
Refactoring: Improving the Design of Existing Code
by Martin Fowler, Kent Beck (Contributor), John Brant (Contributor), William
Opdyke, don Roberts

Another stupid release 2002☺
For all the people which doesn’t have money to buy a good book

 2

Your class library works, but could it be better? Refactoring: Improving the Design of
Existing Code shows how refactoring can make object-oriented code simpler and easier
to maintain. Today refactoring requires considerable design know-how, but once tools
become available, all programmers should be able to improve their code using refactoring
techniques.

Besides an introduction to refactoring, this handbook provides a catalog of dozens of tips
for improving code. The best thing about Refactoring is its remarkably clear presentation,
along with excellent nuts-and-bolts advice, from object expert Martin Fowler. The author
is also an authority on software patterns and UML, and this experience helps make this a
better book, one that should be immediately accessible to any intermediate or advanced
object-oriented developer. (Just like patterns, each refactoring tip is presented with a
simple name, a "motivation," and examples using Java and UML.)

Early chapters stress the importance of testing in successful refactoring. (When you
improve code, you have to test to verify that it still works.) After the discussion on how
to detect the "smell" of bad code, readers get to the heart of the book, its catalog of over
70 "refactorings"--tips for better and simpler class design. Each tip is illustrated with
"before" and "after" code, along with an explanation. Later chapters provide a quick look
at refactoring research.

Like software patterns, refactoring may be an idea whose time has come. This
groundbreaking title will surely help bring refactoring to the programming mainstream.
With its clear advice on a hot new topic, Refactoring is sure to be essential reading for
anyone who writes or maintains object-oriented software. --Richard Dragan

Topics Covered: Refactoring, improving software code, redesign, design tips, patterns,
unit testing, refactoring research, and tools.

Book News, Inc.
A guide to refactoring, the process of changing a software system so that it does not alter
the external behavior of the code yet improves its internal structure, for professional
programmers. Early chapters cover general principles, rationales, examples, and testing.
The heart of the book is a catalog of refactorings, organized in chapters on composing
methods, moving features between objects, organizing data, simplifying conditional
expressions, and dealing with generalizations

 3

Foreword.. 6
Preface... 8

What Is Refactoring? ... 9
What's in This Book? ... 9
Who Should Read This Book? ... 10
Building on the Foundations Laid by Others .. 10
Acknowledgments .. 11

Chapter 1. Refactoring, a First Example .. 13
The Starting Point... 13
The First Step in Refactoring .. 17
Decomposing and Redistributing the Statement Method 18
Replacing the Conditional Logic on Price Code with Polymorphism 35
Final Thoughts .. 44

Chapter 2. Principles in Refactoring .. 46
Defining Refactoring .. 46
Why Should You Refactor? .. 47
Refactoring Helps You Find Bugs ... 48
When Should You Refactor? .. 49
What Do I Tell My Manager?.. 52
Problems with Refactoring .. 54
Refactoring and Design... 57
Refactoring and Performance .. 59
Where Did Refactoring Come From?.. 60

Chapter 3. Bad Smells in Code.. 63
Duplicated Code ... 63
Long Method ... 64
Large Class ... 65
Long Parameter List... 65
Divergent Change .. 66
Shotgun Surgery... 66
Feature Envy... 66
Data Clumps ... 67
Primitive Obsession ... 67
Switch Statements ... 68
Parallel Inheritance Hierarchies ... 68
Lazy Class ... 68
Speculative Generality... 68
Temporary Field ... 69
Message Chains ... 69
Middle Man.. 69
Inappropriate Intimacy ... 70
Alternative Classes with Different Interfaces ... 70
Incomplete Library Class... 70
Data Class ... 70
Refused Bequest.. 71

 4

Comments ... 71
Chapter 4. Building Tests.. 73

The Value of Self-testing Code .. 73
The JUnit Testing Framework .. 74
Adding More Tests ... 80

Chapter 5. Toward a Catalog of Refactorings ... 85
Format of the Refactorings ... 85
Finding References .. 86
How Mature Are These Refactorings?.. 87

Chapter 6. Composing Methods .. 89
Extract Method.. 89
Inline Method... 95
Inline Temp.. 96
Replace Temp with Query .. 97
Introduce Explaining Variable... 101
Split Temporary Variable ... 104
Remove Assignments to Parameters ... 107
Replace Method with Method Object .. 110
Substitute Algorithm ... 113

Chapter 7. Moving Features Between Objects.. 115
Move Method .. 115
Move Field ... 119
Extract Class ... 122
Inline Class .. 125
Hide Delegate ... 127
Remove Middle Man.. 130
Introduce Foreign Method... 131
Introduce Local Extension... 133

Chapter 8. Organizing Data .. 138
Self Encapsulate Field ... 138
Replace Data Value with Object .. 141
Change Value to Reference ... 144
Change Reference to Value ... 148
Replace Array with Object .. 150
Duplicate Observed Data .. 153
Change Unidirectional Association to Bidirectional .. 159
Change Bidirectional Association to Unidirectional .. 162
Replace Magic Number with Symbolic Constant .. 166
Encapsulate Field ... 167
Encapsulate Collection.. 168
Replace Record with Data Class ... 175
Replace Type Code with Class .. 176
Replace Type Code with Subclasses ... 181
Replace Type Code with State/Strategy... 184
Replace Subclass with Fields... 188

Chapter 9. Simplifying Conditional Expressions ... 192

 5

Decompose Conditional .. 192
Consolidate Conditional Expression ... 194
Consolidate Duplicate Conditional Fragments .. 196
Remove Control Flag ... 197
Replace Nested Conditional with Guard Clauses ... 201
Replace Conditional with Polymorphism .. 205
Introduce Null Object ... 209
Introduce Assertion .. 216

Chapter 10. Making Method Calls Simpler... 220
Rename Method ... 221
Add Parameter.. 222
Remove Parameter .. 223
Separate Query from Modifier .. 225
Parameterize Method .. 228
Replace Parameter with Explicit Methods.. 230
Preserve Whole Object ... 232
Replace Parameter with Method ... 235
Introduce Parameter Object ... 238
Remove Setting Method.. 242
Hide Method .. 245
Replace Constructor with Factory Method ... 246
Encapsulate Downcast.. 249
Replace Error Code with Exception .. 251
Replace Exception with Test .. 255

Chapter 11. Dealing with Generalization.. 259
Pull Up Field .. 259
Pull Up Method ... 260
Pull Up Constructor Body.. 263
Push Down Method.. 266
Push Down Field .. 266
Extract Subclass ... 267
Extract Superclass ... 272
Extract Interface ... 277
Collapse Hierarchy... 279
Form Template Method ... 280
Replace Inheritance with Delegation... 287
Replace Delegation with Inheritance... 289

Chapter 12. Big Refactorings ... 293
Tease Apart Inheritance .. 294
Convert Procedural Design to Objects ... 300
Separate Domain from Presentation... 302
Extract Hierarchy.. 306

Chapter 13. Refactoring, Reuse, and Reality.. 311
A Reality Check .. 311
Why Are Developers Reluctant to Refactor Their Programs? 312
A Reality Check (Revisited) .. 323

 6

Resources and References for Refactoring ... 323
Implications Regarding Software Reuse and Technology Transfer............. 324
A Final Note ... 325
Endnotes.. 325

Chapter 14. Refactoring Tools ... 328
Refactoring with a Tool.. 328
Technical Criteria for a Refactoring Tool.. 329
Practical Criteria for a Refactoring Tool.. 331
Wrap Up ... 332

Chapter 15. Putting It All Together .. 333
Bibliography... 336

References .. 336

Foreword

"Refactoring" was conceived in Smalltalk circles, but it wasn't long before it found its way into
other programming language camps. Because refactoring is integral to framework development,
the term comes up quickly when "frameworkers" talk about their craft. It comes up when they
refine their class hierarchies and when they rave about how many lines of code they were able to
delete. Frameworkers know that a framework won't be right the first time around—it must evolve
as they gain experience. They also know that the code will be read and modified more frequently
than it will be written. The key to keeping code readable and modifiable is refactoring—for
frameworks, in particular, but also for software in general.

So, what's the problem? Simply this: Refactoring is risky. It requires changes to working code that
can introduce subtle bugs. Refactoring, if not done properly, can set you back days, even weeks.
And refactoring becomes riskier when practiced informally or ad hoc. You start digging in the
code. Soon you discover new opportunities for change, and you dig deeper. The more you dig,
the more stuff you turn up…and the more changes you make. Eventually you dig yourself into a
hole you can't get out of. To avoid digging your own grave, refactoring must be done
systematically. When my coauthors and I wrote Design Patterns, we mentioned that design
patterns provide targets for refactorings. However, identifying the target is only one part of the
problem; transforming your code so that you get there is another challenge.

Martin Fowler and the contributing authors make an invaluable contribution to object-oriented
software development by shedding light on the refactoring process. This book explains the
principles and best practices of refactoring, and points out when and where you should start
digging in your code to improve it. At the book's core is a comprehensive catalog of refactorings.
Each refactoring describes the motivation and mechanics of a proven code transformation. Some
of the refactorings, such as Extract Method or Move Field, may seem obvious.

But don't be fooled. Understanding the mechanics of such refactorings is the key to refactoring in
a disciplined way. The refactorings in this book will help you change your code one small step at
a time, thus reducing the risks of evolving your design. You will quickly add these refactorings
and their names to your development vocabulary.

My first experience with disciplined, "one step at a time" refactoring was when I was pair-
programming at 30,000 feet with Kent Beck. He made sure that we applied refactorings from this
book's catalog one step at a time. I was amazed at how well this practice worked. Not only did my
confidence in the resulting code increase, I also felt less stressed. I highly recommend you try
these refactorings: You and your code will feel much better for it.

 7

—Erich Gamma

Object Technology International, Inc.

 8

Preface

Once upon a time, a consultant made a visit to a development project. The consultant looked at
some of the code that had been written; there was a class hierarchy at the center of the system.
As he wandered through the hierarchy, the consultant saw that it was rather messy. The higher-
level classes made certain assumptions about how the classes would work, assumptions that
were embodied in inherited code. That code didn't suit all the subclasses, however, and was
overridden quite heavily. If the superclass had been modified a little, then much less overriding
would have been necessary. In other places some of the intention of the superclass had not been
properly understood, and behavior present in the superclass was duplicated. In yet other places
several subclasses did the same thing with code that could clearly be moved up the hierarchy.

The consultant recommended to the project management that the code be looked at and cleaned
up, but the project management didn't seem enthusiastic. The code seemed to work and there
were considerable schedule pressures. The managers said they would get around to it at some
later point.

The consultant had also shown the programmers who had worked on the hierarchy what was
going on. The programmers were keen and saw the problem. They knew that it wasn't really their
fault; sometimes a new pair of eyes are needed to spot the problem. So the programmers spent a
day or two cleaning up the hierarchy. When they were finished, the programmers had removed
half the code in the hierarchy without reducing its functionality. They were pleased with the result
and found that it became quicker and easier both to add new classes to the hierarchy and to use
the classes in the rest of the system.

The project management was not pleased. Schedules were tight and there was a lot of work to
do. These two programmers had spent two days doing work that had done nothing to add the
many features the system had to deliver in a few months time. The old code had worked just fine.
So the design was a bit more "pure" a bit more "clean." The project had to ship code that worked,
not code that would please an academic. The consultant suggested that this cleaning up be done
on other central parts of the system. Such an activity might halt the project for a week or two. All
this activity was devoted to making the code look better, not to making it do anything that it didn't
already do.

How do you feel about this story? Do you think the consultant was right to suggest further clean
up? Or do you follow that old engineering adage, "if it works, don't fix it"?

I must admit to some bias here. I was that consultant. Six months later the project failed, in large
part because the code was too complex to debug or to tune to acceptable performance.

The consultant Kent Beck was brought in to restart the project, an exercise that involved rewriting
almost the whole system from scratch. He did several things differently, but one of the most
important was to insist on continuous cleaning up of the code using refactoring. The success of
this project, and role refactoring played in this success, is what inspired me to write this book, so
that I could pass on the knowledge that Kent and others have learned in using refactoring to
improve the quality of software.

 9

What Is Refactoring?

Refactoring is the process of changing a software system in such a way that it does not alter the
external behavior of the code yet improves its internal structure. It is a disciplined way to clean up
code that minimizes the chances of introducing bugs. In essence when you refactor you are
improving the design of the code after it has been written.

"Improving the design after it has been written." That's an odd turn of phrase. In our current
understanding of software development we believe that we design and then we code. A good
design comes first, and the coding comes second. Over time the code will be modified, and the
integrity of the system, its structure according to that design, gradually fades. The code slowly
sinks from engineering to hacking.

Refactoring is the opposite of this practice. With refactoring you can take a bad design, chaos
even, and rework it into well-designed code. Each step is simple, even simplistic. You move a
field from one class to another, pull some code out of a method to make into its own method, and
push some code up or down a hierarchy. Yet the cumulative effect of these small changes can
radically improve the design. It is the exact reverse of the normal notion of software decay.

With refactoring you find the balance of work changes. You find that design, rather than occurring
all up front, occurs continuously during development. You learn from building the system how to
improve the design. The resulting interaction leads to a program with a design that stays good as
development continues.

What's in This Book?

This book is a guide to refactoring; it is written for a professional programmer. My aim is to show
you how to do refactoring in a controlled and efficient manner. You will learn to refactor in such a
way that you don't introduce bugs into the code but instead methodically improve the structure.

It's traditional to start books with an introduction. Although I agree with that principle, I don't find it
easy to introduce refactoring with a generalized discussion or definitions. So I start with an
example. Chapter 1 takes a small program with some common design flaws and refactors it into
a more acceptable object-oriented program. Along the way we see both the process of refactoring
and the application of several useful refactorings. This is the key chapter to read if you want to
understand what refactoring really is about.

In Chapter 2 I cover more of the general principles of refactoring, some definitions, and the
reasons for doing refactoring. I outline some of the problems with refactoring. In Chapter 3 Kent
Beck helps me describe how to find bad smells in code and how to clean them up with
refactorings. Testing plays a very important role in refactoring, so Chapter 4 describes how to
build tests into code with a simple open-source Java testing framework.

The heart of the book, the catalog of refactorings, stretches from Chapter 5 through Chapter 12.
This is by no means a comprehensive catalog. It is the beginning of such a catalog. It includes
the refactorings that I have written down so far in my work in this field. When I want to do
something, such as Replace Conditional with Polymorphism, the catalog reminds me how to
do it in a safe, step-by-step manner. I hope this is the section of the book you'll come back to
often.

In this book I describe the fruit of a lot of research done by others. The last chapters are guest
chapters by some of these people. Chapter 13 is by Bill Opdyke, who describes the issues he
has come across in adopting refactoring in commercial development. Chapter 14 is by Don

 10

Roberts and John Brant, who describe the true future of refactoring, automated tools. I've left the
final word, Chapter 15, to the master of the art, Kent Beck.

Refactoring in Java

For all of this book I use examples in Java. Refactoring can, of course, be done with other
languages, and I hope this book will be useful to those working with other languages. However, I
felt it would be best to focus this book on Java because it is the language I know best. I have
added occasional notes for refactoring in other languages, but I hope other people will build on
this foundation with books aimed at specific languages.

To help communicate the ideas best, I have not used particularly complex areas of the Java
language. So I've shied away from using inner classes, reflection, threads, and many other of
Java's more powerful features. This is because I want to focus on the core refactorings as clearly
as I can.

I should emphasize that these refactorings are not done with concurrent or distributed
programming in mind. Those topics introduce additional concerns that are beyond the scope of
this book.

Who Should Read This Book?

This book is aimed at a professional programmer, someone who writes software for a living. The
examples and discussion include a lot of code to read and understand. The examples are all in
Java. I chose Java because it is an increasingly well-known language that can be easily
understood by anyone with a background in C. It is also an object-oriented language, and object-
oriented mechanisms are a great help in refactoring.

Although it is focused on the code, refactoring has a large impact on the design of system. It is
vital for senior designers and architects to understand the principles of refactoring and to use
them in their projects. Refactoring is best introduced by a respected and experienced developer.
Such a developer can best understand the principles behind refactoring and adapt those
principles to the specific workplace. This is particularly true when you are using a language other
than Java, because you have to adapt the examples I've given to other languages.

Here's how to get the most from this book without reading all of it.

• If you want to understand what refactoring is, read Chapter 1; the example should
make the process clear.

• If you want to understand why you should refactor, read the first two chapters. They
will tell you what refactoring is and why you should do it.

• If you want to find where you should refactor, read Chapter 3. It tells you the signs
that suggest the need for refactoring.

• If you want to actually do refactoring, read the first four chapters completely. Then
skip-read the catalog. Read enough of the catalog to know roughly what is in there. You
don't have to understand all the details. When you actually need to carry out a
refactoring, read the refactoring in detail and use it to help you. The catalog is a reference
section, so you probably won't want to read it in one go. You should also read the guest
chapters, especially Chapter 15.

Building on the Foundations Laid by Others

 11

I need to say right now, at the beginning, that I owe a big debt with this book, a debt to those
whose work over the last decade has developed the field of refactoring. Ideally one of them
should have written this book, but I ended up being the one with the time and energy.

Two of the leading proponents of refactoring are Ward Cunningham and Kent Beck. They used
it as a central part of their development process in the early days and have adapted their
development processes to take advantage of it. In particular it was my collaboration with Kent that
really showed me the importance of refactoring, an inspiration that led directly to this book.

Ralph Johnson leads a group at the University of Illinois at Urbana-Champaign that is notable
for its practical contributions to object technology. Ralph has long been a champion of refactoring,
and several of his students have worked on the topic. Bill Opdyke developed the first detailed
written work on refactoring in his doctoral thesis. John Brant and Don Roberts have gone
beyond writing words into writing a tool, the Refactoring Browser, for refactoring Smalltalk
programs

Acknowledgments

Even with all that research to draw on, I still needed a lot of help to write this book. First and
foremost, Kent Beck was a huge help. The first seeds were planted in a bar in Detroit when Kent
told me about a paper he was writing for the Smalltalk Report [Beck, hanoi]. It not only provided
many ideas for me to steal for Chapter 1 but also started me off in taking notes of refactorings.
Kent helped in other places too. He came up with the idea of code smells, encouraged me at
various sticky points, and generally worked with me to make this book work. I can't help thinking
he could have written this book much better himself, but I had the time and can only hope I did
the subject justice.

As I've written this, I wanted to share much of this expertise directly with you, so I'm very grateful
that many of these people have spent some time adding some material to this book. Kent Beck,
John Brant, William Opdyke, and Don Roberts have all written or co-written chapters. In addition,
Rich Garzaniti and Ron Jeffries have added useful sidebars.

Any author will tell you that technical reviewers do a great deal to help in a book like this. As
usual, Carter Shanklin and his team at Addison-Wesley put together a great panel of hard-nosed
reviewers. These were

• Ken Auer, Rolemodel Software, Inc.
• Joshua Bloch, Sun Microsystems, Java Software
• John Brant, University of Illinois at Urbana-Champaign
• Scott Corley, High Voltage Software, Inc.
• Ward Cunningham, Cunningham & Cunningham, Inc.
• Stéphane Ducasse
• Erich Gamma, Object Technology International, Inc.
• Ron Jeffries
• Ralph Johnson, University of Illinois
• Joshua Kerievsky, Industrial Logic, Inc.
• Doug Lea, SUNY Oswego
• Sander Tichelaar

They all added a great deal to the readability and accuracy of this book, and removed at least
some of the errors that can lurk in any manuscript. I'd like to highlight a couple of very visible
suggestions that made a difference to the look of the book. Ward and Ron got me to do Chapter

 12

1 in the side-by-side style. Joshua Kerievksy suggested the idea of the code sketches in the
catalog.

In addition to the official review panel there were many unofficial reviewers. These people looked
at the manuscript or the work in progress on my Web pages and made helpful comments. They
include Leif Bennett, Michael Feathers, Michael Finney, Neil Galarneau, Hisham Ghazouli, Tony
Gould, John Isner, Brian Marick, Ralf Reissing, John Salt, Mark Swanson, Dave Thomas, and
Don Wells. I'm sure there are others who I've forgotton; I apologize and offer my thanks.

A particularly entertaining review group is the infamous reading group at the University of Illinois
at Urbana-Champaign. Because this book reflects so much of their work, I'm particularly grateful
for their efforts captured in real audio. This group includes Fredrico "Fred" Balaguer, John Brant,
Ian Chai, Brian Foote, Alejandra Garrido, Zhijiang "John" Han, Peter Hatch, Ralph Johnson,
Songyu "Raymond" Lu, Dragos-Anton Manolescu, Hiroaki Nakamura, James Overturf, Don
Roberts, Chieko Shirai, Les Tyrell, and Joe Yoder.

Any good idea needs to be tested in a serious production system. I saw refactoring have a huge
effect on the Chrysler Comprehensive Compensation system (C3). I want to thank all the
members of that team: Ann Anderson, Ed Anderi, Ralph Beattie, Kent Beck, David Bryant, Bob
Coe, Marie DeArment, Margaret Fronczak, Rich Garzaniti, Dennis Gore, Brian Hacker, Chet
Hendrickson, Ron Jeffries, Doug Joppie, David Kim, Paul Kowalsky, Debbie Mueller, Tom
Murasky, Richard Nutter, Adrian Pantea, Matt Saigeon, Don Thomas, and Don Wells. Working
with them cemented the principles and benefits of refactoring into me on a firsthand basis.
Watching their progress as they use refactoring heavily helps me see what refactoring can do
when applied to a large project over many years.

Again I had the help of J. Carter Shanklin at Addison-Wesley and his team: Krysia Bebick, Susan
Cestone, Chuck Dutton, Kristin Erickson, John Fuller, Christopher Guzikowski, Simone Payment,
and Genevieve Rajewski. Working with a good publisher is a pleasure; they provided a lot of
support and help.

Talking of support, the biggest sufferer from a book is always the closest to the author, in this
case my (now) wife Cindy. Thanks for loving me even when I was hidden in the study. As much
time as I put into this book, I never stopped being distracted by thinking of you.

Martin Fowler

Melrose, Massachusetts

fowler@acm.org

http://www.martinfowler.com

http://www.refactoring.com

 13

Chapter 1. Refactoring, a First Example

How do I begin to write about refactoring? The traditional way to begin talking about something is
to outline the history, broad principles, and the like. When someone does that at a conference, I
get slightly sleepy. My mind starts wandering with a low-priority background process that polls the
speaker until he or she gives an example. The examples wake me up because it is with examples
that I can see what is going on. With principles it is too easy to make generalizations, too hard to
figure out how to apply things. An example helps make things clear.

So I'm going to start this book with an example of refactoring. During the process I'll tell you a lot
about how refactoring works and give you a sense of the process of refactoring. I can then
provide the usual principles-style introduction.

With an introductory example, however, I run into a big problem. If I pick a large program,
describing it and how it is refactored is too complicated for any reader to work through. (I tried
and even a slightly complicated example runs to more than a hundred pages.) However, if I pick a
program that is small enough to be comprehensible, refactoring does not look like it is worthwhile.

Thus I'm in the classic bind of anyone who wants to describe techniques that are useful for real-
world programs. Frankly it is not worth the effort to do the refactoring that I'm going to show you
on a small program like the one I'm going to use. But if the code I'm showing you is part of a
larger system, then the refactoring soon becomes important. So I have to ask you to look at this
and imagine it in the context of a much larger system.

The Starting Point

The sample program is very simple. It is a program to calculate and print a statement of a
customer's charges at a video store. The program is told which movies a customer rented and for
how long. It then calculates the charges, which depend on how long the movie is rented, and
identifies the type movie. There are three kinds of movies: regular, children's, and new releases.
In addition to calculating charges, the statement also computes frequent renter points, which vary
depending on whether the film is a new release.

Several classes represent various video elements. Here's a class diagram to show them (Figure
1.1).

Figure 1.1. Class diagram of the starting-point classes. Only the most important features
are shown. The notation is Unified Modeling Language UML [Fowler, UML].

I'll show the code for each of these classes in turn.

Movie

Movie is just a simple data class.

 14

 public class Movie {

 public static final int CHILDRENS = 2;
 public static final int REGULAR = 0;
 public static final int NEW_RELEASE = 1;

 private String _title;
 private int _priceCode;

 public Movie(String title, int priceCode) {
 _title = title;
 _priceCode = priceCode;
 }

 public int getPriceCode() {
 return _priceCode;
 }

 public void setPriceCode(int arg) {
 _priceCode = arg;
 }

 public String getTitle (){
 return _title;
 };
 }

Rental

The rental class represents a customer renting a movie.

 class Rental {
 private Movie _movie;
 private int _daysRented;

 public Rental(Movie movie, int daysRented) {
 _movie = movie;
 _daysRented = daysRented;
 }
 public int getDaysRented() {
 return _daysRented;
 }
 public Movie getMovie() {
 return _movie;
 }
 }

Customer

The customer class represents the customer of the store. Like the other classes it has data and
accessors:

 15

 class Customer {
 private String _name;
 private Vector _rentals = new Vector();

 public Customer (String name){
 _name = name;
 };

 public void addRental(Rental arg) {
 _rentals.addElement(arg);
 }
 public String getName (){
 return _name;
 };

Customer also has the method that produces a statement. Figure 1.2 shows the interactions for
this method. The body for this method is on the facing page.

Figure 1.2. Interactions for the statement method

public String statement() {
 double totalAmount = 0;
 int frequentRenterPoints = 0;
 Enumeration rentals = _rentals.elements();
 String result = "Rental Record for " + getName() + "\n";
 while (rentals.hasMoreElements()) {
 double thisAmount = 0;
 Rental each = (Rental) rentals.nextElement();

 //determine amounts for each line
 switch (each.getMovie().getPriceCode()) {
 case Movie.REGULAR:
 thisAmount += 2;
 if (each.getDaysRented() > 2)

 16

 thisAmount += (each.getDaysRented() - 2) * 1.5;
 break;
 case Movie.NEW_RELEASE:
 thisAmount += each.getDaysRented() * 3;
 break;
 case Movie.CHILDRENS:
 thisAmount += 1.5;
 if (each.getDaysRented() > 3)
 thisAmount += (each.getDaysRented() - 3) * 1.5;
 break;

 }

 // add frequent renter points
 frequentRenterPoints ++;
 // add bonus for a two day new release rental
 if ((each.getMovie().getPriceCode() == Movie.NEW_RELEASE)
&&
each.getDaysRented() > 1) frequentRenterPoints ++;

 //show figures for this rental
 result += "\t" + each.getMovie().getTitle()+ "\t" +
String.valueOf(thisAmount) + "\n";
 totalAmount += thisAmount;

 }
 //add footer lines
 result += "Amount owed is " + String.valueOf(totalAmount) +
"\n";
 result += "You earned " + String.valueOf(frequentRenterPoints)
+
" frequent renter points";
 return result;

 }

Comments on the Starting Program

What are your impressions about the design of this program? I would describe it as not well
designed and certainly not object oriented. For a simple program like this, that does not really
matter. There's nothing wrong with a quick and dirty simple program. But if this is a representative
fragment of a more complex system, then I have some real problems with this program. That long
statement routine in the Customer class does far too much. Many of the things that it does should
really be done by the other classes.

Even so the program works. Is this not just an aesthetic judgment, a dislike of ugly code? It is
until we want to change the system. The compiler doesn't care whether the code is ugly or clean.
But when we change the system, there is a human involved, and humans do care. A poorly
designed system is hard to change. Hard because it is hard to figure out where the changes are
needed. If it is hard to figure out what to change, there is a strong chance that the programmer
will make a mistake and introduce bugs.

In this case we have a change that the users would like to make. First they want a statement
printed in HTML so that the statement can be Web enabled and fully buzzword compliant.
Consider the impact this change would have. As you look at the code you can see that it is

 17

impossible to reuse any of the behavior of the current statement method for an HTML statement.
Your only recourse is to write a whole new method that duplicates much of the behavior of
statement. Now, of course, this is not too onerous. You can just copy the statement method and
make whatever changes you need.

But what happens when the charging rules change? You have to fix both statement and
htmlStatement and ensure the fixes are consistent. The problem with copying and pasting
code comes when you have to change it later. If you are writing a program that you don't expect
to change, then cut and paste is fine. If the program is long lived and likely to change, then cut
and paste is a menace.

This brings me to a second change. The users want to make changes to the way they classify
movies, but they haven't yet decided on the change they are going to make. They have a number
of changes in mind. These changes will affect both the way renters are charged for movies and
the way that frequent renter points are calculated. As an experienced developer you are sure that
whatever scheme users come up with, the only guarantee you're going to have is that they will
change it again within six months.

The statement method is where the changes have to be made to deal with changes in
classification and charging rules. If, however, we copy the statement to an HTML statement, we
need to ensure that any changes are completely consistent. Furthermore, as the rules grow in
complexity it's going to be harder to figure out where to make the changes and harder to make
them without making a mistake.

You may be tempted to make the fewest possible changes to the program; after all, it works fine.
Remember the old engineering adage: "if it ain't broke, don't fix it." The program may not be
broken, but it does hurt. It is making your life more difficult because you find it hard to make the
changes your users want. This is where refactoring comes in.

Tip

When you find you have to add a feature to a program, and the program's code is not
structured in a convenient way to add the feature, first refactor the program to make it
easy to add the feature, then add the feature.

The First Step in Refactoring

Whenever I do refactoring, the first step is always the same. I need to build a solid set of tests for
that section of code. The tests are essential because even though I follow refactorings structured
to avoid most of the opportunities for introducing bugs, I'm still human and still make mistakes.
Thus I need solid tests.

Because the statement result produces a string, I create a few customers, give each customer a
few rentals of various kinds of films, and generate the statement strings. I then do a string
comparison between the new string and some reference strings that I have hand checked. I set
up all of these tests so I can run them from one Java command on the command line. The tests
take only a few seconds to run, and as you will see, I run them often.

An important part of the tests is the way they report their results. They either say "OK," meaning
that all the strings are identical to the reference strings, or they print a list of failures: lines that
turned out differently. The tests are thus self-checking. It is vital to make tests self-checking. If
you don't, you end up spending time hand checking some numbers from the test against some
numbers of a desk pad, and that slows you down.

 18

As we do the refactoring, we will lean on the tests. I'm going to be relying on the tests to tell me
whether I introduce a bug. It is essential for refactoring that you have good tests. It's worth
spending the time to build the tests, because the tests give you the security you need to change
the program later. This is such an important part of refactoring that I go into more detail on testing
in Chapter 4.

Tip

Before you start refactoring, check that you have a solid suite of tests. These tests
must be self-checking.

Decomposing and Redistributing the Statement Method

The obvious first target of my attention is the overly long statement method. When I look at a long
method like that, I am looking to decompose the method into smaller pieces. Smaller pieces of
code tend to make things more manageable. They are easier to work with and move around.

The first phase of the refactorings in this chapter show how I split up the long method and move
the pieces to better classes. My aim is to make it easier to write an HTML statement method with
much less duplication of code.

My first step is to find a logical clump of code and use Extract Method. An obvious piece here is
the switch statement. This looks like it would make a good chunk to extract into its own method.

When I extract a method, as in any refactoring, I need to know what can go wrong. If I do the
extraction badly, I could introduce a bug into the program. So before I do the refactoring I need to
figure out how to do it safely. I've done this refactoring a few times before, so I've written down
the safe steps in the catalog.

First I need to look in the fragment for any variables that are local in scope to the method we are
looking at, the local variables and parameters. This segment of code uses two: each and
thisAmount. Of these each is not modified by the code but thisAmount is modified. Any non-
modified variable I can pass in as a parameter. Modified variables need more care. If there is only
one, I can return it. The temp is initialized to 0 each time around the loop and is not altered until
the switch gets to it. So I can just assign the result.

The next two pages show the code before and after refactoring. The before code is on the left,
the resulting code on the right. The code I'm extracting from the original and any changes in the
new code that I don't think are immediately obvious are in boldface type. As I continue with this
chapter, I'll continue with this left-right convention.

 public String statement() {
 double totalAmount = 0;
 int frequentRenterPoints = 0;
 Enumeration rentals = _rentals.elements();
 String result = "Rental Record for " + getName() + "\n";
 while (rentals.hasMoreElements()) {
 double thisAmount = 0;
 Rental each = (Rental) rentals.nextElement();

 //determine amounts for each line
 switch (each.getMovie().getPriceCode()) {

 19

 case Movie.REGULAR:
 thisAmount += 2;
 if (each.getDaysRented() > 2)
 thisAmount += (each.getDaysRented() - 2) * 1.5;
 break;
 case Movie.NEW_RELEASE:
 thisAmount += each.getDaysRented() * 3;
 break;
 case Movie.CHILDRENS:
 thisAmount += 1.5;
 if (each.getDaysRented() > 3)
 thisAmount += (each.getDaysRented() - 3) * 1.5;
 break;

 }

 // add frequent renter points
 frequentRenterPoints ++;
 // add bonus for a two day new release rental
 if ((each.getMovie().getPriceCode() == Movie.NEW_RELEASE)
&& each.getDaysRented() >
1) frequentRenterPoints ++;

 //show figures for this rental
 result += "\t" + each.getMovie().getTitle()+ "\t" +
String.valueOf(thisAmount) +
"\n";
 totalAmount += thisAmount;

 }
 //add footer lines
 result += "Amount owed is " + String.valueOf(totalAmount) +
"\n";
 result += "You earned " + String.valueOf(frequentRenterPoints)
+ " frequent renter
points";
 return result;

 }
public String statement() {
 double totalAmount = 0;
 int frequentRenterPoints = 0;
 Enumeration rentals = _rentals.elements();
 String result = "Rental Record for " + getName() + "\n";
 while (rentals.hasMoreElements()) {
 double thisAmount = 0;
 Rental each = (Rental) rentals.nextElement();

 thisAmount = amountFor(each);

 // add frequent renter points
 frequentRenterPoints ++;
 // add bonus for a two day new release rental
 if ((each.getMovie().getPriceCode() == Movie.NEW_RELEASE) &&
 each.getDaysRented() > 1) frequentRenterPoints ++;

 //show figures for this rental

 20

 result += "\t" + each.getMovie().getTitle()+ "\t" +
 String.valueOf(thisAmount) + "\n";
 totalAmount += thisAmount;

 }
 //add footer lines
 result += "Amount owed is " + String.valueOf(totalAmount) +
"\n";
 result += "You earned " + String.valueOf(frequentRenterPoints) +
 " frequent renter points";
 return result;

 }
}
private int amountFor(Rental each) {
 int thisAmount = 0;
 switch (each.getMovie().getPriceCode()) {
 case Movie.REGULAR:
 thisAmount += 2;
 if (each.getDaysRented() > 2)
 thisAmount += (each.getDaysRented() - 2) * 1.5;
 break;
 case Movie.NEW_RELEASE:
 thisAmount += each.getDaysRented() * 3;
 break;
 case Movie.CHILDRENS:
 thisAmount += 1.5;
 if (each.getDaysRented() > 3)
 thisAmount += (each.getDaysRented() - 3) * 1.5;
 break;

 }
 return thisAmount;
}

Whenever I make a change like this, I compile and test. I didn't get off to a very good start—the
tests blew up. A couple of the test figures gave me the wrong answer. I was puzzled for a few
seconds then realized what I had done. Foolishly I'd made the return type amountFor int
instead of double:

 private double amountFor(Rental each) {
 double thisAmount = 0;
 switch (each.getMovie().getPriceCode()) {
 case Movie.REGULAR:
 thisAmount += 2;
 if (each.getDaysRented() > 2)
 thisAmount += (each.getDaysRented() - 2) * 1.5;
 break;
 case Movie.NEW_RELEASE:
 thisAmount += each.getDaysRented() * 3;
 break;
 case Movie.CHILDRENS:
 thisAmount += 1.5;
 if (each.getDaysRented() > 3)
 thisAmount += (each.getDaysRented() - 3) * 1.5;

 21

 break;
 }
 return thisAmount;
 }

It's the kind of silly mistake that I often make, and it can be a pain to track down. In this case Java
converts doubles to ints without complaining but merrily rounding [Java Spec]. Fortunately it was
easy to find in this case, because the change was so small and I had a good set of tests. Here is
the essence of the refactoring process illustrated by accident. Because each change is so small,
any errors are very easy to find. You don't spend a long time debugging, even if you are as
careless as I am.

Tip

Refactoring changes the programs in small steps. If you make a mistake, it is easy to
find the bug.

Because I'm working in Java, I need to analyze the code to figure out what to do with the local
variables. With a tool, however, this can be made really simple. Such a tool does exist in
Smalltalk, the Refactoring Browser. With this tool refactoring is very simple. I just highlight the
code, pick "Extract Method" from the menus, type in a method name, and it's done. Furthermore,
the tool doesn't make silly mistakes like mine. I'm looking forward to a Java version!

Now that I've broken the original method down into chunks, I can work on them separately. I don't
like some of the variable names in amountFor, and this is a good place to change them.

Here's the original code:

 private double amountFor(Rental each) {
 double thisAmount = 0;
 switch (each.getMovie().getPriceCode()) {
 case Movie.REGULAR:
 thisAmount += 2;
 if (each.getDaysRented() > 2)
 thisAmount += (each.getDaysRented() - 2) * 1.5;
 break;
 case Movie.NEW_RELEASE:
 thisAmount += each.getDaysRented() * 3;
 break;
 case Movie.CHILDRENS:
 thisAmount += 1.5;
 if (each.getDaysRented() > 3)
 thisAmount += (each.getDaysRented() - 3) * 1.5;
 break;
 }
 return thisAmount;
 }

Here is the renamed code:

 22

 private double amountFor(Rental aRental) {
 double result = 0;
 switch (aRental.getMovie().getPriceCode()) {
 case Movie.REGULAR:
 result += 2;
 if (aRental.getDaysRented() > 2)
 result += (aRental.getDaysRented() - 2) * 1.5;
 break;
 case Movie.NEW_RELEASE:
 result += aRental.getDaysRented() * 3;
 break;
 case Movie.CHILDRENS:
 result += 1.5;
 if (aRental.getDaysRented() > 3)
 result += (aRental.getDaysRented() - 3) * 1.5;
 break;
 }
 return result;
 }

Once I've done the renaming, I compile and test to ensure I haven't broken anything.

Is renaming worth the effort? Absolutely. Good code should communicate what it is doing clearly,
and variable names are a key to clear code. Never be afraid to change the names of things to
improve clarity. With good find and replace tools, it is usually not difficult. Strong typing and
testing will highlight anything you miss. Remember

Tip

Any fool can write code that a computer can understand. Good programmers write
code that humans can understand.

Code that communicates its purpose is very important. I often refactor just when I'm reading
some code. That way as I gain understanding about the program, I embed that understanding
into the code for later so I don't forget what I learned.

Moving the Amount Calculation

As I look at amountFor, I can see that it uses information from the rental, but does not use
information from the customer.

 class Customer...
 private double amountFor(Rental aRental) {
 double result = 0;
 switch (aRental.getMovie().getPriceCode()) {
 case Movie.REGULAR:
 result += 2;
 if (aRental.getDaysRented() > 2)
 result += (aRental.getDaysRented() - 2) * 1.5;

 23

 break;
 case Movie.NEW_RELEASE:
 result += aRental.getDaysRented() * 3;
 break;
 case Movie.CHILDRENS:
 result += 1.5;
 if (aRental.getDaysRented() > 3)
 result += (aRental.getDaysRented() - 3) * 1.5;
 break;
 }
 return result;
 }

This immediately raises my suspicions that the method is on the wrong object. In most cases a
method should be on the object whose data it uses, thus the method should be moved to the
rental. To do this I use Move Method. With this you first copy the code over to rental, adjust it to
fit in its new home, and compile, as follows:

 class Rental...
 double getCharge() {
 double result = 0;
 switch (getMovie().getPriceCode()) {
 case Movie.REGULAR:
 result += 2;
 if (getDaysRented() > 2)
 result += (getDaysRented() - 2) * 1.5;
 break;
 case Movie.NEW_RELEASE:
 result += getDaysRented() * 3;
 break;
 case Movie.CHILDRENS:
 result += 1.5;
 if (getDaysRented() > 3)
 result += (getDaysRented() - 3) * 1.5;
 break;
 }
 return result;
 }

In this case fitting into its new home means removing the parameter. I also renamed the method
as I did the move.

I can now test to see whether this method works. To do this I replace the body of
Customer.amountFor to delegate to the new method.

 class Customer...
 private double amountFor(Rental aRental) {
 return aRental.getCharge();
 }

I can now compile and test to see whether I've broken anything.

 24

The next step is to find every reference to the old method and adjust the reference to use the new
method, as follows:

 class Customer...
 public String statement() {
 double totalAmount = 0;
 int frequentRenterPoints = 0;
 Enumeration rentals = _rentals.elements();
 String result = "Rental Record for " + getName() + "\n";
 while (rentals.hasMoreElements()) {
 double thisAmount = 0;
 Rental each = (Rental) rentals.nextElement();

 thisAmount = amountFor(each);

 // add frequent renter points
 frequentRenterPoints ++;
 // add bonus for a two day new release rental
 if ((each.getMovie().getPriceCode() == Movie.NEW_RELEASE)
&&
 each.getDaysRented() > 1) frequentRenterPoints ++;

 //show figures for this rental
 result += "\t" + each.getMovie().getTitle()+ "\t" +
 String.valueOf(thisAmount) + "\n";
 totalAmount += thisAmount;

 }
 //add footer lines
 result += "Amount owed is " + String.valueOf(totalAmount) +
"\n";
 result += "You earned " +
String.valueOf(frequentRenterPoints) +
 " frequent renter points";
 return result;

 }

In this case this step is easy because we just created the method and it is in only one place. In
general, however, you need to do a "find" across all the classes that might be using that method:

 class Customer
 public String statement() {
 double totalAmount = 0;
 int frequentRenterPoints = 0;
 Enumeration rentals = _rentals.elements();
 String result = "Rental Record for " + getName() + "\n";
 while (rentals.hasMoreElements()) {
 double thisAmount = 0;
 Rental each = (Rental) rentals.nextElement();

 thisAmount = each.getCharge();

 // add frequent renter points

 25

 frequentRenterPoints ++;
 // add bonus for a two day new release rental
 if ((each.getMovie().getPriceCode() == Movie.NEW_RELEASE)
&&
 each.getDaysRented() > 1) frequentRenterPoints ++;

 //show figures for this rental
 result += "\t" + each.getMovie().getTitle()+ "\t" +
 String.valueOf(thisAmount) + "\n";
 totalAmount += thisAmount;

 }
 //add footer lines
 result += "Amount owed is " + String.valueOf(totalAmount) +
"\n";
 result += "You earned " +
String.valueOf(frequentRenterPoints) +
 " frequent renter points";
 return result;
 }

When I've made the change (Figure 1.3) the next thing is to remove the old method. The
compiler should tell me whether I missed anything. I then test to see if I've broken anything.

Figure 1.3. State of classes after moving the charge method

Sometimes I leave the old method to delegate to the new method. This is useful if it is a public
method and I don't want to change the interface of the other class.

There is certainly some more I would like to do to Rental.getCharge but I will leave it for the
moment and return to Customer.statement.

 public String statement() {
 double totalAmount = 0;
 int frequentRenterPoints = 0;
 Enumeration rentals = _rentals.elements();
 String result = "Rental Record for " + getName() + "\n";
 while (rentals.hasMoreElements()) {
 double thisAmount = 0;
 Rental each = (Rental) rentals.nextElement();

 thisAmount = each.getCharge();

 // add frequent renter points
 frequentRenterPoints ++;
 // add bonus for a two day new release rental

 26

 if ((each.getMovie().getPriceCode() == Movie.NEW_RELEASE)
&&
 each.getDaysRented() > 1) frequentRenterPoints ++;

 //show figures for this rental
 result += "\t" + each.getMovie().getTitle()+ "\t" +
 String.valueOf(thisAmount) + "\n";
 totalAmount += thisAmount;

 }
 //add footer lines
 result += "Amount owed is " + String.valueOf(totalAmount) +
"\n";
 result += "You earned " + String.valueOf(frequentRenterPoints)
+
 " frequent renter points";
 return result;

 }

The next thing that strikes me is that thisAmount is now redundant. It is set to the result of
each.charge and not changed afterward. Thus I can eliminate thisAmount by using Replace
Temp with Query:

 public String statement() {
 double totalAmount = 0;
 int frequentRenterPoints = 0;
 Enumeration rentals = _rentals.elements();
 String result = "Rental Record for " + getName() + "\n";
 while (rentals.hasMoreElements()) {
 Rental each = (Rental) rentals.nextElement();

 // add frequent renter points
 frequentRenterPoints ++;
 // add bonus for a two day new release rental
 if ((each.getMovie().getPriceCode() == Movie.NEW_RELEASE)
&&
 each.getDaysRented() > 1) frequentRenterPoints ++;
 //show figures for this rental
 result += "\t" + each.getMovie().getTitle()+ "\t" +
String.valueOf
 (each.getCharge()) + "\n";
 totalAmount += each.getCharge();

 }
 //add footer lines
 result += "Amount owed is " + String.valueOf(totalAmount) +
"\n";
 result += "You earned " + String.valueOf(frequentRenterPoints)
 + " frequent renter points";
 return result;

 }

 }

 27

Once I've made that change I compile and test to make sure I haven't broken anything.

I like to get rid of temporary variables such as this as much as possible. Temps are often a
problem in that they cause a lot of parameters to be passed around when they don't have to be.
You can easily lose track of what they are there for. They are particularly insidious in long
methods. Of course there is a performance price to pay; here the charge is now calculated twice.
But it is easy to optimize that in the rental class, and you can optimize much more effectively
when the code is properly factored. I'll talk more about that issue later in Refactoring and
Performance on page 69.

Extracting Frequent Renter Points

The next step is to do a similar thing for the frequent renter points. The rules vary with the tape,
although there is less variation than with charging. It seems reasonable to put the responsibility
on the rental. First we need to use Extract Method on the frequent renter points part of the code
(in boldface type):

 public String statement() {
 double totalAmount = 0;
 int frequentRenterPoints = 0;
 Enumeration rentals = _rentals.elements();
 String result = "Rental Record for " + getName() + "\n";
 while (rentals.hasMoreElements()) {
 Rental each = (Rental) rentals.nextElement();

 // add frequent renter points
 frequentRenterPoints ++;
 // add bonus for a two day new release rental
 if ((each.getMovie().getPriceCode() == Movie.NEW_RELEASE)
 && each.getDaysRented() > 1) frequentRenterPoints ++;

 //show figures for this rental
 result += "\t" + each.getMovie().getTitle()+ "\t" +
String.valueOf(each.getCharge())
+ "\n";
 totalAmount += each.getCharge();

 }
 //add footer lines
 result += "Amount owed is " + String.valueOf(totalAmount) +
"\n";
 result += "You earned " + String.valueOf(frequentRenterPoints)
 + " frequent renter points";
 return result;

 }
}

Again we look at the use of locally scoped variables. Again each is used and can be passed in
as a parameter. The other temp used is frequentRenterPoints. In this case
frequentRenterPoints does have a value beforehand. The body of the extracted method
doesn't read the value, however, so we don't need to pass it in as a parameter as long as we use
an appending assignment.

 28

I did the extraction, compiled, and tested and then did a move and compiled and tested again.
With refactoring, small steps are the best; that way less tends to go wrong.

class Customer...
 public String statement() {
 double totalAmount = 0;
 int frequentRenterPoints = 0;
 Enumeration rentals = _rentals.elements();
 String result = "Rental Record for " + getName() + "\n";
 while (rentals.hasMoreElements()) {
 Rental each = (Rental) rentals.nextElement();
 frequentRenterPoints += each.getFrequentRenterPoints();

 //show figures for this rental
 result += "\t" + each.getMovie().getTitle()+ "\t" +
 String.valueOf(each.getCharge()) + "\n";
 totalAmount += each.getCharge();
 }

 //add footer lines
 result += "Amount owed is " + String.valueOf(totalAmount) +
"\n";
 result += "You earned " + String.valueOf(frequentRenterPoints)
+
 " frequent renter points";
 return result;
 }

class Rental...
 int getFrequentRenterPoints() {
 if ((getMovie().getPriceCode() == Movie.NEW_RELEASE) &&
getDaysRented() > 1)
 return 2;
 else
 return 1;
 }

I'll summarize the changes I just made with some before-and-after Unified Modeling Language
(UML) diagrams (Figures 1.4 through 1.7). Again the diagrams on the left are before the change;
those on the right are after the change.

Figure 1.4. Class diagram before extraction and movement of the frequent renter points
calculation

Figure 1.5. Sequence diagrams before extraction and movement of the frequent renter
points calculation

 29

Figure 1.6. Class diagram after extraction and movement of the frequent renter points
calculation

Figure 1.7. Sequence diagram before extraction and movement of the frequent renter
points calculation

 30

Removing Temps

As I suggested before, temporary variables can be a problem. They are useful only within their
own routine, and thus they encourage long, complex routines. In this case we have two
temporary variables, both of which are being used to get a total from the rentals attached to the
customer. Both the ASCII and HTML versions require these totals. I like to use Replace Temp
with Query to replace totalAmount and frequentRentalPoints with query methods.
Queries are accessible to any method in the class and thus encourage a cleaner design without
long, complex methods:

 class Customer...
 public String statement() {
 double totalAmount = 0;
 int frequentRenterPoints = 0;
 Enumeration rentals = _rentals.elements();
 String result = "Rental Record for " + getName() + "\n";
 while (rentals.hasMoreElements()) {
 Rental each = (Rental) rentals.nextElement();
 frequentRenterPoints += each.getFrequentRenterPoints();

 //show figures for this rental
 result += "\t" + each.getMovie().getTitle()+ "\t" +
 String.valueOf(each.getCharge()) + "\n";
 totalAmount += each.getCharge();
 }

 //add footer lines
 result += "Amount owed is " + String.valueOf(totalAmount) +
"\n";
 result += "You earned " + String.valueOf(frequentRenterPoints)
+
 " frequent renter points";
 return result;

 31

 }

I began by replacing totalAmount with a charge method on customer:

 class Customer...

 public String statement() {
 int frequentRenterPoints = 0;
 Enumeration rentals = _rentals.elements();
 String result = "Rental Record for " + getName() + "\n";
 while (rentals.hasMoreElements()) {
 Rental each = (Rental) rentals.nextElement();
 frequentRenterPoints += each.getFrequentRenterPoints();

 //show figures for this rental
 result += "\t" + each.getMovie().getTitle()+ "\t" +
 String.valueOf(each.getCharge()) + "\n";
 }

 //add footer lines
 result += "Amount owed is " +
String.valueOf(getTotalCharge()) + "\n";
 result += "You earned " + String.valueOf(frequentRenterPoints)
+
 " frequent renter points";
 return result;
 }

 private double getTotalCharge() {
 double result = 0;
 Enumeration rentals = _rentals.elements();
 while (rentals.hasMoreElements()) {
 Rental each = (Rental) rentals.nextElement();
 result += each.getCharge();
 }
 return result;
 }

This isn't the simplest case of Replace Temp with Query totalAmount was assigned to
within the loop, so I have to copy the loop into the query method.

After compiling and testing that refactoring, I did the same for frequentRenterPoints:

 class Customer...
 public String statement() {
 int frequentRenterPoints = 0;
 Enumeration rentals = _rentals.elements();
 String result = "Rental Record for " + getName() + "\n";
 while (rentals.hasMoreElements()) {
 Rental each = (Rental) rentals.nextElement();
 frequentRenterPoints += each.getFrequentRenterPoints();

 //show figures for this rental

 32

 result += "\t" + each.getMovie().getTitle()+ "\t" +
 String.valueOf(each.getCharge()) + "\n";
 }

 //add footer lines
 result += "Amount owed is " +
String.valueOf(getTotalCharge()) + "\n";
 result += "You earned " + String.valueOf(frequentRenterPoints)
+
 " frequent renter points";
 return result;
 }
 public String statement() {
 Enumeration rentals = _rentals.elements();
 String result = "Rental Record for " + getName() + "\n";
 while (rentals.hasMoreElements()) {
 Rental each = (Rental) rentals.nextElement();

 //show figures for this rental
 result += "\t" + each.getMovie().getTitle()+ "\t" +
 String.valueOf(each.getCharge()) + "\n";
 }

 //add footer lines
 result += "Amount owed is " +
String.valueOf(getTotalCharge()) + "\n";
 result += "You earned " +
String.valueOf(getTotalFrequentRenterPoints()) +
 " frequent renter points";
 return result;
 }

 private int getTotalFrequentRenterPoints(){
 int result = 0;
 Enumeration rentals = _rentals.elements();
 while (rentals.hasMoreElements()) {
 Rental each = (Rental) rentals.nextElement();
 result += each.getFrequentRenterPoints();
 }
 return result;
 }

Figures 1.8 through 1.11 show the change for these refactorings in the class diagrams and the
interaction diagram for the statement method.

Figure 1.8. Class diagram before extraction of the totals

 33

Figure 1.9. Sequence diagram before extraction of the totals

Figure 1.10. Class diagram after extraction of the totals

Figure 1.11. Sequence diagram after extraction of the totals

 34

It is worth stopping to think a bit about the last refactoring. Most refactorings reduce the amount
of code, but this one increases it. That's because Java 1.1 requires a lot of statements to set up a
summing loop. Even a simple summing loop with one line of code per element needs six lines of
support around it. It's an idiom that is obvious to any programmer but is a lot of lines all the same.

The other concern with this refactoring lies in performance. The old code executed the "while"
loop once, the new code executes it three times. A while loop that takes a long time might impair
performance. Many programmers would not do this refactoring simply for this reason. But note
the words if and might. Until I profile I cannot tell how much time is needed for the loop to
calculate or whether the loop is called often enough for it to affect the overall performance of the
system. Don't worry about this while refactoring. When you optimize you will have to worry about
it, but you will then be in a much better position to do something about it, and you will have more
options to optimize effectively (see the discussion on page 69).

These queries are now available for any code written in the customer class. They can easily be
added to the interface of the class should other parts of the system need this information. Without
queries like these, other methods have to deal with knowing about the rentals and building the
loops. In a complex system, that will lead to much more code to write and maintain.

You can see the difference immediately with the htmlStatement. I am now at the point where I
take off my refactoring hat and put on my adding function hat. I can write htmlStatement as
follows and add appropriate tests:

 public String htmlStatement() {
 Enumeration rentals = _rentals.elements();
 String result = "<H1>Rentals for " + getName() + "</
H1><P>\n";
 while (rentals.hasMoreElements()) {
 Rental each = (Rental) rentals.nextElement();

 35

 //show figures for each rental
 result += each.getMovie().getTitle()+ ": " +
 String.valueOf(each.getCharge()) + "
\n";
 }
 //add footer lines
 result += "<P>You owe " + String.valueOf(getTotalCharge()) +
"<P>\n";
 result += "On this rental you earned " +
 String.valueOf(getTotalFrequentRenterPoints()) +
 " frequent renter points<P>";
 return result;
 }

By extracting the calculations I can create the htmlStatement method and reuse all of the
calculation code that was in the original statement method. I didn't copy and paste, so if the
calculation rules change I have only one place in the code to go to. Any other kind of statement
will be really quick and easy to prepare. The refactoring did not take long. I spent most of the time
figuring out what the code did, and I would have had to do that anyway.

Some code is copied from the ASCII version, mainly due to setting up the loop. Further
refactoring could clean that up. Extracting methods for header, footer, and detail line are one
route I could take. You can see how to do this in the example for Form Template Method. But
now the users are clamoring again. They are getting ready to change the classification of the
movies in the store. It's still not clear what changes they want to make, but it sounds like new
classifications will be introduced, and the existing ones could well be changed. The charges and
frequent renter point allocations for these classifications are to be decided. At the moment,
making these kind of changes is awkward. I have to get into the charge and frequent renter point
methods and alter the conditional code to make changes to film classifications. Back on with the
refactoring hat.

Replacing the Conditional Logic on Price Code with Polymorphism

The first part of this problem is that switch statement. It is a bad idea to do a switch based on an
attribute of another object. If you must use a switch statement, it should be on your own data, not
on someone else's.

 class Rental...
 double getCharge() {
 double result = 0;
 switch (getMovie().getPriceCode()) {
 case Movie.REGULAR:
 result += 2;
 if (getDaysRented() > 2)
 result += (getDaysRented() - 2) * 1.5;
 break;
 case Movie.NEW_RELEASE:
 result += getDaysRented() * 3;
 break;
 case Movie.CHILDRENS:
 result += 1.5;
 if (getDaysRented() > 3)
 result += (getDaysRented() - 3) * 1.5;
 break;
 }

 36

 return result;
 }

This implies that getCharge should move onto movie:

 class Movie...
 double getCharge(int daysRented) {
 double result = 0;
 switch (getPriceCode()) {
 case Movie.REGULAR:
 result += 2;
 if (daysRented > 2)
 result += (daysRented - 2) * 1.5;
 break;
 case Movie.NEW_RELEASE:
 result += daysRented * 3;
 break;
 case Movie.CHILDRENS:
 result += 1.5;
 if (daysRented > 3)
 result += (daysRented - 3) * 1.5;
 break;
 }
 return result;
 }

For this to work I had to pass in the length of the rental, which of course is data from the rental.
The method effectively uses two pieces of data, the length of the rental and the type of the movie.
Why do I prefer to pass the length of rental to the movie rather than the movie type to the rental?
It's because the proposed changes are all about adding new types. Type information generally
tends to be more volatile. If I change the movie type, I want the least ripple effect, so I prefer to
calculate the charge within the movie.

I compiled the method into movie and then changed the getCharge on rental to use the new
method (Figures 1.12 and 1.13):

Figure 1.12. Class diagram before moving methods to movie

 37

Figure 1.13. Class diagram after moving methods to movie

 class Rental...
 double getCharge() {
 return _movie.getCharge(_daysRented);
 }

Once I've moved the getCharge method, I'll do the same with the frequent renter point
calculation. That keeps both things that vary with the type together on the class that has the type:

 class Rental...
 int getFrequentRenterPoints() {
 if ((getMovie().getPriceCode() == Movie.NEW_RELEASE) &&
getDaysRented() > 1)
 return 2;
 else
 return 1;
 }

Class rental...
 int getFrequentRenterPoints() {
 return _movie.getFrequentRenterPoints(_daysRented);
 }
class movie...

 int getFrequentRenterPoints(int daysRented) {
 if ((getPriceCode() == Movie.NEW_RELEASE) && daysRented > 1)
 return 2;
 else
 return 1;
 }

At last … Inheritance

 38

We have several types of movie that have different ways of answering the same question. This
sounds like a job for subclasses. We can have three subclasses of movie, each of which can
have its own version of charge (Figure 1.14).

Figure 1.14. Using inheritance on movie

This allows me to replace the switch statement by using polymorphism. Sadly it has one slight
flaw—it doesn't work. A movie can change its classification during its lifetime. An object cannot
change its class during its lifetime. There is a solution, however, the State pattern [Gang of Four].
With the State pattern the classes look like Figure 1.15.

Figure 1.15. Using the State pattern on movie

By adding the indirection we can do the subclassing from the price code object and change the
price whenever we need to.

If you are familiar with the Gang of Four patterns, you may wonder, "Is this a state, or is it a
strategy?" Does the price class represent an algorithm for calculating the price (in which case I
prefer to call it Pricer or PricingStrategy), or does it represent a state of the movie (Star Trek X is

 39

a new release). At this stage the choice of pattern (and name) reflects how you want to think
about the structure. At the moment I'm thinking about this as a state of movie. If I later decide a
strategy communicates my intention better, I will refactor to do this by changing the names.

To introduce the state pattern I will use three refactorings. First I'll move the type code behavior
into the state pattern with Replace Type Code with State/Strategy. Then I can use Move
Method to move the switch statement into the price class. Finally I'll use Replace Conditional
with Polymorphism to eliminate the switch statement.

I begin with Replace Type Code with State/Strategy. This first step is to use Self
Encapsulate Field on the type code to ensure that all uses of the type code go through getting
and setting methods. Because most of the code came from other classes, most methods already
use the getting method. However, the constructors do access the price code:

class Movie...
 public Movie(String name, int priceCode) {
 _name = name;
 _priceCode = priceCode;
 }

I can use the setting method instead.

class Movie
 public Movie(String name, int priceCode) {
 _name = name;
 setPriceCode(priceCode);
 }

I compile and test to make sure I didn't break anything. Now I add the new classes. I provide the
type code behavior in the price object. I do this with an abstract method on price and concrete
methods in the subclasses:

 abstract class Price {
 abstract int getPriceCode();
 }
 class ChildrensPrice extends Price {
 int getPriceCode() {
 return Movie.CHILDRENS;
 }
 }
 class NewReleasePrice extends Price {
 int getPriceCode() {
 return Movie.NEW_RELEASE;
 }
 }
 class RegularPrice extends Price {
 int getPriceCode() {
 return Movie.REGULAR;
 }
 }

 40

I can compile the new classes at this point.

Now I need to change movie's accessors for the price code to use the new class:

 public int getPriceCode() {
 return _priceCode;
 }
 public setPriceCode (int arg) {
 _priceCode = arg;
 }
 private int _priceCode;

This means replacing the price code field with a price field, and changing the accessors:

 class Movie...
 public int getPriceCode() {
 return _price.getPriceCode();
 }
 public void setPriceCode(int arg) {
 switch (arg) {
 case REGULAR:
 _price = new RegularPrice();
 break;
 case CHILDRENS:
 _price = new ChildrensPrice();
 break;
 case NEW_RELEASE:
 _price = new NewReleasePrice();
 break;
 default:
 throw new IllegalArgumentException("Incorrect Price Code");
 }
 }
 private Price _price;

I can now compile and test, and the more complex methods don't realize the world has changed.

Now I apply Move Method to getCharge:

 class Movie...
 double getCharge(int daysRented) {
 double result = 0;
 switch (getPriceCode()) {
 case Movie.REGULAR:
 result += 2;
 if (daysRented > 2)
 result += (daysRented - 2) * 1.5;
 break;
 case Movie.NEW_RELEASE:
 result += daysRented * 3;
 break;
 case Movie.CHILDRENS:

 41

 result += 1.5;
 if (daysRented > 3)
 result += (daysRented - 3) * 1.5;
 break;
 }
 return result;
 }

It is simple to move:

 class Movie...
 double getCharge(int daysRented) {
 return _price.getCharge(daysRented);
 }

 class Price...
 double getCharge(int daysRented) {
 double result = 0;
 switch (getPriceCode()) {
 case Movie.REGULAR:
 result += 2;
 if (daysRented > 2)
 result += (daysRented - 2) * 1.5;
 break;
 case Movie.NEW_RELEASE:
 result += daysRented * 3;
 break;
 case Movie.CHILDRENS:
 result += 1.5;
 if (daysRented > 3)
 result += (daysRented - 3) * 1.5;
 break;
 }
 return result;
 }

Once it is moved I can start using Replace Conditional with Polymorphism:

 class Price...
 double getCharge(int daysRented) {
 double result = 0;
 switch (getPriceCode()) {
 case Movie.REGULAR:
 result += 2;
 if (daysRented > 2)
 result += (daysRented - 2) * 1.5;
 break;
 case Movie.NEW_RELEASE:
 result += daysRented * 3;
 break;
 case Movie.CHILDRENS:
 result += 1.5;
 if (daysRented > 3)
 result += (daysRented - 3) * 1.5;

 42

 break;
 }
 return result;
 }

I do this by taking one leg of the case statement at a time and creating an overriding method. I
start with RegularPrice:

 class RegularPrice...
 double getCharge(int daysRented){
 double result = 2;
 if (daysRented > 2)
 result += (daysRented - 2) * 1.5;
 return result;
 }

This overrides the parent case statement, which I just leave as it is. I compile and test for this
case then take the next leg, compile and test. (To make sure I'm executing the subclass code, I
like to throw in a deliberate bug and run it to ensure the tests blow up. Not that I'm paranoid or
anything.)

 class ChildrensPrice
 double getCharge(int daysRented){
 double result = 1.5;
 if (daysRented > 3)
 result += (daysRented - 3) * 1.5;
 return result;
 }

 class NewReleasePrice...
 double getCharge(int daysRented){
 return daysRented * 3;
 }

When I've done that with all the legs, I declare the Price.getCharge method abstract:

 class Price...
 abstract double getCharge(int daysRented);

I can now do the same procedure with getFrequentRenterPoints:

 class Rental...
 int getFrequentRenterPoints(int daysRented) {
 if ((getPriceCode() == Movie.NEW_RELEASE) && daysRented > 1)
 return 2;
 else
 return 1;
 }

First I move the method over to Price:

 43

 Class Movie...
 int getFrequentRenterPoints(int daysRented) {
 return _price.getFrequentRenterPoints(daysRented);
 }
 Class Price...
 int getFrequentRenterPoints(int daysRented) {
 if ((getPriceCode() == Movie.NEW_RELEASE) && daysRented > 1)
 return 2;
 else
 return 1;
 }

In this case, however, I don't make the superclass method abstract. Instead I create an overriding
method for new releases and leave a defined method (as the default) on the superclass:

 Class NewReleasePrice
 int getFrequentRenterPoints(int daysRented) {
 return (daysRented > 1) ? 2: 1;
 }

 Class Price...
 int getFrequentRenterPoints(int daysRented){
 return 1;
 }

Putting in the state pattern was quite an effort. Was it worth it? The gain is that if I change any of
price's behavior, add new prices, or add extra price-dependent behavior, the change will be much
easier to make. The rest of the application does not know about the use of the state pattern. For
the tiny amount of behavior I currently have, it is not a big deal. In a more complex system with a
dozen or so price-dependent methods, this would make a big difference. All these changes were
small steps. It seems slow to write it this way, but not once did I have to open the debugger, so
the process actually flowed quite quickly. It took me much longer to write this section of the book
than it did to change the code.

I've now completed the second major refactoring. It is going to be much easier to change the
classification structure of movies, and to alter the rules for charging and the frequent renter point
system. Figures 1.16 and 1.17 show how the state pattern works with price information.

Figure 1.16. Interactions using the state pattern

 44

Figure 1.17. Class diagram after addition of the state pattern

Final Thoughts

This is a simple example, yet I hope it gives you the feeling of what refactoring is like. I've used
several refactorings, including Extract Method, Move Method, and Replace Conditional
with Polymorphism. All these lead to better-distributed responsibilities and code that is easier
to maintain. It does look rather different from procedural style code, and that takes some getting
used to. But once you are used to it, it is hard to go back to procedural programs.

 45

The most important lesson from this example is the rhythm of refactoring: test, small change, test,
small change, test, small change. It is that rhythm that allows refactoring to move quickly and
safely.

If you're with me this far, you should now understand what refactoring is all about. We can now
move on to some background, principles, and theory (although not too much!)

 46

Chapter 2. Principles in Refactoring

The preceding example should have given you a good feel for what refactoring is all about. Now
it's time to step back and look at the key principles of refactoring and at some of the issues you
need to think about in using refactoring.

Defining Refactoring

I'm always a little leery of definitions because everyone has his or her own, but when you write a
book you get to choose your own definitions. In this case I'm basing my definitions on the work
done by Ralph Johnson's group and assorted associates.

The first thing to say about this is that the word Refactoring has two definitions depending on
context. You might find this annoying (I certainly do), but it serves as yet another example of the
realities of working with natural language.

The first definition is the noun form.

Tip

Refactoring (noun): a change made to the internal structure of software to make it
easier to understand and cheaper to modify without changing its observable behavior.

You can find examples of refactorings in the catalog, such as Extract Method and Pull Up
Field. As such, a refactoring is usually a small change to the software, although one refactoring
can involve others. For example, Extract Class usually involves Move Method and Move
Field.

The other usage of refactoring is the verb form

Tip

Refactor (verb): to restructure software by applying a series of refactorings without
changing its observable behavior.

So you might spend a few hours refactoring, during which you might apply a couple of dozen
individual refactorings.

I've been asked, "Is refactoring just cleaning up code?" In a way the answer is yes, but I think
refactoring goes further because it provides a technique for cleaning up code in a more efficient
and controlled manner. Since I've been using refactoring, I've noticed that I clean code far more
effectively than I did before. This is because I know which refactorings to use, I know how to use
them in a manner that minimizes bugs, and I test at every possible opportunity.

 47

I should amplify a couple of points in my definitions. First, the purpose of refactoring is to make
the software easier to understand and modify. You can make many changes in software that
make little or no change in the observable behavior. Only changes made to make the software
easier to understand are refactorings. A good contrast is performance optimization. Like
refactoring, performance optimization does not usually change the behavior of a component
(other than its speed); it only alters the internal structure. However, the purpose is different.
Performance optimization often makes code harder to understand, but you need to do it to get the
performance you need.

The second thing I want to highlight is that refactoring does not change the observable behavior
of the software. The software still carries out the same function that it did before. Any user,
whether an end user or another programmer, cannot tell that things have changed.

The Two Hats

This second point leads to Kent Beck's metaphor of two hats. When you use refactoring to
develop software, you divide your time between two distinct activities: adding function and
refactoring. When you add function, you shouldn't be changing existing code; you are just adding
new capabilities. You can measure your progress by adding tests and getting the tests to work.
When you refactor, you make a point of not adding function; you only restructure the code. You
don't add any tests (unless you find a case you missed earlier); you only restructure the code.
You don't add any tests (unless you find a case you missed earlier); you only change tests when
you absolutely need to in order to cope with a change in an interface.

As you develop software, you probably find yourself swapping hats frequently. You start by trying
to add a new function, and you realize this would be much easier if the code were structured
differently. So you swap hats and refactor for a while. Once the code is better structured, you
swap hats and add the new function. Once you get the new function working, you realize you
coded it in a way that's awkward to understand, so you swap hats again and refactor. All this
might take only ten minutes, but during this time you should always be aware of which hat you're
wearing.

Why Should You Refactor?

I don't want to proclaim refactoring as the cure for all software ills. It is no "silver bullet." Yet it is a
valuable tool, a pair of silver pliers that helps you keep a good grip on your code. Refactoring is a
tool that can, and should, be used for several purposes.

Refactoring Improves the Design of Software

Without refactoring, the design of the program will decay. As people change code—changes to
realize short-term goals or changes made without a full comprehension of the design of the
code—the code loses its structure. It becomes harder to see the design by reading the code.
Refactoring is rather like tidying up the code. Work is done to remove bits that aren't really in the
right place. Loss of the structure of code has a cumulative effect. The harder it is to see the
design in the code, the harder it is to preserve it, and the more rapidly it decays. Regular
refactoring helps code retain its shape.

Poorly designed code usually takes more code to do the same things, often because the code
quite literally does the same thing in several places. Thus an important aspect of improving
design is to eliminate duplicate code. The importance of this lies in future modifications to the
code. Reducing the amount of code won't make the system run any faster, because the effect on
the footprint of the programs rarely is significant. Reducing the amount of code does, however,

 48

make a big difference in modification of the code. The more code there is, the harder it is to
modify correctly. There's more code to understand. You change this bit of code here, but the
system doesn't do what you expect because you didn't change that bit over there that does much
the same thing in a slightly different context. By eliminating the duplicates, you ensure that the
code says everything once and only once, which is the essence of good design.

Refactoring Makes Software Easier to Understand

Programming is in many ways a conversation with a computer. You write code that tells the
computer what to do, and it responds by doing exactly what you tell it. In time you close the gap
between what you want it to do and what you tell it to do. Programming in this mode is all about
saying exactly what you want. But there is another user of your source code. Someone will try to
read your code in a few months'time to make some changes. We easily forget that extra user of
the code, yet that user is actually the most important. Who cares if the computer takes a few
more cycles to compile something? It does matter if it takes a programmer a week to make a
change that would have taken only an hour if she had understood your code.

The trouble is that when you are trying to get the program to work, you are not thinking about that
future developer. It takes a change of rhythm to make changes that make the code easier to
understand. Refactoring helps you to make your code more readable. When refactoring you have
code that works but is not ideally structured. A little time spent refactoring can make the code
better communicate its purpose. Programming in this mode is all about saying exactly what you
mean.

I'm not necessarily being altruistic about this. Often this future developer is me. Here refactoring
is particularly important. I'm a very lazy programmer. One of my forms of laziness is that I never
remember things about the code I write. Indeed, I deliberately try not remember anything I can
look up, because I'm afraid my brain will get full. I make a point of trying to put everything I should
remember into the code so I don't have to remember it. That way I'm less worried about Old
Peculier [Jackson] killing off my brain cells.

This understandability works another way, too. I use refactoring to help me understand unfamiliar
code. When I look at unfamiliar code, I have to try to understand what it does. I look at a couple of
lines and say to myself, oh yes, that's what this bit of code is doing. With refactoring I don't stop at
the mental note. I actually change the code to better reflect my understanding, and then I test that
understanding by rerunning the code to see if it still works.

Early on I do refactoring like this on little details. As the code gets clearer, I find I can see things
about the design that I could not see before. Had I not changed the code, I probably never would
have seen these things, because I'm just not clever enough to visualize all this in my head. Ralph
Johnson describes these early refactorings as wiping the dirt off a window so you can see
beyond. When I'm studying code I find refactoring leads me to higher levels of understanding that
otherwise I would miss.

Refactoring Helps You Find Bugs

Help in understanding the code also helps me spot bugs. I admit I'm not terribly good at finding
bugs. Some people can read a lump of code and see bugs, I cannot. However, I find that if I
refactor code, I work deeply on understanding what the code does, and I put that new
understanding right back into the code. By clarifying the structure of the program, I clarify certain
assumptions I've made, to the point at which even I can't avoid spotting the bugs.

 49

It reminds me of a statement Kent Beck often makes about himself, "I'm not a great programmer;
I'm just a good programmer with great habits." Refactoring helps me be much more effective at
writing robust code.

Refactoring Helps You Program Faster

In the end, all the earlier points come down to this: Refactoring helps you develop code more
quickly.

This sounds counterintuitive. When I talk about refactoring, people can easily see that it improves
quality. Improving design, improving readability, reducing bugs, all these improve quality. But
doesn't all this reduce the speed of development?

I strongly believe that a good design is essential for rapid software development. Indeed, the
whole point of having a good design is to allow rapid development. Without a good design, you
can progress quickly for a while, but soon the poor design starts to slow you down. You spend
time finding and fixing bugs instead of adding new function. Changes take longer as you try to
understand the system and find the duplicate code. New features need more coding as you patch
over a patch that patches a patch on the original code base.

A good design is essential to maintaining speed in software development. Refactoring helps you
develop software more rapidly, because it stops the design of the system from decaying. It can
even improve a design.

When Should You Refactor?

When I talk about refactoring, I'm often asked about how it should be scheduled. Should we
allocate two weeks every couple of months to refactoring?

In almost all cases, I'm opposed to setting aside time for refactoring. In my view refactoring is not
an activity you set aside time to do. Refactoring is something you do all the time in little bursts.
You don't decide to refactor, you refactor because you want to do something else, and refactoring
helps you do that other thing.

The Rule of Three

Here's a guideline Don Roberts gave me: The first time you do something, you just do it. The
second time you do something similar, you wince at the duplication, but you do the duplicate thing
anyway. The third time you do something similar, you refactor.

Tip

Three strikes and you refactor.

Refactor When You Add Function

The most common time to refactor is when I want to add a new feature to some software. Often
the first reason to refactor here is to help me understand some code I need to modify. This code
may have been written by someone else, or I may have written it. Whenever I have to think to

 50

understand what the code is doing, I ask myself if I can refactor the code to make that
understanding more immediately apparent. Then I refactor it. This is partly for the next time I pass
by here, but mostly it's because I can understand more things if I clarify the code as I'm going
along.

The other driver of refactoring here is a design that does not help me add a feature easily. I look
at the design and say to myself, "If only I'd designed the code this way, adding this feature would
be easy." In this case I don't fret over my past misdeeds—I fix them by refactoring. I do this partly
to make future enhancements easy, but mostly I do it because I've found it's the fastest way.
Refactoring is a quick and smooth process. Once I've refactored, adding the feature can go much
more quickly and smoothly.

Refactor When You Need to Fix a Bug

In fixing bugs much of the use of refactoring comes from making code more understandable. As I
look at the code trying to understand it, I refactor to help improve my understanding. Often I find
that this active process of working with the code helps in finding the bug. One way to look at it is
that if you do get a bug report, it's a sign you need refactoring, because the code was not clear
enough for you to see there was a bug.

Refactor As You Do a Code Review

Some organizations do regular code reviews; those that don't would do better if they did. Code
reviews help spread knowledge through a development team. Reviews help more experienced
developers pass knowledge to less experienced people. They help more people understand more
aspects of a large software system. They are also very important in writing clear code. My code
may look clear to me but not to my team. That's inevitable—it's very hard for people to put
themselves in the shoes of someone unfamiliar with the things they are working on. Reviews also
give the opportunity for more people to suggest useful ideas. I can only think of so many good
ideas in a week. Having other people contribute makes my life easier, so I always look for many
reviews.

I've found that refactoring helps me review someone else's code. Before I started using
refactoring, I could read the code, understand some degree of it, and make suggestions. Now
when I come up with ideas, I consider whether they can be easily implemented then and there
with refactoring. If so, I refactor. When I do it a few times, I can see more clearly what the code
looks like with the suggestions in place. I don't have to imagine what it would be like, I can see
what it is like. As a result, I can come up with a second level of ideas that I would never have
realized had I not refactored.

Refactoring also helps the code review have more concrete results. Not only are there
suggestions, but also many suggestions are implemented there and then. You end up with much
more of a sense of accomplishment from the exercise.

To make this process work, you have to have small review groups. My experience suggests
having one reviewer and the original author work on the code together. The reviewer suggests
changes, and they both decide whether the changes can be easily refactored in. If so, they make
the changes.

With larger design reviews it is often better to obtain several opinions in a larger group. Showing
code often is not the best device for this. I prefer UML diagrams and walking through scenarios
with CRC cards. So I do design reviews with groups and code reviews with individual reviewers.

 51

This idea of active code review is taken to its limit with the Extreme Programming [Beck, XP]
practice of Pair Programming. With this technique all serious development is done with two
developers at one machine. In effect it's a continuous code review folded into the development
process, and the refactoring that takes place is folded in as well.

Why Refactoring Works

Kent Beck

Programs have two kinds of value: what they can do for you today and
what they can do for you tomorrow. Most times when we are
programming, we are focused on what we want the program to do today.
Whether we are fixing a bug or adding a feature, we are making today's
program more valuable by making it more capable.

You can't program long without realizing that what the system does
today is only a part of the story. If you can get today's work done today,
but you do it in such a way that you can't possibly get tomorrow's work
done tomorrow, then you lose. Notice, though, that you know what you
need to do today, but you're not quite sure about tomorrow. Maybe you'll
do this, maybe that, maybe something you haven't imagined yet.

I know enough to do today's work. I don't know enough to do tomorrow's.
But if I only work for today, I won't be able to work tomorrow at all.

Refactoring is one way out of the bind. When you find that yesterday's
decision doesn't make sense today, you change the decision. Now you
can do today's work. Tomorrow, some of your understanding as of today
will seem naive, so you'll change that, too.

What is it that makes programs hard to work with? Four things I can think
of as I am typing this are as follows:

• Programs that are hard to read are hard to modify.
• Programs that have duplicated logic are hard to modify.
• Programs that require additional behavior that requires you to

change running code are hard to modify.
• Programs with complex conditional logic are hard to modify.

So, we want programs that are easy to read, that have all logic specified
in one and only one place, that do not allow changes to endanger
existing behavior, and that allow conditional logic to be expressed as
simply as possible.

Refactoring is the process of taking a running program and adding to its
value, not by changing its behavior but by giving it more of these
qualities that enable us to continue developing at speed.

 52

What Do I Tell My Manager?

How to tell a manager about refactoring is one of the most common questions I've been asked. If
the manager is technically savvy, introducing the subject may not be that hard. If the manager is
genuinely quality oriented, then the thing to stress is the quality aspects. Here using refactoring in
the review process is a good way to work things. Tons of studies show that technical reviews are
an important way to reduce bugs and thus speed up development. Take a look at any book on
reviews, inspections, or the software development process for the latest citations. These should
convince most managers of the value of reviews. It is then a short step to introduce refactoring as
a way of getting review comments into the code.

Of course, many people say they are driven by quality but are more driven by schedule. In these
cases I give my more controversial advice: Don't tell!

Subversive? I don't think so. Software developers are professionals. Our job is to build effective
software as rapidly as we can. My experience is that refactoring is a big aid to building software
quickly. If I need to add a new function and the design does not suit the change, I find it's quicker
to refactor first and then add the function. If I need to fix a bug, I need to understand how the
software works—and I find refactoring is the fastest way to do this. A schedule-driven manager
wants me to do things the fastest way I can; how I do it is my business. The fastest way is to
refactor; therefore I refactor.

Indirection and Refactoring

Kent Beck

Computer Science is the discipline that believes all problems can be
solved with one more layer of indirection. —Dennis DeBruler

Given software engineers'infatuation with indirection, it may not surprise
you to learn that most refactoring introduces more indirection into a
program. Refactoring tends to break big objects into several smaller
ones and big methods into several smaller ones.

Indirection is a two-edged sword, however. Every time you break one
thing into two pieces, you have more things to manage. It also can make
a program harder to read as an object delegates to an object delegating
to an object. So you'd like to minimize indirection.

Not so fast, buddy. Indirection can pay for itself. Here are some of the
ways.

• To enable sharing of logic.

For example, a submethod invoked in two different places or a
method in a superclass shared by all subclasses.

• To explain intention and implementation separately.

 53

Choosing the name of each class and the name of each method
gives you an opportunity to explain what you intend. The internals
of the class or method explain how the intention is realized. If the
internals also are written in terms of intention in yet smaller
pieces, you can write code that communicates most of the
important information about its own structure.

• To isolate change.

I use an object in two different places. I want to change the
behavior in one of the two cases. If I change the object, I risk
changing both. So I first make a subclass and refer to it in the
case that is changing. Now I can modify the subclass without
risking an inadvertent change to the other case.

• To encode conditional logic.

Objects have a fabulous mechanism, polymorphic messages, to
flexibly but clearly express conditional logic. By changing explicit
conditionals to messages, you can often reduce duplication, add
clarity, and increase flexibility all at the same time.

Here is the refactoring game: Maintaining the current behavior of the
system, how can you make your system more valuable, either by
increasing its quality or by reducing its cost?

The most common variant of the game is to look at your program.
Identify a place where it is missing one or more of the benefits of
indirection. Put in that indirection without changing the existing behavior.
Now you have a more valuable program because it has more qualities
that we will appreciate tomorrow.

Contrast this with careful upfront design. Speculative design is an
attempt to put all the good qualities into the system before any code is
written. Then the code can just be hung on the sturdy skeleton. The
problem with this process is that it is too easy to guess wrong. With
refactoring, you are never in danger of being completely wrong. The
program always behaves at the end as it did at the beginning. In
addition, you have the opportunity to add valuable qualities to the code.

There is a second, rarer refactoring game. Identify indirection that isn't
paying for itself and take it out. Often this takes the form of intermediate
methods that used to serve a purpose but no longer do. Or it could be a
component that you expected to be shared or polymorphic but turned out
to be used in only one place. When you find parasitic indirection, take it
out. Again, you will have a more valuable program, not because there is

 54

more of one of the four qualities listed earlier but because it costs less
indirection to get the same amount from the qualities.

Problems with Refactoring

When you learn a new technique that greatly improves your productivity, it is hard to see when it
does not apply. Usually you learn it within a specific context, often just a single project. It is hard
to see what causes the technique to be less effective, even harmful. Ten years ago it was like
that with objects. If someone asked me when not to use objects, it was hard to answer. It wasn't
that I didn't think objects had limitations—I'm too cynical for that. It was just that I didn't know
what those limitations were, although I knew what the benefits were.

Refactoring is like that now. We know the benefits of refactoring. We know they can make a
palpable difference to our work. But we haven't had broad enough experience to see where the
limitations apply.

This section is shorter than I would like and is more tentative. As more people learn about
refactoring, we will learn more. For you this means that while I certainly believe you should try
refactoring for the real gains it can provide, you should also monitor its progress. Look out for
problems that refactoring may be introducing. Let us know about these problems. As we learn
more about refactoring, we will come up with more solutions to problems and learn about what
problems are difficult to solve.

Databases

One problem area for refactoring is databases. Most business applications are tightly coupled to
the database schema that supports them. That's one reason that the database is difficult to
change. Another reason is data migration. Even if you have carefully layered your system to
minimize the dependencies between the database schema and the object model, changing the
database schema forces you to migrate the data, which can be a long and fraught task.

With nonobject databases a way to deal with this problem is to place a separate layer of software
between your object model and your database model. That way you can isolate the changes to
the two different models. As you update one model, you don't need to update the other. You just
update the intermediate layer. Such a layer adds complexity but gives you a lot of flexibility. Even
without refactoring it is very important in situations in which you have multiple databases or a
complex database model that you don't have control over.

You don't have to start with a separate layer. You can create the layer as you notice parts of your
object model becoming volatile. This way you get the greatest leverage for your changes.

Object databases both help and hinder. Some object-oriented databases provide automatic
migration from one version of an object to another. This reduces the effort but still imposes a time
penalty while the migration takes place. When migration isn't automatic, you have to do the
migration yourself, which is a lot of effort. In this situation you have to be more wary about
changes to the data structure of classes. You can still freely move behavior around, but you have
to be more cautious about moving fields. You need to use accessors to give the illusion that the
data has moved, even when it hasn't. When you are pretty sure you know where the data ought
to be, you can move and migrate the data in a single move. Only the accessors need to change,
reducing the risk for problems with bugs.

Changing Interfaces

 55

One of the important things about objects is that they allow you to change the implementation of a
software module separately from changing the interface. You can safely change the internals of
an object without anyone else's worrying about it, but the interface is important—change that and
anything can happen.

Something that is disturbing about refactoring is that many of the refactorings do change an
interface. Something as simple as Rename Method is all about changing an interface. So what
does this do to the treasured notion of encapsulation?

There is no problem changing a method name if you have access to all the code that calls that
method. Even if the method is public, as long as you can reach and change all the callers, you
can rename the method. There is a problem only if the interface is being used by code that you
cannot find and change. When this happens, I say that the interface becomes a published
interface (a step beyond a public interface). Once you publish an interface, you can no longer
safely change it and just edit the callers. You need a somewhat more complicated process.

This notion changes the question. Now the problem is: What do you do about refactorings that
change published interfaces?

In short, if a refactoring changes a published interface, you have to retain both the old interface
and the new one, at least until your users have had a chance to react to the change. Fortunately,
this is not too awkward. You can usually arrange things so that the old interface still works. Try to
do this so that the old interface calls the new interface. In this way when you change the name of
a method, keep the old one, and just let it call the new one. Don't copy the method body—that
leads you down the path to damnation by way of duplicated code. You should also use the
deprecation facility in Java to mark the code as deprecated. That way your callers will know that
something is up.

A good example of this process is the Java collection classes. The new ones present in Java 2
supersede the ones that were originally provided. When the Java 2 ones were released, however,
JavaSoft put a lot of effort into providing a migration route.

Protecting interfaces usually is doable, but it is a pain. You have to build and maintain these extra
methods, at least for a time. The methods complicate the interface, making it harder to use. There
is an alternative: Don't publish the interface. Now I'm not talking about a total ban here, clearly
you have to have published interfaces. If you are building APIs for outside consumption, as Sun
does, then you have to have published interfaces. I say this because I often see development
groups using published interfaces far too much. I've seen a team of three people operate in such
a way that each person published interfaces to the other two. This led to all sorts of gyrations to
maintain interfaces when it would have been easier to go into the code base and make the edits.
Organizations with an overly strong notion of code ownership tend to behave this way. Using
published interfaces is useful, but it comes with a cost. So don't publish interfaces unless you
really need to. This may mean modifying your code ownership rules to allow people to change
other people's code in order to support an interface change. Often it is a good idea to do this with
pair programming.

Tip

Don't publish interfaces prematurely. Modify your code ownership policies to smooth
refactoring.

 56

There is one particular area with problems in changing interfaces in Java: adding an exception to
the throws clause. This is not a change in signature, so you cannot use delegation to cover it. The
compiler will not let it compile, however. It is tough to deal with this problem. You can choose a
new name for the method, let the old method call it, and convert the checked into an unchecked
exception. You can also throw an unchecked exception, although then you lose the checking
ability. When you do this, you can alert your callers that the exception will become a checked
exception at a future date. They then have some time to put the handlers into their code. For this
reason I prefer to define a superclass exception for a whole package (such as SQLException for
java.sql) and ensure that public methods only declare this exception in their throws clause. That
way I can define subclass exceptions if I want to, but this won't affect a caller who knows only
about the general case.

Design Changes That Are Difficult to Refactor

Can you refactor your way out of any design mistake, or are some design decisions so central
that you cannot count on refactoring to change your mind later? This is an area in which we have
very incomplete data. Certainly we have often been surprised by situations in which we can
refactor efficiently, but there are places where this is difficult. In one project it was hard, but
possible, to refactor a system built with no security requirements into one with good security.

At this stage my approach is to imagine the refactoring. As I consider design alternatives, I ask
myself how difficult it would be to refactor from one design into another. If it seems easy, I don't
worry too much about the choice, and I pick the simplest design, even if it does not cover all the
potential requirements. However, if I cannot see a simple way to refactor, then I put more effort
into the design. I do find such situations are in the minority.

When Shouldn't You Refactor?

There are times when you should not refactor at all. The principle example is when you should
rewrite from scratch instead. There are times when the existing code is such a mess that
although you could refactor it, it would be easier to start from the beginning. This decision is not
an easy one to make, and I admit that I don't really have good guidelines for it.

A clear sign of the need to rewrite is when the current code just does not work. You may discover
this only by trying to test it and discovering that the code is so full of bugs that you cannot
stablilize it. Remember, code has to work mostly correctly before you refactor.

A compromise route is to refactor a large piece of software into components with strong
encapsulation. Then you can make a refactor-versus-rebuild decision for one component at a
time. This is a promising approach, but I don't have enough data to write good rules for doing
that. With a key legacy system, this would certainly be an appealing direction to take.

The other time you should avoid refactoring is when you are close to a deadline. At that point the
productivity gain from refactoring would appear after the deadline and thus be too late. Ward
Cunningham has a good way to think of this. He describes unfinished refactoring as going into
debt. Most companies need some debt in order to function efficiently. However, with debt come
interest payments, that is, the extra cost of maintenance and extension caused by overly complex
code. You can bear some interest payments, but if the payments become too great, you will be
overwhelmed. It is important to manage your debt, paying parts of it off by means of refactoring.

Other than when you are very close to a deadline, however, you should not put off refactoring
because you haven't got time. Experience with several projects has shown that a bout of

 57

refactoring results in increased productivity. Not having enough time usually is a sign that you
need to do some refactoring.

Refactoring and Design

Refactoring has a special role as a complement to design. When I first learned to program, I just
wrote the program and muddled my way through it. In time I learned that thinking about the
design in advance helped me avoid costly rework. In time I got more into this style of upfront
design. Many people consider design to be the key piece and programming just mechanics. The
analogy is design is an engineering drawing and code is the construction work. But software is
very different from physical machines. It is much more malleable, and it is all about thinking. As
Alistair Cockburn puts it, "With design I can think very fast, but my thinking is full of little holes."

One argument is that refactoring can be an alternative to upfront design. In this scenario you
don't do any design at all. You just code the first approach that comes into your head, get it
working, and then refactor it into shape. Actually, this approach can work. I've seen people do this
and come out with a very well-designed piece of software. Those who support Extreme
Programming [Beck, XP] often are portrayed as advocating this approach.

Although doing only refactoring does work, it is not the most efficient way to work. Even the
extreme programmers do some design first. They will try out various ideas with CRC cards or the
like until they have a plausible first solution. Only after generating a plausible first shot will they
code and then refactor. The point is that refactoring changes the role of upfront design. If you
don't refactor, there is a lot of pressure in getting that upfront design right. The sense is that any
changes to the design later are going to be expensive. Thus you put more time and effort into the
upfront design to avoid the need for such changes.

With refactoring the emphasis changes. You still do upfront design, but now you don't try to find
the solution. Instead all you want is a reasonable solution. You know that as you build the
solution, as you understand more about the problem, you realize that the best solution is different
from the one you originally came up with. With refactoring this is not a problem, for it no longer is
expensive to make the changes.

An important result of this change in emphasis is a greater movement toward simplicity of design.
Before I used refactoring, I always looked for flexible solutions. With any requirement I would
wonder how that requirement would change during the life of the system. Because design
changes were expensive, I would look to build a design that would stand up to the changes I
could foresee. The problem with building a flexible solution is that flexibility costs. Flexible
solutions are more complex than simple ones. The resulting software is more difficult to maintain
in general, although it is easier to flex in the direction I had in mind. Even there, however, you
have to understand how to flex the design. For one or two aspects this is no big deal, but
changes occur throughout the system. Building flexibility in all these places makes the overall
system a lot more complex and expensive to maintain. The big frustration, of course, is that all
this flexibility is not needed. Some of it is, but it's impossible to predict which pieces those are. To
gain flexibility, you are forced to put in a lot more flexibility than you actually need.

With refactoring you approach the risks of change differently. You still think about potential
changes, you still consider flexible solutions. But instead of implementing these flexible solutions,
you ask yourself, "How difficult is it going to be to refactor a simple solution into the flexible
solution?" If, as happens most of the time, the answer is "pretty easy," then you just implement
the simple solution.

Refactoring can lead to simpler designs without sacrificing flexibility. This makes the design
process easier and less stressful. Once you have a broad sense of things that refactor easily, you

 58

don't even think of the flexible solutions. You have the confidence to refactor if the time comes.
You build the simplest thing that can possibly work. As for the flexible, complex design, most of
the time you aren't going to need it.

It Takes Awhile to Create Nothing

Ron Jeffries

The Chrysler Comprehensive Compensation pay process was running
too slowly. Although we were still in development, it began to bother us,
because it was slowing down the tests.

Kent Beck, Martin Fowler, and I decided we'd fix it up. While I waited for
us to get together, I was speculating, on the basis of my extensive
knowledge of the system, about what was probably slowing it down. I
thought of several possibilities and chatted with folks about the changes
that were probably necessary. We came up with some really good ideas
about what would make the system go faster.

Then we measured performance using Kent's profiler. None of the
possibilities I had thought of had anything to do with the problem.
Instead, we found that the system was spending half its time creating
instances of date. Even more interesting was that all the instances had
the same couple of values.

When we looked at the date-creation logic, we saw some opportunities
for optimizing how these dates were created. They were all going
through a string conversion even though no external inputs were
involved. The code was just using string conversion for convenience of
typing. Maybe we could optimize that.

Then we looked at how these dates were being used. It turned out that
the huge bulk of them were all creating instances of date range, an
object with a from date and a to date. Looking around little more, we
realized that most of these date ranges were empty!

As we worked with date range, we used the convention that any date
range that ended before it started was empty. It's a good convention and
fits in well with how the class works. Soon after we started using this
convention, we realized that just creating a date range that starts after it
ends wasn't clear code, so we extracted that behavior into a factory
method for empty date ranges.

We had made that change to make the code clearer, but we received an
unexpected payoff. We created a constant empty date range and
adjusted the factory method to return that object instead of creating it
every time. That change doubled the speed of the system, enough for

 59

the tests to be bearable. It took us about five minutes.

I had speculated with various members of the team (Kent and Martin
deny participating in the speculation) on what was likely wrong with code
we knew very well. We had even sketched some designs for
improvements without first measuring what was going on.

We were completely wrong. Aside from having a really interesting
conversation, we were doing no good at all.

The lesson is: Even if you know exactly what is going on in your system,
measure performance, don't speculate. You'll learn something, and nine
times out of ten, it won't be that you were right!

Refactoring and Performance

A common concern with refactoring is the effect it has on the performance of a program. To make
the software easier to understand, you often make changes that will cause the program to run
more slowly. This is an important issue. I'm not one of the school of thought that ignores
performance in favor of design purity or in hopes of faster hardware. Software has been rejected
for being too slow, and faster machines merely move the goalposts. Refactoring certainly will
make software go more slowly, but it also makes the software more amenable to performance
tuning. The secret to fast software, in all but hard real-time contexts, is to write tunable software
first and then to tune it for sufficient speed.

I've seen three general approaches to writing fast software. The most serious of these is time
budgeting, used often in hard real-time systems. In this situation, as you decompose the design
you give each component a budget for resources—time and footprint. That component must not
exceed its budget, although a mechanism for exchanging budgeted times is allowed. Such a
mechanism focuses hard attention on hard performance times. It is essential for systems such as
heart pacemakers, in which late data is always bad data. This technique is overkill for other kinds
of systems, such as the corporate information systems with which I usually work.

The second approach is the constant attention approach. With this approach every programmer,
all the time, does whatever he or she can to keep performance high. This is a common approach
and has intuitive attraction, but it does not work very well. Changes that improve performance
usually make the program harder to work with. This slows development. This would be a cost
worth paying if the resulting software were quicker, but usually it is not. The performance
improvements are spread all around the program, and each improvement is made with a narrow
perspective of the program's behavior.

The interesting thing about performance is that if you analyze most programs, you find that they
waste most of their time in a small fraction of the code. If you optimize all the code equally, you
end up with 90 percent of the optimizations wasted, because you are optimizing code that isn't
run much. The time spent making the program fast, the time lost because of lack of clarity, is all
wasted time.

The third approach to performance improvement takes advantage of this 90 percent statistic. In
this approach you build your program in a well-factored manner without paying attention to
performance until you begin a performance optimization stage, usually fairly late in development.
During the performance optimization stage, you follow a specific process to tune the program.

 60

You begin by running the program under a profiler that monitors the program and tells you where
it is consuming time and space. This way you can find that small part of the program where the
performance hot spots lie. Then you focus on those performance hot spots and use the same
optimizations you would use if you were using the constant attention approach. But because you
are focusing your attention on a hot spot, you are having much more effect for less work. Even so
you remain cautious. As in refactoring you make the changes in small steps. After each step you
compile, test, and rerun the profiler. If you haven't improved performance, you back out the
change. You continue the process of finding and removing hot spots until you get the
performance that satisfies your users. McConnel [McConnel] gives more information on this
technique.

Having a well-factored program helps with this style of optimization in two ways. First, it gives you
time to spend on performance tuning. Because you have well-factored code, you can add
function more quickly. This gives you more time to focus on performance. (Profiling ensures you
focus that time on the right place.) Second, with a well-factored program you have finer
granularity for your performance analysis. Your profiler leads you to smaller parts of the code,
which are easier to tune. Because the code is clearer, you have a better understanding of your
options and of what kind of tuning will work.

I've found that refactoring helps me write fast software. It slows the software in the short term
while I'm refactoring, but it makes the software easier to tune during optimization. I end up well
ahead.

Where Did Refactoring Come From?

I've not succeeded in pinning down the real birth of the term refactoring. Good programmers
certainly have spent at least some time cleaning up their code. They do this because they have
learned that clean code is easier to change than complex and messy code, and good
programmers know that they rarely write clean code the first time around.

Refactoring goes beyond this. In this book I'm advocating refactoring as a key element in the
whole process of software development. Two of the first people to recognize the importance of
refactoring were Ward Cunningham and Kent Beck, who worked with Smalltalk from the 1980s
onward. Smalltalk is an environment that even then was particularly hospitable to refactoring. It is
a very dynamic environment that allows you quickly to write highly functional software. Smalltalk
has a very short compile-link-execute cycle, which makes it easy to change things quickly. It is
also object oriented and thus provides powerful tools for minimizing the impact of change behind
well-defined interfaces. Ward and Kent worked hard at developing a software development
process geared to working with this kind of environment. (Kent currently refers to this style as
Extreme Programming [Beck, XP].) They realized that refactoring was important in improving their
productivity and ever since have been working with refactoring, applying it to serious software
projects and refining the process.

Ward and Kent's ideas have always been a strong influence on the Smalltalk community, and the
notion of refactoring has become an important element in the Smalltalk culture. Another leading
figure in the Smalltalk community is Ralph Johnson, a professor at the University of Illinois at
Urbana-Champaign, who is famous as one of the Gang of Four [Gang of Four]. One of Ralph's
biggest interests is in developing software frameworks. He explored how refactoring can help
develop an efficient and flexible framework.

Bill Opdyke was one of Ralph's doctoral students and is particularly interested in frameworks. He
saw the potential value of refactoring and saw that it could be applied to much more than
Smalltalk. His background was in telephone switch development, in which a great deal of
complexity accrues over time, and changes are difficult to make. Bill's doctoral research looked at

 61

refactoring from a tool builder's perspective. Bill investigated the refactorings that would be useful
for C++ framework development and researched the necessary semantics-preserving
refactorings, how to prove they were semantics preserving, and how a tool could implement these
ideas. Bill's doctoral thesis [Opdyke] is the most substantial work on refactoring to date. He also
contributes Chapter 13 to this book.

I remember meeting Bill at the OOPSLA conference in 1992. We sat in a café and discussed
some of the work I'd done in building a conceptual framework for healthcare. Bill told me about
his research, and I remember thinking, "Interesting, but not really that important." Boy was I
wrong!

John Brant and Don Roberts have taken the tool ideas in refactoring much further to produce the
Refactoring Browser, a refactoring tool for Smalltalk. They contribute Chapter 14 to this book,
which further describes refactoring tools.

And me? I'd always been inclined to clean code, but I'd never considered it to be that important.
Then I worked on a project with Kent and saw the way he used refactoring. I saw the difference it
made in productivity and quality. That experience convinced me that refactoring was a very
important technique. I was frustrated, however, because there was no book that I could give to a
working programmer, and none of the experts above had any plans to write such a book. So, with
their help, I did.

Optimizing a Payroll System

Rich Garzaniti

We had been developing Chrysler Comprehensive Compensation
System for quite a while before we started to move it to GemStone.
Naturally, when we did that, we found that the program wasn't fast
enough. We brought in Jim Haungs, a master GemSmith, to help us
optimize the system.

After a little time with the team to learn how the system worked, Jim used
GemStone's ProfMonitor feature to write a profiling tool that plugged into
our functional tests. The tool displayed the numbers of objects that were
being created and where they were being created.

To our surprise, the biggest offender turned out to be the creation of
strings. The biggest of the big was repeated creation of 12,000-byte
strings. This was a particular problem because the string was so big that
GemStone's usual garbage-collection facilities wouldn't deal with it.
Because of the size, GemStone was paging the string to disk every time
it was created. It turned out the strings were being built way down in our
IO framework, and they were being built three at a time for every output
record!

Our first fix was to cache a single 12,000-byte string, which solved most
of the problem. Later, we changed the framework to write directly to a file

 62

stream, which eliminated the creation of even the one string.

Once the huge string was out of the way, Jim's profiler found similar
problems with some smaller strings: 800 bytes, 500 bytes, and so on.
Converting these to use the file stream facility solved them as well.

With these techniques we steadily improved the performance of the
system. During development it looked like it would take more than 1,000
hours to run the payroll. When we actually got ready to start, it took 40
hours. After a month we got it down to around 18; when we launched we
were at 12. After a year of running and enhancing the system for a new
group of employees, it was down to 9 hours.

Our biggest improvement was to run the program in multiple threads on
a multiprocessor machine. The system wasn't designed with threads in
mind, but because it was so well factored, it took us only three days to
run in multiple threads. Now the payroll takes a couple of hours to run.

Before Jim provided a tool that measured the system in actual operation,
we had good ideas about what was wrong. But it was a long time before
our good ideas were the ones that needed to be implemented. The real
measurements pointed in a different direction and made a much bigger
difference.

 63

Chapter 3. Bad Smells in Code
by Kent Beck and Martin Fowler

If it stinks, change it.

—Grandma Beck, discussing child-rearing philosophy

By now you have a good idea of how refactoring works. But just because you know how doesn't
mean you know when. Deciding when to start refactoring, and when to stop, is just as important
to refactoring as knowing how to operate the mechanics of a refactoring.

Now comes the dilemma. It is easy to explain to you how to delete an instance variable or create
a hierarchy. These are simple matters. Trying to explain when you should do these things is not
so cut-and-dried. Rather than appealing to some vague notion of programming aesthetics (which
frankly is what we consultants usually do), I wanted something a bit more solid.

I was mulling over this tricky issue when I visited Kent Beck in Zurich. Perhaps he was under the
influence of the odors of his newborn daughter at the time, but he had come up with the notion
describing the "when" of refactoring in terms of smells. "Smells," you say, "and that is supposed
to be better than vague aesthetics?" Well, yes. We look at lots of code, written for projects that
span the gamut from wildly successful to nearly dead. In doing so, we have learned to look for
certain structures in the code that suggest (sometimes they scream for) the possibility of
refactoring. (We are switching over to "we" in this chapter to reflect the fact that Kent and I wrote
this chapter jointly. You can tell the difference because the funny jokes are mine and the others
are his.)

One thing we won't try to do here is give you precise criteria for when a refactoring is overdue. In
our experience no set of metrics rivals informed human intuition. What we will do is give you
indications that there is trouble that can be solved by a refactoring. You will have to develop your
own sense of how many instance variables are too many instance variables and how many lines
of code in a method are too many lines.

You should use this chapter and the table on the inside back cover as a way to give you
inspiration when you're not sure what refactorings to do. Read the chapter (or skim the table) to
try to identify what it is you're smelling, then go to the refactorings we suggest to see whether
they will help you. You may not find the exact smell you can detect, but hopefully it should point
you in the right direction.

Duplicated Code

Number one in the stink parade is duplicated code. If you see the same code structure in more
than one place, you can be sure that your program will be better if you find a way to unify them.

The simplest duplicated code problem is when you have the same expression in two methods of
the same class. Then all you have to do is Extract Method and invoke the code from both
places.

Another common duplication problem is when you have the same expression in two sibling
subclasses. You can eliminate this duplication by using Extract Method in both classes then
Pull Up Field. If the code is similar but not the same, you need to use Extract Method to
separate the similar bits from the different bits. You may then find you can use Form Template

 64

Method. If the methods do the same thing with a different algorithm, you can choose the clearer
of the two algorithms and use Substitute Algorithm.

If you have duplicated code in two unrelated classes, consider using Extract Class in one class
and then use the new component in the other. Another possibility is that the method really
belongs only in one of the classes and should be invoked by the other class or that the method
belongs in a third class that should be referred to by both of the original classes. You have to
decide where the method makes sense and ensure it is there and nowhere else.

Long Method

The object programs that live best and longest are those with short methods. Programmers new
to objects often feel that no computation ever takes place, that object programs are endless
sequences of delegation. When you have lived with such a program for a few years, however,
you learn just how valuable all those little methods are. All of the payoffs of indirection—
explanation, sharing, and choosing—are supported by little methods (see Indirection and
Refactoring on page 61).

Since the early days of programming people have realized that the longer a procedure is, the
more difficult it is to understand. Older languages carried an overhead in subroutine calls, which
deterred people from small methods. Modern OO languages have pretty much eliminated that
overhead for in-process calls. There is still an overhead to the reader of the code because you
have to switch context to see what the subprocedure does. Development environments that allow
you to see two methods at once help to eliminate this step, but the real key to making it easy to
understand small methods is good naming. If you have a good name for a method you don't need
to look at the body.

The net effect is that you should be much more aggressive about decomposing methods. A
heuristic we follow is that whenever we feel the need to comment something, we write a method
instead. Such a method contains the code that was commented but is named after the intention
of the code rather than how it does it. We may do this on a group of lines or on as little as a single
line of code. We do this even if the method call is longer than the code it replaces, provided the
method name explains the purpose of the code. The key here is not method length but the
semantic distance between what the method does and how it does it.

Ninety-nine percent of the time, all you have to do to shorten a method is Extract Method. Find
parts of the method that seem to go nicely together and make a new method.

If you have a method with lots of parameters and temporary variables, these elements get in the
way of extracting methods. If you try to use Extract Method, you end up passing so many of the
parameters and temporary variables as parameters to the extracted method that the result is
scarcely more readable than the original. You can often use Replace Temp with Query to
eliminate the temps. Long lists of parameters can be slimmed down with Introduce Parameter
Object and Preserve Whole Object.

If you've tried that, and you still have too many temps and parameters, it's time to get out the
heavy artillery: Replace Method with Method Object.

How do you identify the clumps of code to extract? A good technique is to look for comments.
They often signal this kind of semantic distance. A block of code with a comment that tells you
what it is doing can be replaced by a method whose name is based on the comment. Even a
single line is worth extracting if it needs explanation.

 65

Conditionals and loops also give signs for extractions. Use Decompose Conditional to deal
with conditional expressions. With loops, extract the loop and the code within the loop into its own
method.

Large Class

When a class is trying to do too much, it often shows up as too many instance variables. When a
class has too many instance variables, duplicated code cannot be far behind.

You can Extract Class to bundle a number of the variables. Choose variables to go together in
the component that makes sense for each. For example, "depositAmount" and "depositCurrency"
are likely to belong together in a component. More generally, common prefixes or suffixes for
some subset of the variables in a class suggest the opportunity for a component. If the
component makes sense as a subclass, you'll find Extract Subclass often is easier.

Sometimes a class does not use all of its instance variables all of the time. If so, you may be able
to Extract Class or Extract Subclass many times.

As with a class with too many instance variables, a class with too much code is prime breeding
ground for duplicated code, chaos, and death. The simplest solution (have we mentioned that we
like simple solutions?) is to eliminate redundancy in the class itself. If you have five hundred-line
methods with lots of code in common, you may be able to turn them into five ten-line methods
with another ten two-line methods extracted from the original.

As with a class with a huge wad of variables, the usual solution for a class with too much code is
either to Extract Class or Extract Subclass. A useful trick is to determine how clients use the
class and to use Extract Interface for each of these uses. That may give you ideas on how you
can further break up the class.

If your large class is a GUI class, you may need to move data and behavior to a separate domain
object. This may require keeping some duplicate data in both places and keeping the data in
sync. Duplicate Observed Data suggests how to do this. In this case, especially if you are
using older Abstract Windows Toolkit (AWT) components, you might follow this by removing the
GUI class and replacing it with Swing components.

Long Parameter List

In our early programming days we were taught to pass in as parameters everything needed by a
routine. This was understandable because the alternative was global data, and global data is evil
and usually painful. Objects change this situation because if you don't have something you need,
you can always ask another object to get it for you. Thus with objects you don't pass in everything
the method needs; instead you pass enough so that the method can get to everything it needs. A
lot of what a method needs is available on the method's host class. In object-oriented programs
parameter lists tend to be much smaller than in traditional programs.

This is good because long parameter lists are hard to understand, because they become
inconsistent and difficult to use, and because you are forever changing them as you need more
data. Most changes are removed by passing objects because you are much more likely to need
to make only a couple of requests to get at a new piece of data.

Use Replace Parameter with Method when you can get the data in one parameter by making
a request of an object you already know about. This object might be a field or it might be another

 66

parameter. Use Preserve Whole Object to take a bunch of data gleaned from an object and
replace it with the object itself. If you have several data items with no logical object, use
Introduce Parameter Object.

There is one important exception to making these changes. This is when you explicitly do not
want to create a dependency from the called object to the larger object. In those cases unpacking
data and sending it along as parameters is reasonable, but pay attention to the pain involved. If
the parameter list is too long or changes too often, you need to rethink your dependency
structure.

Divergent Change

We structure our software to make change easier; after all, software is meant to be soft. When we
make a change we want to be able to jump to a single clear point in the system and make the
change. When you can't do this you are smelling one of two closely related pungencies.

Divergent change occurs when one class is commonly changed in different ways for different
reasons. If you look at a class and say, "Well, I will have to change these three methods every
time I get a new database; I have to change these four methods every time there is a new
financial instrument," you likely have a situation in which two objects are better than one. That
way each object is changed only as a result of one kind of change. Of course, you often discover
this only after you've added a few databases or financial instruments. Any change to handle a
variation should change a single class, and all the typing in the new class should express the
variation. To clean this up you identify everything that changes for a particular cause and use
Extract Class to put them all together.

Shotgun Surgery

Shotgun surgery is similar to divergent change but is the opposite. You whiff this when every time
you make a kind of change, you have to make a lot of little changes to a lot of different classes.
When the changes are all over the place, they are hard to find, and it's easy to miss an important
change.

In this case you want to use Move Method and Move Field to put all the changes into a single
class. If no current class looks like a good candidate, create one. Often you can use Inline Class
to bring a whole bunch of behavior together. You get a small dose of divergent change, but you
can easily deal with that.

Divergent change is one class that suffers many kinds of changes, and shotgun surgery is one
change that alters many classes. Either way you want to arrange things so that, ideally, there is a
one-to-one link between common changes and classes.

Feature Envy

The whole point of objects is that they are a technique to package data with the processes used
on that data. A classic smell is a method that seems more interested in a class other than the one
it actually is in. The most common focus of the envy is the data. We've lost count of the times
we've seen a method that invokes half-a-dozen getting methods on another object to calculate
some value. Fortunately the cure is obvious, the method clearly wants to be elsewhere, so you
use Move Method to get it there. Sometimes only part of the method suffers from envy; in that
case use Extract Method on the jealous bit and Move Method to give it a dream home.

 67

Of course not all cases are cut-and-dried. Often a method uses features of several classes, so
which one should it live with? The heuristic we use is to determine which class has most of the
data and put the method with that data. This step is often made easier if Extract Method is used
to break the method into pieces that go into different places.

Of course there are several sophisticated patterns that break this rule. From the Gang of Four
[Gang of Four] Strategy and Visitor immediately leap to mind. Kent Beck's Self Delegation [Beck]
is another. You use these to combat the divergent change smell. The fundamental rule of thumb
is to put things together that change together. Data and the behavior that references that data
usually change together, but there are exceptions. When the exceptions occur, we move the
behavior to keep changes in one place. Strategy and Visitor allow you to change behavior easily,
because they isolate the small amount of behavior that needs to be overridden, at the cost of
further indirection.

Data Clumps

Data items tend to be like children; they enjoy hanging around in groups together. Often you'll see
the same three or four data items together in lots of places: fields in a couple of classes,
parameters in many method signatures. Bunches of data that hang around together really ought
to be made into their own object. The first step is to look for where the clumps appear as fields.
Use Extract Class on the fields to turn the clumps into an object. Then turn your attention to
method signatures using Introduce Parameter Object or Preserve Whole Object to slim
them down. The immediate benefit is that you can shrink a lot of parameter lists and simplify
method calling. Don't worry about data clumps that use only some of the fields of the new object.
As long as you are replacing two or more fields with the new object, you'll come out ahead.

A good test is to consider deleting one of the data values: if you did this, would the others make
any sense? If they don't, it's a sure sign that you have an object that's dying to be born.

Reducing field lists and parameter lists will certainly remove a few bad smells, but once you have
the objects, you get the opportunity to make a nice perfume. You can now look for cases of
feature envy, which will suggest behavior that can be moved into your new classes. Before long
these classes will be productive members of society.

Primitive Obsession

Most programming environments have two kinds of data. Record types allow you to structure
data into meaningful groups. Primitive types are your building blocks. Records always carry a
certain amount of overhead. They may mean tables in a database, or they may be awkward to
create when you want them for only one or two things.

One of the valuable things about objects is that they blur or even break the line between primitive
and larger classes. You can easily write little classes that are indistinguishable from the built-in
types of the language. Java does have primitives for numbers, but strings and dates, which are
primitives in many other environments, are classes.

People new to objects usually are reluctant to use small objects for small tasks, such as money
classes that combine number and currency, ranges with an upper and a lower, and special
strings such as telephone numbers and ZIP codes. You can move out of the cave into the
centrally heated world of objects by using Replace Data Value with Object on individual data
values. If the data value is a type code, use Replace Type Code with Class if the value does
not affect behavior. If you have conditionals that depend on the type code, use Replace Type
Code with Subclasses or Replace Type Code with State/Strategy.

 68

If you have a group of fields that should go together, use Extract Class. If you see these
primitives in parameter lists, try a civilizing dose of Introduce Parameter Object. If you find
yourself picking apart an array, use Replace Array with Object.

Switch Statements

One of the most obvious symptoms of object-oriented code is its comparative lack of switch (or
case) statements. The problem with switch statements is essentially that of duplication. Often you
find the same switch statement scattered about a program in different places. If you add a new
clause to the switch, you have to find all these switch, statements and change them. The object-
oriented notion of polymorphism gives you an elegant way to deal with this problem.

Most times you see a switch statement you should consider polymorphism. The issue is where
the polymorphism should occur. Often the switch statement switches on a type code. You want
the method or class that hosts the type code value. So use Extract Method to extract the switch
statement and then Move Method to get it onto the class where the polymorphism is needed. At
that point you have to decide whether to Replace Type Code with Subclasses or Replace
Type Code with State/Strategy. When you have set up the inheritance structure, you can use
Replace Conditional with Polymorphism.

If you only have a few cases that affect a single method, and you don't expect them to change,
then polymorphism is overkill. In this case Replace Parameter with Explicit Methods is a
good option. If one of your conditional cases is a null, try Introduce Null Object.

Parallel Inheritance Hierarchies

Parallel inheritance hierarchies is really a special case of shotgun surgery. In this case, every
time you make a subclass of one class, you also have to make a subclass of another. You can
recognize this smell because the prefixes of the class names in one hierarchy are the same as
the prefixes in another hierarchy.

The general strategy for eliminating the duplication is to make sure that instances of one
hierarchy refer to instances of the other. If you use Move Method and Move Field, the hierarchy
on the referring class disappears.

Lazy Class

Each class you create costs money to maintain and understand. A class that isn't doing enough
to pay for itself should be eliminated. Often this might be a class that used to pay its way but has
been downsized with refactoring. Or it might be a class that was added because of changes that
were planned but not made. Either way, you let the class die with dignity. If you have subclasses
that aren't doing enough, try to use Collapse Hierarchy. Nearly useless components should be
subjected to Inline Class.

Speculative Generality

Brian Foote suggested this name for a smell to which we are very sensitive. You get it when
people say, "Oh, I think we need the ability to this kind of thing someday" and thus want all sorts
of hooks and special cases to handle things that aren't required. The result often is harder to
understand and maintain. If all this machinery were being used, it would be worth it. But if it isn't,
it isn't. The machinery just gets in the way, so get rid of it.

 69

If you have abstract classes that aren't doing much, use Collapse Hierarchy. Unnecessary
delegation can be removed with Inline Class. Methods with unused parameters should be
subject to Remove Parameter. Methods named with odd abstract names should be brought
down to earth with Rename Method.

Speculative generality can be spotted when the only users of a method or class are test cases. If
you find such a method or class, delete it and the test case that exercises it. If you have a method
or class that is a helper for a test case that exercises legitimate functionality, you have to leave it
in, of course.

Temporary Field

Sometimes you see an object in which an instance variable is set only in certain circumstances.
Such code is difficult to understand, because you expect an object to need all of its variables.
Trying to understand why a variable is there when it doesn't seem to be used can drive you nuts.

Use Extract Class to create a home for the poor orphan variables. Put all the code that concerns
the variables into the component. You may also be able to eliminate conditional code by using
Introduce Null Object to create an alternative component for when the variables aren't valid.

A common case of temporary field occurs when a complicated algorithm needs several variables.
Because the implementer didn't want to pass around a huge parameter list (who does?), he put
them in fields. But the fields are valid only during the algorithm; in other contexts they are just
plain confusing. In this case you can use Extract Class with these variables and the methods that
require them. The new object is a method object [Beck].

Message Chains

You see message chains when a client asks one object for another object, which the client then
asks for yet another object, which the client then asks for yet another another object, and so on.
You may see these as a long line of getThis methods, or as a sequence of temps. Navigating this
way means the client is coupled to the structure of the navigation. Any change to the intermediate
relationships causes the client to have to change.

The move to use here is Hide Delegate. You can do this at various points in the chain. In
principle you can do this to every object in the chain, but doing this often turns every intermediate
object into a middle man. Often a better alternative is to see what the resulting object is used for.
See whether you can use Extract Method to take a piece of the code that uses it and then
Move Method to push it down the chain. If several clients of one of the objects in the chain want
to navigate the rest of the way, add a method to do that.

Some people consider any method chain to be a terrible thing. We are known for our calm,
reasoned moderation. Well, at least in this case we are.

Middle Man

One of the prime features of objects is encapsulation—hiding internal details from the rest of the
world. Encapsulation often comes with delegation. You ask a director whether she is free for a
meeting; she delegates the message to her diary and gives you an answer. All well and good.
There is no need to know whether the director uses a diary, an electronic gizmo, or a secretary to
keep track of her appointments.

 70

However, this can go too far. You look at a class's interface and find half the methods are
delegating to this other class. After a while it is time to use Remove Middle Man and talk to the
object that really knows what's going on. If only a few methods aren't doing much, use Inline
Method to inline them into the caller. If there is additional behavior, you can use Replace
Delegation with Inheritance to turn the middle man into a subclass of the real object. That
allows you to extend behavior without chasing all that delegation.

Inappropriate Intimacy

Sometimes classes become far too intimate and spend too much time delving in each
others'private parts. We may not be prudes when it comes to people, but we think our classes
should follow strict, puritan rules.

Overintimate classes need to be broken up as lovers were in ancient days. Use Move Method
and Move Field to separate the pieces to reduce the intimacy. See whether you can arrange a
Change Bidirectional Association to Unidirectional. If the classes do have common
interests, use Extract Class to put the commonality in a safe place and make honest classes of
them. Or use Hide Delegate to let another class act as go-between.

Inheritance often can lead to overintimacy. Subclasses are always going to know more about
their parents than their parents would like them to know. If it's time to leave home, apply Replace
Delegation with Inheritance.

Alternative Classes with Different Interfaces

Use Rename Method on any methods that do the same thing but have different signatures for
what they do. Often this doesn't go far enough. In these cases the classes aren't yet doing
enough. Keep using Move Method to move behavior to the classes until the protocols are the
same. If you have to redundantly move code to accomplish this, you may be able to use Extract
Superclass to atone.

Incomplete Library Class

Reuse is often touted as the purpose of objects. We think reuse is overrated (we just use).
However, we can't deny that much of our programming skill is based on library classes so that
nobody can tell whether we've forgotten our sort algorithms.

Builders of library classes are rarely omniscient. We don't blame them for that; after all, we can
rarely figure out a design until we've mostly built it, so library builders have a really tough job. The
trouble is that it is often bad form, and usually impossible, to modify a library class to do
something you'd like it to do. This means that tried-and-true tactics such as Move Method lie
useless.

We have a couple of special-purpose tools for this job. If there are just a couple of methods that
you wish the library class had, use Introduce Foreign Method. If there is a whole load of extra
behavior, you need Introduce Local Extension.

Data Class

These are classes that have fields, getting and setting methods for the fields, and nothing else.
Such classes are dumb data holders and are almost certainly being manipulated in far too much

 71

detail by other classes. In early stages these classes may have public fields. If so, you should
immediately apply Encapsulate Field before anyone notices. If you have collection fields, check
to see whether they are properly encapsulated and apply Encapsulate Collection if they aren't.
Use Remove Setting Method on any field that should not be changed.

Look for where these getting and setting methods are used by other classes. Try to use Move
Method to move behavior into the data class. If you can't move a whole method, use Extract
Method to create a method that can be moved. After a while you can start using Hide Method
on the getters and setters.

Data classes are like children. They are okay as a starting point, but to participate as a grownup
object, they need to take some responsibility.

Refused Bequest

Subclasses get to inherit the methods and data of their parents. But what if they don't want or
need what they are given? They are given all these great gifts and pick just a few to play with.

The traditional story is that this means the hierarchy is wrong. You need to create a new sibling
class and use Push Down Method and Push Down Field to push all the unused methods to
the sibling. That way the parent holds only what is common. Often you'll hear advice that all
superclasses should be abstract.

You'll guess from our snide use of traditional that we aren't going to advise this, at least not all the
time. We do subclassing to reuse a bit of behavior all the time, and we find it a perfectly good way
of doing business. There is a smell, we can't deny it, but usually it isn't a strong smell. So we say
that if the refused bequest is causing confusion and problems, follow the traditional advice.
However, don't feel you have to do it all the time. Nine times out of ten this smell is too faint to be
worth cleaning.

The smell of refused bequest is much stronger if the subclass is reusing behavior but does not
want to support the interface of the superclass. We don't mind refusing implementations, but
refusing interface gets us on our high horses. In this case, however, don't fiddle with the
hierarchy; you want to gut it by applying Replace Inheritance with Delegation.

Comments

Don't worry, we aren't saying that people shouldn't write comments. In our olfactory analogy,
comments aren't a bad smell; indeed they are a sweet smell. The reason we mention comments
here is that comments often are used as a deodorant. It's surprising how often you look at thickly
commented code and notice that the comments are there because the code is bad.

Comments lead us to bad code that has all the rotten whiffs we've discussed in the rest of this
chapter. Our first action is to remove the bad smells by refactoring. When we're finished, we often
find that the comments are superfluous.

If you need a comment to explain what a block of code does, try Extract Method. If the method
is already extracted but you still need a comment to explain what it does, use Rename Method.
If you need to state some rules about the required state of the system, use Introduce
Assertion.

Tip

 72

When you feel the need to write a comment, first try to refactor the code so that any
comment becomes superfluous.

A good time to use a comment is when you don't know what to do. In addition to describing what
is going on, comments can indicate areas in which you aren't sure. A comment is a good place to
say why you did something. This kind of information helps future modifiers, especially forgetful
ones.

 73

Chapter 4. Building Tests

If you want to refactor, the essential precondition is having solid tests. Even if you are fortunate
enough to have a tool that can automate the refactorings, you still need tests. It will be a long time
before all possible refactorings can be automated in a refactoring tool.

I don't see this as a disadvantage. I've found that writing good tests greatly speeds my
programming, even if I'm not refactoring. This was a surprise for me, and it is counterintuitive for
many programmers, so it's worth explaining why.

The Value of Self-testing Code

If you look at how most programmers spend their time, you'll find that writing code actually is
quite a small fraction. Some time is spent figuring out what ought to be going on, some time is
spent designing, but most time is spent debugging. I'm sure every reader can remember long
hours of debugging, often long into the night. Every programmer can tell a story of a bug that took
a whole day (or more) to find. Fixing the bug is usually pretty quick, but finding it is a nightmare.
And then when you do fix a bug, there's always a chance that another one will appear and that
you might not even notice it till much later. Then you spend ages finding that bug.

The event that started me on the road to self-testing code was a talk at OOPSLA in '92. Someone
(I think it was Dave Thomas) said offhandedly, "Classes should contain their own tests." That
struck me as a good way to organize tests. I interpreted that as saying that each class should
have its own method (called test) that can be used to test itself.

At that time I was also into incremental development, so I tried adding test methods to classes as
I completed each increment. The project on which I was working at that time was quite small, so
we put out increments every week or so. Running the tests became fairly straightforward, but
although they were easy to run, the tests were still pretty boring to do. This was because every
test produced output to the console that I had to check. Now I'm a pretty lazy person and am
prepared to work quite hard in order to avoid work. I realized that instead of looking at the screen
to see if it printed out some information from the model, I could get the computer to make that
test. All I had to do was put the output I expected in the test code and do a comparison. Now I
could run each class'test method, and it would just print "OK" to the screen if all was well. The
class was now self-testing.

Tip

Make sure all tests are fully automatic and that they check their own results.

Now it was easy to run a test—as easy as compiling. So I started to run tests every time I
compiled. Soon I began to notice my productivity had shot upward. I realized that I wasn't
spending so much time debugging. If I added a bug that was caught by a previous test, it would
show up as soon as I ran that test. Because the test had worked before, I would know that the
bug was in the work I had done since I last tested. Because I ran the tests frequently, only a few
minutes had elapsed. I thus knew that the source of the bug was the code I had just written.
Because that code was fresh in my mind and was a small amount, the bug was easy to find. Bugs
that once had taken an hour or more to find now took a couple of minutes at most. Not just had I
built self-testing classes, but by running them frequently I had a powerful bug detector.

 74

As I noticed this I became more aggressive about doing the tests. Instead of waiting for the end of
increment, I would add the tests immediately after writing a bit of function. Every day I would add
a couple of new features and the tests to test them. These days I hardly ever spend more than a
few minutes debugging.

Tip

A suite of tests is a powerful bug detector that decapitates the time it takes to find
bugs.

Of course, it is not so easy to persuade others to follow this route. Writing the tests is a lot of
extra code to write. Unless you have actually experienced the way it speeds programming, self-
testing does not seem to make sense. This is not helped by the fact that many people have never
learned to write tests or even to think about tests. When tests are manual, they are gut-
wrenchingly boring. But when they are automatic, tests can actually be quite fun to write.

In fact, one of the most useful times to write tests is before you start programming. When you
need to add a feature, begin by writing the test. This isn't as backward as it sounds. By writing the
test you are asking yourself what needs to be done to add the function. Writing the test also
concentrates on the interface rather than the implementation (always a good thing). It also means
you have a clear point at which you are done coding—when the test works.

This notion of frequent testing is an important part of extreme programming [Beck, XP]. The name
conjures up notions of programmers who are fast and loose hackers. But extreme programmers
are very dedicated testers. They want to develop software as fast as possible, and they know that
tests help you to go as fast as you possibly can.

That's enough of the polemic. Although I believe everyone would benefit by writing self-testing
code, it is not the point of this book. This book is about refactoring. Refactoring requires tests. If
you want to refactor, you have to write tests. This chapter gives you a start in doing this for Java.
This is not a testing book, so I'm not going to go into much detail. But with testing I've found that a
remarkably small amount can have surprisingly big benefits.

As with everything else in this book, I describe the testing approach using examples. When I
develop code, I write the tests as I go. But often when I'm working with people on refactoring, we
have a body of non-self-testing code to work on. So first we have to make the code self-testing
before we refactor.

The standard Java idiom for testing is the testing main. The idea is that every class should have a
main function that tests the class. It's a reasonable convention (although not honored much), but
it can become awkward. The problem is that such a convention makes it tricky to run many tests
easily. Another approach is to build separate test classes that work in a framework to make
testing easier.

The JUnit Testing Framework

The testing framework I use is JUnit, an open-source testing framework developed by Erich
Gamma and Kent Beck [JUnit]. The framework is very simple, yet it allows you to do all the key
things you need for testing. In this chapter I use this framework to develop tests for some io
classes.

 75

To begin I create a FileReaderTester class to test the file reader. Any class that contains tests
must subclass the test-case class from the testing framework. The framework uses the composite
pattern [Gang of Four] that allows you to group tests into suites (Figure 4.1) . These suites can
contain the raw test-cases or other suites of test-cases. This makes it easy to build a range of
large test suites and run the tests automatically.

Figure 4.1. The composite structure of tests

 class FileReaderTester extends TestCase {
 public FileReaderTester (String name) {
 super(name);
 }
 }

The new class has to have a constructor. After this I can start adding some test code. My first job
is to set up the test fixture. A test fixture is essentially the objects that act as samples for testing.
Because I'm reading a file I need to set up a test file, as follows:

Bradman 99.94 52 80 10 6996 334 29
Pollock 60.97 23 41 4 2256 274 7
Headley 60.83 22 40 4 2256 270* 10
Sutcliffe 60.73 54 84 9 4555 194 16

To further use the file, I prepare the fixture. The test-case class provides two methods to
manipulate the test fixture: setUp creates the objects and tearDown removes them. Both are

 76

implemented as null methods on test-case. Most of the time you don't need to do a tear down
(the garbage collector can handle it), but it is wise to use it here to close the file, as follows:

 class FileReaderTester...
 protected void setUp() {
 try {
 _input = new FileReader("data.txt");
 } catch (FileNotFoundException e) {
 throw new RuntimeException ("unable to open test file");
 }
 }

 protected void tearDown() {
 try {
 _input.close();
 } catch (IOException e) {
 throw new RuntimeException ("error on closing test
file");
 }
 }

Now that I have the test fixture in place, I can start writing tests. The first is to test the read
method. To do this I read a few characters and then check that the character I read next is the
right one:

 public void testRead() throws IOException {
 char ch = '&';
 for (int i=0; i < 4; i++)
 ch = (char) _input.read();
 assert('d' == ch);
 }

The automatic test is the assert method. If the value inside the assert is true, all is well. Otherwise
we signal an error. I show how the framework does that later. First I describe how to run the test.

The first step is to create a test suite. To do this, create a method called suite:

 class FileReaderTester...
 public static Test suite() {
 TestSuite suite= new TestSuite();
 suite.addTest(new FileReaderTester("testRead"));
 return suite;
 }

This test suite contains only one test-case object, an instance of FileReaderTester. When I
create a test case, I give the constructor a string argument, which is the name of the method I'm
going to test. This creates one object that tests that one method. The test is bound to the object
through Java's reflection capability. You can take a look at the downloaded source code to figure
out how it does it. I just treat it as magic.

 77

To run the tests, use a separate TestRunner class. There are two versions of TestRunner: one
uses a cool GUI, the other a simple character interface. I can call the character interface version
in the main:

 class FileReaderTester...
 public static void main (String[] args) {
 junit.textui.TestRunner.run (suite());
 }

The code creates the test runner and tells it to test the FileReaderTester class. When I run it I see

 .
 Time: 0.110

 OK (1 tests)

JUnit prints a period for each test that runs (so you can see progress). It tells you how long the
tests have run. It then says "OK" if nothing goes wrong and tells you how many tests have been
run. I can run a thousand tests, and if all goes well, I'll see that OK. This simple feedback is
essential to self-testing code. Without it you'll never run the tests often enough. With it you can
run masses of tests, go off for lunch (or a meeting), and see the results when you get back.

Tip

Run your tests frequently. Localize tests whenever you compile—every test at least
every day.

In refactoring you run only a few tests to exercise the code on which you are working. You can
run only a few because they must be fast: otherwise they'll slow you down and you'll be tempted
not to run them. Don't give in to that temptation—retribution will follow.

What happens if something goes wrong? I'll demonstrate by putting in a deliberate bug, as
follows:

 public void testRead() throws IOException {
 char ch = '&';
 for (int i=0; i < 4; i++)
 ch = (char) _input.read();
 assert('2' == ch); //deliberate error
 }

The result looks like this:

 .F
 Time: 0.220

 !!!FAILURES!!!

 78

 Test Results:
 Run: 1 Failures: 1 Errors: 0
 There was 1 failure:
 1) FileReaderTester.testRead
 test.framework.AssertionFailedError

The framework alerts me to the failure and tells me which test failed. The error message isn't
particularly helpful, though. I can make the error message better by using another form of assert.

 public void testRead() throws IOException {
 char ch = '&';
 for (int i=0; i < 4; i++)
 ch = (char) _input.read();
 assertEquals('m',ch);
 }

Most of the asserts you do are comparing two values to see whether they are equal. So the
framework includes assertEquals. This is convenient; it uses equals() on objects and == on
values, which I often forget to do. It also allows a more meaningful error message:

 .F
 Time: 0.170

 !!!FAILURES!!!
 Test Results:
 Run: 1 Failures: 1 Errors: 0
 There was 1 failure:
 1) FileReaderTester.testRead "expected:"m"but was:"d""

I should mention that often when I'm writing tests, I start by making them fail. With existing code I
either change it to make it fail (if I can touch the code) or put an incorrect expected value in the
assert. I do this because I like to prove to myself that the test does actually run and the test is
actually testing what it's supposed to (which is why I prefer changing the tested code if I can).
This may be paranoia, but you can really confuse yourself when tests are testing something other
than what you think they are testing.

In addition to catching failures (assertions coming out false), the framework also catches errors
(unexpected exceptions). If I close the stream and then try to read from it, I should get an
exception. I can test this with

 public void testRead() throws IOException {
 char ch = '&';
 _input.close();
 for (int i=0; i < 4; i++)
 ch = (char) _input.read(); // will throw exception
 assertEquals('m',ch);
 }

If I run this I get

 79

 .E

 Time: 0.110

 !!!FAILURES!!!
 Test Results:
 Run: 1 Failures: 0 Errors: 1
 There was 1 error:
 1) FileReaderTester.testRead
 java.io.IOException: Stream closed

It is useful to differentiate failures and errors, because they tend to turn up differently and the
debugging process is different.

JUnit also includes a nice GUI (Figure 4.2). The progress bar shows green if all tests pass and
red if there are any failures. You can leave the GUI up all the time, and the environment
automatically links in any changes to your code. This is a very convenient way to run the tests.

Figure 4.2. The graphical use r interface of JUnit

Unit and Functional Tests

This framework is used for unit tests, so I should mention the difference between unit tests and
functional tests. The tests I'm talking about are unit tests. I write them to improve my productivity
as a programmer. Making the quality assurance department happy is just a side effect. Unit tests
are highly localized. Each test class works within a single package. It tests the interfaces to other
packages, but beyond that it assumes the rest just works.

Functional tests are a different animal. They are written to ensure the software as a whole works.
They provide quality assurance to the customer and don't care about programmer productivity.
They should be developed by a different team, one who delights in finding bugs. This team uses
heavyweight tools and techniques to help them do this.

 80

Functional tests typically treat the whole system as a black box as much as possible. In a GUI-
based system, they operate through the GUI. In a file or database update program, the tests just
look at how the data is changed for certain inputs.

When functional testers, or users, find a bug in the software, at least two things are needed to fix
it. Of course you have to change the production code to remove the bug. But you should also add
a unit test that exposes the bug. Indeed, when I get a bug report, I begin by writing a unit test that
causes the bug to surface. I write more than one test if I need to narrow the scope of the bug, or if
there may be related failures. I use the unit tests to help pin down the bug and to ensure that a
similar bug doesn't get past my unit tests again.

Tip

When you get a bug report, start by writing a unit test that exposes the bug.

The JUnit framework is designed for writing unit tests. Functional tests often are performed with
other tools. GUI-based test tools are good examples. Often, however, you'll write your own
application-specific test tools that make it easier to manage test-cases than do GUI scripts alone.
You can perform functional tests with JUnit, but it's usually not the most efficient way. For
refactoring purposes, I count on the unit tests—the programmer's friend.

Adding More Tests

Now we should continue adding more tests. The style I follow is to look at all the things the class
should do and test each one of them for any conditions that might cause the class to fail. This is
not the same as "test every public method," which some programmers advocate. Testing should
be risk driven; remember, you are trying to find bugs now or in the future. So I don't test
accessors that just read and write a field. Because they are so simple, I'm not likely to find a bug
there.

This is important because trying to write too many tests usually leads to not writing enough. I've
often read books on testing, and my reaction has been to shy away from the mountain of stuff I
have to do to test. This is counterproductive, because it makes you think that to test you have to
do a lot of work. You get many benefits from testing even if you do only a little testing. The key is
to test the areas that you are most worried about going wrong. That way you get the most benefit
for your testing effort.

Tip

It is better to write and run incomplete tests than not to run complete tests.

At the moment I'm looking at the read method. What else should it do? One thing it says is that it
returns -1 at the end of the file (not a very nice protocol in my view, but I guess that makes it
more natural for C programmers). Let's test it. My text editor tells me there are 141 characters in
the file, so here's the test:

 81

 public void testReadAtEnd() throws IOException {
 int ch = -1234;
 for (int i = 0; i < 141; i++)
 ch = _input.read();
 assertEquals(-1, ch);
 }

To get the test to run, I have to add it to the suite:

 public static Test suite() {
 TestSuite suite= new TestSuite();
 suite.addTest(new FileReaderTester("testRead"));
 suite.addTest(new FileReaderTester("testReadAtEnd"));
 return suite;
 }

When this suite is run, it tells each of its component tests (the two test-cases) to run. Each test-
case executes setUp, the body of the test code in the testing method, and finally tearDown. It is
important to run setUp and tearDown each time so that the tests are isolated from each other.
That means we can run them in any order and it doesn't matter.

It's a pain to remember to add the tests to the suite method. Fortunately, Erich Gamma and Kent
Beck are just as lazy as I am, so they provided a way to avoid that. A special constructor for the
test suite takes a class as a parameter.

This constructor builds a test suite that contains a test-case for every method that starts with the
word test. If I follow that convention, I can replace my main with

 public static void main (String[] args) {
 junit.textui.TestRunner.run (new TestSuite(FileReaderTester.class));
 }

That way each test I write is added to the suite.

A key trick with tests is to look for boundary conditions. For the read the boundaries would be the
first character, the last character, and the character after the last character:

 public void testReadBoundaries()throwsIOException {
 assertEquals("read first char",'B', _input.read());
 int ch;
 for (int i = 1;i <140; i++)
 ch = _input.read();
 assertEquals("read last char",'6',_input.read());
 assertEquals("read at end",-1,_input.read());
 }

Notice that you can add a message to the assert that is printed if the test fails.

Tip

 82

Think of the boundary conditions under which things might go wrong and concentrate
your tests there.

Another part of looking for boundaries is looking for special conditions that can cause the test to
fail. For files, empty files are always a good choice:

 public void testEmptyRead()throws IOException {
 File empty = new File ("empty.txt");
 FileOutputStream out = new FileOutputStream (empty);
 out.close();
 FileReader in = new FileReader (empty);
 assertEquals (-1, in.read());
 }

In this case I'm creating a bit of extra fixture just for this test. If I need an empty file for later, I can
move it into regular fixture by moving the code to setup.

 protected void setUp(){
 try {
 _input = new FileReader("data.txt");
 _empty = newEmptyFile();
 } catch(IOException e){
 throw new RuntimeException(e.toString());
 }
 }

 private FileReader newEmptyFile() throws IOException {
 File empty = new File ("empty.txt");
 FileOutputStream out = new FileOutputStream(empty);
 out.close();
 return newFileReader(empty);
 }

 public void testEmptyRead() throws IOException {
 assertEquals (-1, _empty.read());
 }

What happens if you read after the end of the file? Again -1 should be returned, and I augment
one of the other tests to probe that:

 public void testReadBoundaries()throwsIOException {
 assertEquals("read first char",'B', _input.read());
 int ch;
 for (int i = 1;i <140; i++)
 ch = _input.read();
 assertEquals("read last char", '6', _input.read());
 assertEquals("read at end",-1,_input.read());
 assertEquals ("readpast end", -1, _input.read());
 }

 83

Notice how I'm playing the part of an enemy to code. I'm actively thinking about how I can break
it. I find that state of mind to be both productive and fun. It indulges the mean-spirited part of my
psyche.

When you are doing tests, don't forget to check that expected errors occur properly. If you try to
read a stream after it is closed, you should get an IOException. This too should be tested:

 public void testReadAfterClose() throwsIOException{
 _input.close();
 try {
 _input.read();
 fail ("no exception for read past end");
 } catch (IOException io) {}
}

Any other exception than the IOException will produce an error in the normal way.

Tip

Don't forget to test that exceptions are raised when things are expected to go wrong.

Fleshing out the tests continues along these lines. It takes a while to go through the interface to
some classes to do this, but in the process you get to really understand the interface of the class.
In particular, it helps to think about error conditions and boundary conditions. That's another
advantage for writing tests as you write code, or even before you write the production code.

As you add more tester classes, you can create other tester classes that combine suites from
multiple classes. This is easy to do because a test suite can contain other test suites. Thus you
can have a master test class:

 class MasterTester extends TestCase {
 public static void main (String[] args) {
 junit.textui.TestRunner.run (suite());
 }
 public static Test suite() {
 TestSuite result = new TestSuite();
 result.addTest(new TestSuite(FileReaderTester.class));
 result.addTest(new TestSuite(FileWriterTester.class));
 // and so on...
 return result;
 }
 }

When do you stop? I'm sure you have heard many times that you cannot prove a program has no
bugs by testing. That's true but does not affect the ability of testing to speed up programming. I've
seen various proposals for rules to ensure you have tested every combination of everything. It's
worth taking a look at these, but don't let them get to you. There is a point of diminishing returns
with testing, and there is the danger that by trying to write too many tests, you become
discouraged and end up not writing any. You should concentrate on where the risk is. Look at the

 84

code and see where it beomes complex. Look at the function and consider the likely areas of
error. Your tests will not find every bug, but as you refactor you will understand the program
better and thus find more bugs. Although I always start refactoring with a test suite, I invariably
add to it as I go along.

Tip

Don't let the fear that testing can't catch all bugs stop you from writing the tests that
will catch most bugs.

One of the tricky things about objects is that the inheritance and polymorphism can make testing
harder, because there are many combinations to test. If you have three abstract classes that
collaborate and each has three subclasses, you have nine alternatives but twenty-seven
combinations. I don't always try to test all the combinations possible, but I do try to test each
alternative. It boils down to the risk in the combinations. If the alternatives are reasonably
independent of each other, I'm not likely to try each combination. There's always a risk that I'll
miss something, but it is better to spend a reasonable time to catch most bugs than to spend
ages trying to catch them all.

A difference between test code and production code is that it is okay to copy and edit test code.
When dealing with combinations and alternatives, I often do that. First take "regular pay event,"
now take "seniority" and "disabled before the end of the year." Now do it without "seniority" and
"disabled before the end of the year," and so on. With simple alternatives like that on top of a
reasonable fixture, I can generate tests very quickly. I then can use refactoring to factor out truly
common items later.

I hope I have given you a feel for writing tests. I can say a lot more on this topic, but that would
obscure the key message. Build a good bug detector and run it frequently. It is a wonderful tool
for any development and is a precondition for refactoring.

 85

Chapter 5. Toward a Catalog of Refactorings

Chapters 5 to 12 form an initial catalog of refactorings. They've grown from the notes I've made in
refactoring over the last few years. This catalog is by no means comprehensive or watertight, but
it should provide a solid starting point for your own refactoring work.

Format of the Refactorings

As I describe the refactorings in this and other chapters, I use a standard format. Each refactoring
has five parts, as follows:

• I begin with a name. The name is important to building a vocabulary of refactorings. This
is the name I use elsewhere in the book.

• I follow the name with a short summary of the situation in which you need the refactoring
and a summary of what the refactoring does. This helps you find a refactoring more
quickly.

• The motivation describes why the refactoring should be done and describes
circumstances in which it shouldn't be done.

• The mechanics are a concise, step-by-step description of how to carry out the
refactoring.

• The examples show a very simple use of the refactoring to illustrate how it works.

The summary includes a short statement of the problem that the refactoring helps you with, a
short description of what you do, and a sketch that shows you a simple before and after example.
Sometimes I use code for the sketch and sometimes Unified Modeling Language (UML),
depending on which seems to best convey the essence of the refactoring. (All UML diagrams in
this book are drawn from the implementation perspective [Fowler, UML].) If you've seen the
refactoring before, the sketch should give you a good idea what the refactoring is about. If not
you'll probably need to work through the example to get a better idea.

The mechanics come from my own notes to remember how to do the refactoring when I haven't
done it for a while. As such they are somewhat terse, usually without explanations of why the
steps are done that way. I give more expansive explanations in the example. This way the
mechanics are short notes you can refer to easily when you know the refactoring but need to look
up the steps (at least this is how I use them). You'll probably need to read the example when you
first do the refactoring.

I've written the mechanics in such a way that each step of each refactoring is as small as
possible. I emphasize the safe way of doing the refactoring, which is to take very small steps and
test after every one. At work I usually take larger steps than some of the baby steps described,
but if I run into a bug, I back out the step and take the smaller steps. The steps include a number
of references to special cases. The steps thus also function as a checklist; I often forget these
things myself.

The examples are of the laughably simple textbook kind. My aim with the example is to help
explain the basic refactoring with minimal distractions, so I hope you'll forgive the simplicity. (They
are certainly not examples of good business object design.) I'm sure you'll be able to apply them
to your rather more complex situations. Some very simple refactorings don't have examples
because I didn't think an example would add much.

In particular, remember that the examples are included only to illustrate the one refactoring under
discussion. In most cases, there are still problems with the code at the end, but fixing these

 86

problems requires other refactorings. In a few cases in which refactorings often go together, I
carry examples from one refactoring to another. In most cases I leave the code as it is after the
single refactoring. I do this to make each refactoring self-contained, because the primary role of
the catalog is as a reference.

Don't take any of these examples as suggestions for how to design employee or order objects.
These examples are there only to illustrate the refactorings, nothing more. In particular you'll
notice that in the examples I use double to represent monetary values. I've done this only to
make the examples simpler, as the representation is not important to the refactoring. I strongly
advise against using doubles for money in commercial software. When I represent money I use
the Quantity pattern [Fowler, AP].

When I was writing this book, Java 1.1; was the version that was mostly used in commercial
work. Hence most of my examples use Java 1.1; this is most noticeable in my use of collections.
As I reached the end of the book Java 2 became more available. I don't feel it is necessary to
change all the examples, as the collections are secondary to the refactoring. However there are
some refactorings, such as Encapsulate Collection, that are different in Java 2. In such cases
I've explained both the Java 2 and Java 1.1 cases.

I use boldface code to highlight changed code where it is buried among code that has not
been changed and may be difficult to spot. I do not use boldface type for all changed code,
because too much defeats the purpose.

Finding References

Many of the refactorings call for you to find all references to a method, a field, or a class. When
you do this, enlist the computer to help you. By using the computer you reduce your chances of
missing a reference and can usually do the search much more quickly than you would if you were
simply to eyeball the code.

Most languages treat computer programs as text files. Your best help here is a suitable text
search. Many programming environments allow you to text search a single file or a group of files.
The access control of the feature you are looking for will tell you the range of files you need to
look for.

Don't just search and replace blindly. Inspect each reference to ensure it really refers to the thing
you are replacing. You can be clever with your search pattern, but I always check mentally to
ensure I am making the right replacement. If you can use the same method name on different
classes or methods of different signatures on the same class, there are too many chances you
will get it wrong.

In a strongly typed language, you can let the compiler help you do the hunting. You can often
remove the old feature and let the compiler find the dangling references. The good thing about
this is that the compiler will catch every dangling reference. However, there are problems with this
technique.

First, the compiler will become confused when a feature is declared more than once in an
inheritance hierarchy. This is particularly true when you are looking at a method that is overridden
several times. If you are working in a hierarchy, use the text search to see whether any other
class declares the method you are manipulating.

The second problem is that the compiler may be too slow to be effective. If so, use a text search
first; at least the compiler double-checks your work. This only works when you intend to remove

 87

the feature. Often you want to look at all the uses to decide what to do next. In these cases you
have to use the text search alternative.

A third problem is that the compiler can't catch uses of the reflection API. This is one reason to be
wary of using reflection. If your system uses reflection you will have to use text searches to find
things and put additional weight on your testing. In a number of places I suggest compiling
without testing in situations in which the compiler usually catches errors. If you use reflection, all
such bets are off, and you should test with many of these compiles.

Some Java environments, notably IBM's VisualAge, are following the example of the Smalltalk
browser. With these you use menu options to find references rather than using text searches.
These environments do not use text files to hold the code; they use an in-memory database. Get
used to using these menu items and you will find them often superior to the unavailable text
search.

How Mature Are These Refactorings?

Any technical author has the problem of deciding when to publish. The earlier you publish, the
quicker people can take advantage of the ideas. However, people are always learning. If you
publish half-baked ideas too early, the ideas can be incomplete and even lead to problems for
those who try to use them.

The basic technique of refactoring, taking small steps and testing often, has been well tested over
many years, especially in the Smalltalk community. So I'm confident that the basic idea of
refactoring is very stable.

The refactorings in this book are my notes about the refactorings I use. I have used them all.
However, there is a difference between using a refactoring and boiling it down into the
mechanical steps I give herein. In particular, you occasionally see problems that crop up only in
very specific circumstances. I cannot say that I have had a lot of people work from these steps to
spot many of these kinds of problems. As you use the refactorings, be aware of what you are
doing. Remember that like working with a recipe, you have to adapt the refactorings to your
circumstances. If you run into an interesting problem, drop me an e-mail, and I'll try to pass on
these circumstances for others.

Another aspect to remember about these refactorings is that they are described with single-
process software in mind. In time, I hope to see refactorings described for use with concurrent
and distributed programming. Such refactorings will be different. For example, in single-process
software you never need to worry how often you call a method; method calls are cheap. With
distributed software, however, round trips have to be minimized. There are different refactorings
for those flavors of programming, but those are topics for another book.

Many of the refactorings, such as Replace Type Code with State/Strategy and Form
Template Method are about introducing patterns into a system. As the essential Gang of Four
book says, "Design Patterns … provide targets for your refactorings." There is a natural relation
between patterns and refactorings. Patterns are where you want to be; refactorings are ways to
get there from somewhere else. I don't have refactorings for all known patterns in this book, not
even for all the Gang of Four patterns [Gang of Four]. This is another aspect of the
incompleteness of this catalog. I hope someday the gap will be closed.

As you use the refactorings bear in mind that they are a starting point. You will doubtless find
gaps in them. I'm publishing them now because although they are not perfect, I do believe they

 88

are useful. I believe they will give you a starting point that will improve your ability to refactor
efficiently. That is what they do for me.

As you use more refactorings, I hope you will start developing your own. I hope the examples
herein will motivate you and give you a starting point as to how to do that. I'm conscious of the
fact that there are many more refactorings than the ones I described. If you do come up with
some, please drop me an e-mail.

 89

Chapter 6. Composing Methods

A large part of my refactoring is composing methods to package code properly. Almost all the
time the problems come from methods that are too long. Long methods are troublesome because
they often contain lots of information, which gets buried by the complex logic that usually gets
dragged in. The key refactoring is Extract Method, which takes a clump of code and turns it into
its own method. Inline Method is essentially the opposite. You take a method call and replace it
with the body of the code. I need Inline Method when I've done multiple extractions and realize
some of the resulting methods are no longer pulling their weight or if I need to reorganize the way
I've broken down methods.

The biggest problem with Extract Method is dealing with local variables, and temps are one of
the main sources of this issue. When I'm working on a method, I like Replace Temp with
Queryto get rid of any temporary variables that I can remove. If the temp is used for many things,
I use Split Temporary Variable first to make the temp easier to replace.

Sometimes, however, the temporary variables are just too tangled to replace. I need Replace
Method with Method Object. This allows me to break up even the most tangled method, at the
cost of introducing a new class for the job.

Parameters are less of a problem than temps, provided you don't assign to them. If you do, you
need Remove Assignments to Parameters.

Once the method is broken down, I can understand how it works much better. I may also find that
the algorithm can be improved to make it clearer. I then use Substitute Algorithm to introduce
the clearer algorithm.

Extract Method

You have a code fragment that can be grouped together.

Turn the fragment into a method whose name explains the purpose of the method.

 void printOwing(double amount) {
 printBanner();

 //print details
 System.out.println ("name:" + _name);
 System.out.println ("amount" + amount);
 }

 void printOwing(double amount) {
 printBanner();
 printDetails(amount);
 }

 void printDetails (double amount) {

 90

 System.out.println ("name:" + _name);
 System.out.println ("amount" + amount);
 }

Motivation

Extract Method is one of the most common refactorings I do. I look at a method that is too long or
look at code that needs a comment to understand its purpose. I then turn that fragment of code
into its own method.

I prefer short, well-named methods for several reasons. First, it increases the chances that other
methods can use a method when the method is finely grained. Second, it allows the higher-level
methods to read more like a series of comments. Overriding also is easier when the methods are
finely grained.

It does take a little getting used to if you are used to seeing larger methods. And small methods
really work only when you have good names, so you need to pay attention to naming. People
sometimes ask me what length I look for in a method. To me length is not the issue. The key is
the semantic distance between the method name and the method body. If extracting improves
clarity, do it, even if the name is longer than the code you have extracted.

Mechanics

• Create a new method, and name it after the intention of the method (name it by what it
does, not by how it does it).

? If the code you want to extract is very simple, such as a single
message or function call, you should extract it if the name of the new
method will reveal the intention of the code in a better way. If you can't
come up with a more meaningful name, don't extract the code.

• Copy the extracted code from the source method into the new target method.
• Scan the extracted code for references to any variables that are local in scope to the

source method. These are local variables and parameters to the method.
• See whether any temporary variables are used only within this extracted code. If so,

declare them in the target method as temporary variables.
• Look to see whether any of these local-scope variables are modified by the extracted

code. If one variable is modified, see whether you can treat the extracted code as a query
and assign the result to the variable concerned. If this is awkward, or if there is more than
one such variable, you can't extract the method as it stands. You may need to use Split
Temporary Variable and try again. You can eliminate temporary variables with
Replace Temp with Query (see the discussion in the examples).

• Pass into the target method as parameters local-scope variables that are read from the
extracted code.

• Compile when you have dealt with all the locally-scoped variables.
• Replace the extracted code in the source method with a call to the target method.

? If you have moved any temporary variables over to the target method,
look to see whether they were declared outside of the extracted code. If
so, you can now remove the declaration.

 91

• Compile and test.

Example: No Local Variables

In the simplest case, Extract Method is trivially easy. Take the following method:

 void printOwing() {

 Enumeration e = _orders.elements();
 double outstanding = 0.0;

 // print banner
 System.out.println ("**************************");
 System.out.println ("***** Customer Owes ******");
 System.out.println ("**************************");

 // calculate outstanding
 while (e.hasMoreElements()) {
 Order each = (Order) e.nextElement();
 outstanding += each.getAmount();
 }

 //print details
 System.out.println ("name:" + _name);
 System.out.println ("amount" + outstanding);
 }

It is easy to extract the code that prints the banner. I just cut, paste, and put in a call:

 void printOwing() {

 Enumeration e = _orders.elements();
 double outstanding = 0.0;

 printBanner();

 // calculate outstanding
 while (e.hasMoreElements()) {
 Order each = (Order) e.nextElement();
 outstanding += each.getAmount();
 }

 //print details
 System.out.println ("name:" + _name);
 System.out.println ("amount" + outstanding);
 }

 void printBanner() {
 // print banner
 System.out.println ("**************************");
 System.out.println ("***** Customer Owes ******");

 92

 System.out.println ("**************************");
 }

Example: Using Local Variables

So what's the problem? The problem is local variables: parameters passed into the original
method and temporaries declared within the original method. Local variables are only in scope in
that method, so when I use Extract Method, these variables cause me extra work. In some
cases they even prevent me from doing the refactoring at all.

The easiest case with local variables is when the variables are read but not changed. In this case
I can just pass them in as a parameter. So if I have the following method:

 void printOwing() {

 Enumeration e = _orders.elements();
 double outstanding = 0.0;

 printBanner();

 // calculate outstanding
 while (e.hasMoreElements()) {
 Order each = (Order) e.nextElement();
 outstanding += each.getAmount();
 }

 //print details
 System.out.println ("name:" + _name);
 System.out.println ("amount" + outstanding);
 }

I can extract the printing of details with a method with one parameter:

 void printOwing() {

 Enumeration e = _orders.elements();
 double outstanding = 0.0;

 printBanner();

 // calculate outstanding
 while (e.hasMoreElements()) {
 Order each = (Order) e.nextElement();
 outstanding += each.getAmount();
 }

 printDetails(outstanding);
 }

 93

 void printDetails (double outstanding) {
 System.out.println ("name:" + _name);
 System.out.println ("amount" + outstanding);
 }

You can use this with as many local variables as you need.

The same is true if the local variable is an object and you invoke a modifying method on the
variable. Again you can just pass the object in as a parameter. You only have to do something
different if you actually assign to the local variable.

Example: Reassigning a Local Variable

It's the assignment to local variables that becomes complicated. In this case we're only talking
about temps. If you see an assignment to a parameter, you should immediately use Remove
Assignments to Parameters.

For temps that are assigned to, there are two cases. The simpler case is that in which the
variable is a temporary variable used only within the extracted code. When that happens, you can
move the temp into the extracted code. The other case is use of the variable outside the code. If
the variable is not used after the code is extracted, you can make the change in just the extracted
code. If it is used afterward, you need to make the extracted code return the changed value of the
variable. I can illustrate this with the following method:

 void printOwing() {

 Enumeration e = _orders.elements();
 double outstanding = 0.0;

 printBanner();

 // calculate outstanding
 while (e.hasMoreElements()) {
 Order each = (Order) e.nextElement();
 outstanding += each.getAmount();
 }

 printDetails(outstanding);
 }

Now I extract the calculation:

 void printOwing() {
 printBanner();
 double outstanding = getOutstanding();
 printDetails(outstanding);
 }

 94

 double getOutstanding() {
 Enumeration e = _orders.elements();
 double outstanding = 0.0;
 while (e.hasMoreElements()) {
 Order each = (Order) e.nextElement();
 outstanding += each.getAmount();
 }
 return outstanding;
 }

The enumeration variable is used only in the extracted code, so I can move it entirely within the
new method. The oustanding variable is used in both places, so I need to rerun it from the
extracted method. Once I've compiled and tested for the extraction, I rename the returned value
to follow my usual convention:

 double getOutstanding() {
 Enumeration e = _orders.elements();
 double result = 0.0;
 while (e.hasMoreElements()) {
 Order each = (Order) e.nextElement();
 result = each.getAmount();
 }
 return result;
 }

In this case the outstanding variable is initialized only to an obvious initial value, so I can initialize
it only within the extracted method. If something more involved happens to the variable, I have to
pass in the previous value as a parameter. The initial code for this variation might look like this:

 void printOwing(double previousAmount) {

 Enumeration e = _orders.elements();
 double outstanding = previousAmount * 1.2;

 printBanner();

 // calculate outstanding
 while (e.hasMoreElements()) {
 Order each = (Order) e.nextElement();
 outstanding += each.getAmount();
 }

 printDetails(outstanding);
 }

In this case the extraction would look like this:

 95

 void printOwing(double previousAmount) {
 double outstanding = previousAmount * 1.2;
 printBanner();
 outstanding = getOutstanding(outstanding);
 printDetails(outstanding);
 }

 double getOutstanding(double initialValue) {
 double result = initialValue;
 Enumeration e = _orders.elements();
 while (e.hasMoreElements()) {
 Order each = (Order) e.nextElement();
 result += each.getAmount();
 }
 return result;
 }

After I compile and test this, I clear up the way the outstanding variable is initialized:

 void printOwing(double previousAmount) {
 printBanner();
 double outstanding = getOutstanding(previousAmount * 1.2);
 printDetails(outstanding);
 }

At this point you may be wondering, "What happens if more than one variable needs to be
returned?"

Here you have several options. The best option usually is to pick different code to extract. I prefer
a method to return one value, so I would try to arrange for multiple methods for the different
values. (If your language allows output parameters, you can use those. I prefer to use single
return values as much as possible.)

Temporary variables often are so plentiful that they make extraction very awkward. In these
cases I try to reduce the temps by using Replace Temp with Query. If whatever I do things are
still awkward, I resort to Replace Method with Method Object. This refactoring doesn't care
how many temporaries you have or what you do with them.

Inline Method

A method's body is just as clear as its name.

Put the method's body into the body of its callers and remove the method.

 int getRating() {
 return (moreThanFiveLateDeliveries()) ? 2 : 1;
 }

 96

 boolean moreThanFiveLateDeliveries() {
 return _numberOfLateDeliveries > 5;
 }

 int getRating() {
 return (_numberOfLateDeliveries > 5) ? 2 : 1;
 }

Motivation

A theme of this book is to use short methods named to show their intention, because these
methods lead to clearer and easier to read code. But sometimes you do come across a method in
which the body is as clear as the name. Or you refactor the body of the code into something that
is just as clear as the name. When this happens, you should then get rid of the method.
Indirection can be helpful, but needless indirection is irritating.

Another time to use Inline Method is when you have a group of methods that seem badly
factored. You can inline them all into one big method and then reextract the methods. Kent Beck
finds it is often good to do this before using Replace Method with Method Object. You inline
the various calls made by the method that have behavior you want to have in the method object.
It's easier to move one method than to move the method and its called methods.

I commonly use Inline Method when someone is using too much indirection and it seems that
every method does simple delegation to another method, and I get lost in all the delegation. In
these cases some of the indirection is worthwhile, but not all of it. By trying to inline I can flush out
the useful ones and eliminate the rest.

Mechanics

• Check that the method is not polymorphic.

? Don't inline if subclasses override the method; they cannot override a
method that isn't there.

• Find all calls to the method.
• Replace each call with the method body.
• Compile and test.
• Remove the method definition.

Written this way, Inline Method is simple. In general it isn't. I could write pages on how to
handle recursion, multiple return points, inlining into another object when you don't have
accessors, and the like. The reason I don't is that if you encounter these complexities, you
shouldn't do this refactoring.

Inline Temp

 97

You have a temp that is assigned to once with a simple expression, and the temp is getting in the
way of other refactorings.

Replace all references to that temp with the expression.

 double basePrice = anOrder.basePrice();
 return (basePrice > 1000)

 return (anOrder.basePrice() > 1000)

Motivation

Most of the time Inline Temp is used as part of Replace Temp with Query, so the real
motivation is there. The only time Inline Temp is used on its own is when you find a temp that is
assigned the value of a method call. Often this temp isn't doing any harm and you can safely
leave it there. If the temp is getting in the way of other refactorings, such as Extract Method, it's
time to inline it.

Mechanics

• Declare the temp as final if it isn't already, and compile.

? This checks that the temp is really only assigned to once.

• Find all references to the temp and replace them with the right-hand side of the
assignment.

• Compile and test after each change.
• Remove the declaration and the assignment of the temp.
• Compile and test.

Replace Temp with Query

You are using a temporary variable to hold the result of an expression.

Extract the expression into a method. Replace all references to the temp with the expression. The
new method can then be used in other methods.

 double basePrice = _quantity * _itemPrice;
 if (basePrice > 1000)
 return basePrice * 0.95;
 else
 return basePrice * 0.98;

 98

 if (basePrice() > 1000)
 return basePrice() * 0.95;
 else
 return basePrice() * 0.98;
...
 double basePrice() {
 return _quantity * _itemPrice;
 }

Motivation

The problem with temps is that they are temporary and local. Because they can be seen only in
the context of the method in which they are used, temps tend to encourage longer methods,
because that's the only way you can reach the temp. By replacing the temp with a query method,
any method in the class can get at the information. That helps a lot in coming up with cleaner
code for the class.

Replace Temp with Query often is a vital step before Extract Method. Local variables make it
difficult to extract, so replace as many variables as you can with queries.

The straightforward cases of this refactoring are those in which temps are assigned only to once
and those in which the expression that generates the assignment is free of side effects. Other
cases are trickier but possible. You may need to use Split Temporary Variable or Separate
Query from Modifier first to make things easier. If the temp is used to collect a result (such as
summing over a loop), you need to copy some logic into the query method.

Mechanics

Here is the simple case:

• Look for a temporary variable that is assigned to once.

? If a temp is set more than once consider Split Temporary Variable.

• Declare the temp as final.
• Compile.

? This will ensure that the temp is only assigned to once.

• Extract the right-hand side of the assignment into a method.

? Initially mark the method as private. You may find more use for it later,
but you can easily relax the protection later.

? Ensure the extracted method is free of side effects, that is, it does not
modify any object. If it is not free of side effects, use Separate Query
from Modifier.

 99

• Compile and test.
• Use Replace Temp with Query on the temp.

Temps often are used to store summary information in loops. The entire loop can be extracted
into a method; this removes several lines of noisy code. Sometimes a loop may be used to sum
up multiple values, as in the example on page 26. In this case, duplicate the loop for each temp
so that you can replace each temp with a query. The loop should be very simple, so there is little
danger in duplicating the code.

You may be concerned about performance in this case. As with other performance issues, let it
slide for the moment. Nine times out of ten, it won't matter. When it does matter, you will fix the
problem during optimization. With your code better factored, you will often find more powerful
optimizations, which you would have missed without refactoring. If worse comes to worse, it's
very easy to put the temp back.

Example

I start with a simple method:

 double getPrice() {
 int basePrice = _quantity * _itemPrice;
 double discountFactor;
 if (basePrice > 1000) discountFactor = 0.95;
 else discountFactor = 0.98;
 return basePrice * discountFactor;
 }

I'm inclined to replace both temps, one at a time.

Although it's pretty clear in this case, I can test that they are assigned only to once by declaring
them as final:

 double getPrice() {
 final int basePrice = _quantity * _itemPrice;
 final double discountFactor;
 if (basePrice > 1000) discountFactor = 0.95;
 else discountFactor = 0.98;
 return basePrice * discountFactor;
 }

Compiling will then alert me to any problems. I do this first, because if there is a problem, I
shouldn't be doing this refactoring. I replace the temps one at a time. First I extract the right-hand
side of the assignment:

 double getPrice() {
 final int basePrice = basePrice();
 final double discountFactor;

 100

 if (basePrice > 1000) discountFactor = 0.95;
 else discountFactor = 0.98;
 return basePrice * discountFactor;
 }

 private int basePrice() {
 return _quantity * _itemPrice;
 }

I compile and test, then I begin with Replace Temp with Query. First I replace the first
reference to the temp:

 double getPrice() {
 final int basePrice = basePrice();
 final double discountFactor;
 if (basePrice() > 1000) discountFactor = 0.95;
 else discountFactor = 0.98;
 return basePrice * discountFactor;
 }

Compile and test and do the next (sounds like a caller at a line dance). Because it's the last, I
also remove the temp declaration:

 double getPrice() {
 final double discountFactor;
 if (basePrice() > 1000) discountFactor = 0.95;
 else discountFactor = 0.98;
 return basePrice() * discountFactor;
 }

With that gone I can extract discountFactor in a similar way:

 double getPrice() {
 final double discountFactor = discountFactor();
 return basePrice() * discountFactor;
 }

 private double discountFactor() {
 if (basePrice() > 1000) return 0.95;
 else return 0.98;
 }

See how it would have been difficult to extract discountFactor if I had not replaced
basePrice with a query.

 101

The getPrice method ends up as follows:

 double getPrice() {
 return basePrice() * discountFactor();
 }

Introduce Explaining Variable

You have a complicated expression.

Put the result of the expression, or parts of the expression, in a temporary variable with a name

that explains the purpose.

 if ((platform.toUpperCase().indexOf("MAC") > -1) &&
 (browser.toUpperCase().indexOf("IE") > -1) &&
 wasInitialized() && resize > 0)
{
 // do something
}

 final boolean isMacOs = platform.toUpperCase().indexOf("MAC") >
-1;
 final boolean isIEBrowser = browser.toUpperCase().indexOf("IE") >
-1;
 final boolean wasResized = resize > 0;

 if (isMacOs && isIEBrowser && wasInitialized() && wasResized) {
 // do something
 }

Motivation

Expressions can become very complex and hard to read. In such situations temporary variables
can be helpful to break down the expression into something more manageable.

Introduce Explaining Variable is particularly valuable with conditional logic in which it is useful to
take each clause of a condition and explain what the condition means with a well-named temp.
Another case is a long algorithm, in which each step in the computation can be explained with a
temp.

Introduce Explaining Variable is a very common refactoring, but I confess I don't use it that much.
I almost always prefer to use Extract Method if I can. A temp is useful only within the context of
one method. A method is useable throughout the object and to other objects. There are times,

 102

however, when local variables make it difficult to use Extract Method. That's when I use
Introduce Explaining Variable.

Mechanics

• Declare a final temporary variable, and set it to the result of part of the complex
expression.

• Replace the result part of the expression with the value of the temp.

? If the result part of the expression is repeated, you can replace the
repeats one at a time.

• Compile and test.
• Repeat for other parts of the expression.

Example

I start with a simple calculation:

 double price() {
 // price is base price - quantity discount + shipping
 return _quantity * _itemPrice -
 Math.max(0, _quantity - 500) * _itemPrice * 0.05 +
 Math.min(_quantity * _itemPrice * 0.1, 100.0);
 }

Simple it may be, but I can make it easier to follow. First I identify the base price as the quantity
times the item price. I can turn that part of the calculation into a temp:

 double price() {
 // price is base price - quantity discount + shipping
 final double basePrice = _quantity * _itemPrice;
 return basePrice -
 Math.max(0, _quantity - 500) * _itemPrice * 0.05 +
 Math.min(_quantity * _itemPrice * 0.1, 100.0);
 }

Quantity times item price is also used later, so I can substitute with the temp there as well:

 double price() {
 // price is base price - quantity discount + shipping
 final double basePrice = _quantity * _itemPrice;
 return basePrice -
 Math.max(0, _quantity - 500) * _itemPrice * 0.05 +
 Math.min(basePrice * 0.1, 100.0);
 }

 103

Next I take the quantity discount:

 double price() {
 // price is base price - quantity discount + shipping
 final double basePrice = _quantity * _itemPrice;
 final double quantityDiscount = Math.max(0, _quantity - 500) *
_itemPrice * 0.05;
 return basePrice - quantityDiscount +
 Math.min(basePrice * 0.1, 100.0);
 }

Finally, I finish with the shipping. As I do that, I can remove the comment, too, because now it
doesn't say anything the code doesn't say:

 double price() {
 final double basePrice = _quantity * _itemPrice;
 final double quantityDiscount = Math.max(0, _quantity - 500) *
_itemPrice * 0.05;
 final double shipping = Math.min(basePrice * 0.1, 100.0);
 return basePrice - quantityDiscount + shipping;
 }

Example with Extract Method

For this example I usually wouldn't have done the explaining temps; I would prefer to do that with
Extract Method. I start again with

 double price() {
 // price is base price - quantity discount + shipping
 return _quantity * _itemPrice -
 Math.max(0, _quantity - 500) * _itemPrice * 0.05 +
 Math.min(_quantity * _itemPrice * 0.1, 100.0);
 }

but this time I extract a method for the base price:

 double price() {
 // price is base price - quantity discount + shipping
 return basePrice() -
 Math.max(0, _quantity - 500) * _itemPrice * 0.05 +
 Math.min(basePrice() * 0.1, 100.0);

 104

 }

 private double basePrice() {
 return _quantity * _itemPrice;
 }

I continue one at a time. When I'm finished I get

 double price() {
 return basePrice() - quantityDiscount() + shipping();
 }

 private double quantityDiscount() {
 return Math.max(0, _quantity - 500) * _itemPrice * 0.05;
 }

 private double shipping() {
 return Math.min(basePrice() * 0.1, 100.0);
 }

 private double basePrice() {
 return _quantity * _itemPrice;
 }

I prefer to use Extract Method, because now these methods are available to any other part of
the object that needs them. Initially I make them private, but I can always relax that if another
object needs them. I find it's usually no more effort to use Extract Method than it is to use
Introduce Explaining Variable.

So when do I use Introduce Explaining Variable? The answer is when Extract Method is
more effort. If I'm in an algorithm with a lot of local variables, I may not be able to easily use
Extract Method. In this case I use Introduce Explaining Variable to help me understand
what is going on. As the logic becomes less tangled, I can always use Replace Temp with
Query later. The temp also is valuable if I end up having to use Replace Method with Method
Object.

Split Temporary Variable

You have a temporary variable assigned to more than once, but is not a loop variable nor a
collecting temporary variable.

Make a separate temporary variable for each assignment.

 double temp = 2 * (_height + _width);
 System.out.println (temp);
 temp = _height * _width;
 System.out.println (temp);

 105

 final double perimeter = 2 * (_height + _width);
 System.out.println (perimeter);
 final double area = _height * _width;
 System.out.println (area);

Motivation

Temporary variables are made for various uses. Some of these uses naturally lead to the temp's
being assigned to several times. Loop variables [Beck] change for each run around a loop (such
as the i in for (int i=0; i<10; i++). Collecting temporary variables [Beck] collect together
some value that is built up during the method.

Many other temporaries are used to hold the result of a long-winded bit of code for easy
reference later. These kinds of variables should be set only once. That they are set more than
once is a sign that they have more than one responsibility within the method. Any variable with
more than one responsibility should be replaced with a temp for each responsibility. Using a temp
for two different things is very confusing for the reader.

Mechanics

• Change the name of a temp at its declaration and its first assignment.

? If the later assignments are of the form i = i + some expression, that
indicates that it is a collecting temporary variable, so don't split it. The
operator for a collecting temporary variable usually is addition, string
concatenation, writing to a stream, or adding to a collection.

• Declare the new temp as final.
• Change all references of the temp up to its second assignment.
• Declare the temp at its second assignment.
• Compile and test.
• Repeat in stages, each stage renaming at the declaration, and changing references until

the next assignment.

Example

For this example I compute the distance traveled by a haggis. From a standing start, a haggis
experiences an initial force. After a delayed period a secondary force kicks in to further accelerate
the haggis. Using the common laws of motion, I can compute the distance traveled as follows:

 double getDistanceTravelled (int time) {
 double result;
 double acc = _primaryForce / _mass;
 int primaryTime = Math.min(time, _delay);
 result = 0.5 * acc * primaryTime * primaryTime;
 int secondaryTime = time - _delay;

 106

 if (secondaryTime > 0) {
 double primaryVel = acc * _delay;
 acc = (_primaryForce + _secondaryForce) / _mass;
 result += primaryVel * secondaryTime + 0.5 * acc *
secondaryTime * secondaryTime;
 }
 return result;
 }

A nice awkward little function. The interesting thing for our example is the way the variable acc is
set twice. It has two responsibilities: one to hold the initial acceleration caused by the first force
and another later to hold the acceleration with both forces. This I want to split.

I start at the beginning by changing the name of the temp and declaring the new name as final.
Then I change all references to the temp from that point up to the next assignment. At the next
assignment I declare it:

 double getDistanceTravelled (int time) {
 double result;
 final double primaryAcc = _primaryForce / _mass;
 int primaryTime = Math.min(time, _delay);
 result = 0.5 * primaryAcc * primaryTime * primaryTime;
 int secondaryTime = time - _delay;
 if (secondaryTime > 0) {
 double primaryVel = primaryAcc * _delay;
 double acc = (_primaryForce + _secondaryForce) / _mass;
 result += primaryVel * secondaryTime + 0.5 * acc *
secondaryTime * secondaryTime;
 }
 return result;
 }

I choose the new name to represent only the first use of the temp. I make it final to ensure it is
only set once. I can then declare the original temp at its second assignment. Now I can compile
and test, and all should work.

I continue on the second assignment of the temp. This removes the original temp name
completely, replacing it with a new temp named for the second use.

 double getDistanceTravelled (int time) {
 double result;
 final double primaryAcc = _primaryForce / _mass;
 int primaryTime = Math.min(time, _delay);
 result = 0.5 * primaryAcc * primaryTime * primaryTime;
 int secondaryTime = time - _delay;
 if (secondaryTime > 0) {
 double primaryVel = primaryAcc * _delay;
 final double secondaryAcc = (_primaryForce +
_secondaryForce) / _mass;

 107

 result += primaryVel * secondaryTime + 0.5 *
 secondaryAcc * secondaryTime * secondaryTime;
 }
 return result;
 }

I'm sure you can think of a lot more refactoring to be done here. Enjoy it. (I'm sure it's better than
eating the haggis—do you know what they put in those things?)

Remove Assignments to Parameters

The code assigns to a parameter.

Use a temporary variable instead.

 int discount (int inputVal, int quantity, int yearToDate) {
 if (inputVal > 50) inputVal -= 2;

 int discount (int inputVal, int quantity, int yearToDate) {
 int result = inputVal;
 if (inputVal > 50) result -= 2;

Motivation

First let me make sure we are clear on the phrase "assigns to a parameter." This means that if
you pass in an object named foo, in the parameter, assigning to the parameter means to change
foo to refer to a different object. I have no problems with doing something to the object that was
passed in; I do that all the time. I just object to changing foo to refer to another object entirely:

 void aMethod(Object foo) {
 foo.modifyInSomeWay(); // that's OK
 foo = anotherObject; // trouble and despair will follow
you

The reason I don't like this comes down to lack of clarity and to confusion between pass by value
and pass by reference. Java uses pass by value exclusively (see later), and this discussion is
based on that usage.

With pass by value, any change to the parameter is not reflected in the calling routine. Those who
have used pass by reference will probably find this confusing.

 108

The other area of confusion is within the body of the code itself. It is much clearer if you use only
the parameter to represent what has been passed in, because that is a consistent usage.

In Java, don't assign to parameters, and if you see code that does, apply Remove Assignments
to Parameters.

Of course this rule does not necessarily apply to other languages that use output parameters,
although even with these languages I prefer to use output parameters as little as possible.

Mechanics

• Create a temporary variable for the parameter.
• Replace all references to the parameter, made after the assignment, to the temporary

variable.
• Change the assignment to assign to the temporary variable.
• Compile and test.

? If the semantics are call by reference, look in the calling method to see
whether the parameter is used again afterward. Also see how many call
by reference parameters are assigned to and used afterward in this
method. Try to pass a single value back as the return value. If there is
more than one, see whether you can turn the data clump into an object,
or create separate methods.

Example

I start with the following simple routine:

 int discount (int inputVal, int quantity, int yearToDate) {
 if (inputVal > 50) inputVal -= 2;
 if (quantity > 100) inputVal -= 1;
 if (yearToDate > 10000) inputVal -= 4;
 return inputVal;
 }

Replacing with a temp leads to

 int discount (int inputVal, int quantity, int yearToDate) {
 int result = inputVal;
 if (inputVal > 50) result -= 2;
 if (quantity > 100) result -= 1;
 if (yearToDate > 10000) result -= 4;
 return result;
 }

You can enforce this convention with the final keyword:

 109

 int discount (final int inputVal, final int quantity, final int
yearToDate) {
 int result = inputVal;
 if (inputVal > 50) result -= 2;
 if (quantity > 100) result -= 1;
 if (yearToDate > 10000) result -= 4;
 return result;
 }

I admit that I don't use final much, because I don't find it helps much with clarity for short
methods. I use it with a long method to help me see whether anything is changing the parameter.

Pass By Value in Java

Use of pass by value often is a source of confusion in Java. Java strictly uses pass by value in all
places, thus the following program:

 class Param {
 public static void main(String[] args) {
 int x = 5;
 triple(x);
 System.out.println ("x after triple: " + x);
 }
 private static void triple(int arg) {
 arg = arg * 3;
 System.out.println ("arg in triple: " + arg);
 }
}

produces the following output:

 arg in triple: 15
 x after triple: 5

The confusion exists with objects. Say I use a date, then this program:

 class Param {

 public static void main(String[] args) {
 Date d1 = new Date ("1 Apr 98");
 nextDateUpdate(d1);
 System.out.println ("d1 after nextDay: " + d1);

 Date d2 = new Date ("1 Apr 98");

 110

 nextDateReplace(d2);
 System.out.println ("d2 after nextDay: " + d2);
 }

 private static void nextDateUpdate (Date arg) {
 arg.setDate(arg.getDate() + 1);
 System.out.println ("arg in nextDay: " + arg);
 }

 private static void nextDateReplace (Date arg) {
 arg = new Date (arg.getYear(), arg.getMonth(), arg.getDate() +
1);
 System.out.println ("arg in nextDay: " + arg);
 }
 }

It produces this output

 arg in nextDay: Thu Apr 02 00:00:00 EST 1998
 d1 after nextDay: Thu Apr 02 00:00:00 EST 1998
 arg in nextDay: Thu Apr 02 00:00:00 EST 1998
 d2 after nextDay: Wed Apr 01 00:00:00 EST 1998

Essentially the object reference is passed by value. This allows me to modify the object but does
not take into account the reassigning of the parameter.

Java 1.1 and later versions allow you to mark a parameter as final; this prevents assignment to
the variable. It still allows you to modify the object the variable refers to. I always treat my
parameters as final, but I confess I rarely mark them so in the parameter list.

Replace Method with Method Object

You have a long method that uses local variables in such a way that you cannot apply Extract
Method.

Turn the method into its own object so that all the local variables become fields on that object.
You can then decompose the method into other methods on the same object.

 class Order...
 double price() {
 double primaryBasePrice;
 double secondaryBasePrice;
 double tertiaryBasePrice;
 // long computation;
 ...
 }

 111

Motivation

In this book I emphasize the beauty of small methods. By extracting pieces out of a large method,
you make things much more comprehensible.

The difficulty in decomposing a method lies in local variables. If they are rampant, decomposition
can be difficult. Using Replace Temp with Query helps to reduce this burden, but occasionally
you may find you cannot break down a method that needs breaking. In this case you reach deep
into the tool bag and get out your method object [Beck].

Applying Replace Method with Method Object turns all these local variables into fields on the
method object. You can then use Extract Method on this new object to create additional
methods that break down the original method.

Mechanics

Stolen shamelessly from Beck [Beck].

• Create a new class, name it after the method.
• Give the new class a final field for the object that hosted the original method (the source

object) and a field for each temporary variable and each parameter in the method.
• Give the new class a constructor that takes the source object and each parameter.
• Give the new class a method named "compute."
• Copy the body of the original method into compute. Use the source object field for any

invocations of methods on the original object.
• Compile.
• Replace the old method with one that creates the new object and calls compute.

Now comes the fun part. Because all the local variables are now fields, you can freely
decompose the method without having to pass any parameters.

 112

Example

A proper example of this requires a long chapter, so I'm showing this refactoring for a method that
doesn't need it. (Don't ask what the logic of this method is, I made it up as I went along.)

 Class Account
 int gamma (int inputVal, int quantity, int yearToDate) {
 int importantValue1 = (inputVal * quantity) + delta();
 int importantValue2 = (inputVal * yearToDate) + 100;
 if ((yearToDate - importantValue1) > 100)
 importantValue2 -= 20;
 int importantValue3 = importantValue2 * 7;
 // and so on.
 return importantValue3 - 2 * importantValue1;
 }

To turn this into a method object, I begin by declaring a new class. I provide a final field for the
original object and a field for each parameter and temporary variable in the method.

 class Gamma...
 private final Account _account;
 private int inputVal;
 private int quantity;
 private int yearToDate;
 private int importantValue1;
 private int importantValue2;
 private int importantValue3;

I usually use the underscore prefix convention for marking fields. But to keep small steps I'll leave
the names as they are for the moment.

I add a constructor:

 Gamma (Account source, int inputValArg, int quantityArg, int
yearToDateArg) {
 _account = source;
 inputVal = inputValArg;
 quantity = quantityArg;
 yearToDate = yearToDateArg;
 }

Now I can move the original method over. I need to modify any calls of features of account to use
the _account field

 113

 int compute () {
 importantValue1 = (inputVal * quantity) + _account.delta();
 importantValue2 = (inputVal * yearToDate) + 100;
 if ((yearToDate - importantValue1) > 100)
 importantValue2 -= 20;
 int importantValue3 = importantValue2 * 7;
 // and so on.
 return importantValue3 - 2 * importantValue1;
 }

I then modify the old method to delegate to the method object:

 int gamma (int inputVal, int quantity, int yearToDate) {
 return new Gamma(this, inputVal, quantity,
yearToDate).compute();
 }

That's the essential refactoring. The benefit is that I can now easily use Extract Method on the
compute method without ever worrying about the argument's passing:

 int compute () {
 importantValue1 = (inputVal * quantity) + _account.delta();
 importantValue2 = (inputVal * yearToDate) + 100;
 importantThing();
 int importantValue3 = importantValue2 * 7;
 // and so on.
 return importantValue3 - 2 * importantValue1;
 }

 void importantThing() {
 if ((yearToDate - importantValue1) > 100)
 importantValue2 -= 20;
 }

Substitute Algorithm

You want to replace an algorithm with one that is clearer.

Replace the body of the method with the new algorithm.

 String foundPerson(String[] people){
 for (int i = 0; i < people.length; i++) {
 if (people[i].equals ("Don")){
 return "Don";
 }
 if (people[i].equals ("John")){
 return "John";

 114

 }
 if (people[i].equals ("Kent")){
 return "Kent";
 }
 }
 return "";
 }

 String foundPerson(String[] people){
 List candidates = Arrays.asList(new String[] {"Don", "John",
"Kent"});
 for (int i=0; i<people.length; i++)
 if (candidates.contains(people[i]))
 return people[i];
 return "";
 }

Motivation

I've never tried to skin a cat. I'm told there are several ways to do it. I'm sure some are easier
than others. So it is with algorithms. If you find a clearer way to do something, you should replace
the complicated way with the clearer way. Refactoring can break down something complex into
simpler pieces, but sometimes you just reach the point at which you have to remove the whole
algorithm and replace it with something simpler. This occurs as you learn more about the problem
and realize that there's an easier way to do it. It also happens if you start using a library that
supplies features that duplicate your code.

Sometimes when you want to change the algorithm to do something slightly different, it is easier
to subtitute the algorithm first into something easier for the change you need to make.

When you have to take this step, make sure you have decomposed the method as much as you
can. Substituting a large, complex algorithm is very difficult; only by making it simple can you
make the substitution tractable.

Mechanics

• Prepare your alternative algorithm. Get it so that it compiles.
• Run the new algorithm against your tests. If the results are the same, you're finished.
• If the results aren't the same, use the old algorithm for comparison in testing and

debugging.

? Run each test case with old and new algorithms and watch both
results. That will help you see which test cases are causing trouble, and
how.

 115

Chapter 7. Moving Features Between Objects

One of the most fundamental, if not the fundamental, decision in object design is deciding where
to put responsibilities. I've been working with objects for more than a decade, but I still never get
it right the first time. That used to bother me, but now I realize that I can use refactoring to change
my mind in these cases.

Often I can resolve these problems simply by using Move Method and Move Field to move the
behavior around. If I need to use both, I prefer to use Move Field first and then Move Method.

Often classes become bloated with too many responsibilities. In this case I use Extract Class to
separate some of these responsibilities. If a class becomes too irresponsible, I use Inline Class
to merge it into another class. If another class is being used, it often is helpful to hide this fact with
Hide Delegate. Sometimes hiding the delegate class results in constantly changing the owner's
interface, in which case you need to use Remove Middle Man

The last two refactorings in this chapter, Introduce Foreign Method and Introduce Local
Extension are special cases. I use these only when I'm not able to access the source code of a
class, yet I want to move responsibilities to this unchangeable class. If it is only one or two
methods, I use Introduce Foreign Method; for more than one or two methods, I use
Introduce Local Extension.

Move Method

A method is, or will be, using or used by more features of another class than the class on which it
is defined.

Create a new method with a similar body in the class it uses most. Either turn the old method into
a simple delegation, or remove it altogether.

Motivation

Moving methods is the bread and butter of refactoring. I move methods when classes have too
much behavior or when classes are collaborating too much and are too highly coupled. By

 116

moving methods around, I can make the classes simpler and they end up being a more crisp
implementation of a set of responsibilities.

I usually look through the methods on a class to find a method that seems to reference another
object more than the object it lives on. A good time to do this is after I have moved some fields.
Once I see a likely method to move, I take a look at the methods that call it, the methods it calls,
and any redefining methods in the hierarchy. I assess whether to go ahead on the basis of the
object with which the method seems to have more interaction.

It's not always an easy decision to make. If I am not sure whether to move a method, I go on to
look at other methods. Moving other methods often makes the decision easier. Sometimes the
decision still is hard to make. Actually it is then no big deal. If it is difficult to make the decision, it
probably does not matter that much. Then I choose according to instinct; after all, I can always
change it again later.

Mechanics

• Examine all features used by the source method that are defined on the source class.
Consider whether they also should be moved.

?rarr; If a feature is used only by the method you are about to move, you
might as well move it, too. If the feature is used by other methods,
consider moving them as well. Sometimes it is easier to move a clutch of
methods than to move them one at a time.

• Check the sub- and superclasses of the source class for other declarations of the
method.

?rarr; If there are any other declarations, you may not be able to make
the move, unless the polymorphism can also be expressed on the target.

• Declare the method in the target class.

?rarr; You may choose to use a different name, one that makes more
sense in the target class.

• Copy the code from the source method to the target. Adjust the method to make it work in
its new home.

?rarr; If the method uses its source, you need to determine how to
reference the source object from the target method. If there is no
mechanism in the target class, pass the source object reference to the
new method as a parameter.

?rarr; If the method includes exception handlers, decide which class
should logically handle the exception. If the source class should be
responsible, leave the handlers behind.

• Compile the target class.
• Determine how to reference the correct target object from the source.

 117

?rarr; There may be an existing field or method that will give you the
target. If not, see whether you can easily create a method that will do so.
Failing that, you need to create a new field in the source that can store
the target. This may be a permanent change, but you can also make it
temporarily until you have refactored enough to remove it.

• Turn the source method into a delegating method.
• Compile and test.
• Decide whether to remove the source method or retain it as a delegating method.

?rarr; Leaving the source as a delegating method is easier if you have
many references.

• If you remove the source method, replace all the references with references to the target
method.

?rarr; You can compile and test after changing each reference, although
it is usually easier to change all references with one search and replace.

• Compile and test.

Example

An account class illustrates this refactoring:

 class Account...
 double overdraftCharge() {
 if (_type.isPremium()) {
 double result = 10;
 if (_daysOverdrawn > 7) result += (_daysOverdrawn - 7) *
0.85;
 return result;
 }
 else return _daysOverdrawn * 1.75;
 }

 double bankCharge() {
 double result = 4.5;
 if (_daysOverdrawn > 0) result += overdraftCharge();
 return result;
 }
 private AccountType _type;
 private int _daysOverdrawn;

Let's imagine that there are going to be several new account types, each of which has its own
rule for calculating the overdraft charge. So I want to move the overdraft charge method over to
the account type.

The first step is to look at the features that the overdraftCharge method uses and consider
whether it is worth moving a batch of methods together. In this case I need the
_daysOverdrawn field to remain on the account class, because that will vary with individual
accounts.

 118

Next I copy the method body over to the account type and get it to fit.

 class AccountType...
 double overdraftCharge(int daysOverdrawn) {
 if (isPremium()) {
 double result = 10;
 if (daysOverdrawn > 7) result += (daysOverdrawn - 7) * 0.85;
 return result;
 }
 else return daysOverdrawn * 1.75;
 }

In this case fitting means removing the _type from uses of features of the account type, and
doing something about the features of account that I still need. When I need to use a feature of
the source class I can do one of four things: (1) move this feature to the target class as well, (2)
create or use a reference from the target class to the source, (3) pass the 0source object as a
parameter to the method, (4) if the feature is a variable, pass it in as a parameter.

In this case I passed the variable as a parameter.

Once the method fits and compiles in the target class, I can replace the source method body with
a simple delegation:

 class Account...
 double overdraftCharge() {
 return _type.overdraftCharge(_daysOverdrawn);
 }

At this point I can compile and test.

I can leave things like this, or I can remove the method in the source class. To remove the
method I need to find all callers of the method and redirect them to call the method in account
type:

 class Account...
 double bankCharge() {
 double result = 4.5;
 if (_daysOverdrawn > 0) result +=
_type.overdraftCharge(_daysOverdrawn);
 return result;
 }

Once I've replaced all the callers, I can remove the method declaration in account. I can compile
and test after each removal, or do them in a batch. If the method isn't private, I need to look for
other classes that use this method. In a strongly typed language, the compilation after removal of
the source declaration finds anything I missed.

In this case the method referred only to a single field, so I could just pass this field in as a
variable. If the method called another method on the account, I wouldn't have been able to do
that. In those cases I need to pass in the source object:

 119

 class AccountType...
 double overdraftCharge(Account account) {
 if (isPremium()) {
 double result = 10;
 if (account.getDaysOverdrawn() > 7)
 result += (account.getDaysOverdrawn() - 7) * 0.85;
 return result;
 }
 else return account.getDaysOverdrawn() * 1.75;
 }

I also pass in the source object if I need several features of the class, although if there are too
many, further refactoring is needed. Typically I need to decompose and move some pieces back.

Move Field

A field is, or will be, used by another class more than the class on which it is defined.

Create a new field in the target class, and change all its users.

Motivation

Moving state and behavior between classes is the very essence of refactoring. As the system
develops, you find the need for new classes and the need to shuffle responsibilities around. A
design decision that is reasonable and correct one week can become incorrect in another. That is
not a problem; the only problem is not to do something about it.

I consider moving a field if I see more methods on another class using the field than the class
itself. This usage may be indirect, through getting and setting methods. I may choose to move the
methods; this decision based on interface. But if the methods seem sensible where they are, I
move the field.

Another reason for field moving is when doing Extract Class. In that case the fields go first and
then the methods.

Mechanics

• If the field is public, use Encapsulate Field.

 120

?rarr; If you are likely to be moving the methods that access it frequently
or if a lot of methods access the field, you may find it useful to use Self
Encapsulate Field

• Compile and test.
• Create a field in the target class with getting and setting methods.
• Compile the target class.
• Determine how to reference the target object from the source.

?rarr; An existing field or method may give you the target. If not, see
whether you can easily create a method that will do so. Failing that, you
need to create a new field in the source that can store the target. This
may be a permanent change, but you can also do it temporarily until you
have refactored enough to remove it.

• Remove the field on the source class.
• Replace all references to the source field with references to the appropriate method on

the target.

?rarr; For accesses to the variable, replace the reference with a call to
the target object's getting method; for assignments, replace the reference
with a call to the setting method.

?rarr; If the field is not private, look in all the subclasses of the source for
references.

• Compile and test.

Example

Here is part of an account class:

 class Account...
 private AccountType _type;
 private double _interestRate;

 double interestForAmount_days (double amount, int days) {
 return _interestRate * amount * days / 365;
 }

I want to move the interest rate field to the account type. There are several methods with that
reference, of which interestForAmount_days is one example.I next create the field and
accessors in the account type:

 class AccountType...
 private double _interestRate;

 void setInterestRate (double arg) {
 _interestRate = arg;
 }

 121

 double getInterestRate () {
 return _interestRate;
 }

I can compile the new class at this point.

Now I redirect the methods from the account class to use the account type and remove the
interest rate field in the account. I must remove the field to be sure that the redirection is actually
happening. This way the compiler helps spot any method I failed to redirect.

 private double _interestRate;

 double interestForAmount_days (double amount, int days) {
 return _type.getInterestRate() * amount * days / 365;
 }

Example: Using Self-Encapsulation

If a lot of methods use the interest rate field, I might start by using Self Encapsulate Field:

 class Account...
 private AccountType _type;
 private double _interestRate;

 double interestForAmount_days (double amount, int days) {
 return getInterestRate() * amount * days / 365;
 }

 private void setInterestRate (double arg) {
 _interestRate = arg;
 }

 private double getInterestRate () {
 return _interestRate;
 }

That way I only need to do the redirection for the accessors:

 double interestForAmountAndDays (double amount, int days) {
 return getInterestRate() * amount * days / 365;
 }

 private void setInterestRate (double arg) {
 _type.setInterestRate(arg);
 }

 private double getInterestRate () {
 return _type.getInterestRate();
 }

 122

I can redirect the clients of the accessors to use the new object later if I want. Using self-
encapsulation allows me to take a smaller step. This is useful if I'm doing a lot of things with the
class. In particular, it simplifies use Move Method to move methods to the target class. If they
refer to the accessor, such references don't need to change.

Extract Class

You have one class doing work that should be done by two.

Create a new class and move the relevant fields and methods from the old class into the new
class.

Motivation

You've probably heard that a class should be a crisp abstraction, handle a few clear
responsibilities, or some similar guideline. In practice, classes grow. You add some operations
here, a bit of data there. You add a responsibility to a class feeling that it's not worth a separate
class, but as that responsibility grows and breeds, the class becomes too complicated. Soon your
class is as crisp as a microwaved duck.

Such a class is one with many methods and quite a lot of data. A class that is too big to
understand easily. You need to consider where it can be split, and you split it. A good sign is that
a subset of the data and a subset of the methods seem to go together. Other good signs are
subsets of data that usually change together or are particularly dependent on each other. A useful
test is to ask yourself what would happen if you removed a piece of data or a method. What other
fields and methods would become nonsense?

One sign that often crops up later in development is the way the class is subtyped. You may find
that subtyping affects only a few features or that some features need to be subtyped one way and
other features a different way.

Mechanics

• Decide how to split the responsibilities of the class.
• Create a new class to express the split-off responsibilities.

?rarr; If the responsibilities of the old class no longer match its name,
rename the old class.

• Make a link from the old to the new class.

?rarr; You may need a two-way link. But don't make the back link until
you find you need it.

 123

• Use Move Field on each field you wish to move.
• Compile and test after each move.
• Use Move Method to move methods over from old to new. Start with lower-level

methods (called rather than calling) and build to the higher level.
• Compile and test after each move.
• Review and reduce the interfaces of each class.

?rarr; If you did have a two-way link, examine to see whether it can be
made one way.

• Decide whether to expose the new class. If you do expose the class, decide whether to
expose it as a reference object or as an immutable value object.

Example

I start with a simple person class:

 class Person...
 public String getName() {
 return _name;
 }
 public String getTelephoneNumber() {
 return ("(" + _officeAreaCode + ") " + _officeNumber);
 }
 String getOfficeAreaCode() {
 return _officeAreaCode;
 }
 void setOfficeAreaCode(String arg) {
 _officeAreaCode = arg;
 }
 String getOfficeNumber() {
 return _officeNumber;
 }
 void setOfficeNumber(String arg) {
 _officeNumber = arg;
 }

 private String _name;
 private String _officeAreaCode;
 private String _officeNumber;

In this case I can separate the telephone number behavior into its own class. I start by defining a
telephone number class:

 class TelephoneNumber {
 }

That was easy! I next make a link from the person to the telephone number:

 class Person
 private TelephoneNumber _officeTelephone = new TelephoneNumber();

 124

Now I use Move Field on one of the fields:

 class TelephoneNumber {
 String getAreaCode() {
 return _areaCode;
 }
 void setAreaCode(String arg) {
 _areaCode = arg;
 }
 private String _areaCode;
 }
 class Person...
 public String getTelephoneNumber() {
 return ("(" + getOfficeAreaCode() + ") " + _officeNumber);
 }
 String getOfficeAreaCode() {
 return _officeTelephone.getAreaCode();
 }
 void setOfficeAreaCode(String arg) {
 _officeTelephone.setAreaCode(arg);
 }

I can then move the other field and use Move Method on the telephone number:

 class Person...
 public String getName() {
 return _name;
 }
 public String getTelephoneNumber(){
 return _officeTelephone.getTelephoneNumber();
 }
 TelephoneNumber getOfficeTelephone() {
 return _officeTelephone;
 }

 private String _name;
 private TelephoneNumber _officeTelephone = new TelephoneNumber();
 class TelephoneNumber...
 public String getTelephoneNumber() {
 return ("(" + _areaCode + ") " + _number);
 }
 String getAreaCode() {
 return _areaCode;
 }
 void setAreaCode(String arg) {
 _areaCode = arg;
 }
 String getNumber() {
 return _number;
 }
 void setNumber(String arg) {
 _number = arg;
 }
 private String _number;

 125

 private String _areaCode;

The decision then is how much to expose the new class to my clients. I can completely hide it by
providing delegating methods for its interface, or I can expose it. I may choose to expose it to
some clients (such as those in my package) but not to others.

If I choose to expose the class, I need to consider the dangers of aliasing. If I expose the
telephone number and a client changes the area code in that object, how do I feel about it? It may
not be a direct client that makes this change. It might be the client of a client of a client.

I have the following options:

1. I accept that any object may change any part of the telephone number. This makes the
telephone number a reference object, and I should consider Change Value to
Reference. In this case the person would be the access point for the telephone number.

2. I don't want anybody to change the value of the telephone number without going through
the person. I can either make the telephone number immutable, or I can provide an
immutable interface for the telephone number.

3. Another possibility is to clone the telephone number before passing it out. But this can
lead to confusion because people think they can change the value. It also may lead to
aliasing problems between clients if the telephone number is passed around a lot.

Extract Class is a common technique for improving the liveness of a concurrent program
because it allows you to have separate locks on the two resulting classes. If you don't need to
lock both objects you don't have to. For more on this see section 3.3 in Lea [Lea].

However, there is a danger there. If you need to ensure that both objects are locked together, you
get into the area of transactions and other kinds of shared locks. As discussed in Lea by section
8.1 [Lea], this is complex territory and requires heavier machinery than it is typically worth.
Transactions are very useful when you use them, but writing transaction managers is more than
most programmers should attempt.

Inline Class

A class isn't doing very much.

Move all its features into another class and delete it.

Motivation

Inline Class is the reverse of Extract Class. I use Inline Class if a class is no longer pulling its
weight and shouldn't be around any more. Often this is the result of refactoring that moves other
responsibilities out of the class so there is little left. Then I want to fold this class into another
class, picking one that seems to use the runt class the most.

 126

Mechanics

• Declare the public protocol of the source class onto the absorbing class. Delegate all
these methods to the source class.

?rarr; If a separate interface makes sense for the source class methods,
use Extract Interface before inlining.

• Change all references from the source class to the absorbing class.

?rarr; Declare the source class private to remove out-of-package
references. Also change the name of the source class so the compiler
catches any dangling references to the source class.

• Compile and test.
• Use Move Method and Move Field to move features from the source class to the

absorbing class until there is nothing left.
• Hold a short, simple funeral service.

Example

Because I made a class out of telephone number, I now inline it back into person. I start with
separate classes:

 class Person...
 public String getName() {
 return _name;
 }
 public String getTelephoneNumber(){
 return _officeTelephone.getTelephoneNumber();
 }
 TelephoneNumber getOfficeTelephone() {
 return _officeTelephone;
 }

 private String _name;
 private TelephoneNumber _officeTelephone = new TelephoneNumber();

 class TelephoneNumber...
 public String getTelephoneNumber() {
 return ("(" + _areaCode + ") " + _number);
 }
 String getAreaCode() {
 return _areaCode;
 }
 void setAreaCode(String arg) {
 _areaCode = arg;
 }
 String getNumber() {
 return _number;
 }
 void setNumber(String arg) {
 _number = arg;

 127

 }
 private String _number;
 private String _areaCode;

I begin by declaring all the visible methods on telephone number on person:

 class Person...
 String getAreaCode() {
 return _officeTelephone.getAreaCode();
 }
 void setAreaCode(String arg) {
 _officeTelephone.setAreaCode(arg);
 }
 String getNumber() {
 return _officeTelephone.getNumber();
 }
 void setNumber(String arg) {
 _officeTelephone.setNumber(arg);
 }

Now I find clients of telephone number and switch them to use the person's interface. So

 Person martin = new Person();
 martin.getOfficeTelephone().setAreaCode ("781");

becomes

 Person martin = new Person();
 martin.setAreaCode ("781");

Now I can use Move Method and Move Field until the telephone class is no more.

Hide Delegate

A client is calling a delegate class of an object.

Create methods on the server to hide the delegate.

 128

Motivation

One of the keys, if not the key, to objects is encapsulation. Encapsulation means that objects
need to know less about other parts of the system. Then when things change, fewer objects need
to be told about the change—which makes the change easier to make.

Anyone involved in objects knows that you should hide your fields, despite the fact that Java
allows fields to be public. As you become more sophisticated, you realize there is more you can
encapsulate.

If a client calls a method defined on one of the fields of the server object, the client needs to know
about this delegate object. If the delegate changes, the client also may have to change. You can
remove this dependency by placing a simple delegating method on the server, which hides the
delegate (Figure 7.1). Changes become limited to the server and don't propagate to the client.

Figure 7.1. Simple delegation

You may find it is worthwhile to use Extract Class for some clients of the server or all clients. If
you hide from all clients, you can remove all mention of the delegate from the interface of the
server.

Mechanics

• For each method on the delegate, create a simple delegating method on the server.

 129

• Adjust the client to call the server.

?rarr; If the client is not in the same package as the server, consider
changing the delegate method's access to package visibility.

• Compile and test after adjusting each method.
• If no client needs to access the delegate anymore, remove the server's accessor for the

delegate.
• Compile and test.

Example

I start with a person and a department:

 class Person {
 Department _department;

 public Department getDepartment() {
 return _department;
 }
 public void setDepartment(Department arg) {
 _department = arg;
 }
 }

 class Department {
 private String _chargeCode;
 private Person _manager;

 public Department (Person manager) {
 _manager = manager;
 }

 public Person getManager() {
 return _manager;
 }
 ...

If a client wants to know a person's manager, it needs to get the department first:

 manager = john.getDepartment().getManager();

This reveals to the client how the department class works and that the department is responsible
to tracking the manager. I can reduce this coupling by hiding the department class from the client.
I do this by creating a simple delegating method on person:

 public Person getManager() {
 return _department.getManager();
 }

I now need to change all clients of person to use this new method:

 130

 manager = john.getManager();

Once I've made the change for all methods of department and for all the clients of person, I can
remove the getDepartment accessor on person.

Remove Middle Man

A class is doing too much simple delegation.

Get the client to call the delegate directly.

Motivation

In the motivation for Hide Delegate, I talked about the advantages of encapsulating the use of a
delegated object. There is a price for this. The price is that every time the client wants to use a
new feature of the delegate, you have to add a simple delegating method to the server. After
adding features for a while, it becomes painful. The server class is just a middle man, and
perhaps it's time for the client to call the delegate directly.

It's hard to figure out what the right amount of hiding is. Fortunately, with Hide Delegate and
Remove Middle Man it does not matter so much. You can adjust your system as time goes on.
As the system changes, the basis for how much you hide also changes. A good encapsulation six
months ago may be awkward now. Refactoring means you never have to say you're sorry—you
just fix it.

Mechanics

• Create an accessor for the delegate.
• For each client use of a delegate method, remove the method from the server and

replace the call in the client to call method on the delegate.
• Compile and test after each method.

Example

 131

For an example I use person and department flipped the other way. I start with person hiding the
department:

 class Person...
 Department _department;
 public Person getManager() {
 return _department.getManager();

 class Department...
 private Person _manager;
 public Department (Person manager) {
 _manager = manager;
 }

To find a person's manager, clients ask:

 manager = john.getManager();

This is simple to use and encapsulates the department. However, if lots of methods are doing
this, I end up with too many of these simple delegations on the person. That's when it is good to
remove the middle man. First I make an accessor for the delegate:

 class Person...
 public Department getDepartment() {
 return _department;
 }

Then I take each method at a time. I find clients that use the method on person and change it to
first get the delegate. Then I use it:

 manager = john.getDepartment().getManager();

I can then remove getManager from person. A compile shows whether I missed anything.

I may want to keep some of these delegations for convenience. I also may want to hide the
delegate from some clients but show it to others. That also will leave some of the simple
delegations in place.

Introduce Foreign Method

A server class you are using needs an additional method, but you can't modify the class.

Create a method in the client class with an instance of the server class as its first argument.

 Date newStart = new Date (previousEnd.getYear(),
 previousEnd.getMonth(), previousEnd.getDate() + 1);

 132

 Date newStart = nextDay(previousEnd);

 private static Date nextDay(Date arg) {
 return new Date (arg.getYear(),arg.getMonth(), arg.getDate() +
1);
 }

Motivation

It happens often enough. You are using this really nice class that gives you all these great
services. Then there is one service it doesn't give you but should. You curse the class, saying,
"Why don't you do that?" If you can change the source, you can add in the method. If you can't
change the source, you have to code around the lack of the method in the client.

If you use the method only once in the client class then the extra coding is no big deal and
probably wasn't needed on the original class anyway. If you use the method several times,
however, you have to repeat this coding around. Because repetition is the root of all software evil,
this repetitive code should be factored into a single method. When you do this refactoring, you
can clearly signal that this method is really a method that should be on the original by making it a
foreign method.

If you find yourself creating many foreign methods on a server class, or you find many of your
classes need the same foreign method, you should use Introduce Local Extension instead.

Don't forget that foreign methods are a work-around. If you can, try to get the methods moved to
their proper homes. If code ownership is the issue, send the foreign method to the owner of the
server class and ask the owner to implement the method for you.

Mechanics

• Create a method in the client class that does what you need.

?rarr; The method should not access any of the features of the client
class. If it needs a value, send it in as a parameter.

• Make an instance of the server class the first parameter.
• Comment the method as "foreign method; should be in server."

?rarr; This way you can use a text search to find foreign methods later if
you get the chance to move the method.

Example

I have some code that needs to roll over a billing period. The original code looks like this:

 Date newStart = new Date (previousEnd.getYear(),
 previousEnd.getMonth(), previousEnd.getDate() + 1);

I can extract the code on the right-hand side of the assignment into a method. This method is a
foreign method for date:

 133

 Date newStart = nextDay(previousEnd);

 private static Date nextDay(Date arg) {
 // foreign method, should be on date
 return new Date (arg.getYear(),arg.getMonth(), arg.getDate() +
1);
 }

Introduce Local Extension

A server class you are using needs several additional methods, but you can't modify the class.

Create a new class that contains these extra methods. Make this extension class a subclass or a
wrapper of the original.

Motivation

Authors of classes sadly are not omniscient, and they fail to provi de useful methods for you. If
you can modify the source, often the best thing is to add that method. However, you often cannot
modify the source. If you need one or two methods, you can use Introduce Foreign Method.
Once you get beyond a couple of these methods, however, they get out of hand. So you need to
group the methods together in a sensible place for them. The standard object-oriented techniques
of subclassing and wrapping are an obvious way to do this. In these circumstances I call the
subclass or wrapper a local extension.

A local extension is a separate class, but it is a subtype of the class it is extending. That means it
supports all the things the original can do but also adds the extra features. Instead of using the
original class, you instantiate the local extension and use it.

By using the local extension you keep to the principle that methods and data should be packaged
into well-formed units. If you keep putting code in other classes that should lie in the extension,
you end up complicating the other classes, and making it harder to reuse these methods.

In choosing between subclass and wrapper, I usually prefer the subclass because it is less work.
The biggest roadblock to a subclass is that it needs to apply at object-creation time. If I can take
over the creation process that's no problem. The problem occurs if you apply the local extension
later. Subclassing forces me to create a new object of that subclass. If other objects refer to the
old one, I have two objects with the original's data. If the original is immutable, there is no

 134

problem; I can safely take a copy. But if the original can change, there is a problem, because
changes in one object won't change the other and I have to use a wrapper. That way changes
made through the local extension affect the original object and vice versa.

Mechanics

• Create an extension class either as a subclass or a wrapper of the original.
• Add converting constructors to the extension.

?rarr; A constructor takes the original as an argument. The subclass
version calls an appropriate superclass constructor; the wrapper version
sets the delegate field to the argument.

• Add new features to the extension.
• Replace the original with the extension where needed.
• Move any foreign methods defined for this class onto the extension.

Examples

I had to do this kind of thing quite a bit with Java 1.0.1 and the date class. The calendar class in
1.1 gave me a lot of the behavior I wanted, but before it arrived, it gave me quite a few
opportunities to use extension. I use it as an example here.

The first thing to decide is whether to use a subclass or a wrapper. Subclassing is the more
obvious way:

 Class mfDate extends Date {
 public nextDay()...
 public dayOfYear()...

A wrapper uses delegation:

 class mfDate {
 private Date _original;

Example: Using a Subclass

First I create the new date as a subclass of the original:

 class MfDateSub extends Date

Next I deal with changing between dates and the extension. The constructors of the original need
to be repeated with simple delegation:

 public MfDateSub (String dateString) {
 super (dateString);
 };

 135

Now I add a converting constructor, one that takes an original as an argument:

 public MfDateSub (Date arg) {
 super (arg.getTime());
 }

I can now add new features to the extension and use Move Method to move any foreign
methods over to the extension:

 client class...
 private static Date nextDay(Date arg) {
 // foreign method, should be on date
 return new Date (arg.getYear(),arg.getMonth(), arg.getDate() +
1);
 }

becomes

 class MfDate...
 Date nextDay() {
 return new Date (getYear(),getMonth(), getDate() + 1);
 }

Example: Using a Wrapper

I start by declaring the wrapping class:

 class mfDate {
 private Date _original;
 }

With the wrapping approach, I need to set up the constructors differently. The original
constructors are implemented with simple delegation:

 public MfDateWrap (String dateString) {
 _original = new Date(dateString);
 };

The converting constructor now just sets the instance variable:

 public MfDateWrap (Date arg) {
 _original = arg;
 }

Then there is the tedious task of delegating all the methods of the original class. I show only a
couple.

 136

 public int getYear() {
 return _original.getYear();
 }

 public boolean equals (MfDateWrap arg) {
 return (toDate().equals(arg.toDate()));
 }

Once I've done this I can use Move Method to put date-specific behavior onto the new class:

 client class...
 private static Date nextDay(Date arg) {
 // foreign method, should be on date
 return new Date (arg.getYear(),arg.getMonth(), arg.getDate() +
1);
 }

becomes

 class MfDate...
 Date nextDay() {
 return new Date (getYear(),getMonth(), getDate() + 1);
 }

A particular problem with using wrappers is how to deal with methods that take an original as an
argument, such as

 public boolean after (Date arg)

Because I can't alter the original, I can only do after in one direction:

 aWrapper.after(aDate) // can be made to work
 aWrapper.after(anotherWrapper) // can be made to work
 aDate.after(aWrapper) // will not work

The purpose of this kind of overriding is to hide the fact I'm using a wrapper from the user of the
class. This is good policy because the user of wrapper really shouldn't care about the wrapper
and should be able to treat the two equally. However, I can't completely hide this information. The
problem lies in certain system methods, such as equals. Ideally you would think that you could
override equals on MfDateWrap like this

 public boolean equals (Date arg) // causes problems

This is dangerous because although I can make it work for my own purposes, other parts of the
java system assume that equals is symmetric: that if a.equals(b) then b.equals(a). If I
violate this rule I'll run into a bevy of strange bugs. The only way to avoid that would be to modify
Date, and if I could do that I wouldn't be using this refactoring. So in situations like this I just have
to expose the fact that I'm wrapping. For equality tests this means a new method name.

 137

 public boolean equalsDate (Date arg)

I can avoid testing the type of unknown objects by providing versions of this method for both Date
and MfDateWrap.

 public boolean equalsDate (MfDateWrap arg)

The same problem is not an issue with subclassing, if I don't override the operation. If I do
override, I become completely confused with the method lookup. I usually don't do override
methods with extensions; I usually just add methods.

 138

Chapter 8. Organizing Data

In this chapter I discuss several refactorings that make working with data easier. For many people
Self Encapsulate Field seems unnecessary. It's long been a matter of good-natured debate
about whether an object should access its own data directly or through accessors. Sometimes
you do need the accessors, and then you can get them with Self Encapsulate Field. I generally
use direct access because I find it simple to do this refactoring when I need it.

One of the useful things about object languages is that they allow you to define new types that go
beyond what can be done with the simple data types of traditional languages. It takes a while to
get used to how to do this, however. Often you start with a simple data value and then realize that
an object would be more useful. Replace Data Value with Object allows you to turn dumb
data into articulate objects. When you realize that these objects are instances that will be needed
in many parts of the program, you can use Change Value to Reference to make them into
reference objects.

If you see an array acting as a data structure, you can make the data structure clearer with
Replace Array with Object. In all these cases the object is but the first step. The real
advantage comes when you use Move Method to add behavior to the new objects.

Magic numbers, numbers with special meaning, have long been a problem. I remember being
told in my earliest programming days not to use them. They do keep appearing, however, and I
use Replace Magic Number with Symbolic Constant to get rid of magic numbers whenever I
figure out what they are doing.

Links between objects can be one way or two way. One-way links are easier, but sometimes you
need to Change Unidirectional Association to Bidirectional to support a new function.
Change Bidirectional Association to Unidirectional removes unnecessary complexity should
you find you no longer need the two-way link anymore.

I've often run into cases in which GUI classes are doing business logic that they shouldn't. To
move the behavior into proper domain classes, you need to have the data in the domain class
and support the GUI by using Duplicate Observed Data. I normally don't like duplicating data,
but this is an exception that is usually impossible to avoid.

One of the key tenets of object-oriented programming is encapsulation. If any public data is
streaking around, you can use Encapsulate Field to decorously cover it up. If that data is a
collection, use Encapsulate Collection instead, because that has special protocol. If an entire
record is naked, use Replace Record with Data Class.

One form of data that requires particular treatment is the type code: a special value that indicates
something particular about a type of instance. These often show up as enumerations, often
implemented as static final integers. If the codes are for information and do not alter the behavior
of the class, you can use Replace Type Code with Class, which gives you better type checking
and a platform for moving behavior later. If the behavior of a class is affected by a type code, use
Replace Type Code with Subclasses if possible. If you can't do that, use the more
complicated (but more flexible) Replace Type Code with State/Strategy.

Self Encapsulate Field

You are accessing a field directly, but the coupling to the field is becoming awkward.

 139

Create getting and setting methods for the field and use only those to access the field.

 private int _low, _high;
 boolean includes (int arg) {
 return arg >= _low && arg <= _high;
 }

 private int _low, _high;
 boolean includes (int arg) {
 return arg >= getLow() && arg <= getHigh();
 }
 int getLow() {return _low;}
 int getHigh() {return _high;}

Motivation

When it comes to accessing fields, there are two schools of thought. One is that within the class
where the variable is defined, you should access the variable freely (direct variable access). The
other school is that even within the class, you should always use accessors (indirect variable
access). Debates between the two can be heated. (See also the discussion in Auer [Auer] on
page 413 and Beck [Beck].)

Essentially the advantages of indirect variable access are that it allows a subclass to override
how to get that information with a method and that it supports more flexibility in managing the
data, such as lazy initialization, which initializes the value only when you need to use it.

The advantage of direct variable access is that the code is easier to read. You don't need to stop
and say, "This is just a getting method."

I'm always of two minds with this choice. I'm usually happy to do what the rest of the team wants
to do. Left to myself, though, I like to use direct variable access as a first resort, until it gets in the
way. Once things start becoming awkward, I switch to indirect variable access. Refactoring gives
you the freedom to change your mind.

The most important time to use Self Encapsulate Field is when you are accessing a field in a
superclass but you want to override this variable access with a computed value in the subclass.
Self-encapsulating the field is the first step. After that you can override the getting and setting
methods as you need to.

Mechanics

• Create a getting and setting method for the field.
• Find all references to the field and replace them with a getting or setting method.

?rarr; Replace accesses to the field with a call to the getting method;
replace assignments with a call to the setting method.

?rarr; You can get the compiler to help you check by temporarily
renaming the field.

 140

• Make the field private.
• Double check that you have caught all references.
• Compile and test.

Example

This seems almost too simple for an example, but, hey, at least it is quick to write:

 class IntRange {

 private int _low, _high;

 boolean includes (int arg) {
 return arg >= _low && arg <= _high;
 }

 void grow(int factor) {
 _high = _high * factor;
 }
 IntRange (int low, int high) {
 _low = low;
 _high = high;
 }

To self-encapsulate I define getting and setting methods (if they don't already exist) and use
those:

 class IntRange {

 boolean includes (int arg) {
 return arg >= getLow() && arg <= getHigh();
 }

 void grow(int factor) {
 setHigh (getHigh() * factor);
 }

 private int _low, _high;

 int getLow() {
 return _low;
 }

 int getHigh() {
 return _high;
 }

 void setLow(int arg) {
 _low = arg;
 }

 void setHigh(int arg) {
 _high = arg;

 141

 }

When you are using self-encapsulation you have to be careful about using the setting method in
the constructor. Often it is assumed that you use the setting method for changes after the object
is created, so you may have different behavior in the setter than you have when initializing. In
cases like this I prefer using either direct access from the constructor or a separate initialization
method:

 IntRange (int low, int high) {
 initialize (low, high);
 }

 private void initialize (int low, int high) {
 _low = low;
 _high = high;
 }

The value in doing all this comes when you have a subclass, as follows:

 class CappedRange extends IntRange {

 CappedRange (int low, int high, int cap) {
 super (low, high);
 _cap = cap;
 }

 private int _cap;

 int getCap() {
 return _cap;
 }

 int getHigh() {
 return Math.min(super.getHigh(), getCap());
 }
 }

I can override all of the behavior of IntRange to take into account the cap without changing any
of that behavior.

Replace Data Value with Object

You have a data item that needs additional data or behavior.

Turn the data item into an object.

 142

Motivation

Often in early stages of development you make decisions about representing simple facts as
simple data items. As development proceeds you realize that those simple items aren't so simple
anymore. A telephone number may be represented as a string for a while, but later you realize
that the telephone needs special behavior for formatting, extracting the area code, and the like.
For one or two items you may put the methods in the owning object, but quickly the code smells
of duplication and feature envy. When the smell begins, turn the data value into an object.

Mechanics

• Create the class for the value. Give it a final field of the same type as the value in the
source class. Add a getter and a constructor that takes the field as an argument.

• Compile.
• Change the type of the field in the source class to the new class.
• Change the getter in the source class to call the getter in the new class.
• If the field is mentioned in the source class constructor, assign the field using the

constructor of the new class.
• Change the getting method to create a new instance of the new class.
• Compile and test.
• You may now need to use Change Value to Reference on the new object.

Example

I start with an order class that has stored the customer of the order as a string and wants to turn
the customer into an object. This way I have somewhere to store data, such as an address or
credit rating, and useful behavior that uses this information.

 class Order...
 public Order (String customer) {
 _customer = customer;

 143

 }
 public String getCustomer() {
 return _customer;
 }
 public void setCustomer(String arg) {
 _customer = arg;
 }
 private String _customer;

Some client code that uses this looks like

 private static int numberOfOrdersFor(Collection orders, String
customer) {
 int result = 0;
 Iterator iter = orders.iterator();
 while (iter.hasNext()) {
 Order each = (Order) iter.next();
 if (each.getCustomerName().equals(customer)) result++;
 }
 return result;
 }

First I create the new customer class. I give it a final field for a string attribute, because that is
what the order currently uses. I call it name, because that seems to be what the string is used for.
I also add a getting method and provide a constructor that uses the attribute:

 class Customer {
 public Customer (String name) {
 _name = name;
 }
 public String getName() {
 return _name;
 }
 private final String _name;
 }

Now I change the type of the customer field and change methods that reference it to use the
appropriate references on the customer class. The getter and constructor are obvious. For the
setter I create a new customer:

 class Order...
 public Order (String customer) {
 _customer = new Customer(customer);
 }
 public String getCustomer() {
 return _customer.getName();
 }
 private Customer _customer;

 public void setCustomer(String arg) {
 _customer = new Customer(customer);
 }

 144

The setter creates a new customer because the old string attribute was a value object, and thus
the customer currently also is a value object. This means that each order has its own customer
object. As a rule value objects should be immutable; this avoids some nasty aliasing bugs. Later
on I will want customer to be a reference object, but that's another refactoring. At this point I can
compile and test.

Now I look at the methods on order that manipulate customer and make some changes to make
the new state of affairs clearer. With the getter I use Rename Method to make it clear that it is
the name not the object that is returned:

 public String getCustomerName() {
 return _customer.getName();
 }

On the constructor and setter, I don't need to change the signature, but the name of the
arguments should change:

 public Order (String customerName) {
 _customer = new Customer(customerName);
 }
 public void setCustomer(String customerName) {
 _customer = new Customer(customerName);
 }

Further refactoring may well cause me to add a new constructor and setter that takes an existing
customer.

This finishes this refactoring, but in this case, as in many others, there is another step. If I want to
add such things as credit ratings and addresses to our customer, I cannot do so now. This is
because the customer is treated as a value object. Each order has its own customer object. To
give a customer these attributes I need to apply Change Value to Reference to the customer
so that all orders for the same customer share the same customer object. You'll find this example
continued there.

Change Value to Reference

You have a class with many equal instances that you want to replace with a single object.

Turn the object into a reference object.

 145

Motivation

You can make a useful classification of objects in many systems: reference objects and value
objects. Reference objects are things like customer or account. Each object stands for one object
in the real world, and you use the object identity to test whether they are equal. Value objects are
things like date or money. They are defined entirely through their data values. You don't mind that
copies exist; you may have hundreds of "1/1/2000" objects around your system. You do need to
tell whether two of the objects are equal, so you need to override the equals method (and the
hashCode method too).

The decision between reference and value is not always clear. Sometimes you start with a simple
value with a small amount of immutable data. Then you want to give it some changeable data and
ensure that the changes ripple to everyone referring to the object. At this point you need to turn it
into a reference object.

Mechanics

• Use Replace Constructor with Factory Method.
• Compile and test.
• Decide what object is responsible for providing access to the objects.

?rarr; This may be a static dictionary or a registry object.

?rarr; You may have more than one object that acts as an access point
for the new object.

• Decide whether the objects are precreated or created on the fly.

?rarr; If the objects are precreated and you are retrieving them from
memory, you need to ensure they are loaded before they are needed.

• Alter the factory method to return the reference object.

 146

?rarr; If the objects are precomputed, you need to decide how to handle
errors if someone asks for an object that does not exist.

?rarr; You may want to use Rename Method on the factory to convey
that it returns an existing object.

• Compile and test.

Example

I start where I left off in the example for Replace Data Value with Object. I have the following
customer class:

 class Customer {
 public Customer (String name) {
 _name = name;
 }
 public String getName() {
 return _name;
 }
 private final String _name;
 }

It is used by an order class:

 class Order...
 public Order (String customerName) {
 _customer = new Customer(customerName);
 }
 public void setCustomer(String customerName) {
 _customer = new Customer(customerName);
 }
 public String getCustomerName() {
 return _customer.getName();
 }
 private Customer _customer;

and some client code:

 private static int numberOfOrdersFor(Collection orders, String
customer) {
 int result = 0;
 Iterator iter = orders.iterator();
 while (iter.hasNext()) {
 Order each = (Order) iter.next();
 if (each.getCustomerName().equals(customer)) result++;
 }
 return result;
 }

 147

At the moment it is a value. Each order has its own customer object even if they are for the same
conceptual customer. I want to change this so that if we have several orders for the same
conceptual customer, they share a single customer object. For this case this means that there
should be only one customer object for each customer name.

I begin by using Replace Constructor with Factory Method. This allows me to take control of
the creation process, which will become important later. I define the factory method on customer:

 class Customer {
 public static Customer create (String name) {
 return new Customer(name);
 }

Then I replace the calls to the constructor with calls to the factory:

 class Order {
 public Order (String customer) {
 _customer = Customer.create(customer);
 }

Then I make the constructor private:

 class Customer {
 private Customer (String name) {
 _name = name;
 }

Now I have to decide how to access the customers. My preference is to use another object. Such
a situation works well with something like the line items on an order. The order is responsible for
providing access to the line items. However, in this situation there isn't such an obvious object. In
this situation I usually create a registry object to be the access point. For simplicity in this
example, however, I store them using a static field on customer, making the customer class the
access point:

 private static Dictionary _instances = new Hashtable();

Then I decide whether to create customers on the fly when asked or to create them in advance.
I'll use the latter. In my application start-up code I load the customers that are in use. These could
come from a database or from a file. For simplicity I use explicit code. I can always use
Substitute Algorithm to change it later.

 class Customer...
 static void loadCustomers() {
 new Customer ("Lemon Car Hire").store();
 new Customer ("Associated Coffee Machines").store();
 new Customer ("Bilston Gasworks").store();
 }
 private void store() {
 _instances.put(this.getName(), this);

 148

 }

Now I alter the factory method to return the precreated customer:

 public static Customer create (String name) {
 return (Customer) _instances.get(name);
 }

Because the create method always returns an existing customer, I should make this clear by
using Rename Method.

 class Customer...
 public static Customer getNamed (String name) {
 return (Customer) _instances.get(name);
 }

Change Reference to Value

You have a reference object that is small, immutable, and awkward to manage.

Turn it into a value object.

Motivation

As with Change Value to Reference, the decision between a reference and a value object is
not always clear. It is a decision that often needs reversing.

The trigger for going from a reference to a value is that working with the reference object
becomes awkward. Reference objects have to be controlled in some way. You always need to
ask the controller for the appropriate object. The memory links also can be awkward. Value
objects are particularly useful for distributed and concurrent systems.

An important property of value objects is that they should be immutable. Any time you invoke a
query on one, you should get the same result. If this is true, there is no problem having many
objects represent the same thing. If the value is mutable, you have to ensure that changing any

 149

object also updates all the other objects that represent the same thing. That's so much of a pain
that the easiest thing to do is to make it a reference object.

It's important to be clear on what immutable means. If you have a money class with a currency
and a value, that's usually an immutable value object. That does not mean your salary cannot
change. It means that to change your salary, you need to replace the existing money object with
a new money object rather than changing the amount on an exisiting money object. Your
relationship can change, but the money object itself does not.

Mechanics

• Check that the candidate object is immutable or can become immutable.

?rarr; If the object isn't currently immutable, use Remove Setting
Method until it is.

?rarr; If the candidate cannot become immutable, you should abandon
this refactoring.

• Create an equals method and a hash method.
• Compile and test.
• Consider removing any factory method and making a constructor public.

Example

I begin with a currency class:

 class Currency...
 private String _code;

 public String getCode() {
 return _code;
 }
 private Currency (String code) {
 _code = code;
 }

All this class does is hold and return a code. It is a reference object, so to get an instance I need
to use

 Currency usd = Currency.get("USD");

The currency class maintains a list of instances. I can't just use a constructor (which is why it's
private).

 new Currency("USD").equals(new Currency("USD")) // returns false

To convert this to a value object, the key thing to do is verify that the object is immutable. If it isn't,
I don't try to make this change, as a mutable value causes no end of painful aliasing.

 150

In this case the object is immutable, so the next step is to define an equals method:

 public boolean equals(Object arg) {
 if (! (arg instanceof Currency)) return false;
 Currency other = (Currency) arg;
 return (_code.equals(other._code));
 }

If I define equals, I also need to define hashCode. The simple way to do this is to take the hash
codes of all the fields used in the equals method and do a biwise xor (^) on them. Here it's easy
because there's only one:

 public int hashCode() {
 return _code.hashCode();
 }

With both methods replaced, I can compile and test. I need to do both; otherwise any collection
that relies on hashing, such as Hashtable, HashSet or HashMap, may act strangely.

Now I can create as many equal currencies as I like. I can get rid of all the controller behavior on
the class and the factory method and just use the constructor, which I can now make public.

 new Currency("USD").equals(new Currency("USD")) // now returns true

Replace Array with Object

You have an array in which certain elements mean different things.

Replace the array with an object that has a field for each element.

 String[] row = new String[3];
 row [0] = "Liverpool";
 row [1] = "15";

 Performance row = new Performance();
 row.setName("Liverpool");
 row.setWins("15");

Motivation

Arrays are a common structure for organizing data. However, they should be used only to contain
a collection of similar objects in some order. Sometimes, however, you see them used to contain
a number of different things. Conventions such as "the first element on the array is the person's
name" are hard to remember. With an object you can use names of fields and methods to convey
this information so you don't have to remember it or hope the comments are up to date. You can
also encapsulate the information and use Move Method to add behavior to it.

 151

Mechanics

• Create a new class to represent the information in the array. Give it a public field for the
array.

• Change all users of the array to use the new class.
• Compile and test.
• One by one, add getters and setters for each element of the array. Name the accessors

after the purpose of the array element. Change the clients to use the accessors. Compile
and test after each change.

• When all array accesses are replaced by methods, make the array private.
• Compile.
• For each element of the array, create a field in the class and change the accessors to

use the field.
• Compile and test after each element is changed.
• When all elements have been replaced with fields, delete the array.

Example

I start with an array that's used to hold the name, wins, and losses of a sports team. It would be
declared as follows:

 String[] row = new String[3];

It would be used with code such as the following:

 row [0] = "Liverpool";
 row [1] = "15";

 String name = row[0];
 int wins = Integer.parseInt(row[1]);

To turn this into an object, I begin by creating a class:

 class Performance {}

For my first step I give the new class a public data member. (I know this is evil and wicked, but I'll
reform in due course.)

 public String[] _data = new String[3];

Now I find the spots that create and access the array. When the array is created I use

 Performance row = new Performance();

When it is used, I change to

 152

 row._data [0] = "Liverpool";
 row._data [1] = "15";

 String name = row._data[0];
 int wins = Integer.parseInt(row._data[1]);

One by one, I add more meaningful getters and setters. I start with the name:

 class Performance...
 public String getName() {
 return _data[0];
 }
 public void setName(String arg) {
 _data[0] = arg;
 }

I alter the users of that row to use the getters and setters instead:

 row.setName("Liverpool");
 row._data [1] = "15";

 String name = row.getName();
 int wins = Integer.parseInt(row._data[1]);

I can do the same with the second element. To make matters easier, I can encapsulate the data
type conversion:

 class Performance...
 public int getWins() {
 return Integer.parseInt(_data[1]);
 }
 public void setWins(String arg) {
 _data[1] = arg;
 }

 client code...
 row.setName("Liverpool");
 row.setWins("15");

 String name = row.getName();
 int wins = row.getWins();

Once I've done this for each element, I can make the array private.

 private String[] _data = new String[3];

 153

The most important part of this refactoring, changing the interface, is now done. It is also useful,
however, to replace the array internally. I can do this by adding a field for each array element and
changing the accessors to use it:

 class Performance...
 public String getName() {
 return _name;
 }
 public void setName(String arg) {
 _name = arg;
 }
 private String _name;

I do this for each element in the array. When I've done them all, I delete the array.

Duplicate Observed Data

You have domain data available only in a GUI control, and domain methods need access.

Copy the data to a domain object. Set up an observer to synchronize the two pieces of data.

Motivation

A well-layered system separates code that handles the user interface from code that handles the
business logic. It does this for several reasons. You may want several interfaces for similar
business logic; the user interface becomes too complicated if it does both; it is easier to maintain
and evolve domain objects separate from the GUI; or you may have different developers handling
the different pieces.

Although the behavior can be separated easily, the data often cannot. Data needs to be
embedded in GUI control that has the same meaning as data that lives in the domain model. User
interface frameworks, from model-view-controller (MVC) onward, used a multitiered system to
provide mechanisms to allow you to provide this data and keep everything in sync.

 154

If you come across code that has been developed with a two-tiered approach in which business
logic is embedded into the user interface, you need to separate the behaviors. Much of this is
about decomposing and moving methods. For the data, however, you cannot just move the data,
you have to duplicate it and provide the synchronization mechanism.

Mechanics

• Make the presentation class an observer of the domain class [Gang of Four].

?rarr; If there is no domain class yet, create one.

?rarr; If there is no link from the presentation class to the domain class,
put the domain class in a field of the presentation class.

• Use Self Encapsulate Field on the domain data within the GUI class.
• Compile and test.
• Add a call to the setting method in the event handler to update the component with its

current value using direct access.

?rarr; Put a method in the event handler that updates the value of the
component on the basis of its current value. Of course this is completely
unnecessary; you are just setting the value to its current value, but by
using the setting method, you allow any behavior there to execute.

?rarr; When you make this change, don't use the getting method for the
component; use direct access to the component. Later the getting
method will pull the value from the domain, which does not change until
the setting method executes.

?rarr; Make sure the event-handling mechanism is triggered by the test
code.

• Compile and test.
• Define the data and accessor methods in the domain class.

?rarr; Make sure the setting method on the domain triggers the notify
mechanism in the observer pattern.

?rarr; Use the same data type in the domain as is on the presentation
(usually a string). Convert the data type in a later refactoring.

• Redirect the accessors to write to the domain field.
• Modify the observer's update method to copy the data from the domain field to the GUI

control.
• Compile and test.

Example

I start with the window in Figure 8.1. The behavior is very simple. Whenever you change the
value in one of the text fields, the other ones update. If you change the start or end fields, the
length is calculated; if you change the length field, the end is calculated.

 155

Figure 8.1. A simple GUI window

All the methods are on a single IntervalWindow class. The fields are set to respond to the loss
of focus from the field.

 public class IntervalWindow extends Frame...
 java.awt.TextField _startField;
 java.awt.TextField _endField;
 java.awt.TextField _lengthField;

 class SymFocus extends java.awt.event.FocusAdapter
 {
 public void focusLost(java.awt.event.FocusEvent event)
 {
 Object object = event.getSource();
 if (object == _startField)
 StartField_FocusLost(event);
 else if (object == _endField)
 EndField_FocusLost(event);
 else if (object == _lengthField)
 LengthField_FocusLost(event);
 }
 }

The listener reacts by calling StartField_FocusLost when focus is lost on the start field and
EndField_FocusLost and LengthField_FocusLost for the other fields. These event-
handling methods look like this:

 void StartField_FocusLost(java.awt.event.FocusEvent event) {
 if (isNotInteger(_startField.getText()))
 _startField.setText("0");
 calculateLength();
 }

 void EndField_FocusLost(java.awt.event.FocusEvent event) {
 if (isNotInteger(_endField.getText()))
 _endField.setText("0");

 156

 calculateLength();
 }

 void LengthField_FocusLost(java.awt.event.FocusEvent event) {
 if (isNotInteger(_lengthField.getText()))
 _lengthField.setText("0");
 calculateEnd();
 }

If you are wondering why I did the window this way, I just did it the easiest way my IDE (Cafe)
encouraged me to.

All fields insert a zero if any noninteger characters appear and call the relevant calculation
routine:

 void calculateLength(){
 try {
 int start = Integer.parseInt(_startField.getText());
 int end = Integer.parseInt(_endField.getText());
 int length = end - start;
 _lengthField.setText(String.valueOf(length));
 } catch (NumberFormatException e) {
 throw new RuntimeException ("Unexpected Number Format Error");
 }
}
void calculateEnd() {
 try {
 int start = Integer.parseInt(_startField.getText());
 int length = Integer.parseInt(_lengthField.getText());
 int end = start + length;
 _endField.setText(String.valueOf(end));
 } catch (NumberFormatException e) {
 throw new RuntimeException ("Unexpected Number Format Error");
 }
}

My overall task, should I choose to accept it, is to separate the non-visual logic from the GUI.
Essentially this means moving calculateLength and calculateEnd to a separate domain
class. To do this I need to refer to the start, end, and length data without referring to the window
class. The only way I can do this is to duplicate this data in the domain class and synchronize the
data with the GUI. This task is described by Duplicate Observed Data.

I don't currently have a domain class, so I create an (empty) one:

 class Interval extends Observable {}

The interval window needs a link to this new domain class.

 private Interval _subject;

 157

I then need to properly initialize this field and make interval window an observer of the interval. I
can do this by putting the following code in interval window's constructor:

 _subject = new Interval();
 _subject.addObserver(this);
 update(_subject, null);

I like to put this code at the end of construction process. The call to update ensures that as I
duplicate the data in the domain class, the GUI is initialized from the domain class. To do this I
need to declare that interval window implements Observer:

 public class IntervalWindow extends Frame implements Observer

To implement observer I need to create an update method. For the moment this can be blank:

 public void update(Observable observed, Object arg) {
 }

I can compile and test at this point. I haven't made any real changes yet, but I can make mistakes
in the simplest places.

Now I can turn my attention to moving fields. As usual I make the changes one field at a time. To
demonstrate my command of the English language, I'll start with the end field. The first task is to
apply Self Encapsulate Field. Text fields are updated with getText and setText methods. I
create accessors that call these

 String getEnd() {
 return _endField.getText();
 }

 void setEnd (String arg) {
 _endField.setText(arg);
 }

I find every reference to _endField and replace them with the appropriate accessors:

 void calculateLength(){
 try {
 int start = Integer.parseInt(_startField.getText());
 int end = Integer.parseInt(getEnd());
 int length = end - start;
 _lengthField.setText(String.valueOf(length));
 } catch (NumberFormatException e) {
 throw new RuntimeException ("Unexpected Number Format Error");
 }
 }

 void calculateEnd() {
 try {

 158

 int start = Integer.parseInt(_startField.getText());
 int length = Integer.parseInt(_lengthField.getText());
 int end = start + length;
 setEnd(String.valueOf(end));
 } catch (NumberFormatException e) {
 throw new RuntimeException ("Unexpected Number Format Error");
 }
 }

 void EndField_FocusLost(java.awt.event.FocusEvent event) {
 if (isNotInteger(getEnd()))
 setEnd("0");
 calculateLength();
 }

That's the normal process for Self Encapsulate Field. However, when you are working with a
GUI, there is a complication. The user can change the field value directly without calling setEnd.
So I need to put a call to setEnd into the event handler for the GUI. This call changes the value
of the end field to the current value of the end field. Of course this does nothing at the moment,
but it does ensure the user input goes through the setting method:

 void EndField_FocusLost(java.awt.event.FocusEvent event) {
 setEnd(_endField.getText());
 if (isNotInteger(getEnd()))
 setEnd("0");
 calculateLength();
 }

In this call I don't use getEnd; instead I access the field directly. I do this because later in the
refactoring getEnd gets a value from the domain object, not from the field. At that point using it
would mean that every time the user were to change the value of the field, this code would
change it back again, so here I must use direct access. At this point I can compile and test the
encapsulated behavior.

Now I add the end field to the domain class:

 class Interval...
 private String _end = "0";

I initialize it to the same value it is initialized to in the GUI. I now add getting and setting methods:

 class Interval...

 String getEnd() {
 return _end;
 }
 void setEnd (String arg) {
 _end = arg;
 setChanged();
 notifyObservers();
 }

 159

Because I'm using the observer pattern, I have to add the notification code into the setting
method. I use a string, not a (more logical) number. This is because I want to make the smallest
possible change. Once I've successfully duplicated the data, I can change the internal data type
to an integer.

I can now do one more compile and test before I perform the duplication. By doing all this
preparatory work, I've minimized the risk in this tricky step.

The first change is updating the accessors on IntervalWindow to use Interval.

 class IntervalWindow...
 String getEnd() {
 return _subject.getEnd();
 }
 void setEnd (String arg) {
 _subject.setEnd(arg);
 }

I also need to update update to ensure the GUI reacts to the notification:

 class IntervalWindow...
 public void update(Observable observed, Object arg) {
 _endField.setText(_subject.getEnd());
 }

This is the other place where I have to use direct access. If I were to call the setting method, I
would get into an infinite recursion.

I can now compile and test, and the data is properly duplicated.

I can repeat for the other two fields. Once this is done I can apply Move Method to move
calculateEnd and calculateLength over to the interval class. At that point I have a domain
class that contains all the domain behavior and data and separates it from the GUI code.

If I've done this, I consider getting rid of the GUI class completely. If my class is an older AWT
class, I can get better looks by using Swing, and Swing does a better job with coordination. I can
build the Swing GUI on top of the domain class. When I'm happy, I can remove the old GUI class.

Using Event Listeners

Duplicate Observed Data also applies if you use event listeners instead of observer/observable.
In this case you need to create a listener and event in the domain model (or you can use classes
from AWT if you don't mind the dependency). The domain object then needs to register the
listeners in the same way that observable does and send an event to them when it changes, as in
the update method. The interval window can then use an inner class to implement the listener
interface and call the appropriate update methods.

Change Unidirectional Association to Bidirectional

You have two classes that need to use each other's features, but there is only a one-way link.

 160

Add back pointers, and change modifiers to update both sets

Motivation

You may find that you have initially set up two classes so that one class refers to the other. Over
time you may find that a client of the referred class needs to get to the objects that refer to it. This
effectively means navigating backward along the pointer. Pointers are one-way links, so you can't
do this. Often you can get around this problem by finding another route. This may cost in
computation but is reasonable, and you can have a method on the referred class that uses this
behavior. Sometimes, however, this is not easy, and you need to set up a two-way reference,
sometimes called a back pointer. If you aren't used to back pointers, it's easy to become tangled
up using them. Once you get used to the idiom, however, it is not too complicated.

The idiom is awkward enough that you should have tests, at least until you are comfortable with
the idiom. Because I usually don't bother testing accessors (the risk is not high enough), this is
the rare case of a refactoring that adds a test.

This refactoring uses back pointers to implement bidirectionality. Other techniques, such as link
objects, require other refactorings.

Mechanics

• Add a field for the back pointer.
• Decide which class will control the association.
• Create a helper method on the noncontrolling side of the association. Name this method

to clearly indicate its restricted use.
• If the existing modifier is on the controlling side, modify it to update the back pointers.
• If the existing modifier is on the controlled side, create a controlling method on the

controlling side and call it from the existing modifier.

Example

A simple program has an order that refers to a customer:

 161

 class Order...
 Customer getCustomer() {
 return _customer;
 }
 void setCustomer (Customer arg) {
 _customer = arg;
 }
 Customer _customer;

The customer class has no reference to the order.

I start the refactoring by adding a field to the customer. As a customer can have several orders,
so this field is a collection. Because I don't want a customer to have the same order more than
once in its collection, the correct collection is a set:

 class Customer {
 private Set _orders = new HashSet();

Now I need to decide which class will take charge of the association. I prefer to let one class take
charge because it keeps all the logic for manipulating the association in one place. My decision
process runs as follows:

1. If both objects are reference objects and the association is one to many, then the object
that has the one reference is the controller. (That is, if one customer has many orders,
the order controls the association.)

2. If one object is a component of the other, the composite should control the association.
3. If both objects are reference objects and the association is many to many, it doesn't

matter whether the order or the customer controls the association.

Because the order will take charge, I need to add a helper method to the customer that allows
direct access to the orders collection. The order's modifier will use this to synchronize both sets of
pointers. I use the name friendOrders to signal that this method is to be used only in this
special case. I also minimize its visibility by making it package visibility if at all possible. I do have
to make it public if the other class is in another package:

 class Customer...
 Set friendOrders() {
 /** should only be used by Order when modifying the association */
 return _orders;
 }

Now I update the modifier to update the back pointers:

 class Order...
 void setCustomer (Customer arg) ...
 if (_customer != null) _customer.friendOrders().remove(this);
 _customer = arg;
 if (_customer != null) _customer.friendOrders().add(this);
 }

 162

The exact code in the controlling modifier varies with the multiplicity of the association. If the
customer is not allowed to be null, I can forgo the null checks, but I need to check for a null
argument. The basic pattern is always the same, however: first tell the other object to remove its
pointer to you, set your pointer to the new object, and then tell the new object to add a pointer to
you.

If you want to modify the link through the customer, let it call the controlling method:

 class Customer...
 void addOrder(Order arg) {
 arg.setCustomer(this);
 }

If an order can have many customers, you have a many-to-many case, and the methods look like
this:

 class Order... //controlling methods
 void addCustomer (Customer arg) {
 arg.friendOrders().add(this);
 _customers.add(arg);
 }
 void removeCustomer (Customer arg) {
 arg.friendOrders().remove(this);
 _customers.remove(arg);
 }

class Customer...
 void addOrder(Order arg) {
 arg.addCustomer(this);
 }
 void removeOrder(Order arg) {
 arg.removeCustomer(this);
 }

Change Bidirectional Association to Unidirectional

You have a two-way association but one class no longer needs features from the other.

Drop the unneeded end of the association.

 163

Motivation

Bidirectional associations are useful, but they carry a price. The price is the added complexity of
maintaining the two-way links and ensuring that objects are properly created and removed.
Bidirectional associations are not natural for many programmers, so they often are a source of
errors.

Lots of two-way links also make it easy for mistakes to lead to zombies: objects that should be
dead but still hang around because of a reference that was not cleared.

Bidirectional associations force an interdependency between the two classes. Any change to one
class may cause a change to another. If the classes are in separate packages, you get an
interdependency between the packages. Many interdependencies lead to a highly coupled
system, in which any little change leads to lots of unpredictable ramifications.

You should use bidirectional associations when you need to but not when you don't. As soon as
you see a bidirectional association is no longer pulling its weight, drop the unnecessary end.

Mechanics

• Examine all the readers of the field that holds the pointer that you wish to remove to see
whether the removal is feasible.

?rarr; Look at direct readers and further methods that call the methods.

?rarr; Consider whether it is possible to determine the other object
without using the pointer. If so you will be able to use Substitute
Algorithm on the getter to allow clients to use the getting method even if
there is no pointer.

?rarr; Consider adding the object as an argument to all methods that use
the field.

 164

• If clients need to use the getter, use Self Encapsulate Field, carry out Substitute
Algorithm on the getter, compile, and test.

• If clients don't need the getter, change each user of the field so that it gets the object in
the field another way. Compile and test after each change.

• When no reader is left in the field, remove all updates to the field, and remove the field.

?rarr; If there are many places that assign the field, use Self
Encapsulate Field so that they all use a single setter. Compile and test.
Change the setter to have an empty body. Compile and test. If that
works, remove the field, the setter, and all calls to the setter.

• Compile and test.

Example

I start from where I ended up from the example in Change Unidirectional Association to
Bidirectional. I have a customer and order with a bidirectional link:

 class Order...
 Customer getCustomer() {
 return _customer;
 }
 void setCustomer (Customer arg) {
 if (_customer != null) _customer.friendOrders().remove(this);
 _customer = arg;
 if (_customer != null) _customer.friendOrders().add(this);
 }
 private Customer _customer;

 class Customer...
 void addOrder(Order arg) {
 arg.setCustomer(this);
 }
 private Set _orders = new HashSet();
 Set friendOrders() {
 /** should only be used by Order */
 return _orders;
 }

I've found that in my application I don't have orders unless I already have a customer, so I want to
break the link from order to customer.

The most difficult part of this refactoring is checking that I can do it. Once I know it's safe to do,
it's easy. The issue is whether code relies on the customer field's being there. To remove the
field, I need to provide an alternative.

My first move is to study all the readers of the field and the methods that use those readers. Can I
find another way to provide the customer object? Often this means passing in the customer as an
argument for an operation. Here's a simplistic example of this:

 class Order...
 double getDiscountedPrice() {

 165

 return getGrossPrice() * (1 - _customer.getDiscount());
 }

changes to

 class Order...
 double getDiscountedPrice(Customer customer) {
 return getGrossPrice() * (1 - customer.getDiscount());
 }

This works particularly well when the behavior is being called by the customer, because then it's
easy to pass itself in as an argument. So

 class Customer...
 double getPriceFor(Order order) {
 Assert.isTrue(_orders.contains(order)); // see Introduce
Assertion (267)
 return order.getDiscountedPrice();

becomes

 class Customer...
 double getPriceFor(Order order) {
 Assert.isTrue(_orders.contains(order));
 return order.getDiscountedPrice(this);
 }

Another alternative I consider is changing the getter so that it gets the customer without using the
field. If it does, I can use Substitute Algorithm on the body of Order.getCustomer. I might
do something like this:

 Customer getCustomer() {
 Iterator iter = Customer.getInstances().iterator();
 while (iter.hasNext()) {
 Customer each = (Customer)iter.next();
 if (each.containsOrder(this)) return each;
 }
 return null;
 }

Slow, but it works. In a database context it may not even be that slow if I use a database query. If
the order class contains methods that use the customer field, I can change them to use
getCustomer by using Self Encapsulate Field.

If I retain the accessor, the association is still bidirectional in interface but is unidirectional in
implementation. I remove the backpointer but retain the interdependencies between the two
classes.

If I substitute the getting method, I substitute that and leave the rest till later. Otherwise I change
the callers one at a time to use the customer from another source. I compile and test after each

 166

change. In practice, this process usually is pretty rapid. If it were complicated, I would give up on
this refactoring.

Once I've eliminated the readers of the field, I can work on the writers of the field. This is as
simple as removing any assignments to the field and then removing the field. Because nobody is
reading it any more, that shouldn't matter.

Replace Magic Number with Symbolic Constant

You have a literal number with a particular meaning.

Create a constant, name it after the meaning, and replace the number with it.

 double potentialEnergy(double mass, double height) {
 return mass * 9.81 * height;
 }

 double potentialEnergy(double mass, double height) {
 return mass * GRAVITATIONAL_CONSTANT * height;
 }
 static final double GRAVITATIONAL_CONSTANT = 9.81;

Motivation

Magic numbers are one of oldest ills in computing. They are numbers with special values that
usually are not obvious. Magic numbers are really nasty when you need to reference the same
logical number in more than one place. If the numbers might ever change, making the change is
a nightmare. Even if you don't make a change, you have the difficulty of figuring out what is going
on.

Many languages allow you to declare a constant. There is no cost in performance and there is a
great improvement in readability.

Before you do this refactoring, you should always look for an alternative. Look at how the magic
number is used. Often you can find a better way to use it. If the magic number is a type code,
consider Replace Type Code with Class. If the magic number is the length of an array, use
anArray.length instead when you are looping through the array.

Mechanics

• Declare a constant and set it to the value of the magic number.
• Find all occurrences of the magic number.
• See whether the magic number matches the usage of the constant; if it does, change the

magic number to use the constant.
• Compile.
• When all magic numbers are changed, compile and test. At this point all should work as if

nothing has been changed.

 167

?rarr; A good test is to see whether you can change the constant easily.
This may mean altering some expected results to match the new value.
This isn't always possible, but it is a good trick when it works.

Encapsulate Field

There is a public field.

Make it private and provide accessors.

 public String _name

 private String _name;
 public String getName() {return _name;}
 public void setName(String arg) {_name = arg;}

Motivation

One of the principal tenets of object orientation is encapsulation, or data hiding. This says that
you should never make your data public. When you make data public, other objects can change
and access data values without the owning object's knowing about it. This separates data from
behavior.

This is seen as a bad thing because it reduces the modularity of the program. When the data and
behavior that uses it are clustered together, it is easier to change the code, because the changed
code is in one place rather than scattered all over the program.

Encapsulate Field begins the process by hiding the data and adding accessors. But this is only
the first step. A class with only accessors is a dumb class that doesn't really take advantage of
the opportunities of objects, and an object is terrible thing to waste. Once I've done Encapsulate
Field I look for methods that use the new methods to see whether they fancy packing their bags
and moving to the new object with a quick Move Method.

Mechanics

• Create getting and setting methods for the field.
• Find all clients outside the class that reference the field. If the client uses the value,

replace the reference with a call to the getting method. If the client changes the value,
replace the reference with a call to the setting method.

?rarr; If the field is an object and the client invokes a modifier on the
object, that is a use. Only use the setting method to replace an
assignment.

• Compile and test after each change.
• Once all clients are changed, declare the field as private.
• Compile and test.

 168

Encapsulate Collection

A method returns a collection.

Make it return a read-only view and provide add/remove methods.

Motivation

Often a class contains a collection of instances. This collection might be an array, list, set, or
vector. Such cases often have the usual getter and setter for the collection.

However, collections should use a protocol slightly different from that for other kinds of data. The
getter should not return the collection object itself, because that allows clients to manipulate the
contents of the collection without the owning class's knowing what is going on. It also reveals too
much to clients about the object's internal data structures. A getter for a multivalued attribute
should return something that prevents manipulation of the collection and hides unnecessary
details about its structure. How you do this varies depending on the version of Java you are
using.

In addition there should not be a setter for collection: rather there should be operations to add
and remove elements. This gives the owning object control over adding and removing elements
from the collection.

With this protocol the collection is properly encapsulated, which reduces the coupling of the
owning class to its clients.

Mechanics

• Add an add and remove method for the collection.
• Initialize the field to an empty collection.
• Compile.
• Find callers of the setting method. Either modify the setting method to use the add and

remove operations or have the clients call those operations instead.

?rarr; Setters are used in two cases: when the collection is empty and
when the setter is replacing a nonempty collection.

?rarr; You may wish to use Rename Method to rename the setter.
Change it from set to initialize or replace.

• Compile and test.
• Find all users of the getter that modify the collection. Change them to use the add and

remove methods. Compile and test after each change.

 169

• When all uses of the getter that modify have been changed, modify the getter to return a
read-only view of the collection.

?rarr; In Java 2, this is the appropriate unmodifiable collection view.

?rarr; In Java 1.1, you should return a copy of the collection.

Compile and test.

• Find the users of the getter. Look for code that should be on the host object. Use Extract
Method and Move Method to move the code to the host object.

For Java 2, you are done with that. For Java 1.1, however, clients may prefer to use an
enumeration. To provide the enumeration:

• Change the name of the current getter and add a new getter to return an enumeration.
Find users of the old getter and change them to use one of the new methods.

?rarr; If this is too big a jump, use Rename Method on the old getter,
create a new method that returns an enumeration, and change callers to
use the new method.

• Compile and test.

Examples

Java 2 added a whole new group of classes to handle collections. It not only added new classes
but also altered the style of using collections. As a result the way you encapsulate a collection is
different depending on whether you use the Java 2 collections or the Java 1.1 collections. I
discuss the Java 2 approach first, because I expect the more functional Java 2 collections to
displace the Java 1.1 collections during the lifetime of this book.

Example: Java 2

A person is taking courses. Our course is pretty simple:

 class Course...
 public Course (String name, boolean isAdvanced) {...};
 public boolean isAdvanced() {...};

I'm not going to bother with anything else on the course. The interesting class is the person:

 class Person...
 public Set getCourses() {
 return _courses;
 }
 public void setCourses(Set arg) {
 _courses = arg;
 }
 private Set _courses;

 170

With this interface, clients adds courses with code such as

 Person kent = new Person();
 Set s = new HashSet();
 s.add(new Course ("Smalltalk Programming", false));
 s.add(new Course ("Appreciating Single Malts", true));
 kent.setCourses(s);
 Assert.equals (2, kent.getCourses().size());
 Course refact = new Course ("Refactoring", true);
 kent.getCourses().add(refact);
 kent.getCourses().add(new Course ("Brutal Sarcasm",
false));
 Assert.equals (4, kent.getCourses().size());
 kent.getCourses().remove(refact);
 Assert.equals (3, kent.getCourses().size());

A client that wants to know about advanced courses might do it this way:

 Iterator iter = person.getCourses().iterator();
 int count = 0;
 while (iter.hasNext()) {
 Course each = (Course) iter.next();
 if (each.isAdvanced()) count ++;
 }

The first thing I want to do is to create the proper modifiers for the collection and compile, as
follows:

 class Person
 public void addCourse (Course arg) {
 _courses.add(arg);
 }
 public void removeCourse (Course arg) {
 _courses.remove(arg);
 }

Life will be easier if I initialize the field as well:

 private Set _courses = new HashSet();

I then look at the users of the setter. If there are many clients and the setter is used heavily, I
need to replace the body of the setter to use the add and remove operations. The complexity of
this process depends on how the setter is used. There are two cases. In the simplest case the
client uses the setter to initialize the values, that is, there are no courses before the setter is
applied. In this case I replace the body of the setter to use the add method:

 class Person...
 public void setCourses(Set arg) {
 Assert.isTrue(_courses.isEmpty());

 171

 Iterator iter = arg.iterator();
 while (iter.hasNext()) {
 addCourse((Course) iter.next());
 }
 }

After changing the body this way, it is wise to use Rename Method to make the intention
clearer.

 public void initializeCourses(Set arg) {
 Assert.isTrue(_courses.isEmpty());
 Iterator iter = arg.iterator();
 while (iter.hasNext()) {
 addCourse((Course) iter.next());
 }
 }

In the more general case I have to use the remove method to remove every element first and
then add the elements. But I find that occurs rarely (as general cases often do).

If I know that I don't have any additional behavior when adding elements as I initialize, I can
remove the loop and use addAll.

 public void initializeCourses(Set arg) {
 Assert.isTrue(_courses.isEmpty());
 _courses.addAll(arg);
 }

I can't just assign the set, even though the previous set was empty. If the client simply create a
set and use the setter, I can get them to use the add were to modify the set after passing it in,
that would violate encapsulation. I have to make a copy.

If the clients simply create a set and use the setter, I can get them to use the add and remove
methods directly and remove the setter completely. Code such as

 Person kent = new Person();
 Set s = new HashSet();
 s.add(new Course ("Smalltalk Programming", false));
 s.add(new Course ("Appreciating Single Malts", true));
 kent.initializeCourses(s);

becomes

 Person kent = new Person();
 kent.addCourse(new Course ("Smalltalk Programming",
false));
 kent.addCourse(new Course ("Appreciating Single Malts",
true));

 172

Now I start looking at users of the getter. My first concern is cases in which someone uses the
getter to modify the underlying collection, for example:

 kent.getCourses().add(new Course ("Brutal Sarcasm", false));

I need to replace this with a call to the new modifier:

 kent.addCourse(new Course ("Brutal Sarcasm", false));

Once I've done this for everyone, I can check that nobody is modifying through the getter by
changing the getter body to return an unmodifiable view:

 public Set getCourses() {
 return Collections.unmodifiableSet(_courses);
 }

At this point I've encapsulated the collection. No one can change the elements of collection
except through methods on the person.

Moving Behavior into the Class

I have the right interface. Now I like to look at the users of the getter to find code that ought to be
on person. Code such as

 Iterator iter = person.getCourses().iterator();
 int count = 0;
 while (iter.hasNext()) {
 Course each = (Course) iter.next();
 if (each.isAdvanced()) count ++;
 }

is better moved to person because it uses only person's data. First I use Extract Method on the
code:

 int numberOfAdvancedCourses(Person person) {
 Iterator iter = person.getCourses().iterator();
 int count = 0;
 while (iter.hasNext()) {
 Course each = (Course) iter.next();
 if (each.isAdvanced()) count ++;
 }
 return count;
 }

And then I use Move Method to move it to person:

 class Person...

 173

 int numberOfAdvancedCourses() {
 Iterator iter = getCourses().iterator();
 int count = 0;
 while (iter.hasNext()) {
 Course each = (Course) iter.next();
 if (each.isAdvanced()) count ++;
 }
 return count;
 }

A common case is

 kent.getCourses().size()

which can be changed to the more readable

 kent.numberOfCourses()

 class Person...
 public int numberOfCourses() {
 return _courses.size();
 }

A few years ago I was concerned that moving this kind of behavior over to person would lead to a
bloated person class. In practice, I've found that usually isn't a problem.

Example: Java 1.1

In many ways the Java 1.1 case is pretty similar to the Java 2. I use the same example but with a
vector:

 class Person...
 public Vector getCourses() {
 return _courses;
 }
 public void setCourses(Vector arg) {
 _courses = arg;
 }
 private Vector _courses;

Again I begin by creating modifiers and initializing the field as follows:

 class Person
 public void addCourse(Course arg) {
 _courses.addElement(arg);
 }
 public void removeCourse(Course arg) {
 _courses.removeElement(arg);
 }
 private Vector _courses = new Vector();

 174

I can modify the setCourses to initialize the vector:

 public void initializeCourses(Vector arg) {
 Assert.isTrue(_courses.isEmpty());
 Enumeration e = arg.elements();
 while (e.hasMoreElements()) {
 addCourse((Course) e.nextElement());
 }
 }

I change users of the getter to use the modifiers, so

 kent.getCourses().addElement(new Course ("Brutal Sarcasm",
false));

becomes

 kent.addCourse(new Course ("Brutal Sarcasm", false));

My final step changes because vectors do not have an unmodifiable version:

 class Person...
 Vector getCourses() {
 return (Vector) _courses.clone();
 }

At this point I've encapsulated the collection. No one can change the elements of collection
except through the person.

Example: Encapsulating Arrays

Arrays are commonly used, especially by programmers who are not familiar with collections. I
rarely use arrays, because I prefer the more behaviorally rich collections. I often change arrays
into collections as I do the encapsulation.

This time I begin with a string array for skills:

 String[] getSkills() {
 return _skills;
 }
 void setSkills (String[] arg) {
 _skills = arg;
 }
 String[] _skills;

Again I begin by providing a modifier operation. Because the client is likely to change a value at a
particular position, I need a set operation for a particular element:

 175

 void setSkill(int index, String newSkill) {
 _skills[index] = newSkill;
 }

If I need to set the whole array, I can do so using the following operation:

 void setSkills (String[] arg) {
 _skills = new String[arg.length];
 for (int i=0; i < arg.length; i++)
 setSkill(i,arg[i]);
 }

There are numerous pitfalls here if things have to be done with the removed elements. The
situation is complicated by what happens when the argument array is different in length from the
original array. That's another reason to prefer a collection.

At this point I can start looking at users of the getter. I can change

 kent.getSkills()[1] = "Refactoring";

to

 kent.setSkill(1,"Refactoring");

When I've made all the changes, I can modify the getter to return a copy:

 String[] getSkills() {
 String[] result = new String[_skills.length];
 System.arraycopy(_skills, 0, result, 0, _skills.length);
 return result;
 }

This is a good point to replace the array with a list:

 class Person...
 String[] getSkills() {
 return (String[]) _skills.toArray(new String[0]);
 }
 void setSkill(int index, String newSkill) {
 _skills.set(index,newSkill);
 }
 List _skills = new ArrayList();

Replace Record with Data Class

You need to interface with a record structure in a traditional programming environment.

 176

Make a dumb data object for the record.

Motivation

Record structures are a common feature of programming environments. There are various
reasons for bringing them into an object-oriented program. You could be copying a legacy
program, or you could be communicating a structured record with a traditional programming API,
or a database record. In these cases it is useful to create an interfacing class to deal with this
external element. It is simplest to make the class look like the external record. You move other
fields and methods into the class later. A less obvious but very compelling case is an array in
which the element in each index has a special meaning. In this case you use Replace Array
with Object.

Mechanics

• Create a class to represent the record.
• Give the class a private field with a getting method and a setting method for each data

item.

You now have a dumb data object. It has no behavior yet but further refactoring will explore that
issue.

Replace Type Code with Class

A class has a numeric type code that does not affect its behavior.

Replace the number with a new class.

Motivation

Numeric type codes, or enumerations, are a common feature of C-based languages. With
symbolic names they can be quite readable. The problem is that the symbolic name is only an
alias; the compiler still sees the underlying number. The compiler type checks using the number

 177

not the symbolic name. Any method that takes the type code as an argument expects a number,
and there is nothing to force a symbolic name to be used. This can reduce readability and be a
source of bugs.

If you replace the number with a class, the compiler can type check on the class. By providing
factory methods for the class, you can statically check that only valid instances are created and
that those instances are passed on to the correct objects.

Before you do Replace Type Code with Class, however, you need to consider the other type code
replacements. Replace the type code with a class only if the type code is pure data, that is, it
does not cause different behavior inside a switch statement. For a start Java can only switch on
an integer, not an arbitrary class, so the replacement will fail. More important than that, any
switch has to be removed with Replace Conditional with Polymorphism. In order for that
refactoring, the type code first has to be handled with Replace Type Code with Subclasses or
Replace Type Code with State/Strategy.

Even if a type code does not cause different behavior depending on its value, there might be
behavior that is better placed in the type code class, so be alert to the value of a Move Method
or two.

Mechanics

• Create a new class for the type code.

?rarr; The class needs a code field that matches the type code and a
getting method for this value. It should have static variables for the
allowable instances of the class and a static method that returns the
appropriate instance from an argument based on the original code.

• Modify the implementation of the source class to use the new class.

?rarr; Maintain the old code-based interface, but change the static fields
to use new class to generate the codes. Alter the other code-based
methods to get the code numbers from the new class.

• Compile and test.

?rarr; At this point the new class can do run-time checking of the codes.

• For each method on the source class that uses the code, create a new method that uses
the new class instead.

?rarr; Methods that use the code as an argument need new methods that
use an instance of the new class as an argument. Methods that return a
code need a new method that returns the code. It is often wise to use
Rename Method on an old accessor before creating a new one to
make the program clearer when it is using an old code.

• One by one, change the clients of the source class so that they use the new interface.
• Compile and test after each client is updated.

 178

?rarr; You may need to alter several methods before you have enough
consistency to compile and test.

• Remove the old interface that uses the codes, and remove the static declarations of the
codes.

• Compile and test.

Example

A person has a blood group modeled with a type code:

 class Person {

 public static final int O = 0;
 public static final int A = 1;
 public static final int B = 2;
 public static final int AB = 3;

 private int _bloodGroup;

 public Person (int bloodGroup) {
 _bloodGroup = bloodGroup;
 }

 public void setBloodGroup(int arg) {
 _bloodGroup = arg;
 }

 public int getBloodGroup() {
 return _bloodGroup;
 }
 }

I start by creating a new blood group class with instances that contain the type code number:

 class BloodGroup {
 public static final BloodGroup O = new BloodGroup(0);
 public static final BloodGroup A = new BloodGroup(1);
 public static final BloodGroup B = new BloodGroup(2);
 public static final BloodGroup AB = new BloodGroup(3);
 private static final BloodGroup[] _values = {O, A, B, AB};

 private final int _code;

 private BloodGroup (int code) {
 _code = code;
 }

 public int getCode() {
 return _code;
 }

 public static BloodGroup code(int arg) {

 179

 return _values[arg];
 }

 }

I then replace the code in Person with code that uses the new class:

 class Person {

 public static final int O = BloodGroup.O.getCode();
 public static final int A = BloodGroup.A.getCode();
 public static final int B = BloodGroup.B.getCode();
 public static final int AB = BloodGroup.AB.getCode();

 private BloodGroup _bloodGroup;

 public Person (int bloodGroup) {
 _bloodGroup = BloodGroup.code(bloodGroup);
 }

 public int getBloodGroup() {
 return _bloodGroup.getCode();
 }

 public void setBloodGroup(int arg) {
 _bloodGroup = BloodGroup.code (arg);
 }
 }

At this point I have run-time checking within the blood group class. To really gain from the change
I have to alter the users of the person class to use blood group instead of integers.

To begin I use Rename Method on the accessor for the person's blood group to clarify the new
state of affairs:

 class Person...
 public int getBloodGroupCode() {
 return _bloodGroup.getCode();
 }

I then add a new getting method that uses the new class:

 public BloodGroup getBloodGroup() {
 return _bloodGroup;
 }

I also create a new constructor and setting method that uses the class:

 public Person (BloodGroup bloodGroup) {
 _bloodGroup = bloodGroup;

 180

 }

 public void setBloodGroup(BloodGroup arg) {
 _bloodGroup = arg;
 }

Now I go to work on the clients of Person. The art is to work on one client at a time so that you
can take small steps. Each client may need various changes, and that makes it more tricky. Any
reference to the static variables needs to be changed. So

 Person thePerson = new Person(Person.A)

becomes

 Person thePerson = new Person(BloodGroup.A);

References to the getting method need to use the new one, so

 thePerson.getBloodGroupCode()

becomes

 thePerson.getBloodGroup().getCode()

The same is true for setting methods, so

 thePerson.setBloodGroup(Person.AB)

becomes

 thePerson.setBloodGroup(BloodGroup.AB)

Once this is done for all clients of Person, I can remove the getting method, constructor, static
definitions, and setting methods that use the integer:

 class Person ...
 public static final int O = BloodGroup.O.getCode();
 public static final int A = BloodGroup.A.getCode();
 public static final int B = BloodGroup.B.getCode();
 public static final int AB = BloodGroup.AB.getCode();
 public Person (int bloodGroup) {
 _bloodGroup = BloodGroup.code(bloodGroup);
 }
 public int getBloodGroup() {
 return _bloodGroup.getCode();
 }

 181

 public void setBloodGroup(int arg) {
 _bloodGroup = BloodGroup.code (arg);
 }

I can also privatize the methods on blood group that use the code:

 class BloodGroup...
 private int getCode() {
 return _code;
 }

 private static BloodGroup code(int arg) {
 return _values[arg];
 }

Replace Type Code with Subclasses

You have an immutable type code that affects the behavior of a class.

Replace the type code with subclasses.

Motivation

If you have a type code that does not affect behavior, you can use Replace Type Code with
Class. However, if the type code affects behavior, the best thing to do is to use polymorphism to
handle the variant behavior.

This situation usually is indicated by the presence of case-like conditional statements. These may
be switches or if-then-else constructs. In either case they test the value of the type code and then
execute different code depending on the value of the type code. Such conditionals need to be
refactored with Replace Conditional with Polymorphism. For this refactoring to work, the type
code has to be replaced with an inheritance structure that will host the polymorphic behavior.
Such an inheritance structure has a class with subclasses for each type code.

The simplest way to establish this structure is Replace Type Code with Subclasses. You take the
class that has the type code and create a subclass for each type code. However, there are cases
in which you can't do this. In the first the value of the type code changes after the object is

 182

created. In the second the class with the type code is already subclassed for another reason. In
either of these cases you need to use Replace Type Code with State/Strategy.

Replace Type Code with Subclasses is primarily a scaffolding move that enables Replace
Conditional with Polymorphism. The trigger to use Replace Type Code with Subclasses is the
presence of conditional statements. If there are no conditional statements, Replace Type Code
with Class is the better and less critical move.

Another reason to Replace Type Code with Subclasses is the presence of features that are
relevant only to objects with certain type codes. Once you've done this refactoring, you can use
Push Down Method and Push Down Field to clarify that these features are relevant only in
certain cases.

The advantage of Replace Type Code with Subclasses is that it moves knowledge of the variant
behavior from clients of the class to the class itself. If I add new variants, all I need to do is add a
subclass. Without polymorphism I have to find all the conditionals and change those. So this
refactoring is particularly valuable when variants keep changing.

Mechanics

• Self-encapsulate the type code.

?rarr; If the type code is passed into the constructor, you need to replace
the constructor with a factory method.

• For each value of the type code, create a subclass. Override the getting method of the
type code in the subclass to return the relevant value.

?rarr; This value is hard coded into the return (e.g., return 1). This
looks messy, but it is a temporary measure until all case statements
have been replaced.

• Compile and test after replacing each type code value with a subclass.
• Remove the type code field from the superclass. Declare the accessors for the type code

as abstract.
• Compile and test.

Example

I use the boring and unrealistic example of employee payment:

 class Employee...
 private int _type;
 static final int ENGINEER = 0;
 static final int SALESMAN = 1;
 static final int MANAGER = 2;

 Employee (int type) {
 _type = type;
 }

 183

The first step is to use Self Encapsulate Field on the type code:

 int getType() {
 return _type;
 }

Because the employee's constructor uses a type code as a parameter, I need to replace it with a
factory method:

 Employee create(int type) {
 return new Employee(type);
 }

 private Employee (int type) {
 _type = type;
 }

I can now start with engineer as a subclass. First I create the subclass and the overriding method
for the type code:

 class Engineer extends Employee {
 int getType() {
 return Employee.ENGINEER;
 }
 }

I also need to alter the factory method to create the appropriate object:

 class Employee
 static Employee create(int type) {
 if (type == ENGINEER) return new Engineer();
 else return new Employee(type);
 }

I continue, one by one, until all the codes are replaced with subclasses. At this point I can get rid
of the type code field on employee and make getType an abstract method. At this point the
factory method looks like this:

 abstract int getType();

 static Employee create(int type) {
 switch (type) {
 case ENGINEER:
 return new Engineer();
 case SALESMAN:
 return new Salesman();
 case MANAGER:
 return new Manager();
 default:

 184

 throw new IllegalArgumentException("Incorrect type code
value");
 }
 }

Of course this is the kind of switch statement I would prefer to avoid. But there is only one, and it
is only used at creation.

Naturally once you have created the subclasses you should use Push Down Method and Push
Down Field on any methods and fields that are relevant only for particular types of employee.

Replace Type Code with State/Strategy

You have a type code that affects the behavior of a class, but you cannot use subclassing.

Replace the type code with a state object.

Motivation

This is similar to Replace Type Code with Subclasses, but can be used if the type code
changes during the life of the object or if another reason prevents subclassing. It uses either the
state or strategy pattern [Gang of Four].

State and strategy are very similar, so the refactoring is the same whichever you use, and it
doesn't really matter. Choose the pattern that better fits the specific circumstances. If you are
trying to simplify a single algorithm with Replace Conditional with Polymorphism, strategy is
the better term. If you are going to move state-specific data and you think of the object as
changing state, use the state pattern.

Mechanics

• Self-encapsulate the type code.
• Create a new class, and name it after the purpose of the type code. This is the state

object.
• Add subclasses of the state object, one for each type code.

?rarr; It is easier to add the subclasses all at once, rather than one at a
time.

• Create an abstract query in the state object to return the type code. Create overriding
queries of each state object subclass to return the correct type code.

• Compile.

 185

• Create a field in the old class for the new state object.
• Adjust the type code query on the original class to delegate to the state object.
• Adjust the type code setting methods on the original class to assign an instance of the

appropriate state object subclass.
• Compile and test.

Example

I again use the tiresome and brainless example of employee payment:

 class Employee {

 private int _type;
 static final int ENGINEER = 0;
 static final int SALESMAN = 1;
 static final int MANAGER = 2;

 Employee (int type) {
 _type = type;
 }

Here's an example of the kind of conditional behavior that would use these codes:

 int payAmount() {
 switch (_type) {
 case ENGINEER:
 return _monthlySalary;
 case SALESMAN:
 return _monthlySalary + _commission;
 case MANAGER:
 return _monthlySalary + _bonus;
 default:
 throw new RuntimeException("Incorrect Employee");
 }
 }

I assume this is an exciting and go-ahead company that allows promotion of managers to
engineers. Thus the type code is mutable, and I can't use subclassing. My first step, as ever, is to
self-encapsulate the type code:

 Employee (int type) {
 setType (type);
 }

 int getType() {
 return _type;
 }

 void setType(int arg) {
 _type = arg;
 }

 186

 int payAmount() {
 switch (getType()) {
 case ENGINEER:
 return _monthlySalary;
 case SALESMAN:
 return _monthlySalary + _commission;
 case MANAGER:
 return _monthlySalary + _bonus;
 default:
 throw new RuntimeException("Incorrect Employee");
 }
 }

Now I declare the state class. I declare this as an abstract class and provide an abstract method
for returning the type code:

 abstract class EmployeeType {
 abstract int getTypeCode();
 }

I now create the subclasses:

 class Engineer extends EmployeeType {
 int getTypeCode () {
 return Employee.ENGINEER;
 }
 }
class Manager extends EmployeeType {
 int getTypeCode () {
 return Employee.MANAGER;
 }
 }

class Salesman extends EmployeeType {

 int getTypeCode () {
 return Employee.SALESMAN;
 }
 }

I compile so far, and it is all so trivial that even for me it compiles easily. Now I actually hook the
subclasses into the employee by modifying the accessors for the type code:

 class Employee...
 private EmployeeType _type;

 int getType() {
 return _type.getTypeCode();
 }

 void setType(int arg) {

 187

 switch (arg) {
 case ENGINEER:
 _type = new Engineer();
 break;
 case SALESMAN:
 _type = new Salesman();
 break;
 case MANAGER:
 _type = new Manager();
 break;
 default:
 throw new IllegalArgumentException("Incorrect Employee
Code");
 }
 }

This means I now have a switch statement here. Once I'm finished refactoring, it will be the only
one anywhere in the code, and it will be executed only when the type is changed. I can also use
Replace Constructor with Factory Method to create factory methods for different cases. I
can eliminate all the other case statements with a swift thrust of Replace Conditional with
Polymorphism.

I like to finish Replace Type Code with State/Strategy by moving all knowledge of the type
codes and subclasses over to the new class. First I copy the type code definitions into the
employee type, create a factory method for employee types, and adjust the setting method on
employee:

 class Employee...
 void setType(int arg) {
 _type = EmployeeType.newType(arg);
 }

class EmployeeType...
 static EmployeeType newType(int code) {
 switch (code) {
 case ENGINEER:
 return new Engineer();
 case SALESMAN:
 return new Salesman();
 case MANAGER:
 return new Manager();
 default:
 throw new IllegalArgumentException("Incorrect Employee
Code");
 }
 }
 static final int ENGINEER = 0;
 static final int SALESMAN = 1;
 static final int MANAGER = 2;

Then I remove the type code definitions from the employee and replace them with references to
the employee type:

 188

 class Employee...
 int payAmount() {
 switch (getType()) {
 case EmployeeType.ENGINEER:
 return _monthlySalary;
 case EmployeeType.SALESMAN:
 return _monthlySalary + _commission;
 case EmployeeType.MANAGER:
 return _monthlySalary + _bonus;
 default:
 throw new RuntimeException("Incorrect Employee");
 }
 }

I'm now ready to use Replace Conditional with Polymorphism on payAmount.

Replace Subclass with Fields

You have subclasses that vary only in methods that return constant data.

Change the methods to superclass fields and eliminate the subclasses.

Motivation

You create subclasses to add features or allow behavior to vary. One form of variant behavior is
the constant method [Beck]. A constant method is one that returns a hard-coded value. This can
be very useful on subclasses that return different values for an accessor. You define the accessor
in the superclass and implement it with different values on the subclass.

Although constant methods are useful, a subclass that consists only of constant methods is not
doing enough to be worth existing. You can remove such subclasses completely by putting fields
in the superclass. By doing that you remove the extra complexity of the subclasses.

Mechanics

 189

• Use Replace Constructor with Factory Method on the subclasses.
• If any code refers to the subclasses, replace the reference with one to the superclass.
• Declare final fields for each constant method on the superclass.
• Declare a protected superclass constructor to initialize the fields.
• Add or modify subclass constructors to call the new superclass constructor.
• Compile and test.
• Implement each constant method in the superclass to return the field and remove the

method from the subclasses.
• Compile and test after each removal.
• When all the subclass methods have been removed, use Inline Method to inline the

constructor into the factory method of the superclass.
• Compile and test.
• Remove the subclass.
• Compile and test.
• Repeat inlining the constructor and elminating each subclass until they are all gone.

Example

I begin with a person and sex-oriented subclasses:

 abstract class Person {

 abstract boolean isMale();
 abstract char getCode();
 ...

 class Male extends Person {
 boolean isMale() {
 return true;
 }
 char getCode() {
 return 'M';
 }
 }

 class Female extends Person {
 boolean isMale() {
 return false;
 }
 char getCode() {
 return 'F';
 }
 }

Here the only difference between the subclasses is that they have implementations of abstract
methods that return a hard-coded constant method [Beck]. I remove these lazy subclasses.

First I need to use Replace Constructor with Factory Method. In this case I want a factory
method for each subclass:

 class Person...
 static Person createMale(){

 190

 return new Male();
 }
 static Person createFemale() {
 return new Female();
 }

I then replace calls of the form

 Person kent = new Male();

with

 Person kent = Person.createMale();

Once I've replaced all of these calls I shouldn't have any references to the subclasses. I can
check this with a text search and check that at least nothing accesses them outside the package
by making the classes private.

Now I declare fields for each constant method on the superclass:

 class Person...
 private final boolean _isMale;
 private final char _code;

I add a protected constructor on the superclass:

 class Person...
 protected Person (boolean isMale, char code) {
 _isMale = isMale;
 _code = code;
 }

I add constructors that call this new constructor:

 class Male...
 Male() {
 super (true, 'M');
 }
 class Female...
 Female() {
 super (false, 'F');
 }

With that done I can compile and test. The fields are created and initialized, but so far they aren't
being used. I can now start bringing the fields into play by putting accessors on the superclass
and eliminating the subclass methods:

 191

 class Person...
 boolean isMale() {
 return _isMale;
 }
 class Male...
 boolean isMale() {
 return true;
 }

I can do this one field and one subclass at a time or all in one go if I'm feeling lucky.

After all the subclasses are empty, so I remove the abstract marker from the person class and
use Inline Method to inline the subclass constructor into the superclass:

 class Person
 static Person createMale(){
 return new Person(true, 'M');
 }

After compiling and testing I delete the male class and repeat the process for the female class.

 192

Chapter 9. Simplifying Conditional Expressions

Conditional logic has a way of getting tricky, so here are a number of refactorings you can use to
simplify it. The core refactoring here is Decompose Conditional, which entails breaking a
conditional into pieces. It is important because it separates the switching logic from the details of
what happens.

The other refactorings in this chapter involve other important cases. Use Consolidate
Conditional Expression when you have several tests and all have the same effect. Use
Consolidate Duplicate Conditional Fragments to remove any duplication within the
conditional code.

If you are working with code developed in a one exit point mentality, you often find control flags
that allow the conditions to work with this rule. I don't follow the rule about one exit point from a
method. Hence I use Replace Nested Conditional with Guard Clauses to clarify special case
conditionals and Remove Control Flag to get rid of the awkward control flags.

Object-oriented programs often have less conditional behavior than procedural programs
because much of the conditional behavior is handled by polymorphism. Polymorphism is better
because the caller does not need to know about the conditional behavior, and it is thus easier to
extend the conditions. As a result, object-oriented programs rarely have switch (case) statements.
Any that show up are prime candidates for Replace Conditional with Polymorphism.

One of the most useful, but less obvious, uses of polymorphism is to use Introduce Null Object
to remove checks for a null value.

Decompose Conditional

You have a complicated conditional (if-then-else) statement.

Extract methods from the condition, then part, and else parts.

 if (date.before (SUMMER_START) || date.after(SUMMER_END))
 charge = quantity * _winterRate + _winterServiceCharge;
 else charge = quantity * _summerRate;

 if (notSummer(date))
 charge = winterCharge(quantity);
 else charge = summerCharge (quantity);

Motivation

One of the most common areas of complexity in a program lies in complex conditional logic. As
you write code to test conditions and to do various things depending on various conditions, you
quickly end up with a pretty long method. Length of a method is in itself a factor that makes it
harder to read, but conditions increase the difficulty. The problem usually lies in the fact that the
code, both in the condition checks and in the actions, tells you what happens but can easily
obscure why it happens.

 193

As with any large block of code, you can make your intention clearer by decomposing it and
replacing chunks of code with a method call named after the intention of that block of code. With
conditions you can receive further benefit by doing this for the conditional part and each of the
alternatives. This way you highlight the condition and make it clearly what you are branching on.
You also highlight the reason for the branching.

Mechanics

• Extract the condition into its own method.
• Extract the then part and the else part into their own methods.

If I find a nested conditional, I usually first look to see whether I should use Replace Nested
Conditional with Guard Clauses. If that does not make sense, I decompose each of the
conditionals.

Example

Suppose I'm calculating the charge for something that has separate rates for winter and summer:

 if (date.before (SUMMER_START) || date.after(SUMMER_END))
 charge = quantity * _winterRate + _winterServiceCharge;
 else charge = quantity * _summerRate;

I extract the conditional and each leg as follows:

 if (notSummer(date))
 charge = winterCharge(quantity);
 else charge = summerCharge (quantity);

 private boolean notSummer(Date date) {
 return date.before (SUMMER_START) || date.after(SUMMER_END);
 }

 private double summerCharge(int quantity) {
 return quantity * _summerRate;
 }

 private double winterCharge(int quantity) {
 return quantity * _winterRate + _winterServiceCharge;
 }

Here I show the result of the complete refactoring for clarity. In practice, however, I do each
extraction separately and compile and test after each one.

Many programmers don't extract the condition parts in situations such as this. The conditions
often are quite short, so it hardly seems worth it. Although the condition is often short, there often
is a big gap between the intention of the code and its body. Even in this little case, reading
notSummer(date) conveys a clearer message to me than does the original code. With the
original I have to look at the code and figure out what it is doing. It's not difficult to do that here,
but even so the extracted method reads more like a comment.

 194

Consolidate Conditional Expression

You have a sequence of conditional tests with the same result.

Combine them into a single conditional expression and extract it.

 double disabilityAmount() {
 if (_seniority < 2) return 0;
 if (_monthsDisabled > 12) return 0;
 if (_isPartTime) return 0;
 // compute the disability amount

 double disabilityAmount() {
 if (isNotEligableForDisability()) return 0;
 // compute the disability amount

Motivation

Sometimes you see a series of conditional checks in which each check is different yet the
resulting action is the same. When you see this, you should use ands and ors to consolidate them
into a single conditional check with a single result.

Consolidating the conditional code is important for two reasons. First, it makes the check clearer
by showing that you are really making a single check that's oring the other checks together. The
sequence has the same effect, but it communicates carrying out a sequence of separate checks
that just happen to be done together. The second reason for this refactoring is that it often sets
you up for Extract Method. Extracting a condition is one of the most useful things you can do to
clarify your code. It replaces a statement of what you are doing with why you are doing it.

The reasons in favor of consolidating conditionals also point to reasons for not doing it. If you
think the checks are really independent and shouldn't be thought of as a single check, don't do
the refactoring. Your code already communicates your intention.

Mechanics

• Check that none of the conditionals has side effects.

?rarr; If there are side effects, you won't be able to do this refactoring.

• Replace the string of conditionals with a single conditional statement using logical
operators.

• Compile and test.
• Consider using Extract Method on the condition.

Example: Ors

The state of the code is along the lines of the following:

 195

 double disabilityAmount() {
 if (_seniority < 2) return 0;
 if (_monthsDisabled > 12) return 0;
 if (_isPartTime) return 0;
 // compute the disability amount
 ...

Here we see a sequence of conditional checks that all result in the same thing. With sequential
code like this, the checks are the equivalent of an or statement:

 double disabilityAmount() {
 if ((_seniority < 2) || (_monthsDisabled > 12) || (_isPartTime))
return 0;
 // compute the disability amount
 ...

Now I can look at the condition and use Extract Method to communicate what the condition is
looking for:

 double disabilityAmount() {
 if (isNotEligibleForDisability()) return 0;
 // compute the disability amount
 ...
 }

 boolean isNotEligibleForDisability() {
 return ((_seniority < 2) || (_monthsDisabled > 12) ||
(_isPartTime));
 }

Example: Ands

That example showed ors, but I can do the same with ands. Here the set up is something like the
following:

 if (onVacation())
 if (lengthOfService() > 10)
 return 1;
 return 0.5;

This would be changed to

 if (onVacation() && lengthOfService() > 10) return 1;
 else return 0.5;

You may well find you get a combination of these that yields an expression with ands, ors, and
nots. In these cases the conditions may be messy, so I try to use Extract Method on parts of the
expression to make it simpler.

 196

If the routine I'm looking at tests only the condition and returns a value, I can turn the routine into
a single return statement using the ternary operator. So

 if (onVacation() && lengthOfService() > 10) return 1;
 else return 0.5;

becomes

 return (onVacation() && lengthOfService() > 10) ? 1 : 0.5;

Consolidate Duplicate Conditional Fragments

The same fragment of code is in all branches of a conditional expression.

Move it outside of the expression.

 if (isSpecialDeal()) {
 total = price * 0.95;
 send();
 }
 else {
 total = price * 0.98;
 send();
 }

 if (isSpecialDeal())
 total = price * 0.95;
 else
 total = price * 0.98;
 send();

Motivation

Sometimes you find the same code executed in all legs of a conditional. In that case you should
move the code to outside the conditional. This makes clearer what varies and what stays the
same.

Mechanics

• Identify code that is executed the same way regardless of the condition.
• If the common code is at the beginning, move it to before the conditional.
• If the common code is at the end, move it to after the conditional.
• If the common code is in the middle, look to see whether the code before or after it

changes anything. If it does, you can move the common code forward or backward to the
ends. You can then move it as described for code at the end or the beginning.

• If there is more than a single statement, you should extract that code into a method.

 197

Example

You find this situation with code such as the following:

 if (isSpecialDeal()) {
 total = price * 0.95;
 send();
 }
 else {
 total = price * 0.98;
 send();
 }

Because the send method is executed in either case, I should move it out of the conditional:

 if (isSpecialDeal())
 total = price * 0.95;
 else
 total = price * 0.98;
 send();

The same situation can apply to exceptions. If code is repeated after an exception-causing
statement in the try block and all the catch blocks, I can move it to the final block.

Remove Control Flag

You have a variable that is acting as a control flag for a series of boolean expressions.

Use a break or return instead.

Motivation

When you have a series of conditional expressions, you often see a control flag used to
determine when to stop looking:

 set done to false
 while not done
 if (condition)
 do something
 set done to true
 next step of loop

Such control flags are more trouble than they are worth. They come from rules of structured
programming that call for routines with one entry and one exit point. I agree with (and modern
languages enforce) one entry point, but the one exit point rule leads you to very convoluted
conditionals with these awkward flags in the code. This is why languages have break and
continue statements to get out of a complex conditional. It is often surprising what you can do
when you get rid of a control flag. The real purpose of the conditional becomes so much more
clear.

 198

Mechanics

The obvious way to deal with control flags is to use the break or continue statements present in
Java.

• Find the value of the control flag that gets you out of the logic statement.
• Replace assignments of the break-out value with a break or continue statement.
• Compile and test after each replacement.

Another approach, also usable in languages without break and continue, is as follows:

• Extract the logic into a method.
• Find the value of the control flag that gets you out of the logic statement.
• Replace assignments of the break-out value with a return.
• Compile and test after each replacement.

Even in languages with a break or continue, I usually prefer use of an extraction and of a return.
The return clearly signals that no more code in the method is executed. If you have that kind of
code, you often need to extract that piece anyway.

Keep an eye on whether the control flag also indicates result information. If it does, you still need
the control flag if you use the break, or you can return the value if you have extracted a method.

Example: Simple Control Flag Replaced with Break

The following function checks to see whether a list of people contains a couple of hard-coded
suspicious characters:

 void checkSecurity(String[] people) {
 boolean found = false;
 for (int i = 0; i < people.length; i++) {
 if (! found) {
 if (people[i].equals ("Don")){
 sendAlert();
 found = true;
 }
 if (people[i].equals ("John")){
 sendAlert();
 found = true;
 }
 }
 }
 }

In a case like this, it is easy to see the control flag. It's the piece that sets the found variable to
true. I can introduce the breaks one at a time:

 void checkSecurity(String[] people) {
 boolean found = false;
 for (int i = 0; i < people.length; i++) {
 if (! found) {

 199

 if (people[i].equals ("Don")){
 sendAlert();
 break;
 }
 if (people[i].equals ("John")){
 sendAlert();
 found = true;
 }
 }
 }
 }

until I have them all:

 void checkSecurity(String[] people) {
 boolean found = false;
 for (int i = 0; i < people.length; i++) {
 if (! found) {
 if (people[i].equals ("Don")){
 sendAlert();
 break;
 }
 if (people[i].equals ("John")){
 sendAlert();
 break;
 }
 }
 }
 }

Then I can remove all references to the control flag:

 void checkSecurity(String[] people) {
 for (int i = 0; i < people.length; i++) {
 if (people[i].equals ("Don")){
 sendAlert();
 break;
 }
 if (people[i].equals ("John")){
 sendAlert();
 break;
 }
 }
 }

Example: Using Return with a Control Flag Result

The other style of this refactoring uses a return. I illustrate this with a variant that uses the control
flag as a result value:

 void checkSecurity(String[] people) {
 String found = "";

 200

 for (int i = 0; i < people.length; i++) {
 if (found.equals("")) {
 if (people[i].equals ("Don")){
 sendAlert();
 found = "Don";
 }
 if (people[i].equals ("John")){
 sendAlert();
 found = "John";
 }
 }
 }
 someLaterCode(found);
 }

Here found is doing two things. It is indicating a result and acting as a control flag. When I see
this, I like to extract the code that is determining found into its own method:

 void checkSecurity(String[] people) {
 String found = foundMiscreant(people);
 someLaterCode(found);
 }

 String foundMiscreant(String[] people){
 String found = "";
 for (int i = 0; i < people.length; i++) {
 if (found.equals("")) {
 if (people[i].equals ("Don")){
 sendAlert();
 found = "Don";
 }
 if (people[i].equals ("John")){
 sendAlert();
 found = "John";
 }
 }
 }
 return found;
 }

Then I can replace the control flag with a return:

 String foundMiscreant(String[] people){
 String found = "";
 for (int i = 0; i < people.length; i++) {
 if (found.equals("")) {
 if (people[i].equals ("Don")){
 sendAlert();
 return "Don";
 }
 if (people[i].equals ("John")){
 sendAlert();
 found = "John";
 }

 201

 }
 }
 return found;
 }

until I have removed the control flag:

 String foundMiscreant(String[] people){
 for (int i = 0; i < people.length; i++) {
 if (people[i].equals ("Don")){
 sendAlert();
 return "Don";
 }
 if (people[i].equals ("John")){
 sendAlert();
 return "John";
 }
 }
 return "";
 }

You can also use the return style when you're not returning a value. Just use return without the
argument.

Of course this has the problem of a function with side effects. So I want to use Separate Query
from Modifier. You'll find this example continued there.

Replace Nested Conditional with Guard Clauses

A method has conditional behavior that does not make clear the normal path of execution.

Use guard clauses for all the special cases.

 double getPayAmount() {
 double result;
 if (_isDead) result = deadAmount();
 else {
 if (_isSeparated) result = separatedAmount();
 else {
 if (_isRetired) result = retiredAmount();
 else result = normalPayAmount();
 };
 }
 return result;
 };

 double getPayAmount() {
 if (_isDead) return deadAmount();
 if (_isSeparated) return separatedAmount();
 if (_isRetired) return retiredAmount();

 202

 return normalPayAmount();
 };

Motivation

I often find that conditional expressions come in two forms. The first form is a check whether
either course is part of the normal behavior. The second form is a situation in which one answer
from the conditional indicates normal behavior and the other indicates an unusual condition.

These kinds of conditionals have different intentions, and these intentions should come through in
the code. If both are part of normal behavior, use a condition with an if and an else leg. If the
condition is an unusual condition, check the condition and return if the condition is true. This kind
of check is often called a guard clause [Beck].

The key point about Replace Nested Conditional with Guard Clauses is one of emphasis. If you
are using an if-then-else construct you are giving equal weight to the if leg and the else leg. This
communicates to the reader that the legs are equally likely and important. Instead the guard
clause says, "This is rare, and if it happens, do something and get out."

I often find I use Replace Nested Conditional with Guard Clauses when I'm working with a
programmer who has been taught to have only one entry point and one exit point from a method.
One entry point is enforced by modern languages, and one exit point is really not a useful rule.
Clarity is the key principle: if the method is clearer with one exit point, use one exit point;
otherwise don't.

Mechanics

• For each check put in the guard clause.

?rarr; The guard clause either returns, or throws an exception.

• Compile and test after each check is replaced with a guard clause.

?rarr; If all guard clauses yield the same result, use Consolidate
Conditional Expressions.

Example

Imagine a run of a payroll system in which you have special rules for dead, separated, and retired
employees. Such cases are unusual, but they do happen from time to time.

If I see the code like this

 double getPayAmount() {
 double result;
 if (_isDead) result = deadAmount();
 else {
 if (_isSeparated) result = separatedAmount();
 else {
 if (_isRetired) result = retiredAmount();
 else result = normalPayAmount();

 203

 };
 }
 return result;
 };

Then the checking is masking the normal course of action behind the checking. So instead it is
clearer to use guard clauses. I can introduce these one at a time. I like to start at the top:

 double getPayAmount() {
 double result;
 if (_isDead) return deadAmount();
 if (_isSeparated) result = separatedAmount();
 else {
 if (_isRetired) result = retiredAmount();
 else result = normalPayAmount();
 };
 return result;
 };

I continue one at a time:

 double getPayAmount() {
 double result;
 if (_isDead) return deadAmount();
 if (_isSeparated) return separatedAmount();
 if (_isRetired) result = retiredAmount();
 else result = normalPayAmount();
 return result;
 };

and then

 double getPayAmount() {
 double result;
 if (_isDead) return deadAmount();
 if (_isSeparated) return separatedAmount();
 if (_isRetired) return retiredAmount();
 result = normalPayAmount();
 return result;
 };

By this point the result temp isn't pulling its weight so I nuke it:

 double getPayAmount() {
 if (_isDead) return deadAmount();
 if (_isSeparated) return separatedAmount();
 if (_isRetired) return retiredAmount();
 return normalPayAmount();
 };

 204

Nested conditional code often is written by programmers who are taught to have one exit point
from a method. I've found that is a too simplistic rule. When I have no further interest in a method,
I signal my lack of interest by getting out. Directing the reader to look at an empty else block only
gets in the way of comprehension.

Example: Reversing the Conditions

In reviewing the manuscript of this book, Joshua Kerievsky pointed out that you often do Replace
Nested Conditional with Guard Clauses by reversing the conditional expressions. He kindly came
up with an example to save further taxing of my imagination:

 public double getAdjustedCapital() {
 double result = 0.0;
 if (_capital > 0.0) {
 if (_intRate > 0.0 && _duration > 0.0) {
 result = (_income / _duration) * ADJ_FACTOR;
 }
 }
 return result;
 }

Again I make the replacements one at a time, but this time I reverse the conditional as I put in the
guard clause:

 public double getAdjustedCapital() {
 double result = 0.0;
 if (_capital <= 0.0) return result;
 if (_intRate > 0.0 && _duration > 0.0) {
 result = (_income / _duration) * ADJ_FACTOR;
 }
 return result;
 }

Because the next conditional is a bit more complicated, I can reverse it in two steps. First I add a
not:

 public double getAdjustedCapital() {
 double result = 0.0;
 if (_capital <= 0.0) return result;
 if (!(_intRate > 0.0 && _duration > 0.0)) return result;
 result = (_income / _duration) * ADJ_FACTOR;
 return result;
 }

Leaving nots in a conditional like that twists my mind around at a painful angle, so I simplify it as
follows:

 public double getAdjustedCapital() {
 double result = 0.0;
 if (_capital <= 0.0) return result;

 205

 if (_intRate <= 0.0 || _duration <= 0.0) return result;
 result = (_income / _duration) * ADJ_FACTOR;
 return result;
 }

In these situations I prefer to put an explicit value on the returns from the guards. That way you
can easily see the result of the guard's failing (I would also consider Replace Magic Number
with Symbolic Constant here).

 public double getAdjustedCapital() {
 double result = 0.0;
 if (_capital <= 0.0) return 0.0;
 if (_intRate <= 0.0 || _duration <= 0.0) return 0.0;
 result = (_income / _duration) * ADJ_FACTOR;
 return result;
 }

With that done I can also remove the temp:

 public double getAdjustedCapital() {
 if (_capital <= 0.0) return 0.0;
 if (_intRate <= 0.0 || _duration <= 0.0) return 0.0;
 return (_income / _duration) * ADJ_FACTOR;
 }

Replace Conditional with Polymorphism

You have a conditional that chooses different behavior depending on the type of an object.

Move each leg of the conditional to an overriding method in a subclass. Make the original method
abstract.

 double getSpeed() {
 switch (_type) {
 case EUROPEAN:
 return getBaseSpeed();
 case AFRICAN:
 return getBaseSpeed() - getLoadFactor() *
_numberOfCoconuts;
 case NORWEGIAN_BLUE:
 return (_isNailed) ? 0 : getBaseSpeed(_voltage);
 }
 throw new RuntimeException ("Should be unreachable");
 }

 206

Motivation

One of the grandest sounding words in object jargon is polymorphism. The essence of
polymorphsim is that it allows you to avoid writing an explicit conditional when you have objects
whose behavior varies depending on their types.

As a result you find that switch statements that switch on type codes or if-then-else statements
that switch on type strings are much less common in an object-oriented program.

Polymorphism gives you many advantages. The biggest gain occurs when this same set of
conditions appears in many places in the program. If you want to add a new type, you have to
find and update all the conditionals. But with subclasses you just create a new subclass and
provide the appropriate methods. Clients of the class don't need to know about the subclasses,
which reduces the dependencies in your system and makes it easier to update.

Mechanics

Before you can begin with Replace Conditional with Polymorphism you need to have the
necessary inheritance structure. You may already have this structure from previous refactorings.
If you don't have the structure, you need to create it.

To create the inheritance structure you have two options: Replace Type Code with
Subclasses and Replace Type Code with State/Strategy. Subclasses are the simplest
option, so you should use them if you can. If you update the type code after the object is created,
however, you cannot use subclassing and have to use the state/strategy pattern. You also need
to use the state/strategy pattern if you are already subclassing this class for another reason.
Remember that if several case statements are switching on the same type code, you only need to
create one inheritance structure for that type code.

You can now attack the conditional. The code you target may be a switch (case) statement or an
if statement.

• If the conditional statement is one part of a larger method, take apart the conditional
statement and use Extract Method.

• If necessary use Move Method to place the conditional at the top of the inheritance
structure.

 207

• Pick one of the subclasses. Create a subclass method that overrides the conditional
statement method. Copy the body of that leg of the conditional statement into the
subclass method and adjust it to fit.

?rarr; You may need to make some private members of the superclass
protected in order to do this.

• Compile and test.
• Remove the copied leg of the conditional statement.
• Compile and test.
• Repeat with each leg of the conditional statement until all legs are turned into subclass

methods.
• Make the superclass method abstract.

Example

I use the tedious and simplistic example of employee payment. I'm using the classes after using
Replace Type Code with State/Strategy so the objects look like Figure 9.1 (see the
example in Chapter 8 for how we got here).

Figure 9.1. _The inheritance structure

 class Employee...
 int payAmount() {
 switch (getType()) {
 case EmployeeType.ENGINEER:
 return _monthlySalary;
 case EmployeeType.SALESMAN:
 return _monthlySalary + _commission;
 case EmployeeType.MANAGER:
 return _monthlySalary + _bonus;
 default:
 throw new RuntimeException("Incorrect Employee");
 }
 }

 208

 int getType() {
 return _type.getTypeCode();
 }
 private EmployeeType _type;

 abstract class EmployeeType...
 abstract int getTypeCode();

 class Engineer extends EmployeeType...
 int getTypeCode() {
 return Employee.ENGINEER;
 }

 ... and other subclasses

The case statement is already nicely extracted, so there is nothing to do there. I do need to move
it into the employee type, because that is the class that is being subclassed.

 class EmployeeType...
 int payAmount(Employee emp) {
 switch (getTypeCode()) {
 case ENGINEER:
 return emp.getMonthlySalary();
 case SALESMAN:
 return emp.getMonthlySalary() + emp.getCommission();
 case MANAGER:
 return emp.getMonthlySalary() + emp.getBonus();
 default:
 throw new RuntimeException("Incorrect Employee");
 }
 }

Because I need data from the employee, I need to pass in the employee as an argument. Some
of this data might be moved to the employee type object, but that is an issue for another
refactoring.

When this compiles, I change the payAmount method in Employee to delegate to the new class:

 class Employee...
 int payAmount() {
 return _type.payAmount(this);
 }

Now I can go to work on the case statement. It's rather like the way small boys kill insects—I
remove one leg at a time. First I copy the Engineer leg of the case statement onto the Engineer
class.

 class Engineer...
 int payAmount(Employee emp) {
 return emp.getMonthlySalary();
 }

 209

This new method overrides the whole case statement for engineers. Because I'm paranoid, I
sometimes put a trap in the case statement:

 class EmployeeType...
 int payAmount(Employee emp) {
 switch (getTypeCode()) {
 case ENGINEER:
 throw new RuntimeException ("Should be being
overridden");
 case SALESMAN:
 return emp.getMonthlySalary() + emp.getCommission();
 case MANAGER:
 return emp.getMonthlySalary() + emp.getBonus();
 default:
 throw new RuntimeException("Incorrect Employee");
 }
 }

carry on until all the legs are removed:

 class Salesman...
 int payAmount(Employee emp) {
 return emp.getMonthlySalary() + emp.getCommission();
 }

 class Manager...
 int payAmount(Employee emp) {
 return emp.getMonthlySalary() + emp.getBonus();
 }

and then declare the superclass method abstract:

 class EmployeeType...
 abstract int payAmount(Employee emp);

Introduce Null Object

You have repeated checks for a null value.

Replace the null value with a null object.

 if (customer == null) plan = BillingPlan.basic();
 else plan = customer.getPlan();

 210

Motivation

The essence of polymorphism is that instead of asking an object what type it is and then invoking
some behavior based on the answer, you just invoke the behavior. The object, depending on its
type, does the right thing. One of the less intuitive places to do this is where you have a null value
in a field. I'll let Ron Jeffries tell the story:

Ron Jeffries

We first started using the null object pattern when Rich Garzaniti found
that lots of code in the system would check objects for presence before
sending a message to the object. We might ask an object for its person,
then ask the result whether it was null. If the object was present, we
would ask it for its rate. We were doing this in several places, and the
resulting duplicate code was getting annoying.

So we implemented a missing-person object that answered a zero rate
(we call our null objects missing objects). Soon missing person knew a
lot of methods, such as rate. Now we have more than 80 null-object
classes.

 211

Our most common use of null objects is in the display of information.
When we display, for example, a person, the object may or may not have
any of perhaps 20 instance variables. If these were allowed to be null,
the printing of a person would be very complex. Instead we plug in
various null objects, all of which know how to display themselves in an
orderly way. This got rid of huge amounts of procedural code.

Our most clever use of null object is the missing Gemstone session. We
use the Gemstone database for production, but we prefer to develop
without it and push the new code to Gemstone every week or so. There
are various points in the code where we have to log in to a Gemstone
session. When we are running without Gemstone, we simply plug in a
missing Gemstone session. It looks the same as the real thing but allows
us to develop and test without realizing the database isn't there.

Another helpful use of null object is the missing bin. A bin is a collection
of payroll values that often have to be summed or looped over. If a
particular bin doesn't exist, we answer a missing bin, which acts just like
an empty bin. The missing bin knows it has zero balance and no values.
By using this approach, we eliminate the creation of tens of empty bins
for each of our thousands of employees.

An interesting characteristic of using null objects is that things almost
never blow up. Because the null object responds to all the same
messages as a real one, the system generally behaves normally. This
can sometimes make it difficult to detect or find a problem, because
nothing ever breaks. Of course, as soon as you begin inspecting the
objects, you'll find the null object somewhere where it shouldn't be.

Remember, null objects are always constant: nothing about them ever
changes. Accordingly, we implement them using the Singleton pattern
[Gang of Four]. Whenever you ask, for example, for a missing person,
you always get the single instance of that class.

You can find more details about the null object pattern in Woolf [Woolf].

Mechanics

• Create a subclass of the source class to act as a null version of the class. Create an
isNull operation on the source class and the null class. For the source class it should
return false, for the null class it should return true.

?rarr; You may find it useful to create an explicitly nullable interface for
the isNull method.

?rarr; As an alternative you can use a testing interface to test for
nullness.

 212

• Compile.
• Find all places that can give out a null when asked for a source object. Replace them to

give out a null object instead.

• Find all places that compare a variable of the source type with null and replace them with
a call isNull.

?rarr; You may be able to do this by replacing one source and its clients
at a time and compiling and testing between working on sources.

?rarr; A few assertions that check for null in places where you should no
longer see it can be useful.

• Compile and test.
• Look for cases in which clients invoke an operation if not null and do some alternative

behavior if null.
• For each of these cases override the operation in the null class with the alternative

behavior.
• Remove the condition check for those that use the overriden behavior, compile, and test.

Example

A utility company knows about sites: the houses and apartments that use the utility's services. At
any time a site has a customer.

 class Site...
 Customer getCustomer() {
 return _customer;
 }
 Customer _customer;

There are various features of a customer. I look at three of them.

 class Customer...
 public String getName() {...}
 public BillingPlan getPlan() {...}
 public PaymentHistory getHistory() {...}

The payment history has its own features:

 public class PaymentHistory...
 int getWeeksDelinquentInLastYear()

The getters I show allow clients to get at this data. However, sometimes I don't have a customer
for a site. Someone may have moved out and I don't yet know who has moved in. Because this
can happen we have to ensure that any code that uses the customer can handle nulls. Here are a
few example fragments:

 Customer customer = site.getCustomer();

 213

 BillingPlan plan;
 if (customer == null) plan = BillingPlan.basic();
 else plan = customer.getPlan();
 ...
 String customerName;
 if (customer == null) customerName = "occupant";
 else customerName = customer.getName();
 ...
 int weeksDelinquent;
 if (customer == null) weeksDelinquent = 0;
 else weeksDelinquent =
customer.getHistory().getWeeksDelinquentInLastYear();

In these situations I may have many clients of site and customer, all of which have to check for
nulls and all of which do the same thing when they find one. Sounds like it's time for a null object.

The first step is to create the null customer class and modify the customer class to support a
query for a null test:

 class NullCustomer extends Customer {
 public boolean isNull() {
 return true;
 }
 }

 class Customer...
 public boolean isNull() {
 return false;
 }

 protected Customer() {} //needed by the NullCustomer

If you aren't able to modify the Customer class you can use a testing interface.

If you like, you can signal the use of null object by means of an interface:

 interface Nullable {
 boolean isNull();
 }

 class Customer implements Nullable

I like to add a factory method to create null customers. That way clients don't have to know about
the null class:

 class Customer...
 static Customer newNull() {
 return new NullCustomer();
 }

 214

Now comes the difficult bit. Now I have to return this new null object whenever I expect a null and
replace the tests of the form foo == null with tests of the form foo.isNull(). I find it useful
to look for all the places where I ask for a customer and modify them so that they return a null
customer rather than null.

 class Site...
 Customer getCustomer() {
 return (_customer == null) ?
 Customer.newNull():
 _customer;
 }

I also have to alter all uses of this value so that they test with isNull() rather than == null.

 Customer customer = site.getCustomer();
 BillingPlan plan;
 if (customer.isNull()) plan = BillingPlan.basic();
 else plan = customer.getPlan();
 ...
 String customerName;
 if (customer.isNull()) customerName = "occupant";
 else customerName = customer.getName();
 ...
 int weeksDelinquent;
 if (customer.isNull()) weeksDelinquent = 0;
 else weeksDelinquent =
customer.getHistory().getWeeksDelinquentInLastYear();

There's no doubt that this is the trickiest part of this refactoring. For each source of a null I
replace, I have to find all the times it is tested for nullness and replace them. If the object is widely
passed around, these can be hard to track. I have to find every variable of type customer and find
everywhere it is used. It is hard to break this process into small steps. Sometimes I find one
source that is used in only a few places, and I can replace that source only. But most of the time,
however, I have to make many widespread changes. The changes aren't too difficult to back out
of, because I can find calls of isNull without too much difficulty, but this is still a messy step.

Once this step is done, and I've compiled and tested, I can smile. Now the fun begins. As it
stands I gain nothing from using isNull rather than == null. The gain comes as I move
behavior to the null customer and remove conditionals. I can make these moves one at a time. I
begin with the name. Currently I have client code that says

 String customerName;
 if (customer.isNull()) customerName = "occupant";
 else customerName = customer.getName();

I add a suitable name method to the null customer:

 class NullCustomer...
 public String getName(){
 return "occupant";

 215

 }

Now I can make the conditional code go away:

 String customerName = customer.getName();

I can do the same for any other method in which there is a sensible general response to a query.
I can also do appropriate actions for modifiers. So client code such as

 if (! customer.isNull())
 customer.setPlan(BillingPlan.special());

can be replaced with

 customer.setPlan(BillingPlan.special());

 class NullCustomer...
 public void setPlan (BillingPlan arg) {}

Remember that this movement of behavior makes sense only when most clients want the same
response. Notice that I said most not all. Any clients who want a different response to the
standard one can still test using isNull. You benefit when many clients want to do the same
thing; they can simply rely on the default null behavior.

The example contains a slightly different case—client code that uses the result of a call to
customer:

 if (customer.isNull()) weeksDelinquent = 0;
 else weeksDelinquent =
customer.getHistory().getWeeksDelinquentInLastYear();

I can handle this by creating a null payment history:

 class NullPaymentHistory extends PaymentHistory...
 int getWeeksDelinquentInLastYear() {
 return 0;
 }

I modify the null customer to return it when asked:

 class NullCustomer...
 public PaymentHistory getHistory() {
 return PaymentHistory.newNull();
 }

Again I can remove the conditional code:

 216

 int weeksDelinquent =
customer.getHistory().getWeeksDelinquentInLastYear();

You often find that null objects return other null objects.

Example: Testing Interface

The testing interface is an alternative to defining an isNull method. In this approach I create a null
interface with no methods defined:

 interface Null {}

I then implement null in my null objects:

 class NullCustomer extends Customer implements Null...

I then test for nullness with the instanceof operator:

 aCustomer instanceof Null

I normally run away screaming from the instanceof operator, but in this case it is okay to use
it. It has the particular advantage that I don't need to change the customer class. This allows me
to use the null object even when I don't have access to customer's source code.

Other Special Cases

When carrying out this refactoring, you can have several kinds of null. Often there is a difference
between there is no customer (new building and not yet moved in) and there is an unknown
customer (we think there is someone there, but we don't know who it is). If that is the case, you
can build separate classes for the different null cases. Sometimes null objects actually can carry
data, such as usage records for the unknown customer, so that we can bill the customers when
we find out who they are.

In essence there is a bigger pattern here, called special case. A special case class is a particular
instance of a class with special behavior. So UnknownCustomer and NoCustomer would both
be special cases of Customer. You often see special cases with numbers. Floating points in
Java have special cases for positive and negative infinity and for not a number (NaN). The value
of special cases is that they help reduce dealing with errors. Floating point operations don't throw
exceptions. Doing any operation with NaN yields another NaN in the same way that accessors on
null objects usually result in other null objects.

Introduce Assertion

A section of code assumes something about the state of the program.

Make the assumption explicit with an assertion.

 217

 double getExpenseLimit() {
 // should have either expense limit or a primary project
 return (_expenseLimit != NULL_EXPENSE) ?
 _expenseLimit:
 _primaryProject.getMemberExpenseLimit();
 }

 double getExpenseLimit() {
 Assert.isTrue (_expenseLimit != NULL_EXPENSE || _primaryProject
!= null);
 return (_expenseLimit != NULL_EXPENSE) ?
 _expenseLimit:
 _primaryProject.getMemberExpenseLimit();
 }

Motivation

Often sections of code work only if certain conditions are true. This may be as simple as a square
root calculation's working only on a positive input value. With an object it may be assumed that at
least one of a group of fields has a value in it.

Such assumptions often are not stated but can only be decoded by looking through an algorithm.
Sometimes the assumptions are stated with a comment. A better technique is to make the
assumption explicit by writing an assertion.

An assertion is a conditional statement that is assumed to be always true. Failure of an assertion
indicates programmer error. As such, assertion failures should always result in unchecked
exceptions. Assertions should never be used by other parts of the system. Indeed assertions
usually are removed for production code. It is therefore important to signal something is an
assertion.

Assertions act as communication and debugging aids. In communication they help the reader
understand the assumptions the code is making. In debugging, assertions can help catch bugs
closer to their origin. I've noticed the debugging help is less important when I write self-testing
code, but I still appreciate the value of assertions in communciation.

Mechanics

Because assertions should not affect the running of a system, adding one is always behavior
preserving.

• When you see that a condition is assumed to be true, add an assertion to state it.

?rarr; Have an assert class that you can use for assertion behavior.

Beware of overusing assertions. Don't use assertions to check everything that you think is true for
a section of code. Use assertions only to check things that need to be true. Overusing assertions
can lead to duplicate logic that is awkward to maintain. Logic that covers an assumption is good
because it forces you to rethink the section of the code. If the code works without the assertion,
the assertion is confusing rather than helpful and may hinder modification in the future.

 218

Always ask whether the code still works if an assertion fails. If the code does work, remove the
assertion.

Beware of duplicate code in assertions. Duplicate code smells just as bad in assertion checks as
it does anywhere else. Use Extract Method liberally to get rid of the duplication.

Example

Here's a simple tale of expense limits. Employees can be given an individual expense limit. If they
are assigned a primary project, they can use the expense limit of that primary project. They don't
have to have an expense limit or a primary project, but they must have one or the other. This
assumption is taken for granted in the code that uses expense limits:

 class Employee...
 private static final double NULL_EXPENSE = -1.0;
 private double _expenseLimit = NULL_EXPENSE;
 private Project _primaryProject;
 double getExpenseLimit() {
 return (_expenseLimit != NULL_EXPENSE) ?
 _expenseLimit:
 _primaryProject.getMemberExpenseLimit();
 }
 boolean withinLimit (double expenseAmount) {
 return (expenseAmount <= getExpenseLimit());
 }

This code contains an implicit assumption that the employee has either a project or a personal
expense limit. Such an assertion should be clearly stated in the code:

 double getExpenseLimit() {
 Assert.isTrue (_expenseLimit != NULL_EXPENSE || _primaryProject
!= null);
 return (_expenseLimit != NULL_EXPENSE) ?
 _expenseLimit:
 _primaryProject.getMemberExpenseLimit();
 }

This assertion does not change any aspect of the behavior of the program. Either way, if the
condition is not true, I get a runtime exception: either a null pointer exception in withinLimit or
a runtime exception inside Assert.isTrue. In some circumstances the assertion helps find the
bug, because it is closer to where things went wrong. Mostly, however, the assertion helps to
communicate how the code works and what it assumes.

I often find I use Extract Method on the conditional inside the assertion. I either use it in several
places and eliminate duplicate code or use it simply to clarify the intention of the condition.

One of the complications of assertions in Java is that there is no simple mechanism to putting
them in. Assertions should be easily removable, so they don't affect performance in production
code. Having a utility class, such as Assert, certainly helps. Sadly, any expression inside the
assertion parameters executes whatever happens. The only way to stop that is to use code like:

 219

 double getExpenseLimit() {
 Assert.isTrue (Assert.ON &&
 (_expenseLimit != NULL_EXPENSE || _primaryProject != null));
 return (_expenseLimit != NULL_EXPENSE) ?
 _expenseLimit:
 _primaryProject.getMemberExpenseLimit();
 }

or

 double getExpenseLimit() {
 if (Assert.ON)
 Assert.isTrue (_expenseLimit != NULL_EXPENSE ||
_primaryProject != null);
 return (_expenseLimit != NULL_EXPENSE) ?
 _expenseLimit:
 _primaryProject.getMemberExpenseLimit();
 }

If Assert.ON is a constant, the compiler should detect and eliminate the dead code if it is false.
Adding the clause is messy, however, so many programmers prefer the simpler use of Assert
and then use a filter to remove any line that uses assert at production time (using perl or the like).

The Assert class should have various methods that are named helpfully. In addition to isTrue,
you can have equals, and shouldNeverReachHere.

 220

Chapter 10. Making Method Calls Simpler

Objects are all about interfaces. Coming up with interfaces that are easy to understand and use is
a key skill in developing good object-oriented software. This chapter explores refactorings that
make interfaces more straightforward.

Often the simplest and most important thing you can do is to change the name of a method.
Naming is a key tool in communication. If you understand what a program is doing, you should
not be afraid to use Rename Method to pass on that knowledge. You can (and should) also
rename variables and classes. On the whole these renamings are fairly simple text replacements,
so I haven't added extra refactorings for them.

Parameters themselves have quite a role to play with interfaces. Add Parameter and Remove
Parameter are common refactorings. Programmers new to objects often use long parameter
lists, which are typical of other development environments. Objects allow you to keep parameter
lists short, and several more involved refactorings give you ways to shorten them. If you are
passing several values from an object, use Preserve Whole Object to reduce all the values to a
single object. If this object does not exist, you can create it with Introduce Parameter Object.
If you can get the data from an object to which the method already has access, you can eliminate
parameters with Replace Parameter with Method. If you have parameters that are used to
determine conditional behavior, you can use Replace Parameter with Explicit Methods. You
can combine several similar methods by adding a parameter with Parameterize Method.

Doug Lea gave me a warning about refactorings that reduce parameter lists. Concurrent
programming often uses long parameter lists. Typically this occurs so that you can pass in
parameters that are immutable, as built-ins and value objects often are. Usually you can replace
long parameter lists with immutable objects, but otherwise you need to be cautious about this
group of refactorings.

One of the most valuable conventions I've used over the years is to clearly separate methods that
change state (modifiers) from those that query state (queries). I don't know how many times I've
got myself into trouble, or seen others get into trouble, by mixing these up. So whenever I see
them combined, I use Separate Query from Modifier to get rid of them.

Good interfaces show only what they have to and no more. You can improve an interface by
hiding things. Of course all data should be hidden (I hope I don't need to tell you to do that), but
also any methods that can should be hidden. When refactoring you often need to make things
visible for a while and then cover them up with Hide Method and Remove Setting Method.

Constructors are a particularly awkward feature of Java and C++, because they force you to know
the class of an object you need to create. Often you don't need to know this. The need to know
can be removed with Replace Constructor with Factory Method.

Casting is another bane of the Java programmer's life. As much as possible try to avoid making
the user of a class do downcasting if you can contain it elsewhere by using Encapsulate
Downcast .

Java, like many modern languages, has an exception-handling mechanism to make error
handling easier. Programmers who are not used to this often use error codes to signal trouble.
You can use Replace Error Code with Exception to use the new exceptional features. But
sometimes exceptions aren't the right answer; you should test first with Replace Exception with
Test .

 221

Rename Method

The name of a method does not reveal its purpose.

Change the name of the method.

Motivation

An important part of the code style I am advocating is small methods to factor complex
processes. Done badly, this can lead you on a merry dance to find out what all the little methods
do. The key to avoiding this merry dance is naming the methods. Methods should be named in a
way that communicates their intention. A good way to do this is to think what the comment for the
method would be and turn that comment into the name of the method.

Life being what it is, you won't get your names right the first time. In this situation you may well be
tempted to leave it—after all it's only a name. That is the work of the evil demon Obfuscatis; don't
listen to him. If you see a badly named method, it is imperative that you change it. Remember
your code is for a human first and a computer second. Humans need good names. Take note of
when you have spent ages trying to do something that would have been easier if a couple of
methods had been better named. Good naming is a skill that requires practice; improving this skill
is the key to being a truly skillful programmer. The same applies to other aspects of the signature.
If reordering parameters clarifies matters, do it (see Add Parameter and Remove Parameter).

Mechanics

• Check to see whether the method signature is implemented by a superclass or subclass.
If it is, perform these steps for each implementation.

• Declare a new method with the new name. Copy the old body of code over to the new
name and make any alterations to fit.

• Compile.
• Change the body of the old method so that it calls the new one.

?rarr; If you only have a few references, you can reasonably skip this
step.

• Compile and test.
• Find all references to the old method name and change them to refer to the new one.

Compile and test after each change.
• Remove the old method.

?rarr; If the old method is part of the interface and you cannot remove it,
leave it in place and mark it as deprecated.

• Compile and test.

 222

Example

I have a method to get a person's telephone number:

 public String getTelephoneNumber() {
 return ("(" + _officeAreaCode + ") " + _officeNumber);
 }

I want to rename the method to getOfficeTelephoneNumber. I begin by creating the new
method and copying the body over to the new method. The old method now changes to call the
new one:

 class Person...
 public String getTelephoneNumber(){
 return getOfficeTelephoneNumber();
 }
 public String getOfficeTelephoneNumber() {
 return ("(" + _officeAreaCode + ") " + _officeNumber);
 }

Now I find the callers of the old method, and switch them to call the new one. When I have
switched them all, I can remove the old method.

The procedure is the same if I need to add or remove a parameter.

If there aren't many callers, I change the callers to call the new method without using the old
method as a delegating method. If my tests throw a wobbly, I back out and make the changes the
slow way.

Add Parameter

A method needs more information from its caller.

Add a parameter for an object that can pass on this information.

Motivation

Add Parameter is a very common refactoring, one that you almost certainly have already done.
The motivation is simple. You have to change a method, and the change requires information that
wasn't passed in before, so you add a parameter.

Actually most of what I have to say is motivation against doing this refactoring. Often you have
other alternatives to adding a parameter. If available, these alternatives are better because they

 223

don't lead to increasing the length of parameter lists. Long parameter lists smell bad because
they are hard to remember and often involve data clumps.

Look at the existing parameters. Can you ask one of those objects for the information you need?
If not, would it make sense to give them a method to provide that information? What are you
using the information for? Should that behavior be on another object, the one that has the
information? Look at the existing parameters and think about them with the new parameter.
Perhaps you should consider Introduce Parameter Object.

I'm not saying that you should never add parameters; I do it frequently, but you need to be aware
of the alternatives.

Mechanics

The mechanics of Add Parameter are very similar to those of Rename Method.

• Check to see whether this method signature is implemented by a superclass or subclass.
If it is, carry out these steps for each implementation.

• Declare a new method with the added parameter. Copy the old body of code over to the
new method.

?rarr; If you need to add more than one parameter, it is easier to add
them at the same time.

• Compile.
• Change the body of the old method so that it calls the new one.

?rarr; If you only have a few references, you can reasonably skip this
step.

?rarr; You can supply any value for the parameter, but usually you use
null for object parameter and a clearly odd value for built-in types. It's
often a good idea to use something other than zero for numbers so you
can spot this case more easily.

• Compile and test.
• Find all references to the old method and change them to refer to the new one. Compile

and test after each change.
• Remove the old method.

?rarr; If the old method is part of the interface and you cannot remove it,
leave it in place and mark it as deprecated.

• Compile and test.

Remove Parameter

A parameter is no longer used by the method body.

Remove it.

 224

Motivation

Programmers often add parameters but are reluctant to remove them. After all, a spurious
parameter doesn't cause any problems, and you might need it again later.

This is the demon Obfuscatis speaking; purge him from your soul! A parameter indicates
information that is needed; different values make a difference. Your caller has to worry about
what values to pass. By not removing the parameter you are making further work for everyone
who uses the method. That's not a good trade-off, especially because removing parameters is an
easy refactoring.

The case to be wary of here is a polymorphic method. In this case you may well find that other
implementations of the method do use the parameter. In this case you shouldn't remove the
parameter. You might choose to add a separate method that can be used in those cases, but you
need to examine how your callers use the method to see whether it is worth doing that. If some
callers already know they are dealing with a certain subclass and doing extra work to find the
parameter or are using knowledge of the class hierarchy to know they can get away with a null,
add an extra method without the parameter. If they do not need to know about which class has
which method, the callers should be left in blissful ignorance.

Mechanics

The mechanics of Remove Parameter are very similar to those of Rename Method and Add
Parameter.

• Check to see whether this method signature is implemented by a superclass or subclass.
Check to see whether the class or superclass uses the parameter. If it does, don't do this
refactoring.

• Declare a new method without the parameter. Copy the old body of code to the new
method.

?rarr; If you need to remove more than one parameter, it is easier to
remove them together.

• Compile.
• Change the body of the old method so that it calls the new one.

?rarr; If you only have a few references, you can reasonably skip this
step.

• Compile and test.
• Find all references to the old method and change them to refer to the new one. Compile

and test after each change.
• Remove the old method.

 225

?rarr; If the old method is part of the interface and you cannot remove it,
leave it in place and mark it as deprecated.

• Compile and test.

Because I'm pretty comfortable with adding and removing parameters, I often do a batch in one
go.

Separate Query from Modifier

You have a method that returns a value but also changes the state of an object.

Create two methods, one for the query and one for the modification.

Motivation

When you have a function that gives you a value and has no observable side effects, you have a
very valuable thing. You can call this function as often as you like. You can move the call to other
places in the method. In short, you have a lot less to worry about.

It is a good idea to clearly signal the difference between methods with side effects and those
without. A good rule to follow is to say that any method that returns a value should not have
observable side effects. Some programmers treat this as an absolute rule [Meyer]. I'm not 100
percent pure on this (as on anything), but I try to follow it most of the time, and it has served me
well.

If you come across a method that returns a value but also has side effects, you should try to
separate the query from the modifier.

You'll note I use the phrase observable side effects. A common optimization is to cache the value
of a query in a field so that repeated calls go quicker. Although this changes the state of the
object with the cache, the change is not observable. Any sequence of queries will always return
the same results for each query [Meyer].

Mechanics

• Create a query that returns the same value as the original method.

?rarr; Look in the original method to see what is returned. If the returned
value is a temporary, look at the location of the temp assignment.

• Modify the original method so that it returns the result of a call to the query.

 226

?rarr; Every return in the original method should say return
newQuery() instead of returning anything else.

?rarr; If the method used a temp to with a single assignment to capture
the return value, you should be able to remove it.

• Compile and test.
• For each call, replace the single call to the original method with a call to the query. Add a

call to the original method before the line that calls the query. Compile and test after each
change to a calling method.

• Make the original method have a void return type and remove the return expressions.

Example

Here is a function that tells me the name of a miscreant for a security system and sends an alert.
The rule is that only one alert is sent even if there is more than one miscreant:

 String foundMiscreant(String[] people){
 for (int i = 0; i < people.length; i++) {
 if (people[i].equals ("Don")){
 sendAlert();
 return "Don";
 }
 if (people[i].equals ("John")){
 sendAlert();
 return "John";
 }
 }
 return "";
 }

It is called by

 void checkSecurity(String[] people) {
 String found = foundMiscreant(people);
 someLaterCode(found);
 }

To separate the query from the modifier, I first need to create a suitable query that returns the
same value as the modifier does but without doing the side effects.

 String foundPerson(String[] people){
 for (int i = 0; i < people.length; i++) {
 if (people[i].equals ("Don")){
 return "Don";
 }
 if (people[i].equals ("John")){
 return "John";
 }
 }
 return "";

 227

 }

Then I replace every return in the original function, one at a time, with calls to the new query. I
test after each replacement. When I'm done the original method looks like the following:

 String foundMiscreant(String[] people){
 for (int i = 0; i < people.length; i++) {
 if (people[i].equals ("Don")){
 sendAlert();
 return foundPerson(people);
 }
 if (people[i].equals ("John")){
 sendAlert();
 return foundPerson(people);
 }
 }
 return foundPerson(people);
 }

Now I alter all the calling methods to do two calls: first to the modifier and then to the query:

 void checkSecurity(String[] people) {
 foundMiscreant(people);
 String found = foundPerson(people);
 someLaterCode(found);
 }

Once I have done this for all calls, I can alter the modifier to give it a void return type:

 void foundMiscreant (String[] people){
 for (int i = 0; i < people.length; i++) {
 if (people[i].equals ("Don")){
 sendAlert();
 return;

 }
 if (people[i].equals ("John")){
 sendAlert();
 return;
 }
 }
 }

Now it seems better to change the name of the original:

 void sendAlert (String[] people){
 for (int i = 0; i < people.length; i++) {
 if (people[i].equals ("Don")){
 sendAlert();
 return;

 228

 }
 if (people[i].equals ("John")){
 sendAlert();
 return;
 }
 }
 }

Of course in this case I have a lot of code duplication because the modifier uses the body of the
query to do its work. I can now use Substitute Algorithm on the modifier to take advantage of
this:

 void sendAlert(String[] people){
 if (! foundPerson(people).equals(""))
 sendAlert();
 }

Concurrency Issues

If you are working in a multithreaded system, you'll know that doing test and set operations as a
single action is an important idiom. Does this conflict with Separate Query from Modifier? I
discussed this issue with Doug Lea and concluded that it doesn't, but you need to do some
additional things. It is still valuable to have separate query and modifier operations. However, you
need to retain a third method that does both. The query-and-modify operation will call the
separate query and modify methods and be synchronized. If the query and modify operations are
not synchronized, you also might restrict their visibility to package or private level. That way you
have a safe, synchronized operation decomposed into two easier-to-understand methods. These
lower-level methods then are available for other uses.

Parameterize Method

Several methods do similar things but with different values contained in the method body.

Create one method that uses a parameter for the different values.

Motivation

You may see a couple of methods that do similar things but vary depending on a few values. In
this case you can simplify matters by replacing the separate methods with a single method that
handles the variations by parameters. Such a change removes duplicate code and increases
flexibility, because you can deal with other variations by adding parameters.

Mechanics

 229

• Create a parameterized method that can be substituted for each repetitive method.
• Compile.
• Replace one old method with a call to the new method.
• Compile and test.
• Repeat for all the methods, testing after each one.

You may find that you cannot do this for the whole method, but you can for a fragment of a
method. In this case first extract the fragment into a method, then parameterize that method.

Example

The simplest case is methods along the following lines:

 class Employee {
 void tenPercentRaise () {
 salary *= 1.1;
 }

 void fivePercentRaise () {
 salary *= 1.05;
 }

which can be replaced with

 void raise (double factor) {
 salary *= (1 + factor);
 }

Of course that is so simple that anyone would spot it.

A less obvious case is as follows:

 protected Dollars baseCharge() {
 double result = Math.min(lastUsage(),100) * 0.03;
 if (lastUsage() > 100) {
 result += (Math.min (lastUsage(),200) - 100) * 0.05;
 };
 if (lastUsage() > 200) {
 result += (lastUsage() - 200) * 0.07;
 };
 return new Dollars (result);
 }

this can be replaced with

 protected Dollars baseCharge() {
 double result = usageInRange(0, 100) * 0.03;
 result += usageInRange (100,200) * 0.05;
 result += usageInRange (200, Integer.MAX_VALUE) * 0.07;

 230

 return new Dollars (result);
 }

 protected int usageInRange(int start, int end) {
 if (lastUsage() > start) return Math.min(lastUsage(),end) -
start;
 else return 0;
 }

The trick is to spot code that is repetitive on the basis of a few values that can be passed in as
parameters.

Replace Parameter with Explicit Methods

You have a method that runs different code depending on the values of an enumerated
parameter.

Create a separate method for each value of the parameter.

 void setValue (String name, int value) {
 if (name.equals("height"))
 _height = value;
 if (name.equals("width"))
 _width = value;
 Assert.shouldNeverReachHere();
 }

 void setHeight(int arg) {
 _height = arg;
 }
 void setWidth (int arg) {
 _width = arg;
 }

Motivation

Replace Parameter with Explicit Methods is the reverse of Parameterize Method. The usual
case for the former is that you have discrete values of a parameter, test for those values in a
conditional, and do different things. The caller has to decide what it wants to do by setting the
parameter, so you might as well provide different methods and avoid the conditional. You not only
avoid the conditional behavior but also gain compile time checking. Furthermore your interface
also is clearer. With the parameter, any programmer using the method needs not only to look at
the methods on the class but also to determine a valid parameter value. The latter is often poorly
documented.

The clarity of the explicit interface can be worthwhile even when the compile time checking isn't
an advantage. Switch.beOn() is a lot clearer than Switch.setState(true), even when all
you are doing is setting an internal boolean field.

 231

You shouldn't use Replace Parameter with Explicit Methods when the parameter values are likely
to change a lot. If this happens and you are just setting a field to the passed in parameter, use a
simple setter. If you need conditional behavior, you need Replace Conditional with
Polymorphism.

Mechanics

• Create an explicit method for each value of the parameter.
• For each leg of the conditional, call the appropriate new method.
• Compile and test after changing each leg.
• Replace each caller of the conditional method with a call to the appropriate new method.
• Compile and test.
• When all callers are changed, remove the conditional method.

Example

I want to create a subclass of employee on the basis of a passed in parameter, often the result of
Replace Constructor with Factory Method:

 static final int ENGINEER = 0;
 static final int SALESMAN = 1;
 static final int MANAGER = 2;

 static Employee create(int type) {
 switch (type) {
 case ENGINEER:
 return new Engineer();
 case SALESMAN:
 return new Salesman();
 case MANAGER:
 return new Manager();
 default:
 throw new IllegalArgumentException("Incorrect type code
value");
 }
 }

Because this is a factory method, I can't use Replace Conditional with Polymorphism,
because I haven't created the object yet. I don't expect too many new subclasses, so an explicit
interface makes sense. First I create the new methods:

 static Employee createEngineer() {
 return new Engineer();
 }
 static Employee createSalesman() {
 return new Salesman();
 }
 static Employee createManager() {
 return new Manager();
 }

One by one I replace the cases in the switch statements with calls to the explicit methods:

 232

 static Employee create(int type) {
 switch (type) {
 case ENGINEER:
 return Employee.createEngineer();
 case SALESMAN:
 return new Salesman();
 case MANAGER:
 return new Manager();
 default:
 throw new IllegalArgumentException("Incorrect type code
value");
 }
 }

I compile and test after changing each leg, until I've replaced them all:

 static Employee create(int type) {
 switch (type) {
 case ENGINEER:
 return Employee.createEngineer();
 case SALESMAN:
 return Employee.createSalesman();
 case MANAGER:
 return Employee.createManager();
 default:
 throw new IllegalArgumentException("Incorrect type code
value");
 }
 }

Now I move on to the callers of the old create method. I change code such as

 Employee kent = Employee.create(ENGINEER)

to

 Employee kent = Employee.createEngineer()

Once I've done that for all the callers of create, I can remove the create method. I may also
be able to get rid of the constants.

Preserve Whole Object

You are getting several values from an object and passing these values as parameters in a
method call.

Send the whole object instead.

 int low = daysTempRange().getLow();

 233

 int high = daysTempRange().getHigh();
 withinPlan = plan.withinRange(low, high);

 withinPlan = plan.withinRange(daysTempRange());

Motivation

This type of situation arises when an object passes several data values from a single object as
parameters in a method call. The problem with this is that if the called object needs new data
values later, you have to find and change all the calls to this method. You can avoid this by
passing in the whole object from which the data came. The called object then can ask for
whatever it wants from the whole object.

In addition to making the parameter list more robust to changes, Preserve Whole Object often
makes the code more readable. Long parameter lists can be hard to work with because both
caller and callee have to remember which values were there. They also encourage duplicate
code because the called object can't take advantage of any other methods on the whole object to
calculate intermediate values.

There is a down side. When you pass in values, the called object has a dependency on the
values, but there isn't any dependency to the object from which the values were extracted.
Passing in the required object causes a dependency between the required object and the called
object. If this is going to mess up your dependency structure, don't use Preserve Whole Object.

Another reason I have heard for not using Preserve Whole Object is that when a calling object
need only one value from the required object, it is better to pass in the value than to pass in the
whole object. I don't subscribe to that view. One value and one object amount to the same thing
when you pass them in, at least for clarity's sake (there may be a performance cost with pass by
value parameters). The driving force is the dependency issue.

That a called method uses lots of values from another object is a signal that the called method
should really be defined on the object from which the values come. When you are considering
Preserve Whole Object, consider Move Method as an alternative.

You may not already have the whole object defined. In this case you need Introduce
Parameter Object.

A common case is that a calling object passes several of its own data values as parameters. In
this case you can make the call and pass in this instead of these values, if you have the
appropriate getting methods and you don't mind the dependency.

Mechanics

• Create a new parameter for the whole object from which the data comes.
• Compile and test.
• Determine which parameters should be obtained from the whole object.
• Take one parameter and replace references to it within the method body by invoking an

appropriate method on the whole object parameter.
• Delete the parameter.
• Compile and test.
• Repeat for each parameter that can be got from the whole object.

 234

• Remove the code in the calling method that obtains the deleted parameters.

?rarr; Unless, of course, the code is using these parameters somewhere
else.

• Compile and test.

Example

Consider a room object that records high and low temperatures during the day. It needs to
compare this range with a range in a predefined heating plan:

 class Room...
 boolean withinPlan(HeatingPlan plan) {
 int low = daysTempRange().getLow();
 int high = daysTempRange().getHigh();
 return plan.withinRange(low, high);
 }
 class HeatingPlan...
 boolean withinRange (int low, int high) {
 return (low >= _range.getLow() && high <= _range.getHigh());
 }
 private TempRange _range;

Rather than unpack the range information when I pass it, I can pass the whole range object. In
this simple case I can do this in one step. When more parameters are involved, I can do it in
smaller steps. First I add the whole object to the parameter list:

 class HeatingPlan...
 boolean withinRange (TempRange roomRange, int low, int high) {
 return (low >= _range.getLow() && high <= _range.getHigh());
 }

 class Room...
 boolean withinPlan(HeatingPlan plan) {
 int low = daysTempRange().getLow();
 int high = daysTempRange().getHigh();
 return plan.withinRange(daysTempRange(), low, high);
 }

Then I use a method on the whole object instead of one of the parameters:

 class HeatingPlan...
 boolean withinRange (TempRange roomRange, int high) {
 return (roomRange.getLow() >= _range.getLow() && high <=
_range.getHigh());
 }

 class Room...
 boolean withinPlan(HeatingPlan plan) {
 int low = daysTempRange().getLow();

 235

 int high = daysTempRange().getHigh();
 return plan.withinRange(daysTempRange(), high);
 }

I continue until I've changed all I need:

 class HeatingPlan...
 boolean withinRange (TempRange roomRange) {
 return (roomRange.getLow() >= _range.getLow() &&
roomRange.getHigh() <= _range.getHigh());
 }
 class Room...
 boolean withinPlan(HeatingPlan plan) {
 int low = daysTempRange().getLow();
 int high = daysTempRange().getHigh();
 return plan.withinRange(daysTempRange());
 }

Now I don't need the temps anymore:

 class Room...
 boolean withinPlan(HeatingPlan plan) {
 int low = daysTempRange().getLow();
 int high = daysTempRange().getHigh();
 return plan.withinRange(daysTempRange());
 }

Using whole objects this way soon leads you to realize that you can usefully move behavior into
the whole object to make it easier to work with.

 class HeatingPlan...
 boolean withinRange (TempRange roomRange) {
 return (_range.includes(roomRange));
 }
 class TempRange...
 boolean includes (TempRange arg) {
 return arg.getLow() >= this.getLow() && arg.getHigh() <=
this.getHigh();
 }

Replace Parameter with Method

An object invokes a method, then passes the result as a parameter for a method. The receiver
can also invoke this method.

Remove the parameter and let the receiver invoke the method.

 int basePrice = _quantity * _itemPrice;
 discountLevel = getDiscountLevel();
 double finalPrice = discountedPrice (basePrice, discountLevel);

 236

 int basePrice = _quantity * _itemPrice;
 double finalPrice = discountedPrice (basePrice);

Motivation

If a method can get a value that is passed in as parameter by another means, it should. Long
parameter lists are difficult to understand, and we should reduce them as much as possible.

One way of reducing parameter lists is to look to see whether the receiving method can make the
same calculation. If an object is calling a method on itself, and the calculation for the parameter
does not reference any of the parameters of the calling method, you should be able to remove the
parameter by turning the calculation into its own method. This is also true if you are calling a
method on a different object that has a reference to the calling object.

You can't remove the parameter if the calculation relies on a parameter of the calling method,
because that parameter may change with each call (unless, of course, that parameter can be
replaced with a method). You also can't remove the parameter if the receiver does not have a
reference to the sender, and you don't want to give it one.

In some cases the parameter may be there for a future parameterization of the method. In this
case I would still get rid of it. Deal with the parameterization when you need it; you may find out
that you don't have the right parameter anyway. I would make an exception to this rule only when
the resulting change in the interface would have painful consequences around the whole
program, such as a long build or changing of a lot of embedded code. If this worries you, look into
how painful such a change would really be. You should also look to see whether you can reduce
the dependencies that cause the change to be so painful. Stable interfaces are good, but freezing
a poor interface is a problem.

Mechanics

• If necessary, extract the calculation of the parameter into a method.
• Replace references to the parameter in method bodies with references to the method.
• Compile and test after each replacement.
• Use Remove Parameter on the parameter.

Example

Another unlikely variation on discounting orders is as follows:

 public double getPrice() {
 int basePrice = _quantity * _itemPrice;
 int discountLevel;
 if (_quantity > 100) discountLevel = 2;
 else discountLevel = 1;
 double finalPrice = discountedPrice (basePrice, discountLevel);
 return finalPrice;
 }

 private double discountedPrice (int basePrice, int discountLevel) {

 237

 if (discountLevel == 2) return basePrice * 0.1;
 else return basePrice * 0.05;
 }

I can begin by extracting the calculation of the discount level:

 public double getPrice() {
 int basePrice = _quantity * _itemPrice;
 int discountLevel = getDiscountLevel();
 double finalPrice = discountedPrice (basePrice, discountLevel);
 return finalPrice;
 }

 private int getDiscountLevel() {
 if (_quantity > 100) return 2;
 else return 1;
 }

I then replace references to the parameter in discountedPrice:

 private double discountedPrice (int basePrice, int discountLevel) {
 if (getDiscountLevel() == 2) return basePrice * 0.1;
 else return basePrice * 0.05;
 }

Then I can use Remove Parameter:

 public double getPrice() {
 int basePrice = _quantity * _itemPrice;
 int discountLevel = getDiscountLevel();
 double finalPrice = discountedPrice (basePrice);
 return finalPrice;
 }

 private double discountedPrice (int basePrice) {
 if (getDiscountLevel() == 2) return basePrice * 0.1;
 else return basePrice * 0.05;
 }

I can now get rid of the temp:

 public double getPrice() {
 int basePrice = _quantity * _itemPrice;
 double finalPrice = discountedPrice (basePrice);
 return finalPrice;
 }

Then it's time to get rid of the other parameter and its temp. I am left with

 238

 public double getPrice() {
 return discountedPrice ();
 }

 private double discountedPrice () {
 if (getDiscountLevel() == 2) return getBasePrice() * 0.1;
 else return getBasePrice() * 0.05;
 }

 private double getBasePrice() {
 return _quantity * _itemPrice;
 }

so I might as well use Inline Method on discountedPrice:

 private double getPrice () {
 if (getDiscountLevel() == 2) return getBasePrice() * 0.1;
 else return getBasePrice() * 0.05;
 }

Introduce Parameter Object

You have a group of parameters that naturally go together.

Replace them with an object.

Motivation

Often you see a particular group of parameters that tend to be passed together. Several methods
may use this group, either on one class or in several classes. Such a group of classes is a data
clump and can be replaced with an object that carries all of this data. It is worthwhile to turn these
parameters into objects just to group the data together. This refactoring is useful because it
reduces the size of the parameter lists, and long parameter lists are hard to understand. The
defined accessors on the new object also make the code more consistent, which again makes it
easier to understand and modify.

You get a deeper benefit, however, because once you have clumped together the parameters,
you soon see behavior that you can also move into the new class. Often the bodies of the
methods have common manipulations of the parameter values. By moving this behavior into the
new object, you can remove a lot of duplicated code.

Mechanics

 239

• Create a new class to represent the group of parameters you are replacing. Make the
class immutable.

• Compile.
• Use Add Parameter for the new data clump. Use a null for this parameter in all the

callers.

?rarr; If you have many callers, you can retain the old signature and let it
call the new method. Apply the refactoring on the old method first. You
can then move the callers over one by one and remove the old method
when you're done.

• For each parameter in the data clump, remove the parameter from the signature. Modify
the callers and method body to use the parameter object for that value.

• Compile and test after you remove each parameter.
• When you have removed the parameters, look for behavior that you can move into the

parameter object with Move Method.

?rarr; This may be a whole method or part of a method. If it is part of a
method, use Extract Method first and then move the new method over.

Example

I begin with an account and entries. The entries are simple data holders.

 class Entry...
 Entry (double value, Date chargeDate) {
 _value = value;
 _chargeDate = chargeDate;
 }
 Date getDate(){
 return _chargeDate;
 }
 double getValue(){
 return _value;
 }
 private Date _chargeDate;
 private double _value;

My focus is on the account, which holds a collection of entries and has a method for determining
the flow of the account between two dates:

 class Account...
 double getFlowBetween (Date start, Date end) {
 double result = 0;
 Enumeration e = _entries.elements();
 while (e.hasMoreElements()) {
 Entry each = (Entry) e.nextElement();
 if (each.getDate().equals(start) ||
 each.getDate().equals(end) ||
 (each.getDate().after(start) &&
each.getDate().before(end)))
 {

 240

 result += each.getValue();
 }
 }
 return result;
 }
 private Vector _entries = new Vector();

 client code...
 double flow = anAccount.getFlowBetween(startDate, endDate);

I don't know how many times I come across pairs of values that show a range, such as start and
end dates and upper and lower numbers. I can understand why this happens, after all I did it all
the time myself. But since I saw the range pattern [Fowler, AP] I always try to use ranges instead.
My first step is to declare a simple data holder for the range:

 class DateRange {
 DateRange (Date start, Date end) {
 _start = start;
 _end = end;
 }
 Date getStart() {
 return _start;
 }
 Date getEnd() {
 return _end;
 }
 private final Date _start;
 private final Date _end;
 }

I've made the date range class immutable; that is, all the values for the date range are final and
set in the constructor, hence there are no methods for modifying the values. This is a wise move
to avoid aliasing bugs. Because Java has pass-by-value parameters, making the class immutable
mimics the way Java's parameters work, so this is the right assumption for this refactoring.

Next I add the date range into the parameter list for the getFlowBetween method:

 class Account...
 double getFlowBetween (Date start, Date end, DateRange range) {
 double result = 0;
 Enumeration e = _entries.elements();
 while (e.hasMoreElements()) {
 Entry each = (Entry) e.nextElement();
 if (each.getDate().equals(start) ||
 each.getDate().equals(end) ||
 (each.getDate().after(start) &&
each.getDate().before(end)))
 {
 result += each.getValue();
 }
 }
 return result;
 }

 241

 client code...
 double flow = anAccount.getFlowBetween(startDate, endDate, null);

At this point I only need to compile, because I haven't altered any behavior yet.

The next step is to remove one of the parameters and use the new object instead. To do this I
delete the start parameter and modify the method and its callers to use the new object instead:

 class Account...
 double getFlowBetween (Date end, DateRange range) {
 double result = 0;
 Enumeration e = _entries.elements();
 while (e.hasMoreElements()) {
 Entry each = (Entry) e.nextElement();
 if (each.getDate().equals(range.getStart()) ||
 each.getDate().equals(end) ||
 (each.getDate().after(range.getStart()) &&
each.getDate().before(end)))
 {
 result += each.getValue();
 }
 }
 return result;
 }

 client code...
 double flow = anAccount.getFlowBetween(endDate, new DateRange
(startDate, null));

I then remove the end date:

 class Account...
 double getFlowBetween (DateRange range) {
 double result = 0;
 Enumeration e = _entries.elements();
 while (e.hasMoreElements()) {
 Entry each = (Entry) e.nextElement();
 if (each.getDate().equals(range.getStart()) ||
 each.getDate().equals(range.getEnd()) ||
 (each.getDate().after(range.getStart()) &&
each.getDate().before(range.getEnd())))
 {
 result += each.getValue();
 }
 }
 return result;
 }

 client code...
 double flow = anAccount.getFlowBetween(new DateRange
(startDate, endDate));

 242

I have introduced the parameter object; however, I can get more value from this refactoring by
moving behavior from other methods to the new object. In this case I can take the code in the
condition and use Extract Method and Move Method to get

 class Account...
 double getFlowBetween (DateRange range) {
 double result = 0;
 Enumeration e = _entries.elements();
 while (e.hasMoreElements()) {
 Entry each = (Entry) e.nextElement();
 if (range.includes(each.getDate())) {
 result += each.getValue();
 }
 }
 return result;
 }

 class DateRange...
 boolean includes (Date arg) {
 return (arg.equals(_start) ||
 arg.equals(_end) ||
 (arg.after(_start) && arg.before(_end)));
 }

I usually do simple extracts and moves such as this in one step. If I run into a bug, I can back out
and take the two smaller steps.

Remove Setting Method

A field should be set at creation time and never altered.

Remove any setting method for that field.

Motivation

Providing a setting method indicates that a field may be changed. If you don't want that field to
change once the object is created, then don't provide a setting method (and make the field final).
That way your intention is clear and you often remove the very possibility that the field will
change.

This situation often occurs when programmers blindly use indirect variable access [Beck]. Such
programmers then use setters even in a constructor. I guess there is an argument for consistency
but not compared with the confusion that the setting method will cause later on.

Mechanics

 243

• Compile and test.
• Check that the setting method is called only in the constructor, or in a method called by

the constructor.
• Modify the constructor to access the variables directly.

?rarr; You cannot do this if you have a subclass setting the private fields
of a superclass. In this case you should try to provide a protected
superclass method (ideally a constructor) to set these values. Whatever
you do, don't give the superclass method a name that will confuse it with
a setting method.

• Compile and test.
• Remove the setting method and make the field final.
• Compile.

Example

A simple example is as follows:

 class Account {

 private String _id;

 Account (String id) {
 setId(id);
 }

 void setId (String arg) {
 _id = arg;
 }

which can be replaced with

 class Account {

 private final String _id;

 Account (String id) {
 _id = id;
 }

The problems come in some variations. First is the case in which you are doing computation on
the argument:

 class Account {

 private String _id;

 Account (String id) {
 setId(id);
 }

 244

 void setId (String arg) {
 _id = "ZZ" + arg;
 }

If the change is simple (as here) and there is only one constructor, I can make the change in the
constructor. If the change is complex or I need to call it from separate methods, I need to provide
a method. In that case I need to name the method to make its intention clear:

 class Account {
 private final String _id;
 Account (String id) {
 initializeId(id);
 }

 void initializeId (String arg) {
 _id = "ZZ" + arg;
 }

An awkward case lies with subclasses that initialize private superclass variables:

 class InterestAccount extends Account...

 private double _interestRate;

 InterestAccount (String id, double rate) {
 setId(id);
 _interestRate = rate;
 }

The problem is that I cannot access id directly to set it. The best solution is to use a superclass
constructor:

 class InterestAccount...

 InterestAccount (String id, double rate) {
 super(id);
 _interestRate = rate;
 }

If that is not possible, a well-named method is the best thing to use:

 class InterestAccount...

 InterestAccount (String id, double rate) {
 initializeId(id);
 _interestRate = rate;
 }

Another case to consider is setting the value of a collection:

 245

 class Person {
 Vector getCourses() {
 return _courses;
 }
 void setCourses(Vector arg) {
 _courses = arg;
 }
 private Vector _courses;

Here I want to replace the setter with add and remove operations. I talk about this in
Encapsulate Collection.

Hide Method

A method is not used by any other class.

Make the method private.

Motivation

Refactoring often causes you to change decisions about the visibility of methods. It is easy to
spot cases in which you need to make a method more visible: another class needs it and you
thus relax the visibility. It is somewhat more difficult to tell when a method is too visible. Ideally a
tool should check all methods to see whether they can be hidden. If it doesn't, you should make
this check at regular intervals.

A particularly common case is hiding getting and setting methods as you work up a richer
interface that provides more behavior. This case is most common when you are starting with a
class that is little more than an encapsulated data holder. As more behavior is built into the class,
you may find that many of the getting and setting methods are no longer needed publicly, in
which case they can be hidden. If you make a getting or setting method private and you are using
direct variable access, you can remove the method.

Mechanics

• Check regularly for opportunities to make a method more private.

?rarr; Use a lint-style tool, do manual checks every so often, and check
when you remove a call to a method in another class.

?rarr; Particularly look for cases such as this with setting methods.

• Make each method as private as you can.
• Compile after doing a group of hidings.

 246

?rarr; The compiler checks this naturally, so you don't need to compile
with each change. If one goes wrong, it is easy to spot.

Replace Constructor with Factory Method

You want to do more than simple construction when you create an object.

Replace the constructor with a factory method.

 Employee (int type) {
 _type = type;
 }

static Employee create(int type) {
 return new Employee(type);
 }

Motivation

The most obvious motivation for Replace Constructor with Factory Method comes with replacing
a type code with subclassing. You have an object that often is created with a type code but now
needs subclasses. The exact subclass is based on the type code. However, constructors can
only return an instance of the object that is asked for. So you need to replace the constructor with
a factory method [Gang of Four].

You can use factory methods for other situations in which constructors are too limited. Factory
methods are essential for Change Value to Reference. They also can be used to signal
different creation behavior that goes beyond the number and types of parameters.

Mechanics

• Create a factory method. Make its body a call to the current constructor.
• Replace all calls to the constructor with calls to the factory method.
• Compile and test after each replacement.
• Declare the constructor private.
• Compile.

Example

A quick but wearisome and belabored example is the employee payment system. I have the
following employee:

 class Employee {

 private int _type;
 static final int ENGINEER = 0;
 static final int SALESMAN = 1;
 static final int MANAGER = 2;

 247

 Employee (int type) {
 _type = type;
 }

I want to make subclasses of Employee to correspond to the type codes. So I need to create a
factory method:

 static Employee create(int type) {
 return new Employee(type);
 }

I then change all callers of the constructor to use this new method and make the constructor
private:

 client code...
 Employee eng = Employee.create(Employee.ENGINEER);

 class Employee...
 private Employee (int type) {
 _type = type;
 }

Example: Creating Subclasses with a String

So far I do not have a great gain; the advantage comes from the fact that I have separated the
receiver of the creation call from the class of object created. If I later apply Replace Type Code
with Subclasses (Chapter 8) to turn the codes into subclasses of employee, I can hide these
subclasses from clients by using the factory method:

 static Employee create(int type) {
 switch (type) {
 case ENGINEER:
 return new Engineer();
 case SALESMAN:
 return new Salesman();
 case MANAGER:
 return new Manager();
 default:
 throw new IllegalArgumentException("Incorrect type code
value");
 }
 }

The sad thing about this is that I have a switch. Should I add a new subclass, I have to remember
to update this switch statement, and I tend toward forgetfulness.

A good way around this is to use Class.forName. The first thing to do is to change the type of
the parameter, essentially a variation on Rename Method. First I create a new method that
takes a string as an argument:

 248

 static Employee create (String name) {
 try {
 return (Employee) Class.forName(name).newInstance();
 } catch (Exception e) {
 throw new IllegalArgumentException ("Unable to instantiate"
+ name);
 }
 }

I then convert the integer create to use this new method:

 class Employee {
 static Employee create(int type) {
 switch (type) {
 case ENGINEER:
 return create("Engineer");
 case SALESMAN:
 return create("Salesman");
 case MANAGER:
 return create("Manager");
 default:
 throw new IllegalArgumentException("Incorrect type code
value");
 }
 }

I can then work on the callers of create to change statements such as

 Employee.create(ENGINEER)

to

 Employee.create("Engineer")

When I'm done I can remove the integer parameter version of the method.

This approach is nice in that it removes the need to update the create method as I add new
subclasses of employee. The approach, however, lacks compile time checking: a spelling mistake
leads to a runtime error. If this is important, I use an explicit method (see below), but then I have
to add a new method every time I add a subclass. It's a trade-off between flexibility and type
safety. Fortunately, if I make the wrong choice, I can use either Parameterize Method or
Replace Parameter with Explicit Methods to reverse the decision.

Another reason to be wary of Class.forName is that it exposes subclass names to clients. This
is not too bad because you can use other strings and carry out other behavior with the factory
method. That's a good reason not to use Inline Method to remove the factory.

Example: Creating Subclasses with Explicit Methods

 249

I can use a different approach to hide subclasses with explicit methods. This is useful if you have
just a few subclasses that don't change. So I may have an abstract Person class with subclasses
for Male and Female. I begin by defining a factory method for each subclass on the superclass:

 class Person...
 static Person createMale(){
 return new Male();
 }
 static Person createFemale() {
 return new Female();
 }

I can then replace calls of the form

 Person kent = new Male();

with

 Person kent = Person.createMale();

This leaves the superclass knowing about the subclasses. If you want to avoid this, you need a
more complex scheme, such as a product trader [Bäumer and Riehle]. Most of the time, however,
that complexity isn't needed, and this approach works nicely.

Encapsulate Downcast

A method returns an object that needs to be downcasted by its callers.

Move the downcast to within the method.

Object lastReading() {
 return readings.lastElement();
}

Reading lastReading() {
 return (Reading) readings.lastElement();
}

Motivation

Downcasting is one of the most annoying things you have to do with strongly typed OO
languages. It is annoying because it feels unnecessary; you are telling the compiler something it
ought to be able to figure out itself. But because the figuring out often is rather complicated, you
often have to do it yourself. This is particularly prevalent in Java, in which the lack of templates
means that you have to downcast whenever you take an object out of a collection.

 250

Downcasting may be a necessary evil, but you should do it as little as possible. If you return a
value from a method, and you know the type of what is returned is more specialized than what
the method signature says, you are putting unnecessary work on your clients. Rather than forcing
them to do the downcasting, you should always provide them with the most specific type you can.

Often you find this situation with methods that return an iterator or collection. Look instead to see
what people are using the iterator for and provide the method for that.

Mechanics

• Look for cases in which you have to downcast the result from calling a method.

?rarr; These cases often appear with methods that return a collection or
iterator.

• Move the downcast into the method.

?rarr; With methods that return collections, use Encapsulate
Collection.

Example

I have a method called lastReading, which returns the last reading from a vector of readings:

 Object lastReading() {
 return readings.lastElement();
 }

I should replace this with

Reading lastReading() {
 return (Reading) readings.lastElement();
 }

A good lead-in to doing this is where I have collection classes. Say this collection of readings is
on a Site class and I see code like this:

 Reading lastReading = (Reading) theSite.readings().lastElement()

I can avoid the downcast and hide which collection is being used with

 Reading lastReading = theSite.lastReading();

 class Site...
 Reading lastReading() {
 return (Reading) readings().lastElement();
 }

 251

Altering a method to return a subclass alters the signature of the method but does not break
existing code because the compiler knows it can substitute a subclass for the superclass. Of
course you should ensure that the subclass does not do anything that breaks the contract of the
superclass.

Replace Error Code with Exception

A method returns a special code to indicate an error.

Throw an exception instead.

 int withdraw(int amount) {
 if (amount > _balance)
 return -1;
 else {
 _balance -= amount;
 return 0;
 }
 }

void withdraw(int amount) throws BalanceException {
 if (amount > _balance) throw new BalanceException();
 _balance -= amount;
 }

Motivation

In computers, as in life, things go wrong occasionally. When things go wrong, you need to do
something about it. In the simplest case, you can stop the program with an error code. This is the
software equivalent of committing suicide because you miss a flight. (If I did that I wouldn't be
alive even if I were a cat.) Despite my glib attempt at humor, there is merit to the software suicide
option. If the cost of a program crash is small and the user is tolerant, stopping the program is
fine. However, more important programs need more important measures.

The problem is that the part of a program that spots an error isn't always the part that can figure
out what to do about it. When such a routine finds an error, it needs to let its caller know, and the
caller may pass the error up the chain. In many languages a special output is used to indicate
error. Unix and C-based systems traditionally use a return code to signal success or failure of a
routine.

Java has a better way: exceptions. Exceptions are better because they clearly separate normal
processing from error processing. This makes programs easier to understand, and as I hope you
now believe, understandability is next to godliness.

Mechanics

• Decide whether the exception should be checked or unchecked.

?rarr; If the caller is responsible for testing the condition before calling,
make the exception unchecked.

 252

?rarr; If the exception is checked, either create a new exception or use
an existing one.

• Find all the callers and adjust them to use the exception.

?rarr; If the exception is unchecked, adjust the callers to make the
appropriate check before calling the method. Compile and test after each
such change.

?rarr; If the exception is checked, adjust the callers to call the method in
a try block.

• Change the signature of the method to reflect the new usage.

If you have many callers, this can be too big a change. You can make it more gradual with the
following steps:

• Decide whether the exception should be checked or unchecked.
• Create a new method that uses the exception.
• Modify the body of the old method to call the new method.
• Compile and test.
• Adjust each caller of the old method to call the new method. Compile and test after each

change.
• Delete the old method.

Example

Isn't it strange that computer textbooks often assume you can't withdraw more than your balance
from an account, although in real life you often can?

 class Account...
 int withdraw(int amount) {
 if (amount > _balance)
 return -1;
 else {
 _balance -= amount;
 return 0;
 }
 }
 private int _balance;

To change this code to use an exception I first need to decide whether to use a checked or
unchecked exception. The decision hinges on whether it is the responsibility of the caller to test
the balance before withdrawing or whether it is the responsibility of the withdraw routine to make
the check. If testing the balance is the caller's responsibility, it is a programming error to call
withdraw with an amount greater than the balance. Because it is a programming error—that is, a
bug—I should use an unchecked exception. If testing the balance is the withdraw routine's
responsibility, I must declare the exception in the interface. That way I signal the caller to expect
the exception and to take appropriate measures.

Example: Unchecked Exception

 253

Let's take the unchecked case first. Here I expect the caller to do the checking. First I look at the
callers. In this case nobody should be using the return code because it is a programmer error to
do so. If I see code such as

 if (account.withdraw(amount) == -1)
 handleOverdrawn();
 else doTheUsualThing();

I need to replace it with code such as

 if (!account.canWithdraw(amount))
 handleOverdrawn();
 else {
 account.withdraw(amount);
 doTheUsualThing();
 }

I can compile and test after each change.

Now I need to remove the error code and throw an exception for the error case. Because the
behavior is (by definition) exceptional, I should use a guard clause for the condition check:

 void withdraw(int amount) {
 if (amount > _balance)
 throw new IllegalArgumentException ("Amount too large");
 _balance -= amount;
 }

Because it is a programmer error, I should signal even more clearly by using an assertion:

 class Account...
 void withdraw(int amount) {
 Assert.isTrue ("amount too large", amount > _balance);
 _balance -= amount;
 }

 class Assert...
 static void isTrue (String comment, boolean test) {
 if (! test) {
 throw new RuntimeException ("Assertion failed: " + comment);
 }
 }

Example: Checked Exception

I handle the checked exception case slightly differently. First I create (or use) an appropriate new
exception:

 class BalanceException extends Exception {}

 254

Then I adjust the callers to look like

 try {
 account.withdraw(amount);
 doTheUsualThing();
 } catch (BalanceException e) {
 handleOverdrawn();
 }

Now I change the withdraw method to use the exception:

 void withdraw(int amount) throws BalanceException {
 if (amount > _balance) throw new BalanceException();
 _balance -= amount;
 }

The awkward thing about this procedure is that I have to change all the callers and the called
routine in one go. Otherwise the compiler spanks us. If there are a lot of callers, this can be too
large a change without the compile and test step.

For these cases I can use a temporary intermediate method. I begin with the same case as
before:

 if (account.withdraw(amount) == -1)
 handleOverdrawn();
 else doTheUsualThing();

class Account ...
 int withdraw(int amount) {
 if (amount > _balance)
 return -1;
 else {
 _balance -= amount;
 return 0;
 }
 }

The first step is to create a new withdraw method that uses the exception:

 void newWithdraw(int amount) throws BalanceException {
 if (amount > _balance) throw new BalanceException();
 _balance -= amount;
 }

Next I adjust the current withdraw method to use the new one:

 int withdraw(int amount) {
 try {
 newWithdraw(amount);

 255

 return 0;
 } catch (BalanceException e) {
 return -1;
 }
 }

With that done, I can compile and test. Now I can replace each of the calls to the old method with
a call to the new one:

 try {
 account.newWithdraw(amount);
 doTheUsualThing();
 } catch (BalanceException e) {
 handleOverdrawn();
 }

With both old and new methods in place, I can compile and test after each change. When I'm
finished, I can delete the old method and use Rename Method to give the new method the old
name.

Replace Exception with Test

You are throwing a checked exception on a condition the caller could have checked first.

Change the caller to make the test first.

 double getValueForPeriod (int periodNumber) {
 try {
 return _values[periodNumber];
 } catch (ArrayIndexOutOfBoundsException e) {
 return 0;
 }
 }

double getValueForPeriod (int periodNumber) {
 if (periodNumber >= _values.length) return 0;
 return _values[periodNumber];
 }

Motivation

Exceptions are an important advance in programming languages. They allow us to avoid complex
codes by use of Replace Error Code with Exception. Like so many pleasures, exceptions can
be used to excess, and they cease to be pleasurable. (Even I can tire of Aventinus [Jackson].)
Exceptions should be used for exceptional behavior—behavior that is an unexpected error. They
should not act as a substitute for conditional tests. If you can reasonably expect the caller to
check the condition before calling the operation, you should provide a test, and the caller should
use it.

 256

Mechanics

• Put a test up front and copy the code from the catch block into the appropriate leg of the
if statement.

• Add an assertion to the catch block to notify you whether the catch block is executed.
• Compile and test.
• Remove the catch block and the try block if there are no other catch blocks.
• Compile and test.

Example

For this example I use an object that manages resources that are expensive to create but can be
reused. Database connections are a good example of this. Such a manager has two pools of
resources, one that is available for use and one that is allocated. When a client wants a resource,
the pool hands it out and transfers it from the available pool to the allocated pool. When a client
releases a resource, the manager passes it back. If a client requests a resource and none is
available, the manager creates a new one.

The method for giving out resources might look like this:

 class ResourcePool
 Resource getResource() {
 Resource result;
 try {
 result = (Resource) _available.pop();
 _allocated.push(result);
 return result;
 } catch (EmptyStackException e) {
 result = new Resource();
 _allocated.push(result);
 return result;
 }
 }
 Stack _available;
 Stack _allocated;

In this case running out of resources is not an unexpected occurrence, so I should not use an
exception.

To remove the exception I first add an appropriate up-front test and do the empty behavior there:

 Resource getResource() {
 Resource result;
 if (_available.isEmpty()) {
 result = new Resource();
 _allocated.push(result);
 return result;
 }
 else {
 try {
 result = (Resource) _available.pop();
 _allocated.push(result);

 257

 return result;
 } catch (EmptyStackException e) {
 result = new Resource();
 _allocated.push(result);
 return result;
 }
 }
 }

With this the exception should never occur. I can add an assertion to check this:

 Resource getResource() {
 Resource result;
 if (_available.isEmpty()) {
 result = new Resource();
 _allocated.push(result);
 return result;
 }
 else {
 try {
 result = (Resource) _available.pop();
 _allocated.push(result);
 return result;
 } catch (EmptyStackException e) {
 Assert.shouldNeverReachHere("available was empty on pop");
 result = new Resource();
 _allocated.push(result);
 return result;
 }
 }
 }

 class Assert...
 static void shouldNeverReachHere(String message) {
 throw new RuntimeException (message);
 }

Now I can compile and test. If all goes well, I can remove the try block completely:

 Resource getResource() {
 Resource result;
 if (_available.isEmpty()) {
 result = new Resource();
 _allocated.push(result);
 return result;
 }
 else {
 result = (Resource) _available.pop();
 _allocated.push(result);
 return result;
 }
 }

 258

After this I usually find I can clean up the conditional code. Here I can use Consolidate
Duplicate Conditional Fragments:

 Resource getResource() {
 Resource result;
 if (_available.isEmpty())
 result = new Resource();
 else
 result = (Resource) _available.pop();
 _allocated.push(result);
 return result;
 }

 259

Chapter 11. Dealing with Generalization

Generalization produces its own batch of refactorings, mostly dealing with moving methods
around a hierarchy of inheritance. Pull Up Field and Pull Up Method both promote function up
a hierarchy, and Push Down Method and Push Down Field push function downward.
Constructors are a little bit more awkward to pull up, so Pull Up Constructor Body deals with
those issues. Rather than pushing down a constructor, it is often useful to use Replace
Constructor with Factory Method.

If you have methods that have a similar outline body but vary in details, you can use Form
Template Method to separate the differences from the similarities.

In addition to moving function around a hierarchy, you can change the hierarchy by creating new
classes. Extract Subclass, Extract Superclass, and Extract Interface all do this by forming
new elements out of various points. Extract Interface is particularly important when you want to
mark a small amount of function for the type system. If you find yourself with unnecessary classes
in your hierarchy, you can use Collapse Hierarchy to remove them.

Sometimes you find that inheritance is not the best way of handling a situation and that you need
delegation instead. Replace Inheritance with Delegation helps make this change. Sometimes
life is the other way around and you have to use Replace Delegation with Inheritance.

Pull Up Field

Two subclasses have the same field.

Move the field to the superclass.

Motivation

If subclasses are developed independently, or combined through refactoring, you often find that
they duplicate features. In particular, certain fields can be duplicates. Such fields sometimes have
similar names but not always. The only way to determine what is going on is to look at the fields
and see how they are used by other methods. If they are being used in a similar way, you can
generalize them.

Doing this reduces duplication in two ways. It removes the duplicate data declaration and allows
you to move from the subclasses to the superclass behavior that uses the field.

 260

Mechanics

• Inspect all uses of the candidate fields to ensure they are used in the same way.
• If the fields do not have the same name, rename the fields so that they have the name

you want to use for the superclass field.
• Compile and test.
• Create a new field in the superclass.

?rarr; If the fields are private, you will need to protect the superclass field
so that the subclasses can refer to it.

• Delete the subclass fields.
• Compile and test.
• Consider using Self Encapsulate Field on the new field.

Pull Up Method

You have methods with identical results on subclasses.

Move them to the superclass.

Motivation

Eliminating duplicate behavior is important. Although two duplicate methods work fine as they
are, they are nothing more than a breeding ground for bugs in the future. Whenever there is
duplication, you face the risk that an alteration to one will not be made to the other. Usually it is
difficult to find the duplicates.

The easiest case of using Pull Up Method occurs when the methods have the same body,
implying there's been a copy and paste. Of course it's not always as obvious as that. You could
just do the refactoring and see if the tests croak, but that puts a lot of reliance on your tests. I
usually find it valuable to look for the differences; often they show up behavior that I forgot to test
for.

Often Pull Up Method comes after other steps. You see two methods in different classes that can
be parameterized in such a way that they end up as essentially the same method. In that case
the smallest step is to parameterize each method separately and then generalize them. Do it in
one go if you feel confident enough.

 261

A special case of the need for Pull Up Method occurs when you have a subclass method that
overrides a superclass method yet does the same thing.

The most awkward element of Pull Up Method is that the body of the methods may refer to
features that are on the subclass but not on the superclass. If the feature is a method, you can
either generalize the other method or create an abstract method in the superclass. You may need
to change a method's signature or create a delegating method to get this to work.

If you have two methods that are similar but not the same, you may be able to use Form
Template Method.

Mechanics

• Inspect the methods to ensure they are identical.

?rarr; If the methods look like they do the same thing but are not
identical, use algorithm substitution on one of them to make them
identical.

• If the methods have different signatures, change the signatures to the one you want to
use in the superclass.

• Create a new method in the superclass, copy the body of one of the methods to it, adjust,
and compile.

?rarr; If you are in a strongly typed language and the method calls
another method that is present on both subclasses but not the
superclass, declare an abstract method on the superclass.

?rarr; If the method uses a subclass field, use Pull Up Field or Self
Encapsulate Field and declare and use an abstract getting method.

• Delete one subclass method.
• Compile and test.
• Keep deleting subclass methods and testing until only the superclass method remains.
• Take a look at the callers of this method to see whether you can change a required type

to the superclass.

Example

Consider a customer with two subclasses: regular customer and preferred customer.

 262

The createBill method is identical for each class:

 void createBill (date Date) {
 double chargeAmount = charge (lastBillDate, date);
 addBill (date, charge);
 }

I can't move the method up into the superclass, because chargeFor is different on each
subclass. First I have to declare it on the superclass as abstract:

 class Customer...
 abstract double chargeFor(date start, date end)

Then I can copy createBill from one of the subclasses. I compile with that in place and then
remove the createBill method from one of the subclasses, compile, and test. I then remove it
from the other, compile, and test:

 263

Pull Up Constructor Body

You have constructors on subclasses with mostly identical bodies.

Create a superclass constructor; call this from the subclass methods.

 class Manager extends Employee...
 public Manager (String name, String id, int grade) {
 _name = name;
 _id = id;
 _grade = grade;
 }

 public Manager (String name, String id, int grade) {
 super (name, id);
 _grade = grade;
 }

Motivation

 264

Constructors are tricky things. They aren't quite normal methods, so you are more restricted in
what you can do with them than you are when you use normal methods.

If you see subclass methods with common behavior, your first thought is to extract the common
behavior into a method and pull it up into the superclass. With a constructor, however, the
common behavior is often the construction. In this case you need a superclass constructor that is
called by subclasses. In many cases this is the whole body of the constructor. You can't use Pull
Up Method here, because you can't inherit constructors (don't you just hate that?).

If refactoring becomes complex, you might want to consider Replace Constructor with
Factory Method instead.

Mechanics

• Define a superclass constructor.
• Move the common code at the beginning from the subclass to the superclass constructor.

?rarr; This may be all the code.

?rarr; Try to move common code to the beginning of the constructor.

• Call the superclass constructor as the first step in the subclass constructor.

?rarr; If all the code is common, this will be the only line of the subclass
constructor.

• Compile and test.

?rarr; If there is any common code later, use Extract Method to factor
out common code and use Pull Up Method to pull it up.

Example

Here are a manager and an employee:

 class Employee...
 protected String _name;
 protected String _id;

 class Manager extends Employee...
 public Manager (String name, String id, int grade) {
 _name = name;
 _id = id;
 _grade = grade;
 }

 private int _grade;

 265

The fields from Employee should be set in a constructor for Employee. I define one and make it
protected to signal that subclasses should call it:

 class Employee
 protected Employee (String name, String id) {
 _name = name;
 _id = id;
 }

Then I call it from the subclass:

 public Manager (String name, String id, int grade) {
 super (name, id);
 _grade = grade;
 }

A variation occurs when there is common code later. Say I have the following code:

 class Employee...
 boolean isPriviliged() {..}
 void assignCar() {..}
 class Manager...
 public Manager (String name, String id, int grade) {
 super (name, id);
 _grade = grade;
 if (isPriviliged()) assignCar(); //every subclass does this
 }
 boolean isPriviliged() {
 return _grade > 4;
 }

I can't move the assignCar behavior into the superclass constructor because it must be
executed after grade has been assigned to the field. So I need Extract Method and Pull Up
Method.

 class Employee...
 void initialize() {
 if (isPriviliged()) assignCar();
 }
 class Manager...
 public Manager (String name, String id, int grade) {
 super (name, id);
 _grade = grade;
 initialize();
 }

 266

Push Down Method

Behavior on a superclass is relevant only for some of its subclasses.

Move it to those subclasses.

Motivation

Pull Down Method is the opposite of Pull Up Method. I use it when I need to move behavior
from a superclass to a specific subclass, usually because it makes sense only there. You often do
this when you use Extract Subclass.

Mechanics

• Declare a method in all subclasses and copy the body into each subclass.

?rarr; You may need to declare fields as protected for the method to
access them. Usually you do this if you intend to push down the field
later. Otherwise use an accessor on the superclass. If this accessor is
not public, you need to declare it as protected.

• Remove method from superclass.

?rarr; You may have to change callers to use the subclass in variable
and parameter declarations.

?rarr; If it makes sense to access the method through a superclass
variable, you don't intend to remove the method from any subclasses,
and the superclass is abstract, you can declare the method as abstract,
in the superclass.

• Compile and test.
• Remove the method from each subclass that does not need it.
• Compile and test.

Push Down Field

A field is used only by some subclasses.

 267

Move the field to those subclasses.

Motivation

Push Down Field is the opposite of Pull Up Field. Use it when you don't need a field in the
superclass but only in a subclass.

Mechanics

• Declare the field in all subclasses.
• Remove the field from the superclass.
• Compile and test.
• Remove the field from all subclasses that don't need it.
• Compile and test.

Extract Subclass

A class has features that are used only in some instances.

Create a subclass for that subset of features.

Motivation

 268

The main trigger for use of Extract Subclass is the realization that a class has behavior used for
some instances of the class and not for others. Sometimes this is signaled by a type code, in
which case you can use Replace Type Code with Subclasses or Replace Type Code with
State/Strategy. But you don't have to have a type code to suggest the use for a subclass.

The main alternative to Extract Subclass is Extract Class. This is a choice between delegation
and inheritance. Extract Subclass is usually simpler to do, but it has limitations. You can't
change the class-based behavior of an object once the object is created. You can change the
class-based behavior with Extract Class simply by plugging in different components. You can
also use only subclasses to represent one set of variations. If you want the class to vary in
several different ways, you have to use delegation for all but one of them.

Mechanics

• Define a new subclass of the source class.
• Provide constructors for the new subclass.

?rarr; In the simple cases, copy the arguments of the superclass and call
the superclass constructor with super .

?rarr; If you want to hide the use of the subclass from clients, you can
use Replace Constructor with Factory Method.

• Find all calls to constructors of the superclass. If they need the subclass, replace with a
call to the new constructor.

?rarr; If the subclass constructor needs different arguments, use
Rename Method to change it. If some of the constructor parameters of
the superclass are no longer needed, use Rename Method on that too.

?rarr; If the superclass can no longer be directly instantiated, declare it
abstract.

• One by one use Push Down Method and Push Down Field to move features onto the
subclass.

?rarr; Unlike Extract Class it usually is easier to work with the methods
first and the data last.

?rarr; When a public method is pushed, you may need to redefine a
caller's variable or parameter type to call the new method. The compiler
will catch these cases.

• Look for any field that designates information now indicated by the hierarchy (usually a
boolean or type code). Eliminate it by using Self Encapsulate Field and replacing the
getter with polymorphic constant methods. All users of this field should be refactored with
Replace Conditional with Polymorphism.

?rarr; For any methods outside the class that use an accessor, consider
using Move Method to move the method into this class; then use
Replace Conditional with Polymorphism.

 269

• Compile and test after each push down.

Example

I'll start with a job item class that determines prices for items of work at a local garage:

 class JobItem ...
 public JobItem (int unitPrice, int quantity, boolean isLabor,
Employee employee) {
 _unitPrice = unitPrice;
 _quantity = quantity;
 _isLabor = isLabor;
 _employee = employee;
 }
 public int getTotalPrice() {
 return getUnitPrice() * _quantity;
 }
 public int getUnitPrice(){
 return (_isLabor) ?
 _employee.getRate():
 _unitPrice;
 }
 public int getQuantity(){
 return _quantity;
 }
 public Employee getEmployee() {
 return _employee;
 }
 private int _unitPrice;
 private int _quantity;
 private Employee _employee;
 private boolean _isLabor;

 class Employee...
 public Employee (int rate) {
 _rate = rate;
 }
 public int getRate() {
 return _rate;
 }
 private int _rate;

I extract a LaborItem subclass from this class because some of the behavior and data are
needed only in that case. I begin by creating the new class:

 class LaborItem extends JobItem {}

The first thing I need is a constructor for the labor item because job item does not have a no-arg
constructor. For this I copy the signature of the parent constructor:

 270

 public LaborItem (int unitPrice, int quantity, boolean isLabor,
Employee employee) {
 super (unitPrice, quantity, isLabor, employee);
 }

This is enough to get the new subclass to compile. However, the constructor is messy; some
arguments are needed by the labor item, and some are not. I deal with that later.

The next step is to look for calls to the constructor of the job item, and to look for cases where the
constructor of the labor item should be called instead. So statements like

 JobItem j1 = new JobItem (0, 5, true, kent);

become

 JobItem j1 = new LaborItem (0, 5, true, kent);

At this stage I have not changed the type of the variable; I have changed only the type of the
constructor. This is because I want to use the new type only where I have to. At this point I have
no specific interface for the subclass, so I don't want to declare any variations yet.

Now is a good time to clean up the constructor parameter lists. I use Rename Method on each
of them. I work with the superclass first. I create the new constructor and make the old one
protected (the subclass still needs it):

 class JobItem...
 protected JobItem (int unitPrice, int quantity, boolean isLabor,
Employee employee) {
 _unitPrice = unitPrice;
 _quantity = quantity;
 _isLabor = isLabor;
 _employee = employee;
 }
 public JobItem (int unitPrice, int quantity) {
 this (unitPrice, quantity, false, null)
 }

Calls from outside now use the new constructor:

 JobItem j2 = new JobItem (10, 15);

 271

Once I've compiled and tested, I use Rename Method on the subclass constructor:

 class LaborItem
 public LaborItem (int quantity, Employee employee) {
 super (0, quantity, true, employee);
 }

For the moment, I still use the protected superclass constructor.

Now I can start pushing down the features of the job item. I begin with the methods. I start with
using Push Down Method on getEmployee:

 class LaborItem...
 public Employee getEmployee() {
 return _employee;
 }
 class JobItem...
 protected Employee _employee;

Because the employee field will be pushed down later, I declare it as protected for the moment.

Once the employee field is protected, I can clean up the constructors so that employee is set only
in the subclass into which it is being pushed down:

 class JobItem...
 protected JobItem (int unitPrice, int quantity, boolean isLabor) {
 _unitPrice = unitPrice;
 _quantity = quantity;
 _isLabor = isLabor;
 }
 class LaborItem ...
 public LaborItem (int quantity, Employee employee) {
 super (0, quantity, true);
 _employee = employee;
 }

The field _isLabor is used to indicate information that is now inherent in the hierarchy. So I can
remove the field. The best way to do this is to first use Self Encapsulate Field and then change
the accessor to use a polymorphic constant method. A polymorphic constant method is one
whereby each implementation returns a (different) fixed value:

 class JobItem...

 272

 protected boolean isLabor() {
 return false;
 }
 class LaborItem...
 protected boolean isLabor() {
 return true;
 }

Then I can get rid of the isLabor field.

Now I can look at users of the isLabor methods. These should be refactored with Replace
Conditional with Polymorphism. I take the method

 class JobItem...
 public int getUnitPrice(){
 return (isLabor()) ?
 _employee.getRate():
 _unitPrice;
 }

and replace it with

 class JobItem...
 public int getUnitPrice(){
 return _unitPrice;
 }
 class LaborItem...
 public int getUnitPrice(){
 return _employee.getRate();
 }

Once a group of methods that use some data have been pushed down, I can use Push Down
Field on the data. That I can't use it because a method uses the data is a signal for more work on
the methods, either with Push Down Method or Replace Conditional with Polymorphism.

Because the unit price is used only by items that are nonlabor (parts job items), I can use Extract
Subclass on job item again to create a parts item class. When I've done that, the job item class
will be abstract.

Extract Superclass

You have two classes with similar features.

Create a superclass and move the common features to the superclass.

 273

Motivation

Duplicate code is one of the principal bad things in systems. If you say things in multiple places,
then when it comes time to change what you say, you have more things to change than you
should.

One form of duplicate code is two classes that do similar things in the same way or similar things
in different ways. Objects provide a built-in mechanism to simplify this situation with inheritance.
However, you often don't notice the commonalities until you have created some classes, in which
case you need to create the inheritance structure later.

An alternative is Extract Class. The choice is essentially between inheritance and delegation.
Inheritance is the simpler choice if the two classes share interface as well as behavior. If you
make the wrong choice, you can always use Replace Inheritance with Delegation later.

Mechanics

• Create a blank abstract superclass; make the original classes subclasses of this
superclass.

• One by one, use Pull Up Field, Pull Up Method, and Pull Up Constructor Body to
move common elements to the superclass.

?rarr; It's usually easier to move the fields first.

?rarr; If you have subclass methods that have different signatures but the
same purpose, use Rename Method to get them to the same name
and then use Pull Up Method.

?rarr; If you have methods with the same signature but different bodies,
declare the common signature as an abstract method on the superclass.

?rarr; If you have methods with different bodies that do the same thing,
you may try using Substitute Algorithm to copy one body into the
other. If this works, you can then use Pull Up Method.

• Compile and test after each pull.

 274

• Examine the methods left on the subclasses. See if there are common parts, if there are
you can use Extract Method followed by Pull Up Method on the common parts. If the
overall flow is similar, you may be able to use Form Template Method.

• After pulling up all the common elements, check each client of the subclasses. If they use
only the common interface you can change the required type to the superclass.

Example

For this case I have an employee and a department:

 class Employee...
 public Employee (String name, String id, int annualCost) {
 _name = name;
 _id = id;
 _annualCost = annualCost;
 }
 public int getAnnualCost() {
 return _annualCost;
 }
 public String getId(){
 return _id;
 }
 public String getName() {
 return _name;
 }
 private String _name;
 private int _annualCost;
 private String _id;

 public class Department...
 public Department (String name) {
 _name = name;
 }
 public int getTotalAnnualCost(){
 Enumeration e = getStaff();
 int result = 0;
 while (e.hasMoreElements()) {
 Employee each = (Employee) e.nextElement();
 result += each.getAnnualCost();
 }
 return result;
 }
 public int getHeadCount() {
 return _staff.size();
 }
 public Enumeration getStaff() {
 return _staff.elements();
 }
 public void addStaff(Employee arg) {
 _staff.addElement(arg);
 }
 public String getName() {
 return _name;
 }

 275

 private String _name;
 private Vector _staff = new Vector();

There are a couple of areas of commonality here. First, both employees and departments have
names. Second, they both have annual costs, although the methods for calculating them are
slightly different. I extract a superclass for both of these features. The first step is to create the
new superclass and define the existing superclasses to be subclasses of this superclass:

 abstract class Party {}
 class Employee extends Party...
 class Department extends Party...

Now I begin to pull up features to the superclass. It is usually easier to use Pull Up Field first:

 class Party...
 protected String _name;

Then I can use Pull Up Method on the getters:

 class Party {

 public String getName() {
 return _name;
 }

I like to make the field private. To do this I need to use Pull Up Constructor Body to assign the
name:

 class Party...
 protected Party (String name) {
 _name = name;
 }
 private String _name;

 class Employee...
 public Employee (String name, String id, int annualCost) {
 super (name);
 _id = id;
 _annualCost = annualCost;
 }

 class Department...
 public Department (String name) {

 276

 super (name);
 }

The methods Department.getTotalAnnualCost and Employee.getAnnualCost, do
carry out the same intention, so they should have the same name. I first use Rename Method to
get them to the same name:

 class Department extends Party {
 public int getAnnualCost(){
 Enumeration e = getStaff();
 int result = 0;
 while (e.hasMoreElements()) {
 Employee each = (Employee) e.nextElement();
 result += each.getAnnualCost();
 }
 return result;
 }

Their bodies are still different, so I cannot use Pull Up Method; however, I can declare an
abstract method on the superclass:

 abstract public int getAnnualCost()

Once I've made the obvious changes, I look at the clients of the two classes to see whether I can
change any of them to use the new superclass. One client of these classes is the department
class itself, which holds a collection of employees. The getAnnualCost method uses only the
annual cost method, which is now declared on the party:

 class Department...
 public int getAnnualCost(){
 Enumeration e = getStaff();
 int result = 0;
 while (e.hasMoreElements()) {
 Party each = (Party) e.nextElement();
 result += each.getAnnualCost();
 }
 return result;
 }

This behavior suggests a new possibility. I could treat department and employee as a composite
[Gang of Four]. This would allow me to let a department include another department. This would
be new functionality, so it is not strictly a refactoring. If a composite were wanted, I would obtain it
by changing the name of the staff field to better represent the picture. This change would involve

 277

making a corresponding change in the name addStaff and altering the parameter to be a party.
The final change would be to make the headCount method recursive. I could do this by creating
a headcount method for employee that just returns 1 and using Substitute Algorithm on the
department's headcount to sum the headcounts of the components.

Extract Interface

Several clients use the same subset of a class's interface, or two classes have part of their
interfaces in common.

Extract the subset into an interface.

Motivation

Classes use each other in several ways. Use of a class often means ranging over the whole area
of responsibilities of a class. Another case is use of only a particular subset of a class's
responsibilities by a group of clients. Another is that a class needs to work with any class that can
handle certain requests.

For the second two cases it is often useful to make the subset of responsibilities a thing in its own
right, so that it can be made clear in the use of the system. That way it is easier to see how the
responsibilities divide. If new classes are needed to support the subset, it is easier to see exactly
what fits in the subset.

In many object-oriented languages, this capability is supported by multiple inheritance. You
create a class for each segment of behavior and combine them in an implementation. Java has
single inheritance but allows you to state and implement this kind of requirement using interfaces.
Interfaces have had a big influence on the way programmers design Java programs. Even
Smalltalk programmers think interfaces are a step forward!

 278

There is some similarity between Extract Superclass and Extract Interface. Extract
Interface can only bring out common interfaces, not common code. Using Extract Interface
can lead to smelly duplicate code. You can reduce this problem by using Extract Class to put
the behavior into a component and delegating to it. If there is substantial common behavior
Extract Superclass is simpler, but you do only get to have one superclass.

Interfaces are good to use whenever a class has distinct roles in different situations. Use Extract
Interface for each role. Another useful case is that in which you want to describe the outbound
interface of a class, that is, the operations the class makes on its server. If you want to allow
other kinds of servers in the future, all they need do is implement the interface.

Mechanics

• Create an empty interface.
• Declare the common operations in the interface.
• Declare the relevant class(es) as implementing the interface.
• Adjust client type declarations to use the interface.

Example

A timesheet class generates charges for employees. In order to do this the timesheet needs to
know the employee's rate and whether the employee has a special skill:

 double charge(Employee emp, int days) {
 int base = emp.getRate() * days;
 if (emp.hasSpecialSkill())
 return base * 1.05;
 else return base;
 }

Employee has many other aspects to it than the charge rate and the special skill information, but
those are the only pieces that this application needs. I can highlight the fact that I need only this
subset by defining an interface for it:

 interface Billable {
 public int getRate();
 public boolean hasSpecialSkill();
 }

I then declare the employee as implementing the interface:

 class Employee implements Billable ...

 279

With that done I can change the declaration of charge to show only this part of the employee's
behavior is used:

 double charge(Billable emp, int days) {
 int base = emp.getRate() * days;
 if (emp.hasSpecialSkill())
 return base * 1.05;
 else return base;
 }

At the moment the gain is a modest gain in documentability. Such a gain would not be worthwhile
for one method, but if several classes were to use the billable interface on person, that would be
useful. The big gain appears when I want to bill computers too. To make them billable I know that
all I have to do is implement the billable interface and I can put computers on timesheets.

Collapse Hierarchy

A superclass and subclass are not very different.

Merge them together.

Motivation

If you have been working for a while with a class hierarchy, it can easily become too tangled for
its own good. Refactoring the hierarchy often involves pushing methods and fields up and down
the hierarchy. After you've done this you can well find you have a subclass that isn't adding any
value, so you need to merge the classes together.

Mechanics

• Choose which class is going to be removed: the superclass or the subclasses.

 280

• Use Pull Up Field and Pull Up Method or Push Down Method and Push Down Field
to move all the behavior and data of the removed class to the class with which it is being
merged.

• Compile and test with each move.
• Adjust references to the class that will be removed to use the merged class. This will

affect variable declarations, parameter types, and constructors.
• Remove the empty class.
• Compile and test.

Form Template Method

You have two methods in subclasses that perform similar steps in the same order, yet the steps
are different.

Get the steps into methods with the same signature, so that the original methods become the
same. Then you can pull them up.

 281

Motivation

Inheritance is a powerful tool for eliminating duplicate behavior. Whenever we see two similar
methods in a subclass, we want to bring them together in a superclass. But what if they are not
exactly the same? What do we do then? We still need to eliminate all the duplication we can but
keep the essential differences.

A common case is two methods that seem to carry out broadly similar steps in the same
sequence, but the steps are not the same. In this case we can move the sequence to the
superclass and allow polymorphism to play its role in ensuring the different steps do their things
differently. This kind of method is called a template method [Gang of Four].

Mechanics

• Decompose the methods so that all the extracted methods are either identical or
completely different.

• Use Pull Up Method to pull the identical methods into the superclass.
• For the different methods use Rename Method so the signatures for all the methods at

each step are the same.

?rarr; This makes the original methods the same in that they all issue the
same set of method calls, but the subclasses handle the calls differently.

• Compile and test after each signature change.
• Use Pull Up Method on one of the original methods. Define the signatures of the

different methods as abstract methods on the superclass.
• Compile and test.
• Remove the other methods, compile, and test after each removal.

Example

I finish where I left off in Chapter 1. I had a customer class with two methods for printing
statements. The statement method prints statements in ASCII:

 public String statement() {
 Enumeration rentals = _rentals.elements();
 String result = "Rental Record for " + getName() + "\n";
 while (rentals.hasMoreElements()) {
 Rental each = (Rental) rentals.nextElement();
 //show figures for this rental
 result += "\t" + each.getMovie().getTitle()+ "\t" +
 String.valueOf(each.getCharge()) + "\n";
 }
 //add footer lines
 result += "Amount owed is " + String.valueOf(getTotalCharge())
+ "\n";
 result += "You earned " +
String.valueOf(getTotalFrequentRenterPoints()) +
 " frequent renter points";
 return result;
 }

 282

while the htmlStatement does them in HTML:

 public String htmlStatement() {
 Enumeration rentals = _rentals.elements();
 String result = "<H1>Rentals for " + getName() +
"</H1><P>\n";
 while (rentals.hasMoreElements()) {
 Rental each = (Rental) rentals.nextElement();
 //show figures for each rental
 result += each.getMovie().getTitle()+ ": " +
 String.valueOf(each.getCharge()) + "
\n";
 }
 //add footer lines
 result += "<P>You owe " + String.valueOf(getTotalCharge())
+ "<P>\n";
 result += "On this rental you earned " +
 String.valueOf(getTotalFrequentRenterPoints()) +
 " frequent renter points<P>";
 return result;
 }

Before I can use Form Template Method I need to arrange things so that the two methods are
subclasses of some common superclass. I do this by using a method object [Beck] to create a
separate strategy hierarchy for printing the statements (Figure 11.1).

Figure 11.1. Using a strategy for statements

 class Statement {}
 class TextStatement extends Statement {}
 class HtmlStatement extends Statement {}

 283

Now I use Move Method to move the two statement methods over to the subclasses:

 class Customer...
public String statement() {
 return new TextStatement().value(this);
}
public String htmlStatement() {
 return new HtmlStatement().value(this);
}

 class TextStatement {
 public String value(Customer aCustomer) {
 Enumeration rentals = aCustomer.getRentals();
 String result = "Rental Record for " + aCustomer.getName() +
"\n";
 while (rentals.hasMoreElements()) {
 Rental each = (Rental) rentals.nextElement();

 //show figures for this rental
 result += "\t" + each.getMovie().getTitle()+ "\t" +
 String.valueOf(each.getCharge()) + "\n";
 }

 //add footer lines
 result += "Amount owed is " +
String.valueOf(aCustomer.getTotalCharge()) + "\n";
 result += "You earned " +
String.valueOf(aCustomer.getTotalFrequentRenterPoints()) +
 " frequent renter points";
 return result;
 }
 class HtmlStatement {
 public String value(Customer aCustomer) {
 Enumeration rentals = aCustomer.getRentals();
 String result = "<H1>Rentals for " + aCustomer.getName() +
"</H1><P>\n";
 while (rentals.hasMoreElements()) {
 Rental each = (Rental) rentals.nextElement();
 //show figures for each rental
 result += each.getMovie().getTitle()+ ": " +
 String.valueOf(each.getCharge()) + "
\n";
 }
 //add footer lines
 result += "<P>You owe " +
String.valueOf(aCustomer.getTotalCharge()) +
 "<P>\n";
 result += "On this rental you earned "

String.valueOf(aCustomer.getTotalFrequentRenterPoints()) +
 " frequent renter points<P>";
 return result;
 }

 284

As I moved them I renamed the statement methods to better fit the strategy. I gave them the
same name because the difference between the two now lies in the class rather than the method.
(For those trying this from the example, I also had to add a getRentals method to customer
and relax the visibility of getTotalCharge and getTotalFrequentRenterPoints.

With two similar methods on subclasses, I can start to use Form Template Method. The key to
this refactoring is to separate the varying code from the similar code by using Extract Method to
extract the pieces that are different between the two methods. Each time I extract I create
methods with different bodies but the same signature.

The first example is the printing of the header. Both methods use the customer to obtain
information, but the resulting string is formatted differently. I can extract the formatting of this
string into separate methods with the same signature:

 class TextStatement...
 String headerString(Customer aCustomer) {
 return "Rental Record for " + aCustomer.getName() + "\n";
 }
 public String value(Customer aCustomer) {
 Enumeration rentals = aCustomer.getRentals();
 String result =headerString(aCustomer);
 while (rentals.hasMoreElements()) {
 Rental each = (Rental) rentals.nextElement();

 //show figures for this rental
 result += "\t" + each.getMovie().getTitle()+ "\t" +
 String.valueOf(each.getCharge()) + "\n";
 }

 //add footer lines
 result += "Amount owed is " +
String.valueOf(aCustomer.getTotalCharge()) + "\n";
 result += "You earned " +
String.valueOf(aCustomer.getTotalFrequentRenterPoints()) +
 " frequent renter points";
 return result;
 }

 class HtmlStatement...
 String headerString(Customer aCustomer) {
 return "<H1>Rentals for " + aCustomer.getName() +
"</H1><P>\n";
 }
 public String value(Customer aCustomer) {
 Enumeration rentals = aCustomer.getRentals();
 String result = headerString(aCustomer);
 while (rentals.hasMoreElements()) {
 Rental each = (Rental) rentals.nextElement();
 //show figures for each rental
 result += each.getMovie().getTitle()+ ": " +
 String.valueOf(each.getCharge()) + "
\n";
 }

 285

 //add footer lines
 result += "<P>You owe " +
String.valueOf(aCustomer.getTotalCharge()) + "</ EM><P>\n";
 result += "On this rental you earned " +
 String.valueOf(aCustomer.getTotalFrequentRenterPoints()) +
 " frequent renter points<P>";
 return result;
 }

I compile and test and then continue with the other elements. I did the steps one at a time. Here
is the result:

 class TextStatement …
 public String value(Customer aCustomer) {
 Enumeration rentals = aCustomer.getRentals();
 String result = headerString(aCustomer);
 while (rentals.hasMoreElements()) {
 Rental each = (Rental) rentals.nextElement();
 result += eachRentalString(each);
 }
 result += footerString(aCustomer);
 return result;
 }
 String eachRentalString (Rental aRental) {
 return "\t" + aRental.getMovie().getTitle()+ "\t" +
 String.valueOf(aRental.getCharge()) + "\n";
 }
 String footerString (Customer aCustomer) {
 return "Amount owed is " +
String.valueOf(aCustomer.getTotalCharge()) + "\n" +
 "You earned " +
String.valueOf(aCustomer.getTotalFrequentRenterPoints()) +
 " frequent renter points";
 }
 class HtmlStatement…
 public String value(Customer aCustomer) {
 Enumeration rentals = aCustomer.getRentals();
 String result = headerString(aCustomer);
 while (rentals.hasMoreElements()) {
 Rental each = (Rental) rentals.nextElement();
 result += eachRentalString(each);
 }
 result += footerString(aCustomer);
 return result;
 }
 String eachRentalString (Rental aRental) {
 return aRental.getMovie().getTitle()+ ": " +
 String.valueOf(aRental.getCharge()) + "
\n";
 }
 String footerString (Customer aCustomer) {
 return "<P>You owe " +
String.valueOf(aCustomer.getTotalCharge()) +
 "<P>

 286

" + "On this rental you earned " +
 String.valueOf(aCustomer.getTotalFrequentRenterPoints()) +
 " frequent renter points<P>";
 }

Once these changes have been made, the two value methods look remarkably similar. So I use
Pull Up Method on one of them, picking the text version at random. When I pull up, I need to
declare the subclass methods as abstract:

 class Statement...
 public String value(Customer aCustomer) {
 Enumeration rentals = aCustomer.getRentals();
 String result = headerString(aCustomer);
 while (rentals.hasMoreElements()) {
 Rental each = (Rental) rentals.nextElement();
 result += eachRentalString(each);
 }
 result += footerString(aCustomer);
 return result;
 }
 abstract String headerString(Customer aCustomer);
 abstract String eachRentalString (Rental aRental);
 abstract String footerString (Customer aCustomer);

I remove the value method from text statement, compile, and test. When that works I remove the
value method from the HTML statement, compile, and test again. The result is shown in Figure
11.2

Figure 11.2. Classes after forming the template method

 287

After this refactoring, it is easy to add new kinds of statements. All you have to do is create a
subclass of statement that overrides the three abstract methods.

Replace Inheritance with Delegation

A subclass uses only part of a superclasses interface or does not want to inherit data.

Create a field for the superclass, adjust methods to delegate to the superclass, and remove the
subclassing.

Motivation

Inheritance is a wonderful thing, but sometimes it isn't what you want. Often you start inheriting
from a class but then find that many of the superclass operations aren't really true of the
subclass. In this case you have an interface that's not a true reflection of what the class does. Or

 288

you may find that you are inheriting a whole load of data that is not appropriate for the subclass.
Or you may find that there are protected superclass methods that don't make much sense with
the subclass.

You can live with the situation and use convention to say that although it is a subclass, it's using
only part of the superclass function. But that results in code that says one thing when your
intention is something else—a confusion you should remove.

By using delegation instead, you make it clear that you are making only partial use of the
delegated class. You control which aspects of the interface to take and which to ignore. The cost
is extra delegating methods that are boring to write but are too simple to go wrong.

Mechanics

• Create a field in the subclass that refers to an instance of the superclass. Initialize it to
this.

• Change each method defined in the subclass to use the delegate field. Compile and test
after changing each method.

?rarr; You won't be able to replace any methods that invoke a method on
super that is defined on the subclass, or they may get into an infinite
recurse. These methods can be replaced only after you have broken the
inheritance.

• Remove the subclass declaration and replace the delegate assignment with an
assignment to a new object.

• For each superclass method used by a client, add a simple delegating method.
• Compile and test.

Example

One of the classic examples of inappropriate inheritance is making a stack a subclass of vector.
Java 1.1 does this in its utilities (naughty boys!), but in this case I use a simplified form of stack:

 class MyStack extends Vector {

 public void push(Object element) {
 insertElementAt(element,0);
 }

 public Object pop() {
 Object result = firstElement();
 removeElementAt(0);
 return result;
 }
 }

Looking at the users of the class, I realize that clients do only four things with stack: push, pop,
size, and isEmpty. The latter two are inherited from Vector.

 289

I begin the delegation by creating a field for the delegated vector. I link this field to this so that I
can mix delegation and inheritance while I carry out the refactoring:

 private Vector _vector = this;

Now I start replacing methods to get them to use the delegation. I begin with push:

 public void push(Object element) {
 _vector.insertElementAt(element,0);
 }

I can compile and test here, and everything will still work. Now pop:

 public Object pop() {
 Object result = _vector.firstElement();
 _vector.removeElementAt(0);
 return result;
 }

Once I've completed these subclass methods, I need to break the link to the superclass:

 class MyStack extends Vector

 private Vector _vector = new Vector();

I then add simple delegating methods for superclass methods used by clients:

 public int size() {
 return _vector.size();
 }
 public boolean isEmpty() {
 return _vector.isEmpty();
 }

Now I can compile and test. If I forgot to add a delegating method, the compilation will tell me.

Replace Delegation with Inheritance

 290

You're using delegation and are often writing many simple delegations for the entire interface.

Make the delegating class a subclass of the delegate.

Motivation

This is the flip side of Replace Delegation with Inheritance. If you find yourself using all the
methods of the delegate and are sick of writing all those simple delegating methods, you can
switch back to inheritance pretty easily.

There are a couple of caveats to bear in mind. If you aren't using all the methods of the class to
which you are delegating, you shouldn't use Replace Delegation with Inheritance, because a
subclass should always follow the interface of the superclass. If the delegating methods are
tiresome, you have other options. You can let the clients call the delegate themselves with
Remove Middle Man. You can use Extract Superclass to separate the common interface and
then inherit from the new class. You can use Extract Interface in a similar way.

Another situation to beware of is that in which the delegate is shared by more than one object and
is mutable. In this case you can't replace the delegate with inheritance because you'll no longer
share the data. Data sharing is a responsibility that cannot be transferred back to inheritance.
When the object is immutable, data sharing is not a problem, because you can just copy and
nobody can tell.

Mechanics

• Make the delegating object a subclass of the delegate.
• Compile.

?rarr; You may get some method clashes at this point; methods may
have the same name but vary in return type, exceptions, or visibility. Use
Rename Method to fix these.

• Set the delegate field to be the object itself.
• Remove the simple delegation methods.
• Compile and test.
• Replace all other delegations with calls to the object itself.
• Remove the delegate field.

Example

 291

A simple employee delegates to a simple person:

 class Employee {
 Person _person = new Person();

 public String getName() {
 return _person.getName();
 }
 public void setName(String arg) {
 _person.setName(arg);
 }
 public String toString () {
 return "Emp: " + _person.getLastName();
 }
 }

 class Person {
 String _name;

 public String getName() {
 return _name;
 }
 public void setName(String arg) {
 _name = arg;
 }
 public String getLastName() {
 return _name.substring(_name.lastIndexOf(' ')+1);
 }
 }

The first step is just to declare the subclass:

 class Employee extends Person

Compiling at this point alerts me to any method clashes. These occur if methods with the name
have different return types or throw different exceptions. Any such problems need to be fixed with
Rename Method. This simple example is free of such encumbrances.

The next step is to make the delegate field refer to the object itself. I must remove all simple
delegation methods such as getName and setName. If I leave any in, I will get a stack overflow
error caused by infinite recursion. In this case this means removing getName and setName from
Employee.

Once I've got the class working, I can change the methods that use the delegate methods. I
switch them to use calls directly:

 public String toString () {
 return "Emp: " + getLastName();

 292

 }

Once I've got rid of all methods that use delegate methods, I can get rid of the _person field.

 293

Chapter 12. Big Refactorings
by Kent Beck and Martin Fowler

The preceding chapters present the individual "moves" of refactoring. What is missing is a sense
of the whole "game." You are refactoring to some purpose, not just to avoid making progress (at
least usually you are refactoring to some purpose). What does the whole game look like?

The Nature of the Game

One thing you'll surely notice in what follows is that the steps aren't nearly as carefully spelled out
as in the previous refactorings. That's because the situations change so much in the big
refactorings. We can't tell you exactly what to do, because we don't know exactly what you'll be
seeing when you do it. When you are adding a parameter to a method, the mechanics are clear
because the scope is clear. When you are untangling an inheritance mess, every mess is
different.

Another thing to realize about these refactorings is that they take time. All the refactorings in
Chapters 6 through 11 can be accomplished in a few minutes or an hour at most. We have
worked at some of the big refactorings for months or years on running systems. When you have a
system and it's in production and you need to add functionality, you'll have a hard time
persuading managers that they should stop progress for a couple of months while you tidy up.
Instead, you have to make like Hansel and Gretel and nibble around the edges, a little today, a
little more tomorrow.

As you do this, you should be guided by your need to do something else. Do the refactorings as
you need to add function and fix bugs. You don't have to complete the refactoring when you
begin. Do as much as you need to achieve your real task. You can always come back tomorrow.

This philosopy is reflected in the examples. To show you each of the refactorings in this book
would easily take a hundred pages each. We know this, because Martin tried it. So we've
compressed the examples into a few sketchy diagrams.

Because they can take such a long time, the big refactorings also don't have the instant
gratification of the refactorings in the other chapters. You will have to have a little faith that you
are making the world a little safer for your program each day.

The big refactorings require a degree of agreement among the entire programming team that isn't
needed with the smaller refactorings. The big refactorings set the direction for many, many
changes. The whole team has to recognize that one of the big refactorings is "in play" and make
their moves accordingly. You don't want to get in the situation of the two guys whose car stops
near the top of a hill. They get out to push, one on each end of the car. After a fruitless half-hour
the guy in front says, "I never thought pushing a car downhill would be so hard." To which the
other guy replies, "What do you mean 'downhill'?"

Why Big Refactorings Are Important

If the big refactorings lack so many of the qualities that make the little refactorings valuable
(predictability, visible progress, instant satisfaction), why are they important enough that we
wanted to put them in this book? Because without them you run the risk of investing time and
effort into learning to refactor and then actually refactoring and not getting the benefit. That would
reflect badly on us. We can't stand that.

 294

Seriously, you refactor not because it is fun but because there are things you expect to be able to
do with your programs if you refactor that you just can't do if you don't refactor.

Accumulation of half-understood design decisions eventually chokes a program as a water weed
chokes a canal. By refactoring you can ensure that your full understanding of how the program
should be designed is always reflected in the program. As a water weed quickly spreads its
tendrils, partially understood design decisions quickly spread their effects throughout your
program. No one or two or even ten individual actions will be enough to eradicate the problem.

Four Big Refactorings

In this chapter we describe four examples of big refactorings. These are examples of the kind of
thing, rather than any attempt to cover the whole ground. Most of the research and practice on
refactoring so far has concentrated on the smaller refactorings. Talking about big refactorings in
this way is very new and has come primarily out of Kent's experience, which is greater than
anyone's with doing this on a large scale.

Tease Apart Inheritance deals with a tangled inheritance hierarchy that seems to combine
several variations in a confusing way. Convert Procedural Design to Objects helps solve the
classic problem of what to do with procedural code. A lot of programmers use object-oriented
languages without really knowing about objects, so this is a refactoring you often have to do. If
you see code written with the classic two-tier approach to user interfaces and databases, you'll
find you need Separate Domain from Presentation when you want to isolate business logic
from user interface code. Experienced object-oriented developers have learned that this
separation is vital to a long-lived and prosperous system. Extract Hierarchy simplifies an
overly-complex class by turning it into a group of subclasses.

Tease Apart Inheritance

You have an inheritance hierarchy that is doing two jobs at once.

Create two hierarchies and use delegation to invoke one from the other.

 295

Motivation

Inheritance is great. It helps you write dramatically "compressed" code in subclasses. A single
method can take on importance out of proportion with its size because of where it sits in the
hierarchy.

Not surprisingly for such a powerful mechanism, it is easy to misuse inheritance. And the misuse
can easily creep up on you. One day you are adding one little subclass to do a little job. The next
day you are adding other subclasses to do the same job in other parts of the hierarchy. A week
(or month or year) later you are swimming in spaghetti. Without a paddle.

Tangled inheritance is a problem because it leads to code duplication, the bane of the
programmer's existence. It makes changes more difficult, because the strategies for solving a
certain kind of problem are spread around. Finally, the resulting code is hard to understand. You
can't just say, "This hierarchy here, it computes results." You have to say, "Well, it computes
results, and there are subclasses for the tabular versions, and each of those has subclasses for
each of the countries."

 296

You can easily spot a single inheritance hierarchy that is doing two jobs. If every class at a certain
level in the hierarchy has subclasses that begin with the same adjective, you probably are doing
two jobs with one hierarchy.

Mechanics

• Identify the different jobs being done by the hierarchy. Create a two-dimensional grid (or
three- or four-dimensional, if your hierarchy is a real mess and you have some really cool
graph paper) and label the axes with the different jobs. We assume two or more
dimensions require repeated applications of this refactoring (one at a time, of course).

• Decide which job is more important and is to be retained in the current hierarchy and
which is to be moved to another hierarchy.

• Use Extract Class (Chapter 6) at the common superclass to create an object for the
subsidiary job and add an instance variable to hold this object.

• Create subclasses of the extracted object for each of the subclasses in the original
hierarchy. Initialize the instance variable created in the previous step to an instance of
this subclass.

• Use Move Method (Chapter 7) in each of the subclasses to move the behavior in the
subclass to the extracted object.

• When the subclass has no more code, eliminate it.
• Continue until all the subclasses are gone. Look at the new hierarchy for possible further

refactorings such as Pull Up Method or Pull Up Field (Chapter 11).

Examples

Let's take the example of a tangled hierarchy (Figure 12.1).

Figure 12.1. A tangled hierarchy

 297

This hierarchy got the way it did because Deal was originally being used only to display a single
deal. Then someone got the bright idea of displaying a table of deals. A little experiment with the
quick subclass Active Deal shows you can indeed display a table with little work. Oh, you want
tables of passive deals, too? No problem, another little subclass and away we go.

Two months later the table code has become complicated but there is no simple place to put it,
time is pressing, the usual story. Now adding a new kind of deal is hard, because the deal logic is
tangled with the presentation logic.

Following the recipe, the first step is to identify the jobs being done by the hierarchy. One job is
capturing variation according to type of deal. Another job is capturing variation according to
presentation style. So here's our grid:

Deal Active Deal Passive Deal
Tabular Deal

 298

The next step tells us to decide which job is more important. The dealness of the object is far
more important than the presentation style, so we leave Deal alone and extract the presentation
style to its own hierarchy. Practically speaking, we should probably leave alone the job that has
the most code associated with it, so there is less code to move.

The next step tells us to use Extract Class to create a presentation style (Figure 12.2).

Figure 12.2. Adding a presentation style

The next step tells us to create subclasses of the extracted class or for each of the subclasses in
the original hierarchy (Figure 12.3) and to initialize the instance variable to the appropriate
subclass:

Figure 12.3. Adding subclasses of presentation style

 299

 ActiveDeal constructor
 ...presentation= new SingleActivePresentationStyle();...

You may well be saying, "Don't we have more classes now than we did before? How is this
supposed to make my life better?" It is true that sometimes you have to take a step backward
before you can take two steps forward. In cases such as this tangled hierarchy, the hierarchy of
the extracted object can almost always be dramatically simplified once the object has been
extracted. However, it is safer to take the refactoring one step at a time than to jump ten steps
ahead to the already simplified design.

Now we use Move Method and Move Field to move the presentation-related methods and
variables of the deal subclasses to the presentation style subclasses. We don't have a good way
of simulating this with the example as drawn, so we ask you to imagine it happening. When we're
done, though, there should be no code left in the classes Tabular Active Deal and Tabular
Passive Deal, so we remove them (Figure 12.4).

Figure 12.4. The tabular subclasses of Deal have been removed

 300

Now that we've separated the two jobs, we can work to simplify each separately. When we've
done this refactoring, we've always been able to dramatically simplify the extracted class and
often further simplify the original object. The next move will get rid of the active-passive distinction
in the presentation style in Figure 12.6.

Figure 12.6. Presentation differences can be handled with a couple of variables

Even the distinction between single and tabular can be captured by the values of a few variables.
You don't need subclasses at all (Figure 12.6).

Figure 12.5. The hierarchies are now separated

Convert Procedural Design to Objects

You have code written in a procedural style.

Turn the data records into objects, break up the behavior, and move the behavior to the objects.

 301

Motivation

A client of ours once started a project with two absolute principles the developers had to follow:
(1) you must use Java, (2) you must not use objects.

We may laugh, but although Java is an object-oriented language, there is more to using objects
than calling a constructor. Using objects well takes time to learn. Often you're faced with the
problem of procedure-like code that has to be more object oriented. The typical situation is long
procedural methods on a class with little data and dumb data objects with nothing more than
accessors. If you are converting from a purely procedural program, you may not even have this,
but it's a good place to start.

We are not saying that you should never have objects with behavior and little or no data. We
often use small strategy objects when we need to vary behavior. However, such procedural
objects usually are small and are used when we have a particular need for flexibility.

Mechanics

• Take each record type and turn it into a dumb data object with accessors.

?rarr; If you have a relational database, take each table and turn it into a
dumb data object.

 302

• Take all the procedural code and put it into a single class.

?rarr; You can either make the class a singleton (for ease of
reinitialization) or make the methods static.

• Take each long procedure and apply Extract Method and the related refactorings to
break it down. As you break down the procedures, use Move Method to move each one
to the appropriate dumb data class.

• Continue until you've removed all the behavior away from the original class. If the original
class was a purely procedural class, it's very gratifying to delete it.

Example

The example in Chapter 1 is a good example of the need for Convert Procedural Design to
Objects, particularly the first stage, in which the statement method is broken up and distributed.
When you're finished, you can work on now-intelligent data objects with other refactorings.

Separate Domain from Presentation

You have GUI classes that contain domain logic.

Separate the domain logic into separate domain classes

Motivation

Whenever you hear people talking about objects, you hear about model-view-controller (MVC).
This idea underpinned the relationship between the graphical user interface (GUI) and domain
objects in Smalltalk-80.

 303

The gold at the heart of MVC is the separation between the user interface code (the view, these
days often called the presentation) and the domain logic (the model). The presentation classes
contain only the logic needed to deal with the user interface. Domain objects contain no visual
code but all the business logic. This separates two complicated parts of the program into pieces
that are easier to modify. It also allows multiple presentations of the same business logic. Those
experienced in working with objects use this separation instinctively, and it has proved its worth.

But this is not how most people who work with GUIs do their design. Most environments with
client-server GUIs use a logical two-tier design: the data sits in the database and the logic sits in
the presentation classes. The environment often forces you toward this style of design, making it
hard for you to put the logic anywhere else.

Java is a proper object-oriented environment, so you can create nonvisual domain objects that
contain business logic. However, you'll often come across code written in the two-tier style.

Mechanics

• Create a domain class for each window.
• If you have a grid, create a class to represent the rows on the grid. Use a collection on

the domain class for the window to hold the row domain objects.
• Examine the data on the window. If it is used only for user interface purposes, leave it on

the window. If it is used within the domain logic but is not actually displayed on the
window, use Move Method to move it to the domain object. If it is used by both the user
interface and the domain logic, use Duplicate Observed Data so that it is in both
places and kept in sync.

• Examine the logic in the presentation class. Use Extract Method to separate logic about
the presentation from domain logic. As you isolate the domain logic, use Move Method
to move it to the domain object.

• When you are finished, you will have presentation classes that handle the GUI and
domain objects that contain all the business logic. The domain objects will not be well
factored, but further refactorings will deal with that.

Example

A program that allows users to enter and price orders. The GUI looks like Figure 12.7. The
presentation class interacts with a relational database laid out like Figure 12.8.

Figure 12.7. The user interface for a starting program

 304

Figure 12.8. The database for the order program

All the behavior, both for the GUI and for pricing the orders, is in a single Order Window class.

 305

We begin by creating a suitable order class. We link this to the order window as in Figure 12.9.
Because the window contains a grid to display the order lines, we also create an order line class
for the rows of the grid.

Figure 12.9. Order Window and Order

We work from the window rather than the database. Basing an initial domain model on the
database is a reasonable strategy, but our biggest risk is mixing presentation and domain logic.
So we separate these on the basis of the windows and refactor the rest later.

With this kind of program it's useful to look at the structured query language (SQL) statements
embedded in the window. Data pulled back from SQL statements is domain data.

The easiest domain data to deal with is that which isn't directly displayed in the GUI. In the
example the database has a codes field in the customers table. The code isn't directly displayed
on the GUI; it is converted to a more human-readable phrase. As such the field is a simple class,
such as string, rather than an AWT component. We can safely use Move Field to move that field
to the domain class.

We aren't so lucky with the other fields. They contain AWT components that are displayed on the
window and used in the domain objects. For these we need to use Duplicate Observed Data.
This puts a domain field on the order class with a corresponding AWT field on the order window.

This is a slow process, but by the end we can get all the domain logic fields into the domain class.
A good way to drive this process is to try to move all the SQL calls to the domain class. You can
do this to move the database logic and the domain data to the domain class together. You can
get a nice sense of completion by removing the import of java.sql from the order window. This
means you do a lot of Extract Method and Move Method.

The resulting classes, as in Figure 12.10, are a long way from being well factored. But this
model is enough to separate the domain logic. As you do this refactoring you have to pay
attention to where your risk is. If the intermingling of presentation and domain logic is the biggest
risk, get them completely separated before you do much else. If other things are more important,
such as pricing strategies for the products, get the logic for the important part out of the window
and refactor around that logic to create a suitable structure for the area of high risk. Chances are

 306

that most of the domain logic will have to be moved out of the order window. If you can refactor
and leave some logic in the window, do so to address your biggest risk first.

Figure 12.10. Distributing the data to the domain classes

Extract Hierarchy

You have a class that is doing too much work, at least in part through many conditional
statements.

Create a hierarchy of classes in which each subclass represents a special case.

 307

Motivation

In evolutionary design, it is common to think of a class as implementing one idea and come to
realize later that it is really implementing two or three or ten. You create the class simply at first. A
few days or weeks later you see that if only you add a flag and a couple of tests, you can use it in
a new case. A month later you have another such opportunity. A year later you have a real mess:
flags and conditional expressions all over the place.

When you encounter a Swiss-Army-knife class that has grown to open cans, cut down small
trees, shine a laser point at reluctant presentation bullet items, and, oh yes, I suppose cut things,
you need a strategy for teasing apart the various strands. The strategy here works only if your
conditional logic remains static during the life of the object. If not, you may have to use Extract
Class before you can begin separating the cases from each other.

Don't be discouraged if Extract Hierarchy is a refactoring that you can't finish in a day. It can take
weeks or months to untangle a design that has become snarled. Do the steps that are easy and
obvious, then take a break. Do some visibly productive work for a few days. When you've learned
something, come back and do a few more easy and obvious steps.

Mechanics

 308

We've put in two sets of mechanics. In the first case you aren't sure what the variations should
be. In this case you want to take one step at a time, as follows:

• Identify a variation.

?rarr; If the variations can change during the life of the object, use
Extract Class to pull that aspect into a separate class.

• Create a subclass for that special case and use Replace Constructor with Factory
Method on the original. Alter the factory method to return an instance of the subclass
where appropriate.

• One at a time, copy methods that contain conditional logic to the subclass, then simplify
the methods given what you can say for certain about instances of the subclass that you
can't say about instances of the superclass.

?rarr; Use Extract Method in the superclass if necessary to isolate the
conditional parts of methods from the unconditional parts.

• Continue isolating special cases until you can declare the superclass abstract.
• Delete the bodies of methods in the superclass that are overridden in all subclasses and

make the superclass declarations abstract.

When the variations are very clear from the outset, you can use a different strategy, as follows:

• Create a subclass for each variation.
• Use Replace Constructor with Factory Method to return the appropriate subclass for

each variation.

?rarr; If the variations are marked with a type code, use Replace Type
Code with Subclasses. If the variations can change within the life of
the class, use Replace Type Code with State/Strategy.

• Take methods that have conditional logic and apply Replace Conditional with
Polymorphism. If the whole method does not vary, isolate the varying part with Extract
Method.

Example

The example is a nonobvious case. You can follow the refactorings for Replace Type Code
with Subclasses, Replace Type Code with State/Strategy, and Replace Conditional with
Polymorphism to see how the obvious case works.

We start with a program that calculates an electricity bill. The initial objects look like Figure
12.11.

Figure 12.11. Customer and billing scheme

 309

The billing scheme contains a lot of conditional logic for billing in different circumstances.
Different charges are used for summer and winter, and different billing plans are used for
residential, small business, customers receiving Social Security (lifeline), and those with a
disability. The resulting complex logic makes the Billing Scheme class rather complex.

Our first step is to pick a variant aspect that keeps cropping up in the conditional logic. This might
be various conditions that depend on whether the customer is on a disability plan. This can be a
flag in Customer, Billing Scheme, or somewhere else.

We create a subclass for the variation. To use the subclass we need to make sure it is created
and used. So we look at the constructor for Billing Scheme. First we use Replace Constructor
with Factory Method. Then we look at the factory method and see how the logic depends on
disability. We then create a clause that returns a disability billing scheme when appropriate.

We look at the various methods on Billing Scheme and look for those that contain conditional
logic that varies on the basis of disability. CreateBill is one of those methods, so we copy it to the
subclass (Figure 12.12).

Figure 12.12. Adding a subclass for disability

Now we examine the subclass copy of createBill and simplify it on the basis that we know it is
now within the context of a disability scheme. So code that says

 if (disabilityScheme()) doSomething

 310

can be replaced with

 doSomething

If disabilities are exclusive of the business scheme we can eliminate any code that is conditional
on the business scheme.

As we do this, we like to ensure that varying code is separated from code that stays the same.
We use Extract Method and Decompose Conditional to do that. We continue doing this for
various methods of Billing Scheme until we feel we've dealt with most of the disability
conditionals. Then we pick another variation, say lifeline, and do the same for that.

As we do the second variation, however, we look at how the variations for lifeline compare with
those for disability. We want to identify cases in which we can have methods that have the same
intention but carry it out differently in the two separate cases. We might have variation in the
calculation of taxes for the two cases. We want to ensure that we have two methods on the
subclasses that have the same signature. This may mean altering disability so we can line up the
subclasses. Usually we find that as we do more variations, the pattern of similar and varying
methods tends to stabilize, making additional variations easier.

 311

Chapter 13. Refactoring, Reuse, and Reality
by William Opdyke

Martin Fowler and I first met in Vancouver during OOPSLA 92. A few months earlier, I had
completed my doctoral dissertation on refactoring object-oriented frameworks[1] at the University
of Illinois. While I was considering continuing my research into refactoring, I was also exploring
other options, such as medical informatics. Martin was working on a medical informatics
application at the time, which is what brought us together to chat over breakfast in Vancouver. As
Martin relates earlier in this book, we spent a few minutes discussing my refactoring research. He
had limited interest in the topic at the time, but as you are now aware, his interest in the topic has
grown.

At first glance, it might appear that refactoring began in academic research labs. In reality, it
began in the software development trenches, where object-oriented programmers, then using
Smalltalk, encountered situations in which techniques were needed to better support the process
of framework development or, more generally, to support the process of change. This spawned
research that has matured to the point at which we feel it is "ready for prime time"—the point at
which a broader set of software professionals can experience the benefits of refactoring.

When Martin offered me the opportunity to write a chapter in this book, several ideas came to
mind. I could describe the early refactoring research, the era in which Ralph Johnson and I came
together from very different technical backgrounds to focus on support for change in object-
oriented software. I could discuss how to provide automated support for refactoring, an area of
my research quite different from the focus of this book. I could share some of the lessons I have
learned about how refactoring relates to the day-to-day concerns of software professionals,
especially those who work on large projects in industry.

Many of the insights I gained during my refactoring research have been useful in a wide range of
areas—in assessing software technologies and formulating product evolution strategies, in
developing prototypes and products in the telecommunication industry, and in training and
consulting with product development groups.

I decided to focus briefly on many of these issues. As the title of this chapter implies, many of the
insights regarding refactoring apply more generally to issues such as software reuse, product
evolution, and platform selection. Although parts of this chapter briefly touch on some of the more
interesting theoretical aspects of refactoring, the primary focus is on practical, real-world
concerns and how they can be addressed.

If you want to explore refactoring further, see Resources and References for Refactoring later in
this chapter.

A Reality Check

I worked at Bell Labs for several years before I decided to pursue my doctoral studies. Most of
that time was spent working in a part of the company that developed electronic switching
systems. Such products have very tight constraints with respect to both reliability and the speed
with which they handle phone calls. Thousands of staff-years have been invested in developing
and evolving such systems. Product lifetimes have spanned decades. Most of the cost of
developing these systems comes not in developing the initial release but in changing and
adapting the systems over time. Ways to make such changes easier and less costly would result
in a big win for the company.

 312

Because Bell Labs was funding my doctoral studies, I wanted a field of research that was not only
technically interesting but also related to a practical business need. In the late 1980s, object-
oriented technology was just beginning to emerge from the research labs. When Ralph Johnson
proposed a research topic that focused both on object-oriented technology and on supporting the
process of change and software evolution, I grabbed it.

I've been told that when people finish their doctoral studies, they rarely are neutral about their
topic. Some are sick of the topic and quickly move on to something else. Others remain
enthusiastic about the topic. I was in the latter camp.

When I returned to Bell Labs after receiving my degree, a strange thing happened. The people
around me were not nearly as excited about refactoring as I was.

I can vividly recall presenting a talk in early 1993 at a technology exchange forum for staff at
AT&T Bell Labs and NCR (we were all part of the same company at the time). I was given 45
minutes to speak on refactoring. At first the talk seemed to go well. My enthusiasm for the topic
came across. But at the end of the talk, there were very few questions. One of the attendees
came up afterward to learn more; he was beginning his graduate work and was fishing around for
a research topic. I had hoped to see some members of development projects show eagerness in
applying refactoring to their jobs. If they were eager, they didn't express it at the time.

People just didn't seem to get it.

Ralph Johnson taught me an important lesson about research: if someone (a reviewer of a paper,
an attendee at a talk) comments, "I don't understand" or just doesn't get it, it's our fault. It is our
responsibility to work hard to develop and communicate our ideas.

Over the next couple years, I had numerous opportunities to talk about refactoring at AT&T Bell
Labs internal forums and at outside conferences and workshops. As I talked more with
developers in the trenches, I started to understand why my earlier messages didn't come across
clearly. The disconnect was caused partly by the newness of object-oriented technology. Those
who had worked with it had rarely progressed beyond the initial release and hence had not yet
faced the tough evolution problems refactoring can help solve. This was the typical researcher's
dilemma—the state of the art was beyond the state of common practice. However, there was
another, troubling cause for the disconnect. There were several commonsense reasons
developers, even if they bought into the benefits of refactoring, were reluctant to refactor their
programs. These concerns had to be addressed before refactoring could be embraced by the
development community.

Why Are Developers Reluctant to Refactor Their Programs?

Suppose you are a software developer. If your project is a fresh start (with no backward
compatibility concerns) and if you understand the problem your system is intended to solve and if
your funder is willing to pay until you are satisfied with the results, consider yourself very
fortunate. Although such a scenario may be ideal for applying object-oriented techniques, for
most of us such a scenario is only a dream.

More often you are asked to extend an existing piece of software. You have a less-than-complete
understanding of what you are doing. You are under schedule pressure to produce. What can you
do?

 313

You can rewrite the program. You can leverage your design experience and correct the ills of the
past and be creative and have fun. Who will foot the bill? How can you be sure that the new
system does everything the old system used to do?

You can copy and modify parts of the existing system to extend its capabilities. This may seem
expedient and may even be viewed as a way to demonstrate reuse; you don't even have to
understand what you are reusing. However, over time, errors propagate themselves, programs
become bloated, program design becomes corrupted, and the incremental cost of change
escalates.

Refactoring is a middle ground between the two extremes. It is a way to restructure software to
make design insights more explicit, to develop frameworks and extract reusable components, to
clarify the software architecture, and to prepare to make additions easier. Refactoring can help
you leverage your past investment, reduce duplication, and streamline a program.

Suppose you as a developer buy into these advantages. You agree with Fred Brooks that dealing
with change is one of the "essential complexities" of developing software.[2] You agree that in
the abstract refactoring can provide the stated advantages.

Why might you still not refactor your programs? Here are four possible reasons:

1. You might not understand how to refactor.
2. If the benefits are long-term, why exert the effort now? In the long term, you might not be

with the project to reap the benefits.
3. Refactoring code is an overhead activity; you're paid to write new features.
4. Refactoring might break the existing program.

These are all valid concerns. I have heard them expressed by staff at telecommunication and at
high technology companies. Some of these are technical concerns; others are management
concerns. All must be addressed before developers will consider refactoring their software. Let's
deal with each of these issues in turn.

Understanding How and Where to Refactor

How can you learn how to refactor? What are the tools and techniques? How can they be
combined to accomplish something useful? When should we apply them? This book defines
several dozen refactorings that Martin found useful in his work. It presents examples of how the
refactorings can be applied to support significant changes to programs.

In the Software Refactory project at the University of Illinois, we chose a minimalist approach. We
defined a smaller set of refactorings[1], [3] and showed how they could be applied. We based
our collection of refactorings on our own programming experiences. We evaluated the structural
evolution of several object-oriented frameworks, mostly in C++, and talked with and read the
retrospectives of several experienced Smalltalk developers. Most of our refactorings are low
level, such as creating or deleting a class, variable, or function; changing attributes of variables
and functions, such as their access permissions (e.g., public or protected) and function
arguments; or moving variables and functions between classes. A smaller set of high-level
refactorings are used for operations such as creating an abstract superclass, simplifying a class
by means of subclassing and simplifying conditionals, or splitting off part of an existing class to
create a new, reusable component class (often converting between inheritance and delegation or
aggregation). The more complex refactorings are defined in terms of the low-level refactorings.
Our approach was motivated by concern for automated support and safety, which I discuss later.

 314

Given an existing program, what refactorings should you apply? That depends, of course, on your
goals. One common reason, which is the focus of this book, is to restructure a program to make it
easier to add (near term) a new feature. I discuss this in the next section. There are, however,
other reasons why you might apply refactorings.

Experienced object-oriented programmers and those who have been trained in design patterns
and good design techniques have learned that several desirable structural qualities and
characteristics of programs have been shown to support extensibility and reuse.[4], [5], [6]
Object-oriented design techniques such as CRC[7] focus on defining classes and their protocols.
Although the focus is on upfront design, there are ways to evaluate existing programs against
such guidelines.

An automated tool can be used to identify structural weaknesses in a program, such as functions
that have an excessively large number of arguments or are excessively long. These are
candidates for refactoring. An automated tool also can identify structural similarities that may
indicate redundancies. For example, if two functions are nearly identical (as often happens when
a copy-and-modify process is applied to a first function to produce a second), such similarities
can be detected and refactorings suggested that can move common code to one place. If two
variables in different parts of a program have the same name, they sometimes can be replaced
with a single variable that is inherited in both places. These are a few very simple examples.
Many other, more complex cases can be detected and corrected with an automated tool. These
structural abnormalities or structural similarities don't always mean that you'd want to apply a
refactoring, but often they do.

Much of the work on design patterns has focused on good programming style and on useful
patterns of interactions among parts of a program that can be mapped into structural
characteristics and into refactoring. For example, the applicability section of the template method
pattern[8] refers to our abstract superclass refactoring.[9]

I have listed[1] some of the heuristics that can help identify candidates for refactoring in a C++
program. John Brant and Don Roberts[10],[11] have created a tool that applies an extensive
set of heuristics to automatically analyze Smalltalk programs. They suggest refactorings that
might improve the program design and where to apply them.

Applying such a tool to analyze your program is somewhat analogous to applying lint to a C or
C++ program. The tool isn't smart enough to understand the meaning of the program. Only some
of the suggestions it makes on the basis of structural program analysis may be changes you
really want to make. As a programmer, you make the call. You decide which recommendations to
apply to your program. Those changes should improve the structure of your program and better
support changes down the road.

Before programmers can convince themselves that they ought to refactor their code, they need to
understand how and where to refactor. There is no substitute for experience. We leveraged the
insights of experienced object-oriented developers in our research to obtain a set of useful
refactorings and insights about where they ought to be applied. Automated tools can analyze the
structure of a program and suggest refactorings that might improve that structure. As with most
disciplines, tools and techniques can help but only if you use them. As programmers refactor their
code, their understanding grows.

Refactoring C++ Programs

Bill Opdyke

 315

When Ralph Johnson and I began our refactoring research in 1989, the
C++ programming language was evolving and was becoming very
popular within the object-oriented community. The importance of
refactoring had first been recognized within the Smalltalk community. We
felt that demonstrating its applicability to C++ programs would interest a
broader community of object-oriented developers.

C++ has language features, most notably its static type checking, that
simplify some program analysis and refactoring tasks. On the other
hand, the C++ language is complex, largely because of its history and
evolution from the C programming language. Some programming styles
allowable in C++ make it difficult to refactor and evolve a program.

Language Features and Programming Styles That Support
Refactoring

The static typing features of C++ make it relatively easy to narrow
possible references to the part of the program that you might want to
refactor. To pick a simple but frequent case, suppose you want to
rename a member function of a C++ class. To correctly apply the
renaming, you must change the function declaration and all references to
that function. Finding and changing the references can be difficult if the
program is large.

Compared with Smalltalk, C++ has class inheritance and protection-
access control mode (public, protected, private) features that make it
easier to determine where references to the function being renamed
might be. If the function to be renamed is declared private to the class,
then references to that function can occur only within the class itself or in
classes that are declared as friends of that class. If the function is
declared protected, references can be found only in the class, its
subclasses (and their descendents), and in friends of the class. If the
function is declared public (the least restrictive protection mode), the
analysis is still limited to the classes listed for "protected" functions and
operations on instances of the class that contains the function, its
subclasses, and its descendents.

In some very large programs, functions with the same name might be
declared in different places in the program. In some cases, two or more
functions with the same name might be better replaced with a single
function; there are refactorings that can often be applied to make this
change. On the other hand, it is sometimes the case that one of the
functions ought to be renamed while the other function is kept the same.
In a multiperson project, two or more programmers might have given the
same name to functions that are independent of each other. In C++,
when changing the name of one of these functions it is almost always

 316

easy to determine which references refer to the function being renamed
and which refer to the other function. In Smalltalk, that analysis is more
difficult.

Because C++ uses subclassing to implement subtyping, the scope to a
variable or function usually can be generalized or specialized by moving
it up or down an inheritance hierarchy. The efforts to analyze a program
and perform the refactoring are fairly straightforward.

Several good design principles applied during initial development and
throughout the software development process ease the process of
refactoring and make it easier to evolve software. Defining member
variables and most member functions as private or protected is an
abstraction technique that often makes it easier to refactor the internals
of a class while minimizing changes made elsewhere in a program.
Using inheritance to model generalization and specialization hierarchies
(as is natural in C++) makes it fairly straightforward to later generalize or
specialize the scope of member variables or functions using refactorings
to move these members within inheritance hierarchies.

Features in C++ environments support refactoring. If while refactoring a
program a programmer introduces a bug, often the C++ compiler flags
the error. Many C++ software development environments provide
powerful capabilities for cross referencing and code browsing.

Language Features and Programming Styles

That Complicate Refactoring

The compatibility C++ with C is, as most of you well know, a double-
edged sword. Many programs have been written in C and many
programmers have been training in C, which (on the surface, at least)
makes it easier to migrate to C++ than to other object-oriented
languages. However, C++ supports many programming styles, some of
which violate the principles of sound design.

Programs that use C++ language features such as pointers, cast
operations, and sizeof(object) are difficult to refactor. Pointers and cast
operations introduce aliasing, which makes it difficult to determine all
references to an object that you might want to refactor. Each of these
features exposes the internal representation of an object, which violates
principles of abstraction.

For example, C++ uses a V-table mechanism for representing member
variables in the executable program. The set of inherited member
variables appears first followed by the locally defined member variables.

 317

One generally safe refactoring is to move a variable to a superclass.
Because the variable now is inherited rather than locally defined in the
subclass, the physical location of the variable in the executable is likely
to have changed as a result of refactoring. If all variable references in the
program are through the class interface, such a reordering of physical
locations of the variable will not change the program's behavior.

On the other hand, if the variable was referenced through pointer
arithmetic (for example, a programmer had a pointer to an object, used
to know that the variable was in the fifth byte, and assigned a value to
the fifth byte of the object using pointer arithmetic), then moving the
variable to the superclass will likely change the program's behavior.
Similarly, if a programmer wrote a conditional of the form if
(sizeof(object)==15)), and refactored the program to remove an
unreferenced variable from a class, the size of instances of that class
would change, and a conditional that once tested true would test false.

It might seem absurd for someone to write programs that do conditional
tests based on the size of objects or to use pointer arithmetic when C++
provides a much cleaner interface to class variables. My point is that
these features (and others that depend on the physical layout of an
object) are provided in C++, and there are programmers experienced in
using them. Migrating from C to C++ does not an object-oriented
programmer or designer make.

Because C++ is such a complicated language (compared with Smalltalk
and, to a lesser extent, Java), it is much more difficult to create the kinds
of representations of program structure that are useful for automating
support for checking whether a refactoring is safe and, if it is, for
performing the refactoring.

Because C++ resolves most references at compile time, refactoring a
program usually requires recompiling at least part of a program and
linking the executable before testing of the effects of a change. By
contrast, Smalltalk and CLOS (Common Lisp Object System) provide
environments for interpretation and incremental compilation. Whereas
applying (and possibly backing out) a series of incremental refactorings
is fairly natural for Smalltalk and CLOS, the cost per iteration (in terms of
recompilation and retesting) is higher for C++ programs; thus
programmers tend to be less willing to make these small changes.

Many applications use a database. Changes to the structure of objects in
a C++ program may require that corresponding schematic changes be
made to the database. (Many of the ideas I applied in my refactoring
work came from research into object-oriented database schema

 318

evolution.)

Another limitation, which may interest software researchers more than
many software practitioners, is that C++ does not provide support for
metalevel program analysis and change. There is nothing analogous to
the metaobject protocol available for CLOS. The metaobject protocol of
CLOS, for example, supports a sometimes useful refactoring for
changing selected instances of a class into instances of a different class
while having all references to the old objects automatically point to the
new objects. Fortunately, the cases in which I wanted or needed these
features were few and far between.

Closing Comments

Refactoring techniques can and have been applied to C++ programs in a
variety of contexts. C++ programs often are expected to be evolved over
several years. It is during that process of evolving software that the
benefits of refactoring can most easily be seen. The language provides
some features that simplify refactoring, whereas other language features
if applied make refactoring more difficult. Fortunately, it is widely
recognized that using language features such as pointer arithmetic is a
bad idea, so most good object-oriented programmers avoid using them.

Many thanks to Ralph Johnson, Mick Murphy, James Roskind, and
others for introducing me to some of the power and complexity of C++
with respect to refactoring.

Refactoring to Achieve Near-term Benefits

It is relatively easy to describe the mid-to-long range benefits of refactoring. Many organizations,
however, are increasingly judged by the investment community and by others on near-term
performance. Can refactoring make a difference in the near term?

Refactoring has been applied successfully for more than ten years by experienced object-
oriented developers. Many of these programmers cut their teeth in a Smalltalk culture that valued
clarity and simplicity of code and embraced reuse. In such a culture, programmers would invest
time to refactor because it was the right thing to do. The Smalltalk language and its
implementations made refactoring possible in ways that hadn't been true for most prior languages
and software development environments. Much of the early Smalltalk programming was done in
research groups such as Xerox, PARC, or small programming teams at leading-edge companies
and consulting firms. The values of these groups were somewhat different from the values of
many industrial software groups. Martin and I are both aware that for refactoring to be embraced
by the mainstream software development community, at least some of its benefits must be near
term.

Our research team [3], [9], [12], [13], [14], [15] has described several examples of how
refactorings can be interleaved with extensions to a program in a way that achieves both near-
term and long-term benefits. One of our examples is the Choices file system framework. Initially
the framework implemented the BSD (Berkeley Software Distribution) Unix file system format.

 319

Later it was extended to support UNIX System V, MS-DOS, persistent, and distributed file
systems. System V file systems bear many similarities to BSD UNIX file systems. The approach
taken by the framework developer was first to clone parts of BSD Unix implementation then
modify the clone to support System V. The resultant implementation worked, but there was lots of
duplicate code. After adding the new code, the framework developer refactored the code, creating
abstract superclasses to contain the behavior common to the two Unix file system
implementations. Common variables and functions were moved to superclasses. In cases in
which corresponding functions were nearly but not entirely identical for the two file system
implementations, new functions were defined in each subclass to contain the differences. In the
original functions those code segments were replaced with calls to the new functions. Code was
incrementally made more similar in the two subclasses. When the functions were identical, they
were moved to a common superclass.

These refactorings provide several near-term and mid-term benefits. In the near term, errors
found in the common code base during testing needed to be modified only in one place. The
overall code size was smaller. The behavior specific to a particular file system format was cleanly
separated from the code common to the two file system formats. This made it easier to track
down and fix behaviors specific to that file system format. In the mid term, the abstractions that
resulted from refactoring often were useful in defining subsequent file systems. Granted, the
behavior common to the two existing file system formats might not be entirely common for a third
format, but the existing base of common code was a valuable starting point. Subsequent
refactorings could be applied to clarify what was really common. The framework development
team found that over time it took less effort to incrementally add support for a new file system
format. Even though the newer formats were more complex, development was done by less
experienced staff.

I could cite other examples of near-term and long-term benefit from refactoring, but Martin has
already done this. Rather than add to his list, let me draw an analogy to something that is near
and dear to many of us, our physical health.

In many ways, refactoring is like exercise and eating a proper diet. Many of us know that we
ought to exercise more and eat a more balanced diet. Some of us live in cultures that highly
encourage these habits. Some of us can get by for a while without practicing these good habits,
even without visible effects. We can always make excuses, but we are only fooling ourselves if
we continue to ignore good behavior.

Some of us are motivated by the near-term benefits of exercise and eating a proper diet, such as
high energy levels, greater flexibility, higher self-esteem, and other benefits. Nearly all of us know
that these near-term benefits are very real. Many but not all of us make at least sporadic efforts in
these areas. Others, however, aren't sufficiently motivated to do something until they reach a
crisis point.

Yes, there are cautions that need to be applied; people should consult with an expert before
embarking on a program. In the case of exercise and dieting, they should consult with their
physician. In the case of refactoring, they should seek resources such as this book and the
papers cited elsewhere in this chapter. Staff experienced in refactoring can provide more focused
assistance.

Several people I've met are role models with respect to fitness and refactoring. I admire their
energy and their productivity. Negative models show the visible signs of neglect. Their future and
the future of the software systems they produce may not be rosy.

 320

Refactoring can achieve near-term benefits and make the software easier to modify and maintain.
Refactoring is a means rather than an end. It is part of a broader context of how programmers or
programming teams develop and maintain their software.[3]

Reducing the Overhead of Refactoring

"Refactoring is an overhead activity. I'm paid to write new, revenue-generating features." My
response, in summary, is this:

• Tools and technologies are available to allow refactoring to be done quickly and relatively
painlessly.

• Experiences reported by some object-oriented programmers suggest that the overhead
of refactoring is more than compensated by reduced efforts and intervals in other phases
of program development.

• Although refactoring may seem a bit awkward and an overhead item at first, as it
becomes part of a software development regimen, it stops feeling like overhead and
starts feeling like an essential.

Perhaps the most mature tool for automated refactoring has been developed for Smalltalk by the
Software Refactory team at the University of Illinois (see Chapter 14). It is freely available at
their Web site (http://st-www.cs.vivc.edu). Although refactoring tools for other languages are
not so readily available, many of the techniques described in our papers and in this book can be
applied in a relatively straightforward manner with a text editor or, better yet, a browser. Software
development environments and browsers have progressed substantially in recent years. We hope
to see a growing set of refactoring tools available in the future.

Kent Beck and Ward Cunningham, both experienced Smalltalk programmers, have reported at
OOPSLA conferences and other forums that refactoring has enabled them to develop software
rapidly in domains such as bond trading. I have heard similar testimonials from C++ and CLOS
developers. In this book, Martin describes the benefits of refactoring with respect to Java
programs. We expect to hear more testimonials from those who read this book and apply these
principles.

My experience suggests that as refactoring becomes part of a routine, it stops feeling like
overhead. This statement is easy to make but difficult to substantiate. To the skeptics among you,
my advice is just do it, then decide for yourself. Give it time, though.

Refactoring Safely

Safety is a concern, especially for organizations developing and evolving large systems. In many
applications, there are compelling financial, legal, and ethical considerations for providing
continuous, reliable, and error-free service. Many organizations provide extensive training and
attempt to apply disciplined development processes to help ensure the safety of their products.

For many programmers, though, safety often seems to be less of a concern. It's more than a little
ironic that many of us preach safety first to our children, nieces, and nephews but in our roles as
programmers scream for freedom, a hybrid of the Wild West gunslinger and teenage driver. Give
us freedom, give us the resources, and watch us fly. After all, do we really want our organization
to miss out on the fruits of our creativity merely for the sake of repeatability and conformity?

In this section, I discuss approaches to safe refactoring. I focus on an approach that compared
with what Martin describes earlier in this book is somewhat more structured and rigorous but that
can eliminate many errors that might be introduced in refactoring.

 321

Safety is a difficult concept to define. An intuitive definition is that a safe refactoring is one that
doesn't break a program. Because a refactoring is intended to restructure a program without
changing its behavior, a program should perform the same way after a refactoring as it does
before.

How does one safely refactor? There are several options:

• Trust your coding abilities.
• Trust that your compiler will catch errors that you miss.
• Trust that your test suite will catch errors that you and your compiler miss.
• Trust that code review will catch errors that you, your compiler, and your test suite miss.

Martin focuses on the first three options in his refactoring. Mid-to-large-size organizations often
supplement these steps with code reviews.

Whereas compilers, test suites, code reviews, and disciplined coding styles all are valuable, there
are limits to all of these approaches, as follows:

• Programmers are fallible, even you (I know I am).
• There are subtle and not-so-subtle errors that compilers can't catch, especially scoping

errors related to inheritance.[1]
• Perry and Kaiser[16] and others have shown that although it is or at least used to be

common wisdom that the testing task is simplified when inheritance is used as an
implementation technique, in reality an extensive set of tests often is needed to cover all
the cases in which operations that used to be requested on an instance of class are now
requested on instances of its subclasses. Unless your test designer is omniscient or pays
great attention to detail, there are likely to be cases your test suite won't cover. Testing all
possible execution paths in a program is a computationally undecidable problem. In other
words, you can't be guaranteed to have caught all of the cases with your test suite.

• Code reviewers, like programmers, are fallible. Furthermore, reviewers may be too busy
with their main job to thoroughly review someone else's code.

Another approach, which I took in my research, is to define and prototype a refactoring tool to
check whether a refactoring can be safely applied to a program and, if it is, refactor the program.
This avoids many of the bugs that may be introduced through human error.

Herein I provide a high-level description of my approach to safe refactoring. This may be the most
valuable part of this chapter. For more details, see my dissertation [1] and other references at
the end of this chapter; also see Chapter 14. If you find this section to be overly technical, skim
ahead to the last several paragraphs of this section.

Part of my refactoring tool is a program analyzer, which is a program that analyzes the structure
of another program (in this case, a C++ program to which a refactoring might be applied). The
tool can answer a series of questions regarding scoping, typing, and program semantics (the
meaning or intended operations of a program). Scoping issues related to inheritance make this
analysis more complex than with many non-object-oriented programs, but for C++, language
features such as static typing make the analysis easier than for, say, Smalltalk.

Consider, for example, the refactoring to delete a variable from a program. A tool can determine
what other parts of a program (if any) reference the variable. If there are any references,
removing the variable would leave dangling references; thus this refactoring would not be safe. A
user who asks the tool to refactor the program would receive an error flag. The user might then
decide that the refactoring is a bad idea after all or to change the parts of the program that refer

 322

to that variable and apply the refactoring to remove the variable. There are many other checks,
most as simple as this, some more complex.

In my research, I defined safety in terms of program properties (related to activities such as
scoping and typing) that need to continue to hold after refactoring. Many of these program
properties are similar to integrity constraints that must be maintained when database schemas
change.[17] Each refactoring has associated with it a set of necessary preconditions that if true
would ensure that the program properties are preserved. Only if the tool were to determine that
everything is safe would the tool perform the refactoring.

Fortunately, determining whether a refactoring is safe often is trivial, especially for the low-level
refactorings that constitute most of our refactoring. To ensure that the higher-level, more
complicated refactorings are safe, we defined them in terms of the low-level refactorings. For
example, the refactoring to create an abstract superclass is defined in terms of steps, which are
simpler refactorings such as creating and moving variables and methods. By showing that each
step of a more complicated refactoring is safe, we can know by construction that the refactoring is
safe.

There are some (relatively rare) cases in which a refactoring might actually be safe to apply to a
program but a tool can't be sure. In these cases the tool takes the safe route and disallows the
refactoring. For instance, consider again the case in which you want to remove a variable from a
program, but there is a reference to it somewhere else in the program. Perhaps the reference is
contained in a code segment that will never be executed. For example, the reference may appear
inside a conditional, such as an if-then loop, that will never test true. If you can be sure that the
conditional would never test true, you could remove the conditional test, including the code
referring to the variable or function that you want to delete. You then could safely remove the
variable or function. In general it isn't possible to know for certain whether the condition will
always be false. (Suppose you inherited code that was developed by someone else. How
confident would you be in deleting this code?)

A refactoring tool can flag the reference and alert the user. The user might decide to leave the
code alone. If or when the user became sure that the referencing code would never be executed,
he or she could remove the code and apply the refactoring. The tool makes the user aware of the
implications of the reference rather than blindly applying the change.

This may sound like complicated stuff. It is fine for a doctoral dissertation (the primary audience,
the thesis committee, wants to see some attention to theoretical issues), but is it practical for real
refactoring?

All of the safety checking can be implemented under the hood of a refactoring tool. A programmer
who wants to refactor a program merely needs to ask the tool to check the code and, if it is safe,
perform the refactoring. My tool was a research prototype. Don Roberts, John Brant, Ralph
Johnson, and I[10] have implemented a far more robust and featured tool (see Chapter 14) as
part of our research into refactoring Smalltalk programs.

Many levels of safety can be applied to refactoring. Some are easy to apply but don't guarantee a
high level of safety. Using a refactoring tool can provide many benefits. It can make many simple
but tedious checks and flag in advance problems that if left unchecked would cause the program
to break as a result of refactoring.

Although applying a refactoring tool avoids introducing many of the errors that you otherwise
hope will be flagged during compilation, testing, and code review, the latter techniques are still of
value, particularly in the development or evolution of real-time systems. Programs often don't
execute in isolation; they are parts of a larger network of communicating systems. Some

 323

refactorings not only clean up code but also make a program run more quickly. Speeding up one
program might result in performance bottlenecks elsewhere. This is similar to the effects of
upgrading microprocessors that speed up parts of a system and require similar approaches to
tune and test overall system performance. Conversely, some refactorings may slow overall
performance a bit, but in general such effects on performance are minimal.

Safety approaches are intended to guarantee that refactoring does not introduce new errors into
a program. These approaches don't detect or fix bugs that were in the program before it was
refactored. However, refactoring may make it easier to spot such bugs and correct them.

A Reality Check (Revisited)

Making refactoring real requires addressing the real-world concerns of software professionals.
Four commonly expressed concerns are as follows:

• The programmers might not understand how to refactor.
• If the benefits are long-term, why exert the effort now? In the long term, you might not be

with the project to reap the benefits.
• Refactoring code is an overhead activity; programmers are paid to write new features.
• Refactoring might break the existing program.

In this chapter, I briefly address each of these concerns and provide pointers for those who want
to delve further into these topics.

The following issues are of concern to some projects:

• What if the code to be refactored is collectively owned by several programmers? In some
cases, many of the traditional change management mechanisms are relevant. In other
cases, if the software has been well designed and refactored, subsystems will be
sufficiently decoupled that many refactorings will affect only a small subset of the code
base.

• What if there are multiple versions or lines of code from a code base? In some cases,
refactoring may be relevant for all of the versions, in which case all need to be checked
for safety before the refactoring is applied. In other cases, the refactorings may be
relevant for only some versions, which simplifies the process of checking and refactoring
the code. Managing changes to multiple versions often requires applying many of the
traditional version-management techniques. Refactoring can be useful in merging
variants or versions into an updated code base, which may simplify version management
downstream.

In summary, persuading software professionals of the practical value of refactoring is quite
different from persuading a doctoral committee that refactoring research is worthy of a Ph.D. It
took me some time after completing my graduate studies to fully appreciate these differences.

Resources and References for Refactoring

By this point in the book, I hope you are planning to apply refactoring techniques in your work and
are encouraging others in your organization to do so. If you are still undecided, you may want to
refer to the references I have provided or contact Martin (Fowler@acm.org), me, or others who
are experienced in refactoring.

 324

If you want to explore refactoring further, here are a few references that you may want to check
out. As Martin has noted, this book isn't the first written work on refactoring, but (I hope) it will
expose a broadening audience to the concepts and benefits of refactoring. Although my doctoral
dissertation was the first major written work on the topic, most readers interested in exploring the
early foundational work on refactoring probably should look first at several papers.[3], [9], [12],
[13] Refactoring was a tutorial topic at OOPSLA 95 and OOPSLA 96. [14], [15] For those with
an interest in both design patterns and refactoring, the paper "Lifecycle and Refactoring Patterns
That Support Evolution and Reuse," [3] which Brian Foote and I presented at PLoP '94 and
which appears in the first volume of the Addison-Wesley Pattern Languages of Program Design
series, is a good place to start. My refactoring research was largely built on work by Ralph
Johnson and Brian regarding object-oriented application frameworks and the design of reusable
classes. [4] Subsequent refactoring research by John Brant, Don Roberts, and Ralph Johnson at
the University of Illinois has focused on refactoring Smalltalk programs. [10], [11] Their Web
site (http://st-www.cs.uiuc.edu) includes some of their most recent work. Interest in
refactoring has grown within the object-oriented research community. Several related papers
were presented at OOPSLA 96 in a session titled Refactoring and Reuse[18].

Implications Regarding Software Reuse and Technology Transfer

The real-world concerns addressed earlier don't apply to refactoring alone. They apply more
broadly to software evolution and reuse.

For much of the past several years, I have focused on issues related to software reuse, platforms,
frameworks, patterns, and the evolution of legacy systems, often involving software that was not
object oriented. In addition to working with projects within Lucent and Bell Labs, I have
participated in forums with staff at other organizations who have been grappling with similar
issues.[19], [20], [21], [22]

The real-world concerns regarding a reuse program are similar to those related to refactoring.

• Technical staff may not understand what to reuse or how to reuse it.
• Technical staff may not be motivated to apply a reuse approach unless short-term

benefits can be achieved.
• Overhead, learning curve, and discovery cost issues must be addressed for a reuse

approach to be successfully adopted.
• Adopting a reuse approach should not be disruptive to a project; there may be strong

pressures to leverage existing assets or implementation albeit with legacy constraints.
New implementations should interwork or be backward compatible with existing systems.

Geoffrey Moore[23] described the technology adoption process in terms of a bell-shaped curve
in which the front tail includes innovators and early adopters, the large middle hump includes
early majority and late majority, and the trailing tail includes laggards. For an idea and product to
succeed, they must ultimately be adopted by the early and late majorities. Put another way, many
ideas that appeal to the innovators and early adopters ultimately fail because they never make it
across the chasm to the early and late majorities. The disconnect lies mainly in the differing
motivators of these customer groups. Innovators and early adopters are attracted by new
technologies, visions of paradigm shifts and breakthroughs. The early and late majorities are
concerned primarily with maturity, cost, support, and seeing whether the new idea or product has
been successfully applied by others with needs similar to theirs.

Software development professionals are impressed and convinced in very different ways than are
software researchers. Software researchers are most often what Moore refers to as innovators.
Software developers and especially software managers often are part of the early and late

 325

majorities. Recognizing these differences is important in reaching each of these groups. With
software reuse, as with refactoring, it is important to reach software development professionals
on their terms.

Within Lucent/Bell Labs I found that encouraging application of reuse and platforms required
reaching a variety of stakeholders. It required formulating strategy with executives, organizing
leadership team meetings among middle managers, consulting with development projects, and
publicizing the benefits of these technologies to broad research and development audiences
through seminars and publications. Throughout it was important to train staff in the principles,
address near-term benefits, provide ways to reduce overhead, and address how these
techniques could be introduced safely. I had gained these insights from my refactoring research.

As Ralph Johnson, who was my thesis advisor, pointed out when reviewing a draft of this chapter,
these principles don't apply only to refactoring and to software reuse; they are generic issues of
technology transfer. If you find yourself trying to persuade other people to refactor (or to adopt
another technology or practice), make sure that you focus on these issues and reach people
where they are. Technology transfer is difficult, but it can be done.

A Final Note

Thanks for taking the time to read this chapter. I've tried to address many of the concerns that
you might have about refactoring and tried to show that many of the real-world concerns
regarding refactoring apply more broadly to software evolution and reuse. I hope that you came
away enthusiastic about applying these ideas in your work. Best wishes as you move forward in
your software development tasks.

Endnotes

1. Opdyke, William F. “Refactoring Object-Oriented Frameworks.” Ph.D. diss., University of
Illinois at Urbana-Champaign. Also available as Technical Report UIUCDCS-R-92-1759,
Department of Computer Science, University of Illinois at Urbana-Champaign.

2. Brooks, Fred. “No Silver Bullet: Essence and Accidents of Software Engineering.” In
Information Processing 1986: Proceedings of the IFIP Tenth World Computing
Conference, edited by H.-L.Kugler. Amsterdam: Elsevier, 1986.

3. Foote, Brian and William F. Opdyke. “Lifecycle and Refactoring Patterns That Support
Evolution and Reuse.” In Pattern Languages of Program Design, edited by J. Coplien and
D. Schmidt. Reading, Mass.: Addison-Wesley, 1995.

4. Johnson, Ralph E. and Brian Foote. “Designing Reusable Classes.” Journal of Object-
Oriented Programming 1(1988): 22-35.

5. Rochat, Roxanna. “In Search of Good Smalltalk Programming Style.” Technical report
CR-86-19, Tektronix, 1986.

6. Lieberherr, Karl J. and Ian M. Holland. “Assuring Good Style For Object-Oriented
Programs.” IEEE Software (September 1989) 38-48.

7. Wirfs-Brock, Rebecca, Brian Wilkerson and Luaren Wiener. Design Object-Oriented
Software. Upper Saddle River, N.J.: Prentice Hall, 1990.

 326

8. Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, Mass.: Addison-Wesley,
1985.

9. Opdyke, William F. and Ralph E. Johnson.“Creating Abstract Superclasses by
Refactoring.” In Proceedings of CSC '93: The ACM 1993 Computer Science Conference.
1993.

10. Roberts, Don, John Brant, Ralph Johnson, and William Opdyke.“An Automated
Refactoring Tool.” In Proceedings of ICAST 96: 12th International Conference on
Advanced Science and Technology. 1996.

11. Roberts, Don, John Brant, and Ralph E. Johnson. “A Refactoring Tool for Smalltalk.”
TAPOS 3(1997) 39-42.

12. Opdyke, William F., and Ralph E. Johnson. “Refactoring: An Aid in Designing Application
Frameworks and Evolving Object-Oriented Systems.” In Proceedings of SOOPPA '90:
Symposium on Object-Oriented Programming Emphasizing Practical Applications. 1990.

13. Johnson, Ralph E. and William F. Opdyke. “Refactoring and Aggregation.” In
Proceedings of ISOTAS '93: International Symposium on Object Technologies for
Advanced Software. 1993.

14. Opdyke, William and Don Roberts. “Refactoring.” Tutorial presented at OOPSLA 95: 10th
Annual Conference on Object-Oriented Program Systems, Languages and Applications,
Austin, Texas, October 1995.

15. Opdyke, William and Don Roberts. “Refactoring Object-Oriented Software to Support
Evolution and Reuse.” Tutorial presented at OOPSLA 96: 11th Annual Conference on
Object-Oriented Program Systems, Languages and Applications, San Jose, California,
October 1996.

16. Perry, Dewayne E., and Gail E. Kaiser. “Adequate Testing and Object-Oriented
Programming.” Journal of Object-Oriented Programming (1990).

17. Banerjee, Jay, and Won Kim. “Semantics and Implementation of Schema Evolution in
Object-Oriented Databases.” In Proceedings of the ACM SIGMOD Conference, 1987.

18. Proceedings of OOPSLA 96: Conference on Object-Oriented Programming Systems,
Languages and Applications, San Jose, California, October 1996.

19. Report on WISR '97: Eighth Annual Workshop on Software Reuse, Columbus, Ohio,
March 1997. ACM Software Engineering Notes. (1997).

20. Beck, Kent, Grady Booch, Jim Coplien, Ralph Johnson, and Bill Opdyke. “Beyond the
Hype: Do Patterns and Frameworks Reduce Discovery Costs?” Panel session at
OOPSLA 97: 12th Annual Conference on Object-Oriented Program Systems, Languages
and Applications, Atlanta, Georgia, October 1997.

21. Kane, David, William Opdyke, and David Dikel.“Managing Change to Reusable
Software.” Paper presented at PLoP 97: 4th Annual Conference on the Pattern
Languages of Programs, Monticello, Illinois, September 1997.

 327

22. Davis, Maggie, Martin L. Griss, Luke Hohmann, Ian Hopper, Rebecca Joos and William
F. Opdyke. “Software Reuse: Nemesis or Nirvana?” Panel session at OOPSLA 98: 13th
Annual Conference on Object-Oriented Program Systems, Languages and Applications,
Vancouver, British Columbia, Canada, October 1998.

23. Geoffrey A.Moore, Cross the Chasm: Marketing and Selling Technology Products to
Mainstream Customers. New York: HarperBusiness, 1991.

 328

Chapter 14. Refactoring Tools
by Don Roberts and John Brant

One of the largest barriers to refactoring code has been the woeful lack of tool support for it.
Languages in which refactoring is part of the culture, such as Smalltalk, usually have powerful
environments that support many of the features necessary to refactor code. Even there, the
process has been only partially supported until recently, and most of the work is still being done
by hand.

Refactoring with a Tool

Refactoring with automated tool support feels different from manual refactoring. Even with the
safety net of a test suite in place, refactoring by hand is time consuming. This simple fact
prevents programmers from making refactorings they know they should, simply because
refactoring costs too much. By making refactoring as inexpensive as adjusting the format of code,
cleanup work can be done in a similar manner to cleaning up the look of code. However, this type
of cleanup can have a profound, positive effect on the maintainability, reusability, and
understandability of code. Kent Beck says:

Kent Beck

[The Refactoring Browser] completely changes the way you think about
programming. All those niggling little "well, I should change this name but
…" thoughts go away, because you just change the name because there
is always a single menu item to just change the name.

When I started using this tool, I spent about two hours refactoring at my
old pace. I would do a refactoring, then just kind of stare off into space
for the five minutes it would have taken me to do the refactoring by hand,
then do another and stare into space again. After a while, I caught myself
and realized that I had to learn to think bigger refactoring thoughts and
think them faster. Now I use probably half refactoring and half entering
new code, all at the same speed.

With this level of tool support for refactoring, it becomes less and less a separate activity from
programming. Very rarely do we say, "Now I'm programming" and "Now I'm refactoring." We're
more likely to say, "Extract this portion of the method, push it up to the superclass, then add a call
to the new method in the new subclass that I'm working on." Because I don't have to test after the
automated refactorings, the activities flow into each other, and the process of switching hats
becomes much less evident, although it is still occurring.

Consider Extract Method, an important refactoring. You have many things to check for when
you do it by hand. With the Refactoring Browser, you simply select the text to extract and find the
menu item named Extract Method. The tool determines whether the selected text is legal to
extract. There are several reasons the selection might be illegal. It could contain only a portion of
an identifier, or it might contain assignments to a variable without containing all of the references.
You don't have to worry about all of the cases, because the tool deals with them. The tool then
computes how many parameters must be passed into the new method. It then prompts you for a
name for the new method and allows you to specify the order of the parameters in the call to the

 329

new function. Once this is done, the tool extracts the code from the original method and replaces
it with a call. It then creates the new method in the same class as the original method and with
the name that the user specified. The entire process takes about 15 seconds. Compare this with
the time necessary to perform the steps in Extract Method.

As refactoring becomes less expensive, design mistakes become less costly. Because it is less
expensive to fix design mistakes, less design needs to be done up front. Upfront design is a
predictive activity because the requirements will be incomplete. Because the code is not
available, the correct way to design to simplify the code is not obvious. In the past, we had to live
with whatever design we initially created because the cost to change the design was too great.
With automatic refactoring tools, we can allow the design to be more fluid because changing it is
much less costly. Given this new set of costs, we can design to the level of the current problem
knowing that we can inexpensively extend the design to add additional flexibility in the future. No
longer do we need to attempt to predict every possible way the system might change in the
future. If we find that the current design makes the code awkward with the smells described in
Chapter 3, we can quickly change the design to make the code clean and maintainable.

Tool-assisted refactoring affects testing. Much less testing has to occur because many of the
refactorings are performed automatically. There will always be refactorings that cannot be
automated, so the testing step will never be eliminated. The empirical observation has been that
the tests are run the same number of times per day as in environments without automatic testing
tools but that more refactoring is done.

As Martin has pointed out, Java needs tools to support this kind of behavior by programmers. We
want to point out some of the criteria that such a tool must have to be successful. Although we
have included the technical criteria, we believe that the practical criteria are much more
important.

Technical Criteria for a Refactoring Tool

The main purpose of a refactoring tool is to allow the programmer to refactor code without having
to retest the program. Testing is time consuming even when automated, and eliminating it can
accelerate the refactoring process by a significant factor. This section briefly discusses the
technical requirements for a refactoring tool that are necessary to allow it to transform a program
while preserving the behavior of the program.

Program Database

One of the first requirements recognized was the ability to search for various program entities
across the entire program, such as with a particular method, finding all calls that can potentially
refer to the method in question, or with a particular instance variable, finding all of the methods
that read or write it. In tightly integrated environments such as Smalltalk, this information is
maintained constantly in a searchable form. This is not a database as traditionally understood,
but it is a searchable repository. The programmer can perform a search to find cross references
to any program element, mainly because of the dynamic compilation of the code. As soon as a
change is made to any class, the change is immediately compiled into bytecodes, and the
"database" is updated. In more static environments such as Java, programmers enter the code in
text files. Updates to the database must be performed by running a program to process these
files and extract the relevant information. These updates are similar to compilation of the Java
code itself. Some of the more modern environments, such as IBM VisualAge for Java, mimic
Smalltalk's dynamic update of the program database.

 330

A naïve approach is to use textual tools such as grep to do the search. This approach breaks
down quickly because it cannot differentiate between a variable named foo and a function named
foo. Creating a database requires using semantic analysis (parsing) to determine the "part of
speech" of every token in the program. This must done at both the class definition level, to
determine instance variable and method definitions, and at the method level, to determine
instance variable and method references.

Parse Trees

Most refactorings have to manipulate portions of the system below the method level. These are
usually references to program elements that are being changed. For example, if an instance
variable is renamed (simply a definition change), all references within the methods of that class
and its subclasses must be updated. Other refactorings are entirely below the method level, such
as extracting a portion of a method into its own, stand-alone method. Any update to a method has
to be able to manipulate the structure of the method. To do this requires parse trees. A parse tree
is a data structure that represents the internal structure of the method itself. As a simple example,
consider the following method:

 public void hello(){
 System.out.println("Hello World");
 }

The parse tree corresponding to this would look like Figure 14.1.

Figure 14.1. Parse tree for hello world

Accuracy

 331

The refactorings implemented by a tool must reasonably preserve the behavior of programs.
Total preservation of behavior is impossible to achieve. For example, what if a refactoring makes
a program a few milliseconds faster or slower? This usually would not affect a program, but if the
program requirements include hard real-time constraints, this could cause a program to be
incorrect.

Even more traditional programs can be broken. For example, if your program constructs a string
and uses the Java Reflection API to execute the method that the String names, renaming the
method will cause the program to throw an exception that the original did not.

However, refactorings can be made reasonably accurate for most programs. As long as the
cases that will break a refactoring are identified, programmers who use those techniques can
either avoid the refactoring or manually fix the parts of the program that the refactoring tool
cannot fix.

Practical Criteria for a Refactoring Tool

Tools are created to support a human in a particular task. If a tool does not fit the way a person
works, the person will not use it. The most important criteria are the ones that integrate the
refactoring process with other tools.

Speed

The analysis and transformations needed to perform refactorings can be time consuming if they
are very sophisticated. The relative costs of time and accuracy always must be considered. If a
refactoring takes too long, a programmer will never use the automatic refactoring but will just
perform it by hand and live with the consequences. Speed should always be considered. In the
process of developing the Refactoring Browser, we had a few refactorings that we did not
implement simply because we could not implement them safely in a reasonable amount of time.
However, we did a decent job, and most of the refactorings are extremely fast and very accurate.
Computer scientists tend to focus on all of the boundary cases that a particular approach will not
handle. The fact is that most programs are not boundary cases and that simpler, faster
approaches work amazingly well.

An approach to consider if an analysis would be too slow is simply to ask the programmer to
provide the information. This puts the responsibility for accuracy back into the hands of the
programmer while allowing the analysis to be performed quickly. Quite often the programmer
knows the information that is required. Even though this approach is not provably safe because
the programmer can make mistakes, the responsibility for error rests on the programmers.
Ironically, this makes programmers more likely to use the tool because they are not required to
rely on a program's heuristic to find information.

Undo

Automatic refactoring allows an exploratory approach to design. You can push the code around
and see how it looks under the new design. Because a refactoring is supposed to be behavior
preserving, the inverse refactoring, which undoes the original, also is a refactoring and is
behavior preserving. Earlier versions of the Refactoring Browser did not incorporate the undo
feature. This made refactoring a little more tentative because undoing some refactorings,
although behavior preserving, was difficult. Quite often we would have to find an old version of
the program and start again. This was annoying. With the addition of undo, yet another fetter was
thrown off. Now we can explore with impunity, knowing that we can roll back to any prior version.

 332

We can create classes, move methods into them to see how the code will look, and change our
minds and go a completely different direction, all very quickly.

Integrated with Tools

In the past decade the integrated development environment (IDE) has been at the core of most
development projects. The IDE integrates the editor, compiler, linker, debugger, and any other
tool necessary for developing programs. An early implementation of the Refactoring Browser for
Smalltalk was a separate tool from the standard Smalltalk development tools. What we found was
that no one used it. We did not even use it ourselves. Once we integrated the refactorings directly
into the Smalltalk Browser, we used them extensively. Simply having them at our fingertips made
all the difference.

Wrap Up

We have spent several years developing and using the Refactoring Browser. It is quite common
for us to use it to refactor its own code. One of the reasons for its success is that we are
programmers and we have tried constantly to make it fit the way we work. If we ran across a
refactoring that we had to perform by hand and we felt it was general, we would implement it and
add it. If something took too long, we would make it faster. If something wasn't accurate enough,
we would improve it.

We believe that automatic refactoring tools are the best way to manage the complexity that arises
as a software project evolves. Without tools to deal with this complexity, software becomes
bloated, buggy, and brittle. Because Java is much simpler than the language with which it shares
syntax, it is much easier to develop tools to refactor it. We hope this will occur and that we can
avoid the sins of C++.

 333

Chapter 15. Putting It All Together
by Kent Beck

Now you have all the pieces of the puzzle. You've learned the refactorings. You've studied the
catalog. You've practiced all of the checklists. You've gotten good at testing, so you aren't afraid.
Now you may think you know how to refactor. Not yet.

The list of techniques is only the beginning. It is the gate you must pass through. Without the
techniques, you can't manipulate the design of running programs. With them, you still can't, but at
least you can start.

Why are all these wonderful techniques really only the beginning? Because you don't yet know
when to use them and when not to, when to start and when to stop, when to go and when to wait.
It is the rhythm that makes for refactoring, not the individual notes.

How will you know when you are really getting it? You'll know when you start to calm down. When
you feel absolute confidence that no matter how screwed up someone left it, you can make the
code better, enough better to keep making progress.

Mostly, though, you'll know you're getting it when you can stop with confidence. Stopping is the
strongest move in the refactorer's repertoire. You see a big goal—a host of subclasses can be
eliminated. You begin to move toward that goal, each step small and sure, each step backed up
by keeping all the tests running. You're getting close. You only have two methods to unify in each
of the subclasses, and then they can go away.

That's when it happens. You run out of gas. Maybe it's getting late and you are becoming
fatigued. Maybe you were wrong in the first place and you can't really get rid of all of those
subclasses. Maybe you don't have the tests to back you up. Whatever the cause, your confidence
is gone. You can't make the next step with certainty. You don't think you will screw anything up,
but you're not sure.

That's when you stop. If the code is already better, integrate and release what you've done. If it
isn't better, walk away. Flush it. Glad to have learned a lesson, pity it didn't work out. What's on
for tomorrow?

Tomorrow or the next day or the next month or maybe even next year (my personal record is nine
years waiting for the second half of a refactoring), the insight comes. Either you understand why
you were wrong, or you understand why you were right. In any case, the next step is clear. You
take the step with the confidence you had when you started. Maybe you're even a little abashed
at how stupid you could have been not to have seen it all along. Don't be. It happens to everyone.

It's a little like walking along a narrow trail above a one-thousand-foot drop. As long as the light
holds, you can step forward cautiously but with confidence. As soon as the sun sets, though,
you'd better stop. You bed down for the night, sure the sun will rise again in the morning.

This may sound mystical and vague. In a sense it is, because it is a new kind of relationship with
your program. When you really understand refactoring, the design of the system is as fluid and
plastic and moldable to you as the individual characters in a source code file. You can feel the
whole design at once. You can see how it might flex and change—a little this way and this is
possible, a little that way and that is possible.

 334

In another sense, though, it is not at all mystical or vague. Refactoring is a learnable skill, the
components of which you have read about in this book and begun to learn about. You get those
little skills together and polished. Then you begin to see development in a new light.

I said this was a learnable skill. How do you learn it?

Get used to picking a goal.

Somewhere your code smells bad. Resolve to get rid of the problem. Then march toward that
goal. You aren't refactoring to pursue truth and beauty (at least that's not all there is to it). You are
trying to make your world easier to understand, to regain control of a program that is flapping
loose.

Stop when you are unsure.

As you move toward your goal, a time may come when you can't exactly prove to yourself and
others that what you are doing will preserve the semantics of your program. Stop. If the code is
already better, go ahead and release your progress. If it isn't, throw away your changes.

Backtrack.

The discipline of refactoring is hard to learn and easy to lose sight of, even if only for a moment. I
still lose sight more often than I care to admit. I'll do two or three or four refactorings in a row
without rerunning the test cases. Of course I can get away with it. I'm confident. I've practiced.
Boom! A test fails, and I can't see which of my changes caused the problem.

At this moment you will be mightily tempted to just debug your way out of trouble. After all, you
got those tests to run in the first place. How hard could it be to get them running again? Stop. You
are out of control, and you have no idea what it will take to get back in control by going forward.
Go back to your last known good configuration. Replay your changes one by one. Run the tests
after each one.

This may sound obvious here in the comfort of your recliner. When you are hacking and you can
smell a big simplification centimeters away, it is the hardest thing to do to stop and back up. But
think about it now, while your head is clear. If you have refactored for an hour, it will take only
about ten minutes to replay what you did. So you can be guaranteed to be back on track in ten
minutes. If, however, you try to move forward, you might be debugging for five seconds or for two
hours.

It is easy for me to tell you what to do now. It is brutally hard to actually do it. I think my personal
record for failing to follow my own advice is four hours and three separate tries. I got out of
control, backtracked, moved forward slowly at first, got out of control again, and again, for four
painful hours. It is no fun. That's why you need help.

Duets.

For goodness'sake, refactor with someone. There are many advantages to working in pairs for all
kinds of development. The advantages work in spades for refactoring. In refactoring there is a
premium on working carefully and methodically. Your partner is there to keep you moving step by
step, and you are there for him or her. In refactoring there is a premium on seeing possibly far-
ranging consequences. Your partner is there to see things you don't see and know things you
don't know. In refactoring, there is a premium on knowing when to quit. When your partner
doesn't understand what you are doing, it is a sure sign that you don't either. Above all, in

 335

refactoring there is an absolute premium on quiet confidence. Your partner is there to gently
encourage you when you might otherwise stop.

Another aspect of working with a partner is talking. You want to talk about what you think is about
to happen, so the two of you are pointed in the same direction. You want to talk about what you
think is happening, so you can spot trouble as soon as possible. You want to talk about what just
happened, so you'll know better next time. All that talking cements in your mind exactly where the
individual refactorings fit into the rhythm of refactoring.

You are likely to see new possibilities in your code, even if you have worked with it for years,
once you know about the smells and the refactorings that can sterilize them. You may even want
to jump in and clean up every problem in sight. Don't. No manager wants to hear the team say it
has to stop for three months to clean up the mess it has created. And, well, they shouldn't. A big
refactoring is a recipe for disaster.

As ugly as the mess looks now, discipline yourself to nibble away at the problem. When you are
going to add some new functionality to an area, take a few minutes to clean it up first. If you have
to add some tests before you can clean up with confidence, add them. You'll be glad you did.
Refactoring first is less dangerous than adding new code. Touching the code will remind you how
it works. You'll get done faster, and you'll have the satisfaction of knowing that the next time you
pass this way, the code will look better than it did this time.

Never forget the two hats. When you refactor, you will inevitably discover cases in which the code
doesn't work right. You'll be absolutely certain of it. Resist temptation. When you are refactoring,
your goal is to leave the code computing exactly the same answers it was when you found it.
Nothing more, nothing less. Keep a list (I always have an index card beside my computer) of
things to change later—test cases to add or change, unrelated refactorings, documents to write,
diagrams to draw. That way you won't lose those thoughts, but you won't let them mess up what
you are doing now.

 336

Bibliography

References

[Auer] Ken. Auer "Reusability through Self-Encapsulation." In Pattern Languages of Program
Design 1, Coplien J.O. Schmidt.D.C. Reading, Mass.: Addison-Wesley, 1995. Patterns paper on
the concept of self-encapsulation.

[Bäumer and Riehle] Bäumer, Riehle and Riehle. Dirk "Product Trader." In Pattern Languages of
Program Design 3, R. Martin F. Buschmann D. Riehle. Reading, Mass.: Addison-Wesley, 1998. A
pattern for flexibly creating objects without knowing in what class they should be.

[Beck] Kent.Beck Smalltalk Best Practice Patterns. Upper Saddle River, N.J.: Prentice Hall,
1997a. An essential book for any Smalltalker, and a damn useful book for any object-oriented
developer. Rumors of a Java version abound.

[Beck, hanoi] Kent.Beck "Make it Run, Make it Right: Design Through Refactoring."The Smalltalk
Report, 6: (1997b): 19-24. The first published writing that really gets the sense of how the process
of refactoring works. The source of many ideas for Chapter 1.

[Beck, XP] Kent.Beck eXtreme Programming eXplained: Embrace Change. Reading, Mass.:
Addison-Wesley, 2000.

[Fowler, UML] FowlerM.Scott.K. UML Distilled, Second Edition: A Brief Guide to the Standard
Object Modeling Language. Reading, Mass.: Addison-Wesley, 2000.

A concise guide to the Unified Modeling Language used for various diagrams in this book.

[Fowler, AP] M.Fowler Analysis Patterns: Reusable Object Models. Reading, Mass.: Addison-
Wesley, 1997. A book of domain model patterns. Includes a discussion of the range pattern.

[Gang of Four] E. Gamma, R. Helm, R. Johnsonand J. Vlissides. Design Patterns: Elements of
Reusable Object Oriented Software. Reading, Mass.: Addison-Wesley, 1995. Probably the single
most valuable book on object-oriented design. It's now impossible to look as if you know anything
about objects if you can't talk intelligently about strategy, singleton, and chain of responsibility.

[Jackson, 1993] Michael. Jackson Michael Jackson's Beer Guide, Mitchell Beazley, 1993. A
useful guide to a subject that rewards considerable practical study.

[Java Spec] Gosling, James, Bill Joy and Guy Steele. The Java Language Specification, Second
Edition. Boston, Mass.: Addison-Wesley, 2000. The authoritative answer to Java questions.

[JUnit] Beck, Kent, and Erich Gamma.JUnit Open-Source Testing Framework. Available on the
Web (http://www.junit.org). Essential tool for working in Java. A simple framework that helps
you write, organize, and run unit tests. Similar frameworks are available for Smalltalk and C++.

[Lea] Doug.Lea, Concurrent Programming in Java: Design Principles and Patterns, Reading,
Mass.: Addison-Wesley, 1997. The compiler should stop anyone implementing Runnable who
hasn't read this book.

 337

[McConnell] Steve. McConnell, Code Complete: A Practical Handbook of Software Construction.
Redmond, Wash.: Microsoft Press, 1993. An excellent guide to programming style and software
construction. Written before Java, but almost all of its advice applies.

[Meyer] Bertrand. Meyer, Object Oriented Software Construction. 2 ed. Upper Saddle River, N.J.:
Prentice Hall, 1997. A very good, if very large, book on object-oriented design. Includes a
thorough discussion of design by contract.

[Opdyke] William F. Opdyke, Ph.D. diss., "Refactoring Object-Oriented Frameworks. " University
of Illinois at Urbana-Champaign, 1992. See
ftp://st.cs.uiuc.edu/pub/papers/refactoring/opdyke-thesis.ps.Z. The first decent-length
writing on refactoring. Tackles it from a somewhat academic and tools-oriented angle (after all it
is a dissertation) but is well worth reading for those who want more on the theory of refactoring.

[Refactoring Browser] Brant, John, and Don Roberts. Refactoring Browser Tool, http://st-
www.cs.uiuc.edu/~brant/RefactoringBrowser. The future of software development tools.

[Woolf] Bobby. Woolf, "Null Object." In Pattern Languages of Program Design 3, Martin, R.
Riehle. D. Buschmann F. Reading, Mass.: Addison-Wesley, 1998. A discussion on the null object
pattern.

