in addresses:
4. cursor.execute("insert into address values (?, ?, ?)", addr)

The execute() method's first argument is a string with the SQL command
insert into, the name of the table, and values followed by a set of query
parameters in parentheses. Question marks (?) stand for query parameters;
sqlite3 passes in an argument for each parameter. The number of question marks
must match the number of elements in the second argument. Lucky us—in the
example above, there are three question marks and three elements in each addr
tuple. The second argument is the target of the for loop.

Tip Use double quotation marks or triple quotes for all Python strings that contain SQL
queries. SQL requires string values to be surrounded by single quotation marks (see
the example in the "Getting a subset of the values" section), so you'll make life easier
for yourself if you avoid using single quotation marks for Python strings when
working with SQL.

Getting field values from a table

To get field values from a table, you execute a query specifying the data you want and
then use the fetchall() method to retrieve the data. (You may have noticed by now that
most SQLite tasks involve executing a query.)

301

Getting all the values

This example retrieves a list of all the values stored in our table's name field:

>>> cursor.execute("select name from address")
<sqlite3.Cursor object at 0x66830>
>>> print cursor.fetchall()
[(u'Pet Shops Ltd',), (u'Similar Pet Shops Ltd',)]

The fetchall() method returns a list of tuples. Because each tuple in the result has only
one element, the tuples end with a comma. See Chapter 8 for a review of tuples.

REMEMBER SQLite stores text data as Unicode strings. See Chapter 6 for more info
about Unicode.

Getting a subset of the values

The real power of a database lies in its ability to give you the subset of information that
matches your needs. In this example, we get the records that have "Bolton" in the city
field. If you know that the * character stands for "all fields," it's pretty easy to understand
what this query does:

>>> cursor.execute("select * from address where city='Bolton'")
<sqlite3.Cursor object at 0x66830>
>>> print cursor.fetchall()
[(u'Similar Pet Shops Ltd', u'123 Main St', u'Bolton')]

TECHNICAL
STUFF

When you're starting out with sqlite3, you should probably stick
with storing and retrieving simple strings, numbers, and dates. But
when you get more comfortable, you can store Python objects in the
database by using the pickle module's dumps() function. See the
next section, "Pickling Your Data (And Relishing the Outcome)."
Note that you won't be able to share your database with non-Python
programs if you store pickled data.

TECHNICAL
STUFF

sqlite3 follows the Python Database API Specification v2.0 (for
more details, see Python Enhancement Proposal PEP249 at
http://www.python.org/dev/peps/pep-0249/). Because Python
database modules are all designed to work consistently, when you
need a more powerful database (such as PostgreSQL or Firebird), it
should be easy to upgrade your code: You need only change the
connect() function call.

302

ickling Your Data (And Relishing the Outcome)

The pickle and cPickle modules let you store data between runs of a program, the way
a word processor allows you to save formatted documents and edit them later even if you
quit the program. This is called pickling because it's a way of preserving your data.

TECHNICAL
STUFF

Storing a Python object in a file makes it a persistent object. You
could write your own code to store and read Python objects, but if
your data includes complex objects, it's easier to use pickling because
it automatically converts data back and forth between strings and
Python objects.

Python includes the following support for persistent objects:

• The cPickle and pickle modules convert Python objects to and from string
representations.
TECHNICAL
STUFF

Pickling is commonly used when working with persistent
databases, which store Python objects so that they can be
accessed by keys.

• The shelve module (see the next section) supports persistent dictionaries whose
values can be arbitrary Python objects. It works with the pickle and anydbm
modules.

Warning Pickled data is a security risk because it might include malicious code. Make
sure you unpickle data only from a trusted source.

The module of choice for the majority of pickling tasks is cPickle, which is simpler and
faster than the pickle module. The only reason to use pickle is if you need access to its
advanced features (which we don't cover in this book).

Pickling an object

To pickle a Python object, follow these steps:

1. Type import cPickle.
2. Open a file for writing. For example,
3. mypicklefile = open(myfile, 'w')

4. Type cPickle.dump and in parentheses specify the name of the object you
want to pickle and the name of the file you opened (which is where the
pickled object will be stored).

5. cPickle.dump(myobj, mypicklefile)

6. Close the file.
7. mypicklefile.close()

Pickling restrictions

303

Most Python data types can be pickled, with the following exceptions:

• Functions, built-in functions, and classes defined at a level other than the top level
of a module can't be pickled.

• A class with a __dict__ attribute or a __setstate__() method that isn't
compatible with pickling can't be pickled.

• Tuples, lists, sets, and dictionaries that contain non-picklable objects can't be
pickled.

• Pickling stores only the names of functions and classes, not any code or attributes
from them. So when you unpickle a module, its functions must be available for
importing on the system you're unpickling from.

• When instances are pickled, class attributes aren't pickled along with them.

The following functions pickle a Python object. The function you use depends on what
type of data you want returned.

dumps()

The dumps() function pickles a Python object and returns a string. It's useful for storing
Python objects in databases, such as SQLite (see the previous section, "Sussing Out SQL
Databases.")

This function takes a Python object as an argument.

dump()

The dump() function pickles the object and writes the pickled object to an open file (or a
file-like object like StringIO).

This function takes two arguments:

• A Python object
• A file object opened for writing

Tip The dump() and dumps() functions take one optional parameter that specifies the
pickling version to use. The following subsections show the right parameter for your
version of Python.

Python 2.3 or later

If you're using Python 2.3 or later, the pickling version parameter for the dump() and
dumps() functions is called protocol.

Tip You can specify the pickling protocol version by entering one of the values from the

304

sidebar, "All about pickling protocols."
All about pickling protocols

There are three pickling protocols:

• 0 is an ASCII protocol. It's compatible with earlier versions of Python.

0 is the default value.

• 1 is a binary protocol (also compatible with earlier versions of Python).
• 2 works more efficiently with Python's new-style classes (discussed in Chapter

14).

You can also specify this version by entering HIGHEST_PROTOCOL or any negative
integer.

Protocol version 2 is new in Python 2.3.

Older Python versions

If you're using a version of Python older than 2.3, the optional pickling version parameter
is called bin. It specifies to pickle the data in a binary format. (The default version is text,
which is less efficient.)

Warning Don't use bin in your code unless your program must be compatible with earlier
versions of Python.

Unpickling an object

The loading function for a pickled Python object depends on whether it's a file or a string.

Unpickling files

The load() function takes a file object (or a file-like object such as StringIO) as an
argument. The file should be opened in read mode. load() reads the contents of the file
object and unpickles it. The result is the original object that you pickled.

TECHNICAL
STUFF

To unpickle a Python object from a file, follow these steps:

1. Import cPickle.
2. Open for reading the file containing the pickled object.
3. mypicklefile = open(myfile, 'rb')

4. Type a name for the object, = cPickle.load, and in

305

parentheses the name of the file you opened.

5. myobj = cPickle.load(mypicklefile)

Unpickling strings

The loads() function takes the name of a string as an argument. It reads the contents of
the string and unpickles it. The result is the original object that you pickled.

Using shelve with DBM-style databases

This section is for people who need to store Python data on disk using Python 2.4 or
earlier, or who need to use the Berkeley DB database library. (Berkeley DB and its
relatives are called DBM-style databases.) If you have Python 2.5, read "Sussing Out
SQL Databases," earlier in this chapter, instead. It's easier to use. (You can also download
pysqlite for Python 2.2 through 2.4.)

Storing pickles on a shelf

The shelve module is a "wrapper" around several DBM-style database modules
available in Python. The shelve module works like this:

1. You create a shelve object and tell it to open a database file.
2. The shelve object looks at your database file on disk and decides which Python

database module to use.
3. The Python database module accesses your database file.

The shelve module and its tools have the following features:

• The open() function automatically chooses an available database module when
you open a file.

• Shelve objects behave like dictionaries (see Chapter 9), with a few minor
differences (see "Properties of a shelve object" later in this chapter).

• Shelve objects allow you to store pickled Python objects as values. (See "Pickling
Your Data (And Relishing the Outcome)" earlier in this chapter.)

A shelve object is called a persistent dictionary because it can store and reconstitute
Python objects from a disk file.

Creating a shelve object

To create a shelve() object, follow these steps:

1. Type import shelve.

306

2. On the next line, type a name for the shelf, =, and shelve.
open('mydatabase'.

Substitute the name of your DBM-style database file.

3. To open the file as read-only, to open an existing file as read-write, or to
create a new, empty database, type a comma and a flag:

The flags are:

'r' read only
'w' read and write
'c' create database if it doesn't exist (default)
'n' create new empty database

Warning If the file exists, typing 'n' erases its contents.
myshelf = shelve.open('mydatabase', 'w'

4. If you have Python 2.3 or later and you want to use one of the advanced
pickling protocols, type a comma, protocol= and one of the following:

For more about the protocols, see "Pickling Your Data (And Relishing the
Outcome)" earlier in this chapter.

o 1 binary protocol
o 2 or HIGHEST_PROTOCOL advanced protocol; works more efficiently

with Python's new-style classes

myshelf = shelve.open('mydatabase', 'w', protocol=2

5. To allow changes to mutable objects in the database, type a comma and
writeback=True.

6. myshelf = shelve.open('mydatabase', 'w', protocol=2,
writeback=True

Warning This feature makes the database slow to close.
Tip If you don't turn on the writeback feature, you can still make changes to

mutable objects by using a three-step process described in the sidebar,
"Changing mutable objects in a shelve database."

8. Type the end parenthesis.
9. myshelf = shelve.open('mydatabase', 'w', protocol=2,

writeback=True)

Changing mutable objects in a shelve database

When you create a shelve object, by default changes to mutable objects are not stored in
the database file, because allowing this makes the database slow. To allow such changes,
you can set writeback=True when opening a shelve object (see "Creating a shelve
object"). But if you leave it turned off, you can use this three-step process for making

307

changes to mutable objects. These steps assume you've already opened a shelve database
object.

1. Access the mutable value by using its key, and give it a temporary name. In this
example, the mutable value is a list and its key is 'mylist':

2. temp = myshelf['mylist']

3. Make changes to the copy. In this example, we append a string to the list.
4. temp.append('foo')

5. Assign the changed copy back to the same database key.
6. myshelf['mylist'] = temp

Properties of a shelve object

The objects created by the shelve module are like a cross between a dictionary and a file
object. As with a dictionary, you can retrieve, store, search for, and delete keys and
values. As with a file object, you can open and close a shelve object and direct it to write
changes to a file on disk. shelve objects have these unique features:

• Keys must be strings.
• Values can be strings or picklable Python objects.
• Changes to mutable objects are not written to disk unless you set

writeback=True when you create the shelve object.

See the sidebar, "Changing mutable objects in a shelve database," for some
workaround ways of changing mutable objects.

• The sync() method writes changes to disk. (Writing happens automatically when
you use the close() method.)

•
TECHNICAL
STUFF

When you write changes to disk by using the sync() or
close() method, an extension might be added to the
filename and more than one file might be created.

• Whether these happen depends on the underlying database shelve is using.

308

Chapter 20: Accessing the Internet
Python has an array of tools for working with information over the Internet. This chapter
introduces tools for handling Web page addresses, downloading and parsing data from
Web pages, building XML data structures, creating and sending e-mail messages, and
writing and installing CGI scripts (for processing Web forms).

TECHNICAL
STUFF

This chapter introduces concepts for working with Internet modules,
but we assume that you have basic knowledge of Web, XML, and e-
mail protocols.

Downloading Web Data

The following sections cover opening URLs, reading their contents, and submitting form
data to a Web server.

Python has two modules for performing these tasks: urllib and urllib2. Each has
specific strengths. We focus on the simpler urllib module in this section, but we
recommend the urllib2 module for opening and fetching data from Web pages because
it has better error handling.

Opening a URL

The function urlopen() creates objects that behave a lot like files, but it has two
important differences from the open() function, which creates files:

• urlopen() takes a Web page address (Uniform Resource Locator, or URL) as an
argument (rather than as a filename).

• urlopen() opens the URL only for reading, not for writing.

Tip Both the urllib and the urllib2 modules support the urlopen() function. The
function works the same way in both, but the urlopen() function in urllib2 has
better error reporting on problems that occur when opening Web pages.

Using urllib2.urlopen() to open a URL

To open a URL, follow these steps:

1. Type import urllib2.
2. On the next line, type a name for the object and = urllib.urlopen(.
3. Type the URL (as a string) and close the parentheses by typing).

Your code should look something like this:

309

page =
urllib2.urlopen('http://www.python.org/doc/current/modindex.html')

If all goes well, the Web page opens. If you examine the object you just created, you'll
see something like this:

>>> page
<addinfourl at 137848780 whose fp = <socket._fileobject object at
0x837c1b4>>

Reading text from a URL

To read text from an opened URL, use a for loop. This example prints the text to
<sys.stdout> one line at a time:

for line in page:
 sys.stdout.write(line)

Understanding Web page errors

If there's a problem opening the page, Python raises an exception specifying the kind of
error. Sometimes the message is long, so we won't reproduce the whole thing here. The
critical part of the message is the last line. Here's part of the message you get if the site
exists but the page doesn't exist:

>>> page=urllib2.urlopen('http://www.python.org/idontexist.html')
[...]
urllib2.HTTPError: HTTP Error 404: Not Found

Detailed error reporting is useful when you want to write code that handles different Web
errors in different ways. For example, you might write code that checks a Web page's
links and logs whether the link is still valid, whether it redirects to another page, or
whether the linked page no longer exists. (The spider.py program in Chapter 4 uses this
functionality.)

Finding information about a URL

Python has two useful tools for getting the scoop on a URL.

info()

To get meta-information (server type, last-modified date, content type, and so on) about a
URL you've opened, use the info() method, like this:

>>> print page.info()
Date: Sun, 21 May 2006 07:52:15 GMT
Server: Apache/2.0.54 (Debian GNU/Linux) DAV/2 SVN/1.1.4
mod_python/3.1.3
 Python/2.3.5 mod_ssl/2.0.54 OpenSSL/0.9.7e

310

Last-Modified: Mon, 17 Apr 2006 12:04:05 GMT
ETag: "240110-8ac5-3811b740"
Accept-Ranges: bytes
Content-Length: 35525
Connection: close
Content-Type: text/html

geturl()

To get the actual URL that was opened when you made your request, use the geturl()
method, like this:

>>> redirect =
urllib2.urlopen('http://www.livejournal.com/users/firecat')
>>> redirect.geturl()
'http://firecat.livejournal.com/'

Tip Use geturl() to find out whether the URL you opened redirected you somewhere
else.

Processing special characters in a URL

To process special characters (such as a space or tilde) in a URL, use the urllib
module's quote_plus() function.

Warning Although the functions quote() and unquote() are similar to quote_plus(),
we recommend using quote_plus() to avoid problems with URLs that contain
+ and space characters.

The quote_plus() function has a required argument and an optional argument.

Required argument

The quote_plus() function requires a URL string (or part of a URL) as an argument and
does the following:

• Replaces special characters (anything but letters, digits, underscores, dots, and
hyphens) by using the "%xx" escape format

• Replaces spaces with + (required for quoting HTML form contents)
• Escapes + characters in the original string

This example processes a URL with slash characters and a tilde (~):

>>> import urllib
>>> urllib.quote_plus('http://cat-and-dragon.com/~stef')
'http%3A%2F%2Fcat-and-dragon.com%2F%7Estef'

Tip To reverse this process, use unquote_plus(). (This function doesn't use any optional
parameters.)

311

Optional argument

The quote_plus() function takes an optional safe argument, which specifies characters
to leave alone.

The following example processes the same URL as the preceding example, but the slash
character has been designated as safe:

>>> urllib.quote_plus('http://cat-and-dragon.com/~stef', safe='/')
'http%3A//cat-and-dragon.com/%7Estef'

Submitting form data

When communicating via HTTP, the urlopen() function usually makes a GET request to
the HTTP server. A GET request limits your URL (address and data) to 1,024 bytes. To
send more data—for example, to submit the results of a form—you need to make a POST
request.

Sending data via a POST request requires the following steps. Note that these steps require
you to import both urllib (for the urlencode() function) and urllib2 (for the
urlopen() function):

1. Type the following:
2. import urllib, urllib2
3.

4. Use the urllib.urlencode() function to encode the data.

The function takes one of the following arguments:

o A mapping object (such as a dictionary of form fields)
o A sequence of two-element tuples

The function converts its argument to the format application/x-www-form-
urlencoded. Here's an example:

>>> mylist = [('1', 'one'), ('2', 'two'), ('3', 'three')]
>>> mydata = urllib.urlencode(mylist)
>>> mydata
'1=one&2=two&3=three'

5. Call urllib2.urlopen() and pass the data from urlencode() as the second
argument, like this:

6. x = urllib2.urlopen('http://www.company.com', mydata)

312

Taming the Wild URL

The urlparse module splits URLs into components, combines components into a URL,
and converts a relative URL to an absolute URL.

To split a URL string into components, pass it to the urlparse() function. There are two
optional parameters for urlparse():

• default_scheme: Used if the URL doesn't include an addressing scheme, for
instance, 'http'. The default is an empty string (which means it's off).

• allow_fragments: Allows URLs with elements following a # character
(designating a location somewhere inside a page). Defaults to 1, which means to
allow them.

The urlparse() function returns a six-item tuple of strings containing

1. Addressing scheme (http or ftp)
2. Network location (http://www.python.org)
3. Path (/doc/2.4.2/lib/module-urlparse.html)
4. Parameters (;type="a")
5. Query (?filter=16400)
6. Fragment identifier (#top)

The tuple items don't include delimiters (colons and slashes), except for a leading slash in
the path component. If any of the items isn't part of the URL being parsed, the tuple
contains an empty string for that item.

The following example contains an addressing scheme, network location, and path, but
doesn't contain parameters, a query, or a fragment identifier:

>>> urlparse.urlparse("http://python.org/doc/2.4.2/lib/module-
urlparse.html")
('http', 'python.org', '/doc/2.4.2/lib/module-urlparse.html', '', '',
'')

The urlparse module has a couple of other capabilities:

• To turn a tuple created by urlparse() back into an URL string, pass the tuple to
urlunparse().

• To stick together a base URL and a relative URL to create a complete URL, use
urljoin(). It takes the base URL and relative URL as strings. It also takes the
optional allow_fragments argument. This example joins a single Web page to its
location:

• >>> urlparse.urljoin('http://python.org/doc/2.4.2/mac/',
'mac.html')

313

• 'http://python.org/doc/2.4.2/mac/mac.html'

Getting Hip with Hypertext

To read and output HTML-formatted text files and to find links in HTML documents, use
the htmllib module. It supports all of XHTML 1.0, all of HTML up to 2.0, and much of
HTML 3.0 and 3.2.

Of parsers, formatters, and writers

Reading and outputting an HTML file is a three-step process. Here's what's going on
inside Python while it's happening:

1. A parser receives information from an HTML-formatted file. This file might be an
HTML document you have on disk, or it might be a Web page you've opened with
urllib2.urlopen() (see "Downloading Web Data," earlier in this chapter).

When the parser encounters an opening tag, it stores whatever is inside that tag in
a buffer until it encounters the matching closing tag.

2. The parser passes the information to a formatter, which reformats it into a human-
readable form by reading the HTML tags and applying instructions to them.

3. The formatter passes the reformatted information to a writer, which outputs the
information.

Setting up a read-and-output process

The parser, formatter, and writer are all instance objects, so you need to create the
instances before they can act. The parser works on the contents of the file or Web page,
so you have to open and read a file or Web page before the parser, formatter, and writer
can act.

To set up a read-and-output process, follow these steps:

1. Import the htmllib, formatter, and StringIO modules, like so:
2. import htmllib, formatter
3. from cStringIO import StringIO

4. Open an HTML-formatted file:
5. myfile = open("memo.html", 'rb')

6. Read the file:
7. html = myfile.read()

8. Create a writer instance.

The simplest writer is DumbWriter(), which outputs plain text.

314

dumdum = formatter.DumbWriter(StringIO())

9. Create a formatter instance and pass it the writer instance.

AbstractFormatter() is the most commonly used formatter class.

fermat = formatter.AbstractFormatter(dumdum)

10. Create an HTMLParser instance and pass it the formatter instance.
11.parsley = htmllib.HTMLParser(fermat)

12. Feed the file contents to the parser.
13.parsley.feed(html)

14. Close the parser and the file.
15.parsley.close()
16.myfile.close()

Outputting the links of a Web page

After the parser has read the document, the document's links are available in the data
attribute anchorlist.

>>> parsley.anchorlist
['http://www.portmeirion-village.com/']

Getting help for messy HTML

If you have to deal with badly formatted HTML (and there's a lot of it out there), don't
despair; a third-party tool can help. It's called Beautiful Soup (after the poem in Alice's
Adventures in Wonderland), and full details are available at
http://www.crummy.com/software/BeautifulSoup.

The Great XML

Python comes with modules that support Extensible Markup Language (XML), a
mechanism for creating structured documents in plain text.

TECHNICAL
STUFF

Although we wrote plain text above, XML is actually often encoded
in UTF-8. See Chapter 6 for details about character encoding.

TECHNICAL
STUFF

Both HTML and XML data include tags—text surrounded by
brackets (<>). But they use tags differently:

• In HTML, tags are specific formatting instructions. For
example, <p> starts a new paragraph and marks boldface
type.

315

• In XML, tags label kinds of data.

An XML tag can also have subtags for kinds of data that are
part of a larger group—<address> data can include <name>
and <street>; <item> data can include <price>, and so on.
These tags clarify the data structure, so it's easy for a
computer to separate the data into parts.

Tip If XML tags and subtags remind you of Python's classes and their data attributes, you
might be on to something….

The ElementTree XML implementation

The best way to use XML in Python is with ElementTree.

• ElementTree is included as xml.etree in Python 2.5.
• ElementTree is available for download from http://www.effbot.org.zone/element-

index.htm if you're using an earlier version of Python.

ElementTree is based on an Element data type, which stores hierarchical data structures
(such as XML) in memory.

TECHNICAL
STUFF

Ordering up some XML

Here's an application for which XML is useful. Suppose you need to
send an order. If you were writing it on a piece of paper, it would
look something like this:

Order:
Eric Half-a-Bee
123 Main St
Anytown, CA, 95432
Items:
Foo 1 $12 $12
Bar 2 $15 $30
Subtotal: $42
Shipping: $5
Total: $47

In XML, it would look something like this:

<?xml version="1.0" encoding="ISO-8859-1"?>
<order>
 <recipient>
 <name>Eric Half-a-Bee</name>
 <street>123 Main St</street>
 <city>Anytown</city> <state>CA</state>
<zipcode>95432</zipcode>
 </recipient>
 <items>
 <item>

316

 <prodcode>Foo</prodcode>
 <qty>1</qty> <price>12</price>
<total>12</total>
 </item>
 <item>
 <prodcode>Bar</prodcode>
 <qty>2</qty> <price>15</price>
<total>30</total>
 </item>
 </items>
 <subtotal>42</subtotal>
 <shipping>5</shipping>
 <total>47</total>
</order>

Importing ElementTree

How you import ElementTree depends on your version of Python.

• In Python 2.5, type this:
• from xml.etree import ElementTree as ET
•
• In earlier versions, after you download ElementTree, type the following:
• import elementtree.ElementTree as ET

Tip (You don't have to use the as ET part, but it will help if you are following
along with our examples.)

Creating an element

An ElementTree structure consists of Element instances.

• An Element instance must have a tag—a string identifying the element type.
• An Element instance can have these options: attributes, a text string, and

subelements (child elements).

To create an element, type ET.Element and pass the tag string as an argument, like this:

tree = ET.Element("tree")

Element attributes

Element attributes are dictionary key:value pairs. (The keys must be unique.)

Assigning attributes

To assign attributes to an existing element, use the attrib() method, like this:

branch = ET.Element("branch")

317

branch.attrib["one"] = "1"
branch.attrib["two"] = "2"

Manipulating attributes

To manipulate attributes, use the following methods, which work a lot like dictionary
methods (see Chapter 9):

• To assign attributes when creating an element, use keyword arguments, like this:
• branch = ET.Element("branch", one="1", two="2")

• To return attribute values, use the get() method with the key:
• branch.get("one")

• To get a list of attribute keys, use the keys() method, like so:
• branch.keys()

• To get a list of attributes (key:value tuples), use the items() method:
• branch.items()
•
• To set attribute values, use the set() method, like this:
• branch.set("third", "3")

• To set an element's text attribute, assign it a string, like so:
• branch.text = "this element also contains text"

Subelements

Element instances can have subelements, also called child elements.

Creating subelements

There are a couple of different ways to build a tree:

• The SubElement() function: You can create subelements and attach them to the
parent element by using the SubElement() function. The resulting code looks like
this:

• ET.SubElement(tree, "branch")

• The append() method: You can attach subelements to a parent element with the
append() method, like this:

• tree.append(ET.Element("branch"))

Tip Subelements (child elements) are stored as a list, so you can access, add, and delete
them by using list methods, like this:

>>> tree.insert(0, ET.Element("fruit flies"))

Searching for subelements

To search for or within subelements, use these methods:

• find(pattern) returns the first matching subelement.

318

• findtext(pattern) returns the value of the text attribute for the first matching
subelement.

• findall(pattern) returns a list of all subelements.

Tip The pattern argument in find() can be either

• A tag: If you use a tag, only subelements of that tag are checked.

• A path: You can use a path to search the entire subtree.
Tip To search the whole tree, use the getiterator() method. getiterator(tag)

returns a list of all subelements with the tag; getiterator() (without an argument)
returns a list of all subelements in the subtree.

TECHNICAL
STUFF

getiterator() searches the tree in depth-first order; that is, it
searches down one branch to the end, and then down the next branch,
and so on.

Using XML files

ElementTree is designed to automatically read XML files, represent their structures, and
write them to disk or to a Python file object.

Loading documents

To load an XML document and turn it into an ElementTree instance, use the file
keyword argument to create a tree from a file in a single operation, like this:

order = ET.ElementTree(file='order.xml')

Writing an Element tree to disk as an XML file

To save an ElementTree instance back to disk, use the write() method. It takes either a
filename or a file object. The output might not be human-readable.

order.write(output_file)

To save an Element structure to disk, use the following code:

ET.ElementTree(tree).write(output_file)

Other useful XML modules

Python includes a few other XML modules:

• xml.dom: New in Python 2.0. Supports Document Object Model (DOM), a
method for reading and modifying XML documents that works in a variety of
programming languages.

319

Tip DOM creates XML documents in a tree structure and is useful for random-
access reading.

• xml.dom.minidom: Supports Document Object Model (DOM) but is simpler and
smaller than the full xml.dom module.

• xml.sax: This package implements Simple API for XML (SAX). It's good for
huge XML documents because it doesn't read the whole thing in one chunk.
However, SAX is more difficult to use than the other modules, so we recommend
you use it only when you really need it.

MIME-ing Success: Managing E-Mail Messages

The email package is a library that includes tools for reading the text of e-mail messages,
transforming messages from text to Python objects and back again, and generating e-mail
objects, including MIME documents.

REMEMBER The email package doesn't send messages; the smtplib module sends
them.

Representing an e-mail message in Python

In Python, e-mail objects are represented as instances of the Message class. A Message
instance has two parts:

• Message headers: Addressing information, subject, date, and so on are stored in a
dictionary-like format (a mapping), but there are a few differences from
dictionaries:

o Duplicate message headers are possible.
o Message headers are stored in the order they appeared in the original

message.
• Payload: The body of the message can be either a string (a text-only message) or

a list of Message objects (a multipart message; for instance, a message that has
text, HTML, a GIF file, and so on).

Creating e-mail and MIME objects

To build a message structure, you create a Message instance and add attachments and
headers.

Creating a Message object

The simplest way to create a Message object is to use the message_from_ string() or
message_from_file() function.

To create a Message object from a string, use message_from_string(). Pass the
function a string or StringIO instance, like this:

320

>>> import email
>>> msg = email.message_from_string(mystring)

To create a Message object from a file, use message_from_file(). Pass the function an
open file object.

Creating MIME objects via subclasses

The email module's MIME submodules are for attaching particular kinds of data, such as
formatted text documents, to an e-mail message. The subclasses automatically set up
some of the MIME headers for you.

The name of the class is always the same as the name of its corresponding submodule. To
import a class from a MIME submodule, type the following line of code (substitute the
name of the class/submodule you want to import):

from email.MIMEBase import MIMEBase

To create an instance of the class after using the preceding import statement, type code
like this:

mime_msg = MIMEBase(parameters)

The following MIME subclasses create messages that include MIME objects.

MIMEMultipart()

The MIMEMultipart() subclass is an outer layer for MIME messages that have multiple
parts.

To use Message objects (or other MIME subclass instances), you can either

• Specify the objects as payload subparts when you create an instance of the
MIMEMultipart subclass.

• Add the objects later by using the Message.attach() method.

TECHNICAL
STUFF

The MIMEMultiPart subclass is new in Python 2.2.2.

MIMEBase()

The MIMEBase() subclass is for creating MIME messages with message parts that aren't
of specific other MIME types (text, audio, or image).

MIMEBase() requires two Content-Type arguments:

321

• Major type (for example, application)
• Minor type (for example, msword)

TECHNICAL
STUFF

If you aren't sure what types to use, import the mimetypes module
and use the guess_type() function, like this:

>>> mimetypes.guess_type('foo.doc')
('application/msword', None)
>>> x = email.MIMEBase.MIMEBase('application',
'msword')

Tip To attach a Word document to an e-mail message, use the MimeBase() subclass:

1. Import the modules you need, like so:
2. >>> from email.MIMEBase import MIMEBase

3. Open the Word file for reading:
4. >>> word_file = file('foo.doc', 'rb')

5. Read the file, and then close it:
6. >>> file_contents = word_file.read()
7. >>> word_file.close()

8. Make a MIMEBase() object by typing this:
9. >>> mime_msg = mime_msg = MIMEBase('application', 'msword')

10. Set the payload of the MIMEBase() object:

11.>>> mime_msg.set_payload(file_contents)

Specifying a character set

To specify the character set of a payload, use the set_charset() method.

TECHNICAL
STUFF

The set_charset() method argument can be either

• A Charset() instance
• A string with the name of a character set

• None (which removes the charset parameter from the
Content-Type: header)

The following line specifies the character set using a string:

>>> msg.set_charset('ISO-8859-1')

Adding and changing message headers

Message object headers are stored in a dictionary-like object:

• The header field is the key.
• The content of the header is the value.

322

To create or change a header, or to add a value, use the key, like this:

>>> msg['Subject'] = 'Pictures of My Cat'

The add_header() method creates a new header, a value, and optional parameters for the
value:

>>> msg.add_header('MyCat', 'Angus', coat='Tuxedo')

The set_param() method sets or changes a parameter in the Content-Type: header,
creating the header if it doesn't exist.

Adding content to an existing message

To add a payload to a multipart e-mail message that already has an existing payload, use
attach() and pass it a list of Message objects.

If the message doesn't have any payload yet, use set_payload() to add a payload stored
as a string.

Warning If the message already has a payload, the set_payload() method replaces it.

Generating MIME documents from message structures

After you have set up an e-mail message as a structure of Python objects, you need to
convert it to plain text if you want to send it or print it. This is called flattening the
message. There are several ways to flatten a message object. We discuss two of them.

Printing a message object as a string

The easiest way to print the text of a message is to use the as_string() method of
Message() objects, like so:

>>> print littlemsg.as_string()
Date: Wed, 5 Jul 2006 01:04:42 -0700
From: Professor Grue
To: Geography 101 students
Subject: Islands of the world

Farallons:
Seal Rock
Maintop Island

Encoding binary data into string data

The Encoders module includes functions for turning binary data into data that can be
sent as e-mail. Two of its functions are

323

• encode_quopri(): Use for a message that has mostly text but some unprintable
characters.

• encode_base64(): Use for a message that has mostly binary (unprintable) data.
The format is more compact than quoted-printable, but humans can't read it.

The encoding functions add a Content-Transfer-Encoding: header. They change a
message in place and return None. To encode the Message() object littlemsg as base
64, type this code:

>>> import email.Encoders
>>> email.Encoders.encode_base64(littlemsg)
>>> print littlemsg
From nobody Wed Jul 5 01:04:42 2006
From: Professor Grue
To: Geography 101 students
Subject: Islands of the world
Content-Transfer-Encoding: base64

RmFyYWxsb25zOgpTZWFsIFJvY2sKTWFpbnRvcCBJc2xhbmQKCgoK

Reading e-mail messages

This section shows how Python can read and manipulate existing e-mail messages.

Getting information and payloads

The simplest way to return an e-mail message as a text string is to use the as_string()
method of a Message() instance. To include an envelope header in the string, specify
unixfrom=True as the argument.

mymessage.as_string(unixfrom=True)

To find whether the e-mail message has multiple parts, use the is_multipart() method.
It returns True or False. False means the message is a string.

To see a message's payload, use the get_payload() method. If the message is multipart,
it returns a list of Message() objects. If not, it returns a string.

>>> msg.get_payload()
[<email.Message.Message instance at 0x82e26ec>,
>email.Message.Message instance at 0x82e260c>]
>>> littlemsg.get_payload()
'Farallons:\nSeal Rock\nMaintop Island\n

Parsing e-mail messages

The classes of the Parser module process more complex messages. When you already
have the whole message as a string or file, use its "classic" Parser class. Follow these
steps:

324

1. Import the Parser module, like so:
2. >>> import email.Parser
3.

4. Create an instance of the Parser() class:
5. >>> p = email.Parser.Parser()

Use the parse() method for a file (pass it a file object) or the parsestr()
method for a string (pass it a string).

The text must be a block of headers followed by the body of the message (which
can have MIME-encoded subparts). To read only the headers, pass the optional
parameter headersonly=True.

>>> x = p.parse(fp)
>>> print x
From nobody Wed Jul 5 01:04:42 2006
From: Professor Grue
To: Geography 101 students
Subject: Islands of the world

Farallons:
Seal Rock
Maintop Island

Using e-mail utilities

The email.Utils module includes the following message tools:

• Functions for managing quotation marks and other delimiters
o quote() takes a string and escapes backslashes and double quotes by

preceding them with \.
o unquote() removes double quotes and angle brackets from the beginning

and end of a string.
• Functions for reading address headers

o parseaddr() splits the header into two parts—real name and e-mail
address. It returns a tuple.

o formataddr() takes the parseaddr() tuple and turns it back into a string
suitable for an address header.

o getaddresses() takes a list of headers and returns a parsed list of
addresses found in the headers.

This code gets all the addresses in a message's To: header:

from email.Utils import getaddresses
to_addrs = msg.get_all('to', [])
to_recips = getaddresses(to_addrs)

• Tools for working with dates

325

o parsedate() reads a date in a message header and returns a nine-item
tuple that works with time.mktime() (see Chapter 17). If the date doesn't
follow the standard format, parsedate() tries to guess how the date is
formatted.

o formatdate() takes a floating point time value (or uses the current time)
and returns a date string of the following format:

o Fri, 09 Nov 2001 01:08:47 -0000

• Functions for decoding and encoding character sets
o decode_rfc2231() decodes a string according to RFC 2231.
o encode_rfc2231() encodes a string and accepts optional character set

and language arguments.
o collapse_rfc2231_value() turns a get_param() three-item tuple

(character set, language, and value) into a Unicode string.
o decode_params() decodes a list of two-item tuples in the format (content-

type, string-value).

Simply SMTP

The email package only generates and processes e-mail messages. To send e-mail
messages, you need the smtplib module. SMTP stands for Simple Mail Transfer
Protocol.

The primary way to use the smtplib module is to create an instance of the SMTP class (its
parameter is a hostname); then use the sendmail() and quit() methods in that order.
The sendmail() method requires the following arguments:

• From-address string
• List of to-address strings, or a string containing a single to-address
• Message (a text string—usually a flattened email.Message object)

TECHNICAL
STUFF

The optional arguments for sendmail() are advanced, and
we don't cover them in this book.

The response from sendmail() depends on the following factors:

• If the server accepts the mail for at least one of the to-addresses, sendmail()
reports success.

• If any of the to-addresses didn't receive the message, sendmail() returns a
dictionary containing one entry for each recipient who didn't get the mail, along
with error codes.

To end the SMTP session and close the connection with the server, use the quit()
method.

Tip The simplest code for sending a message is the following:

326

import smtplib
server = smtplib.SMTP('localhost')
server.sendmail(fromaddr, toaddrs, msg)
server.quit()

CGI: Gateway to the Web

Common Gateway Interface, or CGI, is a standard scripting language for Web sites. CGI
scripts work like this:

1. A browser makes a request to a Web server.
2. The Web server executes a CGI script.
3. The CGI script output is returned to the browser as a Web page.

You can write CGI scripts in Python. The cgi module includes tools that let your scripts
work with Web pages and receive data from form fields. Debugging tools are also
provided.

Setting up CGI output in Python

A CGI script usually outputs two sections of text separated by a blank line.

Tip To generate this text from your Python program, use the print command:

1. The first section contains headers describing the type of data in the second
section. Code for this section might look like this:

2. print "Content-Type: text/html"

3. Use an empty print command to generate the blank line separator:
4. print

5. The second section usually includes HTML-formatted text that generates the
Web page, like this:

6. print "<TITLE>Message in a browser</TITLE>"
7. print "<H1> Hello, world!</H1>"
8. print "<P> Help! I'm trapped in this Web browser"
9. print "and I can't get out! </P>"

Reading data from Web input

CGI scripts usually process input from a Web form created with the HTML tag <form>.
Form fields can contain data of various types, but you usually want to treat the data as a
string or a file.

327

Reading data from form fields

To get form data, you create an instance of the FieldStorage() class (without
arguments):

• The instance reads form contents from standard input or from the appropriate
environment.

• The instance stores data in a dictionary-like structure in which a field name is
associated with its value.

Unlike Python dictionaries, instances of the FieldStorage() class allow for multiple
keys with the same name. They support such methods as has_key(), keys(), and len().
After you've stored the data, the easiest way to get the values out of individual fields is to
use the getfirst() and getlist() methods.

Tip These methods protect against the possibility that a user entered too many values in a
field.

getfirst()

If a field is supposed to have only one value, use the getfirst() method of the
FieldStorage instance to return a single value. Pass the name of the form field as an
argument, like this:

addr = form.getfirst("addr")

The getfirst() method takes an optional parameter specifying what to return if the
form field doesn't exist or has no value. It defaults to None.

getlist()

To return a list of all the values associated with a form field, use the getlist() method
and pass the name of the form field. If there is only one value in the field, the method
returns a one-item list. If there are no values or the form field doesn't exist, it returns an
empty list.

To process the list of values, use a for loop, like this:

for item in form.getlist("field_header"):
 do_something(item)

Warning Maintaining security when using HTML forms

Forms on HTML pages are vulnerable to security problems—malicious code
can be entered. If you are planning to use form data in a shell command on your
computer (via the os.system() function, for example), include tests in your
script to make sure the data contains only alphanumeric characters, dashes,

328

underscores, and periods. Specifically do not allow spaces. Whenever possible,
use Python functions (for instance, shutil.move()) instead of calling
os.system() with data entered by end users.

Similarly, when sending user-entered data back to the browser, make sure to
strip HTML tags, especially if you have a Web site where users can see data
entered by other users (such as a blog).

Reading files from form fields

To find whether a field stores a file, test the file data attribute of the FieldStorage
instance with an if statement, like this:

fileitem = form["userfile"]
if fileitem.file:
 # do something

Setting up and installing a CGI script

Your script must follow certain guidelines to work in the Web environment. The
following instructions show how to write and install your script.

Writing a script to work in the Web environment

Type the following code as the first line of the script (replace the pathname with the
pathname of the Python installation on your Web server):

#!/usr/local/bin/python

Tip Use absolute paths in your script to access programs or files.

To load modules from a location not on the default Python search path, use
sys.path.insert() to add their pathnames to sys.path. Use 0 as the first argument to
have this path searched first. For example, you might type

import sys
sys.path.insert(0, "/usr/home/stef/python_modules")

Checking for syntax errors

Run your script from the command line to see whether it contains syntax errors. This step
makes sure your script contains valid Python code:

% python script.py

329

Installing a script and setting permissions

Your CGI script usually goes in the cgi-bin directory of your Web server. Check the
documentation for your Web host provider to find out any requirements for the script—
for example, some ISPs require that all CGI scripts end with .cgi.

After you've installed the script in the appropriate directory, you need to set permissions
so that users of your Web site can access it. Here's how:

1. Change the permissions for the script to let the "others" group read and
execute the script.
Tip On UNIX, the command for giving the "others" group read and execute

access is chmod 0755 scriptname.
2. If the script uses any files, change those file permissions so that the "others"

group can read or write the files (depending on how the script uses the files).
o Reading the files: The UNIX command for making files readable by the

"others" group is: chmod 0644 filename.
o Writing the files: The UNIX command for allowing the "others" group to

write to files is chmod 0666 filename.

Debugging CGI scripts

CGI scripts don't handle Python's error tracebacks the same way that Python itself does,
so you need to follow special procedures for debugging your CGI scripts. The rest of this
chapter shows you how.

Check for syntax errors

Before doing any other debugging steps, double-check your script for syntax errors (yes,
even if you already did it once). Follow the instructions in "Checking for syntax errors,"
earlier in this chapter.

Make sure your script is installed correctly

Use these two steps to install and check the script:

1. Install a copy of the cgi.py module in the location of your script.
2. Run the cgi.py module by typing code like this into your browser (replacing

hostname/cgi-bin/ with the path to your cgi-bin directory):

http://www.hostname/cgi-bin/cgi.py?name=My+Name&addr=Cyber

The results show whether the script is installed in the correct directory:

330

• If the directory is correct, some diagnostic text, including the text after the ? in the
above line of code, appears in the Web browser.

• If you see a 404 error or a message that the page can't be found, then the scripts
are installed in the wrong directory.

You might get a different error if the script is in the right directory but installed
incorrectly.

Test your code

If your script doesn't work, and you've verified that it's installed in the correct directory,
these steps test your code by using the cgi.test() function:

1. In a text editor, comment out the main body of your code (put a # character at
the beginning of every line) and add this line of code:

2. cgi.test()

3. Run the altered script by typing code like this into your browser (replace
hostname/cgi-bin/ with the path to your cgi-bin directory and replace
scriptname with the name of your script):

http://www.hostname/cgi-bin/scriptname.py?name=My+Name&addr=Cyber

If the diagnostic text and the text after the ? in the above line of code appears in
the Web browser, then the script is installed correctly, and any problems you're
having are probably with your script's code.

Tip If the cgi.test() code doesn't work, then the script probably isn't installed
correctly. Go back to "Installing a script and setting permissions," earlier in
this chapter. You might need to ask your Web hosting company for the path of
your cgi-bin directory.

Include debugging code in your script

If your script is executing some code but works incorrectly, set up your script to display
helpful debugging messages. Use one or both of the following methods.

Seeing CGI script errors

The cgitb module displays error information for CGI scripts. Import and enable the
cgitb module by including one of the following code lines near the top of your script,
after the #!/usr/local/bin/python line:

• This line displays errors in the Web browser:
• import cgitb; cgitb.enable()

• This line saves errors to a temporary file:
• import cgitb; cgitb.enable(display=0, logdir="/tmp")

331

Seeing traceback information

If your script isn't working correctly, it might be producing traceback information (the
error messages that Python normally prints when you run a program from the command
line or from interactive mode). Depending on the configuration of your Web host, the
traceback messages sometimes appear in the HTTP server's log files. How you access
these files depends on the server setup. Contact the support team for your Web host to
find out more.

If you don't want to dig through the log files, you can set up your script so that traceback
information is displayed in your Web browser. Include this code near the top of your
script:

import sys
sys.stderr = sys.stdout
print "Content-Type: text/plain"
print

332

Part V: The Part of Tens

Chapter List

Chapter 21: Ten Critical Python Idioms
Chapter 22: Ten Great Resources

The 5th Wave By Rich Tennant

"Well, here's your problem. You only have half the ram you need."

In this part …

Lists, lists, and more lists! For Dummies readers know that they can count on the Part of
Tens to provide yummy tidbits of information, and this Part of Tens is no different.

In this part, you get ten chunks of code that solve annoying little programming problems
in elegant ways; just drop them into your programs. We also show you ten free resources
you can use to find out more about Python and hook up with the rest of the Python
community.

333

Chapter 21: Ten Critical Python Idioms
Here are ten little code snippets that illustrate how to handle some common problems in
Python. They are arranged roughly in order of difficulty.

TECHNICAL
STUFF

Some of these idioms are from the Python Cookbook, and you'll find
more:

http://www.pythoncookbook.activestate.com

Collecting Globs and Globs of Files

The glob module provides a single function, also called glob, which lets you get a list of
files from a directory (you can also find directory names). The glob function recognizes
the same wildcard search characters that the UNIX shell recognizes, except for tilde (~).

TECHNICAL
STUFF

On Mac and Unix systems, glob searches are case-sensitive.

Here's how to find all the Word documents (which end with the suffix .doc) in a
directory called MyDocs:

>>> import glob
>>> docs = glob.glob('MyDocs/*.doc')
 ['MyDocs/helloworld.doc', 'MyDocs/myspider.doc',
'MyDocs/pagecount.doc']

The following example finds files beginning with . (a dot). These files aren't found in
wildcard searches.

>>> glob.glob('.*')
['.hidden_file']

Rolling Dice and Shuffling Cards

Python's random module is good for generating simple random numbers (and for
sophisticated random number problems, but we won't get into that—we're just as eager to
avoid statistics as everybody else).

334

Making a saving throw

Here's a simple dice-roller function. To use it, just call it with an optional integer
argument:

import random
def roll(d=6):
 return random.randint(1, d)
>>> roll() # rolls a 6-sided die
4
>>> roll(20) # rolls a 20-sided die
17

Playing the dealer

Now suppose you have a list representing a deck of cards. Here is some code that would
create such a list:

def make_deck():
 suits = ['spades', 'hearts', 'diamonds', 'clubs']
 values = ['ace', '2', '3', '4', '5', '6', '7', '8', '9', '10',
'jack',
 'queen', 'king']
 deck = []
 for s in suits:
 for v in values:
 deck.append(v + ' of ' + s)
 return deck

To get a single card, run the function to make a deck and pick a card with
random.choice() like this:

>>> deck = make_deck()
>>> random.choice(deck)
'3 of diamonds'

If you want to pick a few cards, use random.shuffle() and then use the pop() method
of lists to retrieve cards one at a time.

>>> newdeck = make_deck()
>>> random.shuffle(newdeck)
>>> hand = []
>>> for c in range(5):
... hand.append(newdeck.pop())
...
>>> hand
['5 of diamonds', '6 of diamonds', 'ace of spades', 'ace of
clubs', 'king of hearts']

Tip Because shuffle() and pop() change the list in place, you should make a new deck
each time you deal.

Tip In Python 2.2 and earlier, shuffle() works well only with small lists. Python 2.3

335

uses a new random number algorithm so that shuffle() to work correctly with lists
containing as many as 2,000 elements. But someone forgot to update the docs for
Python 2.3 and 2.4; they don't reflect this change.

336

Uniquely Ordered Lists

Python's set data type makes it easy to find all the unique items in a list. (See Chapter 9 to
find out about sets.) But sets don't work well if you want to keep the order of items. This
function takes a list and returns a new list containing only its unique items, in the same
order as the original list:

def unique(items):
 tmp = []
 cache = set()
 for item in items:
 if item not in cache:
 tmp.append(item)
 cache.add(item)
 return tmp

If you're concerned about memory usage, you can use a generator version of the
preceding function (see Chapter 16):

def unique(items):
 cache = set()
 for item in items:
 if item not in cache:
 cache.add(item)
 yield item

Here's how they work:

>>> menu = ['egg', 'bacon', 'egg', 'sausage', 'bacon', 'egg',
'spam', 'egg', 'bacon', 'spam', 'egg', 'bacon', 'sausage',
'spam', 'spam', 'bacon', 'tomato', 'spam',
'lobster thermidor with truffle pate, brandy, and a fried egg on top',
'spam', 'baked beans']
>>> unique(menu) # preserves item order
['egg', 'bacon', 'sausage', 'spam', 'tomato', 'lobster thermidor with
truffle
pate, brandy, and a fried egg on top', 'baked beans']

Reversing Your Way to Success

The unique function in the previous section keeps the first item it finds and throws away
subsequent duplicates. What if you want the last matching item? Most of the time, adding
the double-reverse technique does what you want:

my_data.reverse()
my_data = unique(my_data)
my_data.reverse()

337

Note that the sort() method of lists and the sorted() built-in function, which puts list
items in alphanumeric order, both have a reverse parameter (new in Python 2.4). See
Chapter 8 for the lowdown on sort() and sorted().

Exceptional Type-Testing

Sometimes it's a good idea to check the type of data that is being put into your function to
make sure it's the type of data you want. You can use isinstance() or issubclass() to
do this. But that's not the ideal test for code that's intended to work with user-defined
classes based on built-in data types. Python's duck-typing (see Chapter 13) makes it
possible to create an object that has an append method, for example, that isn't an instance
or subclass of the list data type. This object might work in your function but would not
pass the isinstance() or issubclass() test.

If you want your function to process such objects, it's better to use a try/except block to
verify that the object behaves the way you need it to. For example, you might test
whether an object supports the append() and pop() methods and whether it allows
indexing. (If so, there's a good chance it will support other list operations.) Here's a code
block that performs such a test:

def foo(l):
 try:
 l.append('foo')
 l[0]
 l.pop()
 except StandardError:
 raise TypeError("Not a valid list object: %r" % l)

TECHNICAL
STUFF

This code catches StandardError in the except statement.
StandardError is the class from which almost all exceptions derive
(except for SystemExit and KeyboardInterrupt). Catching it also
catches any exception that derives from it. We then translate the
exception into a TypeError for the purpose of logging the result or
printing a message.

Tip Use this checking only with critical code. Usually, this level of checking is overkill,
and you can assume that your users will follow the documentation you provided with
your function (you did provide documentation, right?).

338

Classes Just for Data

Python class instances are a lot like dicts—both can store keys and associated values. In
fact, in many ways, instances are simply a thin wrapper around dicts, and attribute syntax
is easier to read than dict syntax.

foo.bar # a class attribute
foo['bar'] # a dictionary key

Python programmers commonly create classes with no methods (a data-only class) for
manipulating key/value data. Here's a class that makes it easy to initialize the class
instance with some values (courtesy of Alex Martelli):

class Bunch:
 def __init__(self, **kwargs):
 self.__dict__.update(kwargs)

When creating the instance, you just pass it one or more keyword arguments. In this
example, we create an instance of Bunch and store the current working directory by using
the keyword start_dir:

>>> import os
>>> config = Bunch(start_dir=os.getcwd())
>>> config.start_dir
'/Users/firecat'

For more info about Bunch, see this Web page, part of the Python Cookbook:

http://www.aspn.ActiveState.com/ASPN/Cookbook/Python/Recipe/52308

Getting Close Enough with difflib

People often make mistakes when entering text. The difflib module gives you a way to
find strings that are close but not exact matches to a given string:

>>> import difflib
>>> right = 'The quick brown fox'
>>> wrong = 'THe quack brown fix'
>>> matcher = difflib.SequenceMatcher(None, right, wrong)
>>> print matcher.ratio()
0.842105263158

The ratio() method returns a floating point number between 0 and 1 that indicates how
close the match is. Higher numbers indicate a closer match. A match higher than 0.6 is
usually considered "good" (maybe not by medieval manuscript-illuminating monks, but
good enough for the modern world).

339

To compare a single word against a list of words, use the difflib module's
get_close_matches() method. It finds the words with the highest match ratio:

>>> import difflib
>>> mylist = ['quick', 'quack', 'quark', 'quart']
>>> difflib.get_close_matches('quote', mylist)
['quart']

DSU! DSU! Rah rah DSU!

DSU stands for "decorate, sort, undecorate," and it's a clever trick for sorting sequence
objects by one of their elements.

TECHNICAL
STUFF

This use of the word decorate doesn't have anything to do with the
decorator feature discussed in Chapter 16. Python has just gotten so
big that it's having to recycle the words it uses to describe tools!

Suppose you have a list of address tuples, like this:

addresses = [
 ('123 Main St', 'Anytown', '12345'),
 ('123 Second St', 'Othertown', '54321'),
 ('456 Second St', 'Nowhereville', '11111'),
 ('777 Morris St', 'Filenes Basement', '99999')
]

Now suppose you want to sort them by zip code. The sort() method of lists lets you
pass a comparison function, but we don't recommend that because it's clumsy and slow. A
better way is to create a new list that is decorated with the zip field, so that each tuple
becomes a 2-tuple where the first element is the zip code and the second element is the
old tuple:

('12345', ('123 Main St', 'Anytown', '12345'))

After you have the list of 2-tuples, you can sort the list and then undecorate it (remove
the extra zip field).

These two functions do DSU on such a list. The first one uses a list comprehension to
create the tmp list and the return value. (See Chapter 16 for more on list
comprehensions.)

def dsu_zip(addresses):
 tmp = [(x[2], x) for x in addresses]
 tmp.sort()
 return [x[1] for x in tmp]

Here's what happens when you run the function:

340

>>> dsu_zip(addresses)
[('456 Second St', 'Nowhereville', '11111'), ('123 Main St',
'Anytown', '12345'), ('123 Second St', 'Othertown', '54321'),
('777 Morris St', 'Filenes Basement', '99999')]

Tip There's another way to perform a DSU sort. Python 2.4 adds a new key parameter to
the sort() method and the sorted() built-in function. Use this with the
itemgetter() class from the operator module for a simpler DSU-type solution:

>>> import operator
>>> third_item = operator.itemgetter(2) # get 3rd item from tuple
>>> addresses.sort(key=third_item)
>>> addresses
[('456 Second St', 'Nowhereville', '11111'), ('123 Main St',
'Anytown', '12345'), ('123 Second St', 'Othertown', '54321'),
('777 Morris St', 'Filenes Basement', '99999')]

TECHNICAL
STUFF

The key parameter requires a function, which itemgetter()
supplies. A similar attrgetter() function works with class
instances to retrieve attribute values based on their names.

Simplifying Choices Using Dicts

Typing lots of if/elif/else statements can get rather tedious, as the following example
shows. In the example code, account_type is a string and CheckingAccount,
SavingsAccount, and GenericAccount are classes or functions (for this purpose it
doesn't matter which):

if account_type == 'checking':
 new_account = CheckingAccount()
elif account_type == 'savings':
 new_account = SavingsAccount()
else:
 new_account = GenericAccount()

If you're checking a single expression against a bunch of constants, as in the preceding
code, using a dict to store the constants makes more sense:

accounts = {
 'checking': CheckingAccount,
 'savings': SavingsAccount,
 }
new_account = accounts.get(account_type, GenericAccount)()

The preceding line of code contains a few useful techniques:

• The get() method of dicts lets you specify a value to return if the key isn't found.
Here, if the account type isn't in the accounts dict, the get() method returns
GenericAccount.

341

• CheckingAccount and SavingsAccount don't have parentheses after them inside
the dict because they're being stored rather than called.

• The set of parentheses at the end of the line after the get() call specify that the
function or class that get() returns should be called.

Singles Going Steady

Sometimes you want to make sure that there is only one of an object (called a singleton)
within your program. A common example might be an object that holds configuration
info. There are two standard ways to do this in Python: creating a singleton object and
creating a Borg Pattern.

Using a singleton object

One way to make sure you have a unique object is to create a type of object that's a
always a singleton. Python has two: modules and classes. (Classes are singletons, but
instances aren't.) The following example creates a class called Config and stores an
attribute in it. You can't create another Config class in your module, so you can be sure
that Config.start_dir is unique.

class Config:
 pass

config.start_dir = os.getcwd()

Calling in the Borg Pattern

You can make a special kind of class so that all of its instances share the same state
(which makes them functionally identical). That means whatever you do to one instance
is also done to all the other instances.

Tip To create this class, use the following brilliant code from Alex Martelli called the
Borg Pattern:

class Config:
 __shared_state = {}
 def __init__(self):
 self.__dict__ = self.__shared_state

Here's what happens when you test it. This code shows that the two Borg instances are
different objects (they are stored in different locations):

>>> borg1 = Config()
>>> borg2 = Config()
>>> borg1
<__main__.config instance at 0x584e0>
>>> borg2
<__main__.config instance at 0x584b8>

342

This code shows that both instances share state—when an attribute is assigned to borg2,
the same attribute now exists in borg1.

>>> borg2.start_dir = os.getcwd()
>>> print borg2.start_dir
/Users/firecat/StefPythonProgs
>>> print borg1.start_dir
/Users/firecat/StefPythonProgs

For more about the Borg Pattern, see

http://www.aspn.ActiveState.com/ASPN/Cookbook/Python/Recipe/66531

Chapter 22: Ten Great Resources
This chapter lists ten resources to check out to find out more about Python, to get more
help with your programs, and to get involved with the Python community.

The Mothership: http://www.python.org

The Python mothership on the Web is docked at http://www.python.org. If you have
questions about Python, you should go here first. It includes the latest versions of Python
for download, along with documentation, FAQs, introductions, tutorials, a Wiki (an
encyclopedia-type structure that anyone can edit), mailing list archives, announcements,
links to third-party modules, and more.

A search box is available on most of the main pages of http://www.python.org. If you
want to search specific parts of the site or specify lots of search criteria, use the search
page, available here:

http://www.python.org/search/

The following sections highlight important parts of the http://www.python.org Web site.

We're glad you asked that: Python FAQs

Python FAQs (Frequently Asked Questions) and a Spanish translation can be found at
http://www.python.org/doc/faq/. The FAQs cover such topics as

• What Python is, how to get a copy, who uses it and for what, and Python's design
philosophy

• How-tos for common programming tasks
• Installing and using third-party libraries

343

• Writing extensions to Python in other languages
• Python's behavior in Windows
• Graphical User Interface (GUI) programming

Official documentation

You can always find the documentation for the latest version of Python at
http://www.python.org/doc/current/. Documentation for earlier versions of Python is also
available. You can view the docs on the Web site or download them in a variety of
formats.

In addition to the docs for specific versions, you can find general guides covering a
variety of subjects:

• Beginner's guides (for people who haven't programmed before)
• Introductions to Python (some for people who have used other languages and

some for beginners; tutorials are also included)
• A PythonInfo Wiki—a collection of pages that anyone can edit
• Topic guides—articles about databases, parsers, scientific uses of Python, Web

programming, XML, and more
• A list of books and reviews of books written about Python, organized by topic

TECHNICAL
STUFF

Python Enhancement Proposals (PEPs) are documents of the process
of adding new features to Python. An archive of PEPs for features
added to previous versions of Python is available. PEPs aren't
documentation per se, but they usually include an explanation of a
feature's benefits, which can be very helpful for understanding its
uses. Summaries of arguments for and against the feature shed light
on the philosophy behind the Python language. An index of PEPs is
here:

http://www.python.org/dev/peps/

If you're a history buff, you'll like PEPs because they include background information
about how proposals developed.

tutor@python.org and help@python.org

The Tutor mailing list is for beginning and intermediate Python programmers to ask and
answer each other's questions. Its Web page is here:

http://www.mail.python.org/mailman/listinfo/tutor/

You can post a message to it by sending e-mail to tutor@python.org. We recommend that
if you post a message, you also subscribe to the list! You can do so via a form on the
above Web page.

344

Tutor mailing list archives are at http://www.mail.python.org/pipermail/tutor/. When you
use the search box on the Python home page, you get results from the Tutor Archives as
well as from other pages on the site.

If you have a question that you want answered privately, and you can't find information
about it by searching the Python Web site, you can send e-mail to help@python.org,
which is staffed by volunteer Python experts.

The comp.lang.python Newsgroup

The comp.lang.python Usenet newsgroup is the main source for a variety of discussions
about Python. Both beginners and advanced programmers post to the group, and contents
include examination of programming problems, discussions of Python compared with
other languages, discussions (often vociferous!) of proposed new Python features, and
more.

You can read comp.lang.python either with netnews software or as a mailing list.
Because it receives hundreds of posts a day, we recommend reading it via Usenet; news-
reading software generally handles complex message threading better than e-mail
software.

Cheese Shop: Online Collection of Python Modules

Cheese Shop, formerly called PyPI, maintains a collection of third-party Python modules.
It lives on the http://www.python.org Web site. Its home page is here:

http://www.cheeseshop.python.org/

As of this writing, it contains 1,429 packages. Most of them are available for free (but
check the licensing scheme before you distribute them or use them in commercial
applications). You can search packages by name or by keyword, and you can browse a list
of packages organized by topic and by type (for example, you can browse for packages
that work on a particular operating system). You can also submit your own packages.

TECHNICAL
STUFF

Cheese Shop is named after the Monty Python sketch of the same
name, in which a customer discovers that the cheese shop doesn't, in
fact, have any cheese for sale at all.

345

Random Access Reference at
http://www.wiki.python.org

The Web page http://www.wiki.python.org/ contains links to two Wikis: the Python Wiki
(for Python) and the Jython Wiki. (Jython is Python for Java.)

A Wiki is a collection of Web pages that anyone can edit. Wikis usually make heavy use
of hyperlinks, and you gather information by jumping from one page to another as you
find linked topics that interest you.

The front page for the Python Wiki contains a list of starting points for jumping in. This
includes a Code page that lists bits of useful code that are too small to count as modules.
One of the items on the Code page extracts a useful bit of information about string
formatting that's buried in the official documentation for sequence types:

http://www.wiki.python.org/moin/StringFormatting/

Tip The Python Wiki is a work in progress and doesn't include all the information
available on other pages of the http://www.python.org Web site. But it does contain
some information that isn't available on other parts of the site. It can be a good place
to explore if you like to learn by ingesting small chunks of information. As you
become more comfortable with Python, you might want to contribute your own
pages.

The Python Cookbook, part of the ActiveState Programmer Network Web site, collects a
variety of recipes, or short bits of code or programs that perform particular tasks and can
be freely used in your own programs. The home page is here:

http://www.aspn.activestate.com/ASPN/Cookbook/Python/

Editors review submissions to the Cookbook, and you have the option of searching the
editors' favorites, approved, and not-approved recipes. The recipes are periodically
collected into a dead-trees book.

Each recipe is displayed on its own page with a description, source code, and discussion.
Members of ASPN can add comments to the page

346

The Latest News

The Python newsgroup comp.lang.python is an excellent resource for finding out about
Python and joining in the community. But if you don't have time to read 200+ posts every
day, you can find out what's going on in the Python community in the following ways.

Dr. Dobbs' Python-URL

Dr. Dobbs' Python-URL is a weekly summary of hot topics in comp.lang. python and
other doings. It's posted weekly to comp.lang.python and
comp.lang.python.announce.

You can get past issues from Google Groups, an archive of Usenet newsgroup postings.
Go to http://www.groups.google.com/groups/ and type dr dobbs python-url! in the
Search box.

Daily Python URL

Daily Python URL is a blog (Web log) from http://www.pythonware.com that includes
links to news about Python, additions to the Cheese Shop module library, and more. Read
it here:

http://www.pythonware.com/daily/

comp.lang.python.announce

The comp.lang.python.announce newsgroup is a moderated forum for Python-related
announcements. Availability of new modules and programs and requests for comments on
Python Enhancement Proposals (PEPs) are posted here. This newsgroup receives only a
few messages a day, so it's easier to keep up with than comp.lang.python.

Being a PUG-nosed PIGgie: Local User Groups

Python user groups gather in what computer nerds call "meatspace" in cities throughout
the world. Such groups welcome beginners and provide demonstrations, lectures, and
time for questions and socializing. (Sometimes you get free food, too!) The groups often
have the acronym PIG ("Python Interest Group") or PUG ("Python User Group") in their
names.

A list of local user groups can be found on the Python Wiki here:

http://www.wiki.python.org/moin/LocalUserGroups/

347

The Python Wiki might not be up-to-date, so if you don't see a group in your area, be sure
to search the Web and/or post to comp.lang.python to see if others know of a group
there.

Many local user groups maintain mailing lists in which you can read announcements
about local meetings and participate in discussions about Python. Some of the groups
have archives of past messages that are available to non-subscribers so you can check out
whether the group meets your needs.

348

Part VI: Appendixes

Chapter List

Appendix A: Getting and Installing Python
Appendix B: Python Version Differences

The 5th Wave By Rich Tennant

In this part …

If you weren't lucky enough to have Python already installed on your computer,
Appendix A shows you how to download and set up Python for your operating system.

Appendix B describes the new features in each new version of Python starting with
Python 2.0.

Appendix A: Getting and Installing
Python

349

This Appendix contains instructions for installing Python and its modules, the Python
development environment (IDLE), and Python documentation on the three major
operating systems: Windows, Mac OS, and UNIX. This chapter also provides tips for
using Python when it is embedded in your application.

Tip All versions of Python are available for download here:

http://www.python.org/download

Operating Systems

To install Python on your Windows, Mac OS, or UNIX computer, follow the instructions
in the appropriate subsection below.

Windows

You can find out whether Python is already installed on your Windows system. If you
haven't already installed Python, or if you have an older version of it, we show you how
to install the latest version.

Checking for Python

There are three ways to find out whether Python is installed on your Windows system:

• Look for Python in the Start menu.
• Use the Search command to search for python.exe.
• Type python in the Command Prompt window.

Using Embedded Python

If you have an application that uses Python as its scripting language, you're in luck!
Python makes it easy to customize your application.

You'll be able to use the full power of the Python language as described in this book, but
there are some issues to be aware of:

• The embedded Python might not include all the standard Python modules.
You won't be able to use the modules that aren't included in scripts for your
application.

• You won't be able to upgrade the embedded version of Python. You'll have to
wait for an upgrade to the application itself.
Warning You can still install a newer version of Python elsewhere on your

system. But be sure not to overwrite the version that the application
uses.

350

• You may want to test your scripts outside the application. Depending on how
the application is set up, a mistake in your script could cause the application to
crash or hang.

Using Embedded Python

If you have an application that uses Python as its scripting language, you're in luck!
Python makes it easy to customize your application.

You'll be able to use the full power of the Python language as described in this book, but
there are some issues to be aware of:

• The embedded Python might not include all the standard Python modules.
You won't be able to use the modules that aren't included in scripts for your
application.

• You won't be able to upgrade the embedded version of Python. You'll have to
wait for an upgrade to the application itself.
Warning You can still install a newer version of Python elsewhere on your

system. But be sure not to overwrite the version that the application
uses.

• You may want to test your scripts outside the application. Depending on how
the application is set up, a mistake in your script could cause the application to
crash or hang.

351

	Introduction
	About This Book
	Python For Dummies is a reference book, which means you can read it in any order, and you don't have to read every chapter or section. However, to some extent, later chapters about more complex Python features rely on information introduced in earlier chapters. So if you don't understand something you see in a later chapter, go to Chapter 3, or go to the chapter on that feature to find out more. You can also look in the index to find a term or feature you want to know more about.
	Conventions Used in This Book
	Foolish Assumptions
	How This Book Is Organized
	Part I: Getting Started
	Part II: Building Blocks
	Part III: Structures
	Part IV: Libraries
	Part V: The Part of Tens
	Part VI: Appendixes

	Where to Go from Here

	Part I: Getting Started
	Chapter List

	Chapter 1: Introducing Python
	The Right Tool for the Job
	Good uses of Python
	Fast development
	Programming styles
	Versatility
	Convenience

	Sometimes, Python isn't so hot

	Cooking Up Programs
	Training your assistant
	Combining ingredients

	Chapter 2: Getting your Hands on the Keyboard—Using Help, Interactive Mode, and IDLE
	Overview
	Two Ways to Interact with Python
	Going One-on-One in Interactive Mode
	Starting interactive mode
	Following the rules of engagement
	Seeing information about a Python object
	Seeing the result of the last expression
	Manipulating strings and lists
	Of printing, commas, and space
	Measuring and splitting strings

	Using interactive mode as a calculator
	Working with built-in functions
	Examining names
	Examining the namespace
	Examining a module

	Writing multiline programs in interactive mode
	Quitting interactive mode

	Getting Help
	Help in interactive mode
	Entering the help program
	Using help without leaving interactive mode

	Getting help in a Web browser

	Using Scripts and Modules
	Running a script from the command line
	Importing a module in interactive mode
	Importing by name
	Importing items from inside a module

	Using Python's standard modules in interactive mode
	Listing Python's modules
	Listing the contents of an imported module
	Getting interactive help for a module's functions

	IDLE Musings
	Opening IDLE
	Typing statements and programs in the Python Shell
	Getting more help for IDLE
	Writing and editing code with IDLE's text editor
	Briefly meet a few other IDLE commands
	Debugging in IDLE

	Chapter 3: Basic Elements and Syntax
	Making Names and Storing Values
	Data Type Does Matter
	Numeric data
	Sequential data
	Dictionaries
	Sets
	Files
	Data types have methods
	Calling a method—An example
	Passing information to a method

	Operators Are Standing By
	Arithmetic operators
	Comparison operators
	Boolean operators
	Conditional operations
	Order, please!
	Special powers of the = symbol

	If We May Comment…
	It pays to be conventional
	Documenting your program

	Oopsies! Understanding Error Messages
	Deciphering Code Blocks
	Code block syntax
	Basic code blocks: Control structures and loops
	If statements
	For loops
	While loops
	Try statements
	With blocks

	Code blocks that create a namespace
	Functions
	Modules
	Classes

	Chapter 4: Grand Tour of the Python Language
	The spider.py Program
	Examining a Python Program
	Setting up the structure
	Initializing the spider
	Running the spider
	The workings of the Spider class
	Designing for expansion

	Using Building Blocks
	Function and method tidbits
	Understanding default parameters
	Recognizing bare naked functions

	Looping around
	Collections of data
	Lists
	Sets
	Dicts

	Naming names
	Managing strings
	Handling errors

	Chapter 5: Working Like a Programmer
	Overview
	The Three Ds
	Documenting
	Designing
	What do you really want?
	Pseudo-coding your thoughts

	Debugging

	Maintaining Your Programs
	Good Program Design Practices
	Naming names
	Following conventions
	Naming rules
	Formatting rules

	Don't forget to comment!

	Debugging Strategies
	Built-in functions
	Print statements and traceback logs
	Comments
	Using a debugger
	pdb
	Break points

	Chapter List

	Chapter 6: So This String Walks into a Bar
	Overview
	Stringing Them Along
	Just the quotes, ma'am
	One quote or two
	Triple-scoop

	Ways to escape
	Raw strings
	Being wordy
	How a string looks inside Python
	"Please repeat": String operators
	Combine and repeat
	Mine's bigger than yours! Comparing strings

	A few more methods for working with strings
	Testing the content of strings
	Converting data to a string
	Sorting a list of strings
	Finding out more about string methods
	The string module versus the str type

	Cat's Cradle: Indexing and Slicing
	Basic syntax
	Indexing
	Slicing

	Figuring out the tricks
	Changing the immutable string

	Interpolating Between the Lines
	Using the interpolation operator
	Meanings of the formatting codes
	Optional modifiers of the formatting code
	Formatting with one data item
	Formatting with multiple data items in a tuple
	Formatting with a dictionary

	A formatting example using string methods

	Unraveling Unicode
	Creating a Unicode string
	A twisty maze of codes
	Encoding, decoding, and other Unicode methods
	Converting Unicode to an encoded string
	Decoding a string into Unicode

	Chapter 7: Counting your Way to Fun and Profit
	Integrating Integers
	Why Python has two kinds of integers
	Avoiding unexpected results with integer division

	Floating Along
	Automatic conversion
	Formatting floats
	Size limits on floats

	Imagining Complex Numbers
	Using Math Modules
	Turning Python into a Calculator with decimal
	Representing numbers by using the decimal module
	Viewing and changing parameters

	Chapter 8: Processing Lists and Tuples
	Introducing Lists and Tuples
	What a list is
	What a tuple is

	Manipulating Sequence Objects
	Comparing sequence objects
	Operating on sequence objects

	Listcraft: Methods, Indexes, and Slices
	Functions that work with or create lists
	Methods of lists
	List method syntax
	The most popular list methods

	List indexing and slicing
	How indexing and slicing are different with a list
	Retrieving items from a list with slicing
	Changing a list item by using its index number
	Assigning to a list with slicing
	List indexing and slicing operations

	Steering Clear of List Gotcha's
	Simultaneous test/add/delete
	List references that unexpectedly change
	Shallow copying
	Deep copying

	Disappearing lists
	That tricky asterisk
	Performance problems

	Building Lists, Stacks, and Queues
	Building lists incrementally
	Stacking and queuing with lists
	Adding items to a stack
	Retrieving items from a stack
	Queuing up

	Taking Tuples in Hand
	Converting another object to a tuple
	Tuple packing
	Tuple unpacking
	Using a tuple to swap values

	Chapter 9: Diving into Dictionaries
	Overview
	Defining the Dictionary
	Creating a dictionary
	Order in the dict
	Python 2.4 and later
	Earlier versions

	Doodling Around with Dicts
	Popular dict operations
	Storing a value
	Extracting a value
	To raise an exception on failure
	To return a value you specify on failure

	Finding out about dict methods
	Retrieving items from dicts
	items()
	keys()
	values()
	popitem()
	pop()

	Getting loopy with dicts
	Keys
	Values
	Key:value pairs

	Testing a dict
	Python 2.2 and newer
	Older versions

	Deleting items from a dict
	Key:value
	Individual elements
	All elements

	Making a shallow copy of a dict
	Get or set: Adding items to a dict

	Building Dictionaries
	Converting other data types into a dict
	Converting a list of tuples
	Converting a sequence
	Building a dict with keyword arguments
	Building a dict out of another dict by using a for loop

	Updating a dictionary

	When Only a Dict Will Do
	Storing and retrieving values
	Using a dict as a cache
	Different items
	Similar items

	Dealing with duplicate keys

	Setting Them Up
	What sets are and aren't
	Membership testing with sets
	Checking elements
	Checking subsets and supersets

	Finding set elements
	Difference
	Union
	Intersection
	Symmetric difference

	Immutable or frozen sets

	Part III: Structures
	Chapter List

	Chapter 10: Staying in Control
	Overview
	hings to Know about Control Structures
	All about Conditions and Comparisons
	The value of truth
	False objects
	Testing an object for truth
	Testing the elements of a sequence object
	all()
	any()

	Boolean operators
	All about or
	Embrace the power of and

	Comparison operators
	The difference between equals and equals equals
	Is you is or is you ain't my baby?
	Get in!
	Comparatively speaking

	Feeling Iffy
	Writing an if statement
	Adding another condition to an if block
	Adding an else statement to an if block
	Combining tests

	Staying in the Loop
	For a Good Time…
	How for works
	Iterables, getcher iterables!
	Home on the range
	Using the range() function with a list

	Whiling Away

	Choosing Your Loop
	What for's for
	Why to while

	Loopy Statements and Functions
	Useful looping statements
	Take a break—or else!
	You and who else?
	Let's continue
	Thanks, but I'll pass

	Loopy functions
	Numbered and approved
	The two-loop tango
	Gentlemen and ladies, unpack your tuples
	Going backward
	Out of sorts

	Chapter 11: Fun with Functions
	I Love Chunky Code
	Calling a function
	Defining a Function
	Giving another name to a function
	Returning values from a function

	Argument Clinic: Passing Data
	Introducing parameters and arguments
	Specifying arguments when you call a function
	Specifying arguments with keywords and default values
	Avoiding the quirks of default values
	Immutable default values stay the same
	Mutable default values can change
	Assignment (=) always changes
	Augmented assignment (+=) doesn't rebind mutable data types
	Working on a copy of a mutable object
	Using a default value of None to redefine a mutable object

	Specifying a function with an arbitrary number of arguments
	Unpacking arguments
	Unpacking lists or tuples
	Unpacking dictionaries

	What's in a Namespace
	Discovering where Python looks for names
	Understanding function namespaces
	How local and global names work with assignment
	How local and global names work with references

	Think globally, act locally
	Sorting out module namespaces

	Chapter 12: Building Applications with Modules and Packages
	Modular Living: Storing Your Code in Files
	Importing a module or its contents
	Importing a module
	Initializing a module
	Accessing functions and other items inside a module

	Giving a local name to a module
	Giving an extra name to a module or function
	Importing a module using a different name

	Rules for writing and naming modules
	Module, module, where is the module?
	Finding what's in standard modules

	Wrapping It Up in a Package
	The purposes of packages
	Requirements for packages
	About special package directories
	Example package structure

	Importing items from packages
	Individual modules and packages
	Importing by full name
	Import by using from

	Import all items from a package
	Absolute imports in Python 2.5
	Relative imports in Python 2.5

	Chapter 13: Getting Classy
	Overview
	Alley-OOP! Some Object-Oriented Programming Concepts
	Objects
	Inheriting, overriding, and extending
	Polymorphism and duck-typing

	Now Class, for Instance …
	Classes, modules, and functions
	A class is like a template
	An instance is a copy made from the template
	All about class and instance attributes

	Making and Calling Classes
	Creating a class
	Writing an __init__() method
	Rules
	Basic syntax
	Arguments

	Writing more methods
	Creating other class attributes

	Creating an instance
	Calling a method via an instance

	Getting Inside the Factory: How Class and Instance Namespaces Interact
	Changing the values of class and instance attributes
	Changing the value of the class attribute
	Changing the value of the instance attribute
	Effects of changing attribute values

	Adding an attribute to an instance

	Class and Instance Conventions
	Inheriting the Farm: Overriding and Extending Classes
	Creating a subclass
	Overriding superclass methods
	Extending superclass methods
	Extending an existing superclass method
	Adding a new method

	Using multiple inheritance
	Namespace searching in classes and superclasses
	Inheriting from a single superclass
	Inheriting from multiple superclasses

	Operator interception and overloading
	Hooking into the power of special methods
	Super strings

	When to Go to Class

	Chapter 14: Introducing New-Style Classes
	An Object's Object: Intro to New-Style Classes
	Everything comes from object
	Methods of inheritance
	Inheriting from object
	Inheriting from a built-in data type

	New Improved Class Features
	Getcher attributes!
	Hey, baby, what's your type?
	Calling the right superclass method
	That's my property!
	Set up properties
	Use properties

	When only class matters
	Creating class methods
	Calling class methods
	What's new in class methods

	Cutting through the static about methods
	Don't use the slots machine

	Island of Dr. MRO
	Exploding Your Head with Metaclasses
	Roles
	Applications

	Chapter 15: Feeling Exceptional
	All about Special Handling
	Trying Things Out
	Using try/except statements
	Handling multiple exceptions
	Processing exception arguments
	Dealing with exceptional exceptions
	When it comes to "or else"

	Using try/finally statements
	try/except/else/finally: Together at last

	Raising Your Code to New Levels
	Making Your Program Exceptional
	Writing a base class for your exceptions
	Developing an exception hierarchy

	Chapter 16: Tackling Some Advanced Features
	What's That Idiom?
	What to Do Next: Iterators and Generators
	The itertools library
	Generators: yield for faster processing

	Expression and Comprehension: Listcomps and Genexps
	List comprehensions
	Creating a simple listcomp
	Creating a listcomp that applies a filter

	Generator expressions

	With What, Your Bare Hands? (The Power of ‘with’ Statements)
	Making Exceptions for Yourself
	Under One Condition
	Decorating Your Code
	Focusing on Functions
	Mary had a little lambda
	Mapping it out
	Applying filters
	Reductionism

	Chapter 17: Using Python's Primary Services
	Python: Batteries Included
	You Get All This!—The __builtin__ Module
	Seeing what's inside Python objects
	Reading and writing files
	Options for the open() function
	Saving changes to disk
	Reading file contents
	Writing information to a file

	Working with attributes
	Finding largest and smallest items
	Getting input from users
	raw_input()
	input()

	Finding an object's type
	Reloading a module
	Evaluating a string

	But Wait, There's More—The sys Module
	Solving OS Incompatibility—The os and subprocess Modules
	Working with the os module
	Manipulating directories and their files
	Wandering down the os.path
	Seeing environment variables

	Subprocessing
	Introducing the call() function
	Useful calling parameters
	Trying an OS command with call()

	Staying on Time with the datetime and time Modules
	Using the datetime module
	Components of a datetime() object
	Formatting date and time information
	Adding time

	Taking your time
	Using the time() object
	Let's pause for a moment

	Keeping Track with the logging Module
	Getting started with basic logging
	Changing the configuration of a logger
	Designing your own logging system
	Seeing a few logging functions

	Chapter 18: Processing Text
	Overview
	A Million Ways to re, You Know That There Are
	Writing a basic regex
	Setting up a basic regex search
	Regular expression characters and codes
	Special characters
	Escape codes with special meanings
	Finding repeats
	Greedy searches
	Non-greedy searches

	Regex groups

	Using the regular expression module
	Functional versus methodical
	Using a regex function
	Using a regex method

	Compiling regular expressions
	Tools of the re module
	findall()
	match()
	search()
	split()
	sub()

	Querying the match object
	Making regexes more readable

	Strings Disguised as Files
	Creating a StringIO object
	StringIO special methods

	Paragraph Dumplings: Filling and Wrapping Text
	Removing indentation from strings
	Wrapping text by splitting it up
	Wrapping text by adding newline characters
	Creating a TextWrapper object
	TextWrapper attributes
	Example of a custom TextWrapper object

	Chapter 19: Digging into Disk Data
	Shell Game: Copying and Moving Files
	Zipping and Unzipping
	zipfile
	Finding out whether a file is a Zip file
	Creating a ZipFile object for reading or writing
	Working with a ZipFile object
	Zipping up a Python library

	gzip

	Sussing Out SQL Databases
	Installing SQLite and sqlite3
	Setting up a SQLite database
	Working with a SQLite database
	Creating a table
	Populating a table with data
	Getting field values from a table
	Getting all the values
	Getting a subset of the values

	ickling Your Data (And Relishing the Outcome)
	Pickling an object
	dumps()
	dump()
	Python 2.3 or later
	Older Python versions

	Unpickling an object
	Unpickling files
	Unpickling strings

	Using shelve with DBM-style databases
	Storing pickles on a shelf
	Creating a shelve object
	Properties of a shelve object

	Chapter 20: Accessing the Internet
	Downloading Web Data
	Opening a URL
	Using urllib2.urlopen() to open a URL
	Reading text from a URL
	Understanding Web page errors

	Finding information about a URL
	info()
	geturl()

	Processing special characters in a URL
	Required argument
	Optional argument

	Submitting form data

	Taming the Wild URL
	Getting Hip with Hypertext
	Of parsers, formatters, and writers
	Setting up a read-and-output process
	Outputting the links of a Web page
	Getting help for messy HTML

	The Great XML
	The ElementTree XML implementation
	Importing ElementTree
	Creating an element
	Element attributes
	Assigning attributes
	Manipulating attributes

	Subelements
	Creating subelements
	Searching for subelements

	Using XML files
	Loading documents
	Writing an Element tree to disk as an XML file

	Other useful XML modules

	MIME-ing Success: Managing E-Mail Messages
	Representing an e-mail message in Python
	Creating e-mail and MIME objects
	Creating a Message object
	Creating MIME objects via subclasses
	MIMEMultipart()
	MIMEBase()

	Specifying a character set
	Adding and changing message headers
	Adding content to an existing message

	Generating MIME documents from message structures
	Printing a message object as a string
	Encoding binary data into string data

	Reading e-mail messages
	Getting information and payloads
	Parsing e-mail messages

	Using e-mail utilities

	Simply SMTP
	CGI: Gateway to the Web
	Setting up CGI output in Python
	Reading data from Web input
	Reading data from form fields
	getfirst()
	getlist()

	Reading files from form fields

	Setting up and installing a CGI script
	Writing a script to work in the Web environment
	Checking for syntax errors
	Installing a script and setting permissions

	Debugging CGI scripts
	Check for syntax errors
	Make sure your script is installed correctly
	Test your code
	Include debugging code in your script
	Seeing CGI script errors
	Seeing traceback information

	Part V: The Part of Tens
	Chapter List

	Chapter 21: Ten Critical Python Idioms
	Collecting Globs and Globs of Files
	Rolling Dice and Shuffling Cards
	Making a saving throw
	Playing the dealer

	Uniquely Ordered Lists
	Reversing Your Way to Success
	Exceptional Type-Testing
	Classes Just for Data
	Getting Close Enough with difflib
	DSU! DSU! Rah rah DSU!
	Simplifying Choices Using Dicts
	Singles Going Steady
	Using a singleton object
	Calling in the Borg Pattern

	Chapter 22: Ten Great Resources
	The Mothership: http://www.python.org
	We're glad you asked that: Python FAQs
	Official documentation
	tutor@python.org and help@python.org

	The comp.lang.python Newsgroup
	Cheese Shop: Online Collection of Python Modules
	Random Access Reference at http://www.wiki.python.org
	The Latest News
	Dr. Dobbs' Python-URL
	Daily Python URL
	comp.lang.python.announce

	Being a PUG-nosed PIGgie: Local User Groups

	Part VI: Appendixes
	Chapter List

	Appendix A: Getting and Installing Python
	Operating Systems
	Windows
	Checking for Python

	Using Embedded Python
	Using Embedded Python

