
Design Concepts  
in Programming 
Languages

FRANKLYN TURBAK AND  
DAVID GIFFORD

WITH MARK A. SHELDON

Design Concepts 
in Program

m
ing Languages

TURBAK,GIFFORD,  
AND SHELDON

COMPUTER SCIENCE/PROGRAMMING LANGUAGES

Hundreds of programming languages are in use today—scripting languages 
for Internet commerce, user interface programming tools, spreadsheet mac-
ros, page format specification languages, and many others. Designing a 
programming language is a metaprogramming activity that bears certain 
similarities to programming in a regular language, with clarity and simplicity 
even more important than in ordinary programming. This comprehensive text 
uses a simple and concise framework to teach key ideas in programming lan-
guage design and implementation. The book’s unique approach is based on 
a family of syntactically simple pedagogical languages that allow students to 
explore programming language concepts systematically. It takes as its prem-
ise and starting point the idea that when language behaviors become incred-
ibly complex, the description of the behaviors must be incredibly simple.
 The book presents a set of tools (a mathematical metalanguage, abstract 
syntax, operational and denotational semantics) and uses it to explore a 
comprehensive set of programming language design dimensions, including 
dynamic semantics (naming, state, control, data), static semantics (types, 
type reconstruction, polymorphism, effects), and pragmatics (compilation, 
garbage collection). The many examples and exercises offer students oppor-
tunities to apply the foundational ideas explained in the text. Specialized 
topics and code that implements many of the algorithms and compilation 
methods in the book can be found on the book’s Web site, along with such 
additional material as a section on concurrency and proofs of the theorems 
in the text. The book is suitable as a text for an introductory graduate or ad-
vanced undergraduate programming languages course; it can also serve as 
a reference for researchers and practitioners. 
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Preface

This book is the text for 6.821 Programming Languages, an entry-level, single-
semester, graduate-level course at the Massachusetts Institute of Technology. The
students that take our course know how to program and are mathematically in-
clined, but they typically have not had an introduction to programming language
design or its mathematical foundations. We assume a reader with similar prepa-
ration, and we include an appendix that completely explains the mathematical
metalanguage we use. Many of the exercises are taken directly from our prob-
lem sets and examination questions, and have been specifically designed to cause
students to apply their newfound knowledge to practical (and sometimes imprac-
tical!) extensions to the foundational ideas taught in the course.

Our fundamental goal for Programming Languages is to use a simple and
concise framework to teach key ideas in programming language design and im-
plementation. We specifically eschewed an approach based on a tour of the great
programming languages. Instead, we have adopted a family of syntactically sim-
ple pedagogical languages that systematically explore programming language con-
cepts (see Appendix B). Contemporary concerns about safety and security have
caused programmers to migrate to languages that embrace many of the key ideas
that we explain. Where appropriate, we discuss how the ideas we introduce have
been incorporated into contemporary programming languages that are in wide
use.

We use an s-expression syntax for programs because this syntactic form is
easy to parse and to directly manipulate, key attributes that support our desire
to make everything explicit in our descriptions of language semantics and prag-
matics. While you may find s-expression syntax unfamiliar at first, it permits the
unambiguous and complete articulation of ideas in a simple framework.

Programming languages are a plastic and expressive medium, and we are
hopeful that we will communicate our passion for these computational canvases
that are an important underpinning for computer science.

Web Supplement

Specialized topics and code that implements many of the algorithms and compi-
lation methods can be found on our accompanying Web site:

dcpl.mit.edu



xx Preface

The Web Supplement also includes additional material, such as a section on
concurrency and proofs of the theorems stated in the book.

To the Student

The book is full of examples, and a good way to approach the material is to study
the examples first. Then review the figures that capture key rules or algorithms.
Skip over details that bog you down at first, and return to them later once you
have additional context.

Using and implementing novel programming language concepts will further
enhance your understanding. The Web Supplement contains interpreters for vari-
ous pedagogical languages used in the book, and there are many implementation-
based exercises that will help forge connections between theory and practice.

To the Teacher

We teach the highlights of the material in this book in 24 lectures over a 14-
week period. Each lecture is 1.5 hours long, and students also attend a one-hour
recitation every week. With this amount of contact time it is not possible to
cover all of the detail in the book. The Web Supplement contains an example
lecture schedule, reading assignments, and problem sets. In addition, the MIT
OpenCourseWare site at ocw.mit.edu contains material from previous versions
of 6.821.

This book can be used to teach many different kinds of courses, including
an introduction to semantics (Chapters 1–5), essential concepts of programming
languages (Chapters 1–13), and types and effects (Chapters 6 and 11–16).

We hope you enjoy teaching this material as much as we have!
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Introduction

Order and simplification are the first steps toward the mastery of a subject
— the actual enemy is the unknown.

— Thomas Mann, The Magic Mountain

1.1 Programming Languages

Programming is a lot of fun. As you have no doubt experienced, clarity and
simplicity are the keys to good programming. When you have a tangle of code
that is difficult to understand, your confidence in its behavior wavers, and the
code is no longer any fun to read or update.

Designing a new programming language is a kind of metalevel programming
activity that is just as much fun as programming in a regular language (if not
more so). You will discover that clarity and simplicity are even more important
in language design than they are in ordinary programming. Today hundreds of
programming languages are in use — whether they be scripting languages for
Internet commerce, user interface programming tools, spreadsheet macros, or
page format specification languages that when executed can produce formatted
documents. Inspired application design often requires a programmer to provide a
new programming language or to extend an existing one. This is because flexible
and extensible applications need to provide some sort of programming capability
to their end users.

Elements of programming language design are even found in “ordinary” pro-
gramming. For instance, consider designing the interface to a collection data
structure. What is a good way to encapsulate an iteration idiom over the ele-
ments of such a collection? The issues faced in this problem are similar to those
in adding a looping construct to a programming language.

The goal of this book is to teach you the great ideas in programming lan-
guages in a simple framework that strips them of complexity. You will learn sev-
eral ways to specify the meaning of programming language constructs and will
see that small changes in these specifications can have dramatic consequences
for program behavior. You will explore many dimensions of the programming
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language design space, study decisions to be made along each dimension, and
consider how decisions from different dimensions can interact. We will teach you
about a wide variety of neat tricks for extending programing languages with inter-
esting features like undoable state changes, exitable loops, and pattern matching.
Our approach for teaching you this material is based on the premise that when
language behaviors become incredibly complex, the descriptions of the behaviors
must be incredibly simple. It is the only hope.

1.2 Syntax, Semantics, and Pragmatics

Programming languages are traditionally viewed in terms of three facets:

1. Syntax — the form of programming languages.

2. Semantics — the meaning of programming languages.

3. Pragmatics — the implementation of programming languages.

Here we briefly describe these facets.

Syntax

Syntax focuses on the concrete notations used to encode programming language
phrases. Consider a phrase that indicates the sum of the product of v and w and
the quotient of y and z. Such a phrase can be written in many different notations
— as a traditional mathematical expression:

vw + y/z

or as a Lisp parenthesized prefix expression:

(+ (* v w) (/ y z))

or as a sequence of keystrokes on a postfix calculator:

v enter w enter × y enter z enter ÷ +

or as a layout of cells and formulas in a spreadsheet:

1 2 3 4
A v= v*w = A2 * B2
B w= y/z = C2 / D2
C y= ans = A4 + B4
D z=
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or as a graphical tree:

+

*

v w

/

y z

Although these concrete notations are superficially different, they all designate
the same abstract phrase structure (the sum of a product and a quotient). The
syntax of a programming language specifies which concrete notations (strings
of characters, lines on a page) in the language are legal and which tree-shaped
abstract phrase structure is denoted by each legal notation.

Semantics

Semantics specifies the mapping between the structure of a programming lan-
guage phrase and what the phrase means. Such phrases have no inherent mean-
ing: their meaning is determined only in the context of a system for interpreting
their structure. For example, consider the following expression tree:

*

+

1 11

10

Suppose we interpret the nodes labeled 1, 10, and 11 as the usual decimal notation
for numbers, and the nodes labeled + and * as the sum and product of the values of
their subnodes. Then the root of the tree stands for (1+11) ·10 = 120. But there
are many other possible meanings for this tree. If * stands for exponentiation
rather than multiplication, the meaning of the tree could be 1210. If the numerals
are in binary notation rather than decimal notation, the tree could stand for (in
decimal notation) (1 + 3) · 2 = 8. Alternatively, suppose that odd integers stand
for the truth value true, even integers stand for the truth value false, and + and *

stand for, respectively, the logical disjunction (∨) and conjunction (∧) operators
on truth values; then the meaning of the tree is false. Perhaps the tree does not
indicate an evaluation at all, and only stands for a property intrinsic to the tree,
such as its height (3), its number of nodes (5), or its shape (perhaps it describes
a simple corporate hierarchy). Or maybe the tree is an arbitrary encoding for a
particular object of interest, such as a person or a book.
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This example illustrates how a single program phrase can have many possible
meanings. Semantics describes the relationship between the abstract structure
of a phrase and its meaning.

Pragmatics

Whereas semantics deals with what a phrase means, pragmatics focuses on the
details of how that meaning is computed. Of particular interest is the effective
use of various resources, such as time, space, and access to shared physical devices
(storage devices, network connections, video monitors, printers, speakers, etc.).

As a simple example of pragmatics, consider the evaluation of the following
expression tree (under the first semantic interpretation described above):

/

-

+

a b

*

2 3

+

a b

Suppose that a and b stand for particular numeric values. Because the phrase
(+ a b) appears twice, a naive evaluation strategy will compute the same sum
twice. An alternative strategy is to compute the sum once, save the result, and
use the saved result the next time the phrase is encountered. The alternative
strategy does not change the meaning of the program, but does change its use of
resources; it reduces the number of additions performed, but may require extra
storage for the saved result. Is the alternative strategy better? The answer
depends on the details of the evaluation model and the relative importance of
time and space.

Another potential improvement in the example involves the phrase (* 2 3),
which always stands for the number 6. If the sample expression is to be evalu-
ated many times (for different values of a and b), it may be worthwhile to replace
(* 2 3) by 6 to avoid unnecessary multiplications. Again, this is a purely prag-
matic concern that does not change the meaning of the expression.

1.3 Goals

The goals of this book are to explore the semantics of a comprehensive set of pro-
gramming language design idioms, show how they can be combined into complete
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practical programming languages, and discuss the interplay between semantics
and pragmatics.

Because syntactic issues are so well covered in standard compiler texts, we
won’t say much about syntax except for establishing a few syntactic conventions
at the outset. We will introduce a number of tools for describing the semantics
of programming languages, and will use these tools to build intuitions about
programming language features and study many of the dimensions along which
languages can vary. Our coverage of pragmatics is mainly at a high level. We
will study some simple programming language implementation techniques and
program improvement strategies rather than focus on squeezing the last ounce of
performance out of a particular computer architecture.

We will discuss programming language features in the context of several mini-
languages. Each of these is a simple programming language that captures the
essential features of a class of existing programming languages. In many cases,
the mini-languages are so pared down that they are hardly suitable for serious
programming activities. Nevertheless, these languages embody all of the key
ideas in programming languages. Their simplicity saves us from getting bogged
down in needless complexity in our explorations of semantics and pragmatics.
And like good modular building blocks, the components of the mini-languages
are designed to be “snapped together” to create practical languages.

Issues of semantics and pragmatics are important for reasoning about proper-
ties of programming languages and about particular programs in these languages.
We will also discuss them in the context of two fundamental strategies for pro-
gramming language implementation: interpretation and translation. In the
interpretation approach, a program written in a source language S is directly
executed by an S-interpreter, which is a program written in an implementa-
tion language. In the translation approach, an S program is translated to a
program in the target language T , which can be executed by a T -interpreter.
The translation itself is performed by a translator program written in an im-
plementation language. A translator is also called a compiler, especially when
it translates from a high-level language to a low-level one. We will use mini-
languages for our source and target languages. For our implementation lan-
guage, we will use the mathematical metalanguage described in Appendix A.
However, we strongly encourage readers to build working interpreters and trans-
lators for the mini-languages in their favorite real-world programming languages.
Metaprogramming — writing programs that manipulate other programs — is
perhaps the most exciting form of programming!
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1.4 PostFix: A Simple Stack Language

We will introduce the tools for syntax, semantics, and pragmatics in the context
of a mini-language called PostFix. PostFix is a simple stack-based language
inspired by the PostScript graphics language, the Forth programming lan-
guage, and Hewlett Packard calculators. Here we give an informal introduction
to PostFix in order to build some intuitions about the language. In subsequent
chapters, we will introduce tools that allow us to study PostFix in more depth.

1.4.1 Syntax

The basic syntactic unit of a PostFix program is the command. Commands
are of the following form:

• Any integer numeral. E.g., 17, 0, -3.

• One of the following special command tokens: add, div, eq, exec, gt, lt, mul,
nget, pop, rem, sel, sub, swap.

• An executable sequence — a single command that serves as a subroutine.
It is written as a parenthesized list of subcommands separated by whitespace
(any contiguous sequence of characters that leave no mark on the page, such as
spaces, tabs, and newlines). E.g., (7 add 3 swap) or (2 (5 mul) exec add).

Since executable sequences contain other commands (including other executable
sequences), they can be arbitrarily nested. An executable sequence counts as a
single command despite its hierarchical structure.

A PostFix program is a parenthesized sequence consisting of (1) the token
postfix followed by (2) a natural number (i.e., nonnegative integer) indicat-
ing the number of program parameters followed by (3) zero or more PostFix
commands. Here are some sample PostFix programs:

(postfix 0 4 7 sub)

(postfix 2 add 2 div)

(postfix 4 4 nget 5 nget mul mul swap 4 nget mul add add)

(postfix 1 ((3 nget swap exec) (2 mul swap exec) swap)

(5 sub) swap exec exec)

In PostFix, as in all the languages we’ll be studying, all parentheses are
required and none are optional. Moving parentheses around changes the structure
of the program and most likely changes its behavior. Thus, while the following



1.4.2 Semantics 9

PostFix executable sequences use the same numerals and command tokens in
the same order, they are distinguished by their parenthesization, which, as we
shall see below, makes them behave differently.

((1) (2 3 4) swap exec)

((1 2) (3 4) swap exec)

((1 2) (3 4 swap) exec)

1.4.2 Semantics

The meaning of a PostFix program is determined by executing its commands in
left-to-right order. Each command manipulates an implicit stack of values that
initially contains the integer arguments of the program (where the first argument
is at the top of the stack and the last argument is at the bottom). A value on
the stack is either (1) an integer numeral or (2) an executable sequence. The
result of a program is the integer value at the top of the stack after its command
sequence has been completely executed. A program signals an error if (1) the
final stack is empty, (2) the value at the top of the final stack is not an integer,
or (3) an inappropriate stack of values is encountered when one of its commands
is executed.

The behavior of PostFix commands is summarized in Figure 1.1. Each
command is specified in terms of how it manipulates the implicit stack. We use
the notation P −args−−→ v to mean that executing the PostFix program P on the
integer argument sequence args returns the value v . The notation P −args−−→ error

means that executing the PostFix program P on the arguments args signals an
error. Errors are caused by inappropriate stack values or an insufficient number
of stack values. In practice, it is desirable for an implementation to indicate the
type of error. We will use comments (delimited by braces) to explain errors and
other situations.

To illustrate the meanings of various commands, we show the results of some
simple program executions. For example, numerals are pushed onto the stack,
while pop and swap are the usual stack operations.

(postfix 0 1 2 3) −[ ]−→ 3 {Only the top stack value is returned.}
(postfix 0 1 2 3 pop) −[ ]−→ 2

(postfix 0 1 2 swap 3 pop) −[ ]−→ 1

(postfix 0 1 swap) −[ ]−→ error {Not enough values to swap.}
(postfix 0 1 pop pop) −[ ]−→ error {Empty stack on second pop.}

Program arguments are pushed onto the stack (from last to first) before the
execution of the program commands.
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N : Push the numeral N onto the stack.

sub: Call the top stack value v1 and the next-to-top stack value v2 . Pop these two
values off the stack and push the result of v2 − v1 onto the stack. If there are
fewer than two values on the stack or the top two values aren’t both numerals,
signal an error. The other binary arithmetic operators — add (addition), mul
(multiplication), div (integer divisiona), and rem (remainder of integer division)
— behave similarly. Both div and rem signal an error if v1 is zero.

lt: Call the top stack value v1 and the next-to-top stack value v2 . Pop these
two values off the stack. If v2 < v1 , then push a 1 (a true value) on the stack,
otherwise push a 0 (false). The other binary comparison operators — eq (equals)
and gt (greater than) — behave similarly. If there are fewer than two values on
the stack or the top two values aren’t both numerals, signal an error.

pop: Pop the top element off the stack and discard it. Signal an error if the stack
is empty.

swap: Swap the top two elements of the stack. Signal an error if the stack has fewer
than two values.

sel: Call the top three stack values (from top down) v1 , v2 , and v3 . Pop these
three values off the stack. If v3 is the numeral 0, push v1 onto the stack; if v3 is
a nonzero numeral, push v2 onto the stack. Signal an error if the stack does not
contain three values, or if v3 is not a numeral.

nget: Call the top stack value vindex and the remaining stack values (from top
down) v1 , v2 , . . ., vn . Pop vindex off the stack. If vindex is a numeral i such that
1 ≤ i ≤ n and vi is a numeral, push vi onto the stack. Signal an error if the stack
does not contain at least one value, if vindex is not a numeral, if i is not in the
range [1..n], or if vi is not a numeral.

(C1 . . . Cn): Push the executable sequence (C1 . . . Cn) as a single value onto
the stack. Executable sequences are used in conjunction with exec.

exec: Pop the executable sequence from the top of the stack, and prepend its
component commands onto the sequence of currently executing commands. Signal
an error if the stack is empty or the top stack value isn’t an executable sequence.

aThe integer division of n and d returns the integer quotient q such that n = qd + r,
where r (the remainder) is such that 0 ≤ r < |d| if n ≥ 0 and −|d| < r ≤ 0 if n < 0.

Figure 1.1 English semantics of PostFix commands.

(postfix 2) −[3,4]−−→ 3 {Initial stack has 3 on top with 4 below.}
(postfix 2 swap) −[3,4]−−→ 4

(postfix 3 pop swap) −[3,4,5]−−−→ 5
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It is an error if the actual number of arguments does not match the number of
parameters specified in the program.

(postfix 2 swap) −[3]−→ error {Wrong number of arguments.}
(postfix 1 pop) −[4,5]−−→ error {Wrong number of arguments.}

Note that program arguments must be integers — they cannot be executable
sequences.

Numerical operations are expressed in postfix notation, in which each operator
comes after the commands that compute its operands. add, sub, mul, and div are
binary integer operators. lt, eq, and gt are binary integer predicates returning
either 1 (true) or 0 (false).

(postfix 1 4 sub) −[3]−→ -1

(postfix 1 4 add 5 mul 6 sub 7 div) −[3]−→ 4

(postfix 5 add mul sub swap div) −[7,6,5,4,3]−−−−−→ -20

(postfix 3 4000 swap pop add) −[300,20,1]−−−−−→ 4020

(postfix 2 add 2 div) −[3,7]−−→ 5 {An averaging program.}
(postfix 1 3 div) −[17]−−→ 5

(postfix 1 3 rem) −[17]−−→ 2

(postfix 1 4 lt) −[3]−→ 1

(postfix 1 4 lt) −[5]−→ 0

(postfix 1 4 lt 10 add) −[3]−→ 11

(postfix 1 4 mul add) −[3]−→ error {Not enough numbers to add.}
(postfix 2 4 sub div) −[4,5]−−→ error {Divide by zero.}

In all the above examples, each stack value is used at most once. Sometimes
it is desirable to use a number two or more times or to access a number that is
not near the top of the stack. The nget command is useful in these situations; it
puts at the top of the stack a copy of a number located on the stack at a specified
index. The index is 1-based, from the top of the stack down, not counting the
index value itself.

(postfix 2 1 nget) −[4,5]−−→ 4 {4 is at index 1, 5 at index 2.}
(postfix 2 2 nget) −[4,5]−−→ 5

It is an error to use an index that is out of bounds or to access a nonnumeric
stack value (i.e., an executable sequence) with nget.

(postfix 2 3 nget) −[4,5]−−→ error {Index 3 is too large.}
(postfix 2 0 nget) −[4,5]−−→ error {Index 0 is too small.}
(postfix 1 (2 mul) 1 nget) −[3]−→ error

{Value at index 1 is not a number but an executable sequence.}
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The nget command is particularly useful for numerical programs, where it is
common to reference arbitrary parameter values and use them multiple times.

(postfix 1 1 nget mul) −[5]−→ 25 {A squaring program.}
(postfix 4 4 nget 5 nget mul mul swap 4 nget mul add add) −[3,4,5,2]−−−−→ 25
{Given a, b, c, x, calculates ax2 + bx + c.}

As illustrated in the last example, the index of a given value increases every time
a new value is pushed onto the stack. The final stack in this example contains
(from top down) 25 and 2, showing that the program may end with more than
one value on the stack.

Executable sequences are compound commands like (2 mul) that are pushed
onto the stack as a single value. They can be executed later by the exec command.
Executable sequences act like subroutines in other languages; execution of an
executable sequence is similar to a subroutine call, except that transmission of
arguments and results is accomplished via the stack.

(postfix 1 (2 mul) exec) −[7]−→ 14 {(2 mul) is a doubling subroutine.}
(postfix 0 (0 swap sub) 7 swap exec) −[ ]−→ -7
{(0 swap sub) is a negation subroutine.}

(postfix 0 (2 mul)) −[ ]−→ error {Final top of stack is not an integer.}
(postfix 0 3 (2 mul) gt) −[ ]−→ error

{Executable sequence where number expected.}
(postfix 0 3 exec) −[ ]−→ error {Number where executable sequence expected.}
(postfix 0 (7 swap exec) (0 swap sub) swap exec) −[ ]−→ -7
(postfix 2 (mul sub) (1 nget mul) 4 nget swap exec swap exec)

−[−10,2]−−−−→ 42 {Given a and b, calculates b − a·b2 .}
The last two examples illustrate that evaluations involving executable sequences
can be rather contorted.

The sel command selects between two values based on a test value, where
zero is treated as false and any nonzero integer is treated as true. It can be used in
conjunction with exec to conditionally execute one of two executable sequences.

(postfix 1 2 3 sel) −[1]−→ 2

(postfix 1 2 3 sel) −[0]−→ 3

(postfix 1 2 3 sel) −[17]−−→ 2 {Any nonzero number is “true.”}
(postfix 0 (2 mul) 3 4 sel) −[ ]−→ error {Test not a number.}
(postfix 4 lt (add) (mul) sel exec) −[3,4,5,6]−−−−→ 30

(postfix 4 lt (add) (mul) sel exec) −[4,3,5,6]−−−−→ 11

(postfix 1 1 nget 0 lt (0 swap sub) () sel exec) −[−7]−−→ 7
{An absolute value program.}

(postfix 1 1 nget 0 lt (0 swap sub) () sel exec) −[6]−→ 6
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Exercise 1.1 Determine the value of the following PostFix programs on an empty
stack.

a. (postfix 0 10 (swap 2 mul sub) 1 swap exec)

b. (postfix 0 (5 (2 mul) exec) 3 swap)

c. (postfix 0 (() exec) exec)

d. (postfix 0 2 3 1 add mul sel)

e. (postfix 0 2 3 1 (add) (mul) sel)

f. (postfix 0 2 3 1 (add) (mul) sel exec)

g. (postfix 0 0 (2 3 add) 4 sel exec)

h. (postfix 0 1 (2 3 add) 4 sel exec)

i. (postfix 0 (5 6 lt) (2 3 add) 4 sel exec)

j. (postfix 0 (swap exec swap exec) (1 sub) swap (2 mul)

swap 3 swap exec)

Exercise 1.2

a. What function of its argument does the following PostFix program calculate?

(postfix 1 ((3 nget swap exec) (2 mul swap exec) swap)

(5 sub) swap exec exec)

b. Write a simpler PostFix program that performs the same calculation.

Exercise 1.3 Recall that executable sequences are effectively subroutines that, when
invoked (by the exec command), take their arguments from the top of the stack. Write
executable sequences that compute the following logical operations. Recall that 0 stands
for false and all other numerals are treated as true.

a. not: return the logical negation of a single argument.

b. and: given two numeric arguments, return 1 if their logical conjunction is true, and
0 otherwise.

c. short-circuit-and: return 0 if the first argument is false; otherwise return the second
argument.

d. Demonstrate the difference between and and short-circuit-and by writing a PostFix
program with zero arguments that has a different result if and is replaced by short-
circuit-and.

Exercise 1.4

a. Without nget, is it possible to write a PostFix program that squares its single
argument? If so, write it; if not, explain.
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b. Is it possible to write a PostFix program that takes three integers and returns the
smallest of the three? If so, write it; if not, explain.

c. Is it possible to write a PostFix program that calculates the factorial of its single
argument (assume it’s nonnegative)? If so, write it; if not, explain.

1.4.3 The Pitfalls of Informal Descriptions

The “by-example” and English descriptions of PostFix given above are typical
of the way that programming languages are described in manuals, textbooks,
courses, and conversations. That is, a syntax for the language is presented, and
the semantics of each of the language constructs is specified using English prose
and examples. The utility of this method for specifying semantics is apparent
from the fact that the vast majority of programmers learn to read and write
programs via this approach.

But there are many situations in which informal descriptions of programming
languages are inadequate. Suppose that we want to improve a program by trans-
forming complex phrases into phrases that are simpler and more efficient. How
can we be sure that the transformation process preserves the meaning of the
program?

Or suppose that we want to prove that the language as a whole has a particular
property. For instance, it turns out that every PostFix program is guaranteed
to terminate (i.e., a PostFix program cannot enter an infinite loop). How would
we go about proving this property based on the informal description? Natural
language does not provide any rigorous framework for reasoning about programs
or programming languages. Without the aid of some formal reasoning tools, we
can only give hand-waving arguments that are not likely to be very convincing.

Or suppose that we wish to extend PostFix with features that make it easier
to use. For example, it would be nice to name values, to collect values into arrays,
to query the user for input, and to loop over sequences of values. With each new
feature, the specification of the language becomes more complex, and it becomes
more difficult to reason about the interaction between various features. We’d like
techniques that help to highlight which features are orthogonal and which can
interact in subtle ways.

Or suppose that a software vendor wants to develop PostFix into a product
that runs on several different machines. The vendor wants any given PostFix
program to have exactly the same behavior on all of the supported machines.
But how do the development teams for the different machines guarantee that
they’re all implementing the “same” language? If there are any ambiguities
in the PostFix specification that they’re implementing, different development
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teams might resolve the ambiguity in incompatible ways. What’s needed in this
case is an unambiguous specification of the language as well as a means of proving
that an implementation meets that specification.

The problem with informal descriptions of a programming language is that
they’re neither concise nor precise enough for these kinds of situations. English
is often verbose, and even relatively simple ideas can be unduly complicated
to explain. Moreover, it’s easy for the writer of an informal specification to
underspecify a language by forgetting to cover all the special cases (e.g., error
situations in PostFix). It isn’t that covering all the special cases is impossible;
it’s just that the natural-language framework doesn’t help much in pointing out
what the special cases are.

It is possible to overspecify a language in English as well. Consider the Post-
Fix programming model introduced above. The current state of a program is
captured in two entities: the stack and the current command sequence. To pro-
grammers and implementers alike, this might imply that a language implemen-
tation must have explicit stack and command sequence elements in it. Although
these would indeed appear in a straightforward implementation, they are not in
any way required; there are alternative models and implementations for PostFix
(e.g., see Exercise 3.12 on page 70). It would be desirable to have a more ab-
stract definition of what constitutes a legal PostFix implementation so that a
would-be implementer could be sure that an implementation was faithful to the
language definition regardless of the representations and algorithms employed.

1.5 Overview of the Book

The remainder of Part I introduces a number of tools that address the inade-
quacies outlined above and that form an essential foundation for the study of
programming language design. Chapter 2 presents s-expression grammars, a
simple specification for syntax that we will use to describe the structure of all
of the mini-languages we will explore. Then, using PostFix and a simple ex-
pression language as our objects of study, we introduce two approaches to formal
semantics:

• An operational semantics (Chapter 3) explains the meaning of programming
language constructs in terms of the step-by-step process of an abstract machine.

• A denotational semantics (Chapter 4) explains the meaning of programming
language constructs in terms of the meaning of their subparts.
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These approaches support the unambiguous specification of programming lan-
guages and provide a framework in which to reason about properties of programs
and languages. Our discussion of tools concludes in Chapter 5 with a presentation
of a technique for determining the meaning of recursive specifications. Through-
out the book, and especially in these early chapters, we formalize concepts in
terms of a mathematical metalanguage described in Appendix A. Readers are
encouraged to familiarize themselves with this language by skimming this ap-
pendix early on and later referring to it in more detail on an “as needed” basis.

Part II focuses on dynamic semantics, the meaning of programming lan-
guage constructs and the run-time behavior of programs. In Chapter 6, we in-
troduce FL, a mini-language we use as a basis for investigating dimensions of
programming language design. By extending FL in various ways, we then ex-
plore programming language features along key dimensions: naming (Chapter 7),
state (Chapter 8), control (Chapter 9), and data (Chapter 10). Along the way,
we will encounter several programming paradigms, high-level approaches for
viewing computation: function-oriented programming, imperative programming,
and object-oriented programming.

In Part III, we shift our focus to static semantics, properties of programs
that can be determined without executing them. In Chapter 11, we introduce the
notion of type — a description of what an expression computes — and develop a
simple type-checking system for a dialect of FL such that “well-typed” programs
cannot encounter certain kinds of run-time errors. In Chapter 12, we study some
more advanced features of typed languages: subtyping, universal polymorphism,
bounded quantification, and kind systems. A major drawback to many of our
typed mini-languages is that programmers are required to annotate programs
with significant amounts of explicit type information. In some languages, many
of these annotations can be eliminated via type reconstruction, a technique we
study in Chapter 13. Types can be used as a mechanism for enforcing data
abstraction, a notion that we explore in Chapter 14. In Chapter 15, we show
how many of the dynamic and static semantics features we have studied can be
combined to yield a mini-language in which program modules with both value and
type components can be independently type-checked and then linked together in
a type-safe way. We wrap up our discussion of static semantics in Chapter 16
with a study of effect systems, which describe how expressions compute rather
than what they compute.

The book culminates, in Part IV, in a pragmatics segment that illustrates
how concepts from dynamic and static semantics play an important role in the
implementation of a programming language. Chapter 17 presents a compiler
that translates from a typed dialect of FL to a low-level language that resembles
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assembly code. The compiler is organized as a sequence of meaning-preserving
translation steps that construct explicit representations for the naming, state,
control, and data aspects of programs. In order to automatically reclaim memory
in a type-safe way, the run-time system for executing the low-level code generated
by the compiler uses garbage collection, a topic that is explored in Chapter 18.

While we will emphasize formal tools throughout this book, we do not imply
that formal tools are a panacea or that formal approaches are superior to informal
ones in an absolute sense. In fact, informal explanations of language features are
usually the simplest way to learn about a language. In addition, it’s very easy
for formal approaches to get out of control, to the point where they are overly
obscure, or require too much mathematical machinery to be of any practical
use on a day-to-day basis. For this reason, we won’t cover material as a dry
sequence of definitions, theorems, and proofs. Instead, our goal is to show that the
concepts underlying the formal approaches are indispensable for understanding
particular programming languages as well as the dimensions of language design.
The tools, techniques, and features introduced in this book should be in any
serious computer scientist’s bag of tricks.
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Syntax

since feeling is first
who pays any attention
to the syntax of things
will never wholly kiss you;
. . .
for life’s not a paragraph

And death i think is no parenthesis

— e. e. cummings, “since feeling is first”

In the area of programming languages, syntax refers to the form of programs
— how they are constructed from symbolic parts. A number of theoretical and
practical tools — including grammars, lexical analyzers, and parsers — have been
developed to aid in the study of syntax. By and large we will downplay syntactic
issues and tools. Instead, we will emphasize the semantics of programs; we will
study the meaning of language constructs rather than their form.

We are not claiming that syntactic issues and tools are unimportant in the
analysis, design, and implementation of programming languages. In actual pro-
gramming language implementations, syntactic issues are very important and a
number of standard tools (like Lex and Yacc) are available for addressing them.
But we do believe that syntax has traditionally garnered much more than its fair
share of attention, largely because its problems were more amenable to solution
with familiar tools. This state of affairs is reminiscent of the popular tale of the
person who searches all night long under a street lamp for a lost item not because
the item was lost there but because the light was better. Luckily, many investiga-
tors strayed away from the street lamp of parsing theory in order to explore the
much dimmer area of semantics. Along the way, they developed many new tools
for understanding semantics, some of which we will focus on in later chapters.

Despite our emphasis on semantics, however, we can’t ignore syntax com-
pletely. Programs must be expressed in some form, preferably one that elucidates
the fundamental structure of the program and is easy to read, write, and reason
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about. In this chapter, we introduce a set of syntactic conventions for describing
our mini-languages.

2.1 Abstract Syntax

We will motivate various syntactic issues in the context of EL, a mini-language
of expressions. EL expressions have a tree-like structure that is more typical
of program phrases than the mostly linear structure of PostFix command se-
quences. EL describes functions that map any number of numerical inputs to a
single numerical output. Such a language might be useful on a calculator, say,
for automating the evaluation of commonly used mathematical formulas.

Figure 2.1 describes (in English) the abstract structure of a legal EL program.
EL programs contain numerical expressions, where a numerical expression can
be constructed out of various kinds of components. Some of the components,
like numerals, references to input values, and various kinds of operators, are
primitive — they cannot be broken down into subparts.1 Other components
are compound — they are constructed out of constituent components. The
components have names; e.g., the subparts of an arithmetic operation are the
rator (short for “operator”) and two rands (short for “operands”), while the
subexpressions of the conditional expression are the test expression, the then
expression, and the else expression.

There are three major classes of phrases in an EL program: whole programs
that designate calculations on a given number of inputs, numerical expressions
that designate numbers, and boolean expressions that designate truth values
(i.e., true or false). The structural description in Figure 2.1 constrains the ways
in which these expressions may be “wired together.” For instance, the test com-
ponent of a conditional must be a boolean expression, while the then and else
components must be numerical expressions.

A specification of the allowed wiring patterns for the syntactic entities of a
language is called a grammar. Figure 2.1 is said to be an abstract grammar
because it specifies the logical structure of the syntax but does not give any
indication how individual expressions in the language are actually written.

Parsing a program phrase with an abstract grammar results in a value called
an abstract syntax tree (AST). As we will see in Section 2.3, abstract syn-
tax trees are easy to inspect and disassemble, making them ideal substrates for
defining the meaning of program phrases in terms of their parts.

Consider an EL program that returns zero if its first input is between 1 and
10 (exclusive) and otherwise returns the product of the second and third inputs.

1Numerals can be broken down into digits, but we will ignore this detail.
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A legal EL program is a pair of (1) a numargs numeral specifying the number of pa-
rameters and (2) a body that is a numerical expression, where a numerical expression
is one of:

• an intval — an integer literal num;

• an input — a reference to one of the program inputs specified by an index numeral;

• an arithmetic operation — an application of a rator, in this case a binary arithmetic
operator, to two numerical rand expressions, where an arithmetic operator is one of:

• addition,

• subtraction,

• multiplication,

• division,

• remainder;

• a conditional — a choice between numerical then and else expressions determined
by a boolean test expression, where a boolean expression is one of:

• a boolval — a boolean literal bool;

• a relational operation — an application of rator, in this case a binary rela-
tional operator, to two numerical rand expressions, where a relational operator
is one of:

• less-than,

• equal-to,

• greater-than;

• a logical operation — an application of a rator, in this case a binary logical
operator, to two boolean rand expressions, where a logical operator is one of:

• and,

• or.

Figure 2.1 An abstract grammar for EL programs.

The abstract syntax tree for this program appears in Figure 2.2. Each node of the
tree except the root corresponds to a numerical or boolean expression. The leaves
of the tree stand for primitive phrases, while the intermediate nodes represent
compound phrases. The labeled edges from a parent node to its children show
the relationship between a compound phrase and its components. The AST is
defined purely in terms of these relationships; the particular way that the nodes
and edges of a tree are arranged on the page is immaterial.
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Figure 2.2 An abstract syntax tree for an EL program.

2.2 Concrete Syntax

Abstract grammars and ASTs aren’t very helpful when it comes to representing
programs in a textual fashion.2 The same abstract structure can be expressed
in many different concrete forms. The sample EL conditional expression in Fig-
ure 2.2, for instance, could be written down in some strikingly different textual
forms. Here are three examples:

if $1 > 1 && $1 < 10 then 0 else $2 * $3 endif

(cond ((and (> (arg 1) 1) (< (arg 1) 10)) 0)

(else (* (arg 2) (arg 3))))

1 input 1 gt 1 input 10 lt and {0} {2 input 3 input mul} choose

The above forms differ along a variety of dimensions:

• Keywords and operation names. The keywords if, cond, and choose all indi-
cate a conditional expression, while multiplication is represented by the names

2It is also possible to represent programs more pictorially, and visual programming languages
are an active area of research. But textual representations enjoy certain advantages over visual
ones: they tend to be more compact than visual representations; the technology for processing
them and communicating them is well established; and, most important, they can effectively
make use of our familiarity with natural language.
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* and mul. Accessing the ith input to the program is written in three different
ways: $i, (arg i), and i input.

• Operand order. The example forms use infix, prefix, and postfix operations,
respectively.

• Means of grouping. Grouping can be determined by precedence (&& has a
lower precedence than > and < in the first example), keywords (then, else,
and endif delimit the test, then, and else parts of the first conditional), or
explicit matched delimiter pairs (such as the parentheses and braces in the last
two examples).

These are only some of the possible dimensions. Many more are imaginable. For
instance, numbers could be written in many different numeral formats such as
decimal, binary, or octal numerals, scientific notation, or even Roman numerals!

2.3 S-Expression Grammars Specify ASTs

The examples in Section 2.2 illustrate that the nature of concrete syntax ne-
cessitates making representational choices that are arbitrary with respect to the
abstract syntactic structure. While we will dispense with many of the complex-
ities of concrete syntax, we still need some concrete notation for representing
abstract syntax trees. Such a representation should be simple, yet permit us to
precisely describe abstract syntax trees and operations on such trees. Throughout
this book, we need to operate on abstract syntax trees to determine the meaning
of a phrase, the type of a phrase, the translation of a phrase, and so on. To
perform such operations, we need a far more compact representation for abstract
syntax trees than the English description in Figure 2.1 or the graphical one in
Figure 2.2.

We have chosen to represent abstract syntax trees using s-expression gram-
mars. An s-expression grammar unites Lisp’s fully parenthesized prefix notation
with traditional grammar notations to describe the structure of abstract syntax
trees via parenthesized sequences of symbols and metavariables. Not only are
these grammars very flexible for defining unambiguous program language syntax,
but it is easy to construct programs that process s-expression notation. This fa-
cilitates writing interpreters and translators for the mini-languages we will study.

2.3.1 S-Expressions

An s-expression (short for symbolic expression) is a notation for represent-
ing trees by parenthesized linear text strings. The leaves of the trees are sym-
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this is

an

example s-expression tree

Figure 2.3 Viewing ((this is) an ((example) (s-expression tree))) as a tree.

bolic tokens, where (to first approximation) a symbolic token is any sequence
of characters that does not contain a left parenthesis (‘(’), a right parenthesis
(‘)’), or a whitespace character. Examples of symbolic tokens include x, foo,
this-is-a-token, 17, 6.821, and 4/3*pi*r^2. We always write s-expressions
in teletype font.

An intermediate node in a tree is represented by a pair of parentheses sur-
rounding the s-expressions that represent the subtrees. Thus, the s-expression

((this is) an ((example) (s-expression tree)))

designates the structure depicted in Figure 2.3. Whitespace is necessary for
separating tokens that appear next to each other, but can be used liberally to
enhance the readability of the structure. Thus, the above s-expression could also
be written as

((this is)

an

((example)

(s-expression

tree)))

without changing the structure of the tree.

2.3.2 The Structure of S-Expression Grammars

An s-expression grammar combines the domain notation of Appendix A with
s-expressions to specify the syntactic structure of a language. It has two parts:

1. A list of syntactic domains, one for each kind of phrase.

2. A set of production rules that define the structure of compound phrases.

Figure 2.4 presents a sample s-expression grammar for EL.
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Syntactic Domains
P ∈ Prog

NE ∈ NumExp
BE ∈ BoolExp
N ∈ IntLit = {. . . , -2, -1, 0, 1, 2, . . .}
B ∈ BoolLit = {true, false}
A ∈ ArithmeticOperator = {+, -, *, /, %}
R ∈ RelationalOperator = {<, =, >}
L ∈ LogicalOperator = {and, or}

Production Rules
P ::= (el Nnumargs NE body) [Program]

NE ::= Nnum [IntVal]
| (arg Nindex) [Input]
| (Arator NE rand1 NE rand2) [ArithmeticOperation]
| (if BE test NE then NE else) [Conditional]

BE ::= Bbool [BoolVal]
| (Rrator NE rand1 NE rand2) [RelationalOperation]
| (Lrator BE rand1 BE rand2) [LogicalOperation]

Figure 2.4 An s-expression grammar for EL.

A syntactic domain is a collection of program phrases. Primitive syntactic
domains are collections of phrases with no substructure. The primitive syntactic
domains of EL are IntLit, BoolLit, ArithmeticOperator, RelationalOperator, and
LogicalOperator. Primitive syntactic domains are specified by an enumeration
of their elements or by an informal description with examples. For instance, the
details of what constitutes a numeral in EL are left to the reader’s intuition.

Compound syntactic domains are collections of phrases built out of other
phrases. Because compound syntactic domains are defined by a grammar’s pro-
duction rules, the list of syntactic domains does not explicitly indicate their
structure. All syntactic domains are annotated with domain variables (such as
NE , BE , and N ) that range over their elements; these play an important role in
the production rules.

The production rules specify the structure of compound domains. There is
one rule for each compound domain. A production rule has the form

domain-variable ::= pattern [phrase-type]
| pattern [phrase-type]
. . .
| pattern [phrase-type]
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where

• domain-variable is the domain variable for the compound syntactic domain
being defined,

• pattern is an s-expression pattern (defined below), and

• phrase-type is a mnemonic name for the subclass of phrases in the domain that
match the pattern. The phrase types correspond to the labels of intermediate
nodes in an AST.

Each line of the rule is called a production; it specifies a collection of phrases
that are considered to belong to the compound syntactic domain being defined.
The second production rule in Figure 2.4, for instance, has four productions, spec-
ifying that a NumExp can be an integer literal, an indexed input, an arithmetic
operation, or a conditional.

S-expression grammars are specialized versions of context-free grammars, the
standard way to define programming language syntax. Domain variables play
the role of nonterminals in such grammars. Our grammars are context-free be-
cause each production specifies the expansion of a single nonterminal in a way
that does not depend on the context in which that nonterminal appears. The
terminals of an s-expression grammar are tokens written in teletype font, such
as parentheses, keywords, and literals. For certain elementary domains, we gloss
over the details of how their elements are constructed from more basic parts,
and instead provide a set-based description. For example, we use the description
{. . . , -2, -1, 0, 1, 2, . . .} to define integer literals rather than using productions
to specify how they can be constructed from digits and an optional minus sign.

An s-expression pattern appearing in a production stands for all s-expressions
that have the form of the pattern. An s-expression pattern may include symbolic
tokens (such as el, arg, if) to differentiate it from other kinds of s-expression
patterns. Domain variables may appear as tokens in s-expression patterns. For
example, the pattern (if BE test NE then NE else) contains a symbolic token (if)
and the domain variables BE test , NE then , and NE else . Such a pattern specifies the
structure of a compound phrase — a phrase that is built from other phrases.
Subscripts on the domain variables indicate their role in the phrase. This helps to
distinguish positions within a phrase that have the same domain variable — e.g.,
the then and else parts of a conditional, which are both numerical expressions.
This subscript appears as an edge label in the AST node corresponding to the
pattern, while the phrase type of the production appears as the node label. So
the if pattern denotes an AST node pattern of the form:
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Conditional

BE

test

NE

then

NE

else

An s-expression pattern PT is said to match an s-expression SX if PT ’s
domain variables d1, . . ., dn can be replaced by matching s-expressions SX 1 , . . .,
SX n to yield SX . Each SX i must be an element of the domain over which di

ranges. A compound syntactic domain contains exactly those s-expressions that
match the patterns of its productions in an s-expression grammar.

For example, Figure 2.5 shows the steps by which the NumExp production

(if BE test NE then NE else)

matches the s-expression

(if (= (arg 1) 3) (arg 2) 4)

Matching is a recursive process: BE test matches (= (arg 1) 3), NE then matches
(arg 2), and NE else matches 4. The recursion bottoms out at primitive syntactic
domain elements (in this case, elements of the domain IntLit). Figure 2.5 shows
how an AST for the sample if expression is constructed as the recursive matching
process backs out of the recursion.

Note that the pattern (if BE test NE then NE else) would not match any of
the s-expressions (if 1 2 3), (if (arg 2) 2 3), or (if (+ (arg 1) 1) 2 3),
because none of the test expressions 1, (arg 2), or (+ (arg 1) 1) match any
of the patterns in the productions for BoolExp.

More formally, the rules for matching s-expression patterns to s-expressions
are as follows:

• A pattern (PT 1 . . . PT n) matches an s-expression (SX 1 . . . SX n) if each
subpattern PT i matches the corresponding subexpression SX i .

• A symbolic token T as a pattern matches only itself.

• A domain variable for a primitive syntactic domain D matches an s-expression
SX if SX is an element of D.

• A domain variable for a compound syntactic domain D matches an s-expression
SX if one of the patterns in the rule for D matches SX .

If SX is an s-expression, we shall use the notation SX D to designate the
domain element in D that SX designates. When D is a compound domain, SX D
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Figure 2.5 The steps by which (if (= (arg 1) 3) (arg 2) 4) is determined to be
a member of the syntactic domain NumExp. In each row, an s-expression matches a
domain by a production to yield an abstract syntax tree.
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P ∈ Prog ::= (el Nnumargs NE body) [Program]

NE ∈ NumExp ::= Nnum [IntVal]
| (arg Nindex) [Input]
| (Arator NE rand1 NE rand2) [ArithmeticOperation]
| (if BE test NE then NE else) [Conditional]

BE ∈ BoolExp ::= Bbool [BoolVal]
| (Rrator NE rand1 NE rand2) [RelationalOperation]
| (Lrator BE rand1 BE rand2) [LogicalOperation]

N ∈ IntLit = {. . . , -2, -1, 0, 1, 2, . . .}
B ∈ BoolLit = {true, false}
A ∈ ArithmeticOperator = {+, -, *, /, %}
R ∈ RelationalOperator = {<, =, >}
L ∈ LogicalOperator = {and, or}

Figure 2.6 A more concise rendering of the s-expression grammar for EL.

corresponds to an abstract syntax tree that indicates how SX matches one of the
rule patterns for the domain. For example,

(if (= (arg 1) 3) (arg 2) 4)NumExp

can be viewed as the abstract syntax tree depicted in Figure 2.5 on page 28. Each
node of the AST indicates the production that successfully matches the corre-
sponding s-expression, and each edge indicates a domain variable that appeared
in the production pattern.

In the notation SX D , domain subscript D serves to disambiguate cases where
SX belongs to more than one syntactic domain. For example, 1IntLit is 1 as a
primitive numeral, while 1NumExp is 1 as a numerical expression. The subscript
will be omitted when the domain is clear from context.

Using the s-expression grammar specified in Figure 2.4, the abstract syntax
tree in Figure 2.2 can be expressed as:

(el 3 (if (and (> (arg 1) 1) (< (arg 1) 10))

0

(* (arg 2) (arg 3))))

To make s-expression grammars more concise, we will often combine the spec-
ification of a compound syntactic domain with its production rules. Figure 2.6
shows the EL s-expression grammar written in this more concise style.
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Exercise 2.1

a. Write an EL program that takes three integers and returns the largest one.

b. Draw an AST for your program.

2.3.3 Phrase Tags

S-expression grammars for our mini-languages will generally follow the Lisp-style
convention that compound phrases begin with a phrase tag that unambiguously
indicates the phrase type. In EL, if is an example of a phrase tag. The fact
that all compound phrases are delimited by explicit parentheses eliminates the
need for syntactic keywords in the middle of or at the end of phrases (e.g., then,
else, and endif in a conditional).

Because phrase tags can be cumbersome, we will often omit them when no
ambiguity results. Figure 2.7 shows an alternative syntax for EL in which ev-
ery production pattern is marked with a distinct phrase tag. In this alternative
syntax, the addition of 1 and 2 would be written (arith + (num 1) (num 2))

— quite a bit more verbose than (+ 1 2)! But most of the phrase tags can
be removed without introducing ambiguity. Because numerals are clearly distin-
guished from other s-expressions, there is no need for the num tag. Likewise, we
can dispense with the bool tag. Since the arithmetic operators are disjoint from
the other operators, the arith tag is superfluous as are the rel and log tags.
The result of these optimizations is the original EL syntax in Figure 2.4.

2.3.4 Sequence Patterns

As defined above, each component of an s-expression pattern matches only a
single s-expression. But sometimes it is desirable for a pattern component to
match a sequence of s-expressions. For example, suppose we want to extend the
+ operator of EL to accept an arbitrary number of numeric operands, making
(+ 1 2 3 4) and (+ 2 (+ 3 4 5) (+ 6 7)) legal numerical expressions in EL.
Using the simple patterns introduced above, this extension requires an infinite
number of productions:

NE ::= . . .
| (+) [Addition-0]
| (+ NE rand1) [Addition-1]
| (+ NE rand1 NE rand2) [Addition-2]
| (+ NE rand1 NE rand2 NE rand3) [Addition-3]
| . . .
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P ::= (el Nnumargs NE body) [Program]

NE ::= (num Nnum) [IntVal]
| (arg Nindex) [Input]
| (arith Arator NE rand1 NE rand2) [ArithmeticOperation]
| (if BE test NE then NE else) [Conditional]

BE ::= (bool Bbool) [BoolVal]
| (rel Rrator NE rand1 NE rand2) [RelationalOperation]
| (log Lrator BE rand1 BE rand2) [LogicalOperation]

Figure 2.7 An alternative syntax for EL in which every production pattern has a
phrase tag.

Here we introduce a concise way of handling this kind of syntactic flexibil-
ity within s-expression grammars. We extend s-expression patterns so that any
pattern can be annotated with a postfix ∗ character. Such a pattern is called a
sequence pattern. A sequence pattern PT ∗ matches any consecutive sequence
of zero or more s-expressions SX 1 . . . SX n such that each SX i matches the
pattern PT .

For instance, the extended addition expression can be specified concisely by
the pattern (+ NE ∗

rand). Here are some phrases that match this new pattern,
along with the sequence matched by NE ∗

rand in each case:3

(+ 6 8 2 1) NE∗
rand = [6, 8, 2, 1]NumExp

(+ 7 (+ 5 8 4) (+ 9 6)) NE∗
rand = [7, (+ 5 8 4), (+ 9 6)]NumExp

(+ 3) NE∗
rand = [3]NumExp

(+) NE∗
rand = [ ]NumExp

In graphical depictions of ASTs, a sequence node will be drawn as a solid cir-
cle whose components (indexed starting at 1) branch out from the node. E.g.,
Figure 2.8 shows the AST for (+ 7 (+ 5 8 4) (+ 9 6)) in EL with extended
addition expressions.

Note that a sequence pattern can match any number of elements, including
zero or one. To specify that an addition should have a minimum of two operands,
we could use the following production pattern:

(+ NE rand1 NE rand2 NE∗
rest)

A postfix + is similar to ∗, except that the pattern matches only a sequence
with at least one element. Thus, the pattern (+ NE+

rand) is an alternative way

3[ ]NumExp denotes the empty sequence of numerical expressions, as explained in Section A.3.5.
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of expressing the essence of the pattern (+ NE rand NE ∗
rest). However, the two

patterns are subtly different: (+ NE+
rand) denotes an AST node with a single

component that is a sequence of numerical expressions, while (+ NE rand NE ∗
rest)

denotes an AST node with two components — a numerical expression (its rand)
and a sequence of numerical expressions (its rest).

A postfix ? indicates a sequence of either zero or one elements of a domain. It
is used to specify optional syntactic elements. For example, (- E1 E ?

2) describes
the syntax for a - operator that designates subtraction (in the two-element case)
or unary negation (in the one-element case).

A postfix *, +, or ? can be attached to any s-expression pattern, not just a
domain variable. For example, in the s-expression pattern

(cond (BE test NE then)
∗ (else NEdefault)

?)

the subpattern (BE test NE then)
∗ matches any sequence of parenthesized clauses

containing a boolean expression followed by a numerical expression, and the sub-
pattern (else NE default)

? matches an optional else clause.
To avoid ambiguity, s-expression grammars are not allowed to use s-expression

patterns in which multiple sequence patterns enable a single s-expression to match
a pattern in more than one way. As an example of a disallowed pattern, consider
(op NE ∗

rand1 NE ∗
rand2), which could match the s-expression (op 1 2) in three

different ways:

• NE∗
rand1 = [1, 2]NumExp and NE∗

rand2 = [ ]NumExp

• NE∗
rand1 = [1]NumExp and NE∗

rand2 = [2]NumExp

• NE∗
rand1 = [ ]NumExp and NE∗

rand2 = [1, 2]NumExp

A disallowed pattern can always be transformed into a legal pattern by inserting
explicit parentheses to demarcate components. For instance, the following are all
unambiguous legal patterns:

(op (NE∗
rand1) (NE∗

rand2))

(op (NE∗
rand1) NE∗

rand2)

(op NE∗
rand1 (NE∗

rand2))

2.3.5 Notational Conventions

In addition to the s-expression patterns described above, we will employ a few
other notational conventions for syntax.
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Addition

rand

IntVal

1

7

Addition

2

rand

IntVal

1

5

IntVal

2

8

IntVal

3

4

Addition

3

rand

IntVal

1

9

IntVal

2

6

Figure 2.8 AST notation for (+ 7 (+ 5 8 4) (+ 9 6)) in EL with extended addi-
tion expressions.

Domain Variables

In addition to being used in s-expression patterns, domain variables can appear
inside s-expressions when they denote particular s-expressions. For example, if
NE 1 is the s-expression (+ 1 2) and NE 2 is the s-expression (- 3 4), then
(* NE 1 NE 2) is the same syntactic entity as (* (+ 1 2) (- 3 4)).

Ellipsis Notation

If SX is an s-expression pattern denoting an element of a syntactic domain D,

then the ellipsis notation SX j . . . SX k specifies a sequence with (k − j + 1)
elements from D*. For example, (+ NE 1 . . . NE 5) designates an EL extended
addition expression with 5 operands, and

(cond (BE1 NE1) . . . (BEm NEm) (else NEdefault))

stands for an expression containing m pairs of the form (BE i NE i). The pattern

(+ N1 . . . Ni−1 NE i . . . NEn)

designates an EL extended addition expression with n operands in which the first
i−1 operands are numeric literals (a specific kind of numeric expression) and the
remaining operands are arbitrary numeric expressions.

Note that ellipsis notation can denote sequences with zero elements or one
element: SX j . . . SX k denotes a sequence with one element if k = j and a
sequence with zero elements if k = (j − 1).
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Index Notation

To abbreviate ellipsis notation further, we will sometimes employ the indexed
notation SX k

i=j to stand for SX j . . . SX k , where SX i refers to a particular
element of this sequence. Here are the ellipsis notation examples from above
expressed with index notation:

(+ NE 5
i=1)

(cond (BE j NE j)
m
j=1 (else NEdefault))

(+ N i−1
j=1 NEn

k=i)

Note that SX k
i=j denotes a sequence with one element if k = j and a sequence

with zero elements if k = (j − 1).

Sequence Notation

Sequence notation, including the infix notations for the cons (“ . ”) and append
(“ @ ”) sequence functions (see Section A.3.5), can be intermixed with s-expression
notation to designate sequence elements of compound syntactic domains. For ex-
ample, all of the following are alternative ways of writing the same extended EL
addition expression:

(+ 1 2 3)

(+ [1, 2, 3])

(+ [1, 2] @ [3])

(+ 1 . [2, 3])

Similarly, if NE 1 = 1, NE ∗
2 = [2, (+ 3 4)], and NE ∗

3 = [(* 5 6), (- 7 8)],
then (+ NE 1 . NE ∗

2) designates the same syntactic entity as

(+ 1 2 (+ 3 4))

and (+ NE ∗
2 @ NE ∗

3) designates the same syntactic entity as

(+ 2 (+ 3 4) (* 5 6) (- 7 8))

The sequence notation is legal only in positions where a production for a
compound syntactic domain contains a sequence pattern. For example, the fol-
lowing notations are illegal because if expressions do not contain any component
sequences:

(if [(< (arg 1) 1), 2, 3])

(if [(< (arg 1) 1), 2] @ [3])

(if (< (arg 1) 1) . [2, 3])
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nheight : NumExp→ Nat

nheight[[N ]] = 0

nheight[[(arg N )]] = 0

nheight[[(A NE1 NE2)]] = (1 +Nat (max nheight[[NE1 ]] nheight[[NE2 ]]))

nheight[[(if BE test NE then NE else)]]
= (1 +Nat (max bheight[[BE test ]] (max nheight[[NE then ]] nheight[[NE else ]])))

bheight : BoolExp→ Nat

bheight[[B ]] = 0

bheight[[(R NE1 NE2)]] = (1 +Nat (max nheight[[NE1 ]] nheight[[NE2 ]]))

bheight[[(L BE1 BE2)]] = (1 +Nat (max bheight[[BE1 ]] bheight[[BE2 ]]))

Figure 2.9 Two examples illustrating the form of function definitions on syntactic
domains.

Similarly, the notation (+ 1 [2, 3]) is not legal for an EL extended addition ex-
pression, because the production pattern (+ NE ∗

rand) requires a single sequence
component, not two components (a numerical expression and a sequence of nu-
merical expressions). If the production pattern were instead (+ NE rand NE ∗

rest),
then the expression (+ 1 [2, 3]) would match the pattern, but (+ [1, 2, 3]),
(+ [1, 2] @ [3]), and (+ 1 . [2, 3]) would not. However, according to our con-
ventions, (+ 1 2 3) would match either of these production patterns.

Sequence notation can be used in s-expression patterns as well. For exam-
ple, the pattern (+ NE rand1 . NE ∗

rest) matches any extended addition expression
with at least one operand, while the pattern (+ [4, 7] @ NE ∗

rest) matches any
extended addition expression whose first two operands are 4 and 7.

Syntactic Functions

We will follow a convention (standard in the semantics literature) that functions
on compound syntactic domains are defined by a series of clauses, one for each
production. Figure 2.9 illustrates this style of definition for two functions on EL
expressions: nheight specifies the height of a numerical expression, while bheight
specifies the height of a boolean expression. Each clause consists of two parts: a
head that specifies an s-expression pattern from a production; and a body defining
the meaning of the function for s-expressions that match the head.

The double brackets, [[ ]], are often used in syntactic functions to demar-
cate a syntactic operand. They help to visually distinguish phrases in the pro-
graming language being processed from phrases in the metalanguage defining
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the function. These brackets may be viewed as part of the name of the syn-
tactic function. In function applications involving bracket notation, the func-
tion is assumed to bind tightly with the syntactic argument. For instance, the
application max nheight[[NE 1 ]] nheight[[NE2 ]] is parsed as if it were written
(max (nheight[[NE1 ]]) (nheight[[NE2 ]])).

2.3.6 Mathematical Foundation of Syntactic Domains

Exactly what kinds of entities are defined by s-expression grammars? The an-
swer to this question is important, because we will spend the rest of this book
manipulating such entities. Intuitively, each compound syntactic domain in an
s-expression grammar is defined to be the set of trees whose structure is deter-
mined by the productions for that domain. But can we define these trees in a
more formal way?

Yes! Using the domain concepts introduced in Section A.3, we can precisely
define the mathematical structures specified by an s-expression grammar via what
we will call the sum-of-products interpretation. An s-expression grammar
defines a (potentially mutually recursive) collection of syntactic domains. In the
sum-of-products interpretation we define:

• the primitive syntactic domains mentioned in the s-expression grammar, each
simply containing the elements specified for that domain;

• a new domain for each production, which we name with the phrase type of
that production and define to be the product of the domains associated with
the domain-variable occurrences in the production pattern;

• the compound syntactic domains mentioned in the s-expression grammar, each
defined as a sum of domains, one for each production for that domain.

Note these special cases:

• The domain for a production containing exactly one domain-variable occur-
rence turns out to be a synonym for the domain associated with that domain
variable.

• A compound domain with just one production turns out to be a synonym for
the domain associated with that production.

• A production containing no domain-variable occurrences represents the Unit
domain.
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Prog = Program
Program = IntLit × NumExp
NumExp = IntVal + Input + ArithmeticOperation + Conditional
IntLit = {. . . , -2, -1, 0, 1, 2, . . .}
IntVal = IntLit
Input = IntLit
ArithmeticOperation = ArithmeticOperator × NumExp × NumExp
ArithmeticOperator = {+, -, *, /, %}
Conditional = BoolExp × NumExp × NumExp
BoolExp = BoolVal + RelationalOperation + LogicalOperation
BoolLit = {true, false}
BoolVal = BoolLit
RelationalOperation = RelationalOperator × NumExp × NumExp
RelationalOperator = {<, =, >}
LogicalOperation = LogicalOperator × BoolExp × BoolExp
LogicalOperator = {and, or}

Figure 2.10 Syntactic domains for sum-of-products interpretation of the s-expression
grammar for EL.

Any occurrence of a sequence pattern PT ∗ in a production represents a sequence
domain whose elements are described by the pattern PT .

For example, Figure 2.10 shows the complete domain definitions implied by
the s-expression grammar for EL in Figure 2.4. Recall that the Prog domain
is defined by the single production pattern (el Nnumargs NE body), with phrase
type Prog. So Prog is a synonym for Program, a product domain of IntLit
(the domain associated with the domain variable N ) and NumExp (the domain
associated with the domain variable NE ). In the s-expression grammar, the
NumExp domain is defined by the following four productions:

NE ::= Nnum [IntVal]
| (arg Nindex) [Input]
| (Arator NE rand1 NE rand2) [ArithmeticOperation]
| (if BE test NE then NE else) [Conditional]

So NumExp is interpreted as a sum of four domains:

1. the IntVal domain, a synonym for IntLit, representing an integer literal;

2. the Input domain, a synonym for IntLit, representing the index of a reference
to a program input;
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〈3,
Conditional�NumExp

〈LogicalOperation�BoolExp〈and,
RelationalOperation�BoolExp

〈>, (Input�NumExp 1), (IntVal�NumExp 1)〉,
RelationalOperation�BoolExp

〈<, (Input�NumExp 1), (IntVal�NumExp 10)〉
〉,

(IntVal�NumExp 0),
(ArithmeticOperation�NumExp 〈*, (Input�NumExp 2), (Input�NumExp 3)〉)
〉

〉

Figure 2.11 Sample EL program from Figure 2.2 expressed in syntactic-domain no-
tation.

3. the ArithmeticOperation domain, whose elements are triples of an arithmetic
operator in ArithmeticOperator and two operands from NumExp; and

4. the Conditional domain, whose elements are triples of a test expression from
BoolExp and two branch expressions from NumExp.

The structure of BoolExp is similarly determined from its productions. Fig-
ure 2.11 shows how the EL program AST from Figure 2.2 can be expressed in
this domain notation.

In the sum-of-products interpretation, the tag on an AST node indicates the
summand domain to which it belongs, and the subtrees of that node are the prod-
uct components of that summand domain. Throughout the rest of this book, we
will assume that any syntactic phrase constructed from an s-expression gram-
mar is really an element of a syntactic domain defined via the sum-of-products
interpretation. E.g., the EL expression (+ 1 (* 2 3)) is not a sequence of char-
acters, nor is it an s-expression tree; it is an element of the NumExp domain.

Exercise 2.2

a. Define two syntactic functions

nrange : NumExp → (IntLit × IntLit)
brange : BoolExp → (IntLit × IntLit)

such that nrange returns a pair of the smallest and largest argument index referenced
in an EL numerical expression and brange does the same for a boolean expression.
E.g., for the conditional expression in Figure 2.2, nrange should return 〈1, 3〉.
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b. Define a function argcheck :Prog→ Bool that returns true if all argument indices ref-
erenced within an EL program are between 1 and the declared number of arguments;
otherwise, it returns false. argcheck performs a simple static analysis — determin-
ing a property of the program (might it encounter an out-of-bounds argument index?)
without executing it.

(To complete this exercise, you may need to review some of the metalanguage notation
in Appendix A.)

2.4 The Syntax of PostFix

Equipped with our syntactic tools, we are now ready to formally specify the syn-
tactic structure of PostFix, the stack language introduced in Section 1.4, and
to explore some variations on this structure. Figure 2.12 presents an s-expression
grammar for PostFix. Top-level programs are represented as s-expressions of
the form (postfix Nnumargs Qbody), where Nnumargs is a numeral specifying the
number of arguments and Qbody is the command sequence executed by the pro-
gram. The sequence pattern C ∗ in the production for CommandSeq (Q) indicates
that CommandSeq is a sequence domain over elements from the Command do-
main. All of the elements of Command (C ) are single tokens (e.g., add and
sel), except for executable sequences, which are parenthesized elements of the
CommandSeq domain. The mutually recursive structure of Command and Com-
mandSeq permits arbitrary nesting of executable sequences.

The concrete details specified by Figure 2.12 are only one way of capturing
the underlying abstract syntactic structure of the language. Figure 2.13 presents
an alternative s-expression grammar for PostFix. In order to avoid confusion,
we will refer to the language defined in Figure 2.13 as PostFix2.

There are two main differences between the grammars of PostFix and Post-
Fix2.

1. The PostFix2 grammar strictly adheres to the phrase tag convention intro-
duced in Section 2.3.3. That is, every element of a compound syntactic domain
appears as a parenthesized structure introduced by a unique tag. For example,
1 becomes (int 1), pop becomes (pop), and add becomes (arithop add).4

2. Rather than representing command sequences as a sequence domain, Post-
Fix2 uses the : and (skip) commands to encode such sequences. (skip) is
intended to be a “no op” command that leaves the stack unchanged, while

4The arithop keyword underscores that the arithmetic operators are related; similarly for
relop.
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P ∈ Prog ::= (postfix Nnumargs Qbody) [Program]

Q ∈ CommandSeq ::= C ∗ [CommandSequence]

C ∈ Command ::= Nnum [IntVal]
| pop [Pop]
| swap [Swap]
| Aop [ArithOp]
| Rop [RelOp]
| nget [NumGet]
| sel [Select]
| exec [Execute]
| (Qcoms) [ExecutableSequence]

A ∈ ArithmeticOperator = {add, sub, mul, div, rem}
R ∈ RelationalOperator = {lt, eq, gt}
N ∈ IntLit = {. . . , -2, -1, 0, 1, 2, . . .}

Figure 2.12 An s-expression grammar for PostFix.

(: C1 C2) is intended first to perform C1 on the current stack and then to
perform C2 on the stack resulting from C1 . The : and (skip) commands in
PostFix2 serve the roles of cons and [ ] for command sequences in PostFix.
For example, the PostFix command sequence

[8, 9, add]Command = (cons 8 (cons 9 (cons add [ ]Command)))

can be encoded in PostFix2 as a single command:

(: (int 8) (: (int 9) (: (arithop add) (skip))))

The difference in phrase tags is a surface variation in concrete syntax that does
not affect the structure of abstract syntax trees. Whether sequences are explicit
(the original grammar) or implicit (the alternative grammar) is a deeper variation
because the abstract syntax trees differ in these two cases (see Figure 2.14).

Although the tree structures are similar, it is not a priori possible to deter-
mine that the second tree encodes a sequence without knowing more about the
semantics of compositions and skips. In particular, : and (skip) must satisfy
two behavioral properties in order for them to encode sequences:

• (skip) must be an identity for the command :

I.e., (: C (skip)) and (: (skip) C) must behave like C .
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P ∈ Prog ::= (postfix Nnumargs Cbody) [Program]

C ∈ Command ::= (int Nnum) [IntVal]
| (pop) [Pop]
| (swap) [Swap]
| (arithop Aop) [ArithOp]
| (relop Rop) [RelOp]
| (nget) [NumGet]
| (sel) [Select]
| (exec) [Execute]
| (seq Ccom) [ExecutableSequence]
| (: Ccom1 Ccom2) [Compose]
| (skip) [Skip]

A ∈ ArithmeticOperator = {add, sub, mul, div, rem}
R ∈ RelationalOperator = {lt, eq, gt}
N ∈ IntLit = {. . . , -2, -1, 0, 1, 2, . . .}

Figure 2.13 An s-expression grammar for PostFix2, an alternative syntax for Post-
Fix.

Command
Sequence

IntVal

1

8

num

IntVal

2

9

num

ArithOp

3

add

op

Compose

IntVal

com1

8

num

Compose

com2

IntVal

com1

9

num

Compose

com2

ArithOp

com1

add

op

Skip

com2

(a) AST for PostFix expression (b) AST for PostFix2 expression

Figure 2.14 A comparison of the abstract syntax trees for two encodings of an expres-
sion.

• The command : must be associative
I.e., (: C1 (: C2 C3)) must behave the same as (: (: C1 C2) C3).

These two properties amount to saying that (1) skips can be ignored and (2) in a
tree of compositions, only the order of the leaves matters. With these properties,
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any tree of compositions is isomorphic to a sequence of the non-skip leaves. The
informal semantics of : and (skip) given above satisfies these two properties.

Is one of the two grammars presented above “better” than the other? It de-
pends on the context in which they are used. As the following example indicates,
the PostFix grammar certainly leads to programs that are more concise than
those generated by the PostFix2 grammar:

(postfix 1 (1 2 add) (3 4 mul) sel exec)

(postfix2 1

(: (seq (: (int 1) (: (int 2) (: (arithop add) (skip)))))

(: (seq (: (int 3) (: (int 4) (: (arithop mul) (skip)))))

(: (sel) (: (exec) (skip))))))

Additionally, we shall see that the explicit sequences of PostFix make it more
amenable to certain kinds of semantic analysis. On the other hand, other semantic
and pragmatic tools are easier to apply to PostFix2 programs. Though we will
focus on the PostFix grammar, we will consider PostFix2 when it is instructive
to do so. In any event, the reader should be aware that even the fairly constrained
boundaries of s-expression grammars leave some room for design decisions.

Exercise 2.3

a. Consider a subset of PostFix that has the following commands: integer literals,
executable sequences, arithmetic operators, and exec. Using the sum-of-products
interpretation described in Section 2.3.6, give definitions for all the syntactic domains
implied by the s-expression grammar for this subset. Your domain definitions may be
recursive.

b. Express the PostFix program (postfix 1 (2 mul) exec) as an element of your
syntactic domains.

c. Repeat the above two parts for the corresponding subset of PostFix2.

(To complete this exercise, you may need to review some of the metalanguage notation
in Appendix A.)

Notes

Early proponents of abstract syntax were McCarthy [McC62] and Landin [Lan66].
This notion is commonly used in operational and denotational semantics to ignore
unimportant syntactic details. Interpreters and compilers often have a “front-
end” stage that converts concrete syntax into data structures representing ab-
stract syntax trees.
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The concrete syntax for programming languages is usually specified via a
context-free grammar, a formalism covered in any automata theory text (e.g,
[Min67, HU79, Sip06]). In the programming language literature, a standard no-
tation for such grammars is Backus-Naur form (BNF), which was used in the
report defining Algol 60 [BBG+63].

Our s-expression grammars are based on McCarthy’s Lisp s-expression nota-
tion [McC60], which is a trivially parsable generic and extensible concrete syntax
for programming languages.

Many tools — most notably the scanner generator Lex [Les75] and the parser
generator Yacc [Joh75] — are available for converting concrete syntactic notations
that satisfy more complex grammatical specifications into abstract syntax trees.
A discussion of these tools, the scanning and parsing theory behind them, and
the grammatical specifications they use can be found in almost any compiler
textbook. For a particularly concise account, consult one of Appel’s textbooks
[App98b, App98a, AP02].
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Operational Semantics

And now I see with eye serene
The very pulse of the machine.

— William Wordsworth, “She Was a Phantom of Delight”

3.1 The Operational Semantics Game

Consider executing the following PostFix program on the arguments [4, 5]:

(postfix 2 (2 (3 mul add) exec) 1 swap exec sub)

It helps to have a bookkeeping notation that represents the process of applying
the informal rules presented in Chapter 1. For example, the table in Figure 3.1
illustrates one way to represent the execution of the above program. The table has
two columns: the first column in each row holds the current command sequence;
the second holds the current stack. The execution process begins by filling the
first row of the table with the command sequence of the given program and a
stack consisting of the program arguments. Execution proceeds in a step-by-step
fashion by using the rule for the first command of the current row to generate the
next row. Each execution step removes the first command from the sequence and
updates the stack. In the case of exec, new commands may also be prepended to
the command sequence. The execution process terminates as soon as a row with
an empty command sequence is generated. The result of the execution is the top
stack element of the final row (-3 in the example).

The table-based technique for executing PostFix programs exemplifies an
operational semantics. Operational semantics formalizes the common intu-
ition that program execution can be understood as a step-by-step process that
evolves by the mechanical application of a fixed set of rules. Sometimes the
rules describe how the state of some physical machine is changed by executing
an instruction. For example, assembly code instructions are defined in terms of
the effect that they have on the architectural elements of a computer: registers,
stack, memory, instruction stream, etc. But the rules may also describe how
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Commands Stack
(2 (3 mul add) exec) 1 swap exec sub 4

5

1 swap exec sub (2 (3 mul add) exec)

4

5

swap exec sub 1

(2 (3 mul add) exec)

4

5

exec sub (2 (3 mul add) exec)

1

4

5

2 (3 mul add) exec sub 1

4

5

(3 mul add) exec sub 2

1

4

5

exec sub (3 mul add)

2

1

4

5

3 mul add sub 2

1

4

5

mul add sub 3

2

1

4

5

add sub 6

1

4

5

sub 7

4

5

-3

5

Figure 3.1 A table showing the step-by-step execution of a PostFix program.
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language constructs affect the state of some abstract machine that provides a
mathematical model for program execution. Each state of the abstract machine
is called a configuration.

For example, in the PostFix abstract machine implied by the table in Fig-
ure 3.1, each configuration is modeled by one row of the execution table: a pair
of a program and a stack. The next configuration of the machine is determined
from the current one based on the first command in the current program. The
behavior of each command can be specified in terms of how it transforms the cur-
rent configuration into the next one. For example, executing the add command
removes it from the command sequence and replaces the top two elements of the
stack by their sum. Executing the exec command pops an executable sequence
from the top of the stack and prepends its commands in front of the commands
following exec.

The general structure of an operational semantics execution is illustrated in
Figure 3.2. An abstract machine accepts a program to be executed along with
its inputs and then chugs away until it emits an answer. Internally, the abstract
machine typically manipulates configurations with two kinds of parts:

1. The code component: a program phrase that controls the rest of the com-
putation.

2. The state components: entities that are manipulated by the program dur-
ing its execution. In the case of PostFix, the single state component is a
stack, but configurations for other languages might include state components
modeling random-access memory, a set of name/object bindings, a file system,
a graphics state, various kinds of control information, etc. Sometimes there
are no state components, in which case a configuration is just code.

The stages of the operational execution are as follows:

• The program and its inputs are first mapped by an input functioninto an ini-
tial configuration of the abstract machine. The code component of the initial
configuration is usually some part of the given program, and the state compo-
nents are appropriately initialized from the inputs. For instance, in an initial
configuration for PostFix, the code component is the command sequence body
of the program and the single state component is a stack containing the integer
arguments in order with the first argument at the top of the stack.

• After an initial configuration has been constructed, it’s time to “turn the crank”
of the abstract machine. During this phase, the rules governing the abstract
machine are applied in an iterative fashion to yield a sequence of intermediate
configurations. Each configuration is the result of one step in the step-by-step



48 Chapter 3 Operational Semantics
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Figure 3.2 The operational semantics “game board.”

execution of the program. This stage continues until a configuration is reached
that is deemed to be a final configuration. What counts as a final config-
uration varies widely between abstract machines. In the case of PostFix, a
configuration is final when the code component is an empty command sequence.

• The last step of execution is mapping the final configuration to an answer via
an output function. What is considered to be an answer differs greatly from
language to language. For PostFix, the answer is the top stack value in a final
configuration, if it’s an integer. If the stack is empty or the top value is an
executable sequence, the answer is an error token. In other systems, the answer
might also include elements like the final state of the memory, file system, or
graphics screen.

Sometimes an abstract machine never reaches a final configuration. This can
happen for one of two reasons:

1. The abstract machine may reach a nonfinal configuration to which no rules
apply. Such a configuration is said to be a stuck state. Stuck states often
model error situations.
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2. The rule-applying process of the abstract machine might not terminate. In any
universal programming language (a programming language that can express
all computable functions) it is possible to write programs that loop forever.
For such programs, the execution process of the abstract machine never termi-
nates. As a consequence of the halting theorem — which states that there
is no program that can decide for all programs P and all inputs A whether
P terminates on A — we can’t do better than this: there’s no general way to
tweak the abstract machine of a universal language so that it always indicates
when it is in an infinite loop.

We show in Section 3.6 that all PostFix programs must terminate. This
implies that PostFix is not universal.

3.2 Small-step Operational Semantics (SOS)

3.2.1 Formal Framework

Above, we presented a high-level introduction to operational semantics. Here, we
iron out all the details necessary to turn this approach into a formal framework
known as small-step operational semantics (SOS1). An SOS is character-
ized by the use of rewrite rules to specify the step-by-step transformation of
configurations in an abstract machine.

To express this framework formally, we will employ the mathematical meta-
language described in Appendix A. Before reading further, you should at least
skim this appendix to familiarize yourself with the notational conventions of the
metalanguage. Later, when you encounter an unfamiliar notation or concept,
consult the relevant section of this appendix for a detailed explanation.

Consider a programming language L with legal programs P ∈ Prog, inputs
I ∈ Inputs, and elements A ∈ AnsExp that are considered to be valid answers to
programs. Then an SOS for L is a five-tuple S = 〈CF ,⇒,FC , IF ,OF 〉, where:

• CF is the domain of configurations for an abstract machine for L. The domain
variable cf ranges over configurations.

• ⇒, the transition relation, is a binary relation on configurations that de-
fines the allowable transitions between configurations. The notation cf ⇒ cf ′

means that there is a (one step) transition from the configuration cf to
the configuration cf ′. This notation, which is shorthand for 〈cf, cf ′〉 ∈ ⇒, is

1This framework, due to Plotkin [Plo81], was originally called structural operational

semantics. It later became known as the small-step approach to distinguish it from — you
guessed it — a big-step approach (see Section 3.3).
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pronounced “cf rewrites to cf prime in one step.” The two parts of a tran-
sition have names: cf is called the left-hand side (LHS) and cf ′ is called
the right-hand side (RHS). The transition relation is usually specified by
rewrite rules, as described below in Section 3.2.3.

The reflexive, transitive closure of ⇒ is written
∗⇒. So cf

∗⇒ cf ′ means that
cf rewrites to cf ′ in zero or more steps. The sequence of transitions between
cf and cf ′ is called a transition path. The length of a transition path is

the number of transitions in the path. The notation cf =
n
=⇒ cf ′ means that cf

rewrites to cf ′ in n steps, i.e., via a transition path of length n. The notation
cf

∞⇒ means that there is an infinitely long transition path beginning with cf.

A configuration cf is reducible if there is some cf ′ such that cf ⇒ cf ′. If
there is no such cf ′, then we write cf 
⇒ and say that cf is irreducible. An ir-
reducible configuration (or its code component) is often called a normal form.
CF can be partitioned into two sets, ReducibleS (containing all reducible con-
figurations) and IrreducibleS (containing all irreducible ones). We omit the
subscript when it is clear from context. A transition relation ⇒ is determin-
istic if for every cf ∈ ReducibleS there is exactly one cf ′ such that cf ⇒ cf ′.
Otherwise, ⇒ is said to be nondeterministic.

• FC , the set of final configurations, is a subset of IrreducibleS containing
all configurations that are considered to be final states in the execution of a
program. The set StuckS of stuck states is defined to be (IrreducibleS − FC )
— i.e., the nonfinal irreducible configurations.

• IF : (Prog× Inputs)→ CF is an input function that maps a program and
its inputs to an initial configuration.

• OF :FC → AnsExp is an output function that maps a final configuration
to an appropriate answer domain.

An SOS defines the behavior of a program in a way that we shall now make
precise. What are the possible behaviors of a program? As discussed in Sec-
tion 3.1, a program either (1) returns an answer, (2) gets stuck in a nonfinal
irreducible configuration, or (3) loops infinitely. We model these via the follow-
ing Outcome domain, where stuckout designates a stuck program and loopout

designates an infinitely looping program:

StuckOut = {stuckout}
LoopOut = {loopout}

o ∈ Outcome = AnsExp + StuckOut + LoopOut
stuck = (StuckOut�Outcome stuckout)
∞ = (LoopOut�Outcome loopout)
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Suppose that an SOS has a deterministic transition relation. Then we can
define the behavior of a program P on inputs I as follows:

behdet : (Prog× Inputs)→ Outcome

behdet 〈P , I 〉 =

⎧⎪⎨⎪⎩
(AnsExp�Outcome (OF cf)) if (IF 〈P , I 〉) ∗⇒ cf ∈ FC

stuck if (IF 〈P , I 〉) ∗⇒ cf ∈ Stuck

∞ if (IF 〈P , I 〉) ∞⇒

In the first case, an execution starting at the initial configuration eventually
reaches a final configuration, whose answer is returned. In the second case, an
execution starting at the initial configuration eventually gets stuck at a nonfinal
configuration. In the last case, there is an infinite transition path starting at
the initial configuration, so the program never halts.2 We call this behavior
deterministic because a deterministic translation relation guarantees a unique
outcome.

What if the transition relation is not deterministic? In this case, it is possible
that there are multiple transition paths starting at the initial configuration. Some
of these might end at final configurations with different answers. Others might be
infinitely long or end at stuck states. In general, we must allow for the possibility
that there are many outcomes, so the signature of the behavior function beh in
this case must return a set of outcomes — i.e., an element of the powerset domain
P(Outcome).3

beh : (Prog× Inputs)→ P(Outcome)

o ∈ (beh 〈P , I 〉) if

⎧⎪⎪⎪⎨⎪⎪⎪⎩
o = (AnsExp�Outcome (OF cf))

and (IF 〈P , I 〉) ∗⇒ cf ∈ FC

o = stuck and (IF 〈P , I 〉) ∗⇒ cf ∈ Stuck

o = ∞ and (IF 〈P , I 〉) ∞⇒

An SOS with a nondeterministic transition relation won’t necessarily give rise to
results that contain multiple outcomes. Indeed, we will see later (in Section 3.5)
that some systems with nondeterministic transition relations can still have a
behavior that is deterministic — i.e., the resulting set of outcomes is always a
singleton.

2Though mathematically well defined, the behdet function is uncomputable because the ∞
symbol cannot actually be returned by a nonterminating process. However, if we instead view
∞ as indicating that behdet is undefined for a given program and inputs, then behdet is a partial
recursive function and is therefore computable [HU79]. This idea reappears in Chapter 5, where
we use the ⊥ symbol to stand for nonterminating computations.

3The result of beh must in fact be a nonempty set of outcomes, since every program will have
at least one outcome.
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An SOS (as well as the language defined by an SOS) is said to be strongly
normalizing, or terminating, if there are no infinitely long transition paths
starting with an initial configuration. In a strongly normalizing SOS, all program
executions terminate: for all programs P and inputs I , ∞ 
∈ (beh 〈P , I 〉). As we
will see in Section 3.6, both PostFix and EL are strongly normalizing.

3.2.2 Example: An SOS for PostFix

We can now formalize the elements of the PostFix SOS described informally
in Section 3.1 (except for the transition relation, which will be formalized in
Section 3.2.3). The details are presented in Figure 3.3, which uses domains and
domain variables defined in the s-expression grammar for PostFix defined in
Figure 2.12 on page 40.

A stack is a sequence of values that are either integer numerals (from do-
main IntLit) or executable sequences (from domain CommandSeq). PostFix
programs take a sequence of integer numerals as their inputs, and, when no error
is encountered, return an integer numeral as an answer. A configuration is a pair
of a command sequence and a stack. A final configuration is one whose command
sequence is empty and whose stack is nonempty with an integer numeral on top
(i.e., an element of FinalStack). The input function IF maps a program and
its numeric inputs to a configuration consisting of the body command sequence
and an initial stack with the inputs arranged from top down. If the number of
arguments N expected by the program does not match the actual number n of ar-
guments supplied, then IF returns a stuck configuration 〈[ ]Command, [ ]Value〉 that
represents an error. The output function OF returns the top integer numeral
from the stack of a final configuration.

The PostFix SOS in Figure 3.3 models errors using stuck states. By defini-
tion, stuck states are exactly those irreducible configurations that are nonfinal.
In PostFix, stuck states are irreducible configurations whose command sequence
is nonempty or those that pair an empty command sequence with a stack that
is empty or has an executable sequence on top. The outcome of a program that
reaches such a configuration will be stuck.

Although it is convenient to use stuck states to model errors, it is not strictly
necessary. With some extra work, it is always possible to modify the final config-
uration set FC and the output function OF so that such programs instead have
as their outcome some error token in AnsExp. Using PostFix as an example,
we can use a modified answer domain AnsExp ′ that includes an error token, a
modified final configuration set FC ′ that includes all irreducible configurations,
and the modified OF ′ shown below:
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Domains

V ∈ Value = IntLit + CommandSeq
S ∈ Stack = Value*

FinalStack = {S | (length S ) ≥ 1
and (nth 1 S ) = (IntLit�Value N ) for some N ∈ IntLit}

Inputs = IntLit*
AnsExp = IntLit

SOS

Suppose that the PostFix SOS has the form PFSOS = 〈CF ,⇒,FC , IF ,OF 〉.
Then the SOS components are:

CF = CommandSeq × Stack

⇒ is a deterministic transition relation defined in Section 3.2.3

FC = {[ ]Command} × FinalStack

IF : (Prog× Inputs)→ CF
= λ〈(postfix N Q), [N1 , . . . ,Nn ]〉 .

if N = n ; for n ∈ Int, n stands for the IntLit N that denotes n.
then 〈Q , [(IntLit�Value N1 ), . . . , (IntLit�Value Nn)]〉
else 〈[ ]Command, [ ]Value〉 end

OF : FC → AnsExp
= λ〈[ ]Command, (IntLit�Value N ) . S ′〉 . (IntLit�AnsExp N )

Figure 3.3 An SOS for PostFix.

Error = {error}
AnsExp ′ = IntLit + Error

FC ′ = IrreduciblePFSOS

OF ′ : FC ′ → AnsExp ′

= λ〈Q ,V ∗〉 . match 〈Q ,V ∗〉
� 〈[ ]Command, (IntLit�Value N ) . S ′〉 [] (IntLit�AnsExp ′ N )
� else (Error�AnsExp ′ error)
end

(Here the pattern-matching capabilities of the metalanguage construct match,
defined in Section A.4, are used to distinguish the cases in which 〈Q ,V ∗〉 is
and is not a final configuration.) With these modifications, the outcome of a
PostFix program that encounters an error will be (AnsExp ′

�Outcome (Error�

AnsExp ′ error)) rather than stuck.
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Exercise 3.1 Look up definitions of the following kinds of automata and express each
of them in the SOS framework: deterministic finite automata, nondeterministic finite
automata, deterministic pushdown automata, and Turing machines. Represent strings,
stacks, and tapes as sequences of symbols.

3.2.3 Rewrite Rules

The transition relation, ⇒, for an SOS is often specified by a set of rewrite
rules. A rewrite rule has the form

antecedents

consequent
[rule-name]

where the antecedents and the consequent contain transition patterns (described
below). Informally, the rule asserts: “If the transitions specified by the an-
tecedents are valid, then the transition specified by the consequent is valid.” The
label [rule-name] on the rule is just a handy name for referring to the rule, and is
not a part of the rule structure. A rewrite rule with no antecedents is an axiom;
otherwise it is a progress rule. The horizontal bar is often omitted in an axiom.

A complete set of rewrite rules for PostFix appears in Figure 3.4. All of
the rules are axioms. Together with the definitions of CF , FC , IF , and OF ,
these rules constitute a formal SOS version of the informal PostFix semantics
originally presented in Figure 1.1. We will spend the rest of Section 3.2 studying
the meaning of these rules and considering alternative rules.

Since an axiom has no antecedents, it is determined solely by its consequent.
As noted above, the consequent must be a transition pattern. A transition
pattern looks like a transition except that the LHS and RHS may contain domain
variables interspersed with the usual notation for configurations. Informally, a
transition pattern is a schema that stands for all the transitions that match the
pattern. An axiom stands for the collection of all configuration pairs that match
the LHS and RHS of the transition pattern, respectively.

As an example, let’s consider in detail the axiom that defines the behavior of
PostFix numerals:

〈N . Q , S 〉 ⇒ 〈Q , N . S 〉 [num]

This axiom stands for an infinite number of pairs of configurations of the form
〈cf, cf ′〉. It says that if cf is a configuration in which the command sequence is
a numeral N followed by a command sequence Q and the stack is S , then there
is a transition from cf to a configuration cf ′ whose command sequence is Q , and
whose stack holds N followed by S .
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〈N . Q , S 〉 ⇒ 〈Q , N . S 〉 [num]

〈(Qexec) . Qrest , S 〉 ⇒ 〈Qrest , (Qexec) . S 〉 [seq]

〈pop . Q , Vtop . S 〉 ⇒ 〈Q , S 〉 [pop]

〈nget . Q , Nindex . [V1 , . . . ,VNsize
]〉 ⇒ 〈Q , VNindex

. [V1 , . . . ,VNsize
]〉 [nget]

where (compare gt Nindex 0) ∧ ¬(compare gt Nindex Nsize)
∧ (VNindex

∈ IntLit)

〈swap . Q , V1 . V2 . S 〉 ⇒ 〈Q , V2 . V1 . S 〉 [swap]

〈sel . Qrest , Vfalse . Vtrue . 0 . S 〉 ⇒ 〈Qrest , Vfalse . S 〉 [sel-false]

〈sel . Qrest , Vfalse . Vtrue . Ntest . S 〉 ⇒ 〈Qrest , Vtrue . S 〉 [sel-true]
where Ntest 
= 0

〈exec . Qrest , (Qexec) . S 〉 ⇒ 〈Qexec @ Qrest , S 〉 [execute]

〈A . Q , N1 . N2 . S 〉 ⇒ 〈Q , Nans . S 〉 [arithop]
where Nans = (calculate A N2 N1 )

〈R . Q , N1 . N2 . S 〉 ⇒ 〈Q , 1 . S 〉 [relop-true]
where (compare R N2 N1 )

〈R . Q , N1 . N2 . S 〉 ⇒ 〈Q , 0 . S 〉 [relop-false]
where ¬(compare R N2 N1 )

Figure 3.4 Rewrite rules defining the transition relation (⇒) for PostFix.

In the [num] rule, N , Q , and S are domain variables that act as patterns that
can match any element in the domain over which the variable ranges. Thus, N
matches any integer numeral, Q matches any command sequence, and S matches
any stack. When the same pattern variable occurs more than once within a
rule, all occurrences must denote the same element; this constrains the class of
transitions specified by the rule. Thus, the [num] rule matches the transition

〈(17 add swap), [19, (2 mul)]〉 ⇒ 〈(add swap), [17, 19, (2 mul)]〉

with N = 17, Q = [add, swap], and S = [19, (2 mul)]. On the other hand, the
rule does not match the transition

〈(17 add swap), [19, (2 mul)]〉 ⇒ 〈(add swap), [17, 19, (2 mul), 23]〉

because there is no consistent interpretation for the pattern variable S — it is
[19, (2 mul)] in the LHS of the transition, and [19, (2 mul), 23] in the RHS.

As another example, the configuration pattern 〈Q , N . N . S 〉 would match
only configurations with stacks in which the top two values are the same inte-
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ger numeral. If the RHS of the [num] rule consequent were replaced with this
configuration pattern, then the rule would indicate that two copies of the integer
numeral should be pushed onto the stack.

At this point, the meticulous reader may have noticed that in the rewrite rules
and sample transitions we have taken many liberties with our notation. If we had
strictly adhered to our metalanguage notation, then we would have written the
[num] rule as

〈(IntLit�Command N ) . Q , S 〉 ⇒ 〈Q , (IntLit�Value N ) . S 〉 [num]

and we would have written the matching transition as

〈[17, add, swap]Command, [(IntLit�Value 19),
(CommandSeq�Value [2, mul]Command) ]〉

⇒ 〈[add, swap]Command, [(IntLit�Value 17),
(IntLit�Value 19),
(CommandSeq�Value [2, mul]Command) ]〉

However, we believe that the more rigorous notation severely impedes the read-
ability of the rules and examples. For this reason, we will stick with our stylized
notation when it is unlikely to cause confusion. In particular, in operational
semantics rules and sample transitions, we adopt the following conventions:

• Injections will be elided when they are clear from context. For example, if N
appears as a command, then it stands for (IntLit �Command N ), while if it
appears as a stack element, then it stands for (IntLit�Value N ).

• Sequences of syntactic elements may be written as parenthesized s-expressions.
For example, the PostFix command sequence

[3, [2, mul]Command, swap]Command

will often be abbreviated as

(3 (2 mul) swap)

The former is more precise, but the latter is easier to read. In PostFix
examples, we have chosen to keep the sequence notation for stacks to visually
distinguish the two components of a configuration.

• For PostFix, the explicit parentheses in the notation (Q) are syntactic mark-
ers that abbreviate an underlying injection. If this notation appears where an
element of Command is expected, it stands for (CommandSeq�Command Q). If
it appears where an element of Value is expected, it stands for (CommandSeq�

Value Q).
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Despite these notational acrobatics, keep in mind that we are manipulating
well-defined mathematical structures. So it is always possible to add the appro-
priate decorations to make the notation completely rigorous.4

Some of the PostFix rules ([arithop], [relop-true], [relop-false], [sel-true],
and [nget]) include side conditions that specify additional restrictions on the
domain variables. For example, consider the axiom that handles a conditional
whose test is true:

〈sel . Qrest , Vfalse . Vtrue . Ntest . S 〉 ⇒ 〈Qrest , Vtrue . S 〉 [sel-true]
where Ntest 
= 0

This axiom says that sel treats any nonzero integer numeral as true. As long as
the test numeral Ntest (the third element on the stack) is not the same syntactic
object as 0, then the next configuration is obtained by removing sel from the
command sequence and pushing the second stack element onto the result of pop-
ping the top three elements off the stack. The domain variable Ntest that appears
in the side condition Ntest 
= 0 stands for the same entity that Ntest denotes in
the LHS of the consequent, providing the link between the transition pattern
and the side condition. Note how the domain variables and the structure of the
components are used to constrain the pairs of configurations that satisfy this
rule. This rule represents only pairs 〈cf, cf ′〉 in which the stack of cf contains at
least three elements, the third of which is a nonzero integer numeral. The rule
does not apply to configurations whose stacks have fewer than three elements, or
whose third element is an executable sequence or the numeral 0.

The side conditions in the [arithop], [relop-true], [relop-false], and [nget] rules
deserve some explanation. The calculate function used in the side condition of
[arithop] returns the numeral Nans resulting from the application of the operator
A to the operands N2 and N1 ; it abstracts away the details of such computa-
tions.5 We assume that calculate is a partial function that is undefined when A
is div or rem and N1 is 0, so division or remainder by zero yields a stuck state.
The [relop-true] and [relop-false] rules are similar to [arithop]; here the auxiliary
compare function is assumed to return the truth value resulting from the associ-
ated comparison. The rules then convert this truth value into a PostFix value
of 1 (true) or 0 (false). In the [nget] rule, the compare function is used to ensure

4But those who pay too much attention to rigor may develop rigor mortis!
5Note that calculate manipulates numerals (i.e., names for integers) rather than the integers

that they name. This may seem pedantic, but we haven’t described yet how the meaning of an
integer numeral is determined. If we had instead defined the syntax of PostFix to use integers
rather than integer numerals, then we could have used the usual integer addition operation here.
But we chose integer numerals to emphasize the syntactic nature of operational semantics.
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that the numeral Nindex is a valid index for one of the values on the stack. If not,
the configuration is stuck. In the side conditions, the symbol ¬ stands for logical
negation and ∧ stands for logical conjunction.

You should now know enough about the rule notation to understand all of
the rewrite rules in Figure 3.4. The [num] and [seq] rules push the two different
kinds of values onto the stack. The [swap], [pop], [sel-true], and [sel-false] rules
all perform straightforward stack manipulations. The [exec] rule prepends an
executable sequence from the stack onto the command sequence following the
current command.

It is easy to see that the transition relation defined in Figure 3.4 is determinis-
tic. The first command in the command sequence of a configuration uniquely de-
termines which transition pattern might match, except for the case of sel, where
the third stack value distinguishes whether [sel-true] or [sel-false] matches, and
the relational operators, where the side condition distinguishes whether [relop-
true] or [relop-false] matches. The LHS of each transition pattern can match a
given configuration in at most one way. So for any given PostFix configuration
cf, there is at most one cf ′ such that cf ⇒ cf ′.

3.2.4 Operational Execution

The operational semantics can be used to execute a PostFix program in a way
similar to the table-based method presented earlier. For example, the execution
of the PostFix program shown earlier in Figure 3.1 is illustrated in Figure 3.5.
The input function is applied to the program to yield an initial configuration, and
then a series of transitions specified by the rewrite rules are applied. In the figure,
the configuration resulting from each transition appears on a separate line and
is labeled by the applied rule. When a final configuration is reached, the output
function is applied to this configuration to yield -3, which is the result computed
by the program. We can summarize the transition path from the initial to the
final configuration as

〈((2 (3 mul add) exec) 1 swap exec sub), [4, 5]〉 =
11
=⇒ 〈(), [-3, 5]〉

where 11 is the number of transitions. If we don’t care about this number, we
write ∗ in its place.

Not all PostFix executions lead to a final configuration. For example, exe-
cuting the program (postfix 2 add mul 3 4 sub) on the inputs [5, 6] leads to
the configuration 〈(mul 3 4 sub), [11]〉. This configuration is not final because
there are still commands to be executed. But it does not match the LHS of any
rewrite rule consequent. In particular, the [arithop] rule requires the stack to
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(IF 〈(postfix 2 (2 (3 mul add) exec) 1 swap exec sub), [4, 5]〉)
= 〈((2 (3 mul add) exec) 1 swap exec sub), [4, 5]〉
⇒ 〈(1 swap exec sub), [(2 (3 mul add) exec), 4, 5]〉 [seq]
⇒ 〈(swap exec sub), [1, (2 (3 mul add) exec), 4, 5]〉 [num]
⇒ 〈(exec sub), [(2 (3 mul add) exec), 1, 4, 5]〉 [swap]
⇒ 〈(2 (3 mul add) exec sub), [1, 4, 5]〉 [execute]
⇒ 〈((3 mul add) exec sub), [2, 1, 4, 5]〉 [num]
⇒ 〈(exec sub), [(3 mul add), 2, 1, 4, 5]〉 [seq]
⇒ 〈(3 mul add sub), [2, 1, 4, 5]〉 [execute]
⇒ 〈(mul add sub), [3, 2, 1, 4, 5]〉 [num]
⇒ 〈(add sub), [6, 1, 4, 5]〉 [arithop]
⇒ 〈(sub), [7, 4, 5]〉 [arithop]
⇒ 〈(), [-3, 5]〉 ∈ FC [arithop]
(OF 〈(), [-3, 5]〉) = -3

Figure 3.5 An SOS-based execution of a PostFix program.

have two integers at the top, and here there is only one. This is an example of
a stuck state. As discussed earlier, a program reaching a stuck state is consid-
ered to signal an error. In this case the error is due to an insufficient number of
arguments on the stack.

Exercise 3.2 Use the SOS for PostFix to determine the values of the PostFix pro-
grams in Exercise 1.1 on page 13.

Exercise 3.3 Consider extending PostFix with a rot command defined by the follow-
ing rewrite rule:

〈rot . Q , N . V1 . . . . . VN . S〉 ⇒ 〈Q , V2 . . . . . VN . V1 . S〉 [rot]
where (compare gt N 1)

a. Give an informal English description of the behavior of rot.

b. What is the contents of the stack after executing the following program on zero
arguments?

(postfix 0 2 3 4 2 3 4 rot rot rot)

c. Using rot, write a PostFix executable sequence that serves as subroutine for revers-
ing the top three elements of a given stack.

d. List the kinds of situations in which rot can lead to a stuck state, and give a sample
program illustrating each one.
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Exercise 3.4 The SOS for PostFix specifies that a configuration is stuck when the stack
contains an insufficient number of values for a command. For example, 〈(mul), [2]〉 is
stuck because multiplication requires two stack values.

a. Modify the semantics of PostFix so that, rather than becoming stuck, it uses sensible
defaults for the missing values when the stack contains an insufficient number of
values. For example, the default value(s) for mul would be 1:

〈(mul), [2]〉 ⇒ 〈(), [2]〉
〈(mul), [ ]〉 ⇒ 〈(), [1]〉

b. Do you think this modification is a good idea? Why or why not?

Exercise 3.5 Suppose the Value domain in the PostFix SOS is augmented with a
distinguished error value. Modify the rewrite rules for PostFix so that error configura-
tions push this error value onto the stack. The error value should be “contagious” in the
sense that any operation attempting to act on it should also push an error value onto
the stack. Under the revised semantics, a program may return a non-error value even
though it encounters an error along the way. E.g., (postfix 0 1 2 add mul 3 4 sub)

should return -1 rather than signaling an error when called on zero inputs.

Exercise 3.6 An operational semantics for PostFix2 (the alternative PostFix syntax
introduced in Figure 2.13) can be defined by making minor tweaks to the operational
semantics for PostFix. Consider the following domains:

Q ∈ CommandSeqPostFix2 = Command∗
PostFix2

V ∈ ValuePostFix2 = IntLit + CommandPostFix2

S ∈ StackPostFix2 = Value∗PostFix2

Then CommandSeqPostFix2 × StackPostFix2 can be used as the configuration domain
for a PostFix2 SOS. Using this approach, most PostFix2 rewrite rules differ only
cosmetically from the corresponding PostFix rewrite rules. For example, here is the
rewrite rule for a PostFix2 numeral command:

〈(int N ) . Q , S〉 ⇒ 〈Q , N . S〉 [num ′]

a. Define an input function that maps PostFix2 programs (postfix2 N C) into an
initial configuration.

b. Give rewrite axioms for the PostFix2 commands (exec), (: Ccom1 Ccom2), and
(skip).

(See Exercise 3.7 for another approach to defining the semantics of PostFix2.)

Exercise 3.7 A distinguishing feature of PostFix2 (the alternative PostFix syntax
introduced in Figure 2.13) is that its grammar makes no use of sequence domains. It is
reasonable to expect that its operational semantics can be modeled by configurations in
which the code component is a single command rather than a command sequence. Based
on this idea, design an SOS for PostFix2 in which CF = Command × Stack. (Note:
do not modify the Command domain.)
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Exercise 3.8 The Hugely Profitable Calculator Company has hired you to design a
calculator language called RPN that is based on PostFix. RPN has the same syntax
as PostFix command sequences (an RPN program is just a command sequence that is
assumed to take zero arguments) and the operations are intended to work in basically
the same manner. However, instead of providing an arbitrarily large stack, RPN limits
the size of the stack to four values. Additionally, the stack is always full in the sense that
it contains four values at all times. Initially, the stack contains four 0 values. Pushing
a value onto a full stack causes the bottommost stack value to be forgotten. Popping
the topmost value from a full stack has the effect of duplicating the bottommost element
(i.e., it appears in the last two stack positions after the pop).

a. Develop a complete SOS for the RPN language.

b. Use your SOS to find the results of the following RPN programs:

i. (mul 1 add)

ii. (1 20 300 4000 50000 add add add add)

c. Although PostFix programs are guaranteed to terminate, as we will see in Sec-
tion 3.6, RPN programs are not. Demonstrate this fact by writing an RPN program
that loops infinitely.

Exercise 3.9 A class of calculators known as four-function calculators support the four
usual binary arithmetic operators (+, -, *, /) in an infix notation.6 Here we consider a
language FF based on four-function calculators. The programs of FF are any parenthe-
sized sequence of numbers and commands, where commands are +, -, *, /, and =. The =
command is used to compute the result of an expression, which may be used as the first
argument to another binary operator. The = may be elided in a string of operations.

(1 + 20 =) −−−FF→ 21

(1 + 20 = + 300 =) −−−FF→ 321

(1 + 20 + 300 =) −−−FF→ 321 {Note elision of first =.}
(1 + 20) −−−FF→20 {Last number is returned when no final =.}

Other features supported by FF include:

• Calculation with a constant. Typing a number followed by = uses the number as the
first operand in a calculation with the previous operator and previous second operand.

(2 * 5 =) −−−FF→ 10 (2 * 5 = 7 =) −−−FF→ 35 (2 * 5 = 7 = 11 =) −−−FF→ 55

• Implied second argument. If no second argument is specified, the value of the second
argument defaults to the first.

(5 * =) −−−FF→ 25

• Operator correction. An operator key can be corrected by typing the correct one after
(any number of) unintentional operators.

(1 * - + 2 ) −−−FF→ 3

6The one described here is based on the TI-1025. See [You81] for more details.
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a. Design an SOS for FF that is consistent with the informal description given above.

b. Use your SOS to find the final values of the following command sequences. (Note:
some of the values may be floating point numbers.) Comment on the intended meaning
of the unconventional command sequences.

i. (8 - 3 + * 4 =)

ii. (3 + 5 / = =)

iii. (3 + 5 / = 6 =)

3.2.5 Progress Rules

The commands of PostFix programs are interpreted in a highly linear fashion
in Figure 3.4. Even though executable sequences give the code a kind of tree
structure, the contents of an executable sequence can be used only when they
are prepended to the single stream of commands that is executed by the abstract
machine. The fact that the next command to execute is always at the front
of this command stream leads to a very simple structure for the rewrite rules in
Figure 3.4. Transitions, which appear only in rule consequents, are all of the form

〈Cfirst . Q , S 〉 ⇒ 〈Q ′, S ′〉

where Q ′ is either the same as Q or is the result of prepending some commands
onto the front of Q . In all rules, the command Cfirst at the head of the current
command sequence is consumed by the application of the rule.

These simple kinds of rules are not adequate for programming languages ex-
hibiting a more general tree structure. Evaluating a node in an arbitrary syntax
tree usually requires the recursive evaluation of its subnodes. For example, con-
sider the evaluation of a sample numerical expression written in the EL language
described in Section 2.3:

(+ (* (- 5 1) 2) (/ 21 7))

Before the sum can be performed, the results of the multiplication and division
must be computed; before the multiplication can be performed, the subtraction
must be computed. If the values of operand expressions are computed in left-to-
right order, we expect the evaluation of the expression to occur via the following
transition path:

(+ (* (- 5 1) 2) (/ 21 7))

⇒ (+ (* 4 2) (/ 21 7))

⇒ (+ 8 (/ 21 7))

⇒ (+ 8 3)

⇒ 11



3.2.5 Progress Rules 63

P ∈ Prog ::= (elmm NE body) [Program]

NE ∈ NumExp ::= Nnum [IntLit]
| (Arator NE rand1 NE rand2) [ArithmeticOperation]

N ∈ IntLit = {. . . , -2, -1, 0, 1, 2, . . .}
A ∈ ArithmeticOperator = {+, -, *, /, %}

Figure 3.6 An s-expression grammar for ELMM.

In each transition, the structure of the expression tree remains unchanged ex-
cept at the node where the computation is being performed. Rewrite rules for
expressing such transitions need to be able to express a transition from tree to
tree in terms of transitions between the subtrees. That is, the transition

(+ (* (- 5 1) 2) (/ 21 7))⇒ (+ (* 4 2) (/ 21 7))

is implied by the transition

(* (- 5 1) 2)⇒ (* 4 2)

which in turn is implied by the transition

(- 5 1)⇒ 4

In some sense, “real work” is done only by the last of these transitions; the other
transitions just inherit the change because they define the surrounding context
in which the change is embedded.

These kinds of transitions on tree-structured programs are expressed using
progress rules, which are rules with antecedents. Progress rules effectively
allow an evaluation process to reach inside a complicated expression to evaluate
one of its subexpressions. A one-step transition in the subexpression is then
reflected as a one-step transition of the expression in which it is embedded.

Example: ELMM

To illustrate progress rules, we will develop an operational semantics for an ex-
tremely simple subset of the EL language that we will call ELMM (which stands
for EL Minus Minus). As shown in Figure 3.6, an ELMM program is just a
numerical expression, where a numerical expression is either (1) an integer nu-
meral or (2) an arithmetic operation. There are no arguments, no conditional
expressions, and no boolean expressions in ELMM.

In an SOS for ELMM, configurations are just numerical expressions them-
selves; there are no state components. Numerical literals are the only final con-
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figurations. The input and output functions are straightforward. The interesting
aspect of the ELMM SOS is the specification of the transition relation ⇒, which
is shown in Figure 3.7. The ELMM [arithop] axiom is similar to the same-named
axiom in the PostFix SOS; it performs a calculation on integer numerals.

To evaluate expressions with nested subexpressions in left-to-right order, the
rules [prog-left] and [prog-right] are needed. The [prog-left] rule says that if
the ELMM abstract machine would make a transition from NE1 to NE ′

1 , it
should also allow a transition from (A NE 1 NE 2) to (A NE ′

1 NE 2). This
rule permits evaluation of the left operand of the operation while leaving the
right operand unchanged. The [prog-right] rule is similar, except that it permits
evaluation of the right operand only once the left operand has been fully evaluated
to an integer numeral. This forces the operands to be evaluated in left-to-right
order. Rules like [prog-left] and [prog-right] are called “progress rules” because
an evaluation step performed on a subexpression allows progress to be made on
the evaluation of the whole expression.

In the case of axioms, it is easy to determine if a transition is justified by an
axiom. But how do we determine if a transition is justfied by a progress rule?
A transition is justified by a progress rule if it matches the consequent of the
rule and it is possible to show that the antecedent transition patterns are also
justified. For example, since the ELMM transition (- 7 4) ⇒ 3 is justified
by the [arithop] rule, the transition (* (- 7 4) (+ 5 6)) ⇒ (* 3 (+ 5 6)) is
justified by the [prog-left] rule, and the transition (* 2 (- 7 4)) ⇒ (* 2 3)

is justified by the [prog-right] rule. Furthermore, since the above transitions
themselves match the antecedents of the [prog-left] and [prog-right] rules, it is
possible to use these rules again to justify the following transitions:

(/ (* (- 7 4) (+ 5 6)) (% 9 2)) ⇒ (/ (* 3 (+ 5 6)) (% 9 2))

(/ (* 2 (- 7 4)) (% 9 2)) ⇒ (/ (* 2 3) (% 9 2))

(/ 100 (* (- 7 4) (+ 5 6))) ⇒ (/ 100 (* 3 (+ 5 6)))

(/ 100 (* 2 (- 7 4))) ⇒ (/ 100 (* 2 3))

These examples suggest that we can justify any transition as long as we can
give a proof of the transition based upon the rewrite rules. Such a proof can be
visualized as a so-called proof tree (also known as a derivation) that grows
upward from the bottom of the page. The root of a proof tree is the tran-
sition we are trying to prove, its intermediate nodes are instantiated progress
rules, and its leaves are instantiated axioms. A proof tree is structured so that
the consequent of each instantiated rule is one antecedent of its parent (be-
low) in the tree. For example, the proof tree associated with the transition
of (/ 100 (* (- 7 4) (+ 5 6))) appears in Figure 3.8.
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(A N1 N2) ⇒ Nans , where Nans = (calculate A N1 N2 ) [arithop]

NE1 ⇒ NE ′
1

(A NE1 NE2) ⇒ (A NE ′
1 NE2)

[prog-left]

NE2 ⇒ NE ′
2

(A N NE2) ⇒ (A N NE ′
2)

[prog-right]

Figure 3.7 Rewrite rules defining the transition relation (⇒) for ELMM.

(- 7 4) ⇒ 3 [arithop]
where (calculate - 7 4) = 3

(- 7 4) ⇒ 3

(* (- 7 4) (+ 5 6)) ⇒ (* 3 (+ 5 6))
[prog-left]

(* (- 7 4) (+ 5 6)) ⇒ (* 3 (+ 5 6))

(/ 100 (* (- 7 4) (+ 5 6))) ⇒ (/ 100 (* 3 (+ 5 6)))
[prog-right]

(/ 100 (* (- 7 4) (+ 5 6))) ⇒ (/ 100 (* 3 (+ 5 6)))

Figure 3.8 A proof tree for an ELMM transition involving nested expressions. The
root of the tree is at the bottom of the page; the leaf is at the top.

We can represent the proof tree in the figure much more concisely by display-
ing each transition only once, as shown below:

[arithop]
(- 7 4)⇒ 3

[prog-left]
(* (- 7 4) (+ 5 6))⇒ (* 3 (+ 5 6))

[prog-right]
(/ 100 (* (- 7 4) (+ 5 6)))⇒ (/ 100 (* 3 (+ 5 6)))

The proof tree in this particular example is linear because each of the progress
rules involved has only one antecedent transition pattern. A progress rule with n
antecedent transition patterns would correspond to a tree node with a branching
factor of n. For example, suppose we added the following progress rule to the
ELMM SOS:
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NE1 ⇒ NE ′
1 ; NE2 ⇒ NE ′

2

(A NE1 NE2) ⇒ (A NE ′
1 NE ′

2)
[prog-both]

This rule allows simultaneous evaluation of both operands. It leads to proof
trees that have branching, such as the following tree in which three arithmetic
operations are performed simultaneously:

[arithop]
(+ 25 75)⇒ 100

[arithop]
(- 7 4)⇒ 3

[arithop]
(+ 5 6)⇒ 11

[prog-both]
(* (- 7 4) (+ 5 6))⇒ (* 3 11)

[prog-both]
(/ (+ 25 75) (* (- 7 4) (+ 5 6)))⇒ (/ 100 (* 3 11))

It is possible to express any proof tree (even one with branches) in the more
traditional linear textual style for a proof. In this style, a proof of a transition is
a sequence of transitions where each transition is justified either by an axiom or
by a progress rule whose antecedent transitions are justified by transitions earlier
in the sequence. A linear textual version of the branching proof tree above is:

# Transition Justification
[1] (+ 25 75) ⇒100 [arithop]
[2] (- 7 4) ⇒3 [arithop]
[3] (+ 5 6) ⇒11 [arithop]
[4] (* (- 7 4) (+ 5 6)) ⇒(* 3 11) [prog-both] & [2] & [3]
[5] (/ (+ 25 75) (* (- 7 4) (+ 5 6)))

⇒ (/ 100 (* 3 11)) [prog-both] & [1] & [4]

The elements of the linear textual proof sequence have been numbered, and justi-
fications involving progress rules include the numbers of the transitions matched
by their antecedents. There are many alternative proof sequences for this exam-
ple that differ in the ordering of the elements. Indeed, the legal linear textual
proof sequences for this example are just topological sorts of the original proof
tree. Because such linearizations involve making arbitrary choices, we prefer to
use the tree-based notation, whose structure highlights the essential dependencies
in the proof.

When writing down a transition sequence to show the evaluation of an ELMM
expression we will not explicitly justify every transition with a proof tree, even
though such a proof tree must exist. However, if we are listing justifications
for transitions, then we will list the names of the rules that would be needed
to perform the proof. See Figure 3.9 for an example. (This example uses the
original SOS, which does not include the [prog-both] rule.)

We shall see in Section 3.6.3 that the fact that each transition has a proof
tree is key to proving properties about transitions. Transition properties are
often proven by structural induction on the structure of the proof tree for the
transition.
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(/ (+ 25 75) (* (- 7 4) (+ 5 6)))

⇒ (/ 100 (* (- 7 4) (+ 5 6))) [prog-left] & [arithop]
⇒ (/ 100 (* 3 (+ 5 6))) [prog-right] & [prog-left] & [arithop]
⇒ (/ 100 (* 3 11)) [prog-right] (twice) & [arithop]
⇒ (/ 100 33) [prog-right] & [arithop]
⇒ 3 [arithop]

Figure 3.9 An example illustrating evaluation of ELMM expressions.

Exercise 3.10

a. Consider a language ELM (short for EL Minus) that extends ELMM with indexed
references to program inputs. That is, ELM is EL without conditionals and boolean
expressions. The syntax for ELM is like that of ELMM except that (1) ELM pro-
grams have the form (elm Nnumargs NE body), where Nnumargs specifies the number
of expected program arguments and (2) numerical expressions are extended with EL’s
(arg Nindex) construct, which gives the value of the argument whose index is given
by Nindex (assume indices start at 1).

Write a complete SOS for ELM. Your configurations will need to include a state
component representing the program arguments.

b. Write a complete SOS for the full EL language described in Section 2.3.2. You will
need to define two kinds of configurations: one to handle numeric expressions and
one to handle boolean expressions. Each kind of configuration will be a pair of an
expression and a sequence of numeric arguments and will have its own transition
relation.

Example: PostFix

For another example of progress rules, we will consider an alternative approach
for describing the exec command of PostFix. The [execute] axiom in Figure 3.4
handled exec by popping an executable sequence Qexec off the stack and prepend-
ing it to the command sequence Qrest following the exec command. Figure 3.10
presents a progress rule, [exec-prog ], that, together with the axiom [exec-done],
can replace the [execute] rule. Rather than prepending the commands in Qexec

to Qrest , the [exec-prog ] rule effectively executes the commands in Qexec while it
remains on the stack.

The [exec-prog ] rule says that if the abstract machine would make a tran-
sition from 〈Qexec, S 〉 to 〈Q ′

exec, S ′〉 then it should also allow a transition from
〈exec . Qrest , (Qexec) . S 〉 to 〈exec . Qrest , (Q

′
exec) . S ′〉. Note that, unlike all the

rules that we have seen before, this rule does not remove the exec command from
the current command sequence. Instead, the exec command is left in place so
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that the execution of the command sequence at the top of the stack will continue
during the next transition. Since the commands are removed from Qexec after
being executed, the executable sequence at the top of the stack will eventually
become empty. At this point, the [exec-done] rule takes over, and removes both
the completed exec command and its associated empty executable sequence.

Figure 3.11 shows how the example considered earlier in Figure 3.1 and Fig-
ure 3.5 would be handled using the [exec-prog ] and [exec-done] rules. Each
transition is justified by a proof tree that uses the rules listed as a justification.
For example, the transition

〈(exec sub), [(exec), (mul add), 3, 2, 1, 4, 5]〉
⇒ 〈(exec sub), [(exec), (add), 6, 1, 4, 5]〉

is justified by the following proof tree:

[arithop]
〈(mul add), [3, 2, 1, 4, 5]〉 ⇒ 〈(add), [6, 1, 4, 5]〉

[exec-prog ]
〈(exec), [(mul add), 3, 2, 1, 4, 5]〉 ⇒ 〈(exec), [(add), 6, 1, 4, 5]〉

[exec-prog ]
〈(exec sub), [(exec), (mul add), 3, 2, 1, 4, 5]〉
⇒ 〈(exec sub), [(exec), (add), 6, 1, 4, 5]〉

The Meaning of Progress Rules

There are some technical details about progress rules that we glossed over earlier.
When we introduced progress rules, we blindly assumed that they were always
reasonable. But not all progress rules make sense.

For example, suppose we extend PostFix with a loop command defined by
the following progress rule:

〈loop . Q , S 〉 ⇒ 〈Q , S 〉
〈loop . Q , S 〉 ⇒ 〈Q , S 〉 [loop]

Any attempt to prove a transition involving loop will fail because there are no
axioms involving loop with which to terminate the proof tree. Thus, this rule
stands for no transitions whatsoever!

We’d like to ensure that all progress rules we consider make sense. We can
guarantee this by restricting the form of allowable progress rules to outlaw non-
sensical rules like [loop]. This so-called structure restriction guarantees that
any attempt to prove a transition from a given configuration will eventually ter-
minate. The standard structure restriction for an SOS requires rules that are
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〈Qexec , S 〉 ⇒ 〈Q ′
exec , S ′〉

〈exec . Qrest , (Qexec) . S 〉 ⇒ 〈exec . Qrest , (Q
′
exec) . S ′〉 [exec-prog ]

〈exec . Qrest , () . S 〉 ⇒ 〈Qrest , S 〉 [exec-done]

Figure 3.10 A pair of rules that could replace the [execute] axiom.

(IF 〈(postfix 2 (2 (3 mul add) exec) 1 swap exec sub), [4, 5]〉)
= 〈((2 (3 mul add) exec) 1 swap exec sub), [4, 5]〉
⇒ 〈(1 swap exec sub), [(2 (3 mul add) exec), 4, 5]〉 [seq]
⇒ 〈(swap exec sub), [1, (2 (3 mul add) exec), 4, 5]〉 [num]
⇒ 〈(exec sub), [(2 (3 mul add) exec), 1, 4, 5]〉 [swap]
⇒ 〈(exec sub), [((3 mul add) exec), 2, 1, 4, 5]〉 [exec-prog ] & [num]
⇒ 〈(exec sub), [(exec), (3 mul add), 2, 1, 4, 5]〉 [exec-prog ] & [seq]
⇒ 〈(exec sub), [(exec), (mul add), 3, 2, 1, 4, 5]〉 [exec-prog ] (twice)

& [num]
⇒ 〈(exec sub), [(exec), (add), 6, 1, 4, 5]〉 [exec-prog ] (twice)

& [arithop]
⇒ 〈(exec sub), [(exec), (), 7, 4, 5]〉 [exec-prog ] (twice)

& [arithop]
⇒ 〈(exec sub), [(), 7, 4, 5]〉 [exec-prog ]

& [exec-done]
⇒ 〈(sub), [7, 4, 5]〉 [exec-done]
⇒ 〈(), [-3, 5]〉 ∈ FC [arithop]
(OF 〈(), [-3, 5]〉) = -3

Figure 3.11 An example illustrating the alternative rules for exec.

purely structural in the sense that the code component of the LHS of each
antecedent transition is a subphrase of the code component of the LHS of the
consequent transition. Since program ASTs are necessarily finite, this guarantees
that all attempts to prove a transition will have a finite proof.7

While simple to follow, the standard structure restriction prohibits many
reasonable rules. For example, the [exec-prog ] rule does not obey this restriction,
because the code component of the LHS of the antecedent is unrelated to the
code component of the LHS of the consequent. Yet, by considering the entire
configuration rather than just the code component, it is possible to design a

7This restriction accounts for the term “Structural” in Plotkin’s Structural Operational Se-
mantics [Plo81].
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metric in which the LHS of the antecedent is “smaller” than the LHS of the
consequent (see Exercise 3.11). Although it is sometimes necessary to extend the
standard structure restriction in this fashion, most of our rules will be purely
structural.

Exercise 3.11 To guarantee that a progress rule is well defined, we must show that
the antecedent configurations are smaller than the consequent configurations. Here we
explore a notion of “smaller than” for the PostFix configurations that establishes the
well-definedness of the [exec-prog ] rule. (Since [exec-prog ] is the only progress rule for
PostFix, it is the only one we need to consider.)

Suppose that we define a relation < on PostFix configurations such that

〈Q1 , S〉 < 〈exec . Q2 , Q1 . S〉

for any command sequences Q1 and Q2 and any stack S . This is the only relation
on PostFix configurations; two configurations not satisfying this relation are simply
incomparable.

a. A sequence [a1, a2, . . .] is strictly decreasing if ai+1 < ai for all i. Using the rela-
tion < defined above for configurations, show that every strictly decreasing sequence
[cf1, cf2, . . .] of PostFix configurations must be finite.

b. Explain how the result of the previous part implies the well-definedness of the [exec-
prog ] rule.

Exercise 3.12 The abstract machine for PostFix described thus far employs configura-
tions with two components: a command sequence and a stack. It is possible to construct
an alternative abstract machine for PostFix in which configurations consist only of a
command sequence. The essence of such a machine is suggested by the transition se-
quence in Figure 3.12, where the primed rule names are the names of rules for the new
abstract machine, not the abstract machine presented earlier.

a. The above example shows that an explicit stack component is not necessary to model
PostFix evaluation. Explain how this is possible. (Is there an implicit stack some-
where?)

b. Write an SOS for PostFix in which a configuration is just a command sequence. The
SOS should have the behavior exhibited above on the given example. Recall that an
SOS has five components; describe all five. Use only axioms to specify your transition
relation.

c. In the above example, the exec command is handled by replacing it and the executable
sequence Q to its left by the contents of Q . This mirrors the prepending behavior of
[execute] in the original abstract machine. Write rules for the new abstract machine
that instead mirror the behavior of [exec-prog ] and [exec-done].
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((swap exec swap exec) (1 sub) swap (2 mul) swap 3 swap exec)

⇒ ((1 sub) (swap exec swap exec) (2 mul) swap 3 swap exec) [swap ′]
⇒ ((1 sub) (2 mul) (swap exec swap exec) 3 swap exec) [swap ′]
⇒ ((1 sub) (2 mul) 3 (swap exec swap exec) exec) [swap ′]
⇒ ((1 sub) (2 mul) 3 swap exec swap exec) [exec ′]
⇒ ((1 sub) 3 (2 mul) exec swap exec) [swap ′]
⇒ ((1 sub) 3 2 mul swap exec) [exec ′]
⇒ ((1 sub) 6 swap exec) [arithop ′]
⇒ (6 (1 sub) exec) [swap ′]
⇒ (6 1 sub) [exec ′]
⇒ 5 [arithop ′]

Figure 3.12 Sample transition sequence for an alternative PostFix abstract machine
whose configurations are command sequences.

d. Develop an appropriate notion of “smaller than” that establishes the well-definedness
of your new [exec-prog ] rule. (See Exercise 3.11.)

e. Sketch how you might prove that the new SOS and the original SOS define the
behavior.

3.2.6 Context-based Semantics

Rewrite rules are not the only way to specify the transition relation of a small-
step operational semantics. Here we introduce another approach to specifying
transitions that is popular in the literature. This approach is based on a notion
of context that specifies the position of a subphrase in a larger program phrase.
Here we will explain this notion and show how it can be used to specify transitions.

In general, a context is a phrase with a single hole node in the abstract
syntax tree for the phrase. A sample context C in the ELMM language is
(+ 1 (- � 2)), where � denotes the hole in the context. “Filling” this hole
with any ELMM numerical expression yields another numerical expression. For
example, filling C with (/ (* 4 5) 3), written C{(/ (* 4 5) 3)}, yields the
numerical expression (+ 1 (- (/ (* 4 5) 3) 2)).

Contexts are useful for specifying a particular occurrence of a phrase that
occurs more than once in an expression. For example, (+ 3 4) appears twice
in (* (+ 3 4) (/ (+ 3 4) 2)). The leftmost occurrence is specified by the
context (* � (/ (+ 3 4) 2)), while (* (+ 3 4) (/ � 2)) specifies the right-
most one. Contexts are also useful for specifying the part of a phrase that remains
unchanged (the evaluation context) when a basic computation (known as a re-
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Redexes
R ∈ ElmmRedex ::= (A N1 N2) [ArithmeticOperation]

Reduction Relation (�)
(A N1 N2) � Nans , where Nans = (calculate A N1 N2 )

Evaluation Contexts
E ∈ ElmmEvalContext ::= � [Hole]

| (A E NE) [EvalLeft]
| (A N E) [EvalRight]

Transition Relation (⇒)
E{R} ⇒ E{R′}, where R � R′

Figure 3.13 A context-based specification of the ELMM transition relation.

dex, short for “reducible expression”) is performed. E.g., consider the evaluation
of the ELMM expression (/ 100 (* (- 7 4) (+ 5 6))). If operands are eval-
uated in left-to-right order, the next redex to be performed is (- 7 4). The
evaluation context for this redex is E = (/ 100 (* � (+ 5 6))). The result
(3 in this case) of performing the redex is plugged into the evaluation context
to yield the result of the transition: E{3} = (/ 100 (* 3 (+ 5 6))). This
transition can also be written as:

(/ 100 (* (- 7 4) (+ 5 6)))

= (/ 100 (* � (+ 5 6))){(- 7 4)}
⇒ (/ 100 (* � (+ 5 6))){3}
= (/ 100 (* 3 (+ 5 6)))

Evaluation contexts and redexes can be defined via grammars, such as the
ones for ELMM in Figure 3.13. In ELMM, a redex is an arithmetic operator
applied to two integer numerals. An ELMM evaluation context is either a hole
or an arithmetic operation one of whose two operands is an evaluation context.
If the evaluation context is in the left operand position ([Eval Left]) the right
operand can be an arbitrary numerical expression. But if the evaluation context
is in the right operand position ([Eval Right]), the left operand must be a numeral.
This structure enforces left-to-right evaluation in ELMM in a way similar to the
[prog-left] and [prog-right] progress rules. Indeed, evaluation contexts are just
another way of expressing the information in progress rules — namely, how to
find the redex (i.e., where an axiom can be applied).

Associated with redexes is a reduction relation (�) that corresponds to
the basic computation axioms we have seen before. In the simplest case, the left-
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hand side of the relation is the redex, while the right-hand side is the reduct.
The transition relation (⇒) is defined in terms of the reduction relation using
evaluation contexts: the expression E{R} rewrites to E{R′} as long as there is a
reduction R � R′. The transition relation is deterministic if there is at most one
way to parse an expression into an evaluation context filled with a redex (which
is the case in ELMM). The following table shows the context-based evaluation
of an ELMM expression:

Expression Evaluation Context Redex Reduct

(/ (+ 25 75) (/ � (* (- 7 4) (+ 5 6))) (+ 25 75) 100

(* (- 7 4) (+ 5 6))

⇒ (/ 100 (* (- 7 4) (+ 5 6))) (/ 100 (* � (+ 5 6))) (- 7 4) 3

⇒ (/ 100 (* 3 (+ 5 6))) (/ 100 (* 3 �)) (+ 5 6) 11

⇒ (/ 100 (* 3 11)) (/ 100 �) (* 3 11) 33

⇒ (/ 100 33) � (/ 100 33) 3

⇒ 3

Context-based semantics are most convenient in an SOS where the config-
urations consist solely of a code component. But they can also be adapted to
configurations that have state components. For example, Figure 3.14 is a context-
based semantics for ELM, the extension to ELMM that includes indexed input
via the form (arg Nindex) (see Exercise 3.10). An ELM configuration is a pair
of (1) an ELM numerical expression and (2) a sequence of numerals representing
the program arguments. Both the ELM reduction relation and transition relation
must include the program arguments so that the arg form can access them.

When the reduction relation involves additional components, such as program
arguments in the case of ELM, there is some ambiguity in the terms “redex”
and “reduct.” Sometimes they refer to the left-hand and right-hand sides of the
reduction rule, but often they refer to just the expression components of these
sides. E.g., in ELM, both (arg 2) and 〈(arg 2), [7, 4, 5]〉 can be called a redex.

Exercise 3.13 Starting with Figure 3.14, develop a context-based semantics for the full
EL language.

Exercise 3.14 The most natural context-based semantics for PostFix is based on the
approach sketched in Exercise 3.12, where configurations consist only of a command
sequence. Figure 3.15 is the skeleton of a context-based semantics that defines the tran-
sition relation for these configurations. It uses a command sequence context EQ whose
hole can be filled with a command sequence that is internally appended to other command
sequences. For example, if EQ = [1, 2, �, sub], then EQ{[3, swap]} = [1, 2, 3, swap, sub].
Complete the semantics in Figure 3.15 by fleshing out the missing details.
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Redexes
R ∈ ElmRedex ::= (A N1 N2) [ArithmeticOperation]

| (arg Nindex) [IndexedInput]

Reduction Relation (�)

〈(A N1 N2),N
∗〉 � Nans where Nans = (calculate A N1 N2 )

〈(arg Nindex), [N1 , . . . ,NNsize
]〉 � NNindex

where (compare > Nindex 0) ∧ ¬(compare > Nindex Nsize)

Evaluation Contexts
E ∈ ElmEvalContext ::= � [Hole]

| (A E NE) [EvalLeft]
| (A N E) [EvalRight]

Transition Relation (⇒)
〈E{R},N ∗〉 ⇒ 〈E{R′},N ∗〉 where 〈R,N ∗〉 � R′

Figure 3.14 A context-based specification of the ELM transition relation.

Redexes
R ∈ PostFixRedex ::= [V , pop] [Pop]

| [V1 ,V2 , swap] [Swap]
| [N1 ,N2 ,A] [ArithmeticOperation]
| . . . other redexes left as an exercise . . .

Reduction Relation (�)

[V , pop] � [ ]
[V1 ,V2 , swap] � [V2 ,V1 ]
[N1 ,N2 ,A] � [Nans ] where Nans = (calculate A N1 N2 )
. . . other reduction rules left as an exercise . . .

Evaluation Contexts
EQ ∈ PostfixEvalSequenceContext ::= V ∗ @ � @ Q

Transition Relation (⇒)
EQ{R} ⇒ EQ{R′}, where R � R′

Figure 3.15 A context-based specification of the transition relation for a subset of
PostFix.
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NE −−�NE Nans

(elmm NE) −−�P Nans
[prog ]

N −−�NE N [num]

NE1 −−�NE N1 ; NE2 −−�NE N2

(A NE1 NE2) −−�NE Nans
[arithop]

where Nans = (calculate A N1 N2 )

Figure 3.16 Big-step operational semantics for ELMM.

3.3 Big-step Operational Semantics

A small-step operational semantics is a framework for describing program execu-
tion as an iterative sequence of small computational steps. But this is not always
the most natural way to view execution. We often want to evaluate a phrase
by recursively evaluating its subphrases and then combining the results. This is
the key idea of denotational semantics, which we shall study in Chapter 4. How-
ever, this idea also underlies an alternative form of operational semantics, called
big-step operational semantics (BOS) (also known as natural semantics).
Here we briefly introduce big-step semantics in the context of a few examples.

Let’s begin by defining a BOS for the simple expression language ELMM, in
which programs are numerical expressions that are either numerals or arithmetic
operations. A BOS typically has an evaluation relation for each nontrivial
syntactic domain that directly specifies a result for a given program phrase or
configuration. The BOS in Figure 3.16 defines two evaluation relations:

1. −−�NE ∈ NumExp × IntLit specifies the evaluation of an ELMM numerical
expression; and

2. −−�P ∈ Prog × IntLit specifies the evaluation of an ELMM program.

There are two rules specifying −−�NE . The [num] rule says that numerals evaluate
to themselves. The [arithop] rule says that evaluating an arithmetic operation
(A NE 1 NE 2) yields the result (Nans) of applying the operator to the results
(N1 and N2 ) of evaluating the operands. The single [prog] rule specifying −−�P

just says that the result of an ELMM program is the result of evaluating its
numerical expression.

As with SOS transitions, each instantiation of a BOS evaluation rule is justi-
fied by a proof tree, which we shall call an evaluation tree. Below is the proof
tree for the evaluation of the program (elmm (* (- 7 4) (+ 5 6))):
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[num]
7 −−�NE 7

[num]
4 −−�NE 4

[arithop]
(- 7 4) −−�NE 3

[num]
5 −−�NE 5

[num]
6 −−�NE 6

[arithop]
(+ 5 6) −−�NE 11

[arithop]
(* (- 7 4) (+ 5 6)) −−�NE 33

[prog ]
(elmm (* (- 7 4) (+ 5 6))) −−�P 33

Unlike the proof tree for an SOS transition, which justifies a single computational
step, the proof tree for a BOS transition justifies the entire evaluation! This is
the sense in which the steps of a BOS are “big”; they tell how to go from a phrase
to an answer (or something close to an answer). In the case of ELMM, the leaves
of the proof tree are always trivial evaluations of numerals to themselves.

With BOS evaluations there is no notion of a stuck state. In the ELMM BOS,
there is no proof tree for an expression like (* (/ 7 0) (+ 5 6)) that contains
an error. However, we can extend the BOS to include an explicit error token as a
possible result and modify the rules to generate and propagate such a token. Since
all ELMM programs terminate, a BOS with this extension completely specifies
the behavior of a program. But in general, the top-level evaluation rule for a
program only partially specifies its behavior, since there is no tree (not even an
infinite one) asserting that a program loops. What would the answer A of such
a program be in the relation P −−�P A?

The ELMM BOS rules also do not specify the order in which operands are
evaluated, but this is irrelevant since there is no way in ELMM to detect whether
one operation is performed before another. The ELMM BOS rules happen to
specify a function, which implies that ELMM evaluation is deterministic. In gen-
eral, a BOS may specify a relation, so it can describe nondeterministic evaluation
as well.

In ELMM, the evaluation relation maps a code phrase to its result. In general,
the LHS (and RHS) of an evaluation relation can be more complex, containing
state components in addition to a code component. This is illustrated in the
BOS for ELM, which extends ELMM with an indexed input construct (Fig-
ure 3.17). Here, the two evaluation relations have different domains than before:
they include an integer numeral sequence to model the program arguments.

1. −−�NE ∈ (NumExp× IntLit*) × IntLit specifies the evaluation of an ELM
numerical expression; and

2. −−�P ∈ (Prog× IntLit*) × IntLit specifies the evaluation of an ELM program.

Each of these relations can be read as “evaluating a program phrase relative to the
program arguments to yield a result.” As a notational convenience, we abbreviate
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NE −[N1 ,...,Nn ]−−−−−−�NE Nans

(elm Nnumargs NE) −[N1 ,...,Nn ]−−−−−−�P Nans

[prog ]

where (compare = Nnumargs n)
and n stands for the IntLit N that denotes n ∈ Int

N −N
∗

−�NE N [num]

NE1 −N
∗

−�NE N1 ; NE2 −N
∗

−�NE N2

(A NE1 NE2) −N
∗

−�NE Nans

[arithop]

where Nans = (calculate A N1 N2 )

(arg Nindex) −[N1 ,...,Nn ]−−−−−−�NE NNindex
[input]

where (compare > Nindex 0) ∧ ¬(compare > Nindex n)

Figure 3.17 Big-step operational semantics for ELM.

〈X,N ∗
args〉 −−�X Nans as X −N

∗
args−−−�X Nans , where X ranges over P and NE . The

[prog] rule is as in ELMM, except that it checks that the number of arguments
is as expected and passes them to the body for its evaluation. These arguments
are ignored by the [num] and [arithop] rules, but are used by the [input] rule to
return the specified argument.

Here is a sample ELM proof tree showing the evaluation of the program
(elm 2 (* (arg 1) (+ 1 (arg 2)))) on the two arguments 7 and 5:

[input]
(arg 1) −[7,5]−−�NE 7

[num]
1 −[7,5]−−�NE 1

[input]
(arg 2) −[7,5]−−�NE 5

[arithop]
(+ 1 (arg 2)) −[7,5]−−�NE 6

[prog]
(elm 2 (* (arg 1) (+ 1 (arg 2)))) −[7,5]−−�P 42

Can we describe PostFix execution in terms of a BOS? Yes — via the eval-
uation relations −−�P (for programs) and −−�Q (for command sequences) in Fig-
ure 3.18. The −−�Q relation ∈ (CommandSeq× Stack) × Stack treats command
sequences as “stack transformers” that map an input stack to an output stack.
We abbreviate 〈Q ,S 〉 −−�Q S ′ as Q −S−�Q S ′. The [non-exec] rule “cheats” by using
the SOS transition relation⇒ to specify how a non-exec command C transforms
the stack to S ′. Then −−�Q specifies how the rest of the commands transform S ′

into S ′′. The [exec] rule is more interesting because it uses −−�Q in both an-
tecedents. The executable sequence commands Qexec transform S to S ′, while
the remaining commands Qrest transform S ′ to S ′′. The [exec] and [nonexec]
rules illustrate how evaluation order (in this case, executing Qexec before Qrest
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Q −[N1 ,...,Nn ]−−−−−−�Q Nans . S

(postfix Nnumargs Q) −[N1 ,...,Nn ]−−−−−−�P Nans

[prog ]

where (compare = Nnumargs n)
and n stands for the IntLit N that denotes n ∈ Int

〈C . Q , S 〉 ⇒ 〈Q , S ′〉 ; Q −S
′

−�Q S ′′

C . Q −S−�Q S ′′
[non-exec]

where C 
= exec

Qexec −S−�Q S ′ ; Qrest −S
′

−�Q S ′′

exec . Qrest −(Qexec) . S−−−−−−�Q S ′′
[exec]

Figure 3.18 Big-step operational semantics for PostFix.

or C before Q) can be specified in a BOS by “threading” a state component (in
this case, the stack) through an evaluation.

It is convenient to define −−�Q so that it returns a stack, but stacks are not
the final answer we desire. The [prog] rule ∈ (Prog× IntLit*) × Stack takes care
of creating the initial stack from the arguments and extracting the top integer
numeral (if it exists) from the final stack.

How do small-step and big-step semantics stack up against each other? Each
has its advantages and limitations. A big-step semantics is often more concise
than a small-step semantics, and one of its proof trees can summarize the entire
execution of a program. The recursive nature of a big-step semantics also corre-
sponds more closely to the structure of interpreters for high-level languages than
a small-step semantics does. On the other hand, the iterative step-by-step nature
of a small-step semantics corresponds more closely to the way low-level languages
are implemented, and it is often a better framework for reasoning about compu-
tational resources, errors, and termination. Furthemore, infinite loops are easy
to model in a small-step semantics but not in a big-step semantics.

We will use small-step semantics as our default form of operational semantics
throughout the rest of this book. This is not because the big-step semantics
approach is not useful — it is — but because we will tend to use denotational
semantics rather than big-step operational semantics for language specifications
that compose the meanings of whole phrases from subphrases.

Exercise 3.15 Construct a BOS evaluation tree that shows the evaluation of

(postfix 2 (2 (3 mul add) exec) 1 swap exec sub)

on arguments 4 and 5.
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Exercise 3.16 Extend the BOS in Figure 3.16 to handle the full EL language. You will
need a new evaluation relation, −−�BE , to handle boolean expressions.

Exercise 3.17 Modify each of the BOS specifications in Figures 3.16–3.18 to generate
and propagate an error token that models signaling an error. Be careful to handle all
error situations.

3.4 Operational Reasoning

The suitability of a programming language for a given purpose largely depends
on many high-level properties of the language. Important global properties of a
programming language include:

• universality: the language can express all computable programs;

• determinism: the set of possible outcomes from executing a program on any
particular inputs is a singleton;

• strong normalization: all programs are guaranteed to terminate on all inputs
(i.e., it is not possible to express an infinite loop);

• static checkability: a class of program errors can be found by static analysis
without resorting to execution;

• referential transparency: different occurrences of an expression within the
same context always have the same meaning.

Languages often exhibit equivalence properties that allow safe transforma-
tions: systematic substitutions of one program phrase for another that are guar-
anteed not to change the behavior of the program. Finally, properties of particular
programs are often of interest. For instance, we might want to show that a given
program terminates, that it uses only bounded resources, or that it is equivalent
to some other program. For these sorts of purposes, an important characteristic
of a language is how easy it is to prove properties of particular programs written
in a language.

A language exhibiting a desired list of properties may not always exist. For
example, no language can be both universal and terminating, because a universal
language must be able to express infinite loops. (But it is often possible to carve
a terminating sublanguage out of a universal language.)

The properties of a programming language are important to language design-
ers, implementers, and programmers alike. The features included in a language
strongly depend on what properties the designers want the language to have. For
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example, designers of a language in which all programs are intended to terminate
cannot include general looping constructs, while designers of a universal language
must include features that allow nontermination. Compiler writers extensively
use safe transformations to automatically improve the efficiency of programs.
The properties of a language influence which language a programmer chooses for
a task as well as what style of code the programmer writes.

An important benefit of a formal semantics is that it provides a framework
that facilitates proving properties both about the entire language and about
particular programs written in the language. Without a formal semantics, our
understanding of such properties would be limited to intuitions and informal
(and possibly incorrect) arguments. A formal semantics is a shared language for
convincing both ourselves and others that some intuition that we have about a
program or a language is really true. It can also help us develop new intuitions.
It is useful not only to the extent that it helps us construct proofs but also to the
extent that it helps us find holes in our arguments. After all, some of the things
we think we can prove simply aren’t true. The process of constructing a proof
can give us important insight into why they aren’t true.

In the next three sections, we use operational semantics to reason about EL
and PostFix. In Section 3.5, we discuss the deterministic behavior of EL under
various conditions. Then we show in Section 3.6 that all PostFix programs are
guaranteed to terminate. In Section 3.7, we consider conditions under which we
can transform one PostFix command sequence to another without changing the
behavior of a program.

3.5 Deterministic Behavior of EL

A programming language is deterministic if there is exactly one possible out-
come for any pair of program and inputs. In Section 3.2.1, we saw that a deter-
ministic SOS transition relation implies that programs behave deterministically.
In Section 3.2.3, we argued that the PostFix transition relation is deterministic,
so PostFix is a deterministic language.

We can similarly argue that EL is deterministic. We will give the argument
for the sublanguage ELMM, but it can be extended to full EL. There are only
three SOS rewrite rules for ELMM (Figure 3.7 on page 65): [arithop], [prog-left],
and [prog-right]. For a given ELMM numerical expression NE , we argue that
there is at most one proof tree using these three rules that justifies a transition
for NE . The proof is by structural induction on the AST for NE .
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• (Base cases) If NE is a numeral, it matches no rules, so there is no transition.
If NE has the form (A N1 N2), it can match only the [arithop] rule, since
there are no transitions involving numerals.

• (Induction cases) NE must have the form (A NE 1 NE 2), where at least one
of NE 1 and NE 2 is not a numeral. If NE 1 is not a numeral, then NE can
match only the [prog-left] rule, and only in the case where there is a proof tree
justifying the transition NE 1 ⇒ NE ′

1 . By induction, there is at most one such
proof tree, so there is at most one proof tree for a transition of NE . If NE 1

is a numeral, then NE 2 must not be a numeral, in which case NE can match
only the [prog-right] rule, and similar reasoning applies.

Alternatively, we can prove the determinism of the ELMM transition relation
using the context semantics in Figure 3.13. In this case, we need to show that
each ELMM numerical expression can be parsed into an evaluation context and
redex in at most one way. Such a proof is essentially the same as the one given
above, so we omit it.

The ELMM SOS specifies that operations are performed in left-to-right order.
Why does the order of evaluation matter? It turns out that it doesn’t — there
is no way in ELMM to detect the order in which operations are performed!
Intuitively, either the evaluation is successful, in which case all operations are
performed anyway, leading to the same answer, or a division or remainder by
zero is encountered somewhere along the way, in which case the evaluation is
unsuccessful. Note that if we could distinguish between different kinds of errors,
the story would be different. For instance, if divide-by-zero gave a different error
from remainder-by-zero, then evaluating the expression (+ (/ 1 0) (% 2 0))

would indicate which of the two subexpressions was evaluated first. The issue
of evaluation order is important to implementers, because they sometimes can
make programs execute more efficiently by reordering operations.

How can we formally show that evaluation order in ELMM does not matter?
We begin by replacing the [prog-right] rule in the SOS by the following [prog-
right ′] rule to yield a modified ELMM transition relation ⇒ ′.

NE2 ⇒′ NE ′
2

(A NE1 NE2) ⇒′ (A NE1 NE ′
2)

[prog-right ′]

Now operands can be evaluated in either order, so the transition relation is no
longer deterministic. For example, the expression (* (- 7 4) (+ 5 6)) now
has two transitions:

(* (- 7 4) (+ 5 6)) ⇒′ (* 3 (+ 5 6))

(* (- 7 4) (+ 5 6)) ⇒′ (* (- 7 4) 11)
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Nevertheless, we would like to argue that the behavior of programs is still deter-
ministic even though the transition relation is not.

A handy property for this purpose is called confluence. Informally, conflu-
ence says that if two transition paths from a configuration diverge, there must
be a way to bring them back together. The formal definition is as follows:

Definition 3.1 (Confluence) A relation → ∈ X ×X is confluent if and
only if for every x1, x2, x3 ∈ X such that x1 −∗−→ x2 and x1 −∗−→ x3, there exists
an x4 such that x2 −∗−→ x4 and x3 −∗−→ x4. Confluence is usually displayed via
the following diagram, in which solid lines are the given relations and the
dashed lines are assumed to exist when the property holds.

x1

x2 x3

x4

∗ ∗

∗ ∗

Because of the shape of the diagram, −∗−→ is said to satisfy the diamond
property. Saying that a relation is Church-Rosser (CR for short) is
the same as saying it is confluent.

Suppose that a transition relation ⇒ is confluent. Then if an initial configu-
ration cfi has transition paths to two final configurations cff1 and cff2 , these are
necessarily the same configuration! Why? By confluence, there must be a config-
uration cf such that cff1

∗⇒ cf and cff2

∗⇒ cf. But cff1 and cff2 are elements of
Irreducible , so the only transition paths leaving them have length 0. This means
cff1 = cf = cff2 . Thus, a confluent transition relation guarantees a unique final
configuration. Indeed, it guarantees a unique irreducible configuration: it is not
possible to get stuck on one path and reach a final configuration on another.

Confluence by itself does not guarantee a single outcome. It is still possible for
a confluent transition relation to have some infinite paths, in which case there is
a second outcome (∞). This possibility must be ruled out to prove deterministic
behavior. In the case of ELMM — and even EL — it is easy to prove there are
no loops (see Exercise 3.27 on page 89).

We can now show that ELMM has deterministic behavior under ⇒′ by ar-
guing that ⇒′ is confluent. We will actually show a stronger property, known
as one-step confluence, in which the transitive closure stars in the diamond
diagram are removed; confluence easily follows from one-step confluence.
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Suppose that NE 1 ⇒′ NE 2 and NE 1 ⇒′ NE 3 . Any such ELMM transition
is justified by a linear derivation (like the one depicted in Figure 3.8 on page 65)
whose single leaf is an instance of the [arithop] rule. As in context-based se-
mantics, we will call the LHS of the basic arithmetic transition justified by this
[arithop] rule a redex. Call the redex reduced in NE 1 ⇒′ NE2 the “red” redex
and the one reduced in NE 1 ⇒′ NE 3 the “blue” redex. Either these are the same
redex, in which case NE 2 = NE 3 trivially joins the paths, or the redexes are
disjoint, i.e., one does not occur as a subexpression of another. (A redex has the
form (A N1 N2), and the integer numerals N1 and N2 cannot contain another
redex.) In the latter case, there must be an expression NE 4 that is a copy of
NE1 in which both the red and blue redexes have been reduced. Then NE 2 ⇒′

NE 4 by reducing the blue redex and NE 3 ⇒′ NE 4 by reducing the red redex.
So NE 4 joins the diverging transitions.

We have shown that ELMM has deterministic behavior even when its op-
erations are performed in a nondeterministic order. A similar approach can be
used to show that ELM and EL have the same property (see Exercise 3.20).
Confluence in these languages is fairly straightforward. It becomes much trickier
in languages where redexes overlap or performing one redex can copy another.

We emphasize that confluence is a sufficient but not necessary condition for a
nondeterministic transition relation to give rise to deterministic behavior. That
is, confluence implies deterministic behavior, but deterministic behavior can exist
without confluence. In general, many distinct final configurations might map to
the same outcome.

Exercise 3.18 Suppose that in addition to replacing [prog-right] with [prog-right ′] in
the ELMM SOS, we add the rule [prog-both] introduced on page 65 to the SOS.

a. In this modified SOS, how many different transition paths lead from the expression
(/ (+ 25 75) (* (- 7 4) (+ 5 6))) to the result 3?

b. Does the modified SOS still have deterministic behavior? Explain your answer.

Exercise 3.19 Consider extending ELMM with a construct (either NE1 NE2) that
returns the result of evaluating either NE1 or NE2 .

a. What are the possible behaviors of the following program?

(elmm (* (- (either 1 2) (either 3 4)) (either 5 6)))

b. The informal specification of either given above is ambiguous. For example, must
the expression (+ (either 1 (/ 2 0)) (either (% 3 0) 4)) return the result 5,
or can it get stuck? The semantics of either can be defined either way. Give a formal
specification for each interpretation of either that is consistent with the informal
description.
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Exercise 3.20

a. Show that the two transition relations (one for NumExp, one for BoolExp) in an EL
SOS can be deterministic.

b. Suppose that both transition relations in an EL SOS allow operations to be performed
in any order, so that they are nondeterministic. Argue that the behavior of EL
programs is still deterministic.

3.6 Termination of PostFix Programs

The strong normalization property of PostFix is expressed by the following
theorem:

Theorem 3.2 (PostFix Termination) All PostFix programs are guar-
anteed to terminate. That is, executing a PostFix program on any inputs
always either returns a numeral or signals an error.

This theorem is based on the following intuition: existing commands are con-
sumed by execution, but no new commands are ever created, so the commands
must eventually “run out.” This intuition is essentially correct, but an intuition
does not a proof make. After all, PostFix is complex enough to harbor a sub-
tlety that invalidates the intuition. The nget command allows the duplication
of numerals — is this problematic with regard to termination? Executable se-
quences are moved to the stack, but their contents can later be prepended to the
command sequence. How can we be certain that this shuffling between command
sequence and stack doesn’t go on forever? And how do we deal with the fact
that executable sequences can be arbitrarily nested? In fact, the termination
theorem can fail to hold if PostFix is extended with new commands, such as a
dup command that duplicates the top stack value (see Section 3.8 for details).

These questions indicate the need for a more convincing argument that ter-
mination is guaranteed. This is the kind of situation in which formal semantics
comes in handy. Below we present a proof for termination based on the SOS for
PostFix.

3.6.1 Energy

Associate with each PostFix configuration a natural number called its energy
(so called to suggest the potential energy of a dynamical system). By considering
each rewrite rule of the semantics in turn, we will prove that the energy strictly
decreases with each transition. The energy of an initial configuration must then
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be an upper bound on the length of any path of transitions leading from the
initial configuration. Since the initial energy is finite, there can be no unbounded
transition sequences from the initial configuration, so the execution of a program
must terminate.

The energy of a configuration is defined by the following energy functions:

Econfig [[〈Q , S 〉]] = Eseq [[Q ]] + Estack [[S ]] (3.1)

Eseq [[[ ]Command]] = 0 (3.2)

Eseq [[C . Q ]] = 1 + Ecom [[C ]] + Eseq [[Q ]] (3.3)

Estack [[[ ]Value]] = 0 (3.4)

Estack [[V . S ]] = Ecom [[V ]] + Estack [[S ]] (3.5)

Ecom [[(Q)]] = Eseq [[Q ]] (3.6)

Ecom [[C ]] = 1, C not an executable sequence. (3.7)

These definitions embody the following intuitions:

• The energy of a configuration, sequence, or stack is greater than or equal to
the sum of the energy of its components.

• Executing a command consumes at least one unit of energy (the 1 that appears
in 3.3). This is true even for commands that are transferred from the code
component to the stack component (i.e., numerals and executable sequences);
such commands are worth one more unit of energy in the command sequence
than on the stack.8

• Since the commands in an executable sequence may eventually be executed,
an executable sequence on the stack must have at least as much energy as its
component command sequence. This is the essence of 3.6, where Ecom [[(Q)]] is
interpreted as the energy of a command sequence on the stack (by 3.5).

The following lemmas are handy for reasoning about the energy of sequences:

Ecom [[C ]] ≥ 0 (3.8)

Eseq [[Q1 @ Q2 ]] = Eseq [[Q1 ]] + Eseq [[Q2 ]] (3.9)

These can be derived from the energy definitions above. Their derivations are
left as an exercise.

Equipped with the energy definitions and lemmas 3.8 and 3.9, we are ready
to prove the PostFix Termination Theorem.

8The invocation Ecom [[V ]] that appears in 3.5 may seem questionable because Ecom [[]] should
be called on elements of Command, not elements of Value. But since every stack value is also
a command, the invocation is well defined.
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3.6.2 The Proof of Termination

Proof: We show that every transition reduces the energy of a configuration.
Recall that every transition in an SOS has a proof in terms of the rewrite rules.
In the case of PostFix, where all the rules are axioms, the proof is trivial: every
PostFix transition is justified by one rewrite axiom. To prove a property about
PostFix transitions, we just need to show that it holds for each rewrite axiom
in the SOS. Here’s the case analysis for the energy reduction property:

• [num]: 〈N . Q , S 〉 ⇒ 〈Q , N . S 〉

Econfig [[〈N . Q , S 〉]]
= Eseq [[N . Q ]] + Estack [[S ]] by 3.1
= 1 + Ecom [[N ]] + Eseq [[Q ]] + Estack [[S ]] by 3.3
= 1 + Eseq [[Q ]] + Estack [[N . S ]] by 3.5
= 1 + Econfig [[〈Q , N . S 〉]] by 3.1

The LHS has one more unit of energy than the RHS, so moving a numeral to
the stack reduces the configuration energy by one unit.

• [seq]: 〈(Qexec) . Qrest , S 〉 ⇒ 〈Qrest , (Qexec) . S 〉
Moving an executable sequence to the stack also consumes one energy unit by
exactly the same argument as for [num].

• [pop]: 〈pop . Q , Vtop . S 〉 ⇒ 〈Q , S 〉
Popping Vtop off a stack takes at least two energy units:

Econfig [[〈pop . Q , Vtop . S 〉]]
= Eseq [[pop . Q ]] + Estack [[Vtop . S ]] by 3.1
= 1 + Ecom [[pop]] + Eseq [[Q ]] + Ecom [[Vtop ]] + Estack [[S ]] by 3.3 and 3.5
= 2 + Ecom [[Vtop ]] + Eseq [[Q ]] + Estack [[S ]] by 3.7
≥ 2 + Econfig [[〈Q , S 〉]] by 3.1 and 3.8

• [swap]: 〈swap . Q , V1 . V2 . S 〉 ⇒ 〈Q , V2 . V1 . S 〉
Swapping the top two elements of a stack consumes two energy units:

Econfig [[〈swap . Q , V1 . V2 . S 〉]]
= Eseq [[swap . Q ]] + Estack [[V1 . V2 . S ]] by 3.1
= 1 + Ecom [[swap]] + Eseq [[Q ]]

+ Ecom [[V1 ]] + Ecom [[V2 ]] + Estack [[S ]] by 3.3 and 3.5
= 2 + Eseq [[Q ]] + Estack [[V2 . V1 . S ]] by 3.7 and 3.5
= 2 + Econfig [[〈Q , V2 . V1 . S 〉]] by 3.1
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• [execute]: 〈exec . Qrest , (Qexec) . S 〉 ⇒ 〈Qexec @ Qrest , S 〉
Executing the exec command consumes two energy units:

Econfig [[〈exec . Qrest , (Qexec) . S 〉]]
= Eseq [[exec . Qrest ]] + Estack [[(Qexec) . S ]] by 3.1
= 1 + Ecom [[exec]] + Eseq [[Qrest ]]

+ Ecom [[(Qexec)]] + Estack [[S ]] by 3.3 and 3.5
= 2 + Eseq [[Qexec ]] + Eseq [[Qrest ]] + Estack [[S ]] by 3.6 and 3.7
= 2 + Eseq [[Qexec @ Qrest ]] + Estack [[S ]] by 3.9
= 2 + Econfig [[〈Qexec @ Qrest , S 〉]] by 3.1

• [nget], [arithop], [relop-true], [relop-false], [sel-true], [sel-false]: These cases are
similar to those above and are left as exercises for the reader. �

The approach of defining a natural number function that decreases on every
iteration of a process is a common technique for proving termination. However,
inventing the function can sometimes be tricky. In the case of PostFix, we have
to get the relative weights of components just right to handle movements between
the program and stack.

The termination proof presented above is rather complex. The difficulty is not
inherent to PostFix, but is due to the particular way we have chosen to formulate
its semantics. There are alternative formulations in which the termination proof
is simpler (see Exercise 3.25 on page 89).

Exercise 3.21 Show that lemmas 3.8 and 3.9 hold.

Exercise 3.22 Complete the proof of the PostFix termination theorem by showing
that the following axioms reduce configuration energy: [nget], [arithop], [relop-true],
[relop-false], [sel-true], [sel-false].

Exercise 3.23 Bud “eagle-eye” Lojack notices that Definitions 3.2 and 3.4 do not appear
as the justification for any steps in the PostFix Termination Theorem. He reasons that
these definitions are arbitrary, so he could just as well use the following definitions instead:

Eseq [[[]]] = 17 ( 3.2 ′)
Estack [[[]]] = 23 ( 3.4 ′)

Is Bud correct? Explain your answer.

Exercise 3.24 Prove the termination property of PostFix based on the SOS for Post-
Fix2 from Exercise 3.7.

a. Define an appropriate energy function on configurations in the alternative SOS.

b. Show that each transition in the alternative SOS reduces energy.
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3.6.3 Structural Induction

The above proof is based on a PostFix SOS that uses only axioms. But what
if the SOS contained progress rules, like [exec-prog ] from Figure 3.10 in Sec-
tion 3.2.5? How do we prove a property like reduction in configuration energy
when progress rules are involved?

Here’s where we can take advantage of the fact that every transition of an
SOS must be justified by a finite proof tree based on the rewrite rules. Recall that
there are two types of nodes in the proof tree: the leaves, which correspond to
axioms, and the intermediate nodes, which correspond to progress rules. Suppose
we can show that

• the property holds at each leaf — i.e., it is true for (the consequent of) every
axiom; and

• the property holds at each intermediate node — i.e., for every progress rule, if
the property holds for all of the antecedents, then it also holds for the conse-
quent.

Then, by induction on the height of its proof tree, the property must hold for
each transition specified by the rewrite rules. This method for proving a property
based on the structure of a tree (in this case the proof tree of a transition relation)
is called structural induction.

As an example of a proof by structural induction, we consider how the pre-
vious proof of the termination property for PostFix would be modified for an
SOS that uses the [exec-done] and [exec-prog ] rules in place of the [exec] rule.
It is straightforward to show that the [exec-done] axiom reduces configuration
energy; this is left as an exercise for the reader. To show that the [exec-prog ]
rule satisfies the property, we must show that if its single antecedent transition
reduces configuration energy, then its consequent transition reduces configuration
energy as well.

Recall that the [exec-prog ] rule has the form:

〈Qexec , S 〉 ⇒ 〈Q ′
exec , S ′〉

〈exec . Qrest , (Qexec) . S 〉 ⇒ 〈exec . Qrest , (Q
′
exec) . S ′〉 [exec-prog ]

We assume that the antecedent transition,

〈Qexec , S 〉 ⇒ 〈Q ′
exec , S ′〉

reduces configuration energy, so that the following inequality holds:

Econfig [[〈Qexec , S 〉]] > Econfig [[〈Q ′
exec , S ′〉]]
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Then we show that the consequent transition also reduces configuration energy:

Econfig [[〈exec . Qrest , (Qexec) . S 〉]]
= Eseq [[exec . Qrest ]] + Estack [[(Qexec) . S ]] by 3.1
= Eseq [[exec . Qrest ]] + Ecom [[(Qexec)]] + Estack [[S ]] by 3.5
= Eseq [[exec . Qrest ]] + Eseq [[Qexec ]] + Estack [[S ]] by 3.6
= Eseq [[exec . Qrest ]] + Econfig [[〈Qexec , S 〉]] by 3.1
> Eseq [[exec . Qrest ]] + Econfig [[〈Q ′

exec , S ′〉]] by assumption
= Eseq [[exec . Qrest ]] + Eseq [[Q ′

exec ]] + Estack [[S ′]] by 3.1
= Eseq [[exec . Qrest ]] + Ecom [[(Q ′

exec)]] + Estack [[S ′]] by 3.6
= Eseq [[exec . Qrest ]] + Estack [[(Q ′

exec) . S ′]] by 3.5
= Econfig [[〈exec . Qrest , (Q

′
exec) . S ′〉]] by 3.1

The > appearing in the derivation sequence guarantees that the energy specified
by the first line is strictly greater than the energy specified by the last line. This
completes the proof that the [exec-prog ] rule reduces configuration energy. To-
gether with the proofs that the axioms reduce configuration energy, this provides
an alternative proof of PostFix’s termination property.

Exercise 3.25 Prove the termination property of PostFix based on the alternative
PostFix SOS suggested in Exercise 3.12 on page 70:

a. Define an appropriate energy function on configurations in the alternative SOS.

b. Show that each transition in the alternative SOS reduces energy.

c. The termination proof for the alternative semantics should be more straightforward
than the termination proofs in the text and in Exercise 3.24. What characteristic(s)
of the alternative SOS simplify the proof? Does this mean the alternative SOS is a
“better” one?

Exercise 3.26 Prove that the rewrite rules [exec-prog ] and [exec-done] presented in
the text specify the same behavior as the [execute] rule. That is, show that for any
configuration cf of the form 〈exec . Q , S 〉, both sets of rules eventually rewrite cf into
either (1) a stuck state or (2) the same configuration.

Exercise 3.27 As in PostFix, every program in the EL language terminates. Prove
this fact based on an operational semantics for EL (see Exercise 3.10 on page 67).

3.7 Safe PostFix Transformations

3.7.1 Observational Equivalence

One of the most important aspects of reasoning about programs is knowing when
it is safe to replace one program phrase by another. Two phrases are said to be
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observationally equivalent (or behaviorally equivalent) if an instance of
one can be replaced by the other in any program without changing the behavior
of the program.

Observational equivalence is important because it is the basis for a wide range
of program transformation techniques. It is often possible to improve a pragmatic
aspect of a program by replacing a phrase by one that is equivalent but more
efficient. For example, we expect that the PostFix sequence [1, add, 2, add] can
always be replaced by [3, add] without changing the behavior of the surrounding
program. The latter may be more desirable in practice because it performs fewer
additions.

A series of simple transformations can sometimes lead to dramatic improve-
ments in performance. Consider the following three transformations on PostFix
command sequences, just three of the many safe PostFix transformations:

Before After Name
[V1 ,V2 , swap] [V2 ,V1 ] [swap-trans]
[(Q), exec] Q [exec-trans]
[N1 ,N2 ,A] [Nans ] where Nans = (calculate A N1 N2 ) [arith-trans]

Applying these to our example of a PostFix command sequence yields the fol-
lowing sequence of simplifications:

((2 (3 mul add) exec) 1 swap exec sub)

−simp−−−→ ((2 3 mul add) 1 swap exec sub) [exec-trans]

−simp−−−→ ((6 add) 1 swap exec sub) [arith-trans]

−simp−−−→ (1 (6 add) exec sub) [swap-trans]

−simp−−−→ (1 6 add sub) [exec-trans]

−simp−−−→ (7 sub) [arith-trans]

Thus, the original command sequence is a “subtract 7” subroutine. The trans-
formations essentially perform operations at compile time that otherwise would
be performed at run time.

It is often tricky to determine whether two phrases are observationally equiv-
alent. For example, at first glance it might seem that the PostFix sequence
[swap, swap] can always be replaced by the empty sequence [ ]. While this trans-
formation is valid in many situations, these two sequences are not observationally
equivalent because they behave differently when the stack contains fewer than
two elements. For instance, the PostFix program (postfix 0 1) returns 1 as
a final answer, but the program (postfix 0 1 swap swap) generates an error.
Two phrases are observationally equivalent only if they are interchangeable in all
programs.
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P ∈ PostfixProgContext ::= (postfix Nnumargs Q) [ProgramContext]

Q ∈ PostfixSequenceContext ::= � [Hole]
| Q @ Q [Prefix]
| Q @ Q [Suffix]
| [(Q)] [Nesting]

Figure 3.19 Definition of PostFix contexts.

Observational equivalence can be formalized in terms of the notions of be-
havior and context presented earlier. Recall that the behavior of a program
(see Section 3.2.1) is specified by a function beh that maps a program and its
inputs to a set of possible outcomes:

beh : (Prog× Inputs)→ P(Outcome)

The behavior is deterministic when the resulting set is guaranteed to be a single-
ton. A program context is a program with a hole in it (see Section 3.2.6).

Definition 3.3 (Observational Equivalence) Suppose that P ranges
over program contexts and H ranges over the kinds of phrases that fill the
holes in program contexts. Then H1 and H2 are defined to be observation-
ally equivalent (written H1 =obs H2 ) if and only if for all program contexts
P and all inputs I , beh 〈P{H1}, I 〉 = beh 〈P{H2}, I 〉.

We will consider PostFix as an example. An appropriate notion of pro-
gram contexts for PostFix is defined in Figure 3.19. A command sequence
context Q is one that can be filled with a sequence of commands to yield another
sequence of commands. For example, if Q = [(2 mul), 3] @ � @ [exec], then
Q{[4, add, swap]} = [(2 mul), 3, 4, add, swap, exec]. The [Prefix] and [Suffix]
productions allow the hole to be surrounded by arbitrary command sequences,
while the [Nesting ] production allows the hole to be nested within an executable
sequence command. (The notation [(Q)] designates a sequence containing a sin-
gle element. That element is an executable sequence that contains a single hole.)
Because of the presence of @ , the grammar for PostfixSequenceContext is am-
biguous, but that will not affect our presentation, since filling the hole for any
parsing of a sequence context yields exactly the same sequence.

The possible outcomes of a program must be carefully defined to lead to a sat-
isfactory notion of observational equivalence. The outcomes for PostFix defined
in Section 3.2.1 are fine, but small changes can sometimes lead to surprising re-
sults. For example, suppose we allow PostFix programs to return the top value
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of a nonempty stack, even if the top value is an executable sequence. If we can
observe the structure of a returned executable sequence, then this change invali-
dates all nontrivial program transformations! To see why, take any two sequences
we expect to be equivalent (say, [1, add, 2, add] and [3, add]) and plug them into
the context (postfix 0 (�)). In the modified semantics, the two outcomes are
the executable sequences (1 add 2 add) and (3 add), which are clearly not the
same, and so the two sequences are not observationally equivalent.

The problem is that the modified SOS makes distinctions between executable
sequence outcomes that are too fine-grained for our purposes. We can fix the
problem by instead adopting a coarser-grained notion of behavior in which there
is no observable difference between outcomes that are executable sequences. For
example, the outcome in this case could be the token executable, indicating
that the outcome is an executable sequence without divulging which particular
executable sequence it is. With this change, all the expected program transfor-
mations become valid again.

3.7.2 Transform Equivalence

It is possible to show the observational equivalence of two particular PostFix
command sequences according to the definition on page 91. However, we will fol-
low another route. First, we will develop an easier-to-prove notion of equivalence
for PostFix sequences called transform equivalence. Then, after giving an
example of transform equivalence, we will prove a theorem that transform equiv-
alence implies observational equivalence for PostFix programs. This approach
has the advantage that the structural induction proof on contexts needed to show
observational equivalence need be proved only once (for the theorem) rather than
for every pair of PostFix command sequences.

Transform equivalence is based on the intuition that PostFix command se-
quences can be viewed as a means of transforming one stack to another. Infor-
mally, transform equivalence is defined as follows:

Definition 3.4 (Transform Equivalence) Two PostFix command se-
quences are transform equivalent if they always transform equivalent
input stacks to equivalent output stacks.

This definition is informal in that it doesn’t say how command sequences can be
viewed as transformers or pin down what it means for two stacks to be equivalent.
We will now flesh out these notions.

Our approach to transform equivalence depends on a notion of the last stack
reached when all commands are executed in a PostFix program. We model
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the possibility of executions stuck at a command by introducing a StackAnswer
domain that contains the usual PostFix stacks (Figure 3.3 on page 53) along
with a distinguished error stack element SAerror :

ErrorStack = {errorStack}
SA ∈ StackAnswer = Stack + ErrorStack

SAerror : StackAnswer = (ErrorStack�StackAnswer errorStack)

We now define a lastStack function that returns the last stack reached for a
given initial command sequence and stack when all commands are executed:

lastStack : CommandSeq→ Stack → StackAnswer

(lastStack Q S ) =

{
(Stack�StackAnswer S ′) if 〈Q , S 〉 ∗⇒ 〈[ ], S ′〉
SAerror otherwise

The lastStack function is well defined because PostFix is deterministic. The
longest transition path starting with an initial configuration 〈Q , S 〉 ends in a
unique configuration that either has an empty command sequence or doesn’t.
Because it handles the nonempty command sequence case by returning SAerror ,
lastStack is also a total function. For example, (lastStack [add, mul] [4, 3, 2, 1])
= [14, 1] and (lastStack [add, exec] [4, 3, 2, 1]) = SAerror . It easily follows from
the definition of lastStack that if 〈Q , S 〉 ⇒ 〈Q ′, S ′〉 then (lastStack Q S ) =
(lastStack Q ′ S ′). Note that a stack returned by lastStack may be empty or
have an empty command sequence at the top, so it may not be an element of
FinalStack (defined in Figure 3.3 on page 53).

The simplest notion of “stack equivalence” is that two stacks are equivalent
if they are identical sequences of values. But this notion has problems similar
to those discussed above with regard to outcomes in the context of observational
equivalence. For example, suppose we are able to show that (1 add 2 add) and
(3 add) are transform equivalent. Then we’d also like the transform equivalence
of ((1 add 2 add)) and ((3 add)) to follow as a corollary. But given identical
input stacks, these two sequences do not yield identical output stacks — the top
values of the output stacks are different executable sequences!

To finesse this problem, we need a notion of stack equivalence that treats
two executable sequence elements as being the same if they are transform equiv-
alent. The recursive nature of these notions prompts us to define four mutu-
ally recursive equivalence relations that formalize this approach: one between
command sequences (transform equivalence), one between stack answers (stack-
answer equivalence), one between stacks (stack equivalence), and one between
stack elements (value equivalence).
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1. Command sequences Q1 and Q2 are said to be transform equivalent (writ-
ten Q1 ∼Q Q2 ) if, for all stack-equivalent stacks S1 and S2 , it is the case that
(lastStack Q1 S1 ) is stack-answer equivalent to (lastStack Q2 S2 ).

2. Stack answers SA1 and SA2 are said to be stack-answer equivalent (written
SA1 ∼SA SA2 ) if

• both SA1 and SA2 are the distinguished error stack, SAerror ; or

• SA1 = (Stack�StackAnswer S1 ), SA2 = (Stack�StackAnswer S2 ), and S1 is
stack equivalent to S2 .

3. Stacks S1 and S2 are stack equivalent (written S1 ∼S S2 ) if they are equal-
length sequences of values that are elementwise value equivalent. I.e., S1 =
[V1 , . . . ,Vn ], S2 = [V ′

1 , . . . ,V ′
n ], and Vi ∼V V ′

i for all i such that 1 ≤ i ≤ n.
Equivalently, S1 and S2 are stack equivalent if

• both S1 and S2 are the empty stack; or

• S1 = V1 . S ′
1 , S2 = V2 . S ′

2 , V1 ∼V V2 , and S ′
1 ∼S S ′

2 .

4. Stack elements V1 and V2 are value equivalent (written V1 ∼V V2 ) if V1

and V2 are the same integer numeral (i.e., V1 = N = V2 ) or if V1 and V2

are executable sequences whose contents are transform equivalent (i.e., V1 =
(Q1), V2 = (Q2), and Q1 ∼Q Q2 ).

Despite the mutually recursive nature of these definitions, we claim that all four
are well-defined equivalence relations as long as we choose the largest relations
satisfying the descriptions.

Two PostFix command sequences can be proved transform equivalent by
case analysis on the structure of input stacks. This is much easier than the case
analysis on the structure of contexts that is implied by observational equivalence.
Since (as we shall show below) observational equivalence follows from transform
equivalence, transform equivalence is a practical technique for demonstrating
observational equivalence.

As a simple example of transform equivalence, we show that [1, add, 2, add]
∼Q [3, add]. Consider two stacks S1 and S2 such that S1 ∼S S2 . We proceed by
case analysis on the structure of the stacks:

1. S1 and S2 are both [ ], in which case

(lastStack [3, add] [ ])
= (lastStack [add] [3])
= SAerror

= (lastStack [add, 2, add] [1])
= (lastStack [1, add, 2, add] [ ])
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2. S1 and S2 are nonempty sequences whose heads are the same numeric literal
and whose tails are stack equivalent. I.e., S1 = N . S ′

1 , S2 = N . S ′
2 , and S ′

1

∼S S ′
2 . We use the abbreviation N1+N2 for (calculate + N1 N2 ).

(lastStack [3, add] N . S ′
1 )

= (lastStack [add] 3 . N . S ′
1 )

=
(
lastStack [ ] N +3 . S ′

1

)
= (Stack�StackAnswer N +3 . S ′

1 )
∼SA (Stack�StackAnswer N +3 . S ′

2 )
=

(
lastStack [ ] N +3 . S ′

2

)
=

(
lastStack [add] 2 . N +1 . S ′

2

)
=

(
lastStack [2, add] N +1 . S ′

2

)
= (lastStack [add, 2, add] 1 . N . S ′

2 )
= (lastStack [1, add, 2, add] N . S ′

2 )

3. S1 and S2 are nonempty sequences whose heads are transform-equivalent ex-
ecutable sequences and whose tails are stack equivalent. I.e., S1 = Q1 . S ′

1 ,
S2 = Q2 . S ′

2 , Q1 ∼Q Q2 , and S ′
1 ∼S S ′

2 .

(lastStack [3, add] Q1 . S ′
1 )

= (lastStack [add] 3 . Q1 . S ′
1 )

= SAerror

= (lastStack [add, 2, add] 1 . Q2 . S ′
2 )

= (lastStack [1, add, 2, add] Q2 . S ′
2 )

In all three cases,

(lastStack [1, add, 2, add] S1 ) ∼SA (lastStack [3, add] S2 )

so the transform equivalence of the sequences follows by definition of ∼Q.
We emphasize that stacks can be equivalent without being identical. For

instance, given the result of the above example, it is easy to construct two stacks
that are stack equivalent but not identical:

[(1 add 2 add), 5] ∼S [(3 add), 5]

Intuitively, these stacks are equivalent because they cannot be distinguished by
any PostFix command sequence. Any such sequence must either ignore both
sequence elements (e.g., [pop]), attempt an illegal operation on both sequence
elements (e.g., [mul]), or execute both sequence elements on equivalent stacks (via
exec). But because the sequence elements are transform equivalent, executing
them cannot distinguish them.
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3.7.3 Transform Equivalence Implies Observational Equivalence

We wrap up the discussion of observational equivalence by showing that transform
equivalence of PostFix command sequences implies observational equivalence.
This result is useful because it is generally easier to show that two command
sequences are transform equivalent than to construct a proof based directly on
the definition of observational equivalence.

The fact that transform equivalence implies observational equivalence can be
explained informally as follows. Every PostFix program context has a top-level
command-sequence context with two parts: the commands performed before the
hole and the commands performed after the hole. The commands before the
hole transform the initial stack into Spre . Suppose the hole is filled by one of
two executable sequences, Q1 and Q2 , that are transform equivalent. Then the
stacks Spost1 and Spost2 that result from executing these sequences, respectively,
on Spre must be stack equivalent. The commands performed after the hole must
transform Spost1 and Spost2 into stack-equivalent stacks Sfinal1 and Sfinal2 . Since
behavior depends only on the equivalence class of the final stack, it is impossi-
ble to construct a context that distinguishes Q1 and Q2 . Therefore, they are
observationally equivalent.

We will need the following lemma for the formal argument:

Lemma 3.5 For any command-sequence context Q, Q1 ∼Q Q2 implies
Q{Q1} ∼Q Q{Q2}.

Proof of Lemma 3.5: We will employ the following properties of transform
equivalence, which are left as exercises for the reader:

Q1 ∼Q Q ′
1 and Q2 ∼Q Q ′

2 implies Q1 @ Q2 ∼Q Q ′
1 @ Q ′

2 (3.10)

Q1 ∼Q Q2 implies [(Q1)] ∼Q [(Q2)] (3.11)

Property 3.11 is tricky to read; it says that if Q1 and Q2 are transform equivalent,
then the singleton command sequences containing the exectuable sequences made
up of the commands of Q1 and Q2 are also transform equivalent.

We proceed by structural induction on the grammar of the PostfixSequence-
Context domain (Figure 3.19 on page 91):

• (Base case) For sequence contexts of the form �, Q1 ∼Q Q2 trivially implies
�{Q1} ∼Q�{Q2}.
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• (Induction cases) For each of the compound sequence contexts — Q @ Q,
Q @ Q , [(Q)] — assume that Q1 ∼Q Q2 implies Q{Q1} ∼Q Q{Q2} for any Q.

• For sequence contexts of the form Q @ Q,
Q1 ∼Q Q2

implies Q{Q1} ∼Q Q{Q2} by assumption
implies Q @ (Q{Q1}) ∼Q Q @ (Q{Q2}) by reflexivity of ∼Q and 3.10
implies (Q @ Q){Q1} ∼Q (Q @ Q){Q2} by definition of Q

• Sequence contexts of the form Q @ Q are handled similarly to those of the
form Q @ Q.

• For sequence contexts of the form [(Q)],

Q1 ∼Q Q2

implies Q{Q1} ∼Q Q{Q2} by assumption
implies [(Q{Q1})] ∼Q [(Q{Q2})] by 3.11
implies [(Q)]{Q1} ∼Q [(Q)]{Q2} by definition of Q �

Now we are ready to present a formal proof that transform equivalence implies
observational equivalence.

Theorem 3.6 (PostFix Transform Equivalence)
Q1 ∼Q Q2 implies Q1 =obs Q2 .

Proof of Theorem 3.6: Assume that Q1 ∼Q Q2 . By the definition of
Q1 =obs Q2 , we need to show that for any PostFix program context of the
form (postfix Nn Q) and any integer numeral argument sequence N ∗

args

behdet 〈(postfix Nn Q{Q1}),N ∗
args〉 = behdet 〈(postfix Nn Q{Q2}),N ∗

args〉

Here we use behdet (defined for a generic SOS on page 51) because we know that
PostFix has a deterministic behavior function.

By Lemma 3.5, Q1 ∼Q Q2 implies Q{Q1} ∼Q Q{Q2}. Let Sinit be a stack
consisting of the elements of N ∗

args . Then by the definition of ∼Q, we have

(lastStack Q{Q1} Sinit)∼SA (lastStack Q{Q2} Sinit)

By the definition of lastStack and ∼SA, there are two cases:

1. 〈Q{Q1}, Sinit〉 ∗⇒ cf1 and 〈Q{Q2}, Sinit〉 ∗⇒ cf2, where both cf1 and cf2

are irreducible PostFix configurations with a nonempty command sequence
component. In this case, both executions are stuck, so

behdet 〈(postfix Nn Q{Q1}),N ∗
args〉

= stuck

= behdet 〈(postfix Nn Q{Q2}),N ∗
args〉
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2. 〈Q{Q1}, Sinit〉 ∗⇒ 〈[ ], S1 〉, 〈Q{Q2}, Sinit〉 ∗⇒ 〈[ ], S2 〉, and S1 ∼S S2 . In this
case, there are two subcases:

(a) S1 and S2 are both nonempty stacks with the same integer numeral N
on top. In this subcase,

behdet 〈(postfix Nn Q{Q1}),N ∗
args〉

= (IntLit�Outcome N )
= behdet 〈(postfix Nn Q{Q2}),N ∗

args〉
(b) S1 and S2 either (1) are both the empty stack or (2) are both nonempty

stacks with executable sequences on top. In this subcase,

behdet 〈(postfix Nn Q{Q1}),N ∗
args〉

= stuck

= behdet 〈(postfix Nn Q{Q2}),N ∗
args〉 �

Exercise 3.28 For each of the following purported observational equivalences, either
prove that the observational equivalence is valid (via transform equivalence), or give a
counterexample to show that it is not.

a. [N , pop] =obs [ ]

b. [add,N , add] =obs [N , add, add]

c. [N1 ,N2 ,A] =obs [Nans ], where Nans = (calculate A N1 N2 )

d. [(Q), exec] =obs Q

e. [(Q), (Q), sel, exec] =obs pop . Q

f. [N1 , (N2 (Qa) (Qb) sel exec), (N2 (Qc) (Qd) sel exec), sel, exec]
=obs [N2 , (N1 (Qa) (Qc) sel exec), (N1 (Qb) (Qd) sel exec), sel, exec]

g. [C1 ,C2 , swap] =obs [C2 ,C1 ]

h. [swap, swap, swap] =obs [swap]

Exercise 3.29 Prove Lemmas 3.10 and 3.11, which are used to show that transform
equivalence implies operational equivalence.

Exercise 3.30 Transform equivalence (∼Q) is defined in terms of lastStack, where
lastStack is defined on page 93. Below we consider two alternative definitions of lastStack.

lastStack1 : CommandSeq → Stack → StackAnswer

(lastStack1 Q S) =

8<
:

(Stack�StackAnswer S ′) if 〈Q , S〉
∗
⇒ 〈[ ], S ′〉

and S ′ ∈ FinalStack
SAerror otherwise

lastStack2 : CommandSeq → Stack → StackAnswer

(lastStack2 Q S) = (Stack�StackAnswer S ′) if 〈Q , S〉
∗
⇒ 〈Q ′, S ′〉 �⇒

(Recall that cf �⇒ means that configuration cf is irreducible.)



3.7.3 Transform Equivalence Implies Observational Equivalence 99

a. Give an example of two sequences that are transform equivalent using the original
definition of lastStack but not using lastStack1 .

b. Show that property (3.10) does not hold if transform equivalence is defined using
lastStack2 .

Exercise 3.31

a. Modify the PostFix semantics in Figure 3.3 so that the outcome of a PostFix
program whose final configuration has an executable sequence at the top is the token
executable.

b. In your modified semantics, show that transform equivalence still implies observational
equivalence.

Exercise 3.32 Prove the following composition theorem for observationally equivalent
PostFix sequences:

Q1 =obs Q ′
1 and Q2 =obs Q ′

2 implies Q1 @ Q2 =obs Q ′
1 @ Q ′

2

Exercise 3.33 Which of the following transformations on EL numerical expressions are
safe? Explain your answers. Be sure to consider stuck expressions like (/ 1 0).

a. (+ 1 2) −simp−−−→ 3

b. (+ 0 NE) −simp−−−→ NE

c. (* 0 NE) −simp−−−→ 0

d. (+ 1 (+ 2 NE)) −simp−−−→ (+ 3 NE)

e. (+ NE NE) −simp−−−→ (* 2 NE)

f. (if (= N N ) NE1 NE2) −simp−−−→ NE1

g. (if (= NE1 NE1) NE2 NE3) −simp−−−→ NE2

h. (if BE NE NE) −simp−−−→ NE

Exercise 3.34 Develop a notion of transform equivalence for EL that is powerful enough
to formally prove that the transformations in Exercise 3.33 that you think are safe are
really safe. You will need to design appropriate contexts for EL programs, numerical
expressions, and boolean expressions.

Exercise 3.35 Given that transform equivalence implies observational equivalence in
PostFix, it is natural to wonder whether the converse is true. That is, does the following
implication hold?

Q1 =obs Q2 implies Q1∼QQ2

If so, prove it; if not, explain why.
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Exercise 3.36 Consider the following TP function, which translates an ELMM program
to a PostFix program:

TP : ProgELMM → ProgPostFix

TP [[(elmm NE body)]] = (postfix 0 TNE [[NE body ]])

TNE : NumExp → CommandSeq
TNE [[N ]] = [N ]
TNE [[(A NE1 NE2)]] = TNE [[NE1 ]] @ TNE [[NE 2 ]] @ [TA[[A]]]

TA : ArithmeticOperatorELMM → ArithmeticOperatorPostFix

TA[[+]] = add

TA[[-]] = sub, etc.

a. What is TP [[(elmm (/ (+ 25 75) (* (- 7 4) (+ 5 6))))]]?

b. Intuitively, TP maps an ELMM program to a PostFix program with the same
behavior. Develop a proof that formalizes this intuition. As part of your proof, show
that the following diagram commutes:

CELMM1 CELMM2

CPostFix1 CPostFix2

ELMM

PostF ix

TNE TNE

The nodes CELMM1
and CELMM2

represent ELMM configurations, and the nodes
CPostF ix1

and CPostF ix2
represent PostFix configurations of the form introduced

in Exercise 3.12 on page 70. The horizontal arrows are transitions in the respective
systems, while the vertical arrows are applications of TNE . It may help to think in
terms of a context-based semantics.

c. Extend the translator to translate (1) ELM programs and (2) EL programs. In each
case, prove that the program resulting from your translation has the same behavior
as the original program.

3.8 Extending PostFix

We close this chapter on operational semantics by illustrating that slight pertur-
bations to a language can have extensive repercussions for the properties of the
language.

You have probably noticed that PostFix has a very limited expressive power.
The fact that all programs terminate gives us a hint why. Any language in which
all programs terminate can’t be universal, because any universal language must
allow nonterminating computations to be expressed. Even if we don’t care about
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universality (maybe we just want a good calculator language), PostFix suffers
from numerous drawbacks. For example, nget allows us to “name” numerals by
their position relative to the top of the stack, but these positions change as values
are pushed and popped, leading to programs that are challenging to read and
write. It would be preferable to give unchanging names to values. Furthermore,
nget accesses only numerals, and there are situations where we need to access
executable sequences and use them more than once.

We could address these problems by allowing executable sequences to be
copied from any position on the stack and by introducing a general way to name
any value; these extensions are explored in exercises. For now, we will consider
extending PostFix with a command that just copies the top value on a stack.
Since the top value might be an executable sequence, this at least gives us a way
to copy executable sequences — something we could not do before.

Consider a new command, dup, which duplicates the value at the top of the
stack. After execution of this command, the top two values of the stack will be
the same. The rewrite rule for dup is given below:

〈dup . Q ,V . S 〉 ⇒ 〈Q ,V . V . S 〉 [dup]

As a simple example of using dup, consider the executable sequence (dup mul),
which behaves as a squaring subroutine:

(postfix 1 (dup mul) exec) −[12]−−→ 144

(postfix 2 (dup mul) dup 3 nget swap exec swap 4 nget swap exec add)

−[5,12]−−−→ 169

The introduction of dup clearly enhances the expressive power of Post-
Fix. But adding this innocent little command has a tremendous consequence
for the language: it destroys the termination property! Consider the program
(postfix 0 (dup exec) dup exec). Executing this program on zero argu-
ments yields the following transition sequence:

〈((dup exec) dup exec), [ ]〉
⇒ 〈(dup exec), [(dup exec)]〉
⇒ 〈(exec), [(dup exec), (dup exec)]〉
⇒ 〈(dup exec), [(dup exec)]〉
⇒ . . .

Because the rewrite process returns to a previously visited configuration, it is
clear that the execution of this program never terminates.

It is not difficult to see why dup invalidates the termination proof from Sec-
tion 3.6. The problem is that dup can increase the energy of a configuration in
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the case where the top element of the stack is an executable sequence. Because
dup effectively creates new commands in this situation, the number of commands
executed can be unbounded.

It turns out that extending PostFix with dup not only invalidates the ter-
mination property, but also results in a language that is universal!9 (See Exer-
cise 3.48 on page 112.) That is, any computable function can be expressed in
PostFix+{dup}.

This simple example underscores that minor changes to a language can have
major consequences. Without careful thought, it is never safe to assume that
adding or removing a simple feature or tweaking a rewrite rule will change a
language in only minor ways.

We conclude this chapter with numerous exercises that explore various exten-
sions to the PostFix language.

Exercise 3.37 Extend the PostFix SOS so that it handles the following commands:

pair: Let v1 be the top value on the stack and v2 be the next-to-top value. Pop both
values off the stack and push onto the stack a pair object 〈v2 , v1 〉.

fst: If the top stack value is a pair 〈vfst , vsnd〉, then replace it with vfst (the first value
in the pair). Otherwise signal an error.

snd: If the top stack value is a pair 〈vfst , vsnd〉, then replace it with vsnd (the second
value in the pair). Otherwise signal an error.

Exercise 3.38 Extend the PostFix SOS so that it handles the following commands:

get: Call the top stack value vindex and the remaining stack values (from top down) v1 ,
v2 , . . ., vn . Pop vindex off the stack. If vindex is a numeral i such that 1 ≤ i ≤ n, push
vi onto the stack. Signal an error if the stack does not contain at least one value, if
vindex is not a numeral, or if i is not in the range [1..n]. (get is like nget except that
it can copy any value, not just a numeral.)

put: Call the top stack value vindex , the next-to-top stack value vval , the remaining
stack values (from top down) v1 , v2 , . . ., vn . Pop vindex and vval off the stack. If
vindex is a numeral i such that 1 ≤ i ≤ n, change the slot holding vi on the stack to
hold vval . Signal an error if the stack does not contain at least two values, if vindex is
not a numeral, or if i is not in the range [1..n].

Exercise 3.39 Write the following programs in PostFix+{dup}. You may also use the
pair commands from Exercise 3.37 and/or the get/put commands from Exercise 3.38 in

9We are indebted to Carl Witty and Michael Frank for showing us that PostFix+{dup} is
universal.
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your solution, but they are not necessary — for an extra challenge, program purely in
PostFix+{dup}.

a. A program that takes a single argument (call it n) and returns the factorial of n.
The factorial function f of an integer is defined so that (f 0) = 1 and (f n) =
(n×Int (f (n−Int 1))) for n ≥ 1.

b. A program that takes a single argument (call it n) and returns the nth Fibonacci
number. The Fibonacci function f of an integer is defined so that (f 0) = 0, (f 1)
= 1, and (f n) = ((f (n−Int 1)) +Int (f (n−Int 2))) for n ≥ 2.

Exercise 3.40 Abby Stracksen wishes to extend PostFix with a simple means of iter-
ation. She suggests adding a command of the form (for N (Q)). Abby describes the
behavior of her command with the following rewrite axioms:

〈(for N (Qfor)) . Qrest , S〉
⇒ 〈N . Qfor @ [(for Ndec (Qfor))] @ Qrest , S〉

[for-once]

where (Ndec = (calculate sub N 1)) ∧ (compare gt N 0)

〈(for N (Qfor)) . Qrest , S〉 ⇒ 〈Qrest , S〉 [for-done]
where ¬(compare gt N 0)

Abby calls her extended language PostLoop.

a. Give an informal specification of Abby’s for command that would be appropriate for
a reference manual.

b. Using Abby’s for semantics, what are the results of executing the following Post-
Loop programs when called on zero arguments?

i. (postloop 0 1 (for 5 (mul)))

ii. (postloop 0 1 (for 5 (2 mul)))

iii. (postloop 0 1 (for 5 (add mul)))

iv. (postloop 0 0 (for 17 (pop 2 add)))

v. (postloop 0 0 (for 6 (pop (for 7 (pop 1 add)))))

c. Extending PostFix with the for command does not change its termination prop-
erty. Show this by extending the termination proof described in Section 3.6.2 in the
following way:

i. Define the energy of the for command.

ii. Show that the transitions in the [for-once] and [for-done] rules decrease config-
uration energy.

d. Bud Lojack has developed a repeat command of the form (repeat N (Q)) that is
similar to Abby’s for command. Bud defines the semantics of his command by the
following rewrite rules:
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〈(repeat N (Qrpt)) . Qrest , S〉
⇒ 〈N . (repeat Ndec (Qrpt)) . Qrpt @ Qrest , S〉

[repeat-once]

where (Ndec = (calculate sub N 1)) ∧ (compare gt N 0)

〈(repeat N (Qrpt)) . Qrest , S〉 ⇒ 〈Qrest , S〉 [repeat-done]
where ¬(compare gt N 0)

Does Bud’s repeat command have the same behavior as Abby’s for command? That
is, does the following observational equivalence hold?

[(repeat N (Q))] =obs [(for N (Q))]

Justify your answer.

Exercise 3.41 Alyssa P. Hacker has created PostSafe, an extension to PostFix with
a new command called sdup: safe dup. The sdup command is a restricted form of dup
that does not violate the termination property of PostFix. The informal semantics for
sdup is as follows: if the top of the stack is a number or a command sequence that doesn’t
contain sdup, duplicate it; otherwise, signal an error.

As a new graduate student in Alyssa’s ARGH (Advanced Research Group for Hack-
ing), you are assigned to give an operational semantics for sdup, and a proof that all
PostSafe programs terminate. Alyssa set up several intermediate steps to make your
life easier.

a. Write the operational semantics rules that describe the behavior of sdup. Model the
errors through stuck states. You can use the auxiliary function

contains sdup : CommandSeq → Bool

that takes a sequence of commands and checks whether it contains sdup or not.

b. Consider the product domain P = N×N (recall that N is the set of natural numbers,
starting with 0). On this domain, Alyssa defined the ordering <P as follows:

Definition 1 (lexicographic order) 〈a1, b1〉 <P 〈a2, b2〉 iff ((a1 <Nat a2) ∨
((a1 =Nat a2) ∧ (b1 <Nat b2))). E.g., 〈3, 10000〉 <P 〈4, 0〉 <P 〈4, 6〉 <P 〈5, 2〉.

Definition 2 A strictly decreasing chain in P is a series of elements p1, p2, . . .
such that ∀i . pi ∈ P and ∀i . pi+1 <P pi.

i. Consider a finite strictly decreasing chain 〈a1, b1〉, 〈a2, b2〉, . . . , 〈ak, bk〉, where
〈ai, bi〉 ∈ P , such that k > b1 +1 (i.e., the chain has more than b1 +1 elements).
Prove that ak < a1.

ii. Show that there is no infinite strictly decreasing chain in P .

c. Prove that each PostSafe program terminates by defining an appropriate energy
function ESconfig . Note: If you need to use some helper functions that are intuitively
easy to describe but tedious to define (e.g., contains sdup), just give an informal
description of them.
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Exercise 3.42 Sam Antics extends the PostFix language to allow programmers to
directly manipulate stacks as first-class values. He calls the resulting language StackFix.
StackFix adds three commands to PostFix:

package: This command packages a copy of the stack as a first-class value, S. It then
clears the stack, leaving S as the only value on the stack.

unpackage: This command pops the top of the stack, which must be a stack-value S,
and replaces the stack with an “unpackaged” version of S.

switch: This command pops the top of the stack, which must be a stack-value, S. Then
the rest of the stack is packaged (as if by the package command); this results in a
new stack-value, Srest. Finally, the stack is completely replaced with an “unpackaged”
version of S, and the stack-value Srest is pushed on top of the resulting stack. Thus,
switch effectively switches the roles of the stack-value on top of the stack and the
rest of the stack.

As a warm-up, Sam has written some simple StackFix programs. First-class stack
values may be returned as the final result of a program execution; in that case, the
outcome is the token stack-value, which hides the details of the stack value.

(stackfix 0 1 2 package) −[ ]−→ stack-value

(stackfix 0 1 2 package unpackage) −[ ]−→ 2

(stackfix 0 1 2 package 3 switch) −[ ]−→ error {top of stack not stack-value}

(stackfix 0 1 2 package 3 swap switch) −[ ]−→ stack-value

(stackfix 0 2 package 3 swap switch pop) −[ ]−→ 2

(stackfix 0 1 2 package 3 swap switch unpackage) −[ ]−→ 3

a. Write a definition of the Value domain for the StackFix language.

b. Give rewrite rules for the package, unpackage, and switch commands.

c. Does unpackage add new expressive power to StackFix, beyond that provided by
package and switch? If yes, argue why. If no, provide an equivalent sequence of
commands from PostFix+{package,switch}.

d. Does every StackFix program terminate? Give a short, intuitive description of your
reasoning.

Exercise 3.43 Rhea Storr introduces a new PostFix command called execs that per-
mits executing a sequence of commands while saving the old stack. She calls her extended
language PostSave.

Rhea asks you to help her define rewrite rules for PostSave that in several steps
move 〈execs . Q , (Qexec) . S 〉 to the configuration 〈Q , V . S 〉. This sequence of trans-
formations assumes that the configuration 〈Qexec , S 〉 will eventually result in a final
configuration 〈[ ]Command, V . S ′〉.

Here are some examples that contrast exec with execs:
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(postsave 0 1 2 (3 mul) exec add) −[ ]−→ 7

(postsave 0 1 2 (3 mul) execs add) −[ ]−→ 8

(postsave 0 (1) execs) −[ ]−→ 1

(postsave 0 2 3 (mul) execs add add) −[ ]−→ 11

To implement the SOS for PostSave, Rhea modifies the configuration space:

cf ∈ CF = Layer*
L ∈ Layer = CommandSeq × Stack

Rhea’s rewrite rule for execs is:

〈execs . Q , (Qexec) . S〉 . L∗ ⇒ 〈Qexec , S〉 . 〈Q , S〉 . L∗ [execs]

Note that the entire stack is copied into the new layer!

a. If 〈Q , S 〉 =
PF
=⇒ 〈Q ′, S ′〉 is a rewrite rule in PostFix, provide the corresponding rule

in PostSave.

b. Provide the rule for an empty command sequence in the top layer.

c. Show that programs in PostSave are no longer guaranteed to terminate by giving a
command sequence that is equivalent to dup.

Exercise 3.44 One of the chief limitations of the PostFix language is that there is
no way to name values. In this problem, we consider extending PostFix with a simple
naming system. We will call the resulting language PostText.

The grammar for PostText is the same as that for PostFix except that there are
three new commands:

C ::= . . . | I | def | ref

Here, I is an element of the syntactic domain Ident, which includes all alphabetic names
except for the PostText command names (pop, exec, def, etc.), which are treated as
reserved words of the language.

The model of the PostText language extends the model of PostFix by including
a current dictionary as well as a current stack. A dictionary is an object that maintains
bindings between names and values. The commands inherited from PostFix have no
effect on the dictionary. The informal behavior of the new commands is as follows:

I : I is a literal name that is similar to an immutable string literal in other languages.
Executing this command simply pushes I on the stack. The Value domain must be
extended to include identifiers in addition to numerals and executable sequences.

def: Let v1 be the top stack value and v2 be the next-to-top value. The def command
pops both values off the stack and updates the current dictionary to include a binding
between v2 and v1. v2 should be a name, but v1 can be any value (including an
executable sequence or name literal). It is an error if v2 is not a name.



3.8 Extending PostFix 107

ref: The ref command pops the top element vname off of the stack, where vname should
be a name. It looks up the value vval associated with vname in the current dictionary
and pushes vval on top of the stack. It is an error if there is no binding for vname in
the current dictionary or if vname is not a name.

For example:

(posttext 0 average (add 2 div) def 3 7 average ref exec) −[ ]−→ 5

(posttext 0 a 3 def dbl (2 mul) def a ref

dbl ref exec 4 dbl ref exec add) −[ ]−→ 14

(posttext 0 a b def a ref 7 def b ref) −[ ]−→ 7

(posttext 0 a 5 def a ref 7 def b ref) −[ ]−→ error {5 is not a name.}

(posttext 0 c 4 def d ref 1 add) −[ ]−→ error {d is unbound.}

In an SOS for PostText, the usual PostFix configuration space must be extended
to include a dictionary object as a new state component:

CFPostText = CommandSeq × Stack × Dictionary

a. Suppose that a dictionary is represented as a sequence of identifier/value pairs:

D ∈ Dictionary = (Ident × Value)*

i. Define the final configurations, input function, and output function for the Post-
Text SOS.

ii. Give the rewrite rules for the I , def, and ref commands.

b. Redo part a, assuming that dictionaries are instead represented as functions from iden-
tifiers to values, i.e., D ∈ Dictionary = Ident → (Value + {unbound}) where unbound is
a distinguished token indicating that an identifier is unbound in the dictionary.

You may find the following bind function helpful:

bind : Ident → Value → Dictionary → Dictionary
= λIbindVD . λIref . if Ibind = Iref then V else (D Iref ) end

bind takes a name, a value, and a dictionary, and returns a new dictionary in which
there is a binding between the name and value in addition to the existing bindings.
(If the name was already bound in the given dictionary, the new binding effectively
replaces the old.)

Exercise 3.45 After several focus-group studies, Ben Bitdiddle has decided that Post-
Fix needs a macro facility. Below is Ben’s sketch of the informal semantics of the facility
for his extended language, which he dubs PostMac.

Macros are specified at the beginning of a PostMac program, as follows:

(postmac Nnumargs ((I1 V1) ... (In Vn)) Q)

Each macro (Ii Vi) creates a command, called Ii ∈ Ident, that, when executed, pushes
the value Vi (which can be an integer numeral or an executable sequence) onto the
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stack. It is illegal to give macros the names of existing PostFix commands, or to use
an identifier more than once in a list of macros. The behavior of programs that do so is
undefined. Here are some examples Ben has come up with:

(postmac 0 ((inc (1 add))) (0 inc exec inc exec)) −[ ]−→ 2

(postmac 0 ((A 1) (B (2 mul))) (A B exec)) −[ ]−→ 2

(postmac 0 ((A 1) (B (2 mul))) (A C exec)) −[ ]−→ error

{undefined macro C}

(postmac 0 ((A 1) (B (C mul)) (C 2)) (A B exec)) −[ ]−→ 2

(postmac 0 ((A pop)) (1 A)) −[ ]−→ error

{Ill-formed program: macro bodies must be values, not commands}

Ben started writing an SOS for PostMac, but had to go make a presentation for
some venture capitalists. It is your job to complete the SOS.

Before leaving, Ben made the following changes/additions to the domain definitions:

P ∈ Prog ::= (postmac Nnumargs Mmacros Qbody) [Program]

M ∈ MacroList ::= (Ident Value)∗

C ∈ Command ::= . . . | I [Macro Reference]

cf ∈ CFPostMac = CommandSeq × Stack × MacroList

He also introduced an auxiliary partial function, lookup, with the following signature:

lookup : (Ident × MacroList) ⇀ Value

If lookup is given an identifier and a macro list, it returns the value that the identifier is
bound to in the macro list. If there is no such value, lookup gets stuck.

a. Ben’s notes begin the SOS rewrite rules for PostMac as follows:

〈Q , S〉 =
PF
=⇒ 〈Q ′, S ′〉

〈Q ,S ,M 〉 =
PM
==⇒ 〈Q ′,S ′,M 〉

[PostFix commands]

where =
PF
=⇒ is the original transition relation for PostFix and =

PM
==⇒ is the new tran-

sition relation for PostMac. Complete the SOS for PostMac. Your completed
SOS should handle the first four of Ben’s examples. Don’t worry about ill-formed
programs. Model errors as stuck states.

b. Louis Reasoner finds out that your SOS handles macros that depend on other macros.
He wants to launch a new advertising campaign with the slogan: “Guaranteed to ter-
minate: PostFix with mutually recursive macros!” Show that Louis’s new campaign
is a bad idea by writing a nonterminating program in PostMac.

c. When Ben returns from his presentation, he finds out that you’ve written a nonter-
minating program in PostMac. He decides to restrict the language so that non-
terminating programs are no longer possible. Ben’s restriction is that the body (or
value) of a macro cannot use any macros. Ben wants you to prove that this restricted
language terminates.
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i. Extend the PostFix energy function so that it assigns an energy to configura-
tions that include macros. Fill in the blanks in Ben’s definitions of the functions
Ecom [[I, M ]], Eseq [[Q, M ]] and Estack [[S, M ]] and use these functions to define the
configuration energy function Econfig [[〈Q , S ,M 〉]].

Ecom [[(Q),M ]] = Eseq [[Q, M ]]

Ecom [[C,M ]] = 1 (C is not an identifier or
an executable sequence)

Ecom [[I,M ]] =

Eseq [[[ ]Command, M ]] = 0

Eseq [[C . Q, M ]] =

Estack [[[ ]Value, M ]] = 0

Estack [[V . S,M ]] =

Econfig [[〈Q ,S ,M 〉]] =

ii. Use the extended energy function (for the restricted form of PostMac) to
show that executing a macro decreases the energy of a configuration. Since
it is possible to show that all the other commands decrease the energy of a
configuration (by adapting the termination proof for PostFix without macros),
this will show that the restricted form of PostMac terminates.

Exercise 3.46 Dinah McScoop, a Lisp hacker, is unsatisfied with PostText, the name-
binding extension of PostFix introduced in Exercise 3.44. She claims that there is
a better way to add name binding to PostFix, and creates a brand-new language,
PostLisp, to test out her ideas.

The grammar for PostLisp is the same as that for PostFix except that there are
four new commands:

C ::= . . . | I | bind | unbind | lookup

Here, I is an element of the syntactic domain Ident, which includes all alphabetic names
except for the PostLisp command names (pop, exec, bind, etc.), which are treated as
reserved words of the language.

The model of the PostLisp language extends the model of PostFix by including
a name stack for each name. A name stack is a stack of values associated with a name
that can be manipulated with the bind, unbind, and lookup commands as described
below. The commands inherited from PostFix have no effect on the name stacks. The
informal behavior of the new commands is as follows:

I : I is a literal name that is similar to an immutable string literal in other languages.
Executing this command simply pushes I onto the stack. The Value domain is ex-
tended to include names in addition to numerals and executable sequences.

bind: Let v1 be the top stack value and v2 be the next-to-top value. The bind command
pops both values off the stack and pushes v1 onto the name stack associated with v2.
Thus v2 is required to be a name, but v1 can be any value (including an executable
sequence or name literal). It is an error if v2 is not a name.
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lookup: The command lookup pops the top element vname off the stack, where vname

should be a name. If vval is the value at the top of the name stack associated with
vname , then vval is pushed onto the stack. (vval is not popped off the name stack.) It
is an error if the name stack of vname is empty, or if vname is not a name.

unbind: The command unbind pops the top element vname off the stack, where vname

should be a name. It then pops the top value off the name stack associated with
vname . It is an error if the name stack of vname is empty, or if vname is not a name.

Initially each name is associated with the empty name stack. Here are some PostLisp
examples:

(postlisp 0 a 3 bind a lookup) −[ ]−→ 3

(postlisp 0 a 8 bind a lookup a lookup add) −[ ]−→ 16

(postlisp 0 a 4 bind a 9 bind a lookup a unbind a lookup add) −[ ]−→ 13

(postlisp 0 19 a bind a lookup) −[ ]−→ error {19 is not a name.}

(postlisp 0 average (add 2 div) bind 3 7 average lookup exec) −[ ]−→ 5

(postlisp 0 a b bind a lookup 23 bind b lookup) −[ ]−→ 23

(postlisp 0 c 4 bind d lookup 1 add) −[ ]−→ error {d name stack is empty.}

(postlisp 0 b unbind) −[ ]−→ error {b name stack is empty}

In an SOS for PostLisp, the usual PostFix configuration space must be extended
to include the name stacks as a new state component. Name stacks are bundled up into
an object called a name file.

CFPostLisp = CommandSeq × Stack × NameFile
F ∈ NameFile = Name → Stack

A NameFile is a function mapping a name to the stack of values bound to the name. If
F is a name file, then (F I ) is the stack associated with I in F . The notation F [I = S ]
denotes a name file that is identical to F except that I is mapped to S .

a. Define the final configurations, input function, and output function for the PostLisp
SOS.

b. Give the rewrite rules for the I , bind, unbind, and lookup commands.

Exercise 3.47 Abby Stracksen is bored with vanilla PostFix (it’s not even universal!)
and decides to add a new feature, which she calls the heap. A heap maps locations to
elements from the Value domain, where locations are simply integer numerals:

Location = IntLit

Note that a location can be any integer numeral, including a negative one. Furthermore,
integer numerals and locations can be used interchangeably in Abby’s language, very
much like pointers in pre-ANSI C.

Abby christens her new language PostHeap. The grammar for PostHeap is the
same as that for PostFix except that there are three new commands:

C ::= . . . | allocate | store | access
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The commands inherited from PostFix have no effect on the heap. The informal
behavior of the new commands is as follows:

allocate: Executing this command pushes onto the stack a location that is not used
in the heap.

store: Let v1 be the top stack value and v2 be the next-to-top value. The store

command pops v1 off the stack and writes it into the heap at location v2. Thus v1

can be any element from the Value domain and v2 has to be an IntLit. It is an error
if v2 is not an IntLit. Note that v2 remains on the stack.

access: Let v1 be the top stack value. The access command reads from the heap at
location v1 and pushes the result onto the stack. Thus v1 has to be an IntLit. It is
an error if v1 is not an Intlit or if the heap at location v1 has not been written with
store before. Note that v1 remains on the stack.

For example:

(postheap 0 allocate) −[ ]−→ N {implementation dependent}

(postheap 0 allocate 5 store access) −[ ]−→ 5

(postheap 0 allocate 5 store 4 swap access swap pop add) −[ ]−→ 9

(postheap 0 4 5 store) −[ ]−→ 4

(postheap 0 4 5 store access) −[ ]−→ 5

(postheap 0 access) −[ ]−→ error {no location given}

(postheap 0 allocate access) −[ ]−→ error {location has not been written}

(postheap 0 5 store) −[ ]−→ error {no location given}

After sketching this initial description of the heap, Abby asks you to flesh out her
initial draft.

a. Give the definition of the Heap domain and the configuration domain CF .

b. Let access-from-heap be a partial function that, given a Location and a Heap in which
Location has been bound, returns an element from the Value domain. In other words,
access-from-heap has the following signature and definition:

access-from-heap : Location → Heap → Value

(access-from-heap N 〈N ,V 〉 . H ) = V

(access-from-heap N1 〈N2 ,V 〉 . H ) = (access-from-heap N1 H ), where N1 �= N2

Give the rewrite rules for the allocate, store, and access commands. You may use
access-from-heap.

c. Is PostHeap a universal programming language? Explain your answer.

d. Abby is concerned about security because PostHeap treats integer numerals and
locations interchangeably. Since her programs don’t use this “feature,” she decides
to restrict the language by disallowing pointer arithmetic. She wants to use tags
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to distinguish locations from integer numerals. Abby redefines the Value domain as
follows:

V ∈ Value = (IntLit × Tag) + CommandSeq
Tag = {integer, pointer}

Informally, integer numerals and locations are represented as pairs on the stack: in-
teger numerals are paired with the integer tag, while locations are paired with the
pointer tag.

Give the revised rewrite rules for integer numerals, add, allocate, store, and access.

Exercise 3.48 Prove that PostFix+{dup} is universal. This can be done by showing
how to translate any Turing machine program into a PostFix+{dup} program. Assume
that integer numerals may be arbitrarily large in magnitude.

Notes

Early approaches to operational semantics defined the semantics of programming
languages by translating them to standard abstract machines. Landin’s SECD
machine [Lan64] is a classic example of such an abstract machine. Plotkin [Plo75]
used it to study the semantics of the lambda calculus. Along the way, Plotkin
developed a notion of observational equivalence that he called both “operational
equality” and “contextual equality.”

Later, Plotkin introduced structural operational semantics [Plo81] as a more
direct approach to specifying an operational semantics. The context-based ap-
proach to specifying transition relations for small-step operational semantics was
invented by Felleisen and Friedman in [FF86] and explored in a series of papers
culminating in [FH92] that explored state and control features of programming
languages. There is a forthcoming textbook [FFF] based on this material that
covers both expression-based models and machine-based models of program exe-
cution.

Big-step (natural) semantics was introduced by Kahn in [Kah87].
A concise overview of various approaches to semantics, including several forms

of operational semantics, can be found in the first chapter of [Gun92]. The
early chapters of [Win93] present an introduction to operational semantics in the
context of a simple imperative language.

Many forms of operational semantics are examples of term rewriting systems
[DJ90, BN98]. Properties like termination and confluence are key objects of study
in these systems. Graph rewriting systems [Cou90] extend term rewriting systems
by modeling sharing.

For a discussion of universal languages and the halting problem, consult a
theory of computation text, such as [Sip06].



4

Denotational Semantics

First learn the meaning of what you say, and then speak.

— Epictetus

4.1 The Denotational Semantics Game

We have seen how an operational semantics is a natural tool for evaluating pro-
grams and proving properties like termination. However, it is less than ideal
for many purposes. A framework based on transitions between configurations of
an abstract machine is usually better suited for reasoning about complete pro-
grams than program fragments. In PostFix, for instance, we had to extend the
operational semantics with elaborate notions of observational equivalence and
transform equivalence in order to effectively demonstrate the interchangeability
of command sequences. Additionally, the emphasis on syntactic entities in an
operational semantics can complicate reasoning. For example, in a version of
PostFix that allows executable sequences as answers, syntactically distinct ex-
ecutable sequence answers in PostFix must be treated as the same observable
value in order to support a nontrivial notion of observational equivalence for com-
mand sequences. Finally, the step-by-step nature of an operational semantics can
suggest notions of time and dependency that are not essential to the language
being defined. For example, an operational semantics for the expression language
EL might specify that the left operand of a binary operator is evaluated before
the right even though this order may be impossible to detect in practice.

An alternative framework for reasoning about programs is suggested by the
notion of transform equivalence developed for PostFix. According to this notion,
each PostFix command sequence is associated with a stack transform that
describes how the sequence maps an input stack to an output stack. It is natural
to view these stack transforms as functions. For example, the stack transform
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associated with the command sequence [3, add] would be an add3 function with
the following graph:1

{〈errorStack, errorStack〉, 〈[ ], errorStack〉, . . . ,
〈[− 1], [2]〉, 〈[0], [3]〉, 〈[1], [4]〉, . . . ,
〈[add3], errorStack〉, 〈[mul2], errorStack〉, . . . ,
〈[5, 23], [8, 23]〉, 〈[5, mul2, 17, add3], [8, mul2, 17, add3]〉, . . . }

Here, errorStack stands for a distinguished error stack analogous to SAerror in
the extended PostFix SOS. Stack elements that are executable sequences are
represented by their stack transforms (e.g., add3 and mul2) rather than by some
syntactic phrase.

Associating stack transform functions with command sequences has several
benefits. First, this perspective directly supports a notion of equivalence for pro-
gram phrases. For example, the add3 function is the stack transform associated
with the sequence [1, add, 2, add] as well as the sequence [3, add]. This implies
that the two sequences are behaviorally indistinguishable and can be safely in-
terchanged in any PostFix context. The fact that stack elements that are ex-
ecutable sequences are represented by functions rather than syntactic entities
greatly simplifies this kind of reasoning.

The other major benefit of this approach is that the stack transform associ-
ated with the concatenation of two sequences is easily composed from the stack
transforms of the component sequences. For example, suppose that the sequence
[2, mul] is modeled by the mul2 function, whose graph is:

{〈errorStack, errorStack〉, 〈[ ], errorStack〉, . . . ,
〈[− 1], [− 2]〉, 〈[0], [0]〉, 〈[1], [2]〉, . . . ,
〈[add3], errorStack〉, 〈[mul2], errorStack〉, . . . ,
〈[5, 23], [10, 23]〉, 〈[5, mul2, 17, add3], [10, mul2, 17, add3]〉, . . . }

Then the stack transform of [3, add, 2, mul] = [3, add] @ [2, mul] is simply the
function mul2 ◦ add3, whose graph is:

{〈errorStack, errorStack〉, 〈[ ], errorStack〉, . . . ,
〈[− 1], [4]〉, 〈[0], [6]〉, 〈[1], [8]〉, . . . ,
〈[add3], errorStack〉, 〈[mul2], errorStack〉, . . . ,
〈[5, 23], [16, 23]〉, 〈[5, mul2, 17, add3], [16, mul2, 17, add3]〉, . . . }

Similarly the stack transform of [2, mul, 3, add] = [2, mul] @ [3, add] is the function
add3 ◦ mul2, whose graph is:

1Here, and for the rest of this chapter, we rely heavily on the metalanguage concepts and
notations described in Appendix A. Consult this appendix as necessary to unravel the formalism.
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{〈errorStack, errorStack〉, 〈[ ], errorStack〉, . . . ,
〈[− 1], [1]〉, 〈[0], [3]〉, 〈[1], [5]〉, . . . ,
〈[add3], errorStack〉, 〈[mul2], errorStack〉, . . . ,
〈[5, 23], [13, 23]〉, 〈[5, mul2, 17, add3], [13, mul2, 17, add3]〉, . . . }

The notion that the meaning of a program phrase can be determined from the
meaning of its parts is the essence of a framework called denotational seman-
tics. A denotational semantics determines the meaning of a phrase in a composi-
tional way based on its static structure rather than on some sort of dynamically
changing configuration. Unlike an operational semantics, a denotational seman-
tics emphasizes what the meaning of a phrase is, not how the phrase is evaluated.
The name “denotational semantics” is derived from its focus on the mathematical
values that phrases “denote.”

The basic structure of the denotational framework is illustrated in Figure 4.1.
A denotational semantics consists of three parts:

1. A syntactic algebra that describes the abstract syntax of the language under
study. This can be specified by the s-expression grammar approach introduced
in Chapter 2.

2. A semantic algebra that models the meaning of program phrases. A seman-
tic algebra consists of a collection of semantic domains along with functions
that manipulate these domains. The meaning of a program may be something
as simple as an element of a primitive semantic domain like Int, the domain of
integers. More typically, the meaning of a program is an element of a function
domain that maps context domains to an answer domain, where

• Context domains are the denotational analogue of state components in an
SOS configuration. They model such entities as name/value associations,
the current contents of memory, and control information.

• An answer domain represents the possible meanings of programs. In addi-
tion to a component that models what we normally think of as the result
of a program phrase, the answer domain may also include components that
model context information that was transformed by the program.

3. A meaning function that maps elements of the syntactic algebra (i.e., nodes
in the abstract syntax trees) to their meanings in the semantic algebra. Each
phrase is said to denote its image under the meaning function. In practice, the
meaning function is specified by a collection of so-called valuation functions,
one for each syntactic domain defined by the abstract syntax for the language.

Not any function can serve as a meaning function; the function must be a
homomorphism between the syntactic algebra and the semantic algebra.
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Figure 4.1 The denotational semantics “game board.”

This is just the technical condition that constrains the meaning of an abstract
syntax tree node to be determined from the meaning of its subnodes. It can
be stated more formally as follows:

Suppose M is a meaning function and t is a node in an abstract syntax
tree, with children t1, . . . , tk. Then

(M t) must equal (ft (M t1) . . . (M tk))

where ft is a function that is determined by the syntactic class of t.

The reason to restrict meaning functions to homomorphisms is that their
structure-preserving behavior greatly simplifies reasoning. This design choice
accounts for a property of denotational semantics we call compositionality
that is summarized by the motto “the meaning of the whole is composed out
of the meaning of the parts.” A key consequence of compositionality is that the
meaning of a program remains the same when one of its phrases is replaced by
another phrase with the same meaning.

Compositionality also facilitates the implementation of programming lan-
guages. The core syntactic processing procedures of interpreters and translators
based on denotational semantics have a natural recursive structure that mimics
the recursive structure of the valuation functions and the abstract syntax trees
they manipulate. For example, parser generators like Yacc [Joh75] allow grammar
descriptions to specify semantic actions that are performed when an abstract
syntax tree node is recognized during the parsing of a program. Typically, these
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actions are used to construct a data structure representing the abstract syntax
tree, but the compositional nature of denotational semantics enables using se-
mantic actions to directly define interpreters and translators for the language
being parsed. So denotational semantics has practical applications as well as
theoretical ones.

4.2 A Denotational Semantics for EL

As our first example, we will develop a denotational semantics for the EL expres-
sion language. We begin with a pared-down version of the language and show
how the semantics changes when we add features to yield full EL.

4.2.1 Step 1: Restricted ELMM

Recall that ELMM (Figure 3.6, page 63) is a simple expression language in which
programs are just expressions, and expressions are trees of binary operations using
the operators (+, -, *, /, %) whose leaves are integer numerals. For the moment,
let’s ignore the / and % operations, because removing the possibility of divide-
by-zero and remainder-by-zero errors simplifies the semantics. We shall use the
name restricted ELMM to refer to the version of ELMM without / and %.

In restricted ELMM, the meaning of each numeral, expression, and program
is an integer. This meaning is formalized in Figure 4.2, which presents a deno-
tational semantics for restricted ELMM. The syntactic algebra is defined as a
restricted version of the s-expression grammar for EL from Figure 2.4 on page 25.
The semantic algebra consists of a single semantic domain (the domain Int of in-
tegers) and some operations (+Int, −Int, ×Int) on this domain. The meaning
function of an ELMM program is specified by a collection of valuation functions,
one for each syntactic domain in the s-expression grammar. For each syntactic
domain, the name of the associated valuation function is usually a script version
of the metavariable that ranges over that domain. For example, P is the valu-
ation function for P ∈ Prog, NE is the valuation function for NE ∈ NumExp,
and so on.

The signature of P, Prog → Int, indicates that the meaning of a restricted
ELMM program is an integer. The restricted ELMM language is so simple
that it has only an answer domain (Int) and no context domains (these notions
were introduced on page 115). The meaning P[[(elmm NE body)]] of an ELMM
program (elmm NE body) is simply the integer NE [[NE body ]] denoted by its body
expression NE body . Since an ELMM numerical expression may be either an
integer numeral or an arithmetic operation, the definition of NE has a clause
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Syntactic Algebra

The syntactic algebra for restricted ELMM is a version of the s-expression grammar
for EL from Figure 2.4 on page 25 in which ArithmeticOperator contains only +,
-, and *, and in which the only productions for NE are the ones with phrase types
IntVal and ArithmeticOperation.

Semantic Algebra
i ∈ Int = {. . . , − 2, − 1, 0, 1, 2, . . .}
Operations on Int : +Int, −Int, ×Int

Valuation Functions
P : Prog→ Int

P[[(elmm NE body)]] = NE [[NE body ]]

NE : NumExp→ Int

NE [[N ]] = N [[N ]]

NE [[(A NE1 NE2)]] = (A[[A]] NE [[NE1 ]] NE [[NE2 ]])

A : ArithmeticOperator→ (Int→ Int→ Int)

A[[+]] = +Int

A[[-]] = −Int

A[[*]] = ×Int

N : IntLit→ Int

N maps integer numerals to the integer numbers they denote.

Figure 4.2 Denotational semantics for a version of ELMM without / and %.

for each of these two cases. In the integer numeral case, the N function maps
the syntactic representation of an integer numeral into a mathematical integer.
We will treat integer numerals as atomic entities, but their meaning could be
determined in a denotational fashion from their component signs and digits (see
Exercise 4.1). In the arithmetic operation case, the A function maps the operator
name (one of +, -, and *) into a binary integer function with signature Int →
Int → Int that determines the meaning of the operation from the meanings of
the operands. As explained on page 36, in applications of a function to a first
argument delimited by double square brackets, we assume that the function binds
tightly with the argument. So (A[[A]] NE [[NE 1 ]] NE [[NE2 ]]) is parsed as if it were
written (A[[A]] (NE [[NE 1 ]]) (NE [[NE 2 ]])).

Figure 4.3 illustrates how the denotational semantics for the restricted version
of ELMM can be used to determine the meaning of the sample ELMM program
(elmm (* (+ 1 2) (- 9 5))). Because P maps programs to their meanings,



4.2.1 Step 1: Restricted ELMM 119

P[[(elmm (* (+ 1 2) (- 9 5)))]]

= NE [[(* (+ 1 2) (- 9 5))]], by definition of P
= (A[[*]] NE [[(+ 1 2)]] NE [[(- 9 5)]]), by definition of NE on arithmetic operations

= NE [[(+ 1 2)]]×Int NE [[(- 9 5)]], by definition of A
= (A[[+]] NE [[1]] NE [[2]])×Int (A[[-]] NE [[9]] NE [[5]]),

by definition of NE on arithmetic operations

= (1 +Int 2)×Int (9−Int 5), by definition of NE on integer literals and of A
= 3×Int 4, by definitions of +Int and −Int

= 12, by definition of ×Int

Figure 4.3 Meaning of a sample program in restricted ELMM.

P[[(elmm (* (+ 1 2) (- 9 5)))]] is the meaning of this program. However,
this fact is not very useful as stated, because the element of Int denoted by the
program is not immediately apparent from the form of the metalanguage ex-
pression P[[(elmm (* (+ 1 2) (- 9 5)))]]. We would like to massage the met-
alanguage expression for the meaning of a program into another metalanguage
expression more recognizable as an element of the answer domain. We do this
by using equational reasoning to simplify the metalanguage expression. That
is, we are allowed to make any simplifications that are permitted by usual math-
ematical reasoning about the entities denoted by the metalanguage expressions.
Equational reasoning allows such manipulations as:

• substituting equals for equals;

• applying functions to arguments;

• equating two function-denoting expressions when, for each argument, they map
that argument to the same result (this is called extensionality).

Instances of equational reasoning are organized into equational proofs that
contain a series of equalities. Figure 4.3 presents an equational proof that the
metalanguage expression P[[(elmm (* (+ 1 2) (- 9 5)))]] is equal to the inte-
ger 12. Each equality in the proof is justified by familiar mathematical rules. For
example, the equality

NE [[(* (+ 1 2) (- 9 5))]] = (A[[*]] NE [[(+ 1 2)]] NE [[(- 9 5)]])

is justified by the arithmetic operation clause in the definition of NE , while the
equality

(1 +Int 2) ×Int (9−Int 5) = 3×Int 4
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is justified by algebraic rules for manipulating integers. As we explained in Sec-
tion A.2.5, for applications of standard numerical and logical functions, we often
use infix notations like (1 +Int 2) ×Int (9−Int 5) instead of prefix notations like
(×Int (+Int 1 2) (−Int 9 5)) because the former are more familiar. We empha-
size that every line in Figure 4.3 denotes exactly the same integer. The whole
purpose of the equational proof is to simplify the original expression into another
metalanguage expression whose form more directly expresses the meaning of the
program.

4.2.2 Step 2: Full ELMM

What happens to the denotational semantics for ELMM if we add back in the
/ and % operators? We now have to worry about the meaning of expressions
like (/ 1 0) and (% 2 0). We will model the meaning of such expressions by
the distinguished token error. Since ELMM programs, numerical expressions,
and arithmetic operators can now return errors in addition to integers, we repre-
sent their meanings using elements of an Answer domain that is a sum domain
(Section A.3.4) including both of these kinds of entities (Figure 4.4).

We must also change the valuation functions P, NE , and A accordingly.
The integer numeral clause for NE now needs the injection Int �Answer . The
arithmetic operation clause for NE must now propagate any errors found in the
operands. This is done using the pattern-matching capabilities of the metalan-
guage construct match, which is defined in Section A.4. The expression

match 〈NE [[NE1 ]],NE [[NE2 ]]〉
� 〈(Int �Answer i1 ), (Int �Answer i2 )〉 [] (A[[A]] i1 i2 )
� else (Error �Answer error) end

can be read as

If the pair of answers 〈NE [[NE 1 ]],NE [[NE2 ]]〉 can be created via the expres-
sion 〈(Int �Answer i1 ), (Int �Answer i2 )〉 by substituting particular integers
for i1 and i2 , then return the integer answer that results from substituting
the same integers for i1 and i2 in the expression (A[[A]] i1 i2 ). Otherwise,
return the error answer (Error �Answer error).

The A clauses for / and % handle specially the case where the second operand
is zero, and Int �Answer injections must be used in the “regular” cases for all
operators.

In full ELMM, the sample program (elmm (* (+ 1 2) (- 9 5))) has the
meaning (Int �Answer 12). Figure 4.5 presents an equational proof of this fact.
All the pattern-matching clauses appearing in the proof are there to handle the
propagation of errors.
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Semantic Algebra
i ∈ Int = {. . . , − 2, − 1, 0, 1, 2, . . .}

Error = {error}
a ∈ Answer = Int + Error

Operations on Int : +Int, −Int, ×Int, ÷Int (integer quotient), %Int (remainder)

Valuation Functions
P : Prog→ Answer

P[[(elmm NE)]] = NE [[NE ]]

NE : NumExp→ Answer

NE [[N ]] = (Int �Answer N [[N ]])

NE [[(A NE1 NE2)]] = match 〈NE [[NE1 ]],NE [[NE2 ]]〉
� 〈(Int �Answer i1 ), (Int �Answer i2 )〉 [] (A[[A]] i1 i2 )
� else (Error �Answer error) end

A : ArithmeticOperator→ (Int→ Int→ Answer)

A[[+]] = λi1 i2 . (Int �Answer (i1 +Int i2 ))
- and * are handled similarly.

A[[/]] = λi1 i2 . if i2 = 0
then (Error �Answer error)
else (Int �Answer (i1 ÷Int i2 )) end

% is handled similarly.

N : IntLit→ Int

N maps integer numerals to the integer numbers they denote.

Figure 4.4 Denotational semantics for full ELMM (including / and %).

The sample program has no errors, but we could introduce one by replacing
the subexpression (- 9 5) by (/ 9 0). Then the part of the proof beginning

= match 〈(A[[+]] 1 2) , (A[[-]] 9 5)〉 . . .

would become:

= match 〈(A[[+]] 1 2) , (A[[/]] 9 0)〉
� 〈(Int �Answer i1 ), (Int �Answer i2 )〉 [] (A[[*]] i1 i2 )
� else (Error �Answer error) end

= match 〈(Int �Answer (1 +Int 2)), (Error �Answer error)〉
� 〈(Int �Answer i1 ), (Int �Answer i2 )〉 [] (A[[*]] i1 i2 )
� else (Error �Answer error) end

= (Error �Answer error)
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The final equality is justified by the fact that there is no integer i2 for which
(Int �Answer i2 ) matches (Error �Answer error) in the second component of the
pair of answers that is the discriminant of the match expression.

Expressing error propagation via explicit pattern matching makes the equa-
tional proof in Figure 4.5 rather messy. As in programming, in denotational
semantics it is good practice to create abstractions that capture common pat-
terns of behavior and hide messy details. This can improve the clarity of the
definitions and proofs while at the same time making them more compact.

We illustrate this kind of abstraction by extending the semantic algebra
to include the following higher-order function for simplifying error handling in
ELMM:

with-int : Answer→ (Int→ Answer)→ Answer
= λaf . match a

� (Int �Answer i) [] (f i)
� else (Error �Answer error) end

with-int takes an answer a and a function f from integers to answers and returns
an answer. It automatically propagates errors, in the sense that it maps an input
error answer to an output error answer. The function f specifies what is done
for inputs that are integer answers. Thus, with-int hides details of error handling
and extracting integers from integer answers.

A metalanguage expression of the form (with-int a (λi . E )) serves as a kind
of binding construct, i.e., a construct that introduces a name (in this case, i) for
a value (in this case, the integer supplied to the injection function Int �Answer

to create a). One way to read (with-int a (λi . E )) is:

If a can be expressed as (Int �Answer i) for a particular integer i , return
the value of the expression that results from substituting this integer for
every occurrence of i in E . Otherwise, a must be an error, in which case
an error should be returned.

For example, the expression (with-int (Int �Answer 3) (λi . (i ×Int i))) is equiv-
alent to 3 ×Int 3 = 9, while (with-int (Error �Answer error) (λi . (i ×Int i))) is
equivalent to (Error �Answer error). The following equalities involving with-int
are useful:

(with-int (Int �Answer i) f ) = (f i) (4.1)

(with-int NE [[N ]] f ) = (f N [[N ]]) (4.2)

(with-int (Error �Answer error) f ) = (Error �Answer error) (4.3)
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P[[(elmm (* (+ 1 2) (- 9 5)))]]

= NE [[(* (+ 1 2) (- 9 5))]], by definition of P
= match 〈NE [[(+ 1 2)]],NE [[(- 9 5)]]〉

� 〈(Int �Answer i1 ), (Int �Answer i2 )〉 [] (A[[*]] i1 i2 )
� else (Error �Answer error) end , by definition of NE on arithmetic operations

= match 〈match 〈NE [[1]],NE [[2]]〉
� 〈(Int �Answer i3 ), (Int �Answer i4 )〉 [] (A[[+]] i3 i4 )
� else (Error �Answer error) end ,
match 〈NE [[9]],NE [[5]]〉
� 〈(Int �Answer i5 ), (Int �Answer i6 )〉 [] (A[[-]] i5 i6 )
� else (Error �Answer error) end 〉

� 〈(Int �Answer i1 ), (Int �Answer i2 )〉 [] (A[[*]] i1 i2 )
� else (Error �Answer error) end , by definition of NE on arithmetic operations

= match 〈match 〈(Int �Answer 1), (Int �Answer 2)〉
� 〈(Int �Answer i3 ), (Int �Answer i4 )〉 [] (A[[+]] i3 i4 )
� else (Error �Answer error) end ,
match 〈(Int �Answer 9), (Int �Answer 5)〉
� 〈(Int �Answer i5 ), (Int �Answer i6 )〉 [] (A[[-]] i5 i6 )
� else (Error �Answer error) end 〉

� 〈(Int �Answer i1 ), (Int �Answer i2 )〉 [] (A[[*]] i1 i2 )
� else (Error �Answer error) end , by definition of NE on integer literals

= match 〈(A[[+]] 1 2) , (A[[-]] 9 5)〉
� 〈(Int �Answer i1 ), (Int �Answer i2 )〉 [] (A[[*]] i1 i2 )
� else (Error �Answer error) end , by pattern matching of match

= match 〈(Int �Answer (1 +Int 2)), (Int �Answer (9−Int 5))〉
� 〈(Int �Answer i1 ), (Int �Answer i2 )〉 [] (A[[*]] i1 i2 )
� else (Error �Answer error) end , by definition of A

= match 〈(Int �Answer 3), (Int �Answer 4)〉
� 〈(Int �Answer i1 ), (Int �Answer i2 )〉 [] (A[[*]] i1 i2 )
� else (Error �Answer error) end , by definitions of +Int and −Int

= (A[[*]] 3 4), by pattern matching of match

= (Int �Answer (3×Int 4)), by definition of A
= (Int �Answer 12), by definition of ×Int

Figure 4.5 Meaning of a sample program in full ELMM.

Using with-int, the NE valuation clause for arithmetic expressions can be
redefined as:

NE [[(A NE1 NE2)]]
= with-int NE [[NE1 ]] (λi1 . (with-int NE [[NE2 ]] (λi2 . (A[[A]] i1 i2 ))))
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With this modified definition and the above with-int equalities, details of er-
ror propagation can be hidden in equational proofs for ELMM meanings (see
Figure 4.6).

One of the powers of lambda notation is that it supports the invention of
new binding constructs like with-int via higher-order functions without requiring
any new syntactic extensions to the metalanguage. We will make extensive use
of this power to simplify our future denotational definitions. Later we will see
how this idea appears in practical programming in monadic style (Section 8.3),
continuation-passing style (Sections 9.2 and 17.9), and pattern matching (Sec-
tion 10.5).

4.2.3 Step 3: ELM

The ELM language (Exercise 3.10 on page 67) is obtained from ELMM by
adding indexed input via the expression (arg Nindex), where Nindex specifies
the index (starting at 1) of a program argument. The form of a program is
(elm Nnumargs NE body), where Nnumargs indicates the number of integer argu-
ments expected by the program when it is executed.

Intuitively, the meaning of ELM programs and numerical expressions must
now be extended to include the program arguments. In Figure 4.7, this is ex-
pressed by modeling the meaning of programs and expressions as functions with
signature Int*→ Answer that map the context domain Int* (a sequence of inte-
gers representing the program arguments) to the answer domain Answer (either
an integer or an error). The program argument sequence i∗ must be “passed
down” the syntax tree to the body of a program and the operands of an arith-
metic operation so that they can eventually be referenced in an arg expression at
a leaf of the syntax tree. The valuation function for an ELM program must check
that the number of supplied arguments matches the expected number of argu-
ments N [[Nnumargs ]], and the valuation function for an arg expression must check
that the index N [[Nindex ]] is between 1 and the number of arguments, inclusive.2

Figure 4.8 uses denotational definitions to find the result of applying the ELM
program (elm 2 (+ (arg 2) (* (arg 1) 3))) to the argument sequence [4, 5].
The equational proof assumes the following equalities, which are easy to verify:

2In these valuation clauses, we take a few liberties involving the types of metalanguage
expressions. (See Section A.3 for a discussion of types in the metalanguage.) Each occurrence
of (length i∗) should really be Nat ↪→ Int (length i∗) since length returns a natural number,
but this number is used in contexts where an integer is expected. Also, in the application
(nth N [[Nindex ]] i∗), the first argument of nth should have type Pos, but N [[Nindex ]] has type
Int. However, this application occurs in a context where N [[Nindex ]] is guaranteed to be a positive
integer, so N [[Nindex ]] effectively denotes an element of Pos in this context. We will take similar
liberties in other denotational definitions without comment.
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P[[(elmm (* (+ 1 2) (- 9 5)))]]

= NE [[(* (+ 1 2) (- 9 5))]], by definition of P
= with-int NE [[(+ 1 2)]]

(λi1 . with-int NE [[(- 9 5)]]
(λi2 . (A[[*]] i1 i2 ))), by new definition of NE on arithmetic operations

= with-int (with-int NE [[1]]
(λi3 . with-int NE [[2]]

(λi4 . (A[[+]] i3 i4 ))))
(λi1 . with-int (with-int NE [[9]]

(λi5 . with-int NE [[5]]
(λi6 . (A[[-]] i5 i6 ))))

(λi2 . (A[[*]] i1 i2 ))), by new definition of NE on arithmetic operations

= with-int (A[[+]] 1 2)
(λi1 . with-int (A[[-]] 9 5)

(λi2 . (A[[*]] i1 i2 ))), by (4.2)

= with-int (Int �Answer (1 +Int 2))
(λi1 . with-int (Int �Answer (9−Int 5))

(λi2 . (Int �Answer (i1 ×Int i2 )))), by definition of A
= (Int �Answer ((1 +Int 2) ×Int (9−Int 5))), by (4.1)

= (Int �Answer (3×Int 4)), by definitions of +Int and ×Int

= (Int �Answer 12), by definition of ×Int

Figure 4.6 Example illustrating how with-int hides error propagation.

(with-int (NE [[N ]] i∗) f ) = (f N [[N ]]) (4.4)

(with-int (NE [[(arg N )]] [i1 , . . . , ik , . . . , in ]) f ) = (f ik ), (4.5)
where N [[N ]] = k

(with-int (A[[A]] i1 i2 ) f ) = (f ians), (4.6)
where (A[[A]] i1 i2 ) = (Int �Answer ians)

In Figure 4.8, if we replace the concrete argument integers 4 and 5 by abstract
integers iarg1 and iarg2 , respectively, then the result would be

(Int �Answer (iarg2 +Int (iarg1 ×Int 3)))

Based on this observation, we can give a meaning to the sample program itself
(i.e., without applying it to particular arguments). Such a meaning must be
abstracted over an arbitrary argument sequence:
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Semantic Algebra
i ∈ Int = {. . . , − 2, − 1, 0, 1, 2, . . .}

Error = {error}
a ∈ Answer = Int + Error

Operations on Int : +Int, −Int, ×Int, ÷Int, %Int

Operation on Answer : with-int (defined on page 122)

Valuation Functions
P : Prog→ Int*→ Answer

P[[(elm Nnumargs NE body)]]
= λi∗ . if (length i∗) =Int N [[Nnumargs ]]

then NE [[NE ]] i∗

else (Error �Answer error) end

NE : NumExp→ Int*→ Answer

NE [[Nnum ]] = λi∗ . (Int �Answer N [[Nnum ]])

NE [[(arg Nindex)]] = λi∗ . if (1≤Int N [[Nindex ]]) ∧ (N [[Nindex ]]≤Int (length i∗))
then (Int �Answer (nth N [[Nindex ]] i∗))
else (Error �Answer error) end

NE [[(A NE1 NE2)]]
= λi∗ . with-int (NE [[NE1 ]] i∗)

(λi1 . with-int (NE [[NE2 ]] i∗) (λi2 . (A[[A]] i1 i2 )))

N : IntLit→ Int and A :ArithmeticOperator→ (Int→ Int→ Answer)
are unchanged from ELMM (Figure 4.4).

Figure 4.7 Denotational semantics for ELM.

P[[(elmm 2 (+ (arg 2) (* (arg 1) 3)))]]
= λi∗ . match i∗

� [iarg1 , iarg2 ] [] (Int �Answer (iarg2 +Int (iarg1 ×Int 3)))
� else (Error �Answer error) end

Here we have translated the if that appears in the P definition in Figure 4.7 into
an equivalent match construct that gives the names iarg1 and iarg2 to the two
integer arguments in the case where the argument sequence i∗ has two elements.
We showed above that the result in this case is correct, and we know that an
error is returned for any other length.
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P[[(elm 2 (+ (arg 2) (* (arg 1) 3)))]] [4, 5]

= if (length [4, 5]) =Int N [[2]]
then NE [[(+ (arg 2) (* (arg 1) 3))]] [4, 5]
else (Error �Answer error) end, by the definition of P

= NE [[(+ (arg 2) (* (arg 1) 3))]] [4, 5], by length, =Int, and if

= with-int (NE [[(arg 2)]] [4, 5])
(λi1 . with-int (NE [[(* (arg 1) 3)]] [4, 5])

(λi2 . (A[[+]] i1 i2 ))), by the definition of NE
= with-int (NE [[(* (arg 1) 3)]] [4, 5])

(λi2 . (A[[+]] 5 i2 )), by (4.5)

= with-int (with-int (NE [[(arg 1)]] [4, 5])
(λi3 . with-int (NE [[3]] [4, 5])

(λi4 . (A[[*]] i3 i4 )))
(λi2 . (A[[+]] 5 i2 )), by the definition of NE

= with-int (with-int (NE [[3]] [4, 5])
(λi4 . (A[[*]] 4 i4 ))

(λi2 . (A[[+]] 5 i2 )), by (4.5)

= (with-int (A[[*]] 4 3) (λi2 . (A[[+]] 5 i2 ))), by (4.4)

= (A[[+]] 5 12), by (4.6)

= (Int �Answer 17), by the definition of A

Figure 4.8 Meaning of an ELM program applied to two arguments.

4.2.4 Step 4: EL

Full EL (Figure 2.4, page 25) is obtained from ELM by adding a numerical if
expression and boolean expressions for controlling the if expressions. Boolean
expressions BE include the boolean literals true and false, relational expres-
sions like (< NE1 NE 2), and logical expressions like (and BE 1 BE2). Since
boolean expressions can include numerical expressions as subexpressions and such
subexpressions can denote errors, boolean expressions can also denote errors (e.g.
(< 1 (/ 2 0))). In Figure 4.9, we model this by having the valuation func-
tion BE for boolean expressions return an element in the domain BoolAnswer
of “boolean answers” that is distinct from the domain Answer of “integer an-
swers.” Since a numerical subexpression of a relational expression could be an
arg expression, the meaning of a boolean expression is a function with signature
Int* → BoolAnswer that maps implicit program arguments to a boolean answer.
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The error handling for relational and logical operations is performed by BE , so
the R and L valuation functions manipulate only nonerror values.

Note that the error-handling in BE [[(Rrator NE1 NE 2)]] is performed by pat-
tern matching. Could it instead be done via with-int? No. The final return value
of with-int is in Answer , but the final return value of BE is in BoolAnswer. How-
ever, we could define and use a new auxiliary function that is like with-int but
returns an element of BoolAnswer (see Exercise 4.3 on page 131).

Something that stands out in our study of the denotational semantics of
the EL dialects is the importance of semantic domains and the signatures of
valuation functions. Studying these yields insight into the fundamental nature of
a language, even if the detailed valuation clause definitions are unavailable. For
example, consider the signature of the numerical expression valuation function
NE in the various dialects we studied. In ELMM without / and %, the signature

NE : NumExp → Int

indicates that an expression simply stands for an integer. In full ELMM, the
“unwound” signature

NE : NumExp→ (Int + Error)

indicates that errors may be encountered in the evaluation of some expressions.
The ELM (and EL) signature

NE : NumExp→ Int* → (Int + Error)

has a context domain Int* representing program arguments that are passed down
the abstract syntax tree. We will see many kinds of context domains in our
study of other languages. Some, like ELM program arguments, flow down only
to subexpressions. We shall see later that elements of other context domains
can have more complex flows, and that these flows are reflected in the valuation
function signatures.

4.2.5 A Denotational Semantics Is Not a Program

You may have noticed that the denotational definitions for the dialects of EL
strongly resemble programs in certain programming languages. In fact, it is
straightforward to write an executable EL interpreter that reflects the structure
of its valuation clauses, especially in functional programming languages like ML,
Haskell, and Scheme. Of course, an interpreter has to be explicit about many
of the details suppressed in the denotational definition (parsing the concrete
syntax, choosing appropriate data structures to represent domain elements, etc.).
Furthermore, details of the implementation language may complicate matters.
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Semantic Algebra
i ∈ Int = {. . . , − 2, − 1, 0, 1, 2, . . .}
b ∈ Bool = {true, false}

Error = {error}
a ∈ Answer = Int + Error

ba ∈ BoolAnswer = Bool + Error

Operations on Bool : ∧ (conjunction), ∨ (disjunction)
Operations on Int : +Int, −Int, ×Int, ÷Int, %Int, <Int, =Int, >Int

Operation on Answer : with-int (defined on page 122)

Valuation Functions
P : Prog→ Int* → Answer
P is unchanged from ELM (Figure 4.4, except the keyword elm becomes el).

NE : NumExp→ Int* → Answer

NE [[(if BE test NE then NE else)]]
= λi∗ . match (BE [[BE test ]] i∗)

� (Bool �BoolAnswer b) []
if b then NE [[NE then ]] i∗ else NE [[NE else ]] i∗ end

� else (Error �Answer error) end

The other NE clauses are unchanged from ELM (Figure 4.7).

BE : BoolExp→ Int*→ BoolAnswer

BE [[true]] = λi∗ . (Bool �BoolAnswer true)

BE [[false]] = λi∗ . (Bool �BoolAnswer false)

BE [[(Rrator NE1 NE2)]]
= λi∗ . match 〈NE [[NE1 ]] i∗,NE [[NE2 ]] i∗〉

� 〈(Int �Answer i1 ), (Int �Answer i2 )〉 []
(Bool �BoolAnswer (R[[R]] i1 i2 ))

� else (Error �BoolAnswer error) end

BE [[(Lrator BE1 BE2)]]
= λi∗ . match 〈BE [[BE1 ]] i∗,BE [[BE2 ]] i∗〉

� 〈(Bool �BoolAnswer b1 ), (Bool �BoolAnswer b2 )〉 []
(Bool �BoolAnswer (L[[L]] b1 b2 ))

� else (Error �BoolAnswer error) end

R : RelationalOperator→ (Int→ Int→ Bool)
R[[<]] = <Int R[[=]] = =Int R[[>]] = >Int

L : LogicalOperator→ (Bool→ Bool→ Bool)
L[[and]] = ∧ L[[or]] = ∨

N : IntLit→ Int and A :ArithmeticOperator→ (Int→ Int→ Answer)
are unchanged from ELMM (Figure 4.4).

Figure 4.9 Denotational semantics for EL.
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In particular, the correspondence will be much less direct if the implementation
programming language does not support first-class procedures.

Although a denotational definition often suggests an approach for implement-
ing an interpreter program, it can be misleading to think of the denotational
definition itself as a program. Programming language procedures typically im-
ply computation; denotational specifications do not. An interpreter specifies a
process for evaluating program phrases, often one with particular operational
properties. In contrast, there is no notion of process associated with a valuation
function: it is simply a declarative description for a mathematical function (i.e.,
a triple of a source, a target, and a graph).

For example, consider the following metalanguage expression, which might
arise in the context of reasoning about an ELMM program:

λi0 . with-int (A[[/]] i0 2) (λi1 . (with-int (A[[-]] 3 3) (λi2 . (A[[*]] i1 i2 ))))

If we (incorrectly) view this as an expression in a programming language like ML
or Scheme, we might think that no evaluation can take place until an integer
is supplied for i0 , and that after this happens, the division must be performed
first, followed by the subtraction, and finally the multiplication. But there is no
inherent notion of evaluation order associated with the metalanguage expression.
We can perform any mathematical simplifications in any order on this expression.
For example, observing that (A[[-]] 3 3) has the same meaning as (NE [[0]]) allows
us to rewrite the expression to

λi0 . with-int (A[[/]] i0 2) (λi1 . (with-int (NE [[0]]) (λi2 . (A[[*]] i1 i2 ))))

This is equivalent to

λi0 . with-int (A[[/]] i0 2) (λi1 . (A[[*]] i1 0))

which is in turn equivalent to

λi0 . with-int (A[[/]] i0 2) (λi1 . (Int �Answer 0))

since the product of 0 and any integer is 0. A division result cannot be an error
when the second argument is nonzero, so this can be further simplified to

λi0 . (Int �Answer 0)

The moral of this example is that many simplifications can be done with meta-
language expressions that would be difficult to justify with expressions in most
programming languages.3

3Certain real-world programming languages, particularly the purely functional language
Haskell, were designed to support the kind of mathematical reasoning that can be done with
metalanguage expressions.



4.3 A Denotational Semantics for PostFix 131

Exercise 4.1 We have treated integer numerals atomically, but we could express them
in terms of their component signs and digits via an s-expression grammar:

SN ∈ SignedNumeral ::= (+ UN ) | (- UN ) | UN

UN ∈ UnsignedNumeral ::= D | (@ UN D)

D ∈ Digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

For example, the numeral traditionally written as -273 would be written in s-expression
form as (- (@ (@ 2 7) 3)). Give a denotational semantics for numerals by providing
valuation functions for each of SignedNumeral, UnsignedNumeral, and Digit.

Exercise 4.2 Use the ELM semantics to determine the meaning of the following ELM
program: (elm 2 (/ (arg 1) (- (arg 1) (arg 2)))).

Exercise 4.3 By analogy with the with-int auxiliary function in the ELM semantics,
define functions with the following signatures and use them to “hide” error handling in
the EL valuation clauses for conditional expressions, relational operations, and logical
operations:

with-bool : BoolAnswer → (Bool → Answer) → Answer
with-intBA : Answer → (Int → BoolAnswer) → BoolAnswer
with-boolBA : BoolAnswer → (Bool → BoolAnswer) → BoolAnswer

4.3 A Denotational Semantics for PostFix

We are now ready to flesh out the details of the denotational description of
PostFix that were sketched in Section 4.1. The abstract syntax for PostFix
was provided in Figure 2.12 on page 40, so the syntactic algebra is already taken
care of. We need to construct the semantic algebra and the meaning function.

4.3.1 A Semantic Algebra for PostFix

What kind of mathematical entities should we use to model PostFix programs?
Suppose that we have some sort of entity representing stacks. Then it’s natural
to model both PostFix commands and command sequences as functions that
transform one stack entity into another. For example, the swap command could
be modeled by a function that takes a stack as an argument, and returns a stack
in which the top two elements have been swapped.

We need to make some provision for the case where the stack contains an
insufficient number of elements or the wrong type of elements. For this purpose
we will assume that there is a distinguished stack, errorStack, that signifies an
error. For example, applying the transform associated with the swap command
to a stack with fewer than two elements should return errorStack. All transforms
should return errorStack when given errorStack as an argument.
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t ∈ StackTransform = Stack→ Stack
s ∈ Stack = Value* + Error
v ∈ Value = Int + StackTransform
r ∈ Result = Value + Error
a ∈ Answer = Int + Error

Error = {error}
i ∈ Int = {. . . , − 2, − 1, 0, 1, 2, . . .}
b ∈ Bool = {true, false}

Figure 4.10 Semantic domains for the PostFix denotational semantics.

Figure 4.10 presents domain definitions that describe one implementation of
this approach. The StackTransform domain consists of functions from stacks to
stacks, where an element of the domain Stack is either a sequence of values or the
distinguished error stack (here modeled by the single element of the unit domain
Error). The domain Value of stackable values includes not only integers but
also stack transforms, which model executable sequences that have been pushed
onto the stack. The Result domain models intermediate results obtained from
stack manipulations or arithmetic operations. It includes an error result to model
situations like popping an empty stack and dividing by zero. The Answer domain
models the final outcome of a PostFix program. Like Result , Answer includes
an error answer, but its only nonerror answers are integers (because an executable
sequence at the top of a final stack is treated as an error).

A somewhat unsettling property of the domain definitions in the figure is that
they are recursive — transforms operate on stacks, which themselves may contain
transforms. In Chapter 5 we will discuss how to understand a set of recursively
defined domain equations. For now, we’ll just assume that these equations have
a sensible interpretation.4

We extend the semantic domains into a semantic algebra by defining a col-
lection of constants and functions on the domains. For now we’ll just specify
the interfaces to these constants and functions. We’ll defer the details of their
definitions until we’ve studied the meaning function. This will allow us to move
more quickly to the core of the denotational semantics — the meaning function —
without getting sidetracked by details of the definitions of the semantic functions.

Figure 4.11 gives informal specifications for the constants and functions we
will use to manipulate the semantic domains. We will study the implementa-

4It turns out that the domain definitions for Stack and Answer aren’t quite right as stated,
because they are missing a “bottom” element denoting nontermination. See the discussion in
Section 4.4.3.
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errorResult :Result
An error in the domain Result.

errorAnswer :Answer
An error in the domain Answer.

errorStack :Stack
The distinguished error stack.

errorTransform:StackTransform
A transform that maps all stacks to errorStack.

push :Result→ StackTransform
Given a result that is a value v , return a transform that pushes v onto a
stack; otherwise return errorTransform.

pop :StackTransform
For a nonempty stack s, return the stack resulting from popping the top
value; otherwise return errorStack.

top :Stack→ Result
Given a nonempty stack s, return a result that is the top element of s; oth-
erwise return errorResult.

intAt : Int→ Stack→ Result
Given an integer iindex and a stack whose iindex th element (starting from 1)
is the integer iresult , return iresult ; otherwise return errorResult.

arithop : (Int→ Int→ Result)→ StackTransform
Let f : Int→ Int→ Result be the functional argument to arithop. Return a
transform with the following behavior: if the given stack has two integers
i1 and i2 followed by srest , then return a stack whose top value vresult is
followed by srest , where (Value �Result vresult) is the result of the application
(f i2 i1 ). If the given stack is not of this form or if the result of applying f
is errorResult, then return errorStack.

transform :Result→ StackTransform
Given a result that is a stack transform, return it; otherwise return
errorTransform.

resToAns :Result→ Answer
Given a result that is an integer, return it as an answer; otherwise return
errorAnswer.

Figure 4.11 Specifications for constants and functions on PostFix semantic domains.
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tion of these later, in Section 4.3.3. errorResult, errorAnswer, errorStack, and
errorTransform are just names for useful constants involving errors. push, pop,
and top are the usual stack operations. Their specifications are complicated
somewhat by the details of error handling. For example, top returns an element
of Result rather than Value because it must return errorResult in the case where
the given stack is empty. push takes its argument from Result rather than Value
so that it can be composed with top. intAt is an auxiliary function that simplifies
the specification of nget. arithop simplifies the specifications for arithmetic and
relational commands; it serves to abstract over a common behavior (replacing
the top two integers on the stack by some value that depends on them) while
suppressing error-handling detail (returning an error stack if any error is encoun-
tered along the way). transform facilitates error handling when a result that is
expected to be a transform turns out to be an integer or an error result instead.
resToAns handles the conversion from results to answers.

The signatures of the stack functions push, pop, arithop, transform, and
errorTransform may seem strange at first glance, because they don’t explicitly
refer to the Stack domain. But recall that StackTransform is defined to be
Stack→ Stack, so that the signature of push, for instance, is really

Result→ (Stack→ Stack)

From this perspective, push probably seems more familiar: it is a function that
takes a result and stack (in curried form) and returns a stack. However, since
stack transforms are the key abstraction of this semantics, we have written the
signatures in a way that emphasizes this fact. Under this view, push is a function
that takes a result and returns a stack transform. Of course, in either case push
is exactly the same mathematical entity; the only difference is in how we think
about it!

4.3.2 A Meaning Function for PostFix

Now we’re ready to study the meaning function for PostFix. As in EL, we
specify the meaning function by a collection of valuation functions, one for each
syntactic domain defined by the abstract syntax for the language.

As we learned in studying the denotational semantics of EL, the signatures
of valuation functions contain valuable information about the meaning of the
language. It is always prudent to study the signatures before delving into the
details of the definitions for the valuation functions.

The signatures for the PostFix valuation functions appear in Figure 4.12.
In the case of PostFix, one of the things the signatures say is that a PostFix
program is like an EL program in that it takes a sequence of integers as arguments
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P : Prog→ Int*→ Answer

Q : CommandSeq→ StackTransform

C : Command→ StackTransform

A : ArithmeticOperator→ (Int→ Int→ Result)

R : RelationalOperator→ (Int→ Int→ Bool)

N : IntLit→ Int

Figure 4.12 Signatures of the PostFix valuation functions.

and either returns an integer or signals an error: P : Prog→ Int*→ Answer.
If the signature of P were instead P :Prog→ Int* → Result, it would indicate
that some PostFix programs could return a stack transform (corresponding
to an executable sequence) instead of an integer. If the signature were one of
P :Prog → Int*→ Int or P :Prog→ Int* → Value, it would tell us that errors
could not be signaled by a PostFix program.

The signatures also tell us that both commands and command sequences map
to stack transforms. Since stack transforms are easily composable, this suggests
that the meaning of a command sequence will be some sort of composition of the
meanings of its component commands. This turns out to be the case. The return
type of A matches the argument type of arithop, one of the auxiliary functions
specified in Figure 4.11. This is more than coincidence: the auxiliary functions
and valuation functions were designed to dovetail in a nice way.

Now we’re ready to study the definitions of the PostFix valuation functions,
which appear in Figure 4.13. The meaning of a program (postfix Nnumargs Q)

is a function that transforms an initial stack consisting of the integers in the
argument sequence i∗ via the transform Q[[Q ]] and returns the top integer of the
resulting stack. The definitions of resToAns and top guarantee that an error
answer is returned when the stack is empty or does not have an integer as its
top element. An error is also signaled when the number of arguments does not
match the expected number Nnumargs .

The meaning of a command sequence is the composition of the transforms of
its component commands. The order of the composition

Q[[Q ]] ◦ C[[C ]] = λs . (Q[[Q ]] (C[[C ]] s))

is crucial, because it guarantees that the stack manipulations of the first com-
mand can be observed by the subsequent commands. Reversing the order of the
composition would have the effect of executing commands in a right-to-left order
instead. The stack transform associated with the empty command sequence is
the identity function on stacks.
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For valuation functions like Q that manipulate sequences of program phrases,
we will often take notational liberties to avoid explicit sequences between the
double brackets, [[ ]]. For example, Q[[]] is an abbreviation for Q[[[]Command]], and
Q[[3 sub swap pop]] is an abbreviation for Q[[[3, sub, swap, pop]Command]].

Most of the clauses for the command valuation function C are straightforward.
The integers and transforms corresponding to numerals and executable sequences
are simply pushed onto the stack after appropriate injections into the Value and
Result domains.5 The transform associated with the pop command is simply the
pop auxiliary function, while the transform associated with swap is expressed as
a composition of push, top, and pop. If the top stack element is an integer i ,
the nget transform replaces it by the ith element from the rest of the stack if
that element is an integer; in all other cases, nget returns an error stack. The
sel transform selects one of the top two stack elements based on the numeric
value of the third stack element; an error is signaled if the third element is not an
integer. In the exec transform, the top stack element is expected to be a stack
transform t representing an executable sequence. Applying t to the rest of the
stack yields the stack resulting from executing the executable sequence. If the
top stack element is not a stack transform, an error is signaled. The meaning
of arithmetic and relational commands is determined by arithop in conjunction
with A and R, valuation functions that map operator symbols like add and lt

to the expected functions and predicates. A treats div and rem specially so that
division by 0 signals an error.

Before we move on, a few notes about reading the PostFix denotational
definitions are in order. Valuation functions tend to be remarkably elegant and
concise. But this does not mean that they are always easy to read! To the
contrary, the density of information in a denotational definition often demands
meticulous attention from the reader. The ability to read semantic functions and
valuation functions is a skill that requires patient practice to acquire. At first, un-
raveling such a definition may seem like solving a puzzle or doing detective work.
However, the time invested in reading definitions of this sort pays off handsomely
in terms of deep insights into the meanings of programming languages.

The conciseness of a denotational definition is due in large part to the lib-
eral use of higher-order functions, i.e., functions that take other functions as
arguments or return them as results. arithop is an excellent example of such

5Whereas the operational semantics uses a stack with syntactic values — integer numerals
and command sequences — the denotational semantics uses a stack of semantic values — integers
and stack transforms. This is because the valuation functions N and Q are readily available for
translating the syntactic elements to the semantic ones. Here and elsewhere, we will follow the
convention of using explicit injections in denotational descriptions.
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P[[(postfix Nnumargs Q)]]
= λi∗ . if (length i∗) =Int N [[Nnumargs ]]

then resToAns (top (Q[[Q ]] (Value*�Stack (map Int �Value i∗))))
else errorAnswer end

Q[[C . Q ]] = Q[[Q ]] ◦ C[[C ]]

Q[[]] = λs . s

C[[N ]] = push (Value �Result (Int �Value N [[N ]]))

C[[(Q)]] = push (Value �Result (StackTransform �Value Q[[Q ]]))

C[[pop]] = pop

C[[swap]] = λs . (push (top (pop s)) (push (top s) (pop (pop s))))

C[[nget]] = λs . match top s
� (Value �Result (Int �Value i)) [] push (intAt i (pop s)) (pop s)
� else errorStack end

C[[sel]] = λs . match top (pop (pop s))
� (Value �Result (Int �Value i)) []

push (if i =Int 0 then top s else top (pop s) end)
(pop (pop (pop s)))

� else errorStack end

C[[exec]] = λs . (transform (top s) (pop s))

C[[A]] = arithop A[[A]]

C[[R]] = arithop (λi1 i2 . (Value �Result

(Int �Value (if (R[[R]] i1 i2 ) then 1 else 0 end))))

A[[sub]] = λi1 i2 . (Value �Result (Int �Value (i1 −Int i2 )))
Similarly for add, mul

A[[div]] = λi1 i2 . if i2 =Int 0
then errorResult
else (Value �Result (Int �Value (i1 ÷Int i2 ))) end

Similarly for rem

R[[lt]] = <Int

Similarly for eq and gt

N maps integer numerals to the integer numbers they denote.

Figure 4.13 Valuation functions for PostFix.
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a function: it takes an argument in the function domain Int → Int → Result,
and returns a stack transform, which itself is an element of the function domain
Stack→ Stack.

Definitions involving higher-order functions can be rather daunting to read
until you acquire a knack for them. A typical problem is to think that pieces are
missing. For example, a common reaction to the valuation clause for numerals,

C[[N ]] = (push (Value �Result (Int �Value (N [[N ]]))))

is that a stack is somehow missing. After all, the value has to be pushed onto
something — where is it? Carefully considering types, however, will show that
nothing is missing. (Consult Sections A.3.2 and A.4 for more on types in the
metalanguage.) Recall that the signature of push is Result → StackTransform.
Since (Value �Result (Int �Value N [[N ]])) is clearly an element of Result, the result
of the push application is a stack transform. Since C is supposed to map com-
mands to stack transforms, the definition is well typed. It’s possible to introduce
an explicit stack in this valuation clause by wrapping the right-hand side in a λ
of a stack argument:

C[[N ]] = λs . (push (Value �Result (Int �Value N [[N ]])) s)

This form of the definition probably seems much more familiar, because it’s more
apparent that the meaning of the command is a function that takes a stack and
returns a stack, and push is actually given a stack on which to push its value. But
the two definitions are equivalent. In order to stress the power of higher-order
functions, we will continue to use the more concise versions. We encourage you to
type-check the definitions and expand them with extra λs to improve your skill
at reading them.

Figure 4.14 illustrates using the PostFix denotational semantics to deter-
mine the result of executing the program (postfix 2 3 sub swap pop) on the
argument integers [7, 8]. To make the figure more concise, we use the shorthand
n̂ to stand for (Int �Value n). Each line of the equational proof is justified by
simple mathematical reasoning. For example, the equality

resToAns
(
top

(
(Q[[pop]] ◦ C[[swap]]) (Value*�Stack [4̂, 8̂])

))
= resToAns

(
top

(
Q[[pop]]

(
C[[swap]] (Value*�Stack [4̂, 8̂])

)))
is justified by the definition of function composition, while the equality



4.3.2 A Meaning Function for PostFix 139

resToAns (top (Q[[swap pop]] (push (Value �Result ̂7−Int 3)

(Value*�Stack [8̂]))))

= resToAns
(
top

(
Q[[swap pop]] (Value*�Stack [4̂, 8̂])

))
is justified by the definition of −Int and the specification for the push function.
The proof shows that the result of the program execution is the integer 4.

Just as programs can be simplified by introducing procedural abstractions,
equational proofs can often be simplified by structuring them more hierarchically.
In the case of proofs, the analogue of a programming language procedure is a
theorem. For example, it’s not difficult to prove a theorem stating that for any
numeral N , any command sequence Q , and any stack s, the following equality is
valid:

(Q[[N . Q ]] (Value*�Stack v∗))
= (Q[[Q ]] (Value*�Stack ((Int �Value N [[N ]]) . v∗)))

This theorem is analogous to the operational rewrite rule for handling integer
numeral commands. It can be used to justify equalities like(

Q[[3 sub swap pop]] (Value*�Stack [7̂, 8̂])
)

=
(
Q[[sub swap pop]] (Value*�Stack [3̂, 7̂, 8̂])

)
which took four steps in Figure 4.14. A few such theorems can greatly reduce
the length of the sample proof. In fact, if we prove other theorems analogous to
the operational rules, we can obtain a proof whose structure closely corresponds
to the configuration sequence for an operational execution of the program (see
Figure 4.15).

Figure 4.16 shows how the equational proof in Figure 4.15 can be generalized
to handle two arbitrary integer arguments. Based on this result, we conclude
that the meaning of the PostFix program (postfix 2 3 sub swap pop) is:

P[[(postfix 2 3 sub swap pop)]]
= λi∗ . match i∗

� [i1 , i2 ] [] (Int �Answer (i1 −Int 3))
� else errorAnswer end

Exercise 4.4 Use the PostFix denotational semantics to determine the values of the
PostFix programs in Exercise 1.1 on page 13.
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Note: n̂ is a shorthand for (Int �Value n)

P[[(postfix 2 3 sub swap pop)]] [7, 8]

= if (length [7, 8]) =Int N [[2]]

then resToAns
(
top

(
Q[[3 sub swap pop]] (Value*�Stack [7̂, 8̂])

))
else errorAnswer end

= resToAns
(
top

(
Q[[3 sub swap pop]] (Value*�Stack [7̂, 8̂])

))
= resToAns

(
top

(
(Q[[sub swap pop]] ◦ C[[3]]) (Value*�Stack [7̂, 8̂])

))
= resToAns

(
top

(
Q[[sub swap pop]]

(
C[[3]] (Value*�Stack [7̂, 8̂])

)))
= resToAns (top (Q[[sub swap pop]] (push (Value �Result 3̂)

(Value*�Stack [7̂, 8̂]))))

= resToAns
(
top

(
Q[[sub swap pop]] (Value*�Stack [3̂, 7̂, 8̂])

))
= resToAns

(
top

(
(Q[[swap pop]] ◦ C[[sub]]) (Value*�Stack [3̂, 7̂, 8̂])

))
= resToAns

(
top

(
Q[[swap pop]]

(
C[[sub]] (Value*�Stack [3̂, 7̂, 8̂])

)))
= resToAns

(
top

(
Q[[swap pop]]

(
arithop A[[sub]] (Value*�Stack [3̂, 7̂, 8̂])

)))
= resToAns (top (Q[[swap pop]] (push (Value �Result ̂7−Int 3)

(Value*�Stack [8̂]))))

= resToAns
(
top

(
Q[[swap pop]] (Value*�Stack [4̂, 8̂])

))
= resToAns

(
top

(
(Q[[pop]] ◦ C[[swap]]) (Value*�Stack [4̂, 8̂])

))
= resToAns

(
top

(
Q[[pop]]

(
C[[swap]] (Value*�Stack [4̂, 8̂])

)))
= resToAns (top (Q[[pop]] (push

(
top

(
pop (Value*�Stack [4̂, 8̂])

))
(push

(
top (Value*�Stack [4̂, 8̂])

)(
pop

(
pop (Value*�Stack [4̂, 8̂])

))))))
= resToAns (top (Q[[pop]] (push

(
top (Value*�Stack [8̂])

)
(push (Value �Result 4̂)

(Value*�Stack [ ])))))

= resToAns
(
top

(
Q[[pop]]

(
push (Value �Result 8̂) (Value*�Stack [4̂])

)))
= resToAns

(
top

(
Q[[pop]] (Value*�Stack [8̂, 4̂])

))
= resToAns

(
top

(
(Q[[]] ◦ C[[pop]]) (Value*�Stack [8̂, 4̂])

))
= resToAns

(
top

(
Q[[]]

(
C[[pop]] (Value*�Stack [8̂, 4̂])

)))
= resToAns

(
top

(
Q[[]] (Value*�Stack [4̂])

))
= resToAns

(
top

(
(λs . s) (Value*�Stack [4̂])

))
= resToAns

(
top (Value*�Stack [4̂])

)
= resToAns (Value �Result 4̂)

= (Int �Answer 4)

Figure 4.14 Equational proof that executing the PostFix program (postfix 2 3

sub swap pop) on the arguments [7, 8] yields the answer 4.
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P[[(postfix 2 3 sub swap pop)]] [7, 8]

= resToAns
(
top

(
Q[[3 sub swap pop]] (Value*�Stack [7̂, 8̂])

))
= resToAns

(
top

(
Q[[sub swap pop]] (Value*�Stack [3̂, 7̂, 8̂])

))
= resToAns

(
top

(
Q[[swap pop]] (Value*�Stack [4̂, 8̂])

))
= resToAns

(
top

(
Q[[pop]] (Value*�Stack [8̂, 4̂])

))
= resToAns

(
top

(
Q[[]] (Value*�Stack [4̂])

))
= resToAns

(
top (Value*�Stack [4̂])

)
= resToAns (Value �Result 4̂)

= (Int �Answer 4)

Figure 4.15 Alternative equational proof with an operational flavor.

P[[(postfix 2 3 sub swap pop)]] [i1 , i2 ]

= resToAns
(
top

(
Q[[3 sub swap pop]] (Value*�Stack [î1 , î2 ])

))
= resToAns

(
top

(
Q[[sub swap pop]] (Value*�Stack [3̂, î1 , î2 ])

))
= resToAns

(
top

(
Q[[swap pop]] (Value*�Stack [ ̂i1 −Int 3, î2 ])

))
= resToAns

(
top

(
Q[[pop]] (Value*�Stack [î2 , ̂i1 −Int 3])

))
= resToAns

(
top

(
Q[[]] (Value*�Stack [ ̂i1 −Int 3])

))
= resToAns

(
top (Value*�Stack [ ̂i1 −Int 3])

)
= resToAns (Value �Result ̂i1 −Int 3)

= (Int �Answer (i1 −Int 3))

Figure 4.16 Version of equational proof for two arbitrary integer arguments.

Exercise 4.5 Modify the PostFix denotational semantics to handle PostFix2. In-
clude valuation clauses for (: Ccom1 Ccom2), (skip), and (exec).

Exercise 4.6 For each of the following, modify the PostFix denotational semantics to
handle the specified extensions:

a. The pair, fst, and snd commands from Exercise 3.37 on page 102.

b. The for and repeat commands from Exercise 3.40 on page 103.

c. The I , def, and ref commands from Exercise 3.44 on page 106.
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4.3.3 Semantic Functions for PostFix: the Details

Now that we’ve studied the core of the PostFix semantics, we’ll flesh out the
details of the functions specified in Figure 4.11. Figure 4.17 presents one imple-
mentation of the specifications. As an exercise, you should make sure that these
definitions type-check, and that they satisfy the specifications in Figure 4.11.

Notice that several functions in Figure 4.17 describe similar manipulations.
push, pop, and arithop all check to see if their input stack is a suitable stack of
values. If so, they perform some manipulation on the sequence of values in the
stack; if not, they return errorStack. We can abstract over these similarities by
introducing three abstractions (Figure 4.18) similar to the with-int error-hiding
function defined in the EL denotational semantics:

• with-stack-values takes a function f from value sequences to stacks and returns
a stack transform that (1) maps a nonerror stack to the result of applying f to
the value sequence in the stack, and (2) maps an error stack to an error stack.

• with-val&stack takes a function f from a value to a stack transform and returns
a stack transform that (1) maps any stack whose value sequence consists of the
value v followed by v∗

rest to the result of applying f to v and the stack whose
values are v∗

rest , and (2) maps any stack not of this form to the error stack.

• with-int&stack takes a function f from an integer to a stack transform and
returns a stack transform that (1) maps any stack whose value sequence consists
of an integer i followed by v∗

rest to the result of applying f to i and the stack
whose values are v∗

rest , and (2) maps any stack not of this form to the error
stack.

The purpose of these new functions is to hide the details of error handling in order
to highlight more important manipulations. As shown in Figure 4.18, rewriting
push in terms of with-stack-values removes an error check from the definition.
Using with-val&stack and with-int&stack greatly simplifies pop and arithop; the
updated versions concisely capture the essence of these functions without the
distraction of case analyses and error checks.

As with the valuation functions, these highly condensed semantic functions
can be challenging for the uninitiated to read. The fact that push, pop, and
arithop are ultimately manipulating a stack is even harder to see in the new
versions than it was in the original ones. As suggested before, reasoning about
types and inserting extra λs can help. For example, since the result of a call to
with-int&stack is a stack transform t , and t is equivalent to λs . (t s), the new
version of arithop can be rewritten as:
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errorResult : Result = (Error �Result error)
errorAnswer : Answer = (Error �Answer error)
errorStack : Stack = (Error �Stack error)
errorTransform : StackTransform = λs . errorStack

push : Result→ StackTransform
= λr . (λs . match 〈r , s〉

� 〈(Value �Result v), (Value*�Stack v∗)〉 [] (v . v*)
� else errorStack end )

pop : StackTransform
= λs . match s

� (Value*�Stack (vhead . v∗
tail)) [] (Value*�Stack v∗

tail)
� else errorStack end

top : Stack→ Result
= λs . match s

� (Value*�Stack (vhead . v∗
tail)) [] (Value �Result vhead)

� else errorResult end

intAt : Int→ Stack→ Result
= λis . match s

� (Value*�Stack v∗) []
if 1≤Int i and i ≤Int (length v∗)
then match (nth i v∗)

� (Int �Value iresult) [] (Value �Result (Int �Value iresult))
� else errorResult

else errorResult end
� else errorResult end

arithop : (Int→ Int→ Result)→ StackTransform
= λf . (λs . match s

� (Value*�Stack ((Int �Value i1 ) . (Int �Value i2 ) . v∗
rest)) []

(push (f i2 i1 ) v∗
rest)

� else errorStack end )

transform : Result→ StackTransform
= λr . match r

� (Value �Result (StackTransform �Value t)) [] t
� else errorTransform end

resToAns : Result→ Answer
= λr . match r

� (Value �Result (Int �Value i)) [] (Int �Answer i)
� else errorAnswer end

Figure 4.17 Functions manipulating the semantic domains for PostFix.
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with-stack-values : (Value*→ Stack) → StackTransform
= λf . (λs . match s

� (Value*�Stack v*) [] (f v*)
� else errorStack end )

with-val&stack : (Value→ StackTransform) → StackTransform
= λf . (with-stack-values

(λv* . match v*
� v1 . v∗

rest [] (f v1 (Value*�Stack v∗
rest))

� else errorStack end ))

with-int&stack : (Int→ StackTransform)→ StackTransform
= λf . (with-val&stack

(λv . match v
� (Int �Value i) [] (f i)
� else errorTransform end ))

push : Result→ StackTransform
= λr . match r

� (Value �Result v) [] (with-stack-values (λv* . (Value*�Stack (v . v*))))
� else errorTransform end

pop : StackTransform = with-val&stack (λvhead . (λstail . stail))

arithop : (Int→ Int→ Result) → StackTransform
= λf . (with-int&stack (λi1 . (with-int&stack (λi2 . (push (f i2 i1 ))))))

Figure 4.18 The functions with-stack-values, with-val&stack, and with-integer&stack
simplify some of the semantic functions for PostFix. (Only the modified functions are
shown.)

λfs0 . ((with-int&stack
(λi1 s1 . ((with-int&stack

(λi2 s2 . (push (f i2 i1 ) s2 )))
s1 )))

s0 )

In this form, it’s easier to see that there are stacks from which each occurrence
of with-int&stack can extract an integer and substack.

From this expanded form we can understand with-int&stack as a construct
that binds names to values. The pattern ((with-int&stack (λisrest . E )) s) can
be read as:
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Let i be the top value of s and srest be all but the top value of s in the
expression E . Return the value of E , except when s is empty or its top
value isn’t an integer, in which cases the error stack should be returned
instead.

Some of the PostFix valuation functions can be reexpressed using the error-
hiding functions directly. For example, the valuation clause for swap can be
written as:

C[[swap]] = with-val&stack (λv1 . (with-val&stack (λv2 . (push v2 ) ◦ (push v1 ))))

You should convince yourself that this has the same meaning as the version
written using push, top, and pop.

Exercise 4.7

a. By analogy with with-int&stack, define a function with-trans&stack whose signature
is (StackTransform→ StackTransform) → StackTransform.

b. Using with-val&stack, with-int&stack, and with-trans&stack, rewrite the valuation
clauses for nget, sel, and exec to eliminate all occurrences of top, pop, transform,
and match.

4.4 Denotational Reasoning

The denotational definitions of EL and PostFix presented in the previous sec-
tion are mathematically elegant, but how useful are they? We have already shown
how they can be used to determine the meanings of particular programs. In this
section we show how denotational semantics helps us to reason about program
equality and safe program transformations. The compositional structure of the
denotational semantics makes it more amenable to proving certain properties
than the operational semantics. In Section 4.5 we study the relationship between
operational semantics and denotational semantics.

4.4.1 Program Equality

In Section 4.3.2, we studied the program (postfix 2 3 sub swap pop), which
takes two integer arguments and returns three less than the first argument:

P[[(postfix 2 3 sub swap pop)]]
= λi∗ . match i∗

� [i1 , i2 ] [] (Int �Answer (i1 −Int 3))
� else errorAnswer end
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P[[(postfix 2 3 sub)]] [i1 , i2 ]

= resToAns
(
top

(
Q[[3 sub]] (Value*�Stack [î1 , î2 ])

))
= resToAns

(
top

(
Q[[sub]] (Value*�Stack [3̂, î1 , î2 ])

))
= resToAns

(
top

(
Q[[]] (Value*�Stack [ ̂i1 −Int 3, î2 ])

))
= resToAns

(
top (Value*�Stack [ ̂i1 −Int 3, î2 ])

)
= resToAns (Value �Result ̂i1 −Int 3)

= (Int �Answer (i1 −Int 3))

Figure 4.19 The meaning of (postfix 2 3 sub) on two integer arguments (compare
Figure 4.16).

Intuitively, the purpose of the swap pop is to get rid of the second argument,
which is ignored by the program. But in a PostFix program, only the integer at
the top of the final stack can be observed and any other stack values are ignored.
So we should be able to remove the swap pop from the program without changing
its behavior.

We can formalize this reasoning using denotational semantics. Figure 4.19
shows a derivation of the meaning of the program (postfix 2 3 sub) when
it is applied to two arguments. From this, we deduce that the meaning of
(postfix 2 3 sub) is:

P[[(postfix 2 3 sub)]]
= λi∗ . match i∗

� [i1 , i2 ] [] (Int �Answer (i1 −Int 3))
� else errorAnswer end

Since (postfix 2 3 sub) and (postfix 2 3 sub swap pop) have exactly the
same meaning, they cannot be distinguished as programs.

Denotational semantics can also be used to show that programs from different
languages have the same meaning. For example, it is not hard to show that the
meaning of the EL program (el 2 (- (arg 1) 3)) is:

P[[(el 2 (- (arg 1) 3)]]
= λi∗ . match i∗

� [i1 , i2 ] [] (Int �Answer (i1 −Int 3))
� else errorAnswer end
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If you review the semantic domains for EL and PostFix, you will see that the
Answer domain is the same for both languages. So the above fact means that this
EL program is interchangeable with the two PostFix programs whose meanings
are given above.

4.4.2 Safe Transformations: A Denotational Approach

Because denotational semantics is compositional, it is a natural tool for proving
that it is safe to replace one phrase by another. Recall the following three facts
from the operational semantics of PostFix:

1. Two PostFix command sequences are observationally equivalent if they be-
have indistinguishably in all program contexts.

2. Two PostFix command sequences are transform equivalent if they map equiv-
alent stacks to equivalent stacks.

3. Transform equivalence implies observational equivalence.

Since the PostFix denotational semantics models command sequences as stack
transforms, the denotational equivalence of PostFix command sequences corre-
sponds to transform equivalence in the observational framework. So we expect
the following theorem:

Theorem 4.7 (PostFix Denotational Equivalence)
Q[[Q1 ]] = Q[[Q2 ]] implies Q1 =obs Q2 .

This theorem is a consequence of a so-called adequacy property of PostFix,
which we will study later in Section 4.5.2.

We can use this theorem to help us prove the behavioral equivalence of two
command sequences. For instance, consider the pair of command sequences
[1, add, 2, add] and [3, add]. Figure 4.20 shows that these are denotationally equiv-
alent, so, by the above theorem, they must be observationally equivalent. The
equational reasoning in Figure 4.20 uses the following three equalities, whose
proofs are left as exercises (see Exercise 4.8):

(Q[[C1 C2 . . . Cn ]]) = (C[[Cn ]]) ◦ . . . ◦ (C[[C2 ]]) ◦ (C[[C1 ]]) (4.8)

(with-int&stack f ) ◦ (push (Value �Result (Int �Value i))) = (f i) (4.9)

t ◦ (with-int&stack f ) = (with-int&stack (λi . (t ◦ (f i)))) (4.10)
where t∈StackTransform maps errorStack to errorStack
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(Q[[1 add 2 add]])

= (C[[add]]) ◦ (C[[2]]) ◦ (C[[add]]) ◦ (C[[1]]) , by (4.8)

= (with-int&stack
(λi ′1 . (with-int&stack

(λi ′2 . push (Value �Result (Int �Value (i ′2 +Int i ′1 )))))))
◦ push (Value �Result (Int �Value N [[2]]))
◦ (with-int&stack

(λi1 . (with-int&stack
(λi2 . push (Value �Result (Int �Value (i2 +Int i1 )))))))

◦ push (Value �Result (Int �Value N [[1]])) , by definition of C
= (with-int&stack

(λi ′2 . push (Value �Result (Int �Value (i ′2 +Int 2)))))
◦ (with-int&stack

(λi2 . push (Value �Result (Int �Value (i2 +Int 1))))) , by (4.9)

= (with-int&stack
(λi2 . (with-int&stack

(λi ′2 . (push (Value �Result (Int �Value (i ′2 +Int 2))))))
◦ (push (Value �Result (Int �Value (i2 +Int 1)))))), by (4.10)

= (with-int&stack
(λi2 . push (Value �Result (Int �Value ((i2 +Int 1) +Int 2))))) , by (4.9)

= (with-int&stack
(λi2 . push (Value �Result (Int �Value (i2 +Int 3))))) , by definition of +Int

= (with-int&stack
(λi ′′1 . (with-int&stack

(λi2 . push (Value �Result (Int �Value (i2 +Int i ′′1 )))))))
◦ push (Value �Result (Int �Value N [[3]])) , by (4.9)

= (C[[add]]) ◦ (C[[3]]) , by definition of C
= (Q[[3 add]]) , by (4.8)

Figure 4.20 Proof that [1, add, 2, add] and [3, add] are denotationally equivalent. This
implies that the two sequences are observationally equivalent.

It is worth noting that the denotational proof that [1, add, 2, add] =obs [3, add]
has a very different flavor from the operational proof of this fact given in Sec-
tion 3.7.2. The operational proof worked by case analysis on the initial stack.
The denotational proof in Figure 4.20 works purely by equational reasoning —
there is no hint of case analysis here. This is because all the case analyses are
hidden within the carefully chosen abstractions with-int&stack and push (Fig-
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NE [[(+ NE NE)]]

= λi∗ . with-int (NE [[NE ]] i∗) (λi1 . with-int (NE [[NE ]] i∗) (λi2 . (A[[+]] i1 i2 )))

= λi∗ . with-int (NE [[NE ]] i∗) (λi2 . (Int �Answer (A[[+]] i2 i2 )))

= λi∗ . with-int (NE [[NE ]] i∗) (λi2 . (Int �Answer (i2 +Int i2 )))

= λi∗ . with-int (NE [[NE ]] i∗) (λi2 . (2×Int i2 ))

= λi∗ . with-int (NE [[NE ]] i∗) (λi2 . (A[[*]] 2 i2 ))

= λi∗ . with-int (NE [[2]] i∗) (λi1 . with-int (NE [[NE ]] i∗) (λi2 . (A[[*]] i1 i2 )))

= NE [[(* 2 NE)]]

Figure 4.21 Denotational proof that the EL expression (+ NE NE) may safely be
replaced by (* 2 NE).

ure 4.18) and equalities (4.8)–(4.10). The case analyses would become apparent
if these were expanded to show explicit match expressions.

Denotational justifications for the safety of transformations are not limited
to PostFix. For example, Figure 4.21 shows that the EL numerical expressions
(+ NE NE) and (* 2 NE) have the same meaning. So one can safely be sub-
stituted for the other in any EL program without changing the meaning of the
program.

Exercise 4.8

a. Prove equalities (4.8)–(4.10).

b. Equality (4.10) requires that t map errorStack to errorStack. Show that the equality
is not true if this requirement is violated.

Exercise 4.9

a. We have seen that (postfix 2 3 sub swap pop) and (postfix 2 3 sub) are equiv-
alent programs. But in general it is not safe to replace the command sequence
3 sub swap pop by 3 sub. Give a context in which this replacement would change
the meaning of a program.

b. Use denotational reasoning to show that it is safe to replace any of the following
command sequences by 3 sub swap pop:

i. swap pop 3 sub

ii. (3 sub) swap pop exec

iii. 3 2 nget swap sub swap pop swap pop
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Exercise 4.10 Use the PostFix denotational semantics to either prove or disprove the
purported observational equivalences in Exercise 3.28 on page 98.

Exercise 4.11 Use the EL denotational semantics to either prove or disprove the safety
of the EL transformations in Exercise 3.33 on page 99.

4.4.3 Technical Difficulties

The denotational definition of PostFix depends crucially on some subtle details.
As a hint of the subtlety, consider what happens to our denotational definition
if we extend PostFix with our old friend dup. A valuation clause for dup seems
straightforward:

C[[dup]] = λs . (push (top s) s)

At the same time we know that adding dup to the language introduces the pos-
sibility that programs may not terminate. Yet, the signature for P declares that
programs map to the Answer domain, and the Answer domain does not include
any entity that represents nontermination. What’s going on here?

The source of the problem is the recursive structure of the semantic domains
for PostFix. As the domain definitions show, the StackTransform, Stack, and
Value domains are mutually recursive:

StackTransform = Stack→ Stack
Stack = Value* + Error
Value = Int + StackTransform

It turns out that solving such recursive domain equations sometimes requires
extending some domains with an element that models nontermination, written ⊥
and pronounced “bottom.” We will study this element in more detail in the next
chapter, where it plays a prominent role. In the case of PostFix — whether or
not we add dup — it turns out that both the Stack and Answer domains must
include ⊥, and this allows the domains to model the meaning of nonterminating
command sequences.

4.5 Relating Operational and Denotational Semantics

We have presented the operational and denotational semantics of several simple
languages, but have not studied the connection between them. What is the
relationship between these two forms of semantics? How can we be sure that
reasoning done with one form of semantics is valid in the other?
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4.5.1 Soundness

Assume that an operational semantics has a deterministic behavior function of
the form

behdet : (Prog× Inputs)→ Outcome

and that the related denotational semantics has a meaning function

meaning : (Prog× Args) → Answer

where Args is a domain of program arguments and Answer is the domain of
final answers. Further suppose that there is a function in that maps between the
syntactic and semantic input domains.

in : Inputs → Args

Finally suppose that there is an agreement relation � ⊆ Answer × Outcome
that relates denotational meanings with operational behaviors. We will pro-
nounce a � o as “the denotational answer a agrees with the operational out-
come o.” Then we define the following notion of soundness:

Definition 4.11 (Denotational Soundness) A denotational semantics
is sound with respect to (wrt) an operational semantics iff for all pro-
grams P and inputs I , meaning 〈P, (in I )〉� behdet 〈P,I 〉.

This definition says that the denotational semantics agrees with the operational
semantics on the result of executing a program on any given inputs. Figure 4.22
shows how the parts of the soundness definition can be instantiated for EL and
PostFix. Note that the Outcome domain does not include the nontermination
domain LoopOut (see page 50) because both EL and PostFix are terminating
languages.

We will now sketch a proof that the denotational semantics for PostFix is
sound wrt the operational semantics for PostFix. The details of this proof,
and a denotational soundness proof for EL, are left as Exercises 4.13 and 4.14.
The essence of a denotational soundness proof for terminating languages like
PostFix and EL is (1) defining the meaning of an operational configuration, (2)
showing that each transition in the PostFix SOS preserves this meaning, and
(3) showing that the meanings of final and stuck configurations agree with the
outcomes of these configurations. Restricting attention to terminating languages
simplifies the proof, because it is not necessary to consider the case of infinitely
long transition paths (in which case behdet 〈P , I 〉 = ∞). For languages containing
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I ∈ Inputs = IntLit*
o ∈ Outcome = IntLit + StuckOut

StuckOut = {stuckout}
ar ∈ Args = Int*
a ∈ Answer = Int + Error

Error = {error}
stuck : Outcome = (StuckOut�Outcome stuckout)

errorAnswer : Answer = (Error �Answer error)

in : Inputs→ Args = λN ∗ . (map N N ∗)

� ⊆ Answer×Outcome
� = {〈(Int �Answer (N [[N ]])), (IntLit�Outcome N )〉 |N ∈ IntLit}

∪ {〈errorAnswer, stuck〉}
behdet : (Prog× Inputs)→ Outcome
behdetEL is the behdet defined on page 51 in conjunction with the EL SOS.
behdetPostFix is the behdet defined on page 51 in conjunction with the PostFix SOS.

meaning : (Prog×Args)→ Answer
meaningEL = λ〈P , ar〉 . (PEL[[P ]] ar) ,

where PEL is defined in Figure 4.9 on page 129.
meaningPostFix = λ〈P , ar〉 . (PPostFix [[P ]] ar),

where PPostFix is defined in Figure 4.13 on page 137.

Figure 4.22 Instantiation of soundness components for EL and PostFix.

nonterminating programs, a denotational soundness proof must also explicitly
handle this case, which can be challenging.

Recall that a configuration in the PostFix SOS has the form CommandSeq
× Stack, where

S ∈ Stack = Value*
V ∈ Value = IntLit + CommandSeq

Figure 4.23 defines a function V that maps an operational value to a denotational
one, a function S that maps an operational stack to a denotational one, and a
function CF that maps an operational configuration to an element of Answer .6

Using these functions, we establish three lemmas that will lead to a proof of
denotational soundness.

6When we talk about operational and denotational semantics together, note the distinction
between syntactic or SOS domains, such as Value, and semantic domains, such as Value.
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V : Value→ Value
V[[N ]] = (Int �Value N [[N ]])

V[[(Q)]] = (StackTransform �Value Q[[Q ]])

S : Stack→ Stack = λV ∗ . (Value*�Stack (map V V ∗))

CF : CommandSeq× Stack→ Answer = λ〈Q , S 〉 . resToAns (top (Q[[Q ]] S[[S ]]))

Figure 4.23 Meaning of a PostFix configuration.

Lemma 4.12 (CF Calculates the Meaning of PostFix Program) For
any PostFix program P = (postfix Nnumargs Q) and numerals N ∗,

(P [[P ]] (in N ∗)) = CF [[(IF 〈P ,N ∗〉)]]

where IF is the input function defined in Figure 3.3 on page 53 that maps
a PostFix program and inputs into an initial SOS configuration.

Lemma 4.13 (PostFix Transitions Preserve Meaning) For any tran-
sition cf ⇒ cf ′, CF [[cf]] = CF [[cf ′]].

Lemma 4.14 (PostFix Stuck Configurations Denote Errors) For
any stuck configuration cf, CF [[cf]] = errorAnswer.

We now give proofs of these three lemmas. In the proofs, we will use the
following equalities, which are left as exercises (Exercise 4.12).

Q[[Q1 @ Q2 ]] = (Q[[Q1 ]] ◦ Q[[Q2 ]]) (4.15)

(Q[[Q ]] errorStack) = errorStack (4.16)

Proof of Lemma 4.12 (CF Calculates the Meaning of PostFix Program):
There are two cases:

1. When N [[Nnumargs ]] = (length N ∗), both the left- and right-hand sides of the
equation denote

resToAns (top (Q[[Q ]] (Value*�Stack (map (Int �Value ◦ N ) N ∗))))

2. When N [[Nnumargs ]] 
= (length N ∗), the left-hand side of the equation denotes
errorAnswer and the right-hand side denotes
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CF [[〈exec . Qrest , (Qexec) . S 〉]]
= resToAns (top (Q[[exec . Qrest ]] (Value*�Stack (V[[(Qexec)]] . v

∗)))),
where v∗ = (map V S )

= resToAns
(top (Q[[Qrest ]] (C[[exec]] (Value*�Stack (V [[(Qexec)]] . v

∗)))))

= resToAns
(top (Q[[Qrest ]]

(transform (top (Value*�Stack (V[[(Qexec)]] . v
∗)))

(pop (Value*�Stack (V[[(Qexec)]] . v
∗))))))

= resToAns
(top (Q[[Qrest ]]

(transform (Value �Result (StackTransform �Value Q[[Qexec ]]))
(Value*�Stack v∗))))

= resToAns (top (Q[[Qrest ]] (Q[[Qexec ]] (Value*�Stack v∗))))

= resToAns (top ((Q[[Qrest ]] ◦ Q[[Qexec ]]) (Value*�Stack v∗)))

= resToAns (top (Q[[Qrest @ Qexec ]] (Value*�Stack (map V S )))) , by (4.15)

= CF [[〈Qexec @ Qrest , S 〉]]

Figure 4.24 Proof that the [execute] transition preserves meaning.

CF [[(IF 〈P ,N ∗〉)]]
= CF [[〈[ ]Command, [ ]Value〉]]
= resToAns (top (Q[[[ ]Command]] (Value*�Stack [ ]Value)))

= resToAns (top (Value*�Stack [ ]Value))

= errorAnswer �

Proof of Lemma 4.13 (PostFix Transitions Preserve Meaning): This
can be shown by demonstrating this equality for each of the PostFix rewrite
rules in Figure 3.4 on page 55. For example, one such rule is:

〈exec . Qrest , (Qexec) . S 〉 ⇒ 〈Qexec @ Qrest , S 〉 [execute]

An equational proof that this rule preserves meaning is presented in Figure 4.24.
In this proof, we use the equality Q[[Qrest @ Qexec]] = (Q[[Qrest ]] ◦ Q[[Qexec]]). In
Exercise 4.13, you are asked to prove this equality and also show that the other
PostFix rewrite rules preserve meaning. �

Proof of Lemma 4.14 (PostFix Stuck Configurations Denote Errors):
This can be shown by enumerating the finite number of configuration patterns
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CF [[〈swap . Q , [V ]〉]]
= resToAns (top (Q[[swap . Q ]] (Value*�Stack [V[[V ]]])))

= resToAns
(top (Q[[Q ]] (push (top (pop (Value*�Stack [V[[V ]]])))

(push (top (Value*�Stack [V[[V ]]]))
(pop (pop (Value*�Stack [V[[V ]]])))))))

= resToAns (top (Q[[Q ]] (push (top (Value*�Stack [ ]))
(push (Value �Result V [[V ]])

(pop (Value*�Stack [ ]))))))

= resToAns (top (Q[[Q ]] (push errorResult
(push (Value �Result V [[V ]]) errorStack))))

= resToAns (top (Q[[Q ]] errorStack))

= resToAns (top errorStack), by (4.16)

= errorAnswer

Figure 4.25 Proof that the configuration 〈swap . Q , [V ]〉 denotes the error answer.

that stand for configurations in IrreduciblePFSOS , and showing that each denotes
the error answer. For example, one such pattern is 〈swap . Q , [V ]〉. Figure 4.25
shows that this configuration pattern denotes the error answer. In this figure,
we use the equality (Q[[Q ]] errorStack) = errorStack for any Q , which you are
asked to prove in Exercise 4.13. �

We’re now ready to put the lemmas together to show denotational soundness
for a PostFix program (postfix Nnumargs Qbody) executed on inputs N ∗

inputs .
There are two cases:

1. N [[Nnumargs ]] =
(
length N ∗

inputs

)
and the initial program configuration has a

transition path to a final configuration:

〈Qbody , N ∗
inputs〉

∗⇒ 〈[ ]Command, Nans . V ∗
rest〉

In this case,

meaning 〈(postfix Nnumargs Qbody),
(
in N ∗

inputs

)
〉

= P [[(postfix Nnumargs Qbody)]]
(
in N ∗

inputs

)
= CF [[

(
IF 〈(postfix Nnumargs Qbody),N

∗
inputs〉

)
]] , by Lemma 4.12.

= CF [[〈Qbody , N ∗
inputs〉]] , where the IntLit�Value injections on the elements

of N ∗
inputs are omitted by the convention on page 56.
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= CF [[〈[ ]Command, Nans . V ∗
rest 〉]] , by Lemma 4.13 on each ⇒.

= resToAns
(top (Q[[]] (Value*�Stack ((Int �Value N [[Nans ]]) . (map V V ∗

rest )))))

= resToAns (top (Value*�Stack ((Int �Value N [[Nans ]]) . (map V V ∗
rest ))))

= (Int �Answer N [[Nans ]])

� (IntLit�Outcome Nans)

= behdetPostFix 〈(postfix Nnumargs Qbody),N
∗
inputs〉

2. N [[Nnumargs ]] 
=
(
length N ∗

inputs

)
or the initial program configuration has a

transition path to a stuck configuration. In these cases,

IF 〈(postfix Nnumargs Qbody),N
∗〉 ∗⇒ cfstuck

where cfstuck is a stuck configuration. Then we have:

meaning 〈(postfix Nnumargs Qbody),
(
in N ∗

inputs

)
〉

= P [[(postfix Nnumargs Qbody)]]
(
in N ∗

inputs

)
= CF [[

(
IF 〈(postfix Nnumargs Qbody),N

∗
inputs〉

)
]] , by Lemma 4.12.

= CF [[cfstuck]] , by Lemma 4.13 on each ⇒.

= errorAnswer, by Lemma 4.14.

� stuck

= behdetPostFix 〈(postfix Nnumargs Qbody),N
∗
inputs〉

This completes the sketch of the proof that the denotational semantics for
PostFix is sound with respect to the operational semantics for PostFix.

Exercise 4.12 Prove equalities (4.15) and (4.16).

Exercise 4.13 Complete the proof that the denotational semantics for PostFix is
sound with respect to its operational semantics by fleshing out the following details:

a. Show that Lemma 4.13 holds for each transition rule in Figure 3.4 on page 55.

b. Make a list of all stuck configuration patterns in the PostFix SOS and show that
Lemma 4.14 holds for each such pattern.

Exercise 4.14 Show that the denotational semantics for each of the following languages
is sound with respect to its operational semantics: (1) a version of ELMM whose oper-
ators include only +, -, and *; (2) full ELMM; (3) ELM; and (4) EL.
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4.5.2 Adequacy

The notion of soundness developed above works at the level of a whole pro-
gram. But often we want to reason about smaller phrases within a program.
In particular, we want to reason that we can substitute one phrase for another
without changing the operational behavior of the program. The following ade-
quacy property says that denotational equivalence implies the operational notion
of observational equivalence:

Definition 4.17 (Adequacy) Suppose that P ranges over program con-
texts, H ranges over the kinds of phrases that fill the holes in program
contexts, and H is a denotational meaning function for phrases. A deno-
tational semantics is adequate with respect to (wrt) an operational
semantics if the following holds:

H[[H1 ]] = H[[H2 ]] implies H1 =obs H2

Recall from page 91 that H1 =obs H2 means that for all program contexts P and
all inputs I , beh 〈P{H1}, I 〉 = beh 〈P{H2}, I 〉.

In the case of a deterministic behavior function, the following reasoning shows
that adequacy is almost implied by denotational soundness:

H[[H1 ]] = H[[H2 ]]

implies P[[P{H1}]] = P[[P{H2}]] , by compositionality of denotational semantics

implies meaning 〈P{H1}, (in I )〉 = meaning 〈P{H2}, (in I )〉 for any inputs I

implies behdet 〈P{H1}, I 〉 � a � behdet 〈P{H2}, I 〉 , by soundness,
where meaning 〈P{H1}, (in I )〉 = a = meaning 〈P{H2}, (in I )〉

(In the final step, the symbol � stands for the relation in Outcome × Answer
that is the inverse of the relation � in Answer × Outcome.) But demonstrating
the observational equivalence H1 =obs H2 requires showing that

behdet 〈P{H1}, I 〉 = behdet 〈P{H2}, I 〉

To conclude this from the above line of reasoning requires the following property
for �:

Definition 4.18 (Observational Uniqueness) The agreement relation
� ⊆ Answer × Outcome is observationally unique iff for every a ∈
Answer and o1 , o2 ∈ Outcome, a � o1 and a � o2 implies o1 = o2 .
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Observational uniqueness says that every denotational answer agrees with at most
one operational outcome. In other words, � is a partial function from Answer
to Outcome: an answer may not agree with any outcome, but if it does, it can
agree with exactly one.

The agreement relation for EL and PostFix in Figure 4.22 has observational
uniqueness. In each language, observable outcomes are either integer numerals or
a stuck token. Assuming that only canonical integer numerals are used (e.g., 17
rather than 017 or +17) every integer answer agrees with only the unique numeral
that represents it. And the error answer agrees with only the stuck token. Since
the agreement relation has observational uniqueness, we can conclude that the
denotational semantics for EL and PostFix are adequate.

Note that the agreement relation for PostFix would not have observational
uniqueness if executable sequences at the top of a final stack could be returned as
observable outcomes. For this extension to PostFix, we would need to extend the
agreement relation so that a new semantic answer (a stack transform) would agree
with any new observable syntactic outcome (an executable sequence) that denotes
it. For example, the executable sequences (1 add 2 add) and (3 add) both
denote the stack transform (push (Value �Result (Int �Value 3))), so this stack
transform would agree with both sequences. In such a framework, two outcomes
that a given answer agrees with would not necessarily be syntactically identical,
and the reasoning sketched above for adequacy would fail. However, as shown in
Exercise 4.15, adequacy can be restored in this situation if the output function
of the SOS maps all executable sequence outcomes to the token executable.

The above discussion allows us to conclude that any language with denota-
tional soundness and an observationally unique agreement relation has the ade-
quacy property. Since EL and PostFix satisfy both of these conditions, they
have the adequacy property. In turn, this property justifies the use of denota-
tional reasoning for proving the safety of program transformations. For example,
the PostFix Denotational Equivalence Theorem on page 147 is a corollary of
the adequacy of PostFix.

Exercise 4.15 Consider a variant of PostFix in which the SOS outcome of a PostFix
program whose final configuration has an executable sequence at the top is the token
executable (see Exercise 3.31 on page 99).

a. Modify the denotational semantics of PostFix (both domains and valuation func-
tions) so that the transform at the top of the final stack can be the result of executing
a PostFix program.

b. Show that your modified denotational semantics is denotationally sound with respect
to the modified operational semantics by tweaking the denotational soundness proof
for PostFix presented in Section 4.5.1.
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c. Show that this PostFix variant has the adequacy property. This provides an alterna-
tive proof to the one in Exercise 3.31 that transform equivalence implies observational
equivalence for this variant of PostFix.

4.5.3 Full Abstraction

Changing the unidirectional implication of adequacy to a bidirectional implication
yields a stronger property called full abstraction:

Definition 4.19 (Full Abstraction) Suppose that P ranges over program
contexts, H ranges over the kinds of phrases that fill the holes in program
contexts, and H is a denotational meaning function for phrases. A denota-
tional semantics is fully abstract with respect to (wrt) an operational
semantics if the following holds:

H[[H1 ]] = H[[H2 ]] iff H1 =obs H2

In addition to adequacy, full abstraction requires that observational equivalence
imply denotational equivalence. That is, program fragments that behave the
same in all contexts must have the same denotational meaning.

The denotational semantics of the various dialects of EL we have considered
are all fully abstract. Consider the restricted version of ELMM in which the
only operations are +, -, and *. In this language, every numerical expression
denotes an integer. We already know that the denotational semantics for this
language is adequate wrt the operational semantics; to prove full abstraction,
we need to show that observational equivalence implies denotational equivalence.
Suppose that NE 1 =obs NE2 . Modeling nonexistent inputs by unit, this means
that for all restricted ELMM program contexts P, behdet 〈P{NE 1},unit〉 =
behdet 〈P{NE 2},unit〉. The program context P = (elmm �) is particularly
useful because the denotational soundness of restricted ELMM implies that
NE [[NE ]] � behdet 〈(elmm NE),unit〉 for any numerical expression NE . Let o =
behdet 〈(elmm NE 1),unit〉 = behdet 〈(elmm NE 2),unit〉. Then the denotational
soundness of restricted ELMM implies:

NE [[NE1 ]] � o �NE [[NE2 ]]

In restricted ELMM, the agreement relation is defined as:

� = {〈(Int �Answer N [[N ]]), (IntLit�Outcome N )〉 |N ∈ IntLit}

Assuming that only canonical numerals are used, this relation defines a bijection
between integer answers and integer numeral outcomes. So NE [[NE 1 ]] � o �
NE [[NE 2 ]] implies NE [[NE 1 ]] = NE [[NE2 ]]. Via similar reasoning, we can show
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that all the dialects of EL we have studied have a fully abstract denotational
semantics.

Surprisingly, the denotational semantics for PostFix is not fully abstract!
As argued in Section 4.4.3, even though all PostFix programs terminate, the
denotational domains for answers and stacks in PostFix must include an entity
denoting nontermination, which we will write as ⊥. This is the denotational ana-
logue of the operational token ∞. Even though no PostFix command sequence
can loop, the presence of ⊥ in the semantics can distinguish the meanings of some
observationally equivalent command sequences.

For example, consider the following two command sequences:

Q1 = 1 0 div

Q2 = exec 1 0 div

Q1 signals an error for any stack. Q2 first executes the top value Vtop on the
stack and then executes 1 0 div. We argue that Q2 is observationally equivalent
to Q1 , because it will also signal an error for any stack:

• if the stack is empty or if Vtop is not an executable sequence, the attempt to
perform exec will fail with an error;

• if Vtop is an executable sequence, Q2 will execute it. Since all PostFix com-
mand sequences terminate, the execution of Vtop will either signal an error, or
it will terminate without an error. In the latter case, the execution continues
with 1 0 div, which necessarily signals an error.

Even though Q1 =obs Q2 , they do not denote the same stack transform! To
see this, consider a stack transform tweird = λs . ⊥ and a stack sweird whose
top value is (StackTransform �Value tweird). Both tweird and sweird are “weird”
in the sense that they can never arise during a PostFix computation, in which
all stack transforms necessarily terminate. Nevertheless, tweird is a legal element
of the domain StackTransform, and it must be considered as a legal stack ele-
ment in denotational reasoning. Observe that (Q[[Q1 ]] sweird) = errorStack, but
(Q[[Q2 ]] sweird) = ⊥ — i.e., the latter computation does not terminate. So Q1

and Q2 denote distinct stack transforms even though they are observationally
equivalent.

Intuitively, full abstraction says that the semantic domains don’t contain any
extra “junk” that can’t be expressed by phrases in the language. In the case
of PostFix, the domains harbor ⊥ even though it cannot be expressed in the
language.
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4.5.4 Operational versus Denotational: A Comparison

We have noted in this chapter that a denotational semantics expresses the mean-
ing of a program in a much more direct way than an operational semantics. Fur-
thermore, the compositional nature of a denotational semantics is a real boon for
proving properties of programs and languages and for constructing interpreters
and translators. Why would we ever want to choose an operational semantics
over a denotational semantics?

For one thing, an operational semantics is usually a more natural medium for
expressing the step-by-step nature of program execution. The notion of “step”
is an important one: it is at the heart of a mechanistic view of computation; it
provides a measure by which computations can be compared (e.g., which takes
the fewest steps); and it provides a natural way to talk about nondeterminism
(choice between steps) and concurrency (interleaving the steps of more than one
process). What counts as a natural step for a program is explicit in the rewrite
rules of an SOS. These notions cannot always be expressed straightforwardly in
a denotational approach. Furthermore, in computer science, the bottom line is
often what actually runs on a machine, and the operational approach is much
closer to this bottom line.

From a mathematical perspective, the advantage of an operational semantics
is that it’s often much easier to construct than a denotational semantics. Since the
objects manipulated by an SOS are simple syntactic entities, there are very few
constraints on the form of an operational semantics. Any SOS with a determinis-
tic set of rewrite rules specifies a well-defined behavior function from programs to
answer expressions. Creating or extending a set of rewrite rules is fairly painless
since it rarely requires any deep mathematical reasoning. Of course, the same
emphasis on syntax that facilitates the construction of an operational semantics
limits its usefulness for reasoning about programs. For example, it’s difficult to
see how some local change to the rewrite rules affects the global properties of a
language.

Constructing a denotational semantics, on the other hand, is mathematically
much more intensive. It is necessary to build consistent mathematical represen-
tations for each kind of meaning object. The difficulty of building such models
in general is illustrated by the fact that there was no mathematically viable in-
terpretation for recursive domain equations until Dana Scott invented one in the
early 1970s. Since then, various tools and techniques have been developed that
make it easier to construct a denotational semantics that maps programs into a
restricted set of meanings. Extending this set of meanings requires potentially
difficult proofs that the extensions are sound, so most semanticists are content to
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stick with the well-understood meanings. This class of meanings is large enough,
however, to facilitate a wide range of formal reasoning about programs and pro-
gramming languages.

Notes

Landin observed a correspondence between Algol 60 and the lambda calculus
and suggested that this correspondence could be the basis for a formal description
of the semantics of Algol 60 [Lan65a, Lan65b]. The notion of using the lambda
calculus to define programming language semantics in a formal way is the essence
of denotational semantics, which was developed by Strachey and Scott [Str00,
SS71, MS76].

For a tutorial introduction to denotational semantics, we recommend the
articles [Ten76] and [Mos90]. Coverage of both operational and denotational se-
mantics, along with their use in reasoning about several simple programming lan-
guages, can be found in several semantics textbooks [Gun92, Win93, Mit96]. Full-
length books devoted to denotational semantics include [Gor79, Sto85, Sch86].

Our notions of denotational soundness and adequacy are somewhat different
from (but related to) those in the literature. For a discussion of the traditional
approach to soundness, adequacy, and full abstraction, see [Gun92]. Seminal
papers on full abstraction are [Mil77] and [Plo77].
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Fixed Points

This is a quotation for the Fixed Points chapter.

— Turbak and Gifford with Sheldon
Design Concepts in Programming Languages, Chapter 5

Recursive definitions are a powerful and elegant tool for specifying complex struc-
tures and processes. While such definitions are second nature to experienced pro-
grammers, novices are often mystified by recursive definitions. Their confusion
often centers on the question: “How can something be defined in terms of itself?”
Sometimes there is a justifiable cause for confusion — not all recursive definitions
make sense!

In this chapter, we carve out a class of recursive definitions that do make sense,
and present a technique for assigning meaning to them. The technique involves
finding a fixed point of a function derived from the recursive definition. The results
and techniques of this chapter will find frequent application in later denotational
descriptions of programming languages as we define recursive valuation functions
and recursive domains.

5.1 The Fixed Point Game

There are fixed limits beyond which and short of which right cannot find a
resting place.

— Horace, Satires

5.1.1 Recursive Definitions

For our purposes, a recursive definition is an equation of the form

x = . . . x . . .

where . . . x . . . designates a mathematical expression that contains occurrences
of the defined variable x. Mutually recursive definitions of the form
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x1 = . . . x1 . . . xn . . .
...

xn = . . . x1 . . . xn . . .

can always be rephrased as a single recursive definition

x = 〈. . . (Proj 1 x) . . . (Proj n x) . . . ,
...

. . . (Proj 1 x) . . . (Proj n x) . . . 〉

where x stands for the n-tuple 〈x1, . . ., xn〉 and Proj i extracts the ith element of
the tuple. For this reason, it is sufficient to focus on recursive definitions involving
a single variable.

A solution to a recursive definition is a value that makes the equation true
when substituted for all occurrences of the defined variable. A recursive definition
may have zero, one, or more solutions. For example, suppose that x ranges over
the integers. Then:

• x = 1 + x has no solutions;

• x = 4− x has exactly one solution (2);

• x = 9
x has two solutions (−3, 3);

• x = x has an infinite number of solutions (each integer).

It is important to specify the domain of the defined variable in a recursive
definition, since the set of solutions depends on this domain. For example, the
recursive definition x = 1

16x3 has

• zero solutions over the integers (with division interpreted as a quotient function
on integers);

• one solution over the positive rationals (1
2);

• two solutions over the rationals (1
2 , −1

2);

• four solutions over the complex numbers (1
2 , −1

2 , i
2 , − i

2).

In fact, many numerical domains were invented precisely to solve classes of equa-
tions that were insoluble with existing domains.

Although we are most familiar with equations that involve numeric variables,
equations can involve variables from any domain, including product, sum, se-
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quence, and function domains. For example, consider the following recursive
definitions involving an element p of the product domain Nat × Nat :

• p = 〈(Proj 2 p) , (Proj 1 p)〉 has an infinite number of solutions of the form 〈n,n〉,
where n :Nat .

• p = 〈(Proj 2 p) , (Proj 1 p) −Nat 1〉 has the unique solution 〈0, 0〉. (As noted on
page 1163, the natural number subtraction operation n1 −Nat n2 is defined to
be 0 when n1 ≤Nat n2 .)

• p = 〈(Proj 2 p) , (Proj 1 p) +1〉 has no solutions in Nat × Nat. The first element
n of a solution p = 〈n, . . .〉 would have to satisfy the equation n = n + 1, and
this equation has no solutions.

We can also have recursive definitions involving an element s of the sequence
domain Nat*:

• s=(cons 3 (tail s)) has an infinite number of solutions: all nonempty se-
quences s whose first element is 3.

• s=(cons 3 s) has no solutions in Nat*, which includes only finite sequences of
natural numbers and so does not contain an infinite sequence of 3s. However,
this equation does have a solution in a domain that includes infinite sequences
of numbers in addition to the finite ones. We shall use the notation Nat* to
designate this domain.

• s=(cons 3 (tail (tail s))) has the unique solution [3]. This definition requires
that (a) (head s) = 3 and (b) (tail s) = (tail (tail s)). In Nat*, (b) is satisfied
only if s is an empty sequence or a singleton sequence (recall that (tail [ ]) is
defined to be [ ]). Since (a) requires s to be a nonempty sequence beginning
with 3, (a) and (b) imply that s must be [3]. However, in Nat*, this equation
has an infinite number of solutions, since for any natural number n, an infinite
sequence of ns satisfies (b).

We will be especially interested in recursive definitions over function domains.
Suppose that f is an element of the domain Nat → Nat. Consider the following
recursive function definition of f :

f = λn . if (n = 0) then 0 else (2 + (f (n − 1))) end

Intuitively, this equation is solved when f is a doubling function, but how do we
show this more formally? Recall that a function in Nat → Nat can be viewed as
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its graph, the set of argument/result pairs for the function. The graph associated
with the lambda expression is

{〈0, if (0 = 0) then 0 else (2 + (f 0))〉,
〈1, if (1 = 0) then 0 else (2 + (f 0))〉,
〈2, if (2 = 0) then 0 else (2 + (f 1))〉,
〈3, if (3 = 0) then 0 else (2 + (f 2))〉,
. . . }

After simplification, this becomes

{〈0, 0〉, 〈1, (2 + (f 0))〉, 〈2, (2 + (f 1))〉, 〈3, (2 + (f 2))〉, . . . }

If f is a doubling function, then the graph of the right-hand side can be further
simplified to

{〈0, 0〉, 〈1, 2〉, 〈2, 4〉, 〈3, 6〉, . . . }

This is precisely the graph of the doubling function f on the left-hand side of the
equation, so the equation holds true. It is not difficult to show that the doubling
function is the only solution to the equation; we leave this as an exercise.

As with recursive definitions over other domains, recursive definitions of func-
tions may have zero, one, or more solutions. Maintaining the assumption that
f :Nat→ Nat, the definition

f = λn . (1 + (f n))

has no solutions, because the result nr for any given argument would have to
satisfy nr = nr + 1. On the other hand, the definition

f = λn . (f (1 + n))

has an infinite number of solutions: for any given constant nc, a function with
the graph {〈n,nc〉 | n :Nat} is a solution to the equation.

5.1.2 Fixed Points

If d ranges over domain D, then a recursive definition

d = (. . . d . . .)

can always be encoded as the D → D function

λd . ( . . . d . . .)
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We will call this the generating function for the recursive definition. For
example, if r :Real , the numeric equation r = 1− (r × r) can be represented by
the Real → Real generating function λr . (1− (r × r)). Similarly, the recursive
function definition

dbl :Nat→ Nat = λn . if (n = 0) then 0 else (2 + (dbl (n − 1))) end

can be represented by the generating function

gdbl : (Nat→ Nat) → (Nat→ Nat)
= λf . λn . if (n = 0) then 0 else (2 + (f (n − 1))) end

where f :Nat→ Nat. A generating function is not recursive, so its meaning can
be straightforwardly determined from its component parts.

A solution to a recursive definition is a fixed point of its associated generating
function. A fixed point of a function g :D → D is an element d :D such that
(g d) = d. If a function in D → D is viewed as moving elements around the
space D, elements satisfying the recursive definition are the only ones that remain
stationary; hence the name “fixed point.”

To build intuitions about fixed points, consider functions from the unit in-
terval1 [0; 1] to itself. Such functions can be graphed in the unit square, with
arguments along the horizontal axis and results along the vertical axis:

0 1
0

1

Every point where the function graph intersects the diagonal is a fixed point of
the function. Figure 5.1 shows the graphs of functions with zero, one, two, and
an infinite number of fixed points.

It is especially worthwhile to consider how a generating function like gdbl

moves elements around a domain of functions. Here are a few examples of how
gdbl maps various functions f :Nat→ Nat :

• If f is the identity function λn .n, then (gdbl f ) is the function that increments
positive numbers and returns 0 for 0:

λn . if (n = 0) then 0 else (n + 1) end

1The unit interval is the set of real numbers between 0 and 1, inclusive. We use the notation
[0; 1] rather than the more traditional notation [0, 1] because in our domain notation the latter
means a sequence of the two numbers 0 and 1.
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0 1
0

1

0 1
0

1

0 1
0

1

0 1
0

1

Figure 5.1 Functions on the unit interval with zero, one, two, and an infinite number
of fixed points.

• If f is the function λn .
(
(n + 1)2 − 2

)
then (gdbl f ) is the function λn . n2

• If f is a doubling function, then (gdbl f ) is also the doubling function, so the
doubling function is a fixed point of gdbl . Indeed, it is the only fixed point of
gdbl .

Since generating functions D → D correspond to recursive definitions, their
fixed points have all the properties of solutions to recursive definitions. In par-
ticular, a generating function may have zero, one, or more fixed points, and the
existence and character of fixed points depends on the details of the function and
the nature of the domain D.

5.1.3 The Iterative Fixed Point Technique

Above, we saw that recursive definitions can make sense over any domain. How-
ever, the methods we used to find and/or verify solutions in the examples were
rather ad hoc. In the case of numeric definitions, there are many familiar tech-
niques for manipulating equations to find solutions. Are there any techniques
that will help us solve recursive definitions over more general domains?

There is a class of recursive definitions for which an iterative fixed point
technique will find a solution of the definition by finding a fixed point of the
generating function encoding the recursive definition. The iterative fixed point
technique is motivated by the observation that it is often possible to find a fixed
point for a generating function by iterating the function starting with an appro-
priate initial value.

As a graphical example of the iteration technique, consider a transformation
T on two-dimensional line drawings that is the sequential composition of the
following three steps:
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T T T T T

Figure 5.2 Iterating the transformation T starting with an empty line drawing leads
to a fixed point in four steps.

1. Rotate the drawing 90 degrees counterclockwise about the origin.

2. Translate the drawing right by one unit.

3. Add a line from (0,0) to (0,1).

Figure 5.2 shows what happens when T is iterated starting with the empty draw-
ing. Each of the first four applications of T adds a new line until the unit square
is produced. Subsequent applications of T do not modify the square; it is a fixed
point of T .

In the line drawing example, a fixed point is reached after four iterations of
the transformation. Often, iterating a generating function does not yield a fixed
point in a finite number of steps, but only approaches one in the limit. A classic
numerical example is finding square roots. The square root of a nonnegative
rational number n is a solution of the recursive definition

x =
x+ n

x

2

Iterating the generating function for this definition starting with n yields a se-
quence of approximations that converge to

√
n. For example, for n = 3 the

generating function is

gsqrt3 :Rat→ Rat = λq .
q+ 3

q

2

and the first few iteration steps are:(
g0
sqrt3 3

)
= 3(

g1
sqrt3 3

)
= 2(

g2
sqrt3 3

)
= 7

4 = 1.75(
g3
sqrt3 3

)
= 97

56 ≈ 1.7321428571428572(
g4
sqrt3 3

)
= 18817

10864 ≈ 1.7320508100147276

...
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Since
√

3 is not a rational number, the fixed point clearly cannot be reached in
a finite number of steps, but it is approached as the limit of the sequence of
approximations.

Even in nonnumeric domains, generating functions can produce sequences of
values approaching a limiting fixed point. For example, consider the following
recursive definition of the even natural numbers:

evens = {0} ∪ {(n + 2) | n ∈ evens}

The associated generating function is

gevens : P(Nat)→ P(Nat) = λs . {0} ∪ {(n + 2) | n ∈ s}

where s ranges over the powerset of Nat . Iterating gevens starting with the empty
set yields a sequence of sets that approaches the set of even numbers in the limit:(

g0
evens {}

)
= {}(

g1
evens {}

)
= {0}(

g2
evens {}

)
= {0, 2}(

g3
evens {}

)
= {0, 2, 4}(

g4
evens {}

)
= {0, 2, 4, 6}
...

The above examples of the iterative fixed point technique involve different
domains but exhibit a common structure. In each case, the generating function
maps an approximation of the fixed point to another approximation that is at
least as good, where the notion of “at least as good” depends on the details of
the function:

• In the line-drawing example, picture b is at least as good as picture a if b
contains at least as many lines of the unit square as a.

• In the square-root example, number b is an approximation to
√

n that is at
least as good as number a if |b2 − n| ≤ |a2 − n|.

• In the even-number example, set b is at least as good as set a if a ⊆ b.

Moreover, in each of the examples, the sequence of approximations produced
by the generating function converges to a fixed point in the limit. This doesn’t
necessarily follow from the fact that each approximation is better than the pre-
vious one. For example, each element of the sequence 0, 0.9, 0.99, 0.999, . . . is
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Figure 5.3 The “game board” for the iterative fixed point technique. Starting at
element d0, the generating function g calculates a sequence of domain elements, each
of which is a better approximation to the fixed point of g. For an appropriate domain,
generating function g, and starting element d0, this process reaches the fixed point or
approaches it as a limiting value.

closer to
√

2 than the previous element, but the sequence converges to 1, not to√
2. The notion of approaching a limiting value is central to the iterative fixed

point technique.
The basic structure of the iterative fixed point technique is depicted in Fig-

ure 5.3. The generating function g :D → D is defined over a domain D whose
values are assumed to be ordered by their information content. A line connects
two values when the lower value is an approximation to the higher value. That is,
the higher value contains all the information of the lower value plus some extra
information. What counts as “information” and “approximation” depends on the
problem domain. When values are sets, for instance, a line from a up to b might
indicate that a ⊆ b. In general, a lower value may approximate many higher
values. In Figure 5.3, this is represented by multiple branches leading upward
from a node. (To keep the diagram uncluttered, only the initial stubs of most
branches are depicted.)

In the iterative fixed point technique, iteratively applying g from an appro-
priate starting value d0 yields a sequence of values with increasing information
content. Intuitively, iterative applications of g climb up through the ordered
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T T T

T

T T T

T

Figure 5.4 An example in which the iterative fixed point technique cannot find a fixed
point of the picture transformation T for a nonempty initial picture.

values by refining the information of successive approximations. If this process
reaches a value di such that di = (g di), then the fixed point di has been found.
If this process never actually reaches a fixed point, it should at least approach a
fixed point as a limiting value.

The iterative fixed point technique does not work for every generating func-
tion g :D → D. It depends on the details of the domain D, the function g, and
the starting point d0. The technique must certainly fail for generating functions
that have no fixed points. Even when a generating function has a fixed point,
the iterative technique won’t necessarily find it. E.g., iterating the generating
function for n = 3

n
starting with any nonzero rational number q yields an al-

ternating sequence q , 3
q
, q , 3

q
, . . . that never gets any closer to the fixed point√

3. Figure 5.4 shows an example in which the technique does not find a fixed
point of T for an initial picture. Instead, it eventually cycles among four distinct
pictures.

Moreover, there may be more than one fixed point, and which one you find
may depend on where you start. As shown in Figure 5.5, if we start with an “X”
in the upper right quadrant, the iterative fixed point technique applied to the
picture transformation T yields a different fixed point than when we start with
an empty picture.

In the next section, we will describe an important class of generating functions
that are guaranteed to have a fixed point. A fixed point of these functions can
be found by applying the iterative fixed point technique starting with a special
informationless element called bottom. Such functions may have more than one
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T T T T T

Figure 5.5 A different initial picture can lead to a different fixed point for the picture
transformation T .

fixed point, but the one found by iterating from bottom has less information than
all the others — it is the least fixed point. We will choose this distinguished
fixed point as the solution of the associated recursive definition. This solution
matches our operational intuitions about what solution the computer will find
when the recursive definition is expressed as a program. We are guaranteed
to be able to solve any recursive definition whose generating function is in this
special class.

Exercise 5.1 Above, we showed two fixed points of the picture transformation T .

a. Draw a third line drawing that is a fixed point of T .

b. How many fixed points does T have?

c. Characterize all the fixed points of T . That is, what properties must a picture have
in order to be a fixed point of T?

d. Figure 5.4 shows an initial picture for which the iterative technique finds a cycle of
four distinct pictures related by T rather than a fixed point of T . Give an initial
picture for which the iterative technique finds a cycle containing only two distinct
pictures related by T . In the case of T , can the iterative technique find cycles of
pictures with periods other than 1, 2, and 4?

Exercise 5.2 For each of the following classes of functions from the unit interval to
itself, indicate the minimum and maximum number of fixed points of functions in the
class:

a. constant functions (i.e., functions of the form λx . a);

b. linear functions (i.e., functions of the form λx . ax + b);

c. quadratic functions (i.e., functions of the form λx . ax2 + bx + c);

d. continuous functions (i.e., functions whose graph is an unbroken curve);

e. nondecreasing functions (i.e., functions f for which a ≤ b implies (f a) ≤ (f b);

f. nonincreasing functions (i.e., functions f for which a ≤ b implies (f a) ≥ (f b).
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5.2 Fixed Point Machinery

In this section we present the mathematical machinery for defining a class of
functions for which a distinguished fixed point always exists and illustrate the
use of this machinery via several examples.

We begin in Section 5.2.1 by introducing the notion of a partial order, which
will be used to model the information content of domain elements. We will see
how the information ordering on the elements of a compound domain can be
derived from the information ordering on its component domains. Some domains
have a least element, called bottom, that can serve as the starting point for the
iterative fixed point technique. It can also be viewed as the representation of a
nonterminating computation.

We are most interested in partial orders for which the information-climbing
process illustrated in Figure 5.3 approaches a limiting value. These are called
complete partial orders or CPOs. We study these in Section 5.2.2. CPOs with a
bottom element are said to be pointed (Section 5.2.3). Pointed CPOs are good
domains for the iterative fixed point technique because their bottom element is
the natural starting point for the technique.

In Section 5.2.4, we define two information-preserving properties of functions:
monotonicity and continuity. Iterative application of a generating function g with
these two properties starting at the bottom element of a pointed CPO yields a
sequence of elements that approaches the least fixed point of g. This fundamental
result, known as the Least Fixed Point Theorem, is shown in Section 5.2.5. Several
examples of this theorem are illustrated in Section 5.2.6. Section 5.2.7 shows that
a broad class of functions expressible in the metalanguage notation summarized
in Section A.4 are monotonic and continuous.

5.2.1 Partial Orders

A partial order is a pair 〈D,�〉 of a domain D and a binary ordering relation
� on D that is reflexive, transitive, and antisymmetric. Recall that a relation is
antisymmetric if a � b and b � a together imply a= Db. The notation a � b is
pronounced “a is weaker than b” or “b is stronger than a.” Later, we shall be
ordering elements by information content, so we will also pronounce a � b as “a
approximates b.” When the relation � is understood from context, it is common
to refer to the partial order 〈D,�〉 as D.

Partial orders are commonly depicted by Hasse diagrams, in which elements
(represented by points) are connected by lines. In such a diagram, a � b if and
only if there is a path from the point representing a to the point representing b
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e f

d

a b c

Figure 5.6 A Hasse diagram for the partial order PO.

such that each link of the path goes upward on the page. For example, Figure 5.6
shows the Hasse diagram for the partial order PO on six symbols whose relation
is defined by the following graph:

{〈a, a〉, 〈a, d〉, 〈a, e〉, 〈a, f〉, 〈b, b〉, 〈b, d〉, 〈b, e〉, 〈b, f〉,
〈c, c〉, 〈c, e〉, 〈c, f〉, 〈d, d〉, 〈d, e〉, 〈d, f〉, 〈e, e〉, 〈f, f〉}

A partial order need not relate all the elements of its domain. Two elements
of a partial order that are unrelated by � are said to be incomparable. For
example, the pairs of incomparable elements in PO are {a, b}, {a, c}, {b, c},
{c, d}, and {e, f}.

A total order is a partial order in which every two elements are related (i.e.,
no two elements are incomparable). For example, the natural numbers under the
traditional value-based ordering ≤Nat form a total order called ω (omega). The
elements of a total order can be arranged in a vertical line in a Hasse diagram
(see Figure 5.7).

Although ≤Nat may be the most familiar ordering on natural numbers, in
the context of our discussion of fixed points we will consider some alternative
orderings that are based on information content and may seem nonintuitive at
first glance. For example, a discrete partial order is one in which every pair
of elements is incomparable. Figure 5.8 depicts the discrete ordering �Nat for
Nat. In this partial order, numbers are not ordered by their value, but by their
information content. Each number approximates only itself. The �Nat relation
is clearly very different from the familiar ≤Nat relation. From the perspective of
information content, we will often consider primitive semantic domains to have
the discrete ordering.

An upper bound of a subset X ⊆ D of a partial order 〈D,�〉 is an element
u ∈ D that is stronger than every element of X; i.e., for every x in X, x � u.
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Figure 5.7 The total order ω of natural numbers under the traditional value-based
ordering ≤Nat.

In PO, the subset {a, b} has upper bounds d, e, and f; the subset {a, b, c} has
upper bounds e and f; and the subset {e, f} has no upper bounds. The least
upper bound (lub2) of a subset X of D, written

⊔
DX, is the upper bound

of X that is weaker than every other upper bound of X; such an element may
not exist. In PO, the lub of {a, b} is d, but neither {a, b, c} nor {e, f} has a
lub. There are symmetric notions of lower bound and greatest lower bound
(glb3), but our fixed point machinery will mainly use upper bounds.

An element that is weaker than all other elements in a partial order D is
called the bottom element and is denoted ⊥D . Symmetrically, an element that
is stronger than all other elements in D is the top element (written �D). Par-
tial orders need not have bottom and top elements. For example, PO and Nat
(ordered by �Nat) have neither. The total order ω has a bottom element (0) but
not a top element.

Any partial order D can be lifted to another partial order D⊥ that has all
the elements and orderings of D, but includes a new element ⊥D⊥

that is weaker
than all elements of D. If D already has a bottom element ⊥D , then ⊥D and
⊥D⊥

are distinct, with ⊥D⊥
being the weaker of the two. Symmetrically, the

notation D� designates the result of extending D with a new top element.
A flat partial order D is a lifted discrete partial order. Figure 5.9 depicts

the flat partial order Nat⊥ of natural numbers. The element ⊥Nat⊥ acts as an
“unknown natural number” that approximates every natural number. It is often
interpreted as representing the “result” of a nonterminating computational pro-

2The pronunciation of “lub” rhymes with “club.”
3The abbreviation “glb” is pronounced “glub.”
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· · ·0 1 2 3

Figure 5.8 The semantic domain Nat with the discrete ordering �Nat.

· · ·0 1 2 3

⊥Nat⊥

Figure 5.9 The flat partial order Nat⊥.

cess. Flat partial orders will play an important role in understanding recursively
defined functions that return elements of primitive semantic domains like the
natural numbers (see Sections 5.2.4–5.2.7). In this context, we do not care about
the usual numerical ordering of the numbers in Nat , but instead care about an
information ordering that tells us whether the function diverges (i.e., returns the
bottom element ⊥Nat⊥ of Nat⊥) or terminates (i.e., returns a nonbottom element
of Nat⊥).

A chain is a totally ordered, nonempty subset of a partial order. The chains
of PO include {a, d, e}, {c, f}, {b, f}, and {d}. In Nat⊥, the only chains are (1)
singleton sets and (2) doubleton sets containing ⊥Nat⊥ and a natural number.

Given partially ordered domains, we would like to define orderings on prod-
uct, sum, sequence, and function domains such that the resulting domains are
also partially ordered. That way, we will be able to view all our semantic do-
mains as partial orders. In the following definitions, assume that D and E are
arbitrary partial orders ordered by �D and �E , respectively. We will illustrate
the definitions with examples involving the two concrete partial orders G and H
in Figure 5.10.

Product Domains

D × E is a partial order under the following ordering:

〈d1 , e1 〉 �D×E 〈d2 , e2 〉 iff d1 �D d2 and e1 �E e2
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Figure 5.10 Two simple partial orders.

〈b, d〉

〈a, d〉

〈b, e〉

〈a, e〉
〈b, c〉

〈a, c〉

Figure 5.11 The product partial order G × H.

The partial order G × H is depicted in Figure 5.11. Note how the Hasse diagram
for G × H is visually the product of the Hasse diagrams for G and H. G × H
results from making a copy of G at every point of H (or, symmetrically, making
a copy of H at every point of G) and adding the extra lines specified by the
ordering.

Sum Domains

D + E is a partial order under the following ordering:

(D�(D + E) d1 ) �D+E (D�(D + E) d2 ) iff d1 �D d2

(E �(D + E) e1 ) �D+E (E �(D + E) e2 ) iff e1 �E e2

This ordering preserves the order between elements of the same summand do-
main, but treats elements from different summands as incomparable. The Hasse
diagram for a sum partial order is simply the juxtaposition of the diagrams for
the summands (see Figure 5.12).

Function Domains

D → E is a partial order under the following ordering:

f1 �D→E f2 iff, for all d in D, (f1 d) �E (f2 d) .
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(G�(G + H) a)

(G�(G + H) b)

(H �(G + H) c)

(H �(G + H) d) (H �(G + H) e)

Figure 5.12 The sum partial order G + H.

{〈a, d〉, 〈b, d〉} {〈a, d〉, 〈b, e〉}

{〈a, d〉, 〈b, c〉}

{〈a, e〉, 〈b, d〉} {〈a, e〉, 〈b, e〉}

{〈a, e〉, 〈b, c〉}{〈a, c〉, 〈b, d〉} {〈a, c〉, 〈b, e〉}

{〈a, c〉, 〈b, c〉}

Figure 5.13 The function partial order G → H. Each node is labeled with a function
graph.

Consider using this ordering on the elements of G→ H. As usual, a total function
from G to H can be represented by a graph of argument/result pairs. Figure 5.13
uses this notation to depict the partial order G → H.

Sequence Domains

There are two common ways to order the elements of D*. These differ in whether
sequence elements of different lengths are comparable.

• Under the prefix ordering,

[d1 , d2 , . . . , dk ] �D* [d ′
1 , d ′

2 , . . . , d ′
l ]

iff k ≤ l and di �D d ′
i for all 1 ≤ i ≤ k

If D is a discrete domain, this implies that a sequence s1 is weaker than s2 if
and only if s1 is a prefix of s2 — i.e., s2 = s1 @ s ′ for some sequence s ′.
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000 001 010 011 100 101 110 111

...
...

...
...

...
...

...
...

00 01 10 11

0 1

Figure 5.14 The sequence partial order Bit* under the prefix ordering.

As an example, suppose that Bit is the discrete partial order of the binary
digits 0 and 1. Then Bit* under the prefix order is isomorphic to the partial
order of binary numerals shown in Figure 5.14. (For example, the numeral 110
corresponds to the sequence [1, 1, 0]Bit. The “empty numeral” consisting of no
digits corresponds to the sequence [ ]Bit that is the bottom element of Bit*.)
This partial order is an infinite binary tree rooted at the empty sequence.
Each element of the tree can be viewed as an approximation to all of the
elements of the subtree rooted at it. For example, 110 is an approximation
to 1100, 1101, 11000, 11001, 11010, etc. In computational terms, this notion
of approximation corresponds to the behavior of a computation process that
produces its answer by printing out a string of 0s and 1s from left to right,
one character at a time. At any time, the characters already printed are the
current approximation to the final string that will be produced by the process.

Note that if D has a nontrivial ordering relation — i.e., D is not a discrete
domain — the prefix ordering of D* is more complex than a simple tree.

• Under the sum-of-products ordering, D* is treated as isomorphic to the
infinite sum of products D0 + D1 + D2 + D3 + · · · .
That is,

[d1 , d2 , . . . , dk ] �D* [d ′
1 , d ′

2 , . . . , d ′
k ]

iff di �D d ′
i for all 1 ≤ i ≤ k

As in the prefix ordering, sequences are ordered component-wise by their ele-
ments, but the sum-of-products ordering treats sequences of different lengths
as incomparable. For example, under the sum-of-products ordering, Bit⊥* is
isomorphic to the partial order depicted in Figure 5.15.
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· · ·

Bit⊥
0 Bit⊥

1 Bit⊥
2

0 1

⊥

00 01

0⊥

10 11

1⊥
⊥0 ⊥1

⊥⊥

Figure 5.15 The sequence partial order Bit⊥* under the sum-of-products ordering.

Discussion

Although we have stated that the above definitions are partial orders, we have
not argued that each ordering is in fact reflexive, transitive, and antisymmetric.
We encourage the reader to verify that these properties hold for each of the
definitions (Exercise 5.6).

The orderings defined above are not the only ways to order compound do-
mains, but they are relatively natural and are useful in many situations. Later,
we will refine some of these orderings (particularly in the case of function do-
mains). But, for the most part, these are the orderings that will prove useful for
our study of semantic domains.

Exercise 5.3 Using the partial orders G and H in Figure 5.10, draw a Hasse diagram
for each of the following nine compound partial orders:

a. G × G

b. H × H

c. G → G

d. H → H

e. H → G

f. G* under the prefix ordering (show the first four levels)

g. H* under the prefix ordering (show the first four levels)

h. G* under the sum-of-products ordering (show the first three summands)

i. H* under the sum-of-products ordering (show the first three summands)
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Exercise 5.4 Suppose that A and B are finite partial orders with the same number
of elements, but they are not isomorphic. Partition the following partial orders into
equivalence classes based on isomorphism. That is, each class should contain all the
partial orders that are isomorphic to each other.

A × A, A × B, B × A, B × B,
A + A, A + B, B + A, B + B,
A → A, A → B, B → A, B → B

Exercise 5.5 Given a discretely ordered domain D, the powerdomain P(D) is a partial
order under the subset ordering:

S �P(D) S ′ if S ⊆ S ′

Draw the Hasse diagram for the partial order P({a, b, c}) under the subset ordering.
If D is a partial order that is not discrete, it turns out that there are many “natural”

ways to order the elements of the powerdomain P(D), each of which is useful for different
purposes. See [Sch86] or [GS90] for details.

Exercise 5.6 For each ordering on a compound domain defined above, show that the
ordering is indeed a partial order. I.e., show that the orderings defined for product, sum,
function, and sequence domains are reflexive, transitive, and antisymmetric.

5.2.2 Complete Partial Orders (CPOs)

A partial order D is complete if every chain in D has a least upper bound
in D. The term “complete partial order” is usually abbreviated CPO. Intuitively,
completeness means that any sequence of elements visited on an upward path
through a Hasse diagram must converge to a limit. Completeness is important
because it guarantees that the iterative fixed point technique converges to a
limiting value.

Here are some examples of CPOs:

• Any partial order with a finite number of elements is a CPO because every
chain is finite and necessarily contains its lub. PO, G, and H from the previous
section are all finite CPOs.

• Any flat partial order is a CPO because every chain has at most two elements,
the stronger of which must be the lub. Nat⊥ is a CPO with an infinite number
of elements.

• P(Nat) is a CPO in which the elements (each of which is a subset of the
naturals) are ordered by subset inclusion (see Exercise 5.5). It is complete
because the lub of every chain C is the (possibly infinite) union of the elements
of C. Unlike the previous examples of CPOs, this is one in which a chain may
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be infinite and not contain its own lub. Consider the chain C with elements
ci, where ci is defined to be {n | n ≤ i,n :Nat} Then:⊔

P(Nat) C =
⋃
{{0}, {0, 1}, {0, 1, 2}, . . .} = Nat

The lub of C is the entire set of natural numbers, but no individual ci is equal
to this set.

• The unit interval under the usual ordering of real numbers is a CPO. It is
complete because the construction of the reals guarantees that it contains the
least upper bound of every subset of the interval. The unit interval is another
CPO in which chains do not necessarily contain their own lubs. For example,

the set of all rational numbers less than
√

1
2 does not contain

√
1
2 .

• The partial functions from Nat to Nat (denoted Nat ⇀ Nat) form a CPO.
Recall that a partial function can be represented by a graph of argument/result
pairs. So the function that is undefined everywhere is represented by {}, the
function that returns 23 given 17 and is elsewhere undefined is represented by
{〈17, 23〉}, and so on. The ordering of elements in this CPO is just subset
inclusion on the graphs of the functions. It is complete for the same reason
that P(Nat) is complete.

It is worthwhile to consider examples of partial orders that are not CPOs:

• The total order ω depicted in Figure 5.7 is not a CPO because the chain
consisting of the entire set has no least upper bound (i.e., there is no largest
natural number). This partial order can be turned into a CPO ω� by extending
it with a top element�ω� that by definition is larger than every natural number
(see Figure 5.16).

• The partial order of rational numbers (under the usual ordering) between 0
and 1, inclusive, is not complete because it does not contain irrational numbers

like
√

1
2 , and thus does not contain the lub of chains such as the set of all

rational numbers less than
√

1
2 . It can be made complete by extending it with

the irrationals between 0 and 1; this results in the unit interval [0; 1].

• The partial order of sequences Bit* under the prefix ordering is not a CPO. By
definition, D* is the set of finite sequences whose elements are taken from D.
But the chain {[ ], [1], [1, 1], [1, 1, 1], . . . } has as its lub an infinite sequence
of 1s, which is not an element of Bit*. To make this partial order complete, it
is necessary to extend it with the set of infinite sequences over 0 and 1, written
Bit∞. So the set of sequences Bit*∪Bit∞ under the prefix ordering is a CPO.
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...

0

1

2

3

�ω�

Figure 5.16 The partial order ω� is the partial order ω of natural numbers extended
with a largest element �ω� .

Generalizing Bit∞, we introduce the notation D∞ to denote the set of all
infinite sequences whose elements are taken from the domain D. We also introduce
the notation D* to stand for D* ∪ D∞ under the prefix ordering. (The overbar
notation is commonly used to designate the completion of a set, which adds to
a set all of its limit points.)

As with partial orders, we are interested in combination properties of CPOs.
As indicated by the following theorem, we can use ⊥, × , + , → , and * to
build new CPOs out of existing CPOs.

Theorem 5.1 (CPO Construction) Suppose that D and E are CPOs.
Then:

1. D⊥ is a CPO;

2. D × E is a CPO under the partial order for products;

3. D + E is a CPO under the partial order for sums;

4. D → E is a CPO under the partial order for functions;

5. D* is a CPO under the sum-of-products ordering for sequences;

6. D* is a CPO under the prefix ordering for sequences.

Exercise 5.7 Prove Theorem 5.1 by showing that each of the compound CPOs it men-
tions is indeed complete. That is, show that the completeness property of D and E
implies that each chain of the compound domain has a lub in the compound domain.
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5.2.3 Pointedness

Bottom! O most courageous day! O most happy hour!

— William Shakespeare, A Midsummer Night’s Dream

A partial order is pointed if it has a bottom element. Pointedness is important
because the bottom element of a CPO is the natural place for the iterative fixed
point technique to start. Here are some of the pointed CPOs we have studied,
listed with their bottom elements:

• G, bottom = a;

• H, bottom = c;

• Nat⊥, bottom = ⊥Nat⊥

• P(Nat), bottom = {};

• [0; 1], bottom = 0;

• Nat ⇀ Nat, bottom = the function whose graph is {};

• ω�, bottom = 0;

• Bit*, bottom = [ ].

CPOs that we have studied that are not pointed include PO, G + H, and
Bit⊥* under the sum-of-products ordering.

In the iterative fixed point technique, the bottom element of a pointed CPO
is treated as the element with the least information — the “worst” approxima-
tion to the desired value. For example, ⊥Nat⊥ is the unknown natural number,
[ ] is a (bad) approximation to any sequence of 0s and 1s, and {} is a (bad)
approximation to the graph of any partial function from Nat to Nat .

In computational terms, the bottom element of a CPO can informally be
viewed as representing a process that diverges (i.e., goes into an infinite loop).
For example, a procedure that returns a boolean for even numbers but diverges
on odd numbers can be modeled as an element of the domain Int → Bool⊥ that
maps every odd number to ⊥Bool⊥ .

Pointed CPOs are commonly used to encode partial functions as total func-
tions. Any partial function f in D ⇀ E can be represented as a total function
f ′ in D → E⊥ by having f ′ map to ⊥E⊥ every element d :D on which f is
undefined. For example, the partial function in PO ⇀ PO with graph
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{〈a, d〉, 〈c, b〉, 〈f, f〉}

can be represented as the total function in PO → PO⊥ with graph

{〈a, d〉, 〈b,⊥PO⊥
〉, 〈c, b〉, 〈d,⊥PO⊥

〉, 〈e,⊥PO⊥
〉, 〈f, f〉}

Because of the isomorphism between D ⇀ E and D → E⊥, we casually perform
implicit conversions between the two representations.

The following theorem summarizes some handy facts about the pointedness
of partial orders constructed out of parts.

Theorem 5.2 (Pointedness of Compound Domains) Suppose that D
and E are arbitrary partial orders (not necessarily pointed). Then:

1. D⊥ is pointed.

2. D × E is pointed iff D and E are pointed.

3. D + E is never pointed.

4. D → E is pointed iff E is pointed.

5. D* under the sum-of-products ordering is never pointed.

6. D* and D* under the prefix ordering are pointed.

Note that unpointed compound domains like D + E and D* under the sum-
of-products ordering can always be made pointed by lifting them with a new
bottom element or by coalescing their bottom elements if they are pointed (see
Exercise 5.9).

Exercise 5.8 Prove each of the facts about pointedness in Theorem 5.2.

Exercise 5.9 The smash sum (also known as coalesced sum) of two pointed partial
orders D and E, written D ⊕ E, consists of the elements

{⊥D⊕E} ∪ {(D ′
�(D ′ + E ′) d) | d ∈ D ′} ∪ {(E ′

�(D ′ + E ′) e) | e ∈ E ′}

where D ′ = (D −⊥D), E ′ = (E −⊥E), and ⊥D⊕E is a single new bottom element
that combines the bottom elements ⊥D and ⊥E . D ⊕ E is a partial order under the
following ordering:

⊥D⊕E �D⊕E x for all x ∈ D ⊕ E;

(D ′
�(D ′ + E ′) d1 ) �D⊕E (D ′

�(D ′ + E ′) d2 ) iff d1 , d2 ∈ D ′ and d1 �D ′ d2 ;

(E ′
�(D ′ + E ′) e1 ) �D⊕E (E ′

�(D ′ + E ′) e2 ) iff e1 , e2 ∈ E ′ and e1 �E ′ e2

a. Using the CPOs G and H from Figure 5.10, draw a Hasse diagram for the partial
order G ⊕ H.

b. If D and E are CPOs, show that D ⊕ E is a CPO.
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c. What benefit does D ⊕ E have over D + E?

d. Suppose that D is a pointed CPO. Extend the notion of smash sum to a smash
sequence D⊕⊗ such that D⊕⊗ is a pointed CPO under an ordering analogous to the
sum-of-products ordering. What does Bit⊥⊕⊗ look like?

5.2.4 Monotonicity and Continuity

Suppose that f :D → E, where D and E are CPOs (not necessarily pointed).
Then

• f is monotonic iff d1 �D d2 implies (f d1) �E (f d2).

• f is continuous iff, for all chains C in D, (f (
⊔

D C)) =
⊔

E{(f c) | c ∈ C}.

A monotonic function preserves order between CPOs, while a continuous function
preserves limits. In the iterative fixed point technique, monotonicity is important
because when f :D → D is monotonic, the set of values

{⊥, (f ⊥) , (f (f ⊥)) , (f (f (f ⊥))) , . . . }

is guaranteed to form a chain. The completeness of D guarantees that this
chain approaches a limit in D, and it turns out that this limit is a fixed point
of f . Continuity plays a key role in the proof of the Least Fixed Point Theorem
(Section 5.2.5).

As an example of these properties, consider the CPO of functions G → H
depicted in Figure 5.13. Any function whose graph is {〈a, x〉, 〈b, y〉} is monotonic
if and only if x � y. Although there are 32 = 9 total functions from G to H, only
five of these are monotonic:

{{〈a, c〉, 〈b, c〉}, {〈a, c〉, 〈b, d〉}, {〈a, d〉, 〈b, d〉}, {〈a, c〉, 〈b, e〉}, {〈a, e〉, 〈b, e〉}}

The reason that there are fewer monotonic functions than total functions is that
choosing the target element t for a particular source element s constrains all the
source elements stronger than s to map to a target element stronger than t. For
example, a monotonic function that maps a to e must necessarily map b to e.
With larger domains, the reduction from total functions to monotonic functions
can be more dramatic.

What functions from G to H are continuous? The only nonsingleton chain in
G is {a, b}. By the definition of continuity, this means that a function f :G → H
is continuous iff (f (

⊔
G {a, b})) =

⊔
H{(f a) , (f b)}. In this case, this condi-

tion simplifies to (f a) �H (f b), which is equivalent to saying that f is mono-
tonic. Thus, the continuous functions from G to H are exactly the five monotonic
functions listed above.
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ω� Two

...

0

1

2

3

�ω� �

⊥

Figure 5.17 An example of a function that is monotonic but not continuous.

The relationship between monotonic and continuous functions in this example
is more than coincidence. Monotonicity and continuity are closely related, as
indicated by the following theorem:

Theorem 5.3 (Monotonicity/Continuity Relationship)

1. On finite CPOs (and even infinite CPOs with only finite chains),
monotonicity implies continuity.

2. On any CPO, continuity implies monotonicity.

We leave the proof of this theorem as an exercise (see Exercise 5.12).
Although monotonicity and continuity coincide on finite-chain CPOs, mono-

tonicity does not imply continuity in general. To see this, consider the following
function from ω� to the two-point CPO Two = {⊥,�}:

mon-not-con : ω� → Two = λn . if (n = �ω�) then � else ⊥ end

(See Figure 5.17 for a depiction of this function.) This function is clearly mono-
tonic, but it is not continuous because on the subset ω of ω�,

(f (
⊔

ω)) = (f �ω�) = � 
= ⊥ =
⊔

Two{⊥} =
⊔

Two{(f n) | n ∈ ω}

An important fact about continuous functions is that the set of continuous
functions between CPOs D and E is itself a CPO under the usual ordering of
functions. For example, Figure 5.18 depicts the CPO of the five continuous
functions between G and H. If E is pointed, the function that maps all elements
of D to ⊥E is continuous and serves as the bottom element of the continuous-
function CPO.
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{〈a, d〉, 〈b, d〉} {〈a, e〉, 〈b, e〉}

{〈a, c〉, 〈b, d〉} {〈a, c〉, 〈b, e〉}

{〈a, c〉, 〈b, c〉}

Figure 5.18 The CPO G −C−→ H of continuous functions between G and H.

Since the CPO of total functions between D and E and the CPO of contin-
uous functions between D and E are usually distinct, it will be helpful to have
a notation that distinguishes them. We will use D −T−→ E to designate the CPO
of total functions from D to E and D −C−→ E to designate the CPO of continuous
functions from D to E. As we shall see later in this chapter, the CPO of contin-
uous functions plays an important role in constructing fixed points of recursive
functions and solving recursive domain equations. For this reason, we adopt the
convention that, throughout the rest of this text, any unannotated → should be
interpreted as −C−→ whenever information ordering matters (i.e., when construct-
ing fixed points of recursive functions or solving recursive domain equations). We

shall use −T−→ whenever we wish to discuss total functions, and will explicitly use
−C−→ only when we wish to emphasize the difference between −T−→ and −C−→.

Exercise 5.10 Using the CPOs G and H from Figure 5.10, draw Hasse diagrams for
the following CPOs:

a. G −C−→ G

b. H −C−→ H

c. H −C−→ G

Exercise 5.11 Consider the CPOs A and B pictured in Figure 5.19. For each of the fol-
lowing function domains, give the number of (1) total, (2) monotonic, and (3) continuous
functions in the domain:

a. A −T−→ A

b. B −T−→ B

c. A −T−→ B

d. B −T−→ A
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A B

a

b

c

d

e f g

Figure 5.19 CPOs A and B.

Exercise 5.12

a. Show that a continuous function between CPOs is necessarily monotonic.

b. Show that a monotonic function must also be continuous if its source is a CPO all of
whose chains are finite.

c. Show that if D is a CPO and E is a pointed CPO then D −C−→ E is a pointed CPO.

Exercise 5.13 This problem considers functions f from [0; 1] to itself. We will say that f

is continuous in the CPO sense if it is a member of [0; 1] −C−→ [0; 1], where [0; 1] is assumed
to have the traditional ordering. We will say that f is continuous in the classical sense
if for all x and ε there exists a δ such that

(f [x − δ; x + δ]) ⊆ [(f x) − ε; (f x) + ε]

(Here we are abusing the function call notation to designate the image of all of the
elements of the interval.)

a. Does classical continuity imply CPO continuity? If so, give a proof; if not, provide a
counterexample of a function that is continuous in the classical sense but not in the
CPO sense.

b. Does CPO continuity imply classical continuity? If so, give a proof; if not, provide
a counterexample of a function that is continuous in the CPO sense but not in the
classical sense.

5.2.5 The Least Fixed Point Theorem

Suppose D is a domain and f :D → D. Then d :D is a fixed point of f if
(f d) = d. If 〈D,�〉 is a partial order, then d :D is the least fixed point of f
if it is a fixed point of f and d � d ′ for every fixed point d ′ of f .

Everything is now in place to prove the following fixed point theorem:
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Theorem 5.4 (Least Fixed Point Theorem) If D is a pointed CPO,
then a continuous function f :D → D has a least fixed point (fixD f ) de-
fined by

⊔
D{(f n ⊥D) | n ≥ 0}.

Proof:
First we show that the above definition of (fixD f ) is a fixed point of f :

• Since ⊥D is the least element in D, ⊥D � (f ⊥D).

• Since f is monotonic (continuity implies monotonicity by Theorem 5.3), ⊥D �
(f ⊥D) implies (f ⊥D) � (f (f ⊥D)). By induction, (f n ⊥D) �

(
f n+1 ⊥D

)
for every n ≥ 0, so {(f n ⊥D) | n ≥ 0} is a chain in D.

• Now,

(f (fixD f ))
=

(
f

⊔
D{(f n ⊥D) | n ≥ 0}

)
by definition of fixD

=
⊔

D{(f (f n ⊥D)) | n ≥ 0} by continuity of f
=

⊔
D{(f n ⊥D) | n ≥ 1}

=
⊔

D{(f n ⊥D) | n ≥ 0}
(
f 0 ⊥D

)
= ⊥D can’t change lub

= (fixD f ) by definition of fixD .

Thus, (f (fixD f )) = (fixD f ), showing that (fixD f ) is indeed a fixed point
of f .

To see that this is the least fixed point of f , suppose there is some other fixed
point d ′. Then clearly ⊥D � d ′, and by the monotonicity of f , (f n ⊥D) �
(f n d ′) = d ′. So d ′ is an upper bound of the set S = {(f n ⊥D) | n ≥ 0}. But
then, by the definition of least upper bound, (fixD f ) =

(⊔
D S

)
� d ′. �

We can treat fixD as a function of type (D → D) → D. It turns out that
fixD is itself a continuous function, and satisfies some other properties that make
it useful for many semantic purposes (see [GS90]).

The Least Fixed Point Theorem describes an important class of situations in
which fixed points exist, and we shall use it to specify the meaning of various
recursive definitions. However, there are many generating functions that have
least fixed points but do not satisfy the conditions of the Least Fixed Point
Theorem. In these cases, other means must be used to find the least fixed point.

5.2.6 Fixed Point Examples

Here we present several brief examples of the Least Fixed Point Theorem in
action. We have discussed many of these examples informally already but will
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now show how the fixed point machinery formalizes the intuition underlying the
iterative fixed point technique.

Sequence Examples

In order to model sequences of natural numbers, we will use the domain of finite
and infinite sequences from Nat⊥:

s ∈ Natseq = Nat⊥*

We use the flat domain Nat⊥ instead of Nat to model the elements of a sequence so
that there is a distinguished bottom element to which head can map the empty
sequence. We will assume that (tail [ ]) = [ ], though we could alternatively
introduce a new bottom element for sequences if we wanted to distinguish (tail [ ])
from [ ]. We use Nat⊥* (with the prefix ordering) rather than Nat⊥* because the
former is a pointed CPO that contains all the limiting values that are missing
from the latter.

The equation s = (cons 3 (cons (1 + (head s)) [ ])) has as its associated
generating function the following:

gseq1 : Natseq→ Natseq = λs . (cons 3 (cons (1 + (head s)) [ ]))

Natseq is a pointed CPO with bottom element [ ], and it is not hard to show that
gseq1 is continuous. Thus, the Least Fixed Point Theorem applies, and the least
fixed point can be found by iterating g starting with [ ]:(

fixNatseq gseq1

)
=

⊔
Natseq {

(
g0
seq1 [ ]

)
,

(
g1
seq1 [ ]

)
,

(
g2
seq1 [ ]

)
,

(
g3
seq1 [ ]

)
, . . . }

=
⊔

Natseq{[ ], [3,⊥Nat⊥ ], [3, 4]}
= [3, 4]

In this case, the unique fixed point [3,4] of gseq1 is reached after two iterations
of gseq1 .

What happens when we apply this technique to an equation like

s = (cons (head s) (cons (1 + (head s)) [ ]))

which has an infinite number of fixed points? The corresponding generating
function is

gseq2 : Natseq→ Natseq = λs . (cons (head s) (cons (1 + (head s)) [ ]))

This function is continuous as long as + returns ⊥Nat⊥ when one of its arguments
is ⊥Nat⊥ . The Least Fixed Point Theorem applies, and iterating gseq2 on [ ] gives:
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fixNatseq gseq2

)
=

⊔
Natseq {

(
g0
seq2 [ ]

)
,

(
g1
seq2 [ ]

)
,

(
g2
seq2 [ ]

)
,

(
g3
seq2 [ ]

)
, . . . }

=
⊔

Natseq{[ ], [⊥Nat⊥ ,⊥Nat⊥ ]}
= [⊥Nat⊥ ,⊥Nat⊥ ]

After one iteration, the iterative fixed point technique finds the fixed point
[⊥Nat⊥ ,⊥Nat⊥ ], which is indeed less than all the other fixed points [n, (n + 1)].
Intuitively, this result indicates that the solution is a sequence of two numbers,
but that the value of those numbers cannot be determined without making an
arbitrary decision. Note the crucial roles that the bottom elements [ ] and ⊥Nat⊥

play in this example. Each represents the value with the least information from
a domain. Iterative application of the generating function may or may not refine
these values by adding information.

A similar story holds for equations like

s = (consa (1 + (head s)) (cons (head s) [ ]))

that have no solutions in Nat*. The reader can verify that this equation does
have the unique solution [⊥Nat⊥ ,⊥Nat⊥ ] in Natseq and that this solution can be
found by an application of the Least Fixed Point Theorem.

As a final sequence example, we consider the equation s = (cons 1 s), whose
associated generating function is

gseq3 : Natseq→ Natseq = λs . (cons 1 s)

This function is continuous, and the Least Fixed Point Theorem can be invoked
to find a solution to the original equation:(

fixNatseq gseq3

)
=

⊔
Natseq {

(
g0
seq3 [ ]

)
,

(
g1
seq3 [ ]

)
,

(
g2
seq3 [ ]

)
,

(
g3
seq3 [ ]

)
, . . . }

=
⊔

Natseq{[ ], [1], [1, 1], [1, 1, 1], . . . }
= [1, 1, 1, . . .]

In this case, the unique fixed point of gseq3 is an infinite sequence of 1s. This
fixed point is not reached in a finite number of iterations, but is the limit of
the sequence of approximations whose nth element (starting at index n = 0)
is

(
gn
seq3 [ ]

)
. This example underscores why it is necessary to extend Nat⊥*

with Nat∞⊥ to make Natseq a CPO. Without the infinite sequences in Nat∞⊥ , the
iterative fixed point technique could not find a solution to some equations.
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Function Examples

In the remainder of this book, we will typically apply the iterative fixed point
technique to generating functions over function domains. Here we consider a few
examples involving fixed points over the following domain of functions:

f ∈ Natfun = Nat→ Nat⊥

Since we assume that → designates continuous functions, Natfun is a domain
of the continuous functions between Nat and Nat⊥. Natfun is a CPO because
the set of continuous functions between CPOs is itself a CPO under the usual
ordering of functions. Furthermore, Natfun is pointed because Nat⊥ is pointed.
Recall that Nat → Nat⊥ is isomorphic to Nat ⇀ Nat, so elements of Natfun can
be represented by a function graph in which pairs whose target element is ⊥Nat⊥

are omitted.
Our first example is the definition of the doubling function studied earlier:

dbl = λn . if (n = 0) then 0 else (2 + (dbl (n − 1))) end

A solution to this definition is the fixed point of the generating function gdbl :

gdbl : Natfun→ Natfun
= λf . λn . if (n = 0) then 0 else (2 + (f (n − 1))) end

Natfun is a pointed CPO, and Natfun’s bottom element is the function whose
graph is {}. In this CPO,

⊔
on a chain of functions in Nat → Nat is equivalent

to
⊔

on a chain of graphs of functions in Nat ⇀ Nat. It can be shown that gdbl

is continuous, so the Least Fixed Point Theorem applies:

(fixNatfun gdbl)

=
⊔

Natfun {
(
g0
dbl {}

)
,

(
g1
dbl {}

)
,

(
g2
dbl {}

)
,

(
g3
dbl {}

)
, . . . }

=
⊔

Natfun{{}, {〈0, 0〉}, {〈0, 0〉, 〈1, 2〉}, {〈0, 0〉, 〈1, 2〉, 〈2, 4〉}, . . . }
= {〈n, 2n〉 | n :Nat}

Each (gn
dbl {}) is a finite approximation of the doubling function that is defined

only on the naturals in [0..(n− 1)]. The least (and only) fixed point is the limit
of these approximations: a doubling function defined on all naturals.

As an example of a function with an infinite number of fixed points, consider
the following recursive definition of a function in Natfun:

even0 : Natfun = λn . if (n = 0) then 0 else (even0 (n % 2)) end
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Here (a % b) returns the remainder of dividing a by b. For each constant c in
Nat⊥, the function whose graph is⋃

n :Nat{〈2n, 0〉, 〈2n + 1, c〉}

is a solution for even0. Each solution maps all even numbers to zero and maps
every odd number to the same constant c, where c is a parameter that distin-
guishes one solution from another. Each of these solutions is a fixed point of the
generating function geven0 :

geven0 : Natfun→ Natfun
= λf . λn . if (n = 0) then 0 else (f (n % 2)) end

It turns out that this function is continuous, so the Least Fixed Point Theorem
gives:

(fixNatfun geven0 )

=
⊔

Natfun {
(
g0
even0 {}

)
,

(
g1
even0 {}

)
,

(
g2
even0 {}

)
,

(
g3
even0 {}

)
, . . . }

=
⊔

Natfun{{}, {〈0, 0〉}, {〈2n, 0〉 | n :Nat}}
= {〈2n, 0〉 | n :Nat}

The least fixed point is a function that maps every even number to zero, but
is undefined (i.e., yields ⊥Nat⊥) on the odd numbers. Indeed, this is the least
element of the class of fixed points described above; it uses the least arbitrary
value for the constant c.

The solution for even0 matches our intuitions about the operational behavior
of programming language procedures for computing even0. For example, the
definition for even0 can be expressed in the Scheme programming language via
the following procedure:

(define (even0 n)

(if (= n 0)

0

(even0 (mod n 2))))

We expect this procedure to return zero in at most two steps for an even natural
number, but to diverge for an odd natural number. The fact that the function
even0 maps odd numbers to ⊥Nat⊥ can be interpreted as signifying that the
procedure even0 diverges on odd inputs.
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Exercise 5.14 For each of the following equations:

• Characterize the set of all solutions to the equation in the specified solution domain.

• Use the iterative fixed point technique to determine the least solution to the equation.

Assume that s :Natseq , p :P(Nat), f :Natfun, and h : Int→ Int⊥.

a. s = (cons 2 (cons (head (tail s)) s))

b. s = (cons (1 + (head (tail s))) (cons 3 s))

c. s = (cons 5 (mapinc s)), where mapinc is a function in Natseq→ Natseq that maps
every sequence [n1 , n2 , . . .] to the sequence [(1 + n1 ), (1 + n2 ), . . .]

d. p = {1} ∪ {x + 3 | x ∈ p}

e. p = {1} ∪ {2x | x ∈ p}

f. p = {1} ∪ {|2x− 4| | x ∈ p}

g. f = λn . (f n)

h. f = λn . (f (1 + n))

i. f = λn . (1 + (f n))

j. f = λn . if (n = 1)
then 0
else if (even? n) then (1 + (f (n ÷ 2))) else (f (n + 2)) end
end

where even? is a predicate determining if a number is even.

k. h = λi . if (i = 0) then 0 else (h (i − 2)) end

Exercise 5.15 Section 5.1.3 sketches an example involving the solution of an equation
on line drawings involving the transformation T . Formalize this example by completing
the following steps:

a. Represent line drawings as an appropriate pointed CPO Lines.

b. Express the transformation T as a continuous function gT in Lines→ Lines.

c. Use the iterative fixed point technique to find the least fixed point of gT .

Exercise 5.16 A binary relation R on a set A is a subset of A × A. The reflexive
transitive closure of R is the smallest subset R ′ of A × A satisfying the following
properties:

• If a ∈ A, then 〈a, a〉 ∈ R ′;

• If 〈a, b〉 is in R ′ and 〈b, c〉 is in R, then 〈a, c〉 is in R ′.
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a. Describe how the reflexive transitive closure of a binary relation can be expressed as
an instance of the Least Fixed Point Theorem. What is the pointed CPO? What is
the bottom element? What is the generating function?

b. Use the iterative fixed point technique to determine the reflexive transitive closure of
the following binary relation R on the set {a, b, c, d, e}:

R = {〈a, c〉, 〈c, e〉, 〈d, a〉, 〈d, b〉, 〈e, c〉}

Exercise 5.17 Show that each of the generating functions gseq1 , gseq2 , gseq3 , gdbl , geven0

from the examples in this section is continuous.

5.2.7 Continuity and Strictness

We have seen how compound CPOs can be constructed out of component CPOs
using the domain operators ⊥, × , + , *, and → . We have also seen how the
pointedness of a compound CPO is in some cases dependent on the pointedness
of its components.

But a pointed CPO D is not the only prerequisite of the Least Fixed Point
Theorem. The other prerequisite is that the generating function f :D → D must
be continuous. In the examples of the previous section, we waved our hands
about the continuity of the generating functions, but did not actually prove con-
tinuity in any of the cases. The proofs are not difficult, but they are tedious.
Below, we argue that all functions that can be expressed in the metalanguage
summarized in Section A.4 are guaranteed to be continuous as long as we make
certain assumptions about operations on primitive domains. The upshot is that
we generally do not need to worry about the continuity of generating functions.
We also introduce strictness, an important property for characterizing functions
on pointed domains.

Recall that metalanguage expressions include:

• constants (both primitive values and primitive functions on such values);

• variables;

• construction and deconstruction operators for compound domains (e.g., 〈 . . . 〉
and Proj i notation for products; Inj i and cases notation for sums; cons,
empty?, head, and tail for sequences; λ abstraction and application for func-
tions);

• syntactic sugar like if, let, and match.
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It turns out that all of the construction and deconstruction operators for com-
pound domains are continuous and that the composition of continuous functions is
continuous (see [Sch86] for the details). This implies that any function expressed
as a composition of construction and deconstruction operators is continuous. As
long as primitive functions are continuous and the if, let, and match notations
preserve continuity, all functions expressible in this metalanguage subset must
be continuous. Below, we refine our interpretation of primitive functions and the
sugar notations so that continuity is guaranteed.

Assume for now that all primitive domains are flat CPOs. What does it mean
for a function between primitive domains to be continuous? Since all chains
on a flat domain D can contain at most two elements (⊥D and a nonbottom
element d), the continuity of a function f :D → E between flat domains D and
E is equivalent to the following monotonicity condition:

(f ⊥D)�E (f d)

This condition is satisfied only in the following two cases:

• f maps ⊥D to ⊥E , in which case d can map to any element of E;

• f maps all elements of D to the same nonbottom element of E.

In particular, f is not continuous if it maps ⊥D and d to distinct nonbottom
elements of E.

For example, a function sqr in Nat⊥ → Nat⊥ that maps ⊥Nat⊥ to ⊥Nat⊥ and
every number to its square is continuous. So is the constant function three that
maps every element of Nat⊥ (including ⊥Nat⊥) to 3. But a function noncont that
maps every nonbottom number n to its square and maps⊥Nat⊥ to 3 is not continu-
ous, because (f n) is not a refinement of the approximation (noncont ⊥Nat⊥) = 3
(because (noncont n) and (noncont ⊥Nat⊥) are incomparable).

Perhaps the most interesting example of a noncontinuous function is the
celebrated halting function. For our purposes, the halting function has the
signature

halts : (Nat→ Nat⊥)→ Nat→ Bool

and the following behavior: if f :Nat→ Nat⊥ and n :Nat , then (halts f n) re-
turns true iff (f n) is a natural number (i.e., a nonbottom element of Nat⊥)
and returns false iff (f n) is ⊥Nat⊥ . Intuitively, the halts function is noncon-
tinuous for the same reason as noncont. It requires a mechanism for detecting
whether a computation is caught in an infinite loop, and such a mechanism must
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map ⊥Nat⊥ (representing a diverging computation) to one result (false) and all
stronger elements in Nat to an incomparable result (true).

The halting function is the canonical example of an uncomputable function —
a mathematical function whose results cannot be determined from its arguments
by executing a computational process. In the study of programming languages,
we expect that we should be able to model only computable functions, since
these, by definition, are what procedures in a programming language can denote.
It turns out that the continuous functions correspond exactly to the computable
functions, which is why continuity is such an important property in the study of
programming languages.

What we seek now is an easy way in our metalanguage to outlaw functions
like noncont and halts while permitting functions like sqr and three. We do this
based on a notion of strictness. If D and E are pointed domains, a function
f :D → E is strict if (f ⊥D) = ⊥E . Otherwise, f is nonstrict. For example,
the sqr function described above is strict, while the three function is nonstrict.
Although strictness and continuity are orthogonal properties in general, strictness
does imply continuity for functions between flat domains (see Exercise 5.18).

Strictness is important because it captures the operational notion that a com-
putation will diverge if it depends on an input that diverges. For example, strict-
ness models the parameter-passing strategies of most modern languages, in which
a procedure call will diverge if the evaluation of any of its arguments diverges.
Nonstrictness models the parameter-passing strategies of so-called lazy languages.
See Sections 7.1, 8.4.3, and 10.1.3 for a discussion of these parameter-passing
mechanisms.

When pointed CPOs are manipulated in our metalanguage, we shall assume
the strictness of various operations:

• All the primitive functions on flat domains are strict. When such a function
has multiple arguments, we will assume it is strict in each of its arguments.
Thus, +Nat⊥ returns ⊥Nat⊥ if either argument is ⊥Nat⊥ , and =Nat⊥ returns
⊥Bool⊥ if either argument is ⊥Nat⊥ .

• An if expression is strict in its test value whenever it is an element of Bool⊥
rather than Bool. Thus the expression

if x =Nat⊥ y then 3 else 3 end

is guaranteed to return ⊥Nat⊥ (not 3) if either x or y is ⊥Nat⊥ . Together with
the strictness of =Nat⊥ , the strictness of if test values thwarts attempts to
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express uncomputable functions. For example, consider the following failed
attempt to define the noncont function described above:

λn . if n =Nat⊥ ⊥Nat⊥ then 3 else n ×Nat⊥ n end

Because of the strictness of =Nat⊥ , this function returns ⊥Nat⊥ for every n in
Nat⊥, and so is continuous. Similarly, here is an attempt to define a variant
of the halts function that returns true if applying the given function f to the
argument n yields 0 and otherwise returns false:

λfn . if (f n) =Nat⊥ 0 then true else false end

In the case where (f n) is ⊥Nat⊥ , this function must return ⊥Bool⊥ , not false,
and so it is continuous.

• A match expression is strict in its discriminant whenever it is an element
of a pointed CPO. As with the strictness of if test values, this restriction
matches computational intuitions and prevents the expression of uncomputable
functions.

• If D is a pointed domain, we require the head operation on sequences to be
strict on D* under the prefix ordering. That is, (head [ ]) must equal ⊥D. If
D is not pointed, or if D* has the sum-of-products ordering, head is undefined
for [ ]; i.e., it is only a partial function.

With the above provisions for strictness, it turns out that all functions expressible
in the metalanguage are continuous.

We sometimes want to specify new strict functions, so it is helpful to have
a convenient notation for expressing strictness. If f is any function between
pointed domains D and E, then (strictD ,E f ) is a strict version of f . That is,
(strictD ,E f ) maps ⊥D to ⊥E and maps every nonbottom element d of D to
(f d). As usual, we will omit the subscripts on strict when they are clear from
context. For example, a strict function in Nat⊥ → Nat⊥ that returns 3 for all
nonbottom arguments can be defined as:

strict-three = (strict (λn . 3))

We adopt the abbreviation λ . . . . for (strict (λ . . . .)), so λn . 3 is another way
to write the above function.
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Exercise 5.18

a. Show that strictness and continuity are orthogonal by exhibiting functions in D → D
that have the properties listed below. You may choose different Ds for different parts.

i. Strict and continuous;

ii. Nonstrict and continuous;

iii. Strict and noncontinuous;

iv. Nonstrict and noncontinuous.

b. Which combinations of properties from the previous part cannot be achieved if D is
required to be a flat domain? Justify your answer.

5.3 Reflexive Domains

Reflexive domains are domains that are defined by recursive domain equations.
We have already seen reflexive domains in the context of PostFix:

StackTransform = Stack→ Stack
Stack = Value* + Error
Value = Int + StackTransform

These equations imply that a stack may contain as one of its values a function
that maps stacks to stacks. A simpler example of reflexive domains is provided
by the lambda calculus (see Section 6.6), which is based on a single domain Fcn
defined as follows:

Fcn = Fcn→ Fcn

We know from set theory that descriptions of sets that contain themselves
(even indirectly) as members are not necessarily well defined. In fact, a simple
counting argument shows that equations like the above are nonsensical if inter-
preted in the normal set-theoretic way. For example, if we (improperly) view
→ as the domain constructor for set-theoretic functions from Fcn to Fcn, by
counting the size of each set we find:

|Fcn| = |Fcn||Fcn|

For any set Fcn with more than one element, |Fcn||Fcn| is bigger than |Fcn|. Even
if |Fcn| is infinite, |Fcn||Fcn| is a “bigger” infinity! In the usual theory of sets,
the only solution to this equation is a trivial domain Fcn with one element. A
computational world with a single value is certainly not very interesting, and is
a far cry from the computationally complete world of the lambda calculus!
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Dana Scott had the insight that the functions that can be implemented on
a computer are limited to continuous functions. There are fewer continuous
functions than set-theoretic functions on a given CPO, since the set-theoretic
functions do not have to be monotonic (you can get more information out of
them than you put in!). If we treat → as a constructor that describes com-
putable (continuous) functions and we interpret “equality” in domain equations
as isomorphisms, then we have a much more interesting world than with set-
theoretic functions. In this world, we can show an isomorphism between Fcn and
Fcn→ Fcn:

Fcn ≈ Fcn→ Fcn

The breakthrough came when Scott provided a constructive technique (the
so-called inverse limit construction) that showed how to build such a domain
and prove the isomorphism. Models exist as well for all of the other domain
constructors we have introduced (lifting, products, sums, sum-of-products, prefix
ordering of sequences), and as long as we stick to well-defined domain construc-
tors, we can be assured that there is a nontrivial solution to our reflexive domain
equations.

The beauty of this mathematical approach is that there is a formal way of
giving meaning to programming language constructs without any use of compu-
tation. We shall not describe the details of the inverse limit construction here.
This construction was first presented in [Sco73]. For a high-level retrospective
on this construction, see Scott’s 1976 Turing Award Lecture [Sco77]. A readable
account of the construction can be found in [Sch86, Chapter 11].

It is important to note that this construction requires that certain domains
have bottom elements. For example, in order to solve the PostFix domain
equations, we need to lift the Stack and Answer domains:

StackTransform = Stack→ Stack
Stack = (Value* + Error)⊥
Value = Int + StackTransform
Answer = (Int + Error)⊥

This lifting explains how nontermination can “creep in” when PostFix is ex-
tended with dup. (Recall that we proved that programs in ordinary PostFix
terminate regardless of lifting.)

The inverse limit construction is only one way to understand recursive domain
equations. Many approaches to interpreting such equations have been proposed
over the years. One approach is to interpret solution domains as subdomains of
P(ω), the powerset of natural numbers ordered by set inclusion [Sco76],[Sto85,
Chapter 7]. Another popular approach is based on the notion of information
systems [GS90, Gun92, Win93].
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5.4 Summary

Here are the main ideas of this chapter:

• The meaning of a recursive definition over a domain D can be understood as
the fixed point of a function D → D.

• Complete partial orders (CPOs) model domain elements as approximations
that are ordered by information. In a CPO, every sequence of information-
consistent approximations has a well-defined limit.

• A CPO D is pointed if it has a least element (bottom, written ⊥D). The
bottom element, which stands for “no information,” is used as a starting point
for the fixed point process. Bottom can be used to represent a partial function
as a total function. It is often used to model computations that diverge (go
into an infinite loop). A function between pointed CPOs is strict if it preserves
bottom.

• Functions between CPOs are monotonic if they preserve the information order-
ing and continuous if they preserve the limits. Continuity implies monotonicity,
but not vice versa.

• If D is a pointed CPO, every continuous function f :D → D has a least fixed
point (fixd f ) that is defined as the limit of iterating f starting at ⊥D .

• The domain constructors ⊥, × , + , → , and * can be viewed as operators
on CPOs. In particular, D1 → D2 is interpreted as the CPO of continuous
functions from D1 to D2. Only some of these constructors preserve pointedness.
The new domain constructor ⊥ extends a domain with a new bottom element,
guaranteeing that it is pointed.

• Functions that can be expressed in the metalanguage of Section A.4 are guaran-
teed to be continuous. Intuitively, such functions correspond to the computable
functions.

• Recursive domain equations that are not solvable when domains are viewed
as sets can become solvable when domains are viewed as CPOs. The key
ideas (due to Scott) are to interpret equality as isomorphism and to focus
only on continuous functions rather than all set-theoretic functions. There are
restricted kinds of CPOs for which any domain equations over a rich set of
operators are guaranteed to have a solution.
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Notes

This chapter was inspired by Schmidt’s presentation in [Sch86, Chapter 6]. The
excellent overview article by Gunter and Scott [GS90] presents alternative ap-
proaches involving more restricted domains and touches upon many technical
details omitted above. See Mosses’s article on denotational semantics [Mos90]
to see how these more restricted domains are used in practice. Gunter’s book
[Gun92] discusses many domain issues in detail.

For more information on domain theory and an introduction to the techniques
of solving recursive domain equations, see [Sto85, Sch86, GS90, Gun92, Win93].
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6

FL: A Functional Language

Things used as language are inexhaustibly attractive.

— Ralph Waldo Emerson, The Philosopher

FL (for Functional Language1) is a mini-language that exemplifies what is tra-
ditionally known as the functional programming paradigm. As we shall see,
functional programming languages are characterized by a compositional style
of expressing values and an emphasis on the manipulation of values that model
mathematical functions. The name “functional language” is a little bit odd, since
it suggests that languages not fitting this paradigm are somehow dysfunctional —
a perception that many functional language aficionados actively promote! Per-
haps function-oriented languages would be a more accurate term for this class
of languages.

FL will form the basis of many languages in this book. It will provide us with
the opportunity to use the semantic tools developed in the previous chapters to
analyze a programming language that is much closer to a “real” programming
language than PostFix or EL (see Section 6.4 and Section 6.5). But before we
get there, we shall study a technique of programming language decomposi-
tion that enables the application of our analytical tools to practical languages.
We shall also introduce two approaches for modeling names in a programming
language: substitution and environments.

6.1 Decomposing Language Descriptions

The study of a programming language can often be simplified if it is decomposed
into three parts:

1. A kernel language that forms the essential core of the language.

1Our FL language is not to be confused with any other similarly named language. In partic-
ular, our FL is not related to the FL functional programming language [BWW90, BWW+89]
based on Backus’s FP [Bac78].
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2. Syntactic sugar that extends the kernel with convenient constructs. Such
constructs can be automatically translated into kernel constructs via a process
known as desugaring.

3. A standard library of procedures, constants, and operators supplied with
the language.

We shall refer to the combination of a kernel, syntactic sugar, and a standard
library as a full language to distinguish it from its components.

Decomposing a programming language definition into parts relieves a com-
mon tension in the design and analysis of programming languages. From the
standpoint of reasoning about a language, it is desirable for a language to have
only a few, simple parts. However, from the perspective of programming in a
language, it is desirable to concisely and conveniently express common program-
ming idioms. A language that is too pared down may be easy to reason about
but horrendous to program in — try writing factorial in PostFix+{dup}. On
the other hand, a language with many features may be convenient to program
in but difficult to reason about — try proving some nontrivial properties about
your next Java, C, Ada, or Common Lisp program.

The technique of viewing a full language as mostly sugar-coating around a
kernel lets us have our cake and eat it too. When we want to reason about the
language, we consider only the small kernel upon which everything else is built.
But when we want to program in the language, we make heavy use of the syntactic
sugar and standard library to express what we want in a readable fashion. Indeed,
we can even add new syntactic sugar and new primitives modularly without
changing the properties of the kernel.

There are limitations to this approach. We’d like the kernel and full language
to be close enough so that the desugaring is easy to understand. Otherwise
we might have a situation where the kernel is a machine instruction set and
the desugaring is a full-fledged compilation from high-level programs into object
code. For this reason, we require that syntactic sugar be expressed via simple
local transformations; no global program analysis is allowed.

6.2 The Structure of FL

FL is a typical functional programming language for computing with numeric,
boolean, symbolic, procedural, and compound data values. The computational
model of FL is based on the functional programming paradigm exemplified by
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such languages as Haskell, ML, Scheme, and Erlang. Syntactically, FL bears
a strong resemblance to Scheme, but we shall see that semantically it is closer to
so-called purely functional lazy languages like Haskell and Miranda. FL
programs are free of side effects and make heavy use of first-class functional values
(here called procedures). We shall consistently use the term procedure to refer
to entities in programming languages that denote mathematical functions, and
function to refer to the mathematical notion of function. In some languages,
these two terms are used to distinguish different kinds of programming language
entities. For example, in Pascal, “function” refers to a subroutine that returns
a result whereas “procedure” refers to a subroutine that performs its work via
side effects and returns no result. Much of the functional programming literature
uses the term “function” to refer both to the programming language entity and
the mathematical entity it denotes, which we find confusing.

6.2.1 FLK: The Kernel of the FL Language

We begin by presenting the syntax and informal semantics of FLK, the FL kernel.

The Syntax of FLK

An FLK program is a member of the syntactic domain Prog defined by the s-
expression grammar in Figure 6.1. It has the form (flk (I n

i=1) Ebody), where
I1 , . . . , In (n ≥ 0) are the formal parameters of the program and Ebody is
the body expression of the program. Intuitively, the formal parameters name
program inputs and the body expression specifies the result value computed by
the program for its inputs. When a program is applied to actual arguments, we
will say that the program binds the parameters to those values. (Section 6.3
spells out this notion of binding more formally.)

FLK expressions are s-expressions that represent ASTs whose leaves are either
literals or variable references. FLK literals include the unit literal, booleans,
integers, and symbols. We adopt the Scheme convention of writing the boolean
literals as #t (true) and #f (false). The unit literal (#u) is used where the value
of an expression is irrelevant, such as in situations where C and Java use the
void return type. For symbolic (i.e., nonnumeric) processing, FLK supports the
Lisp-like notion of a symbol. Symbols are similar to the character-string values
supported by many languages, except that: (1) they are atomic entities that
cannot be decomposed into their constituent characters; (2) they are written using
a different syntax (e.g. (sym foobar) rather than "foobar"); and (3) certain
sequences of characters are forbidden as symbols:
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• any character sequence that is a valid representation of a number (e.g., 42 and
-17);

• any character sequence beginning with # (e.g., #u, #t, and #f); and

• any character sequence that includes whitespace, grouping characters ( {, }, (,
), [, ] ), or quotation characters ( ", ‘, ’ ).

Later we shall see how symbols make it easy for an FL program to manipulate
s-expressions representing ASTs with symbolic leaves. Since s-expressions are a
simple way to represent the abstract syntax trees of programs (see Section 2.3),
symbols facilitate writing FL programs that manipulate programs, such as inter-
preters and translators.

A key difference between FLK and PostFix/EL is that FLK provides con-
structs (flk, lam, and rec) that introduce names for values. Syntactically, names
are expressed via identifiers. The rules for what constitutes a well-formed iden-
tifier differ from language to language. In FLK we shall assume that any symbol
can be an identifier except for (1) symbols starting with the character @2 and (2)
reserved keywords of the language (app, error, flk, if, pair, prim, lam, rec,
sym). This means that expressions like x-y and 4/3*pi*r^2 are treated as atomic
identifiers in FLK. In many other languages, these would be infix specifications
of trees of binary operator applications.

For compound expressions, FLK supports procedural abstractions (lam) and
applications (app), primitive applications (prim), conditionals (if), pair creation
(pair), simple recursion (rec), and error signaling (error).

Although many of the syntactic conventions of FLK are borrowed from Lisp-
like languages, especially Scheme, it’s worth emphasizing that FLK differs from
these languages in some important ways. For example, in Scheme, abstractions
may take any number of formal parameters, are introduced via the keyword
lambda, and are invoked via an application syntax with no keyword. In contrast,
FLK abstractions have exactly one formal parameter, are introduced via the
keyword lam, and are applied via the keyword app.

An Informal Semantics for FLK

Because many readers may not be familiar with functional programming and
FLK is the basis for most of the mini-languages presented in the rest of this
book, we will begin with an informal explanation of the semantics of FLK via
examples. Later, in Sections 6.4 and 6.5, will use our operational and denotational
tools to specify the semantics of FLK formally.

2We disallow identifiers beginning with @ in order to support the syntactic sugar for prim

explained in Section 6.2.2.
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P ∈ Prog ::= (flk (I ∗
formal) Ebody) [Program]

E ∈ Exp ::= L [Literal]
| I [VariableReference]
| (error Ymessage) [Errors]
| (if Etest Ethen Eelse) [Conditional]
| (prim Oprimop E∗

arg) [PrimitiveApplication]
| (lam Iformal Ebody) [Abstraction]
| (app Erator Erand) [Application]
| (pair Efst Esnd) [Pairing]
| (rec Iname Ebody) [Recursion]

L ∈ Lit ::= #u [UnitLiteral]
| B [BooleanLiteral]
| N [IntegerLiteral]
| (sym Y ) [SymbolicLiteral]

B ∈ BoolLit = {#t, #f}
N ∈ IntLit = {. . . , -2, -1, 0, 1, 2, . . .}
Y ∈ SymLit = {x, lst, make-point, map tree, 4/3*pi*r^2, . . .}

Keyword = {app, error, flk, if, pair, prim, lam, rec, sym}
I ∈ Ident = SymLit − ({Y | Y begins with @} ∪Keyword)

O ∈ Primop = Defined in Figure 6.2

Figure 6.1 An s-expression grammar for FLK.

Intuitively, every FLK expression denotes a value that is tagged with its type
in addition to whatever information distinguishes it from other values of the same
type. The primitive values supported by FLK include the unit value, boolean
truth values, integers, and textual symbols. The unit value is the unique value
of a distinguished type that has a single element. In addition, FLK supports
pairs and procedures. A pair is a compound value that allows any two values
(which may themselves be pairs) to be glued together to form a single value. A
procedure is a value that represents a mathematical function by specifying how
to map a single input value to a single output value. Procedures are applied using
the application (app) construct. Primitive operators such as + are not procedure
values and will be described below.

To help build intuitions about FLK, here we will informally illustrate the
semantics of FLK constructs by considering some sample evaluations of FLK
expressions. The notation E −−−−FLK→ o indicates that the expression E evaluates to
the outcome o, where an outcome is a value, an error, or an infinite loop. Here
are some examples that indicate our conventions for writing FLK outcomes:
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unit The unit value
false, true The boolean values
17 , −3 Integer values
′abstraction ′, ′4/3 ∗ pi ∗ rˆ2 ′ Symbolic values
procedure Procedural values
error:divide-by-zero, error:not-an-integer Errors
∞ Nontermination

(represents an infinite loop)
〈17, true〉, Pair values
〈procedure, 〈 ′abstraction ′, unit〉〉,
〈error:not-an-integer, ∞〉
{this is a comment} Comment about an outcome

For simplicity, our outcome notation does not distinguish procedural values that
denote different mathematical functions. For instance, a squaring procedure and
a doubling procedure are both written procedure. Our notation for errors does
distinguish errors with different messages. Note that FLK pair values 〈o1 , o2 〉
can combine any two outcomes o1 and o2 , which may include errors and infinite
loops. Additionally, we will use the following abbreviation for representing lists
of outcomes that are encoded as a unit-terminated sequence of pairs chained
together via their second components:

�o1 , o2 , . . . , on � = 〈o1 , 〈o2 , . . . 〈on , unit〉 . . . 〉〉

For example, the notation �17 , true, 〈 ′foo ′, procedure〉� is an abbreviation for the
three-element list 〈17 , 〈true, 〈〈 ′foo ′, procedure〉, unit〉〉〉.

The literal expressions designate constants in the language:

#u −−−−FLK→ unit
#t −−−−FLK→ true
23 −−−−FLK→ 23
(sym captain) −−−−FLK→ ′captain ′

The primitive application (prim O E1 . . . En) denotes the result of apply-
ing the primitive operator named by O to the n values of the argument expres-
sions Ei . Figure 6.2 presents the primitive operator names O ∈ Primop in FL
and their associated meanings.

(prim not #t) −−−−FLK→ false
(prim int? 1) −−−−FLK→ true
(prim int? #t) −−−−FLK→ false
(prim + 1 2) −−−−FLK→ 3
(prim / 17 5) −−−−FLK→ 3 {integer division}
(prim % 17 5) −−−−FLK→ 2 {integer remainder}
(prim sym=? (sym captain) (sym captain)) −−−−FLK→ true
(prim sym=? (sym captain) (sym abstraction)) −−−−FLK→ false
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Operator Meaning
unit? Unary type predicate for the unit value.
bool? Unary type predicate for booleans.
int? Unary type predicate for integers.
sym? Unary type predicate for symbols.
proc? Unary type predicate for procedures.
pair? Unary type predicate for pairs.

not Unary boolean negation.
and Binary boolean conjunction (not short-circuit).
or Binary boolean disjunction (not short-circuit).
bool=? Binary boolean equality predicate.

+ Binary integer addition.
- Binary integer subtraction.
* Binary integer multiplication.
/ Binary integer division.
% Binary integer remainder.
= Binary integer equality predicate.
!= Binary integer inequality predicate.
< Binary integer less-than predicate.
<= Binary integer less-than-or-equal-to predicate.
> Binary integer greater-than predicate.
>= Binary integer greater-than-or-equal-to predicate.

sym=? Binary symbol equality.

fst Unary selector of the first element of a given pair.
snd Unary selector of the second element of a given pair.

Figure 6.2 The primitive operators O ∈ Primop in FLK.

The value of a primitive application is not defined when a primitive operator
is given the wrong number of arguments, when an argument has an unexpected
type, or when integer division or remainder by 0 is performed. These situations
are considered errors:

(prim + 1) −−−−FLK→ error:wrong-number-of-args
(prim + 1 2 3) −−−−FLK→ error:wrong-number-of-args
(prim not 1) −−−−FLK→ error:not-a-boolean
(prim + #t 1) −−−−FLK→ error:not-an-integer
(prim / 1 0) −−−−FLK→ error:divide-by-zero

The error expression (error Ymessage) signals an error with the symbolic
message Ymessage :

(error index-out-of-range) −−−−FLK→ error:index-out-of-range
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The conditional expression (if Etest Ethen Eelse) requires the value of Etest

to be a boolean, and evaluates one of Ethen or Eelse depending on whether the
test is true or false:

(if (prim > 8 7) (prim + 2 3) (prim * 2 3)) −−−−FLK→ 5
(if (prim < 8 7) (prim + 2 3) (prim * 2 3)) −−−−FLK→ 6
(if (prim - 8 7) (prim + 2 3) (prim * 2 3))

−−−−FLK→ error:nonbool-in-if-test

The abstraction (lam I E) specifies a procedural value that represents a
mathematical function. I names the procedure’s single formal parameter,
and the expression E is the procedure body. The procedure application3

(app E1 E2) stands for the result of applying the procedure denoted by the
operator (or rator) expression E1 to the value denoted by the operand (or
rand) expression E2 . Intuitively, this result is determined by evaluating the
procedure’s body with all occurrences of its formal parameter replaced by the
expression E2 , whose value is called the actual parameter or argument of the
application. We say that the formal parameter is bound to the argument during
the evaluation of the procedure body. In the application (app E1 E2), it is an
error if E1 doesn’t denote a procedure.

(lam x (prim * x x)) −−−−FLK→ procedure {squaring procedure}
(app (lam x (prim * x x)) 5) −−−−FLK→ 25
(app 3 5) −−−−FLK→ error:nonprocedural-rator
(app not #t) −−−−FLK→ error:unbound-variable
{not is a primitive operator, not a variable naming a procedure}

Multiple-argument procedures can be simulated by currying (see Section A.2.5):

(app (app (lam n (lam x (prim - x n))) 5) 8) −−−−FLK→ 3

A hallmark of functional programming is that procedures can be passed as
arguments to other procedures and returned as results from other procedures,
just like any other value:

(lam f (app f 5)) −−−−FLK→ procedure {apply-to-5 procedure}
(app (lam f (app f 5)) (lam x (prim * x x))) −−−−FLK→ 25
(lam n (lam x (prim - x n)))

−−−−FLK→ procedure {make-subtract-n procedure}
(app (lam n (lam x (prim - x n))) 1)

−−−−FLK→ procedure {subtract-1 procedure}
(app (lam f (app f 5))

(app (lam n (lam x (prim - x n))) 1)) −−−−FLK→ 4

3Common synonyms for procedure application are procedure call and procedure invo-

cation, so we will also say that a procedure is “called” or “invoked” with an argument value.
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(app (lam f (app f 5)) (lam n (lam x (prim - x n))))

−−−−FLK→ procedure {subtract-5 procedure}
(app (app (lam f (app f 5))

(lam n (lam x (prim - x n)))) 8) −−−−FLK→ 3
(app (lam x (app x x)) (lam x (app x x))) −−−−FLK→ ∞
{similar to the PostFix command sequence (dup exec) dup exec}

Because they can be used in the same ways as values like integers and pairs, pro-
cedures in FLK are said to be first class. Procedures that take other procedures
as arguments or return them as results are called higher-order procedures.

As in Haskell, FLK’s procedures are nonstrict. This means that a pro-
cedure application may return a value even if one of its arguments denotes an
error or a nonterminating computation. Intuitively, nonstrictness means that an
expression will never be evaluated if the rest of the computation does not require
its value. For example:

(app (lam x 3) (prim / 1 0)) −−−−FLK→ 3
(app (lam x (prim + x 3)) (prim / 1 0)) −−−−FLK→ error:divide-by-zero
(app (lam x 3)

(app (lam x (app x x)) (lam x (app x x)))) −−−−FLK→ 3
(app (lam x (prim + x 3))

(app (lam x (app x x)) (lam x (app x x)))) −−−−FLK→ ∞

Unlike FLK, most real-world languages (including C, Java, ML, Pascal, and
Scheme) have strict procedures. In these languages, operands of procedure
applications are always evaluated, even if they are never referenced by the pro-
cedure body. We shall explore strict versus nonstrict procedures in more detail
in Sections 7.1 and 8.4.3.

The pairing expression (pair Efst Esnd) glues two outcomes together into a
single value of the pair type. The two components of a pair can be extracted
with the primitive operators fst and snd.

(prim fst (pair (+ 1 2) (* 3 4))) −−−−FLK→ 3
(prim snd (pair (+ 1 2) (* 3 4))) −−−−FLK→ 12

A chain of pairs linked by their second components and terminated by the unit
value is a standard way of encoding a list:

(pair 8 (pair 2 (pair 1 #u))) −−−−FLK→ �8 , 2 , 1 �
(prim fst (pair 8 (pair 2 (pair 1 #u)))) −−−−FLK→ 8
(prim snd (pair 8 (pair 2 (pair 1 #u)))) −−−−FLK→ �2 , 1 �
(prim fst (prim snd (pair 8 (pair 2 (pair 1 #u))))) −−−−FLK→ 2
(prim snd (prim fst (pair 8 (pair 2 (pair 1 #u)))))

−−−−FLK→ error:not-a-pair
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Like procedure applications, pairing in FLK is nonstrict. The result of a pair

expression is always a well-defined pair even if one (or both) of its argument
expressions does not denote an FLK value. The unspecified nature of a contained
value can be detected only when it is extracted from the pair.

(pair (prim not #f) (prim / 1 0)) −−−−FLK→ 〈true, error:divide-by-zero〉
(prim fst (pair (prim not #f) (prim / 1 0))) −−−−FLK→ true
(prim snd (pair (prim not #f) (prim / 1 0)))

−−−−FLK→ error:divide-by-zero

As we shall see in Section 10.1.3, nonstrict data structures are an important
mechanism for supporting modularity in programs.

We choose to make pair a kernel construct rather than a primitive operator
like not or + to emphasize the fact that pairing is nonstrict. If we made pair

a primitive operator, we would still have to treat it specially when we describe
the semantics of the prim construct because all the other primitives are strict.
Treating pair as a separate syntactic construct provides a cleaner description of
the semantics. This is a purely stylistic decision; it is also possible to treat pair
as a binary primitive operator (see Exercise 6.27).

The recursion construct (rec I E) allows the expression of recursion equa-
tions over one variable. The value of the rec expression is the value of its body,
where the value of I within E is the value of the entire rec expression; i.e., the
value returned by a recursion is the solution to the equation I = E . rec is used
to specify recursive procedures and data structures: it allows us to give a name
to a value so that the value itself can be used in the expression that determines
that value. For example:

(rec fact (lam n

(if (prim = n 0)

1

(prim * n (app fact (prim - n 1))))))

−−−−FLK→ procedure {A factorial procedure.}
(app (rec fact (lam n

(if (prim = n 0)

1

(prim * n (app fact (prim - n 1))))))

5) −−−−FLK→ 120 {5! = 120.}
(rec ones (pair 1 ones)) −−−−FLK→ �1 , 1 , 1 , . . . � {an infinite list of 1s}
(prim fst (rec ones (pair 1 ones))) −−−−FLK→ 1
(prim fst (prim snd (rec ones (pair 1 ones)))) −−−−FLK→ 1
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The ones example above illustrates a list that is conceptually infinite in length.
Conceptually infinite data structures are an important programming idiom; see
Section 10.1.3 for a discussion and examples.

FLK programs are parameterized. We use the notation P −[V1 ,...,Vn ]−−−−−−FLK → o to
indicate that running the FLK program P on argument values V1 , . . ., Vn yields
outcome o. For example:

(flk (x) (prim * x x)) −[5 ]−−−FLK→ 25 {squaring program}

(flk (a b) (prim / (prim + a b) 2)) −[2 ,8 ]−−−FLK→ 5 {averaging program}
(flk (a b) (prim / (prim + a b) 2))

−[2 ,8 ,11 ]−−−−−FLK→ error:wrong-number-of-args

(flk (x ns) {x is a scaling factor; ns is a list of ints}
(app (rec scale {A recursive procedure}

(lam ys {to scale the ints in ys by x.}
(if (prim unit? ys) {Is ys the empty list?}

ys {If so, return it;}
(pair {otherwise, prepend the}
(prim * x (prim fst ys)) {scaled first int}
(app scale {to the result of scaling}

(prim snd ys)))))) {the rest of the ints.}
ns)) −[3 ,�7 ,2 ,5 �]−−−−−−−FLK → �21 , 6 , 15 �

The penultimate example illustrates that it is an error if the number of arguments
supplied to the program differs from the number of formal parameters declared.
The final example illustrates that FLK program arguments may include values
other than integers, such as lists of integers in this case.

In general, the values considered to be valid program arguments will be a
proper subset of the values manipulated by a language. In languages such as
C and Java, program arguments are passed as an array of strings, and these
strings can be parsed into other kinds of values (such as integers, floating-point
numbers, arrays of numbers, etc.) where necessary. Program arguments are typ-
ically limited to literal data with simple textual representations, which excludes
procedural values as program arguments. In the case of FLK, we shall assume
that program arguments may be any of the literal values (unit, booleans, integers,
symbols) and “pair trees”4 (i.e., binary trees with pair nodes) whose leaves are
literals. Since s-expressions can be represented as such trees, this will allow us to
write FLK programs that manipulate representations of programming language
ASTs (e.g., see the ELM interpreter on page 241).

4sans partridge!
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6.2.2 FL Syntactic Sugar

While FLK has considerably more expressive punch than PostFix or EL, ex-
pressing even simple programs with FLK is rather cumbersome. We will now
show how to extend the kernel FLK language with syntactic sugar to yield an-
other language, FL, that has the same semantic simplicity as FLK but is more
practical for writing and reading nontrivial programs.

Syntactic Sugar Syntax

Figure 6.3 shows the new constructs that constitute FL’s syntactic sugar. In
the definition of E , the ellipsis (. . .) stands for all the expression productions in
the FLK grammar. The new expressions in Figure 6.3 can be used anywhere the
nonterminal E appears in the kernel FLK grammar as well as in the new syntactic
constructs. Many of these syntactic abbreviations are inspired by constructs in
Lisp dialects, but some of them have somewhat different meanings in FL than
in Lisp.

Desugaring Expressions

FL expressions are desugared to FLK expressions via the desugaring function DS
defined in Figure 6.4. This function traverses an FL expression AST, performing
local transformations that replace the syntactic sugar constructs of FL by FLK
constructs. The top clauses process the expressions of FL that are inherited
from FLK, recursively applying DS to all subexpressions. This will expand
any syntactic sugar constructs appearing in the subexpressions. DS acts as the
identity function when applied to an FLK expression.

The FL sugar construct (@O E1 . . . En) is an abbreviation of the kernel
construct (prim O E1 . . . En). With this sugar, the verbose FLK expression

(prim - (prim * b b) (prim * 4 (prim * a c)))

can be shortened to the concise expression

(@- (@* b b) (@* 4 (@* a c)))

We will take advantage of this conciseness below by leaving this abbreviation in-
tact even after desugaring everything else in our examples, i.e., we will sometimes
show only partially desugared expressions that still contain sugared primitive ap-
plications.

This abbreviation is the reason that FL identifiers can’t begin with @. Oth-
erwise, procedures like (lam @+ (@+ 2 3)) would be ambiguous: should this
procedure apply its argument to 2 and 3, or should it always add 2 and 3?
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Modified Domains
Keyword = KeywordFLK ∪ {abs, cond, def, else, fl, let, letrec, list,

quote, scand, scor}
New Domains
D ∈ Def

SX ∈ SExp

New Productions
P ::= (flk (I ∗

formal) Ebody) [UnsugaredProgram]

| (fl (I ∗
formal) Ebody D∗

defn) [SugaredProgram]

D ::= (def Iname Edefn) [ValueDefinition]
| (def (Iproc I ∗

formal) Ebody) [FunctionDefinition]

E ::= . . . FLK expressions . . .
| (@Oprimop E∗

rand) [AbbreviatedPrimitiveApplication]
| (abs (I ∗

formal) Ebody) [MultiAbstraction]

| (Erator E∗
rand) [MultiApplication]

| (list E∗
element) [List]

| (quote SX quoted) [S-Expression]
| (cond (Etest Ethen)

∗ (else Edefault)) [NWayConditional]
| (scand E∗

conjunct) [ShortCircuitAnd]
| (scor E∗

disjunct) [ShortCircuitOr]

| (let ((Iname Edefn)
∗) Ebody) [LocalBinding]

| (letrec ((Iname Edefn)
∗) Ebody) [RecursiveBinding]

| (recur Iproc ((Iname Einit)
∗) Ebody) [RecursiveFunctionCall]

SX ::= Y [Symbol]
| #u [UnitLiteral]
| B [BooleanLiteral]
| N [IntegerLiteral]
| (SX ∗

element) [List]

Figure 6.3 Grammar for FL syntactic sugar.

FL’s abs construct can bind any number (possibly zero) of identifiers within
a procedure body. In the tagless multiapplication construct, a procedure can
be applied to any number (possibly zero) of arguments. The rules for desug-
aring multiabstractions into lam and multiapplications into app are based on
the same currying technique that we use extensively in the metalanguage. (See
Exercise 6.21 for an alternative approach to desugaring these expressions.) For
example, suppose that Eabs3 is the three-parameter multiabstraction

(abs (a b c) (@* a (@+ b c)))
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DS : ExpFL → ExpFLK

DS[[L]] = L
DS[[I ]] = I
DS[[(error Y )]] = (error Y )

DS[[(if Etest Ethen Eelse)]] = (if DS[[Etest ]] DS[[Ethen ]] DS[[Eelse ]])
DS[[(prim O En

i=1)]] = (prim O DS[[Ei ]]
n
i=1)

DS[[(lam Iformal Ebody)]] = (lam Iformal DS[[Ebody ]])
DS[[(app Erator Erand)]] = (app DS[[Erator ]] DS[[Erand ]])
DS[[(pair Efst Esnd)]] = (pair DS[[Efst ]] DS[[Esnd ]])
DS[[(rec Iname Ebody)]] = (rec Iname DS[[Ebody ]])

DS[[(@O En
i=1)]] = (prim O DS[[Ei ]]

n
i=1)

DS[[(abs () E)]] = (lam Ifresh DS[[E ]]), where Ifresh is fresh
DS[[(abs (I ) E)]] = (lam I DS[[E ]])
DS[[(abs (I1 I +

rest) E)]] = (lam I1 DS[[(abs (I +
rest) E)]])

DS[[(E)]] = (app DS[[E ]] #u)

DS[[(E1 E2)]] = (app DS[[E1 ]] DS[[E2 ]])
DS[[(E1 E2 E+

rest)]] = DS[[((app E1 E2) E+
rest)]]

DS[[(list)]] = #u

DS[[(list E1 E∗
rest)]] = (pair DS[[E1 ]] DS[[(list E∗

rest)]])

DS[[(quote #u)]] = #u

DS[[(quote B)]] = B
DS[[(quote N )]] = N
DS[[(quote Y )]] = (sym Y )

DS[[(quote (SX n
i=1))]] = DS[[(list (quote SX i)

n
i=1)]]

DS[[(cond (else Edefault))]] = DS[[Edefault ]]
DS[[(cond (Etest1 Ethen1

) (Etesti Etheni
)n

i=2 (else Edefault))]]
= (if DS[[Etest1 ]] DS[[Ethen1

]] DS[[(cond (Etesti Etheni
)n

i=2 (else Edefault))]])

DS[[(scand E∗
conjunct)]] = left as an exercise.

DS[[(scor E∗
disjunct)]] = left as an exercise.

DS[[(let ((Ii Ei)
n
i=1) Ebody)]] = DS[[((abs (I n

i=1) Ebody) En
i=1)]]

DS[[(letrec ((Ii Ei)
n
i=1) Ebody)]]

= DS[[(app (rec IChurchTuple

(lam Iselector (Iselector (IChurchTuple (abs (I n
j=1) Ei))

n
i=1)))

(abs (I n
i=1) Ebody))]], where IChurchTuple and Iselector are fresh.

DS[[(recur Iproc ((Ii Ei)
n
i=1) Ebody)]]

= DS[[(letrec ((Iproc (abs (I n
i=1) Ebody))) (Iproc En

i=1))]]

Figure 6.4 The DS function desugars FL expressions into FLK expressions.
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Then (Eabs3 2 3 4) desugars into

(app (app (app (lam a

(lam b

(lam c (prim * a (prim + b c)))))

2)

3)

4)

So (Eabs3 2 3 4) evaluates to 14 , (Eabs3 2 3) evaluates to the same procedure
as (abs (c) (@* 2 (@+ 3 c))), and (Eabs3 2) evaluates to the same procedure
as (abs (b c) (@* 2 (@+ b c))).

Because multiapplications are the only tagless construct, the lack of an explicit
tag is not ambiguous. Because applications tend to be the most common kind of
compound expression, eliminating the explicit tag for this case makes expressions
more concise. The multiabstraction and multiapplication syntax is inspired by
Lisp, but, unlike FLK, Lisp does not support implicit currying.

The main desugaring clause for multiabstractions (those that have the form
(abs (I1 I +

rest) E)) is defined in a recursive way that processes one parameter
at a time. The argument abstraction to DS is made smaller by one parameter on
each call until the base case of a single parameter is reached. A similar recursive
strategy is used for desugaring multiapplications.

The nullary (zero-parameter) case for app is special because it is necessary
to invent an arbitrary operand expression. We choose #u, but any expression
would do. The nullary case for abs is special because it is necessary to invent
a parameter name for the lam that results from the desugaring. As we shall
see in Section 6.3.4, it is important to choose a name that does not conflict
with other names that already appear in the program. In definitions of program
transformations like desugaring, we will often declare that new names must be
fresh. This is an informal way of specifying that the new name should be different
from any name appearing elsewhere in the program. In Section 6.3.5, we will
formalize a way of choosing new names that do not conflict with existing ones.

The list construct is a shorthand for creating lists by a sequence of nested
pairings. (list E1 . . . En) constructs a unit-terminated chain of n pairs linked
by their second components, where the value of Ei is the value of the first element
of the ith pair in the chain. For example,

(list (@+ 1 2) (@= 3 4) (pair 4 5) (sym end))

is equivalent to
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(pair (@+ 1 2)

(pair (@= 3 4)

(pair (pair 4 5)

(pair (sym end)

#u))))

The quote expression facilitates the construction of s-expressions in FL.
These are recursively defined to be literals (unit, numeric, boolean, and sym-
bolic) and lists of s-expressions. Quoted s-expressions are a very concise way to
specify tree-structured data. The quote construct can be viewed as a means of
constructing a tree from a printed representation of the tree. For example, the
s-expression (quote (1 (#t three) (four 5 six))) desugars to

(list 1

(list #t (sym three))

(list (sym four) 5 (sym six)))

The concise quote notation for s-expressions facilitates writing program phrases
from languages with s-expression syntax that are to be used as inputs for program-
manipulating programs (like interpreters, translators, and analyzers). For exam-
ple, the PostFix program (postfix 1 (2 mul) exec) can be represented as
the FL s-expression (quote (postfix 1 (2 mul) exec)). This is much sim-
pler for programmers to read and write than the corresponding kernel expression:

(pair (sym postfix)

(pair 1

(pair (pair 2 (pair (sym mul) #u))

(pair (sym exec)

#u))))

The cond construct is an n-way conditional that stands for a nested sequence
of if expressions. For example,

(cond ((@>= grade 90) (sym A))

((@>= grade 80) (sym B))

((@>= grade 70) (sym C))

((@>= grade 60) (sym D))

(else (sym F)))

desugars to

(if (@>= grade 90) (sym A)

(if (@>= grade 80) (sym B)

(if (@>= grade 70) (sym C)

(if (@>= grade 60) (sym D) (sym F)))))

The scand and scor expressions provide for so-called short-circuit evalu-
ation of logical conjunctions and disjunctions, respectively. If a false value is
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encountered in the left-to-right evaluation of the conjuncts of a scand expres-
sion, then its result is the false value, regardless of whether subsequent conjuncts
contain errors or infinite loops. So (scand (@= 1 2) (@/ 3 0) (@< 4 5)) eval-
uates to false but (scand (@/ 3 0) (@= 1 2) (@< 4 5)) signals a divide-by-
zero error. Similarly, if a true value is encountered in the left-to-right evaluation
of the disjuncts of a scor expression, then the result is the true value, regardless of
whether the subsequent disjuncts contain errors or infinite loops. Primitive appli-
cations involving the primitive operators and and or do not use short-circuit eval-
uation; they evaluate all operand expressions. So (@and (@= 1 2) (@/ 3 0))

and (@or (@< 1 2) (@/ 3 0)) both signal a divide-by-zero error. The desug-
aring definitions for scand and scor are left as Exercise 6.1.

The let expression is a convenient way to name intermediate results in a com-
putation. The expression (let ((I1 E1) . . . (In En)) Ebody) evaluates the
body expression Ebody in a context where the names I1 , . . . , In are bound to the
values of the expressions E1 , . . . , En . For example,

(let ((a (@* 4 5))

(b (@+ 3 4)))

(@/ (@+ a b) (@- a b)))

has the same value as (@/ (@+ 20 7) (@- 20 7)) or (@/ 27 13), namely 2 .
The names I1 , . . . , In introduced by the let can be referenced only in the body,
not in the definition expressions E1 , . . . , En :

(let ((a 1))

(@* (let ((a 20)

(b (@+ a 300))) {refers to outer a, so b is 301}
(@- b a)) {refers to inner a, so difference is 281}

a)) {refers to outer a, so product is 281}

The let construct desugars into a multiapplication of a multiabstraction.
That is, (let ((I1 E1) . . . (In En)) Ebody) desugars to

((abs (I1 . . . In) Ebody) E1 . . . En)

Note that E1 , . . . , En appear outside the abs and so cannot reference the pa-
rameters I1 , . . . , In . The part of the program in which a declared name can be
referenced is called its scope; we will study this notion in Section 6.3.1. That let
can be expressed in terms of an abstraction underscores the fact that abstractions
are a fundamental means of naming in FLK. Here is a (partial) desugaring of the
two let examples from above:

((abs (a b) (@/ (@+ a b) (@- a b))) (@* 4 5) (@+ 3 4))
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((abs (a)

(@* ((abs (a b) (@- b a))

20

(@+ a 300))

a))

1)

The (letrec ((I1 E1) . . . (In En)) Ebody) expression is similar to the let
expression except that the names I1 , . . . , In can be referenced inside the definition
expressions E1 , . . . , En . The letrec expression is similar to the rec expression,
except that it can be thought of as solving a group of mutually recursive equations.
For example,

(letrec ((even? (abs (x) (if (@= x 0) #t (odd? (@- x 1)))))

(odd? (abs (y) (if (@= y 0) #f (even? (@- y 1))))))

(list (even? 0) (odd? 1) (odd? 2) (even? 3)))

evaluates to �true, true, false, false �.
The letrec desugaring is inspired by the observation made in Section 5.1.1

that n mutually recursive definitions can always be rephrased as a single recursive
definition of a tuple with n components. Because FLK’s rec construct is able
to “solve” a single recursive definition, we can use it to solve mutually recursive
definitions as long as we can combine them into a tuple-like structure.

Since the letrec desugaring is tricky, we develop it in two passes. In the
first pass, we combine the mutually recursive definitions into a list. As a concrete
example, we can express the even?/odd? example using rec and list as follows:

(let ((outer (rec inner

(let ((even? (nth 1 inner))

(odd? (nth 2 inner)))

(list (abs (x)

(if (@= x 0) #t (odd? (@- x 1))))

(abs (y)

(if (@= y 0) #f (even? (@- y 1)))))))))

(let ((even? (nth 1 outer))

(odd? (nth 2 outer)))

(list (even? 0) (odd? 1) (odd? 2) (even? 3))))

Here we assume that nth is an identifier in the standard library bound to a
procedure that takes an integer i and a list and returns the ith element of the
list, where elements are indexed starting at 1. (See Figure 6.8 for a definition
of nth.) In the expression (rec inner . . .), inner denotes a list of the even?

and odd? functions. The nth function is used to extract the two functions from
this list, let is used to name these functions even? and odd?, and list glues
together abstractions that define these functions. Because let and list are both
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nonstrict in FL, the solution to (rec inner . . .) (as computed using the least
fixed point technique from Chapter 5) is indeed a list of the two desired functions.
This list is then named outer and is deconstructed into named components that
become available for the evaluation of the body expression of the original letrec.

We can generalize this example into the following almost-correct desugaring
for letrec:

DS[[(letrec ((Ii Ei)
n
i=1) Ebody)]]

= DS[[(let ((Iouter (rec Iinner

(let ((Ii (nth i Iinner))
n
i=1) (list En

i=1)))))

(let ((Ii (nth i Iouter))
n
i=1) Ebody))]],

where Iouter and Iinner are fresh identifiers.

Note that both Iinner and Iouter must be fresh names. Whenever we choose more
than one fresh name, we always assume that the fresh names are pairwise distinct,
so Iinner is necessarily a different name from Iouter .

5

The above desugaring is almost right but is problematic for two technical
reasons. First, it assumes that the index arguments of nth can be integers when
in fact they must be numerals denoting the corresponding integers. Second,
employing the standard identifier nth is not only unaesthetic but also can lead
to bugs as a result of name capture (see Section 6.3.4).

For these reasons, we present an alternative desugaring that circumvents both
problems. This desugaring is based on the same idea but represents tuples as
procedures. In this representation, which we shall call a Church tuple, an n-
element list is represented as a unary procedure whose single argument is an
n-argument selector procedure that is applied to the n elements of the list. If
IChurchTuple is bound to an n-element Church tuple, then the application

(IChurchTuple (abs (I1 . . . In) Ii))

extracts the ith element of the list. More generally, the application

(IChurchTuple (abs (I1 . . . In) E))

returns the value of E in a context where each Ii is bound to the ith element of
the list. For example, suppose ICT is bound to the Church tuple

(abs (Iselector) (Iselector 2 8 1 6))

Then

(ICT (abs (a b c d) a)) −−−FL→ 2
(ICT (abs (a b c d) c)) −−−FL→ 1

5This fact is not important here since the desugaring has the same meaning if Iinner and
Iouter are the same name.
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(ICT (abs (a b c d) (@- (@* b d) d))) −−−FL→ 42
(ICT (abs (a b c d) (list d b a c))) −−−FL→ �6 , 8 , 2 , 1 �

If we modify the even?/odd? example to use Church tuples in place of regular
lists, we obtain the following:

(app (rec ct

(lam s (s (ct (abs (even? odd?)

(abs (x)

(if (@= x 0) #t (odd? (@- x 1))))))

(ct (abs (even? odd?)

(abs (y)

(if (@= y 0) #f (even? (@- y 1)))))))))

(abs (even? odd?)

(list (even? 0) (odd? 1) (odd? 2) (even? 3))))

Here, ct names a Church tuple of the even? and odd? procedures. In the body of
the rec, these two components are extracted by applying ct to selector procedures
of the form (abs (even? odd?) . . . ). The Church tuple returned by the rec

is also directly applied to such a selector to evaluate the body of the original
letrec. Note how this approach avoids the use of nth and let to extract and
name parts.

This example can be generalized to our official letrec desugaring:

DS[[(letrec ((I1 E1) . . . (In En)) Ebody)]]
= DS[[(app (rec IChurchTuple

(lam Iselector (Iselector (IChurchTuple (abs (I1 . . . In) E1))
...

(IChurchTuple (abs (I1 . . . In) En)))))

(abs (I1 . . . In) Ebody))]], where IChurchTuple and Iselector are fresh.

In this case, IChurchTuple and Iselector must not only be fresh, they must also be
distinct.

A common idiom is to create a locally recursive procedure and then apply it
immediately to initial values to start a computation. For example, an iterative
factorial procedure can be expressed in FL as:

(abs (n)

(letrec ((iter (abs (num ans)

(if (= num 0)

ans

(iter (- num 1) (* num ans))))))

(iter n 1)))
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We can make this idiom easier to express by providing a new sugar construct

(recur Iproc ((I1 Einit1 ) . . . (In Einitn)) Ebody)

that desugars to

(letrec ((Iproc (abs (I1 . . . In) Ebody)))

(Iproc Einit1 . . . Einitn))

The recur expression is similar in structure to a let expression except that it
has an additional identifier Iproc. Each of the n variables Ii is first bound to
the value of the corresponding initialization expression Einiti and then Ebody is
evaluated in a context where these bindings are in effect and the name Iproc refers
to a procedure with parameters I1 , . . . , In that computes Ebody . Using recur,
the iterative factorial procedure from above can be expressed more succinctly as

(abs (n)

(recur iter ((num n) (ans 1))

(if (= num 0)

ans

(iter (- num 1) (* num ans)))))

Exercise 6.1 Provide the missing desugarings for FL’s scand and scor constructs (see
Figure 6.4).

Exercise 6.2 It is often useful for the value of a let-bound variable to depend on the
value of a previous let-bound variable. In FL, achieving this behavior requires nested
let expressions. For example:

(abs (a b)

(let ((r (@+ a b)))

(let ((r-squared (@* r r)))

(let ((r-cubed (@* r r-squared)))

(@+ r (@+ r-squared r-cubed))))))

Many Lisp dialects support a let* construct that (other than the keyword let*) looks
just like a let construct. However, the meaning of let* differs from let: its variables
are guaranteed to be bound to the values of the associated definitions in the order in
which they appear in the list of bindings. A definition expression in let* can refer to
the result of a previous binding within the same let*. Using let*, the above example
can be rendered:

(abs (a b)

(let* ((r (@+ a b))

(r-squared (@* r r))

(r-cubed (@* r r-squared)))

(@+ r (@+ r-squared r-cubed))))

Extend the desugaring function DS to desugar let* expressions.
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Exercise 6.3 Ben Bitdiddle is upset by the desugaring for nullary (i.e., zero-parameter)
abstractions and applications. He argues (correctly) that, according to the desugar-
ings, the FL expression ((abs (x) x)) will return #u. He believes that evaluating this
expression should give an error.

One way to fix this problem is to package up multiple arguments into some sort of
data structure. See Exercise 6.21 for an example of this approach. Here we will consider
other approaches for handling nullary abstractions and applications.

a. Bud Lojack suggests desugaring (abs () E) into E and (E) into E . Give examples
of FL expressions that have a questionable behavior under this desugaring.

b. Abby Stracksen suggests a desugaring in which

DS[[(E)]] = (app (app DS[[E ]] #t) #u)

DS[[(E1 E2)]] = (app (app DS[[E1 ]] #f) DS[[E2 ]])
DS[[(E1 E2 E+

rest)]] = ((app (app DS[[E1 ]] #f) DS[[E2 ]])
DS[[(E+

rest)]])

i. Give the corresponding desugarings for multiabstractions.

ii. What value does ((abs (x) x)) have under this desugaring?

c. Ben reasons that the fundamental problem exhibited by the nullary desugarings is
that there is no way to call a procedure without passing it an argument. He decides
to extend FLK with the following kernel construct for parameterless procedures:

(freeze E) returns a “frozen” value containing the unevaluated expression E .

(thaw E) evaluates the expression within a frozen value. It gives an error if called
on any value other than one created by freeze.

Show how freeze and thaw can be used to fix Ben’s problem.

d. Sam Antics doesn’t like the fact that multiabstractions and multiapplications both
have three desugaring clauses. Figuring that only two clauses should suffice in each
case, he develops the following desugaring rules based on Ben’s freeze and thaw

commands:

DS[[(abs () E)]] = DS[[(freeze E)]]
DS[[(abs (I1 I ∗

rest) E)]] = (lam I1 DS[[(abs (I ∗
rest) E)]])

DS[[(E)]] = DS[[(thaw E)]]
DS[[(E1 E∗

rest)]] = DS[[((app E1 E2) DS[[E∗
rest ]])]]

Discuss the strengths and weaknesses of Sam’s desugaring.

Exercise 6.4 We will say that two constructs are equipotent (roughly, “of equal
power”) if each can be expressed as a desugaring into the other. For example, mul-
tiargument procedures and single-argument procedures are equipotent: multiargument
abstractions and applications can be desugared into single-argument ones via currying;



6.2.2 FL Syntactic Sugar 229

and single-argument abstractions and applications are a special subcase of the multi-
argument ones. On the other hand, lists and procedures are not equipotent; although
Church tuples are a technique to represent lists as procedures, procedure abstractions
and applications cannot be represented as pairs.

We have considered a version of FLK where rec is the kernel recursion construct
and FL’s letrec is desugared into rec. Show that rec and letrec are equipotent by
providing a desugaring of rec into letrec (i.e., suppose that letrec is the kernel FLK
construct and define rec as syntactic sugar).

Exercise 6.5 The letrec desugaring based on nth presented in the above discussion
used three let expressions and two fresh identifiers. It is possible to simplify this desug-
aring to one that uses only one let expression and one fresh identifier. The simplified
desugaring has the following form:

DS[[(letrec ((Ii Ei)
n
i=1) E0)]]

= DS[[(nth index (rec Ilist (let bindings body)))]], where Ilist is fresh.

Complete the desugaring by fleshing out index, bindings, and body.

Exercise 6.6 The desugaring for letrec in Figure 6.4 requires a pair of fresh identifiers.
There is another desugaring for letrec that requires no fresh identifiers whatsoever. This
desugaring, known as the Bekić expansion, has a recursive structure not exhibited by
the other versions. Below is a skeleton of the desugaring.

DS[[(letrec ((I1 E1) . . . (In En)) E0)]]
= DS[[(let ((I1 (rec I1 �1)) . . . (In (rec In �n))) E0)]]

where the boxes �i are to be filled in appropriately.

a. Give the general form for expressions that fill the boxes �i in such a way that the
above skeleton defines a correct desugaring for letrec.

b. Using your approach, how many recs will appear in a desugaring of a letrec with 5
bindings?

c. Give a closed-form solution for the number of recs that will appear in a desugaring
of a letrec with n bindings.

d. Comment on the practicality of this letrec desugaring.

Exercise 6.7 Prove that the expression-desugaring function DS specified in Figure 6.4
is well defined. That is, prove that if E is a valid FL expression, then DS[[E ]] is a valid
FLK expression. Your proof should be by induction. However, it cannot be by structural
induction, since in many clauses of the definition, DS is called on an expression that is not
a subexpression of the original expression. The key challenge of this proof is developing
a metric on FL expressions that decreases with every call to DS.
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Desugaring Definitions and Programs

The top-level program construct (fl (I1 . . . In) EpgmBody D1 . . . Dk) evalu-
ates the program body expression EpgmBody in a context where

• the formal program parameters I1 , . . . , In are bound to the program arguments;

• each name Iname in a definition D of the form (def Iname Edefn) is bound to
the value of the definition expression Edefn ;

• each procedure name IprocName in a definition of the form

(def (IprocName I ′
1 . . . I ′

n) EprocBody)

is bound to a (curried) procedure with formal parameters I ′1 , . . . , I ′n and body
EprocBody ; and

• each member of a set of standard identifiers (names in the standard li-
brary) is bound to the value specified by the library. We will assume that
the standard library at the very least binds each primitive operator name to
a procedure performing the corresponding operation. E.g., not is bound to
(abs (a) (@not a)), + is bound to (abs (a b) (@+ a b)), etc. We will
have more to say about the standard library in Section 6.2.3.

Definitions make it convenient to name top-level program values (typically
procedures) that are used within the program body Ebody . The value expressions
of the definitions are evaluated in a mutually recursive context: the expression
in one definition may refer to any name defined by any other definition. The
program parameters and standard identifiers are visible within the definitions as
well as within the program body.

Consider the following sample FL program:

(fl (a b) (pair (even? sum) (odd? prod))

(def sum (+ a b))

(def prod (* a b))

(def (even? x) (if (= x 0) #t (odd? (- x 1))))

(def (odd? y) (if (= y 0) #f (even? (- y 1)))))

The program body expression (pair (even? sum) (odd? prod)) refers to the
values sum and prod and to the procedures even? and odd? introduced via def.
Note that even? and odd? have mutually recursive definitions. The fact that
standard identifiers are bound to appropriate procedures in the definitions and
program body means that =, -, +, and * can all be used without the prim tag or
@ sugar.
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DSpgm : ProgFL → ProgFLK

DSpgm [[(fl (I ∗
pgmFormal) EpgmBody (def Inamei

Edefni
)k−1

i=1

(def (IprocName I ∗
procFormal) EprocBody) Dn

j=k+1)]]

= DSpgm [[(fl (I ∗
pgmFormal) EpgmBody (def Inamei

Edefni
)k−1

i=1

(def IprocName (abs (I ∗
procFormal) EprocBody)) Dn

j=k+1)]]

DSpgm [[(fl (I ∗
pgmFormal) EpgmBody (def Inamei

Edefni
)n

i=1)

= (flk (I ∗
pgmFormal)

DS[[(letrec ((not (abs (x) (prim not x)))

(+ (abs (x y) (prim + x y)))

; . . . other standard library bindings . . .
)

(letrec ((Inamei
Edefni

)n
i=1)

EpgmBody))]])

Figure 6.5 Desugaring FL programs into FLK programs.

The desugaring of an FL program into an FLK program is performed by
the function DSpgm defined in Figure 6.5. The first clause is responsible for
desugaring each definition of the form (def (IprocName I ∗procFormal) EprocBody)

into one of the form (def IprocName (abs (I ∗procFormal) EprocBody)). Once all
the appropriate procedure definitions have been desugared in this way, the second
clause transforms an FL program into an FLK program by wrapping the body
expression in (1) a letrec that introduces standard bindings (which may be
mutually recursive) and (2) a letrec that introduces the mutually recursive
definitions. Because the letrec for definitions is defined inside the letrec for
standard bindings, the definition expressions Edefn1

, . . . , Edefnn
can refer to the

standard bindings.
Note that if a program parameter name is the same as a standard bind-

ing name or a name introduced by def, it will be impossible to refer to the
parameter in the definition expressions or body because it will be “shadowed”
by the other name. It is also possible for the names introduced by standard
bindings to be shadowed within the definitions or body of a program. For in-
stance, the expression (+ 2 3) does not necessarily denote 5 within the body
or a definition of an FL program. Why? Because it might occur in a context
like (let ((+ (abs (x y) (@* x y))) �), in which case the name + stands for
a multiplication procedure and (+ 2 3) denotes 6 . In order to unambiguously
specify addition in any context, it is necessary to use (prim + . . .).
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Desugaring Contexts

DC ∈ DesugaringContext

DC ::= � | (fl (I ∗
formal) Ebody Dk−1

i=1 DC Dn
j=k+1) | (flk (I ∗

formal) DC)
| (if DC Ethen Eelse) | (if Etest DC Eelse) | (if Etest Ethen DC)
| (prim Oprimop Ek−1

i=1 DC En
j=k+1)

| (lam Iformal DC) | (app DC Erand) | (app Erator DC)
| (pair DC Esnd) | (pair Efst DC) | (rec Iname DC)

Figure 6.6 Rewriting approach to desugaring FL into FLK, Part 1.

Exercise 6.8 In FL, definitions are allowed only within the fl construct at “top level”;
yet a local form of definition within abs and let expressions would often be useful.
Generalize the idea of definitions by modifying FL to support local definitions. Design
a syntax for your change, and show how to express it in terms of a desugaring.

Rewriting-based Approach to Desugaring

Intuitively, desugaring is a program transformation in which sugar constructs are
rewritten to kernel constructs. The rewriting nature of desugaring is somewhat
obscured in the definition of the desugaring function DS in Figures 6.4 and 6.5.
Because of the recursive nature of the DS function, it rewrites an FL expression
to an FLK expression “all at once” rather than “one step at a time.”

Here we present an alternative specification of FL desugaring that describes
the desugaring process as a sequence of discrete desugaring steps. In this ap-
proach, based on rewriting, the recursive nature of the desugaring process will be
implicit rather than explicit. Since the rewriting-based approach to desugaring is
easier to specify than desugaring functions, we will often use the rewriting-based
approach in the remainder of this book.

Figure 6.7 presents one-step desugaring rules of the form S �ds S ′, where S
and S ′ are viewed as generic s-expressions rather than FL or FLK expressions,
definitions, or programs. These rules describe desugaring at the expression, def-
inition, and program level. These desugaring rules cannot be applied just any-
where, but only in the desugaring contexts described by the productions for DC
in Figure 6.6. These contexts allow the desugaring of FL program expressions,
definitions within an FL program, and FL sugar constructs appearing within an
FLK expression.

Restricting the context in which the desugaring rules can be applied is essen-
tial for prohibiting invalid desugarings. For example, without the restrictions,
the parameter list (I1 I2) in an abs expression could be misinterpreted as a
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Desugaring Reduction Rules (�ds)

(@Oprimop En
i=1) �ds (prim Oprimop En

i=1)

(abs () E) �ds (lam Ifresh E), where Ifresh is fresh
(abs (I ) E) �ds (lam I E)

(abs (I1 I +
rest) E) �ds (lam I1 (abs (I +

rest) E))

(E) �ds (app E #u) (E1 E2) �ds (app E1 E2)

(E1 E2 E+
rest) �ds ((app E1 E2) E+

rest)

(list) �ds #u (list E1 E∗
rest) �ds (pair E1 (list E∗

rest))

(quote #u) �ds #u (quote B) �ds B (quote N ) �ds N
(quote Y ) �ds (sym Y )

(quote (SX n
i=1)) �ds (list (quote SX i)

n
i=1)

(cond (else Edefault)) �ds Edefault

(cond (Etest1 Ethen1
) (Etesti Etheni

)n
i=2 (else Edefault))

�ds (if Etest1 Ethen1
(cond (Etesti Etheni

)n
i=2 (else Edefault)))

(scand E∗
conjunct) �ds left as an exercise.

(scor E∗
conjunct) �ds left as an exercise.

(let ((Ii Ei)
n
i=1) Ebody) �ds ((abs (I n

i=1) Ebody) En
i=1)

(letrec ((Ii Ei)
n
i=1) Ebody)

�ds (app (rec IChurchTuple

(lam Iselector
(Iselector (IChurchTuple (abs (I n

j=1) Ei))
n
i=1)))

(abs (I n
i=1) Ebody)), where IChurchTuple , Iselector are fresh.

(recur Iproc ((Ii Ei)
n
i=1) Ebody)

�ds (letrec ((Iproc (abs (I n
i=1) Ebody))) (Iproc En

i=1))

(def (IprocName I ∗
procFormal) EprocBody)

�ds (def IprocName (abs (I ∗
procFormal) EprocBody))

(fl (I ∗
pgmFormal) EpgmBody (def Inamei

Edefni
)n

i=1)

�ds (flk (I ∗
pgmFormal)

(letrec (. . . standard library bindings . . .)
(letrec ((Inamei

Edefni
)n

i=1)

EpgmBody)))

Desugaring Transition Relation (⇒ds)

DC{S} ⇒ds DC{S ′} , where S �ds S ′

Figure 6.7 Rewriting approach to desugaring FL into FLK, Part 2.
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procedure application and incorrectly be desugared to (app I1 I2). Similarly, a
binding (I E) within an let or letrec could be misinterpreted as a procedure
application without the context restriction.

Desugaring contexts and desugaring rules combine to define desugaring tran-
sitions. If S �ds S ′ then DC{S} ⇒ds DC{S ′} for all desugaring contexts DC
(including �). For example:

(abs (a b) (list (@+ a b) (@- a b)))

⇒ds (lam a (abs (b) (list (@+ a b) (@- a b))))

⇒ds (lam a (lam b (list (@+ a b) (@- a b))))

⇒ds (lam a (lam b (pair (@+ a b) (list (@- a b)))))

⇒ds (lam a (lam b (pair (prim + a b) (list (@- a b)))))

⇒ds (lam a (lam b (pair (prim + a b) (pair (@- a b) (list)))))

⇒ds (lam a (lam b (pair (prim + a b) (pair (@- a b) #u))))

⇒ds (lam a (lam b (pair (prim + a b) (pair (prim - a b) #u))))

Because desugaring contexts DC allow desugarings to take place in an arbi-
trary subexpression of a prim, app, if, or pair expression, the transition relation
⇒ds is not deterministic. However, it is possible to show that ⇒ds is confluent
and terminating. So it is sensible to define desugaring functions as follows:

DS : ExpFL → ExpFLK = λE . E ′, where E
∗⇒ds E ′ 
⇒ds

DSpgm : ProgFL → ProgFLK = λP . P ′, where P
∗⇒ds P ′ 
⇒ds

In fact, these are the same functions as those defined via the recursive function
approach.

Exercise 6.9

a. Prove that ⇒ds is confluent.

b. Prove that⇒ds is terminating. That is, if S is an s-expression, then there is no infinite
transition path beginning with S.

c. Prove that if S is an s-expression for a valid FL expression and S ⇒ds S ′ 
⇒ds , then
S ′ is an s-expression for a valid FLK expression.

d. Prove that if S is an s-expression for a valid FL program and S ⇒ds S ′ 
⇒ds , then
S ′ is an s-expression for a valid FLK program.

e. Prove that the expression-desugaring function DS defined in terms of⇒ds is the same
as the desugaring function DS defined in Figure 6.4 on page 220.

f. Prove that the program-desugaring function DSpgm defined in terms of ⇒ds is the
same as the desugaring function DSpgm defined in Figure 6.5 on page 231.
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6.2.3 The FL Standard Library

A standard library is a collection of named values (frequently procedural val-
ues) that may be used within a program. The library often consists of two parts:

1. a collection of built-in values (such as FLK’s #u, #t, #f, and O ∈ Primop)
that often must be used in the context of special syntax (such as prim in
FLK);

2. a collection of top-level values that can be assumed to be defined in the
outermost scope of a program.

Typically, built-in operators cannot (or at least cannot easily or efficiently) be
defined by the programmer. These include operators for fundamental values like
booleans, characters, and numbers (floating point as well as integer) as well as
data structures like strings, arrays, and message-passing objects. In contrast,
top-level values are values that can be defined by the programmer, but it is more
convenient if the language provides these as “predefined” values.

The advantage of a standard library is that it allows many constants and
procedures to be factored out of the syntax of the language. For example, we can
easily extend FLK with such values as floating point numbers, characters, and
strings by adding (1) new literal expression forms for each kind of value and (2)
new primitive operators in Primop for manipulating these values. Such additions
are modular in the sense that no new kernel expressions (except for the literal
values) must be added to the language. It is even easier to extend FLK with
data structures like matrices, stacks, queues, lists, trees, and graphs, since these
can all be defined via top-level procedures that create and manipulate such data
structures.

Of course, it is still necessary to specify the components of the library some-
where in a language description. Typically the library is specified by listing all
elements in the library along with a description of the semantics of each one. We
have already seen such a listing for FLK’s primitive operators in Figure 6.2 on
page 213. For real-world languages like Java and C++, such descriptions usually
come in the form of an Application Programming Interface (API), which
specifies the number and types of arguments for each function/procedure/method
along with an informal English description of its semantics.

We have seen in the FL program-desugaring function DSpgm (defined in Fig-
ure 6.5 on page 231) that top-level standard library values can be specified via
a sequence of bindings of the form (Iname Evalue). So another way of specifying
such top-level values is to list these bindings. Figures 6.8 and 6.9 show the top-
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(not (lam x (@not x)))

... Similar for other unary primitives.

(+ (abs (x y) (@+ x y)))

... Similar for other binary primitives.

(true #t)

(false #f)

(cons (abs (x xs) (pair x xs)))

(car (lam xs (@fst xs)))

(cdr (lam xs (@snd xs)))

(nil #u)

(null (abs () #u))

(null? (lam xs (@unit? xs)))

(min (abs (x y) (if (@<= x y) x y)))

(max (abs (x y) (if (@>= x y) x y)))

(list? (abs (val) (scor (null? val)

(scand (@pair? val) (list? (snd val))))))

(length (abs (xs)

(if (null? xs)

0

(@+ 1 (length (cdr xs))))))

(nth (abs (i xs)

(cond ((scor (null? xs) (@< i 1))

(error nth-index-out-of-bounds))

((@= i 1) (car xs))

(else (nth (@- i 1) (cdr xs))))))

Figure 6.8 FL standard library bindings, Part 1.

level bindings that we will assume for FL. There are several kinds of bindings in
the figure:

• There is one binding for each primitive operator in Primop, which binds the
name of the primitive to a procedure performing the primitive operation.
This allows writing (+ E1 E2) within the program instead of (@+ E1 E2)

or (prim + E1 E2).
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(reverse (abs (xs)

((rec loop

(abs (old new)

(if (null? old) new

(loop (cdr old) (cons (car old) new))))))

xs nil)))

(append (abs (xs ys)

(if (null? xs)

ys

(cons (car xs) (append (cdr xs) ys)))))

(equal? (abs (x y)

(scor (scand (@unit? x) (@unit? y))

(scand (@bool? x) (@bool? y) (@bool=? x y))

(scand (@int? x) (@int? y) (@= x y))

(scand (@sym? x) (@sym? y) (@sym=? x y))

(scand (@pair? x) (@pair? y)

(equal? (@fst x) (@fst y))

(equal? (@snd x) (@snd y))))))

(member? (abs (elt lst)

(scand (not (null? lst))

(scor (equal? elt (car lst))

(member? elt (cdr lst))))))

... higher-order list procedures from Figure 6.11.

Figure 6.9 FL standard library bindings, Part 2.

• Synonyms are introduced for several constants and procedures. The names
true and false are synonyms for #t and #f. The names min and max are
given, respectively, to procedures that return the minimum or maximum of two
integers. The Lisp-inspired list-manipulation names cons, car, cdr, nil, null,
and null? are introduced as synonyms for manipulations on unit-terminated
chains of pairs. These functions highlight situations where pairs are being
viewed as lists rather than raw pairs.

• list?, length, nth, reverse, append, equal?, and member? are recursive
list procedures frequently used in list-manipulation programs. For examples
involving these procedures, see Figure 6.10. There are many other recursive
list procedures that could be included in the standard library for FLK. The
fact that DSpgm introduces standard bindings via letrec as opposed to let

means that the standard bindings may be mutually recursive. So no explicit
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(list? 17) −−−FL→ false
(list? (list 7 2 5)) −−−FL→ true
(list? (pair 3 (pair 4 5))) −−−FL→ false

(length (list)) −−−FL→ 0
(length (list 7 2 5)) −−−FL→ 3
(length (list #u #t (sym foo) (pair 1 2) (list (sym a) (sym b)))) −−−FL→ 5

(nth 1 (list 7 #t (sym foo))) −−−FL→ 7
(nth 3 (list 7 #t (sym foo))) −−−FL→ ′foo ′

(nth 0 (list 7 #t (sym foo))) −−−FL→ error:nth-index-out-of-bounds
(nth 4 (list 7 #t (sym foo))) −−−FL→ error:nth-index-out-of-bounds

(reverse (list 7 #t (sym foo))) −−−FL→ � ′foo ′, true, 7 �
(reverse (list 7 (list 2 5))) −−−FL→ ��2 , 5 �, 7 �
(reverse (list)) −−−FL→ ��

(append (list 7 #t (sym foo)) (list #f 4)) −−−FL→ �7 , true, ′foo ′, false, 4 �
(append (list) (list #f 4)) −−−FL→ �false, 4 �
(append (list 7 #t (sym foo)) (list)) −−−FL→ �7 , true, ′foo ′ �

(equal? 1 #f) −−−FL→ false
(equal? 1 1) −−−FL→ true
(equal? #f #f) −−−FL→ true
(equal? (list 7 (pair #u (sym foo)) #f)

(list 7 (pair #u (sym foo)) #t)) −−−FL→ false
(equal? (list 7 (pair #u (sym foo)) #f)

(pair 7 (pair (pair #u (sym foo)) (pair #f #u)))) −−−FL→ true

(member? 2 (list 7 2 5)) −−−FL→ true
(member? 17 (list 7 2 5)) −−−FL→ false
(member? (sym *) (quote (+ - * /))) −−−FL→ true

Figure 6.10 Sample invocations of standard list procedures.

rec or letrec is necessary to define recursive procedures like length or nth,
and each of these definitions may refer to other standard bindings (such as
cons, car, cdr).

Desugaring a top-level program construct is only one way to include standard
bindings within a program. Some programming language implementations sup-
port a notion of linking program modules together before executing a program
(see Chapter 15). In such implementations, a program is linked with modules that
implement the standard library. In some languages, programmers may declare
extra libraries they wish to load in addition to the standard library.
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The practical utility of a programming language depends in large part on
the libraries it supplies. Fortran and C became popular languages for number
crunching because of their extensive libraries for numerical methods. APL has
impressive libraries for matrix manipulation. The standard libraries for functional
languages (e.g., Haskell, ML dialects, Lisp dialects) include many procedures
for processing lists and trees. Both Java and C++ have huge libraries of proce-
dures and data structures for many purposes (numerical manipulation, graphics,
network communication, cryptography, etc.).

6.2.4 Examples

Although FL is a toy language, it packs a fair bit of expressive punch. We
have already seen several list-processing examples in the context of the standard
library. Here we illustrate the expressive power of FL with a few more examples.

Higher-Order List Procedures

In functional languages it is common to abstract over list-processing idioms by
supplying procedural arguments. Figure 6.11 presents some classic higher-order
list procedures written as FL definitions. Since these functions are so useful, we
will assume that they are included in the FL standard library. The map procedure
returns the list that results from performing a given procedure on every element
of a given list.

(map (abs (x) (* x x)) (list 7 2 5)) −−−FL→ �49 , 4 , 25 �
(map not (list #t #f)) −−−FL→ �false, true �
(map (abs (y) (pair 3 y)) (list 7 #t (sym foo)))

−−−FL→ �〈3 , 7 〉, 〈3 , true〉, 〈3 , ′foo ′〉�

The filter procedure returns a list containing the elements of the given list that
satisfy the given predicate.

(filter (abs (x) (= 1 (% x 2))) (list 7 2 5 3 4)) −−−FL→ �7 , 5 , 3 �
(filter sym? (list 7 #t (sym foo) (pair #u (sym bar)) (sym baz))

−−−FL→ � ′foo ′, ′baz ′ �

The forall? procedure determines whether all the elements of a list satisfy a
predicate. The exists? procedure determines whether at least one element of a
list satisfies a predicate.

(forall? (abs (x) (= 1 (% x 2))) (list 7 3 5)) −−−FL→ true
(forall? (abs (x) (= 1 (% x 2))) (list 7 3 2 5)) −−−FL→ false
(exists? (abs (x) (= 1 (% x 2))) (list 7 3 2 5)) −−−FL→ true
(exists? (abs (x) (= 1 (% x 2))) (list 6 2 8 4)) −−−FL→ false
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The foldr (short for “fold right”) procedure accumulates a result value from a
list by using binop to combine each element into the result starting with nullval

as the initial result.

(foldr + 0 (list 7 2 3)) −−−FL→ 12
(foldr * 1 (list 7 2 3)) −−−FL→ 42
(foldr (abs (x bs) (cons (> x 2) bs))

nil

(list 7 2 3)) −−−FL→ �true, false, true �

Exercise 6.10 The foldr procedure abstracts over the general list-recursion idiom.
Demonstrate the generality of foldr by defining each of map, filter, forall?, and
exists? as nonrecursive procedures implemented in terms of foldr. E.g., the definition
of map should have the form

(def (map f xs) (foldr Ebinop Enullval xs))

This can be simplified further to

(def (map f) (foldr Ebinop Enullval))

Merge Sort

Figure 6.12 presents a merge-sort procedure that uses the merge sort algorithm
to sort a list of elements according to a less-than-or-equal-to predicate, before?.
For example:

(merge-sort <= (list 7 2 4 1 5 4 3)) −−−FL→ �1 , 2 , 3 , 4 , 4 , 5 , 7 �
(merge-sort >= (list 7 2 4 1 5 4 3)) −−−FL→ �7 , 5 , 4 , 4 , 3 , 2 , 1 �
(merge-sort (abs (a b) (<= (% a 4) (% b 4)))

(list 7 2 4 1 5 4 3)) −−−FL→ �4 , 4 , 1 , 5 , 2 , 7 , 3 �

The procedure is implemented in terms of three auxiliary procedures: merge,
alts, and ms. The merge procedure takes two lists xs and ys that are assumed
to be sorted according to the before? predicate and returns the sorted list con-
taining all the elements of both lists (including duplicates, if any). Note that
because merge is defined as a local recursive procedure inside merge-sort, it can
refer to the before? parameter of merge-sort without receiving it as an explicit
argument. The alts procedure returns a pair of (1) all the odd-indexed6 elements
and (2) all the even-indexed elements of a given list, preserving the relative order
of elements in each sublist.

(alts (list)) −−−FL→ 〈��, ��〉
(alts (list 7)) −−−FL→ 〈�7 �, ��〉
(alts (list 7 2)) −−−FL→ 〈�7 �, �2 �〉
(alts (list 7 2 4 5 1 4 3)) −−−FL→ 〈�7 , 4 , 1 , 3 �, �2 , 5 , 4 �〉

6Assume that list elements are indexed starting with 1.
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(def (map f xs)

(if (null? xs) xs (cons (f (car xs)) (map f (cdr xs)))))

(def (filter pred xs)

(cond ((null? xs) xs)

((pred (car xs)) (cons (car xs) (filter pred (cdr xs))))

(else (filter pred (cdr xs)))))

(def (forall? pred xs)

(scor (null? xs)

(scand (pred (car xs)) (forall? pred (cdr xs)))))

(def (exists? pred xs)

(scand (not (null? xs))

(scor (pred (car xs)) (exists? pred (cdr xs)))))

(def (foldr binop nullval xs)

(if (null? xs)

nullval

(binop (car xs) (foldr binop nullval (cdr xs)))))

Figure 6.11 Some higher-order list procedures written in FL and included in the
standard library.

We could have written alts as a recursive procedure, but have instead chosen
to implement it in terms of foldr. The ms procedure implements the divide-
conquer-and-glue steps of the merge sort algorithm.

An ELM Interpreter

As a more interesting example of an FL program, in Figure 6.13 we use FL to
write an interpreter for the ELM subset of the EL language (Exercise 3.10 on
page 67). Recall that ELM is EL without conditional and boolean expressions.
The elm-eval procedure evaluates an ELM expression relative to a list of num-
bers, args, which are the program inputs. ELM expressions are represented as
FL s-expressions. elm-eval is written as a dispatch on the type of expression,
which is determined by the syntax predicates lit?, arg?, and arithop?. The
selectors lit-num, arg-index, arithop-op, arithop-rand1, arithop-rand2 ex-
tract components of s-expressions. The get-arg procedure returns the indexth
element of the given list nums (where indices are assumed to start at 1). The
op->proc procedure converts a symbol (such as (sym +)) to a binary FL proce-
dure (such as the addition procedure +).

Both arguments to the ELM interpreter are expected to be s-expressions:
pgm is an s-expression representing the structure of the ELM program and args
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(def (merge-sort before? vs)

(letrec

((merge (abs (xs ys)

(cond ((null? xs) ys)

((null? ys) xs)

((before? (car xs) (car ys))

(cons (car xs) (merge (cdr xs) ys)))

(else (cons (car ys) (merge xs (cdr ys)))))))

(alts (abs (ws)

(foldr (abs (w listpair)

(pair (snd listpair) (cons (w (fst listpair)))))

(pair nil nil)

ws)))

(ms (abs (zs)

(if (scor (null? zs) (null? (cdr zs)))

zs

(let ((split (alts zs)))

(merge (ms (fst split)) (ms (snd split))))))))

(ms vs)))

Figure 6.12 A procedure that uses the merge sort algorithm to sort a list.

is an s-expression representing the program arguments, which must be a list of
integers. Suppose that Pelm−eval is the FL program in Figure 6.13. Then here
are some sample executions of Pelm-eval :

7

Pelm-eval −[(quote (* (arg 1) (arg 1))), �5 �]−−−−−−−−−−−−−−−−−−−−−−FL → 25

Pelm-eval −[(quote (/ (+ (arg 1) (arg 2)) 2)), �6 , 8 �]−−−−−−−−−−−−−−−−−−−−−−−−−−−−FL → 7

Pelm-eval −[(quote (+ (arg 1) (arg 2))), �3 �]−−−−−−−−−−−−−−−−−−−−−−FL → error:arg-index-out-of-bounds

Exercise 6.11 Extend the ELM interpreter to handle full EL.

Exercise 6.12 Write a PostFix interpreter in FL.

Exercise 6.13 Write an FL interpreter in FL. An interpreter that happens to be written
in the same programming language that is being interpreted is called a metacircular
interpreter.

7We have taken the liberty of writing the program argument in FL s-expression notation.
We assume that this stands for the desugared FL value s-expression constructed out of pairs
and literals.
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(fl (pgm args)

(cond ((not (elm-program? pgm)) (error ill-formed-program))

((not (scand (list? args) (forall? int? args)))

(error ill-formed-argument-list))

((not (= (elm-nargs pgm) (length args)))

(error wrong-number-of-args))

(else (elm-eval (elm-body pgm) args)))

(def (elm-eval exp args)

(cond ((lit? exp) (lit-num exp))

((arg? exp) (get-arg (arg-index exp) args))

((arithop? exp) ((op->proc (arithop-op exp))

(elm-eval (arithop-rand1 exp) args)

(elm-eval (arithop-rand2 exp) args)))

(else (error illegal-expression))))

(def (get-arg index nums)

(cond ((scor (<= index 0) (null? nums))

(error arg-index-out-of-bounds))

((= index 1) (car nums))

(else (get-arg (- index 1) (cdr nums)))))

(def (op->proc s)

(cond ((sym=? s (sym +)) +) ((sym=? s (sym -)) -)

((sym=? s (sym *)) *) ((sym=? s (sym /)) /)

((sym=? s (sym %)) %)

(else (error illegal-op))))

{Abstract syntax}
(def (elm-program? sexp)

(scand (list? sexp) (= (length sexp) 3)

(sym=? (car exp) (sym elm))))

(def (elm-nargs sexp) (car (cdr sexp)))

(def (elm-body sexp) (car (cdr (cdr sexp))))

(def lit? int?)

(def (lit-num lit) lit)

(def (arg? sexp)

(scand (list? sexp) (= (length sexp) 2)

(sym=? (car sexp) (sym arg))))

(def (arg-index sexp) (car (cdr sexp)))

(def (arithop? sexp)

(scand (list? sexp) (= (length sexp) 3)

(member? (car exp) (quote (+ - * /)))))

(def (arithop-op sexp) (car sexp))

(def (arithop-rand1 sexp) (car (cdr sexp)))

(def (arithop-rand2 sexp) (car (cdr (cdr exp)))))

Figure 6.13 An interpreter for ELM, a subset of EL.
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6.3 Variables and Substitution

Intuitively, the meaning of an FLK abstraction (lam I E) shouldn’t depend
on the particular name chosen for I , which is known as its formal parameter.
Just as we expect the meaning of an integral to be independent of the choice
of the variable of integration (so that

∫ b
a f(x)dx =

∫ b
a f(y)dy), we expect the

meaning of an FLK abstraction to be invariant under a change to the name of
its variable. Thus, the identity abstraction (lam a a) should also be expressible
as (lam x x) or (lam square square). Furthermore, the variable references
named by a, x, and square are logically distinct from any variable references
coincidentally sharing the same name in other expressions.

This section formalizes this intuition about names in FLK expressions.

6.3.1 Terminology

Notations for mathematics and computation contain many binding constructs
that introduce syntactic placeholders ranging over some set of semantic entities.
Examples of binding constructs include FLK’s programs, abstractions, and recur-
sion expressions; the summation (

∑
) and integration (

∫
) notations in calculus;

and universal (∀) and existential (∃) quantifiers in logic.
We reserve the word variable for the conceptual placeholder introduced by

a binding construct and will use the word identifier to designate the name
that stands for a given variable. The identity abstraction discussed above has
a single variable, and the identifier that names it is arbitrary. In the expres-
sion (lam x (app x (lam x x))) there are two logically distinct variables in-
troduced by the two abstractions, but they happen to be named by the same
identifier.

An identifier naming a variable may be used in two different ways:

1. as a variable declaration that introduces the variable in a binding construct;

2. as a variable reference that refers to a previously declared variable.

For example, in the FLK expression (lam x (app x x)), the leftmost occur-
rence of x is a variable declaration and the other two occurrences are variable
references. In general, declarations and references are distinguished in the format
of expressions. For example, compare how variables are declared and referenced
in notations for FLK, integration, summation, union, and logical quantification
(in each case, the declaration of the variable x has been underlined):

(lam x x)
∫ b

a
x dx

∑n
x=1 x2

⋃
x∈A x ∀x.f(x) = g(x)
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The region of a program phrase in which a particular variable may be refer-
enced is called the scope of that variable. For example:

• In (lam I Ebody), the scope of the variable declared by I is Ebody .

• In (let ((I1 E1) (I2 E2)) E3), the scope of both I1 and I2 is E3 . The
variables declared by I1 and I2 cannot be referenced in E1 or E2 .

• In (letrec ((I1 E1) (I2 E2)) E3), the scope of both I1 and I2 is all three
expressions E1 , E2 and E3 .

Notations in which variables are represented by identifiers share the following
properties:

1. Ignoring certain restrictions (to be discussed shortly), it is possible to consis-
tently rename a variable within its scope without changing the meaning of the
entire expression. Thus, in each of the notations considered above, the x can
be changed to y without changing the meaning:

(lam y y)
∫ b

a
y dy

∑n
y=1 y2

⋃
y∈A y ∀y.f(y) = g(y)

2. Within the scope S of a variable named I , the declaration of a new variable
with the same name I creates a new scope S ′ in which the outer variable
cannot be referenced. The region S ′ is called a hole in the scope of the
outer variable I. For example, any reference to x within the context � in
the following examples refers to the variable declared by the inner x, not the
outer x.

(lam x (app x (lam x �)))
∫ b

a
x ·

(∫ x

c
� dx

)
dx

∏n
x=1 (

∑x
x=1 �)⋃

x∈A〈x,
⋂

x∈B �〉 ∀x. ((f(x) = g(x)) ∧ ∃x.�)

If a binding construct declares a variable named I , we shall say that the
construct binds I and will sometimes use the term binding occurrence for the
occurrence of I that is the variable declaration. An occurrence of an identifier I
in an expression is bound if it is a binding occurrence or it is a variable reference
in the scope of some binding construct that binds I ; otherwise, that occurrence of
the identifier is said to be free. For example, in (lam a (lam b (app a c))),
the single occurrence of b and both occurrences of a are bound, while the single
occurrence of c is free.
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Whether an identifier is free or bound depends on the context in which the
identifier is viewed. Thus, in the previous example, the second occurrence of
a is free in (app a c) and in (lam b (app a c)) but not in the expression
(lam a (lam b (app a c))). It is possible in one expression to have some
occurrences of an identifier that are bound and other occurrences of the same
identifier that are free. In (app (lam a a) a) the first and second occurrences
of a are bound, while the third occurrence is free.

An identifier (as opposed to an occurrence of an identifier) is said to be a
free identifier (likewise, bound identifier) in an expression if at least one of
its occurrences is free (likewise, bound) in the expression. For instance, in the
expression (app b (lam a (lam b (app a c)))), a and b are bound identifiers
and b and c are free identifiers.

Similarly, we say that a variable is free (likewise, bound) in an expression
if the identifier occurrences referring to it are free (likewise, bound). Using our
terminology, an identifier may be both bound and free in an expression, but a
variable can be only one or the other. In the literature, the terms free variable
and bound variable are often used for what we call free and bound identifiers.

A phrase (expression, program, etc.) is closed if it contains no free identifiers
(or, equivalently, no free variables). Otherwise, it is said to be open.

Expressions with free variables often arise when considering subexpressions
of a given expression. For instance, in the subexpression (lam b (app b a)) of
the closed expression (lam a (lam b (app b a))), the identifier a names a free
variable.

Using definition by structural induction, it is straightforward to define func-
tions FrIds and BdIds that map FLK expressions to sets of their free and bound
identifiers, respectively. These functions are presented in Figure 6.14. Both func-
tions have the signature Exp→ P(Ident), where P(Ident) is the powerset (set of
all subsets) of Ident. For example,

FrIds[[(app b (lam a (lam b (app a c))))]] = {b, c}
BdIds[[(app b (lam a (lam b (app a c))))]] = {a, b}

There is one subtlety in these definitions: An I that appears within double
brackets on the left-hand side of the definitions stands for a variable reference that
is an element of the syntactic domain Exp. On the other hand, an unbracketed
I on the right-hand side of the definitions stands for an element of the syntactic
domain Ident.
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FrIds : Exp → P(Ident)
FrIds[[L]] = {}
FrIds[[I ]] = {I }
FrIds[[(error Y )]] = {}
FrIds[[(if E1 E2 E3)]] = ∪3

i=1FrIds[[Ei ]]
FrIds[[(prim O E1 . . . En)]] = ∪n

i=1FrIds[[Ei ]]
FrIds[[(lam Iformal Ebody)]] = FrIds[[Ebody ]] − {Iformal}
FrIds[[(app Erator Erand)]] = FrIds[[Erator ]] ∪ FrIds[[Erand ]]
FrIds[[(pair Efst Esnd)]] = FrIds[[Efst ]] ∪ FrIds[[Esnd ]]
FrIds[[(rec Iname Ebody)]] = FrIds[[Ebody ]] − {Iname}

FrIdspgm : Prog→ P(Ident)
FrIdspgm [[(flk (I1 . . . In) Ebody)]] = FrIds[[Ebody ]] − {I1 , . . . , In}

BdIds : Exp → P(Ident)
BdIds[[L]] = {}
BdIds[[I ]] = {}
BdIds[[(error Y )]] = {}
BdIds[[(if E1 E2 E3)]] = ∪3

i=1BdIds[[Ei ]]
BdIds[[(prim O E1 . . . En)]] = ∪n

i=1BdIds[[Ei ]]
BdIds[[(lam Iformal Ebody)]] = BdIds[[Ebody ]] ∪ {Iformal}
BdIds[[(app Erator Erand)]] = BdIds[[Erator ]] ∪ BdIds[[Erand ]]
BdIds[[(pair Efst Esnd)]] = BdIds[[Efst ]] ∪ BdIds[[Esnd ]]
BdIds[[(rec Iname Ebody)]] BdIds[[Ebody ]] ∪ {Iname}

BdIdspgm : Prog→ P(Ident)
BdIdspgm [[(flk (I1 . . . In) Ebody)]] = BdIds[[Ebody ]] ∪ {I1 , . . . , In}

Figure 6.14 Definition of free and bound identifiers for FLK.

The functions FrIdspgm and BdIdspgm define the free and bound identifiers
of a program. It is reasonable to expect that each FLK program P we study
will be closed: i.e., FrIdspgm [[P ]] = {}. Otherwise, executing P might lead to
an unbound variable error. Calculating the free variables of a program is a
very simple example of a static program analysis, a terminating analysis that
determines properties of a program that do not depend on its dynamic inputs.
A static analysis can increase a programmer’s confidence in the correctness of
a program by providing guarantees that the program will not exhibit certain
undesirable behaviors. For example, if P is closed, there is a guarantee that
executing P cannot lead to an unbound variable error. Forms of static analysis
that are more informative include type analysis and effect analysis. We will study
these in Chapters 11–16.
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Exercise 6.14 For each of the following four FLK expressions:

• Indicate for every occurrence of an identifier whether it is bound or free.

• Determine the free identifiers and bound identifiers of the expression.

a. (lam x (app x y))

b. (app (lam z (lam x (app (app x y) z))) z)

c. (app z (lam y (app (lam z (app x y)) z)))

d. (lam x (app (app (lam y (app (lam z (app x r)) y)) y) z))

6.3.2 Abstract Syntax DAGs and Stoy Diagrams

The chief structural feature of variables is that they permit sharing in an ex-
pression: the same variable introduced by a declaration can be used by many
variable-reference occurrences. We have said before that syntactic expressions
can be viewed as abstract syntax trees, but since trees allow no sharing of sub-
structure, they are inadequate for illustrating the sharing nature of variables. We
need the more general directed acyclic graph (DAG) to faithfully show the
structure of an expression with variables.

As an example, consider the following FLK expression:8

(app (lam a (app a a)) (lam a (lam b a)))

In this expression, there are two distinct variables named a, and the variable
named by b is declared without being referenced. Figure 6.15 shows an abstract
syntax DAG corresponding to this expression. In the DAG, the three distinct
variables in the expression are represented by distinct nodes labeled Variable.

Since sharing is explicit in the structure of the DAG, no identifiers are nec-
essary in the DAG representation of the expression. The key reason variables
are traditionally represented with identifiers is that they allow DAGs to be en-
coded with linear and tree-based notational frameworks (e.g., character strings
and abstract syntax trees). Unfortunately, encodings of DAGs based on identi-
fiers complicate reasoning about expressions because of incidental properties of
the identifiers. For example, the notion of a “hole in the scope” introduced earlier
is not inherent in the nature of variables, but results from the fact that, when
variables are represented by identifiers, a nested pair of variables can accidentally
share the same name. We’ll see below that identifiers are the major sore spot
when we need to do renaming and substitution on FLK expressions.

8In the following discussion, we shall focus only on FLK expressions, but the same techniques
could be applied to any notation using variables.
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Figure 6.15 Abstract syntax DAG for (app (lam a (app a a))

(lam a (lam b a)))

Every closed expression can always be represented by a DAG with no identi-
fiers. However, expressions containing free variables pose a problem because they
contain references to a variable without also containing its declaration. Since
expressions with free variables are common, we’d like to handle them within
the DAG framework. The DAG representation must include the names of any
free identifiers because the names of free identifiers actually matter. For ex-
ample, the expression (lam b (app b a)) does not have the same meaning as
(lam b (app b c)) in every context. Figure 6.16 shows the DAG representation
of (lam b (app b a)). The free variable is declared by a special FreeVariable
node annotated with the name of the variable.

Abstract syntax DAGs take up a lot of real estate on the printed page, so we
shall use a more compact notation due to Joseph Stoy [Sto85]. Stoy’s notation is
a kind of wiring diagram for expressions in which the position corresponding to
a variable reference is connected by a wire to the position corresponding to the
variable declaration. For example, a Stoy diagram for the expression

(app (lam a (app a a)) (lam a (lam b (lam c (app c a)))))

is

(app (lam (app )) (lam (lam (lam (app )))))
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Figure 6.16 Abstract syntax DAG for (lam b (app b a)).

We extend Stoy’s notation to handle free variables by simply leaving every free
variable reference where it occurs in the expression. Thus, the modified Stoy
diagram for (lam b (app a (app b a))) is:

(lam (app a (app a)))

All identifiers sharing the same name in a Stoy diagram must name the same free
variable.

6.3.3 Alpha-Equivalence

Since we really care about the implied DAG structure of an expression and not
the vagaries of particular choices of identifiers for variable names, it is natural to
equate FLK expressions that share the same DAG representation. We shall use
the notation E1 =α E2 (pronounced “E1 is alpha-equivalent to E2”) to mean
that E1 and E2 designate the same abstract syntax DAG. Thus,

(lam a (lam b (app b a)))=α (lam b (lam a (app a b)))

=α (lam one (lam two (app two one)))

and (lam b (app b a)) =α (lam c (app c a)),

but (lam a (lam b (app b a))) 
=α (lam a (lam a (app a a)))

and (lam b (app b a)) 
=α (lam b (app b c)).

Since alpha-equivalence is an equivalence relation, it partitions FLK expres-
sions into equivalence classes that share the same DAG. We shall generally assume
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throughout the rest of our discussion on FLK that each FLK expression serves
as a representative of its equivalence class and that syntactic manipulations on
expressions are functions on these equivalence classes rather than on individ-
ual expressions. For example, FrIds is a well-defined function not only on FLK
expressions but also on alpha-equivalence classes of FLK expressions because
E1 =α E2 implies FrIds[[E1 ]] = FrIds[[E2 ]]. On the other hand, BdIds is not a
well-defined function on alpha-equivalence classes, because it depends on syntac-
tic details of an expression that are not represented in its DAG structure. Thus
(lam a a) =α (lam b b), but

BdIds[[(lam a a)]] = {a} 
=α {b} = BdIds[[(lam b b)]]

6.3.4 Renaming and Variable Capture

Consistently renaming the variables of an expression in a way that preserves its
alpha-equivalence class is called alpha-renaming. For example, the expression

(lam x (app (lam x x) (app (lam x x) x)))

can be alpha-renamed to any of the following:

(lam a (app (lam a a) (app (lam a a) a)))

(lam b (app (lam c c) (app (lam b b) b)))

(lam d (app (lam e e) (app (lam f f) d)))

Alpha-renaming is not required to choose distinct names for logically distinct
variables, but it is often used for this purpose.

Although the notion of alpha-renaming may seem straightforward, specifying
a procedure that performs it correctly is surprisingly tricky. We will begin by
considering the subtleties of renaming a variable introduced by an abstraction.
A correct variable renaming is one that preserves the alpha-equivalence class of
the expression — i.e., does not alter its abstract syntax DAG or Stoy diagram.
The naive approach of consistently renaming the variable’s declaration and all
its references is not always appropriate because of a situation known as vari-
able capture. There are two kinds of variable capture, both of which will be
illustrated in the following example.

Consider the expression (lam a (lam b (app a c))), whose Stoy diagram
is shown below:

(lam (lam (app c)))
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Suppose we want to rename the variable named a in this expression. For almost all
possible identifiers, a simple consistent renaming will do. For example, renaming
a to x produces the expression (lam x (lam b (app x c))), which has the same
Stoy diagram as the original.

Suppose, however, that we choose the identifier b as the new name for a.
Then the naive renaming method yields (lam b (lam b (app b c))), whose
Stoy diagram

(lam (lam (app c)))

is not the same as that for the original expression. The inner binding occurrence
of b has created a hole in the scope of the outer binding occurrence of b. Because
an inner abstraction just happens to bind the new name, all references to the
new name within the body of the inner abstraction are accidentally captured by
that abstraction. We call this internal variable capture.

A slightly different problem is encountered if we choose c as the new name
for a. In that case, naive renaming yields (lam c (lam b (app c c))), whose
Stoy diagram is

(lam (lam (app )))

Here a free identifier, c, in the body of a renamed binding construct has acciden-
tally been captured by the declaration of the new name. We call this external
variable capture, because the captured variable is declared somewhere external
to the renamed abstraction.

Internal and external variable capture are not unique to FLK. They can oc-
cur in any naming system in which logically distinct variables can accidentally be
merged together. As we shall see, in the programming language world, variable
capture rears its ugly head in program transformations (including expression sub-
stitution) used in language implementation and in languages supporting dynamic
scoping or macro expansion.

We would prefer that coincidental choices of identifiers not destroy the struc-
tural integrity of a renamed FLK expression. One way to ensure this is to guar-
antee that each new variable name introduced by a renaming appears nowhere
else in the FLK expression, but this approach is more restrictive than necessary
and gives little insight into the true nature of the problem. The following section
defines a general syntactic renaming operator that avoids both forms of variable
capture.
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6.3.5 Substitution

Variable renaming is a special case of a more general syntactic operation called
substitution. It is often desirable to substitute a particular expression for all
free references of a variable named by a given identifier in another expression.
For example, we might want to replace each free a in

(app a (lam b (app (lam a (app a b)) a)))

by the application (app c d) to yield

(app (app c d) (lam b (app (lam a (app a b)) (app c d))))

We use the notation [E/I ] to denote a function that maps a given expression
into another expression in which E has been substituted for all free variable
references named by I . Thus, [E1/I ]E2 denotes the result of substituting E1 for
the free occurrences of I in E2 . Using this notation, the above example can be
expressed as

[(app c d)/a](app a (lam b (app (lam a (app a b)) a)))

= (app (app c d) (lam b (app (lam a (app a b)) (app c d))))

A correct substitution is one that preserves the logical structure both of the
expression being substituted (E1 ) and the expression substituted into (E2 ), ex-
cept, of course, for the free variable being substituted for. Substitution may seem
like a straightforward idea, but, like renaming, it is plagued with variable-capture
subtleties.

As an example of a problematic situation, suppose that (app b d) rather
than (app c d), were being substituted for a in the above example. Since the
expression being substituted into has the Stoy diagram

(app a (lam (app (lam (app )) a)))

[(app b d)/a](app a (lam b (app (lam a (app a b)) a))) should have the
Stoy diagram

(app (app b d) (lam (app (lam (app )) (app b d))))

However, a naive syntactic approach to substitution would yield the expression

(app (app b d) (lam b (app (lam a (app a b)) (app b d))))

whose Stoy diagram

(app (app b d) (lam (app (lam (app )) (app d))))

shows the capture of the free occurrence of b in (app b d).
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subst : Exp→ Ident → Exp→ Exp
The notation [E1/I ]E2 abbreviates (subst E1 I E2 ).
This notation associates to the right: [E2/I2 ][E1/I1 ]E = [E2/I2 ]([E1/I1 ]E ).

[E/I ]L = L

[E/I ]I = E

[E/I ]I ′ = I ′ , where I 
= I ′

[E/I ](error Y ) = (error Y )

[E/I ](if Etest Ethen Eelse) = (if [E/I ]Etest [E/I ]Ethen [E/I ]Eelse)

[E/I ](prim O E1 . . . En) = (prim O [E/I ]E1 . . . [E/I ]En)

[E/I ](lam I Ebody) = (lam I Ebody)

[E/I ](lam I ′ Ebody) = (lam Ifresh [E/I ][Ifresh/I ′]Ebody),
where I 
= I ′ and Ifresh 
∈ {I } ∪ (FrIds[[E ]]) ∪ (FrIds[[Ebody ]])

[E/I ](app Erator Erand) = (app [E/I ]Erator [E/I ]Erand)

[E/I ](pair Efst Esnd) = (pair [E/I ]Efst [E/I ]Esnd)

[E/I ](rec I Ebody) = (rec I Ebody)

[E/I ](rec I ′ Ebody) = (rec Ifresh [E/I ][Ifresh/I ′]Ebody),
where I 
= I ′ and Ifresh 
∈ {I } ∪ (FrIds[[E ]]) ∪ (FrIds[[Ebody ]])

Figure 6.17 The definition of substitution for FLK.

Figure 6.17 presents a method of substitution that avoids variable capture.
Substitution is defined by structural induction on the expression substituted into.
However, there is sometimes more than one clause per expression type because
some expression types have subcases that depend on interactions between the
variable I being replaced and variables within the expression substituted into.
For example, [E/I ]I ′ is E if I and I ′ are syntactically identical, but is the original
expression I ′ if I and I ′ are not the same. These different subcases are expressed
in Figure 6.17 by implicit pattern matching or explicit restrictions.

As seen in Figure 6.17, most of the rules simply distribute the substitution
over the subexpressions of an expression. The tricky case is substituting into a
binding construct (lam or rec in FLK). For example, consider the case for lam:

[E/I ](lam I ′ Ebody)

In the case where I and I ′ are the same, the declaration of I ′ creates a hole in
the scope of the outer variable named by I . There can be no references to this
outer variable within Ebody , so no substitutions should be performed inside Ebody .
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When I and I ′ are distinct, the crucial case to handle is where I appears
free in Ebody (so a substitution will definitely take place) and E contains a free
reference to I ′. This reference will be captured by the bound variable I ′ of the
abstraction unless we’re careful. A simple example of this situation is:

[b/a](lam b (app b a))

Here, the substituted expression b contains (in fact, is) a free reference to a
variable whose name happens to be the same as the name of the variable bound by
the abstraction. A naive substitution would yield (lam b (app b b)), in which
the outer variable named b has been accidentally captured by the inner binding of
the same name. To prevent this internal variable capture, it is necessary to first
consistently rename the bound variable of the abstraction with an identifier that
is not the same as I and is free neither in E nor in Ebody . After this renaming,
substitution can be performed on Ebody without threat of variable capture. In
our example, the bound variable b can be renamed to c, say, yielding the alpha-
equivalent abstraction (lam c (app c a)). Then substitution can be performed
on the body to yield the correct expression

(lam c [b/a](app c a)) = (lam c (app c b))

In the case where I 
= I ′, it is always correct to perform the described renaming
of the bound variable of the abstraction, but it is not always necessary. If I
is not free in Ebody , renaming is not required because no substitution will be
performed inside the abstraction anyway. And if I ′ doesn’t appear in E , no
internal variable capture can arise, and it is safe to directly substitute into the
body of the abstraction without a renaming step.

The notion of choosing an unused identifier often arises when manipulating
syntactic expressions in which variables are represented by identifiers. Such an
identifier is said to be fresh. When describing a syntactic manipulation formally,
it is necessary to specify any constraints involved in choosing fresh identifiers
(e.g., see the restrictions for lam and rec). However, informally we will often just
say that a name is fresh without specifying any restrictions. In this case, we mean
that the fresh name must be different from any identifier occurring anywhere else
in the program under consideration. When we introduce more than one fresh
name at once, we will also assume that the fresh names are pairwise distinct.

Keep in mind that all the complexity for renaming and substitution arises
from the use of linear (in this case, textual) representations for declaration/refer-
ence relationships that are not linear or even tree-like. If FLK expressions were
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represented as DAGs or Stoy diagrams, renaming would be unnecessary and sub-
stitution (e.g., of a Stoy diagram into a Stoy diagram) would be straightforward.

The notion of simultaneous substitution is an extension to the substitution
function we have seen. A simultaneous substitution of the expressions E1 , . . . ,
En for the identifiers I1 , . . . , In , written

[E1 , . . . ,En/I1 , . . . , In ] or [Ei/Ii ]
n
i=1

is a function of a single expression that performs the substitutions [E1/I1 ], . . .,
[En/In ] in parallel on that expression. It differs from a sequence of substitutions in
that an Ii appearing in one of the Ej is never replaced. For example, simultaneous
substitution of I2 for I1 and I1 for I2 in the expression (app I1 I2) swaps the
two identifiers,

[I2 , I1/I1 , I2 ](app I1 I2) = (app I2 I1)

whereas neither ordering of two single substitutions has this behavior:

[I2/I1 ]([I1/I2 ](app I1 I2)) =(app I2 I2)

[I1/I2 ]([I2/I1 ](app I1 I2)) =(app I1 I1)

Exercise 6.15 Use the definition of substitution in Figure 6.17 to determine the results
of the following substitutions. Assume that fresh identifiers are taken from the list v1,
v2, v3, . . ., and that the first identifier from the list that satisfies the given constraint is
chosen as the fresh identifier.

a. [(app (app b c) d)/a](lam a (lam b (app (app c b) a)))

b. [(app (app b c) d)/b](lam a (lam b (app (app c b) a)))

c. [(app (app b c) d)/c](lam a (lam b (app (app c b) a)))

d. [(app (app b c) d)/d](lam a (lam b (app (app c b) a)))

e. [(app (app b c) d)/b](lam a (lam b (app c a)))

Exercise 6.16 Consider the case for substituting into abstractions,

[E/I ](lam I ′ Ebody)

where I 
= I ′. Here I ′ is consistently renamed to be a variable Ifresh that is not free in
either E or Ebody and is not equal to I .

a. Provide an example of an incorrect substitution that would be permitted if the re-
striction Ifresh 
∈ FrIds[[E ]] were lifted.

b. Provide an example of an incorrect substitution that would be permitted if the re-
striction Ifresh 
∈ FrIds[[Ebody ]] were lifted.
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c. Provide an example of an incorrect substitution that would be permitted if the re-
striction Ifresh 
= I were lifted.

d. Would it be possible to consistently rename the free variables of E (within both
E and Ebody) instead of renaming I ′? Explain your answer, using examples where
appropriate.

Exercise 6.17 In the definition of the FL desugaring function DS in Figure 6.4 on
page 220, fresh identifiers are introduced in the desugarings for nullary abstractions and
letrec. For each identifier declared fresh in these cases, give an example of variable
capture that could occur if the freshness condition were omitted.

Exercise 6.18 A letrec desugaring assuming a standard library function nth is pre-
sented on page 225. A purported problem with this desugaring is that it is susceptible
to variable capture involving the name nth. Illustrate this by writing an FL expression
Ecapture containing a letrec expression such that Ecapture does not desugar properly via
this desugaring due to variable capture.

Exercise 6.19 Assuming that I1 and I2 are distinct, and that I2 
∈ FrIds[[E1 ]], prove
the following useful equivalence. (Hint: Use induction on the structure of E3 .)

[E1/I1 ] ([E2/I2 ]E3 ) = [([E1/I1 ]E2 ) /I2 ] ([E1/I1 ]E3 )

Exercise 6.20 Write a formal definition of simultaneous substitution for FLK.

Exercise 6.21 Suppose that FL is extended with the following constructs for manipu-
lating tuples of elements:

(tuple En
i=1): Returns a tuple whose n components are the outcomes of En

i=1.

(tuple-ref E N ): Suppose N is the numeral for a positive integer i and E evaluates
to a tuple t. Returns the ith element of t (assume 1-based indexing).

(tuple-length E): Returns the number of elements in the tuple denoted by E .

(tuple? E): Predicate determining if E is a tuple.

Tuples provide an alternative way to desugar multiabstractions and multiapplications.
Multiapplications can package arguments into a tuple that is unpackaged by a multiab-
straction.

a. Provide tuple-based desugarings for multiabstractions and multiapplications. Substi-
tution is helpful for handling variable references in the body of a multiabstraction.
Explain any design choices that you make.

b. Discuss the advantages and disadvantages of the tuple-based desugaring versus the
desugaring based on currying.
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Domains
Syntactic domains from FLK grammar (Figure 6.1 on page 211).
V ∈ ValueExp ::= L | (lam Iformal Ebody) | (pair Efst Esnd)

IE ∈ InputExp ::= L | (pair IE fst IE snd)

A ∈ AnsExp ::= L | procans | pairans

SOS
The FLK SOS is defined by the tuple 〈Exp,⇒, ValueExp, IF ,OF 〉, where:

⇒ is the deterministic evaluation relation defined in Figure 6.19.

IF : (Prog× InputExp*)→ Exp
IF 〈(flk (I1 . . . In) Ebody), [IE1 , . . . , IE k ]〉

= if n 
= k then (error wrong-number-of-args) else [IE i/Ii ]
n
i=1Ebody end

OF : ValueExp→ AnsExp
OF L = L
OF (lam I E) = procans

OF (pair E1 E2) = pairans

Behavior
behdet : (Prog× InputExp*)→ Outcome

behdet 〈P , IE∗〉 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(AnsExp�Outcome (OF Efin)) if Einit

∗⇒ Efin ∈ ValueExp

stuck if Einit
∗⇒ Efin 
⇒

and Efin 
∈ ValueExp

∞ if Einit
∞⇒

where Einit = (IF 〈P , IE∗〉)

Figure 6.18 An SOS for FLK.

6.4 An Operational Semantics for FLK

6.4.1 FLK Evaluation

Figures 6.18 and 6.19 present an SOS for FLK. In addition to the syntactic
domains defined by the FLK s-expression grammar (Figure 6.1 on page 211), the
SOS uses the following domains:

• The ValueExp domain contains expressions that model the values that are ma-
nipulated by FLK programs. The value expressions include all the literals,
abstractions (representing procedural values), and pair expressions (represent-
ing pair values).
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Reduction Relation (�)

(app (lam I E1) E2) � [E2/I ]E1 [β]

(rec I E) � [(rec I E)/I ]E [rec]

(if #t Ethen Eelse) � Ethen [if-T]
(if #f Ethen Eelse) � Eelse [if-F]

(prim + N1 N2) � (calculate + N1 N2 ) [+]
similar for - and *

(prim / N1 N2) � (calculate / N1 N2 ), where N2 
= 0 [/]
similar for %

(prim < N1 N2) � (relapp < N1 N2 ) [<]
similar for <=, >, >=, =, !=

(prim not #t) � #f [not-T]
(prim not #f) � #t [not-F]

(prim and B1 B2) � (logapp and B1 B2 ) [and]
similar for or

(prim fst (pair E1 E2)) � E1 [fst]
(prim snd (pair E1 E2)) � E2 [snd]

(prim int? N ) � #t [int?-T]
(prim int? V ) � #f , where V 
∈ IntLit [int?-F]

similar for unit?, bool?, sym?, pair?, and proc?

Evaluation Contexts
E ∈ EvalContext ::= � | (if E Ethen Eelse)

| (prim Oprimop V k−1
i=1 E En

j=k+1) | (app E Erand)

Evaluation Relation (⇒)
E{E} ⇒ E{E ′}, where E � E ′

Figure 6.19 A context-based description of the FLK evaluation relation.

• The InputExp domain models inputs to an FLK program. We restrict the
inputs to those values that can be written as s-expressions within FL — i.e.,
values that can be written as (quote SX ), where SX is defined in Figure 6.3.
Such values are either literals or “pair trees” whose leaves are literals. So
InputExp contains all values constructed out of literals and pairs but excludes
any values mentioning procedures.

• The AnsExp domain models final answers in the execution of FLK programs.
It is similar to ValueExp except that it replaces all abstraction expressions by
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the procedure answer token procans and replaces all pairing expressions by
the pair answer token pairans. These tokens distinguish procedure and pair
answers from literal answers, but the component structure of these procedure
and pair answers is not observable.

Technically, the ValueExp and InputExp domains are disjoint and distinct from
the Exp domain. Informally, however, ValueExp can be viewed as a subset of
Exp and InputExp can be viewed as a subset of ValueExp. There are simple in-
clusion functions (which we do not define here) that can be used to formalize this
interpretation. To simplify our notation, we will not show such inclusion func-
tions explicitly, but will assume that they are used implicitly when needed. For
example, in the simultaneous substitution notation [IE i/Ii ]

n
i=1Ebody used in the

definition of IF , we assume that each IE i is first converted to the corresponding
element of Exp before the substitution is performed.

The configuration space for the FLK SOS consists of FLK expressions. The
input function IF maps an FLK program and a sequence of input values to
an initial configuration. If the number of inputs matches the number of formal
parameters in the program, the initial configuration is the result of substituting
the inputs for the formal parameters in the body of the program. Otherwise,
the initial configuration is an error expression indicating a mismatch. The final
configurations of the SOS are modeled by the ValueExp domain. The output
function OF erases the details of all procedure and pair values.

The SOS transition relation⇒ is defined by the context-based specification in
Figure 6.19. We shall call this relation the evaluation relation to distinguish
it from the simplification relation we will study in the next subsection. The
evaluation relation ⇒ is defined by reductions (�) that take place in evaluation
contexts (E). Most of the reduction rules deal with applications of primitives.
The calculate function used in the [+] rule serves the same purpose as it did in the
PostFix SOS. The relapp function returns the boolean literal encoding the result
of comparing two numerals with a given relational operator (<, <=, etc.). E.g.,
(relapp < 1 2) = #t and (relapp >= 1 2) = #f. The logapp function returns the
boolean literal that is the result of combining two boolean literals with and or or.
E.g., (logapp and #f #t) = #f, (logapp and #t #t) = #t, (logapp or #f #t)
= #t, and (logapp or #f #f) = #f.

Most prim reduction rules require their operand values to be of specific types.
For example, + and < require two integer operands; and requires two boolean
operands; and fst requires a pair operand.
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Every primitive-application reduction rule requires operands that are value
expressions. The evaluation context (prim Oprimop V k−1

i=1 E En
j=k+1) is respon-

sible for evaluating the operands of a primitive application in left-to-right order.
The E appearing after V k−1

i=1 indicates that evaluation can take place in the kth
operand position only when the first k − 1 operands are already values. For
example:

(prim / (prim * (prim + 4 7) (prim % 9 5)) (prim - 6 1))

⇒[+] (prim / (prim * 11 (prim % 9 5)) (prim - 6 1))

⇒[%] (prim / (prim * 11 4) (prim - 6 1))

⇒[*] (prim / 44 (prim - 6 1)) ⇒[-] (prim / 44 5) ⇒[/] 8

In the above evaluation sequence, we have annotated each evaluation arrow with
the label of the reduction rule applied. Of course, each evaluation step also
requires an evaluation context in which the reduction takes place.

The (if E Ethen Eelse) evaluation context evaluates the test subexpression
of a conditional. When this becomes a boolean literal, the [if-T] and [if-F]
rules choose the appropriate branch. No evaluation takes place in the branch not
chosen. For example,

(if (prim > (prim * 2 3) (prim + 4 5)) (prim * 6 7) (prim + 8 9))

⇒[*] (if (prim > 6 (prim + 4 5)) (prim * 6 7) (prim + 8 9))

⇒[+] (if (prim > 6 9) (prim * 6 7) (prim + 8 9))

⇒[>] (if #f (prim * 6 7) (prim + 8 9)) ⇒[if-F] (prim + 8 9) ⇒[+] 17

Procedure application is explained by the [β] rule, which substitutes the
operand expression for the formal parameter in the procedure body. The left-
hand side of this rule is called a beta-redex and the transformation is called
beta reduction. Here is an example:

(app (app (lam x (lam y (prim * (prim - x y) (prim % x y)))) 20) 6)

⇒[β] (app (lam y (prim * (prim - 20 y) (prim % 20 y))) 6)

⇒[β] (prim * (prim - 20 6) (prim % 20 6))

⇒[-] (prim * 14 (prim % 20 6)) ⇒[%] (prim * 14 3) ⇒[*] 42

In FLK, the rator position can be an expression that is not an abstraction but
may evaluate to an abstraction. The evaluation context (app E Erand) evaluates
the rator position of an application. In the following evaluation, this evaluation
context is needed to justify the evaluation steps labeled ⇒[>] and ⇒[if-T], which
rewrite a conditional expression in the rator position to an abstraction:
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(app (lam x (app (if (prim > x 0)

(lam y (prim + y 1))

(lam z (prim * z 2)))

(prim * x x)))

4)
⇒[β] (app (if (prim > 4 0)

(lam y (prim + y 1))

(lam z (prim * z 2)))

(prim * 4 4))
⇒[>] (app (if #t (lam y (prim + y 1)) (lam z (prim * z 2)))

(prim * 4 4))
⇒[if-T] (app (lam y (prim + y 1)) (prim * 4 4))

⇒[β] (prim + (prim * 4 4) 1) ⇒[*] (prim + 16 1) ⇒[+] 17

There is no evaluation context for evaluating the operand position of an appli-
cation: the unevaluated operand expression is substituted for the formal param-
eter in the procedure body. This specifies that FLK procedures are nonstrict.
(We will study a strict variant of FLK in Section 7.1.) If the substituted argu-
ment expression is never encountered in the evaluation of the body, it is never
evaluated:

(app (lam x 1) (prim / 2 0)) ⇒[β] 1

(app (lam x (if (prim < 1 2) 3 x)) (prim / 4 0))

⇒[β] (if (prim < 1 2) 3 (prim / 4 0))

⇒[<] (if #t 3 (prim / 4 0)) ⇒[if-T] 3

If the formal parameter occurs more than once in the body, the operand expres-
sion may be evaluated multiple times. In the following example, the operand
expression (prim + 2 3) is evaluated twice when substituted for x in the body
of (lam x (prim * x x)):

(app (lam x (prim * x x)) (prim + 2 3))

⇒[β] (prim * (prim + 2 3) (prim + 2 3))

⇒[+] (prim * 5 (prim + 2 3)) ⇒[+] (prim * 5 5) ⇒[*] 25

The repeated evaluation of operand expressions is avoided in some alternative
approaches to procedure application (see Sections 7.1 and 8.4.3).

Because abstractions are elements of the ValueExp domain, the [β] rule is
sufficient for explaining how FLK procedures can be passed as arguments to,
and returned as results from, other procedures. We illustrate this in the following
example, where
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• (lam f (app f 5)) is a procedure that takes a procedural argument, f, and
applies it to 5; and

• (lam n (lam x (prim - x n))) is a procedure that takes an integer argu-
ment, n, and returns a subtract-n procedure.

(app (app (lam f (app f 5))

(lam n (lam x (prim - x n))))

3)
⇒[β] (app (app (lam n (lam x (prim - x n))) 5)

3)
⇒[β] (app (lam x (prim - x 5)) 3) ⇒[β] (prim - 3 5) ⇒[-] -2

The semantics of recursion (the [rec] rule) is especially simple in the SOS
framework. It is obtained by unwinding the recursion equation one level at a
time. Programmers often follow the same approach when trying to hand-simulate
the behavior of recursive procedures. Figure 6.20 shows the evaluation of the
following application of a recursive summation procedure that adds the numbers
from 1 to its argument:

(app (rec sum (lam n (if (prim = n 0)

0

(prim + n (app sum (prim - n 1))))))

3)

This example highlights the potential inefficiencies associated with nonstrict eval-
uation. For instance, the operand expression (prim - 3 1) ends up being eval-
uated five times!

It is easy to write a nonterminating expression with rec. For instance:

(app (rec loop (lam x (app loop x))) 0)

⇒[rec] (app (lam x (app (rec loop (lam x (app loop x))) x)) 0)

⇒[β] (app (rec loop (lam x (app loop x))) 0)

⇒[rec] . . .

Remarkably, it is possible to write nonterminating expressions without rec. Here
is one example, which is similar in spirit to the PostFix command sequence
(dup exec) dup exec :

(app (lam x (app x x)) (lam x (app x x)))

⇒[β] (app (lam x (app x x)) (lam x (app x x)))

⇒[β] . . .

Although we have assumed that rec is a kernel construct of FLK, amazingly it
turns out that it can be expressed as syntactic sugar in terms of abstractions and
applications. We will study this on page 303.
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As shown in Section 6.2.1, there are many kinds of errors in FLK. These
include using the wrong number or types of values in various contexts or en-
countering an explicit error expression. Like the PostFix SOS, the FLK SOS
models all errors with stuck states. There are no reduction rules that mention
errors, so when an error situation is encountered in an evaluation context, the
configuration is stuck. For example, not only is (prim < 1 #t) stuck, but all of
the following expressions containing it are also stuck because no reduction can
be performed on (prim < 1 #t) when it appears in an evaluation context:

(prim and (prim < 1 #t) (prim > 3 4))

(if (prim and (prim < 1 #t) (prim > 3 4))

(lam x (prim + x 1))

(lam y (prim * y 2)))

(app (if (prim and (prim < 1 #t) (prim > 3 4))

(lam x (prim + x 1))

(lam y (prim * y 2)))

(prim / 6 2))

However, the left-hand sides of the following evaluation steps are not stuck, be-
cause each is an evaluation context filled with a reducible expression that allows
progress to be made before (prim < 1 #t) is encountered:

(prim and (prim > 3 4) (prim < 1 #t)) ⇒[>] (prim and #f (prim < 1 #t))

(app (lam b (if b 3 4)) (prim < 1 #t)) ⇒[β] (if (prim < 1 #t) 3 4)

(if (prim < 3 4) (prim < 1 #t) #f) ⇒[>] (if #t (prim < 1 #t) #f)

Instead of relying on stuck states to model errors, we could extend the FLK SOS
to introduce and propagate explicit error values. This alternative approach to
treating errors is explored in Exercise 6.28.

A notion of operational behavior for FLK can be obtained by instantiating
the general notion of operational behavior introduced on page 51 with the FLK
SOS. Because the FLK evaluation relation ⇒ is deterministic (this is easy to see
from inspection of the FLK evaluation relation), the result of this instantiation is
the deterministic behavior function behdet presented in Figure 6.18. For example,
suppose Psum is the following FLK program:

(flk (x)

(app (rec sum (lam n (if (prim = n 0)

0

(prim + n (app sum (prim - n 1))))))

x))
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Abbreviations

(@O E1 . . . En) abbreviates (prim O E1 . . . En) (usual FL sugar).
S = (rec sum (lam n (if (@= n 0) 0 (@+ n (app sum (@- n 1))))))

S ′= (lam n (if (@= n 0) 0 (@+ n (app S (@- n 1)))))

Evaluation

(app S 3)

⇒[rec] (app S ′ 3)

⇒[β] (if (@= 3 0) 0 (@+ 3 (app S (@- 3 1))))

⇒[=] (if #f 0 (@+ 3 (app S (@- 3 1))))

⇒[if-F] (@+ 3 (app S (@- 3 1)))

⇒[rec] (@+ 3 (app S ′ (@- 3 1)))

⇒[β] (@+ 3 (if (@= (@- 3 1) 0) 0

(@+ (@- 3 1) (app S (@- (@- 3 1) 1)))))
⇒[-] (@+ 3 (if (@= 2 0) 0

(@+ (@- 3 1) (app S (@- (@- 3 1) 1)))))
⇒[=] (@+ 3 (if #f 0 (@+ (@- 3 1) (app S (@- (@- 3 1) 1)))))

⇒[if-F] (@+ 3 (@+ (@- 3 1) (app S (@- (@- 3 1) 1))))

⇒[-] (@+ 3 (@+ 2 (app S (@- (@- 3 1) 1))))

⇒[rec] (@+ 3 (@+ 2 (app S ′ (@- (@- 3 1) 1))))

⇒[β] (@+ 3 (@+ 2 (if (@= (@- (@- 3 1) 1) 0) 0

(@+ (@- (@- 3 1) 1) (app S (@- (@- (@- 3 1) 1) 1))))))
⇒[-] (@+ 3 (@+ 2 (if (@= (@- 2 1) 0) 0

(@+ (@- (@- 3 1) 1) (app S (@- (@- (@- 3 1) 1) 1))))))
⇒[-] (@+ 3 (@+ 2 (if (@= 1 0) 0

(@+ (@- (@- 3 1) 1) (app S (@- (@- (@- 3 1) 1) 1))))))
⇒[=] (@+ 3 (@+ 2 (if #f 0

(@+ (@- (@- 3 1) 1) (app S (@- (@- (@- 3 1) 1) 1))))))
⇒[if-F] (@+ 3 (@+ 2 (@+ (@- (@- 3 1) 1) (app S (@- (@- (@- 3 1) 1) 1)))))

⇒[-] (@+ 3 (@+ 2 (@+ (@- 2 1) (app S (@- (@- (@- 3 1) 1) 1)))))

⇒[-] (@+ 3 (@+ 2 (@+ 1 (app S (@- (@- (@- 3 1) 1) 1)))))

⇒[rec] (@+ 3 (@+ 2 (@+ 1 (app S ′ (@- (@- (@- 3 1) 1) 1)))))

⇒[β] (@+ 3 (@+ 2 (@+ 1 (if (@= (@- (@- (@- 3 1) 1) 1) 0) 0

(@+ (@- (@- (@- 3 1) 1) 1)

(app S (@- (@- (@- (@- 3 1) 1) 1) 1)))))))
⇒[-] (@+ 3 (@+ 2 (@+ 1 (if (@= (@- (@- 2 1) 1) 0) 0

(@+ (@- (@- (@- 3 1) 1) 1)

(app S (@- (@- (@- (@- 3 1) 1) 1) 1)))))))
⇒[-] (@+ 3 (@+ 2 (@+ 1 (if (@= (@- 1 1) 0) 0

(@+ (@- (@- (@- 3 1) 1) 1)

(app S (@- (@- (@- (@- 3 1) 1) 1) 1)))))))
⇒[-] (@+ 3 (@+ 2 (@+ 1 (if (@= 0 0) 0

(@+ (@- (@- (@- 3 1) 1) 1)

(app S (@- (@- (@- (@- 3 1) 1) 1) 1)))))))
⇒[=] (@+ 3 (@+ 2 (@+ 1 (if #t 0

(@+ (@- (@- (@- 3 1) 1) 1)

(app S (@- (@- (@- (@- 3 1) 1) 1) 1)))))))
⇒[if-T] (@+ 3 (@+ 2 (@+ 1 0)))

⇒[+] (@+ 3 (@+ 2 1)) ⇒[+] (@+ 3 3) ⇒[+] 6

Figure 6.20 FLK evaluation of an application of a recursive summation procedure.
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Then behdet 〈Psum , [IE 1 . . . IE k ]〉 is defined as follows:

(AnsExp�Outcome Nans) if k = 1, IE1 = Narg , (compare >= Narg 0) ,
and Nans is the numeral for Σn

i=1i.
where n is the integer denoted by numeral Narg .

∞ if k = 1, IE1 = Narg , and (compare < Narg 0)
stuck if k 
= 1 or IE1 
∈ IntLit.

The behdet function departs in two ways from the informal notion of program
execution introduced in Section 6.2.1:

• Because errors are modeled by stuck states, all programs encountering an error
yield the outcome stuck rather than an error outcome with an associated
message (e.g., error:divide-by-zero). The latter can be obtained by using an
SOS that propagates errors (see Exercise 6.28).

• All programs returning a pair value result in the outcome

(AnsExp�Outcome pairans)

which does not show the components of the pair. Any attempt to flesh out the
components of a nonstrict pair might encounter an error or an infinite loop.
So we will interpret the informal outcome notation 〈o1 , o2 〉 as:

the result of the program is a pair, and if the body of the program were
wrapped in (prim fst �), then the outcome would be o1 , and if the
body of the program were wrapped in (prim snd �), then the outcome
would be o2 .

Exercise 6.22 Consider the following FLK abstractions:

Esub = (lam x (lam y (prim - x y)))

Eapp5 = (lam f (app f 5))

Eflip = (lam g (lam a (lam b (app (app g b) a))))

Use the evaluation relation to show the evaluation of the following expressions:

a. (app Eapp5 (app Esub 1))

b. (app (app Eapp5 Esub) 2)

c. (app (app Eapp5 (app Eflip Esub)) 3)

d. (app (app (app Eflip Eapp5) 4) Esub)

e. (app (app (app (app Eflip Eflip) 3) Esub) 5)
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Exercise 6.23 Use the FLK evaluation relation to show the evaluation of the following
expressions:

a. (prim fst (pair 1 (prim not 3)))

b. (prim fst (prim snd (prim snd (rec p (pair 1 (pair 2 p))))))

The first expression illustrates the nonstrictness of pair, while the second illustrates the
unwinding nature of rec.

Exercise 6.24 Consider the following FL expression E0 :

(letrec ((even? (abs (x) (if (@= x 0) #t (odd? (@- x 1)))))

(odd? (abs (y) (@not (even? y)))))

(list (even? 0) (odd? 1)))

a. What is the expression E1 that is the result of desugaring E0 ?

b. Use the FLK evaluation relation to show the evaluation of E1 . To simplify your task,
introduce abbreviations for large unchanging expressions.

c. Bud Lojack thinks that the letrec desugaring in Figure 6.4 on page 220 can be
simplified to:

DS[[(letrec ((Ii Ei)
n
i=1) Ebody)]]

=DS[[(app (rec IChurchTuple

(lam Iselector (IChurchTuple (abs (I n
i=1) (Iselector En

i=1)))))

(abs (I n
i=1) Ebody))]], where IChurchTuple and Iselector are fresh.

What is the expression E2 that is the result of desugaring E0 in Bud’s modified
approach?

d. Use the FLK rewrite rules to show the evaluation of E2 . What is the problem with
Bud’s desugaring?

Exercise 6.25 Since FLK is nonstrict, it is not necessary for if to be a distinguished
construct. Instead, if could be a unary primitive operator that returns a (curried)
binary function. That is, instead of being written (if E1 E2 E3), conditionals could
be expressed as

(app (app (primop if E1) E2) E3)

Give the reduction rules for if as a unary primitive operator.

Exercise 6.26 Suppose we want to extend FL with a least construct. Given a numeric
predicate, least returns the smallest nonnegative integer that satisfies the predicate:

(least (lam (x) (= x (* x x)))) −−−FL→ 0
(least (lam (a) (> (* a a) 10))) −−−FL→ 4
(least (lam (x) (< x 0))) −−−FL→ ∞ {Looks, but no solution}
(least (lam (x) x)) −−−FL→ error:non-bool-in-if-test

a. Must the argument to least always be an abstraction (a lam expression)? If so,
explain why; if not, give a counterexample.
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b. One way to add least is to extend the syntax of FLK to include (least E) as a
new kernel expression. Extend the operational semantics of FLK to handle the least
expression. Keep in mind that an SOS has five parts; make the appropriate modifica-
tions to each of the parts. Hint: In addition to adding (least E) to the configuration
space, it is also desirable to add a configuration of the form (*least* E N ). Con-
figurations like *least* that are not valid as expressions in the language are often
useful for representing intermediate states of computations.

c. Alternatively, least can be written as a user-defined procedure that can be referenced
in the definitions and body of an FL program. Show how to implement least with
this approach.

Exercise 6.27 In FLK, pair is a kernel expression, but it can be handled in other ways.

a. One option is to treat pair as a primitive operator in Primop. Implement this change
by modifying the grammar of FLK and the SOS for FLK. Show any changes you
make to the domains and reduction rules. Do any of the evaluation contexts need to
be modified?

b. Another option is to treat pair as a user-defined procedure. Here is such a definition:

(def pair (abs (x y) (abs (s) (s x y))))

Give corresponding definitions for unary selection procedures fst and snd. Can you
define pair? in this approach?

Exercise 6.28 Like the PostFix SOS, the FLK SOS uses stuck states to model errors.
Rather than using stuck states to model errors, we can explicitly represent and propagate
errors by extending ValueExp to include error expressions as value expressions:

V ::= . . . | (error Y )

Then we need to modify the reduction rules to (1) convert stuck expressions to an appro-
priate error expression and (2) propagate error forms so that they eventually become
final configurations (i.e., expressions in ValueExp). For example, we could have the rule

(app V E) � (error non-procedural-rator),
where V is not an abstraction [rator-error]

to express the fact that it is an error to use any value other than an abstraction in the
rator position of an application.

a. Make all necessary modifications and additions to the FLK reduction relation in order
to handle the explicit introduction and propagation of error expressions. Make sure
that errors propagate appropriately; e.g., (primop + 1 (primop / 1 0)) should
evaluate to an error because it has a subexpression that evaluates to an error.

b. Modify the AnsExp domain and the output function OF of the FLK SOS so that
errors with messages can be outcomes of program execution.
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Exercise 6.29 After carefully studying the SOS for FLK, Sam Antics proclaims that
it is safe to use a naive substitution strategy (i.e., one that does not rename bound
identifiers) in the [β] and [rec] rules as long as the original expression being evaluated
does not contain any free identifiers.

a. Show that Sam is right. That is, show that the name capture problems addressed by
the definition of substitution in Figure 6.17 cannot occur during the evaluation of an
FLK expression that has no free identifiers.

b. Give an example of an FLK expression containing a free identifier that evaluates to
the wrong answer if the naive substitution strategy is used.

c. Suppose that every FLK expression were alpha-renamed so that all variables had
distinct identifiers and no bound variable used the same identifier as any free variable.
Under these conditions, is it always safe to use the naive substitution strategy? If so,
explain; if not, give a counterexample.

Exercise 6.30 Computation in the presence of nonstrictness can be viewed as a bu-
reaucracy where envelopes (values containing a type and other information) are shuffled
around by the interpreting agent that performs the computation.9 In many steps of
the computation, envelopes are simply moved around without being opened. In the for-
mation of a nonstrict pair, for instance, two envelopes are simply stuffed into a larger
envelope without ever having their contents examined. During other stages — a prim-
itive addition, for instance — the contents (type and content information) of envelopes
must definitely be examined.

With this perspective in mind, for each FLK expression describe when the contents
of envelopes must be examined. In other words, which contexts demand the value of an
expression?

Exercise 6.31 In your favorite programming language, implement an evaluator for FLK
expressions based on the FLK SOS. Your evaluator should show the step-by-step eval-
uation of an FLK expression by displaying the result of each evaluation step. You will
need an expression substitution procedure for implementing the [β] and [rec] rules.

Exercise 6.32

a. Write a big-step operational semantics (BOS) for FLK. (See Section 3.3 for an ex-
planation of BOS.) As in Exercise 6.28, your rules should introduce and propagate
errors. For example, Figure 6.21 shows the BOS rules for not.

b. In your favorite programming language, implement an evaluator for FLK expressions
based on your FLK BOS. Your evaluator should show the result of evaluating an
FLK expression. You will need an expression substitution procedure in order to
handle procedure application and the unwinding of rec.

9Phil Agre introduced us to this point of view.
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E −−� #t

(prim not E) −−� #f
[not-T]

E −−� #f

(prim not E) −−� #t
[not-F]

E −−� V

(prim not E) −−� (error not-a-bool)
[not-nonbool]

where V is not a boolean or an error.

(prim not) −−� (error too-few-args) [not-few ]

∀n
i=1 . Ei −−� Vi

(prim not E1 . . . En) −−� (error too-many-args)
[not-many]

where n > 1 and none of the Vi is an error.

∀k−1
i=1 . Ei −−� Vi ; Ek −−� (error Y )

(prim O E1 . . . En) −−� (error Y )
[prim-error-prop]

where k ≤ n and none of V k−1
i=1 is an error.

Figure 6.21 Rewrite rules for not in a big-step operational semantics for FLK.

6.4.2 FLK Simplification

In our study of PostFix, we introduced the notion of safe transformations —
changes to program phrases that are guaranteed to preserve program behavior.
Here we revisit safe transformations in the context of behavior-preserving simpli-
fications of FL expressions. The purpose of this exploration is twofold:

1. We want to explore safe transformations in the context of a language (FLK)
that has many features not enjoyed by PostFix: e.g., names, recursion, and
data structures (via pair). Such transformations are important for program
optimization by both programmers and compiler writers.

2. The properties of simplification will be used to justify several important results
later on. In particular, they will help us to show the relationship between
parameter-passing mechanisms in Section 7.1, and will help us to show the
strong normalization of a typed version of FLK in Section 11.7.

We will use the following FLK program P to motivate simplification:

(flk (n)

(app (lam f (prim + (app f n) (app f 5)))

(lam x (prim * (prim + 1 2) x))))
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Reduction Relation (�)

Same reduction rules as in Figure 6.19 on page 259

Simplification Contexts

S ∈ SimpContextFL

S ::= � | (if S Ethen Eelse) | (if Etest S Eelse) | (if Etest Ethen S)
| (prim Oprimop Ek−1

i=1 S En
j=k+1)

| (lam Iformal S) | (app S Erand) | (app Erator S)
| (pair S Esnd) | (pair Efst S) | (rec Iname S)

Simplification Relation (−−→)

S{E} −−→ S{E ′}, where E � E ′

Nonevaluation Step (◦=⇒)

◦=⇒ = (−−→ − ⇒) ; the set difference of the two relations

Figure 6.22 A context-based description of the FLK simplification relation.

Executing this program on the argument 4 yields the following transition path:

(app (lam f (prim + (app f 4) (app f 5)))

(lam x (prim * (prim + 1 2) x))))
⇒[β] (prim + (app (lam x (prim * (prim + 1 2) x)) 4)

(app (lam x (prim * (prim + 1 2) x)) 5))
⇒[β] (prim + (prim * (prim + 1 2) 4)

(app (lam x (prim * (prim + 1 2) x)) 5))
⇒[+] (prim + (prim * 3 4)

(app (lam x (prim * (prim + 1 2) x)) 5))
⇒[*] (prim + 12 (app (lam x (prim * (prim + 1 2) x)) 5))

⇒[β] (prim + 12 (prim * (prim + 1 2) 5))

⇒[+] (prim + 12 (prim * 3 5))

⇒[*] (prim + 12 15)

⇒[+] 27

The program contains several inefficiencies. Every time the program is executed,
the abstraction (lam x (prim * (prim + 1 2) x)) is duplicated and applied
to the arguments n and 5. This causes the primitive application (prim + 1 2),
which always evaluates to 3, to be evaluated twice. We expect to be able to replace
the abstraction by (lam x (prim * 3 x)). Moreover, applying this abstraction
to 5 always yields 15 and applying it to n yields (prim * 3 n). So we should be
able to simplify P to (flk (n) (+ (prim * 3 n) 15)), which we will call P ′.

We can formalize these sorts of simplifications by defining a simplification
relation −−→ on expressions (Figure 6.22). This simplification relation supports
the same basic reductions as the evaluation relation ⇒ but allows them to be
performed in arbitrary expression contexts (which we’ll call simplification con-
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texts) rather than restricting them to specialized evaluation contexts. We pro-
nounce E1 −−→ E2 as “E1 simplifies to E2 in one step.” For example, we can
simplify the body of P to the body of P ′ via the following steps:

(app (lam f (prim + (app f n) (app f 5)))

(lam x (prim * (prim + 1 2) x))))
−−→[+] (app (lam f (prim + (app f n) (app f 5)))

(lam x (prim * 3 x)))
−−→[β] (prim + (app (lam x (prim * 3 x)) n)

(app (lam x (prim * 3 x)) 5))
−−→[β] (prim + (app (lam x (prim * 3 x)) n)

(prim * 3 5))
−−→[*] (prim + (app (lam x (prim * 3 x)) n) 15)

−−→[β] (prim + (prim * 3 n) 15)

In this case, the final expression is a normal form with respect to −−→; it is not
possible to simplify it further.

Since evaluation and simplification are based on the same reductions and
evaluation contexts are a subset of the simplification contexts, the evaluation
relation ⇒ is a subrelation of the simplification relation −−→. So every evaluation
step E ⇒ E ′ can also be viewed as a simplification step E −−→ E ′. We use the
notation E ◦=⇒ E ′ for any simplification step that is not an evaluation step, and
call such a step a nonevaluation step. For example, here is a version of the
above transition path annotated with evaluation and nonevaluation steps:

(app (lam f (prim + (app f n) (app f 5)))

(lam x (prim * (prim + 1 2) x))))
◦=⇒[+] (app (lam f (prim + (app f n) (app f 5)))

(lam x (prim * 3 x)))
⇒[β] (prim + (app (lam x (prim * 3 x)) n)

(app (lam x (prim * 3 x)) 5))
◦=⇒[β] (prim + (app (lam x (prim * 3 x)) n)

(prim * 3 5))
◦=⇒[*] (prim + (app (lam x (prim * 3 x)) n) 15)

⇒[β] (prim + (prim * 3 n) 15)

As illustrated by this example, evaluation and nonevaluation steps may be inter-
leaved in a simplification sequence.

An FLK expression E belongs to one of three classes that describe its status
relative to evaluation:

1. reducible: E can be reduced by an evaluation step. I.e., there is an E ′ such
that E ⇒ E ′.

2. value: E is an element of V .

3. stuck: E has no evaluation redex and is not an element of V .
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The class of an expression is denoted (classify E ). An important property of
nonevaluation steps is that they preserve this classification:

Theorem 6.1 (Nonevaluation Steps Preserve Classification)

If E1 ◦
∗
=⇒ E2 , then (classify E1 ) = (classify E2 ).

This is easy to show by case analysis on the structure of E1 . In contrast, evalu-
ation steps are not guaranteed to preserve classification: An evaluation step can
change a reducible expression to a value or a stuck expression.

Whereas ⇒ is deterministic, −−→ is not because the general nature of simplifi-
cation contexts often allows many different simplification steps to be performed
in a given expression. However, −−→ is confluent:

Theorem 6.2 (Confluence of FLK Simplification) The FLK simpli-
fication relation is confluent. I.e., if E1 −∗−→ E2 and E1 −∗−→ E3 then there
exists an E4 such that E2 −∗−→ E4 and E3 −∗−→ E4 .

E1 E2

E3 E4

∗

∗ ∗
∗

As usual, in the diagram, the solid lines are the given relations and the
dashed lines are the ones whose existence is implied by the theorem.

The proof of this and several other FLK simplification theorems can be found in
the Web Supplement.

The confluence of simplification means that it is often possible to arrive at
the same result via many different simplification paths. In particular, if E1 −∗−→
E2 and E1 −∗−→ E3 and both E2 and E3 are normal forms with respect to −−→, then
E2 = E3 (because both must be the E4 implied by confluence). For example,
here is a different simplification path for the body of P :

(app (lam f (prim + (app f n) (app f 5)))

(lam x (prim * (prim + 1 2) x))))
⇒[β] (prim + (app (lam x (prim * (prim + 1 2) x)) n)

(app (lam x (prim * (prim + 1 2) x)) 5))
⇒[β] (prim + (prim * (prim + 1 2) n)

(app (lam x (prim * (prim + 1 2) x)) 5))
⇒[+] (prim + (prim * 3 n)

(app (lam x (prim * (prim + 1 2) x)) 5))
◦=⇒[β] (prim + (prim * 3 n) (prim * (prim + 1 2) 5))

◦=⇒[+] (prim + (prim * 3 n) (prim * 3 5))

◦=⇒[*] (prim + (prim * 3 n) 15)
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In the alternative path, all evaluation steps are performed first until evaluation
cannot proceed, and then nonevaluation steps are performed until a normal form
is reached. The following theorem says that any FLK sequence of simplification
steps can be replaced by a standard path consisting of a sequence of evaluation
steps followed by a sequence of nonevaluation steps:

Theorem 6.3 (Standardization of FLK Simplification) If E1 −∗−→ E2 ,

then there exists an E ′ such that E1
∗⇒ E ′ and E ′ ◦∗=⇒ E2 .

E1 E2

E ′

∗

∗ ∗

Are simplification steps safe? Yes, it turns out that every simplification step
is guaranteed to preserve the behavior of a program:

Theorem 6.4 (FLK Simplification Preserves Observational Equiv-
alence) If E1 −∗−→ E2 then E1 =obs E2 .

This theorem can be proved using the confluence (Theorem 6.2) and standardiza-
tion (Theorem 6.3) properties of FLK in conjunction with the fact that nonnor-
malization step preserve classification (Theorem 6.1). See the Web Supplement
for details.

Theorem 6.4 gives FL programmers and compiler writers the confidence that
they can simplify a program via −−→ steps without changing its behavior. However,
simplification steps cover only a small subset of safe transformations on FLK
expressions. For example, they do not permit transforming (prim + 0 E) to E
or (prim + E E) to (prim * 2 E). Nevertheless, simplification steps are still
fundamental for reasoning about programs.

Note that the converse of Theorem 6.4 is not true. If E1 and E2 are ob-
servationally equivalent, it is not generally possible to show that one of these
simplifies to the other. For example, we expect that (lam x (prim + x x)) and
(lam x (prim * 2 x)) are observationally equivalent, but since both are nor-
mal forms with respect to −−→, it is not possible to use −−→ to simplify one to the
other.

Exercise 6.33 Bud Lojack decides to implement an optimizer for FLK that performs
all possible simplification steps on a program before running it on any inputs. Describe a
fundamental problem with Bud’s plan, using a concrete example to illustrate the problem.
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6.5 A Denotational Semantics for FLK

Now we will develop a denotational semantics for FLK. As with EL and Post-
Fix, the denotational semantics of FLK has a very different “feel” from the
operational semantics. It gives us new ways to reason about FLK programs and
suggests new techniques for implementing FLK. In particular, it employs a no-
tion of environment that is an alternative to substitution for explaining the
meaning of names in a program.

6.5.1 Semantic Algebra

As usual, we begin our study of the denotational semantics of FLK by carefully
examining its semantic algebra: the semantic domains and the functions on these
domains. The semantic domains of FLK are presented in Figure 6.23.

The values that can be expressed by an FLK expression are modeled by
expressible values from the Expressible domain, which is a lifted sum of Value
and Error . Value contains unit, boolean, integer, and symbol values, as well
as pair and procedure values, which are recursively defined (indirectly via the
Comp domain, explained below) in terms of Expressible. The fact that Value
(and therefore Expressible) contains procedural values is an essential feature of
a functional language: it indicates that procedural values may be used in all the
same contexts where integers, booleans, and the like may be used. Errors, like
symbols, are modeled as symbolic literals; in the case of errors, these represent
the error messages. The bottom element of the Expressible domain represents a
nonterminating computation in FLK.

We will see that the meaning of an FLK expression involves a notion of
computation, which is an element of the domain Comp. In FLK, Comp is just
a synonym for Expressible. So what is the Comp domain for? It is a commonly
used domain that allows us to modularize our denotational semantics in support
of various features. When we study variants of FL in later chapters, we will
be able to tweak the definition of the Comp domain and leave the rest of the
semantic algebra intact.

Similarly, the meaning of an FLK program involves an answer in the domain
Answer. In FLK, Answer is another synonym for Expressible. We give it a
separate name so that we can consider changing its definition later.

Whereas the SOS for FLK uses substitution to model naming, the denota-
tional semantics uses environments, elements of the domain Env. An environ-
ment can be viewed as a virtual substitution that associates names (elements
of the domain Ident) with so-called nameable values (elements of the domain
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c ∈ Comp = Expressible ; Result of evaluating an expression
a ∈ Answer = Expressible ; Result of running a program
x ∈ Expressible = (Value + Error)⊥ ; Can be computed

Error = SymLit

v ∈ Value = Unit + Bool + Int + Sym + Pair + Proc
Unit = {unit}

b ∈ Bool = {true, false}
i ∈ Int = {. . . , -2, -1, 0, 1, 2, . . .}
y ∈ Sym = SymLit

Pair = Comp × Comp
p ∈ Proc = Nameable→ Comp
n ∈ Nameable = Comp ; Can be named

β ∈ BindingVal = (Nameable + Unbound)⊥
e ∈ Env = Ident → BindingVal ; Environment

Unbound = {unbound}
Ident and SymLit are the domains defined in Figure 6.1 on page 211.

Usual operations on Bool : ¬ (negation), ∧ (conjunction), ∨ (disjunction), =Bool

Usual operations on Int : +Int, −Int, ×Int, ÷Int(quotient), %Int(remainder),
<Int, ≤Int, =Int, 
=Int, ≥Int, >Int

Equality operation on Sym: =Sym

Equality operation on Ident: = Ident

Operations on Env : see Figure 6.24
Operations on Comp: see Figure 6.26

Figure 6.23 The semantic domains for FLK.

Nameable, which in FLK is a synonym for Comp and Expressible). An associa-
tion between a name and a nameable value is called a binding. We say that the
name is bound to the nameable value.

In the denotational semantics of FLK, expressions will be evaluated relative
to an environment that specifies the values of the free variables in that expres-
sion. When a binding construct is encountered, the current environment will be
extended by binding the bound name of the construct to an appropriate value.
The extended environment will then be used to evaluate expressions within the
scope of the bound name.

The Env domain consists of functions that map names to elements of the
domain BindingVal, which is a lifted sum of nameable values and the trivial
domain Unbound. The trivial element unbound acts as an “unbound marker”
indicating that a name is not bound in an environment. The bottom element
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Environment Operations
empty-env : Env = λI . (Unbound �BindingVal unbound)

lookup : Ident → Env→ BindingVal = λIe . (e I )

extend : Ident → Nameable→ Env→ Env
= λIne . λI2 . if I = Ident I2 then (Nameable �BindingVal n)

else (lookup I2 e) end

extend∗ : Ident* → Nameable* → Env→ Env
= λI ∗n∗e . match 〈I ∗, n∗〉

� 〈I1 . I ∗
rest , n1 . n∗

rest〉 [] (extend I1 n1 (extend∗ I ∗
rest n∗

rest e))
� else e end

merge : Env→ Env→ Env
= λe1 e2 . λI . match (lookup I e1 )

� (Nameable �BindingVal n) [] (lookup I e1 )
� (Unbound �BindingVal unbound)[] (lookup I e2 )
end

Notational Abbreviations
[I �→n]e abbreviates (extend I n e).
This notation associates to the right: [I2 �→n2 ][I1 �→n1 ]e = [I2 �→n2 ]([I1 �→n1 ]e).

e1 � e2 abbreviates (merge e1 e2 ).

{I1 �→n1 , . . . , Ik �→nk} abbreviates [I1 �→n1 ] . . . [Ik �→nk ]empty-env,
where I1 , . . . , Ik must be pairwise distinct.

Figure 6.24 Environment functions.

of BindingVal is not strictly necessary for the semantics of FLK, but will be
necessary for fixed-point calculations in variants of FLK that we will study later.

Environments are manipulated using the constants and functions in Fig-
ure 6.24. In the empty environment, empty-env, every name is unbound. The
invocation (lookup I e) returns the element of BindingVal associated with the
name I in environment e. The invocation (extend I n e) (abbreviated [I �→n]e)
is similar, except it binds the name I to the nameable value n (overriding any
existing binding). The invocation (extend∗ [I1 , . . . , In ] [n1 , . . . ,nn ] e) returns
the environment that results from binding each Ii to ni (1 ≤ i ≤ n) in e. The
invocation (merge e1 e2 ) (abbreviated e1 � e2 ) returns an environment that
merges the bindings of e1 and e2 ; if a name is bound in both environments, the
binding in e1 takes precedence. The notation {I1 �→n1 , . . . , In �→nn} represents



278 Chapter 6 FL: A Functional Language

Environment definition Resulting environment

e0 = empty-env {}
e1 = [a �→ 1̂]e0 {a �→ 1̂}
e2 = [b �→ 2̂]e1 {a �→ 1̂, b �→ 2̂}
e3 = [a �→ 3̂]e2 {a �→ 3̂, b �→ 2̂}

e4 = {b �→ 4̂, c �→ 5̂} {b �→ 4̂, c �→ 5̂}
e5 = e3 � e4 {a �→ 3̂, b �→ 2̂, c �→ 5̂}
e6 = e4 � e3 {a �→ 3̂, b �→ 4̂, c �→ 5̂}
e7 = e1 � e3 {a �→ 1̂, b �→ 2̂}

Figure 6.25 Example environment manipulations. The notation î is an abbreviation
for (Value �Comp (Int �Value i)).

an environment in which I1 , . . . , In (assumed to be pairwise distinct) are bound
to nameable values n1 , . . . , nn , respectively, and all other identifiers are unbound.
Figure 6.25 shows some sample uses of the environment functions.

The semantic domain Nameable of nameable values consists of those values
that can be named in environments. The Proc domain’s argument value must be
nameable — otherwise the argument could not be named by a formal parameter.
In FLK, Nameable and Expressible are the same domain, but there is no a priori
reason why the entities that can be named in an environment have to be the
same as those that can be the results of arbitrary expressions. In general, there
are many other possible relationships between Nameable and Expressible:

• Nameable may be a superset of Expressible — some entities may be named but
not written as expressions. For example, languages in which procedures are not
first class typically have ways to name procedures (usually via a declaration)
even though procedures cannot be values of expressions.

• Nameable may be a subset of Expressible — some entities that may be the
results of expressions cannot be named. For example, in certain languages
identifiers cannot name entities that represent errors and infinite loops. We
shall study this example in detail when we discuss call-by-value semantics in
Chapter 7.

• The relationship between Nameable and Expressible may be more complex.
Consider a language in which procedures are nameable but not expressible,
and errors are expressible but not nameable. (Fortran is in this category.)

Thus, the definitions of Nameable and Expressible in the denotational semantics
of a given language contain some important information about high-level features
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of the language. The availability of this kind of information is the reason why,
when reading a denotational semantics, it is advisable to first carefully study
domain definitions and function signatures before delving into the details of the
valuation functions.

Like Value, Nameable, and Expressible, the Comp domain is a “knob” that
that can be tweaked as to specify different languages. The Comp domain provides
a level of abstraction over the meaning of an expression relative to an environ-
ment. The valuation function E for expressions will always have the signature
E :Exp→ Env→ Comp.

The purpose of the Comp domain is to highlight the essential meaning of
expressions while factoring out cumbersome details like the propagation of errors
and the management of context domains we will encounter in later chapters. In
FLK, operations on the Comp domain serve mainly to simplify the description
of error propagation. When we extend FL by adding state in Chapter 8 and
continuations in Chapter 9, Comp and its associated operations will be become
more complex, but the valuation functions for many expressions will remain un-
changed. Elements of the state and control domains will be mentioned explicitly
only in meanings of those expressions that use the state and control features of
the language in an essential way.

The Comp domain is equipped with the functions shown in Figure 6.26.
val-to-comp converts a value to a computation, err-to-comp converts an error
to a computation, and nam-to-comp converts a nameable value to a computa-
tion. In FLK, nam-to-comp is the identity function because Nameable and Comp
are the same. However, in other languages we study, Nameable and Comp will
be different. Judiciously using nam-to-comp in some valuation clauses will allow
us to keep the same valuation clause when we move from language to language;
only the definition of nam-to-comp will change.

The purpose of the with-value function is to hide the explicit propagation of
errors and infinite loops. The invocation (with-value c f ) checks whether the
computation c is a value. If so, it applies the function f (which returns another
computation) to that value; otherwise it simply returns the original computa-
tion c. The invocation (with-values c∗ f ) is similar, except that it processes a
sequence of computations c∗. If all computations in c∗ are values, it applies f
to these values (returning a computation); otherwise, the first non-value com-
putation encountered in c∗ is returned. The other functions whose names begin
with with- are similar, except that (1) they may process elements other than
computations and (2) they may generate new error computations rather than
just passing along old ones. For example, the invocation (with-boolean-val v f )
tests if v is a boolean value b. If so, the computation (f b) is returned. Other-
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wise, an error computation indicating that v is not a boolean is returned. The
with-boolean-comp function is similar, except that it takes a computation rather
than a value as its first argument. The with-nameable function processes the
nameable value that results from looking up a name in an environment (or re-
turns an unbound-var error computation if the name is unbound).

Some useful equalities involving the computation functions are presented in
Figure 6.27. When we change the Comp domain in later chapters, we will change
the definitions of its associated functions so that these equalities will still hold.

6.5.2 Valuation Functions

The valuation functions for FLK are presented in Figures 6.28 and 6.29. There
are many valuation functions because there is one function for each syntactic
domain that denotes a node in an abstract syntax tree, and there are many such
syntactic domains (see Figure 6.18 on page 258).

The key valuation function is E , whose signature is Exp → Env → Comp.
This says that the meaning of an expression is a function from environments to
computations.

• The function that is the meaning of an expression takes an environment because
expressions may have free variables and an environment is necessary to resolve
the meanings of these variables. The environment serves as a context domain
that plays the role of substitution in the SOS. Indeed, an environment can be
viewed as a virtual substitution that is passed down an expression AST and is
performed in a “just-in-time” fashion when a variable reference is reached (in
the clause E [[I ]]).

• The function that is the meaning of an expression returns a computation.
In FLK, the computation domain Comp is the same as Expressible, whose
definition is (Value + Error)⊥. So evaluating an expression relative to an envi-
ronment can result in one of three kinds of answers: (1) a value (i.e., the unit
value, a boolean, an integer, a symbol, a pair, or a procedure); (2) an error
(one that carries an error message); or (3) an infinite loop.

The valuation clauses for E are written in a compact style, thanks in large part
to the Comp abstraction and its associated helper functions. However, it takes
time and effort to learn how to read clauses written in this style. It is helpful first
to “type check” the clauses — that is, based on the declared signatures of the
valuation functions and helper functions from the semantic domains, to reason
that each clause has the type declared by the signature. It is also sometimes
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val-to-comp : Value→ Comp = Value �Comp

err-to-comp : Error→ Comp = Error �Comp

nam-to-comp : Nameable→ Comp = λn . n

with-value : Comp→ (Value→ Comp) → Comp
= λcf . match c

� (Value �Comp v) [] (f v)
� else c
end

with-values : Comp*→ (Value*→ Comp) → Comp
= λc∗f . match c∗

� [ ]Comp [] (f [ ]Value)
� cfst . c∗rest [] (with-value cfst

(λvfst . (with-values c∗rest (λv∗
rest . (f (vfst . v∗

rest))))))
end

with-boolean-val : Value→ (Bool→ Comp) → Comp
= λvf . match v

� (Bool �Value b) [] (f b)
� else (err-to-comp not-a-boolean)
end

similar for with-integer-val, with-pair-val, etc.

with-boolean-comp : Comp→ (Bool→ Comp) → Comp
= λcf . (with-value c (λv . (with-boolean-val v f )))
similar for with-integer-comp, with-procedure-comp, etc.

with-nameable : BindingVal→ (Nameable→ Comp) → Comp
= λβf . match β

� (Nameable �BindingVal n) [] (f n)
� (Unbound �BindingVal unbound) [] (err-to-comp unbound-var)
end

Figure 6.26 Computation functions.

helpful to expand some of the helper functions in a clause to understand it better.
For example, here is an expanded version of the E clause for if:

E [[(if E1 E2 E3)]] =
λe . match (E [[E1 ]] e)

� (Value �Comp v) [] match v
� (Bool �Value b) []
if b then (E [[E2 ]] e) else (E [[E3 ]] e) end

� else (err-to-comp not-a-boolean) end
� else (E [[E1 ]] e) end
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(with-value (val-to-comp v) f ) = (f v) (6.5)

(with-value c (λv . (val-to-comp v))) = c (6.6)

(with-value (with-value c f ) g)
= (with-value c (λv . (with-value (f v) g))) (6.7)

(with-value (err-to-comp Ymsg) f ) = (err-to-comp Ymsg) (6.8)

(with-boolean-val (Bool �Value b) f ) = (f b) (6.9)
similar for with-integer-val, etc.

(with-boolean-comp (val-to-comp (Bool �Value b)) f ) = (f b) (6.10)
similar for with-integer-comp, etc.

(with-boolean-comp (err-to-comp Ymsg) f ) = (err-to-comp Ymsg) (6.11)
similar for with-integer-comp, etc.

(with-nameable (lookup I e) f ) = (f n) , where I is bound to n in e (6.12)

(with-nameable (lookup I e) f ) = (err-to-comp unbound-var),
where I is unbound in e (6.13)

Figure 6.27 Useful equalities on computations.

The expanded version makes explicit all the details of error checking that are
hidden in the compact version. When the Comp domain is extended to handle
state and control, even more details will be hidden by the compact versions of
the clauses.

The meaning E [[L]] of a literal L is a function that ignores its enviroment
and simply injects the literal value into the Comp domain. It implicitly uses
the L, B, and N functions, all of which are straightforward. The meaning of
E [[(error Y )]] is similar, except that it injects an error into the Comp domain.

The meaning E [[I ]] of an identifier is a function that looks up I in the envi-
ronment e. If I is bound to the nameable value n (which is a computation) in e,
then n is returned. Otherwise, I is unbound, and a computation specifying an
unbound variable error is returned.

In the invocation (E [[(if Etest Ethen Eelse)]] e), if (E [[Etest ]] e) is a boolean
value b, then b is used to choose between the computations (E [[Ethen ]] e) and
(E [[Eelse ]] e). If (E [[Etest ]] e) is a value that is not a boolean, the resulting com-
putation is an error. If (E [[Etest ]] e) is an error or infinite loop, these become the
resulting computation of the if.

(E [[(pair E1 E2)]] e) simply returns a pair value whose components are the
computations (E [[E1 ]] e) and (E [[E2 ]] e). As required for the nonstrictness of
FLK’s pairs, this always succeeds with a pair value, even when one or both of
(E [[E1 ]] e) and (E [[E2 ]] e) is an error or an infinite loop.
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B : BoolLit→ Bool
N : IntLit→ Int
L : Lit→ Value
E : Exp→ Env→ Comp ; Comp = Expressible in FLK
E∗ : Exp*→ Env→ Comp*
O : Primop→ Value*→ Comp
IE : InputExp→ Comp
IE∗ : InputExp*→ Comp*
P : Prog→ InputExp*→ Answer ; Answer = Expressible in FLK

B[[#t]] = true

B[[#f]] = false

N maps integer numerals to the integer numbers they denote.

L[[#u]] = (Unit �Value unit)

L[[B ]] = (Bool �Value B[[B ]])

L[[N ]] = (Int �Value N [[N ]])

L[[(sym Y )]] = (Sym �Value Y )

E [[L]] = λe . (val-to-comp L[[L]])

E [[(error Y )]] = λe . (err-to-comp Y )

E [[I ]] = λe . (with-nameable (lookup I e) (λn . (nam-to-comp n)))

E [[(if E1 E2 E3)]] = λe . (with-boolean-comp (E [[E1 ]] e)
(λb . if b then (E [[E2 ]] e) else (E [[E3 ]] e) end))

E [[(pair E1 E2)]] = λe . (val-to-comp (Pair �Value 〈(E [[E1 ]] e), (E [[E2 ]] e)〉))
E [[(prim O E∗)]] = λe . (with-values (E∗[[E∗]] e) (λv∗ . (O[[O ]] v∗)))

E [[(lam I E)]] = λe . (val-to-comp (Proc�Value (λn . (E [[E ]] [I �→n]e))))

E [[(app E1 E2)]] = λe . (with-procedure-comp (E [[E1 ]] e) (λp . (p (E [[E2 ]] e))))

E [[(rec I E)]] = λe . (fixComp (λc . (E [[E ]] [I �→ c]e)))

E∗[[]] = λe . [ ]Comp

E∗[[E1 . E∗
rest ]] = λe . (E [[E1 ]] e) . (E∗[[E∗

rest ]] e)

IE [[L]] = (val-to-comp L[[L]])

IE [[(pair IE1 IE2)]] = (val-to-comp (Pair �Value 〈IE [[IE1 ]], IE [[IE2 ]]〉))

IE∗[[]] = [ ]Comp

IE∗[[IE1 . IE∗
rest ]] = (IE [[IE1 ]]) . (IE∗[[IE∗

rest ]])

P[[(flk (I ∗) Ebody)]]
= λIE∗ . if (length I ∗) =Int (length IE∗)

then (E [[Ebody ]] (extend∗ I ∗ (IE∗[[IE∗]]) empty-env))
else (err-to-comp wrong-number-of-args)

Figure 6.28 Valuation functions for FLK (except primitive operators).
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(E [[(prim O E ∗)]] e) uses the valuation function E∗ to find the meanings
of all expressions in E ∗ relative to the environment e. These are processed by
with-values, which propagates errors and infinite loops appropriately. In the case
where all of the expressions in E ∗ have values, these values v∗ are processed by
O[[O ]], the meaning of the primitive operator O . The O function is defined in
Figure 6.29. Most of the work done by the O clauses is checking that the number
and types of arguments are correct, removing injections to access the raw operand
values, and injecting the result of the operation into the computation domain.

We can specialize the prim clause to the two-argument case as follows:

E [[(prim O E1 E2)]]
= λe . with-values (E∗[[[E1 ,E2 ]]] e) f1 , where f1 = λv∗

seq1 .
(
O[[O ]] v∗

seq1

)
= λe . with-value (E [[E1 ]] e)

(λv1 . with-values (E∗[[[E2 ]]] e) f2 ),
where f2 = λv∗

seq2 .
(
f1

(
v1 . v∗

seq2

))
= λe . with-value (E [[E1 ]] e)

(λv1 . with-value (E [[E2 ]] e) (λv2 . with-values (E∗[[]] e) f3 )),
where f3 = λv∗

seq3 .
(
f2

(
v2 . v∗

seq3

))
= λe . with-value (E [[E1 ]] e)

(λv1 . with-value (E [[E2 ]] e) (λv2 . (f3 [ ]))
= λe . with-value (E [[E1 ]] e)

(λv1 . with-value (E [[E2 ]] e) (λv2 . (f2 [v2 ])))
= λe . with-value (E [[E1 ]] e)

(λv1 . with-value (E [[E2 ]] e) (λv2 . (f1 [v1 , v2 ])))
= λe . with-value (E [[E1 ]] e)

(λv1 . with-value (E [[E2 ]] e) (λv2 . (O[[O ]] [v1 , v2 ])))

We can further specialize this version of prim to +:

E [[(prim + E1 E2)]]
= λe . with-value (E [[E1 ]] e)

(λv1 . with-value (E [[E2 ]] e)
(λv2 . with-integer-val v1

(λi1 . (with-integer-val v2
(λi2 . (val-to-comp

(Int �Value (i1 +Int i2 ))))))))

Observe that E [[(prim + E1 E2)]] is not equal to E [[(prim + E2 E1)]]. The
operands of a primitive application are evaluated from left to right, and whether
E1 or E2 is evaluated first can be detected using errors, possibly in conjunc-
tion with an infinite loop. For example, suppose (E [[E1 ]] e) results in an error
with message err1 and (E [[E2 ]] e) results in an error with message err2. Then
E [[(prim + E1 E2)]]e will yield (Error �Comp err1) and E [[(prim + E2 E1)]]e
will yield (Error �Comp err2). Similar reasoning applies if one of E1 or E2
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O[[not]] = λv∗ . match v∗

� [v ]Value [] (with-boolean-val v
(λb . (val-to-comp (Bool �Value ¬b))))

� else (err-to-comp not-wrong-number-of-args)
end

O[[and]] = λv∗ . match v∗

� [v1 , v2 ]Value [] (with-boolean-val v1
(λb1 . (with-boolean-val v2

(λb2 . (val-to-comp
(Bool �Value (b1 ∧ b2 )))))))

� else (err-to-comp and-wrong-number-of-args) end
similar for or

O[[+]] = λv∗ . match v∗

� [v1 , v2 ]Value [] (with-integer-val v1
(λi1 . (with-integer-val v2

(λi2 . (val-to-comp
(Int �Value (i1 +Int i2 )))))))

� else (err-to-comp +-wrong-number-of-args) end
similar for -, *, /, and %, except that / and % return an error when i2 = 0

O[[<]] = λv∗ . match v∗

� [v1 , v2 ]Value [] (with-integer-val v1
(λi1 . (with-integer-val v2

(λi2 . (val-to-comp
(Bool �Value (i1 <Int i2 )))))))

� else (err-to-comp <-wrong-number-of-args) end
similar for <=, =, !=, >=, and >; bool=? and sym=? are also similar, except
that they use with-boolean-val and with-symbol-val, respectively, in place
of with-integer-val

O[[fst]] = λv∗ . match v∗

� [v ]Value [] (with-pair-val v (λ〈c1 , c2 〉 . c1 ))
� else (err-to-comp fst-wrong-number-of-args) end

similar for snd

O[[int?]] = λv∗ . match v∗

� [v ]Value [] match v
� (Int �Value i) [] (val-to-comp (Bool �Value true))
� else (val-to-comp (Bool �Value false))
end

� else (err-to-comp int?-wrong-number-of-args) end
similar for unit?, bool?, sym?, pair?, proc?

Figure 6.29 Valuation functions for FLK primitive operators.
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generates an infinite loop. So in FLK, it is not safe to swap the operands of
+, since this may change the meaning of the program. However, swapping the
operands of + would be safe if we modified the semantics of FLK so that it rep-
resented all errors as ⊥Expressible, in which case divergence and all errors would
be indistinguishable (see the discussion on page 427).

The E clauses for lam and app describe the creation and application of pro-
cedural values. E [[(lam Iformal Ebody)]] never yields an error or loop; it always
returns the following element of the Proc domain injected into a computation:
λnarg . (E [[Ebody ]] [Iformal �→narg ]e). This abstraction “remembers” the environ-
ment e in force at the point of the lam. Whenever it is later applied, the body
expression Ebody will be evaluated in an extension of e in which the formal pa-
rameter Iformal is bound to the actual argument value narg . This environment
extension serves the same purpose as the substitution [narg/Iformal ]Ebody in the
SOS. Recall that Nameable = Comp in FLK, so narg may be an error or an
infinite loop.

(E [[(app Erator Erand)]] e) checks that E [[Erator ]]e is a procedure value p. If
so, p is invoked on the operand computation E [[Erand ]]e. If the rator yields a
value that is not a procedure, the application results in a not-a-procedure

error. Otherwise, any error or infinite loop in the rator is propagated to become
the resulting computation.

The clauses for lam and app are illustrated in Figures 6.30–6.32, which show
the calculation of the meaning of the application

(app (lam f (app f 5))

(lam n (lam x (prim - x n))))

(Figure 6.30 uses the specialization of prim derived on page 284. Many of the
equational steps in Figure 6.32 are justified by the equalities in Figure 6.27.) The
meaning of this application is the same meaning that would be calculated for
the FL abstraction (lam x (prim - x 5)), so this abstraction can be substi-
tuted for the original application expression without changing the meaning of a
program.

(E [[(rec I E)]] e) uses fixComp to find the “least” computation c satisfying
the equation c = (E [[E ]] [I �→ c]e). Because Comp is a pointed CPO (see Sec-
tions 5.2.2–5.2.3) the Least Fixed Point Theorem from Section 5.2.5 guarantees
that at least one fixed point exists and the iterative fixed point technique will
find the least of all the fixed points.

For example, consider the summation procedure (rec sum Eabs), where Eabs

is the abstraction
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(lam n (if (prim = n 0)

0

(prim + n (app sum (prim - n 1)))))

It is possible to show that

E [[Eabs ]]
= E [[(lam n (if (prim = n 0) 0 (prim + n (app sum (prim - n 1)))))]]
= λe . (val-to-comp

(Proc�Value

(λnn . (with-value nn

(λvn . (with-integer-val vn
(λin . if in =Int 0

then val-to-comp (Int �Value 0)
else with-value (with-procedure-comp (E [[sum]] e)

(λp . (p (val-to-comp
(Int �Value (in −Int 1)))))

(λvsum . (with-integer-val vsum
(λisum . (val-to-comp

(Int �Value (in +Int isum)))))))))))))

Note how the meaning of Eabs depends on the meaning of the name sum in the
environment. The expression (rec sum Eabs) “ties the knot” of recursion by
binding the name sum to the procedure-returning computation denoted by Eabs

in the environment relative to which Eabs is evaluated. This knot-tying is achieved
by a fixed point calculation in the meaning of (rec sum Eabs):

E [[(rec sum Eabs)]]
= λe . (fixComp (λc . (E [[Eabs ]] [sum �→ c]e)))
= λe . csum

where csum = (val-to-comp
(Proc�Value

(λnn . (with-value nn

(λvn . (with-integer-val vn
(λin . if in <Int 0 then ⊥Comp

else val-to-comp
(Int �Value

((in ×Int (in +Int 1)) ÷Int 2))
end)))))

The generating function λc . (E [[Eabs ]] [sum �→ c]e) applies the meaning of
Eabs presented earlier to an environment in which the name sum is bound to
the argument c. You should convince yourself that the least fixed point of this
function is the computation csum that returns a summation procedure that
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E [[(lam n (lam x (prim - x n)))]]
= λe . (val-to-comp (Proc�Value pn))

where pn = λnn . (E [[(lam x (prim - x n))]] [n �→nn ]e)
= λnn . (val-to-comp

(Proc�Value

(λnx . (E [[(prim - x n)]] [x �→nx ][n �→nn ]e))))
= λnn . (val-to-comp

(Proc�Value

(λnx . (with-value (E [[x]] [x �→nx ][n �→nn ]e)
(λvx . (with-value (E [[n]] [x �→nx ][n �→nn ]e)

(λvn . (with-integer-val vx
(λix . (with-integer-val vn

(λin . (val-to-comp
(Int �Value (ix −Int in))))))))))))))

= λnn . (val-to-comp
(Proc�Value

(λnx . (with-value nx

(λvx . (with-value nn

(λvn . (with-integer-val vx
(λix . (with-integer-val vn

(λin . (val-to-comp
(Int �Value (ix −Int in))))))))))))))

Figure 6.30 The meaning of (lam n (lam x (prim - x n))).

E [[(lam f (app f 5))]]
= λe . (val-to-comp (Proc�Value pf ))

where pf = λnf . (E [[(app f 5)]] [f �→nf ]e)
= λnf . (with-procedure-comp (E [[f]] [f �→nf ]e)

(λp . (p (E [[5]] [f �→nf ]e)))
= λnf . (with-procedure-comp nf

(λp . (p (val-to-comp (Int �Value 5)))))

Figure 6.31 The meaning of (lam f (app f 5)).

• returns Σin
k=1k = in ·(in+1)

2 if its argument is a nonnegative integer in ;

• diverges (i.e., returns ⊥Comp) if its argument is a negative integer;

• signals an error (i.e., returns an error computation) if its argument is not an
integer.
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E [[(app (lam f (app f 5)) (lam n (lam x (prim - x n))))]]
= λe . (with-procedure-comp (E [[(lam f (app f 5))]] e)

(λp . (p (E [[(lam n (lam x (prim - x n)))]] e))))
= λe . (with-procedure-comp (val-to-comp (Proc�Value pf )) ; pf from Figure 6.31

(λp . (p (val-to-comp (Proc�Value pn))))) ; pn from Figure 6.30
= λe . (pf (val-to-comp (Proc�Value pn)))
= λe . (with-procedure-comp (val-to-comp (Proc�Value pn))

(λp . (p (val-to-comp (Int �Value 5)))))
= λe . (pn (val-to-comp (Int �Value 5)))
= λe . (val-to-comp

(Proc�Value

(λnx . (with-value nx

(λvx . (with-value (val-to-comp (Int �Value 5))
(λvn . (with-integer-val vx

(λix . (with-integer-val vn
(λin . (val-to-comp (Int �Value (ix −Int in))))))))))))))

= λe . (val-to-comp
(Proc�Value

(λnx . (with-value nx

(λvx . (with-integer-val vx
(λix . (with-integer-val (Int �Value 5)

(λin . (val-to-comp (Int �Value (ix −Int in))))))))))))
= λe . (val-to-comp

(Proc�Value

(λnx . (with-value nx

(λvx . (with-integer-val vx
(λix . (val-to-comp (Int �Value (ix −Int 5))))))))))

Figure 6.32 The meaning of (app (lam f (app f 5))

(lam n (lam x (prim - x n)))).

Note that replacing ⊥Comp by any computation cneg in the negative integer case
yields a valid fixed point of the generating function, but the least fixed point is
the case where cneg = ⊥Comp.

The meaning of a program is determined by the P function. A program is a
function that maps the input (assumed to be a sequence of value s-expressions in
InputExp) to an answer (an expressible value in the case of FLK). The compu-
tation is determined by evaluating the body of the program in an environment
that binds each formal parameter to the associated argument value. If there is
a mismatch between the number of formal parameters and the number of actual
arguments, the result is a wrong-number-of-args error computation.
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Exercise 6.34 In FLK, error expressions take a symbol as the name of the error. There
are other possible error strategies. One is to have only a single error value, which might
simplify the semantics while making errors less helpful in practice. Another approach is
to allow the argument of error to be a computed value. Suppose we alter the syntax of
FLK to support the expression (error E).

a. Write the valuation clause for (error E).

b. What is the meaning of an error expression whose argument expression has an error?

Exercise 6.35 Construct an operational semantics for FLK that uses explicit environ-
ments rather than substitution. Is it easier to do this using an SOS or a BOS? Hint:
Whether you choose an SOS or a BOS, it is a good idea to introduce a closure value
that pairs a lambda expression with the environment it is evaluated in.

Exercise 6.36 Write a denotational semantics for FL that does not depend on its
desugaring into FLK. That is, the valuation clauses should directly handle features such
as def, let, letrec, and procedures with multiple arguments.

6.6 The Lambda Calculus

FLK is a relatively small kernel for a universal programming language. It is
natural to wonder whether there is a smaller and more elegant kernel. Remark-
ably, a language with just three constructs — abstractions, applications, and
variable references — is universal. This language is known as the lambda cal-
culus (sometimes abbreviated LC). Because the lambda calculus is at the core
of any programming language with function-like entities (such as procedures,
methods, and subroutines) it has been intensively investigated by theoreticians.
The lambda calculus plays such a pervasive role in the study of programming
languages that some knowledge of the lambda calculus is required to understand
much of the programming languages literature.

Many studies of programming language semantics and analysis start with the
lambda calculus and then consider various extensions that result in more full-
featured languages. In this book, we take a different approach. We started with a
more full-featured kernel language (FLK) to help build intuitions about function-
oriented programming. Now we present some of the key ideas and results from
the lambda calculus, making comparisons with FLK along the way. We begin
by specifying the syntax of the lambda calculus (Section 6.6.1) and describing its
operational semantics (Section 6.6.2) and denotational semantics (Section 6.6.3).
Then we show that, even though the syntax of the lambda calculus is extremely
simple, it is powerful enough to express FLK features like numbers, booleans,
conditionals, pairs, and recursion (Section 6.6.4).
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Kernel Grammar
E ∈ Exp ::= I [VariableReference]

| (lam Iformal Ebody) [Abstraction]
| (app Erator Erand) [Application]

I ∈ Ident = any name except for lam, app, and abs

Syntactic Sugar
(abs () E) �ds (lam Ifresh E), where Ifresh is fresh
(abs (I ) E) �ds (lam I E)

(abs (I1 I +
rest) E) �ds (lam I1 (abs (I +

rest) E))

(E) �ds (app E (lam x x))

(E1 E2) �ds (app E1 E2)

(E1 E2 E+
rest) �ds ((app E1 E2) E+

rest)

Figure 6.33 An s-expression grammar for the lambda calculus

6.6.1 Syntax of the Lambda Calculus

Syntactically, the lambda calculus is the subset of FLK consisting of only three
kinds of expressions: abstractions, applications, and variable references. For con-
sistency, we will use an s-expression syntax for the lambda calculus (Figure 6.33),
but the traditional syntax for the lambda calculus is our more concise metalan-
guage notation (i.e., using λI . E for abstractions, juxtaposition for application,
and parentheses for disambiguation). For convenience, we will use FL’s syntac-
tic sugar for multiparameter abstractions and multiargument applications. A
lambda calculus expression is traditionally called a term, but we will continue
to use the word expression for consistency with FLK.

The definitions of free identifiers and substitution for the lambda calculus
are the ones for FLK (see Figures 6.14 and 6.17) specialized to the lambda
calculus subset. A closed expression (i.e., one with no free variables) is called
a combinator. For our purposes, a lambda calculus “program” will just be a
combinator; we will not use any sort of special keyword to distinguish a program
from an expression.

6.6.2 Operational Semantics of the Lambda Calculus

An operational semantics for the lambda calculus is presented in Figure 6.34.
The simplification relation (−−→) is just the FLK simplification relation restricted
to its lambda calculus subset. In particular, the lambda calculus has only one
kind of redex: a beta-redex that can be reduced via [β].
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Reduction Relation (�)

(app (lam I E1) E2) � [E2/I ]E1 [β]

Simplification

Simplification Contexts

S ∈ SimpContext ::= � | (lam I S) | (app S Erand) | (app Erator S)

Simplification relation (−−→)

S{E} −−→ S{E ′}, where E � E ′

Normalization
Normal Forms

NF ∈ NormalForm ::= (lam I NF) | NLNF

NLNF ∈ NonLambdaNormalForm ::= I | (app NLNF NF)

Normalization Contexts

NC ∈ NormContext ::= (lam I NC) | NLNC

NLNC ∈ NonLambdaNormContext ::= � | (app NLNC Erand)

| (app NLNF rator NC)

Normalization relation (−−−n.o.→)

NC{E} −−−n.o.→ NC{E ′}, where E � E ′

Nonnormalization step (◦−−−n.o.→)

◦−−−n.o.→ =
(
−−→ − −−−n.o.→

)
the set difference of the two relations

Figure 6.34 Simplification and normalization in the lambda calculus.

As in FLK, simplification in the lambda calculus is confluent:

Theorem 6.14 (Confluence of Lambda Calculus Simplification)
The lambda calculus simplification relation is confluent. I.e., if E1 −∗−→ E2

and E1 −∗−→ E3 then there exists an E4 such that E2 −∗−→ E4 and E3 −∗−→ E4 .

Indeed, confluence of simplification in FLK can be shown by adapting traditional
techniques for proving confluence in the lambda calculus [Bar84].

A lambda calculus expression that contains no beta-redexes is in normal
form. An expression is said to have a normal form if it can be simplified to an
expression in normal form. Confluence of simplification implies that if a lambda
calculus expression has a normal form, it is unique (see page 82). Not every
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lambda calculus expression has a normal form. For example, just as in FLK, the
expression

(app (lam x (app x x)) (lam x (app x x)))

simplifies only to itself and so can never be simplified to a normal form. The
FLK expression

(lam y (app (lam x (app x x)) (lam x (app x x))))

is an evaluation normal form in FLK, but in the lambda calculus it is not a
normal form and can never be simplified to one.

Not every simplification strategy is guaranteed to find the normal form of an
expression that has one. For example, in the expression

(app (lam y (lam z z)) (app (lam x (app x x)) (lam x (app x x))))

reducing the outer beta-redex finds the normal form, (lam z z), in one step.
But reducing the inner beta-redex makes no progress toward the normal form.

If an expression has a normal form, it can be found by the normal-order
reduction strategy, a deterministic approach to simplification that always re-
duces the leftmost beta-redex — i.e., the first beta-redex encountered in a
left-to-right, depth-first walk of the abstract syntax tree of the expression. We
shall call a simplification step taken by this strategy a normalization step,
written −−−n.o.→. Here is an example of normalization:

(app (lam f (app f (app (lam v (app v v))

(app (lam w w) (lam x x)))))

(lam y (lam z y)))
−−−n.o.→ (app (lam y (lam z y))

(app (lam v (app v v)) (app (lam w w) (lam x x))))
−−−n.o.→ (lam z (app (lam v (app v v)) (app (lam w w) (lam x x))))

−−−n.o.→ (lam z (app (app (lam w w) (lam x x)) (app (lam w w) (lam x x))))

−−−n.o.→ (lam z (app (lam x x) (app (lam w w) (lam x x))))

−−−n.o.→ (lam z (app (lam w w) (lam x x))))

−−−n.o.→ (lam z (lam x x))

Normalization is similar to FLK evaluation except that it can perform simpli-
fications in the body of an abstraction. In FLK, evaluation of the above example
would stop after two steps with

(lam z (app (lam v (app v v)) (app (lam w w) (lam x x))))

because the evaluation process does not attempt to simplify the body of an ab-
straction.
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In the lambda calculus, the analogue of the nonevaluation relation ◦=⇒ from
FLK is the nonnormalization relation ◦−−−n.o.→. This is a simplification step that is
not a normalization step. For example, here is an alternative reduction sequence
for the example considered above that performs some nonnormalization steps:

(app (lam f (app f (app (lam v (app v v))

(app (lam w w) (lam x x)))))

(lam y (lam z y)))
◦−−−n.o.→ (app (lam f (app f (app (lam v (app v v))

(lam x x))))

(lam y (lam z y)))
◦−−−n.o.→ (app (lam f (app f (app (lam x x) (lam x x))))

(lam y (lam z y)))
◦−−−n.o.→ (app (lam f (app f (lam x x)))

(lam y (lam z y)))
−−−n.o.→ (app (lam y (lam z y)) (lam x x))

−−−n.o.→ (lam z (lam x x))

The first three steps are nonnormalization steps because they simplify a beta-
redex that is not the leftmost one. The final normal form is the same as before
because normal forms are unique (up to alpha-equivalence). Note that the second
sequence is one step shorter than the first sequence because the first nonnormal-
ization step reduces the redex (app (lam w w) (lam x x)) to (lam x x) before
this operand is duplicated by the abstraction (lam v (app v v)). In the first
sequence, this redex is duplicated and must be reduced twice.

In any sequence of lambda calculus simplification steps that ends with a nor-
mal form, the last step must be a normalization step. Why? Because the last
redex reduced is necessarily the leftmost one.

Why is the normal-order reduction strategy guaranteed to find the normal
form of an expression (if it exists)? Intuitively, it reduces only those redexes that
must be reduced in order to normalize the expression. In particular, it avoids
reducing an inner redex in an expression that is currently (or might become) the
rand of an outer redex. This is important, because the reduction of the outer
redex can eliminate the entire rand expression if the rator’s parameter does not
appear in its body, in which case any effort expended simplifying the rand would
have been wasted.

We now show that the leftmost redex Eleft of an expression E cannot appear
in a subexpression Erand of E that is (or might become) the rand of an outer
redex. To see this, suppose otherwise: i.e., assume Eleft appears in Erand and
Erand appears in Eapp = (app Erator Erand). If Erator is an abstraction, then
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Eapp is a redex to the left of Eleft , contradicting the leftmost status of Eleft . If
Erator is not an abstraction, but can be simplified to one, it must contain at least
one redex to the left of Eleft , again contradicting the leftmost status of Eleft . Since
Eleft must be reduced in the normalization of E , we choose to reduce it first.

More formally, the normalizing nature of−−−n.o.→ is a consequence of the following
theorem,10 which is the lambda calculus analogue of standardization for FLK
evaluation:

Theorem 6.15 (Standardization of Lambda Calculus Simplifica-
tion) If E1 −∗−→ E2 , then there exists an E ′ such that E1 −∗−−n.o.→ E ′ and E ′

◦−∗−−n.o.→ E2 .

Using this theorem, we can show that if an expression has a normal form, the
normal-order reduction strategy will find it. Suppose that E −∗−→ Enf , where Enf

is a normal form. By standardization, there exists an E ′ such that E −∗−−n.o.→ E ′

◦−∗−−n.o.→ Enf . As noted above, the last step in a simplification sequence ending in a
normal form must be a normalization step. So the sequence E ′ ◦−∗−−n.o.→ Enf must
have zero steps, implying E ′ = Enf .

Two other reduction rules besides [β] are sometimes considered in the lambda
calculus literature. The first rule is alpha reduction:

(lam I E) � (lam I ′ [I ′/I ]E), where I ′ 
∈ FrIds[[E ]] [α]

This rule says that the bound variable of an abstraction may be consistently
renamed. Since we often think of lambda calculus expressions in terms of alpha-
equivalence classes, there is little need to use the [α] rule explicitly.

The second rule is eta reduction:

(lam I (app E I )) � E , where I 
∈ FrIds[[E ]] [η]

The intuition behind [η] is that every lambda calculus value is a function, so
wrapping E in an abstraction that applies E yields a function that behaves the
same as E . We often use eta reduction (and its inverse, eta expansion) in our
mathematical metalanguage, especially in denotational semantics of FL dialects
involving the Comp abstraction.

10This is a somewhat different notion of standardization than the one traditionally presented
in the lambda calculus literature. In the traditional approach, a “standard step” is defined as
one that “freezes” all redexes to its left, allowing what we call a nonnormalization step to be
a standard step in some situations. The traditional standardization theorem says than if E
simplifies to E ′, then E simplifies to E ′ by a sequence of standard steps.
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Exercise 6.37 Any closed lambda calculus expression can be written as applications
involving only the following two combinators:

K = (abs (x y) x)

S = (abs (x y z) ((x z) (y z)))

a. Determine the normal forms of the following expressions:

(S K K)

(S (K S) K)

(S (K (S K K)) (S (K K) (S K K)))

b. Express the following combinators using only applications of K and S:

(abs (x y) y)

(abs (x) (x x)

(abs (x y) (x (y y)))

(For a general method of translating combinators to K and S, see [Hug82].)

6.6.3 Denotational Semantics of the Lambda Calculus

A denotational semantics for the lambda calculus is presented in Figure 6.35.
The domain structure here is much simpler than in the denotational semantics
for FLK. There is one main domain, Fcn, for modeling functions (the only kind
of “value” in the lambda calculus), and one auxiliary domain, Env, for modeling
bindings of names to elements of Fcn. Although the Fcn domain does not have
an explicit bottom element, it turns out that solving the domain equation Fcn
= (Fcn→ Fcn) using the inverse limit construction mentioned in Section 5.3
introduces a bottom element ⊥Fcn. In addition to being viewed as a diverging
computation in the Fcn domain, ⊥Fcn is the least fixed point of λf ′ . (λf . f ′) and
so can also be viewed as the function that is the solution to the equation f ′ =
(λf . f ′). So ⊥Fcn = (λf .⊥Fcn); applying ⊥Fcn to any function yields ⊥Fcn.

As in FLK, the valuation function E determines the meaning of a lambda
calculus expression relative to an environment that specifies the meanings of free
variables in the expression. However, here the meaning is a function value in Fcn.
The three valuation clauses for E are essentially the same as the corresponding
clauses for FLK minus all the machinery for dealing with the distinctions between
divergence, errors, and different kinds of values. In the lambda calculus, there
is only one kind of value — a function — and particular functions are used to
represent divergence and errors.

There is no need for any sort of error domain because every lambda calculus
expression denotes some function. What about unbound variables (e.g., foo in
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Domains
f ∈ Fcn = Fcn→ Fcn
e ∈ Env = Ident → Fcn

Environments
etop : Env = λI .⊥Fcn

[I �→ f ]e abbreviates λI ′ . if I = Ident I ′ then f else (e I ′) end

Valuation Function
E : Exp→ Env→ Fcn

E [[I ]] = λe . (e I )

E [[(lam I Ebody)]] = λe . (λf . (E [[Ebody ]] [I �→ f ]e))

E [[(app Erator Erand)]] = λe . ((E [[Erator ]] e) (E [[Erand ]] e))

Figure 6.35 A denotational semantics for the lambda calculus.

(lam x foo))? The fact that the meaning of every expression is defined relative
to an environment and the fact that environments are total functions that must
specify some element of Fcn for every name (such as foo in the above example)
mean that no variable reference can ever actually be unbound. We choose to
use ⊥Fcn to represent unbound variable errors as well as a divergence. We take
the meaning of any expression relative to a top-level environment etop that binds
every name to ⊥Fcn, so that any free variable in an expression will denote ⊥Fcn.

Here are some examples illustrating the valuation function E :

E [[(lam x x)]] etop = λf . (E [[x]] [x �→ f ]etop) = λf . f

E [[(lam x foo)]] etop = λf . (E [[foo]] [x �→ f ]etop) = (λf .⊥Fcn) = ⊥Fcn

E [[(app (lam x x) (lam x x))]] etop
= ((E [[(lam x x)]] etop) (E [[(lam x x)]] etop))
= ((λf . f ) (λf . f ))
= λf . f

6.6.4 Representational Games

At first glance, the lambda calculus might seem impoverished because functions
are the only kind of values manipulated in the language. However, it turns out
that many of FLK’s features — such as natural numbers, booleans, conditionals,
pairs, and even recursion — can be expressed in the lambda calculus via clever
encodings. Here we sketch some of these encodings.
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Natural Numbers

The only “data structure” that lambda calculus expressions can represent is func-
tions, so we must find a way to represent the natural numbers as functions. The
classic approach is to encode each natural number as the n-fold composition func-
tion. When given a function f as its argument, the n-fold composition function
returns fn — i.e., f composed with itself n times. For example, applying the n-
fold composition function to an incrementing function yields the add-n function.

For each natural number n, we can straightforwardly define a lambda calculus
expression that represents the n-fold composition function:

0 = (abs (f v) v)

1 = (abs (f v) (f v))

2 = (abs (f v) (f (f v)))

3 = (abs (f v) (f (f (f v))))
...

n = (abs (f v)

n times︷ ︸︸ ︷
(f (f . . . (f v) . . .)))

(Here and throughout the rest of this section we rely on syntactic sugar to make
expressions more concise.) These lambda-based representation of numbers are
called Church numerals after their inventor, Alonzo Church. We use the con-
vention that n is a syntactic abbreviation for the Church numeral representing n.

A pictorial representation of n-fold compositions is useful for helping us reason
about operations on Church numerals. We can associate with each n the following
diagram:

v
� f

(
f 1 v

)
� f

(
f 2 v

)
� . . .

(
f n−1 v

)
� f

(f n v)
�︸ ︷︷ ︸

n applications of f

Each box contains the mathematical function f that is the meaning of the lambda
calculus variable f. The concatenation of n such boxes indicates the result of
the application (n f), which is the n-fold composition of f . The application
((n f) v) represents the result of applying fn to the value v denoted by v. It
can also be viewed as an iterator or loop that applies f n times to an initial value
of v.

This notation makes it easier to understand how to write functions that ma-
nipulate Church numerals. Since the number n is encoded in the number of times
that the argument f is composed, we do manipulations on Church numerals by
changing the number of times that f is composed. For example, to write the
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incrementing function INC that takes a Church numeral n and returns n + 1, we
must add one extra application of f to the sequence of applications encoded in
n. We can draw a picture of this process and translate it into the appropriate
lambda expression:

v
� f

(
f 1 v

)
� f

(
f 2 v

)
� . . .

(
f n−1 v

)
� f︸ ︷︷ ︸

n applications of f starting
with v is ((n f) v)

(f n v)
� f

(
f n+1 v

)
�︸ ︷︷ ︸

one extra application of
f applied to ((n f) v)

is (f ((n f) v))

INC = (abs (n) (abs (f v) (f ((n f) v))))

From the above picture, though, it should be apparent that we could just as
well add the extra f at the beginning of the sequence rather than at the end.
This motivates the following alternative definition of INC:

INC ′ = (abs (n) (abs (f v) ((n f) (f v))))

It is possible to use similar pictures to derive the lambda calculus expression
PLUS for the two-argument (i.e., in curried form) function that returns the “sum”
of its arguments.

v
� f � . . . � f︸ ︷︷ ︸

m applications of f starting with
v is ((m f) v)

(f m v)
� f � . . . � f

(f m+n v)
�︸ ︷︷ ︸

n applications of f starting with
((m f) v) is ((n f) ((m f) v))

PLUS = (abs (m n) (abs (f v) ((n f) ((m f) v))))

Of course, since the composition shown in the diagram is commutative, it is pos-
sible to swap the m and the n in the body ((n f) ((m f) v)) to yield a slightly
different definition. But a very different definition for PLUS can be constructed
by realizing that the Church numeral n essentially describes a machine that it-
erates a given function n times on some initial input. Note that it is possible to
describe the sum of m and n as the n-fold repetition of the incrementing function
starting with the initial value m. Expressed in pictorial form:

m
� INC

(INC 1 m)
� INC

(INC 2 m)
� . . .

(INC n−1 m)
� INC

(INC n m)
�︸ ︷︷ ︸

n applications of INC starting with m is ((n INC) m)
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This picture leads directly to the definition:

PLUS ′ = (abs (m n) ((n INC) m))

Again, it is possible to obtain a slightly different definition by interchanging the
roles of m and n.

It is possible to define other arithmetic operations, such as decrementing (i.e.,
subtract one), multiplication, and exponentiation. These are left as exercises
(Exercise 6.39 and Exercise 6.43).

Exercise 6.38 Show that the operations presented above behave appropriately by re-
ducing each of the following expressions to normal form.

a. (INC 2)

b. (INC ′ 2)

c. (PLUS 2 3)

d. (PLUS ′ 2 3)

Exercise 6.39 Suppose that m and n are Church numerals. Without using the Y oper-
ator introduced later, define expressions TIMES and EXPT such that:

(TIMES m n) = m × n
(EXPT m n) = mn

Hint: As with PLUS, there are two very different ways to define each of TIMES and
EXPT. Try to find both ways if you can.

Booleans and Conditionals

It is possible to represent boolean truth values in the lambda calculus as well.
The only operation that depends on truth or falsity is a conditional that chooses
between two alternatives. Consider an IF function that takes three arguments
— a boolean test value, a then expression, and an else expression — and returns
one of the then or else expressions depending on the value of the boolean. IF
should observe the following functional behavior:

(IF TRUE Ethen Eelse) −∗−−n.o.→ Ethen

(IF FALSE Ethen Eelse) −∗−−n.o.→ Eelse

An implementation of this functionality is provided by the following defini-
tions:
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IF = (abs (t x y) (t x y))

TRUE = (abs (a b) a)

FALSE = (abs (a b) b)

Here TRUE and FALSE are represented as functions of two arguments that
choose one of the two arguments. We shall call these Church booleans because
they are functional representations of booleans. All IF does is apply the Church
boolean to the then and else expressions.

Using Church booleans, it is possible to define a numeric predicate ZERO?
that tests its numeric argument for equality to 0. Viewing numbers as iterators
again, note that every number greater than 0 applies the function denoted by f

at least once, but 0 never applies the function denoted by f at all. Since for any
f , f0(v) = v, 0 can be distinguished from other Church numerals in a context
where the unary function that always returns FALSE is iterated n times starting
with the initial value TRUE. If the function is applied zero times, the result is
the initial value TRUE, but if it is applied one or more times, the result will be
FALSE. Here’s the definition of ZERO? based on this approach:

ZERO? = (lam n ((n (lam x FALSE)) TRUE))

Note that FALSE has the same (modulo alpha-renaming) definition as the
Church numeral 0. This underscores the fact that lambda calculus expressions
are not typed in any way. Thus, an expression that acts like 0 in a numeric
context may act like falsity in a boolean context. This also means that there are
no type errors in the lambda calculus. It is perfectly possible to provide INC
with an argument that is not a Church numeral or provide a test to IF that is
not a boolean. In these cases, the results will be valid expressions, but it will
not be possible to interpret the results meaningfully as numbers or booleans. It
is possible, however, to extend our representations to explicitly encode types for
all objects and to model type errors.

Exercise 6.40 Assuming a normal-order reduction strategy, show that the definitions
for IF, TRUE, and FALSE satisfy the desired behavior for conditionals.

Exercise 6.41 Define a lambda calculus expression EVEN? that denotes a function that
returns a boolean indicating whether its single numeric argument is even. Do not use
the Y operator introduced later.

Exercise 6.42 Suppose that p̂ and q̂ are Church booleans. Define lambda calculus
expressions AND, OR, and NOT that, respectively, compute logical conjunction, dis-
junction, and negation.
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Pairs

From a functional point of view, pairs are defined by the three operators PAIR,
FST, and SND, such that for all expressions Efst and Esnd :

(FST (PAIR Efst Esnd)) −∗−−n.o.→ Efst

(SND (PAIR Efst Esnd)) −∗−−n.o.→ Esnd

A standard implementation of these three operators in the lambda calculus is:

PAIR = (abs (x y) (abs (s) (s x y)))

FST = (abs (p) (p (abs (x y) x)))

SND = (abs (p) (p (abs (x y) y)))

PAIR takes the two components of the pair and returns a pair, where the pair
is represented as a function that takes a selector function s and applies s to
the components of the pair. For example, (lam s (s 1 2)) represents the pair
〈1, 2〉. FST takes a pair and applies it to the selection function that extracts the
first component, while SND uses a selection function that extracts the second
component. Pairs encoded in this way are called Church pairs.

The notion of Church pairs can be generalized to tuples of any length. In-
deed, we have already encountered Church tuples in the context of the letrec

desugaring in Section 6.2.2. There are also ways to string Church pairs together
to form linked lists.

Given Church pairs and iterators (i.e., Church numerals), it is possible to
construct expressions for procedures like the iterative factorial procedure. The
state of a factorial iteration can be captured by a pair of Church numerals 〈n, a〉,
where one step of the iteration computes the next state 〈n− 1, n ∗ a〉. Starting
with the initial state 〈n, 1〉 and iterating the above process n times yields the pair
〈0, n!〉. Extracting the second element of this pair yields the factorial of n. This
leads to the definition of an iterative factorial in the lambda calculus:

ITER-FACT = (lam n (SND (n (lam p (PAIR (DEC (FST p))

(TIMES (FST p) (SND p))))

(PAIR n 1))))

The above definition assumes that the decrementing function DEC and the mul-
tiplication function TIMES are defined. TIMES (Exercise 6.39) is not difficult to
define, but DEC (Exercise 6.43) is quite a brain-teaser!

Exercise 6.43 Define a lambda calculus expression DEC that decrements a Church
numeral by 1. Recall that for natural-number subtraction, 0−Nat 1 = 0. Hint: Perform
an iteration on pairs similar to the one performed by ITER-FACT.
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Recursion

Amazingly, the raw lambda calculus is even powerful enough to express recur-
sion. We will demonstrate this by showing that the FLK rec construct can be
translated into the lambda calculus. Recall that this construct has the following
reduction rule:

(rec I E) � [(rec I E)/I ]E

Now suppose that E is an expression in the lambda calculus subset of FLK.
We will translate the FLK expression EFLK = (rec I E) into the following
lambda calculus expression, ELC , and then use normal-order reduction:

ELC = (app (lam x (app (lam I E) (app x x)))

(lam x (app (lam I E) (app x x))))

−−−n.o.→ (app (lam I E) (app (lam x (app (lam I E) (app x x)))

(lam x (app (lam I E) (app x x)))))

= (app (lam I E) ELC)

−−−n.o.→ [ELC/I ]E

If we now translate [ELC/I ]E back to EFLK , we obtain [(rec I E)/I ]E . We
have just shown that ELC has exactly the same behavior as (rec I E). So there
is no need for the latter construct since it can always be expressed by the former!

We will also reach the expression [ELC /I ]E if we start with the expression
(app Y (lam I E)), where Y is the following lambda calculus expression, which
is known as the Y operator:

Y = (lam f (app (lam x (app f (app x x)))

(lam x (app f (app x x)))))

Clearly, (app Y (lam I E)) −−−n.o.→ ELC −∗−−n.o.→ [ELC/I ]. Here, (lam I E) acts
like a generating function in the domain Fcn → Fcn in the iterative fixed point
technique (Chapter 5) and Y acts like fixFcn, which finds the least fixed point
of this generating function. For this reason, Y is also called the fixed-point
combinator.

As a concrete example, consider the following generating function:

FACT-GEN = (lam f (lam n (IF (ZERO? n)

0

(TIMES n (f (DEC n))))))

The least fixed point of FACT-GEN is the factorial function. So we can write
a “recursive” factorial function in the lambda calculus as (Y FACT-GEN). For
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example, ((Y FACT-GEN) 5) normalizes to 120. We can also write an FLK
version of the factorial function without rec as follows:

(Y (lam f (lam n (if (= n 0) 0 (* n (f (- n 1)))))))

Exercise 6.44

a. What is the solution to the numerical equation x = 2x?

b. What is the solution to the functional equation x = (TIMES 2 x) as found by
reducing the lambda calculus expression (Y (lam x (TIMES 2 x)))?

c. Explain any discrepancies between the solutions to the two parts above.

Exercise 6.45 Here we explore how to use Y to solve a set of simultaneous equations
in multiple variables. Our example will be based on a pair of functions that determines
whether a natural number is even or odd. It’s easy to define the corresponding generating
functions for these:

EVEN?-GEN = (abs (even? odd?)

(lam n (IF (ZERO? n)

TRUE
(odd? (DEC n)))))

ODD?-GEN = (abs (even? odd?)

(lam n (IF (ZERO? n)

FALSE
(even? (DEC n)))))

However, neither EVEN?-GEN nor ODD?-GEN by itself is of the right form to represent
a pair of equations. Furthermore, Y can naturally only find the fixed point of a single
equation in a single variable.

We need some method of gluing together EVEN?-GEN and ODD?-GEN such that
they represent a single equation in a single variable. We can accomplish this with Church
pairs: a single pair can contain the solutions to both equations. And since Church pairs
are functions, Y can find fixed points that are Church pairs.

Based on this idea, use Y, PAIR, FST, SND, EVEN?-GEN, and ODD?-GEN to write
a lambda calculus expression that denotes the EVEN? function. Your expression should
solve the pair of equations and return the answer to the first one.

Notes

Despite some differences in syntax and semantics, FL is representative of real-
world function-oriented languages like Haskell [HPW+92], SML [MTHM97,
MT91b], and Scheme [KCR+98]. In coming chapters, we will gain a better un-
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derstanding of the features of these languages as we explore language dimensions
like naming, state, control, data, and types in the context of FL.

In his Turing award paper [Bac78], Backus argues that applicative languages
— languages based on function composition — can be easier to reason about
and more efficient to execute than von Neumann languages — those based on
step-by-step manipulation of a state-based machine. He also demonstrates that
applicative programs are amenable to algebraic reasoning, a key idea that under-
lies much of the research in functional programming. Indeed, functional languages
provide a framework for deriving efficient programs from high-level specifications
algebraically (e.g., see [Gib94, BdM96]).

Interestingly, Backus believes that the ability to define arbitrary anonymous
functions is too powerful, and the language he proposes supports only a few
built-in higher-order functions. In contrast, Hughes [Hug89] explains why arbi-
trary higher-order functions are essential for decomposing programs into modular
parts. For numerous examples of the expressive power of higher-order functions in
function-oriented programming, consult some of the many excellent programming
texts that employ a function-oriented language, such as [ASS96, Bir98, Hen80,
Hud00, Pau96, SF89, Tho99].

An excellent survey article by Hudak [Hud89] describes the history and con-
cepts of functional programming. The collection [GdM03] showcases applications
of functional programming to domains like hardware description, graphics, mu-
sic, and finance. A list of functional programs applied to real-world tasks can be
found in [Wadb].

Lambda notation was introduced by Church in [Chu32] as a means of ab-
stracting over logical formulas. In [Chu36], he introduced what were later called
alpha, beta, and eta reduction in the context of a study of the “effective calcu-
lability” of functions. He presented the full-fledged lambda calculus in [Chu41].
[Sto85] contains a good introduction to the lambda calculus and its semantics.
[Bar84] provides comprehensive coverage of the lambda calculus, including proofs
of confluence and standardization.

One approach to proving that simplification in the lambda calculus preserves
observational equivalence can be found in a seminal paper by Plotkin [Plo75].
Our approach to this proof for FLK is based on the presentation sketched in
[MT00] and refined in [Mac02].

In the programming languages literature, the lambda calculus and its exten-
sions are frequent objects of study. Landin introduced an influential extension
named ISWIM (If you See What I Mean) [Lan64, Lan65a, Lan65b, Lan66] that is
effectively the core of modern call-by-value functional languages like Scheme and
ML. The full ISWIM language includes conditionals, local binding expressions,
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functions with call-by-value parameter passing, and recursive function definitions.
These constructs can be desugared to a kernel language of so-called applicative
expressions that is a call-by-value lambda calculus extended with a collection
of primitives (e.g., numbers and arithmetic operators, a conditional operator, a
fixed-point operator). Landin’s description of ISWIM pioneered the modular
description of programming languages in terms of a kernel language, syntactic
sugar, and a library of primitives. Formal properties of the ISWIM kernel (such
as confluence, standardization, observational equivalence) are presented in [FFF].



7

Naming

A good name is rather to be chosen than great riches.

— Proverbs 22:1

Naming is a central issue in programming language design. The fact that pro-
gramming languages use names to refer to various objects and processes is at the
heart of what makes them languages.

At the very least, a programming language must have a primitive set of names
(literals and standard identifiers) and a means of combining the names into com-
pound names (expressions). In a language without side effects (mutable data,
input/output primitives, control jumps, etc.), every expression is a structured
name for the value it computes relative to a given environment. In FL, for in-
stance, 9, (+ 4 5), and ((abs (a) (* a a)) (+ 1 2)) are just three different
names for the number nine in the standard environment. In languages with side
effects, there are more complex relationships between names and values that we
shall explore later.

Expressions built merely out of primitives and a means of combination quickly
become complex and cumbersome. Any practical language must also provide a
means of abstraction for abbreviating a long name with a shorter one. Pro-
gramming languages typically use symbolic identifiers as abbreviations and have
binding constructs that specify the association between the abbreviation and the
entity for which it stands. FLK had two binding constructs, lam and rec, and
FL offers several other binding constructs built on top of these: abs, let, letrec,
and def. Using such constructs, it is possible to remove duplications to obtain
more concise, readable, and efficient expressions. For example, naming allows us
to transform the procedure

(abs (a b c)

(list (+ (- 0 b)

(sqrt (- (* b b)

(* 4 (* a c)))))

(- (- 0 b)

(sqrt (- (* b b)

(* 4 (* a c)))))))
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into the equivalent procedure

(abs (a b c)

(let ((sqrt-discriminant (sqrt (- (* b b)

(* 4 (* a c)))))

(-b (- 0 b)))

(list (+ -b sqrt-discriminant)

(- -b sqrt-discriminant))))

Naming seems like such a simple idea that it’s hard to imagine the subtleties
hidden therein. A sampling of naming facilities in modern programming lan-
guages reveals a surprising number of ways to think about names. Some of the
dimensions along which these facilities vary are:

• Nameable values: What entities in a language can be named by global vari-
ables? By local variables? By formal parameters of procedures? By field names
of a record?

• Parameter-passing mechanisms: What is the relationship between the actual
arguments provided to a procedure call and the values named by the formal
parameters of the procedure?

• Scoping: How are new variables declared? Over what part of the program text
and its associated computation does a declaration extend? How are references
to a variable matched up with the associated declaration?

• Name control: What mechanisms exist for structuring names to minimize name
clashes in large programs?

• Multiple namespaces: Can an identifier refer to more than one variable within
a single expression?

• Name capture: Does the language exhibit any name capture problems like those
that cropped up with naive substitution in FLK?

• Side effects: Can the value associated with a name change over time?

The goal of this chapter is to explore many of the above dimensions. We
already introduced some of the basic concepts and terminology of naming in our
discussion of FL: scope, free and bound variables, name capture, substitution,
and environments. Here we give a fuller account of the issues involved in naming.
Along the way, we shall pay particular attention to the effects that choices in
naming design have on the expressive power of a language.
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Certain naming issues (e.g., side effects, many parameter-passing mecha-
nisms) are intertwined with state, control, data, and concurrency, which we will
cover later. We defer these naming issues until the necessary concepts have been
introduced.

7.1 Parameter Passing

Procedure application is the inverse operation to procedural abstraction. An ab-
straction packages formal parameters together with a body expression that refers
to them, while application unpackages the body and evaluates it in a context
where the formal parameters are associated with the actual arguments. There
are numerous methods for associating the formal parameter names with the ar-
guments. These methods are called parameter-passing mechanisms. Here
we shall focus on two such mechanisms:

• In the call-by-name (CBN) mechanism, a formal parameter names the com-
putation designated by an unevaluated argument expression. This corresponds
to the nonstrict argument evaluation strategy exhibited by FL in the previous
chapter. CBN is closely related to the normal-order reduction strategy for the
lambda calculus, and variants of CBN have found their way into Algol 60 and
various functional programming languages (such as Haskell and Miranda).

• In the call-by-value (CBV) mechanism, a formal parameter names the value
of an evaluated argument expression. This corresponds to the strict argu-
ment evaluation strategy used by most modern languages (C, Java, Pascal,
Scheme, ML, SmallTalk, PostScript, etc.).

Numerous additional features may be layered on top of the above mecha-
nisms to yield further variations in parameter passing for functional languages.
For example, it is possible to pass parameters by keyword, to specify optional
arguments, or to describe formal parameters that are pattern-matched against
arguments that are compound data structures. While these are important ways
of capturing common patterns of usage, they are orthogonal to and less funda-
mental than the CBN versus CBV distinction. The introduction of side effects,
on the other hand, will lead to fundamental variations of the above mechanisms,
such as call-by-need and call-by-reference (Section 8.4) and call-by-value-sharing
and call-by-value-copy (Section 10.1.4). It is possible to include more than one
parameter-passing mechanism within a single language. This possibility is ex-
plored in Exercise 7.12 on page 327.
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Reduction Relation (�)
...

(app (lam Iformal Ebody) Erand) � [Erand/Iformal ]Ebody [β]

Evaluation Contexts (ECBN )

ECBN ::= . . . non-app contexts . . . | (app ECBN Erand)

Call-By-Name

Reduction Relation (�)
...

(app (lam Iformal Ebody) Vrand) � [Vrand/Iformal ]Ebody [β-value]

Evaluation Contexts (ECBV )

ECBV ::= . . . non-app contexts . . . | (app ECBV Erand) | (app Vrator ECBV )

Call-By-Value

Figure 7.1 The essence of the operational semantics of CBN and CBV parameter
passing in FLK. Under CBN, the unevaluated operand expression is substituted for
the formal parameter. Under CBV, the operand expression is evaluated before being
substituted for the formal parameter.

7.1.1 Call-by-Name vs. Call-by-Value: The Operational View

Figure 7.1 summarizes the difference between CBN and CBV in an operational
framework. Both mechanisms share an evaluation context (app E Erand), which
allows the operator position of an application to be evaluated to an abstraction.
When this occurs in CBN, the unevaluated operand expression Erand is substi-
tuted for the formal parameter of the abstraction via the [β] rule. But in CBV,
the evaluation context (app Vrator ECBV ) first forces evaluation of the operand
expression Erand to the operand value Vrand , an element of the syntactic domain
ValueExp of value expressions. Only then will the [β-value] rule substitute this
value for the formal parameter within the body of the abstraction.

Figure 7.2 shows examples that highlight the differences between CBN and
CBV. (We have labeled each reduction arrow with CBN or CBV to indicate which
system is being used.) The number of times the operand expression is evaluated
under CBN depends on how many times the formal parameter is used within the
procedure body. If the formal is never used, the operand is never evaluated. In
contrast, in CBV, the operand expression is evaluated exactly once, regardless of
how many times the formal is referenced within the body. If operand evaluation
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CBN CBV

(app (lam x (prim * x x))

(prim + 2 3))

====
CBN
⇒

[β]
(prim * (prim + 2 3)

(prim + 2 3))

====
CBN
⇒

[+]
(prim * 5 (prim + 2 3))

====
CBN
⇒

[+]
(prim * 5 5)

====
CBN
⇒

[*]
25

(app (lam x (prim * x x))

(prim + 2 3))

====
CBV
⇒

[+]
(app (lam x (prim * x x))

5)

====
CBV
⇒

[β-value ]
(prim * 5 5)

====
CBV
⇒

[*]
25

(app (lam x 2) (prim / 1 0))

====
CBN
⇒

[β]
2

(app (lam x 2) (prim / 1 0))

{This stuck expression models an error}

(app (lam x 3)

(app (lam a (app a a))

(lam a (app a a))))

====
CBN
⇒

[β]
3

(app (lam x 3)

(app (lam a (app a a))

(lam a (app a a))))

====
CBV
⇒

[β-value ]

(app (lam x 3)

(app (lam a (app a a))

(lam a (app a a))))

====
CBV
⇒

[β-value ]
. . . {Infinite loop}

Figure 7.2 Examples illustrating the difference between CBN and CBV.

encounters an error or diverges (goes into a loop), CBV won’t return a value in
some cases where CBN would — i.e., when the formal is never referenced during
the evaluation of the body.

Despite these differences, CBN and CBV are closely related in FLK:

Theorem 7.1 (FLK CBN/CBV Relationship) If E is an FLK ex-

pression and E =
∗

==
CBV
⇒ V , then E =

∗
===
CBN
⇒ V ′, where V ′ =obs V .

This theorem says that if an FLK expression E evaluates to a value V using the
CBV strategy, it evaluates to an observationally equivalent value V ′ using the
CBN strategy. V and V ′ might not be syntactically identical, but they must
behave the same in all FLK program contexts. For example, if V is (lam x 3)

then V ′ might be (lam x (prim + 1 2)). The theorem also says that if E does
not evaluate to a value under CBN (i.e., it diverges or gets stuck at an error),
then it cannot evaluate to a value under CBV. Figure 7.2 shows that CBN can
sometimes yield a value in cases where CBV doesn’t. So the CBN strategy yields
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values in more cases than the CBV strategy; and when both strategies yield
values for a given expression, the values must be observationally equivalent.

Proof of Theorem 7.1: Suppose E =
∗

==
CBV
⇒ V . Observe that each CBV evalu-

ation context is a valid FLK simplification context and each CBV reduction rule
is a valid FLK simplification rule (see Section 6.4.2). So each CBV evaluation
step is a valid FLK simplification step, implying E −∗−→ V . By standardization
for FLK simplification (Theorem 6.3), there exists an expression E ′ such that

E =
∗

===
CBN
⇒ E ′ ◦∗=⇒ V — i.e., a sequence =

∗
===
CBN
⇒ of FLK (CBN) evaluation steps

followed by a sequence ◦∗=⇒ of nonevaluation steps. Since each simplification step
in E ′ ◦∗=⇒ V is a nonevaluation step, and, by Theorem 6.1, nonevaluation steps
preserve expression classification, E ′ must be a value expression; call it V ′. By

Theorem 6.4, V ′ ◦∗=⇒ V implies V ′ =obs V . �

From the theoretical perspective, CBN seems superior to CBV because it
can succeed with an answer in cases where CBV fails. Then why do so many
languages use CBV and hardly any use CBN? As hinted above, one reason is
that CBN implies certain implementation inefficiencies in practice. Perhaps an
even more important reason is that CBN and side effects do not mix well. As
we shall see in the next chapter, imperative programs using CBN are notoriously
hard to reason about. But here we shall focus only on the issue of implementation
efficiency.

As a nontrivial example, let’s compare the CBN and CBV mechanisms on the
following call to a recursive summation procedure written in FLK:

(app (rec sum (lam n (if (prim = n 0)

0

(prim + n (app sum (prim - n 1))))))

3)

The transition sequence for CBN evaluation of this expression was presented in
Figure 6.20 on page 265. The CBV sequence is presented in Figure 7.3. Both
sequences use the abbreviations S for the rec subexpression and S ′ for the result
of unwinding S via the [rec] rule (Figure 6.19).

As indicated by the transition sequences, CBN can be much less efficient than
CBV. There are two kinds of overhead:

1. CBN often requires more time1 than CBV in the case where an argument is
used more than once in the body of an abstraction, because then the same
argument expression must be evaluated multiple times. For example, in Fig-

1Assume that the time taken by an evaluation is the length of its SOS transition sequence.
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Abbreviations

(@O E1 . . . En) abbreviates (prim O E1 . . . En) (usual FL sugar).
S = (rec sum (lam n (if (@= n 0) 0 (@+ n (app sum (@- n 1))))))

S ′= (lam n (if (@= n 0) 0 (@+ n (app S (@- n 1)))))

Evaluation

(app S 3)

====
CBV

⇒
[rec]

(app S ′ 3)

====
CBV

⇒
[β-value]

(if (@= 3 0) 0 (@+ 3 (app S (@- 3 1))))

====
CBV

⇒
[=]

(if #f 0 (@+ 3 (app S (@- 3 1))))

====
CBV

⇒
[if-F]

(@+ 3 (app S (@- 3 1)))

====
CBV

⇒
[rec]

(@+ 3 (app S ′ (@- 3 1)))

====
CBV

⇒
[-]

(@+ 3 (app S ′ 2))

====
CBV

⇒
[β-value]

(@+ 3 (if (@= 2 0) 0 (@+ 2 (app S (@- 2 1)))))

====
CBV

⇒
[=]

(@+ 3 (if #f 0 (@+ 2 (app S (@- 2 1)))))

====
CBV

⇒
[if-F]

(@+ 3 (@+ 2 (app S (@- 2 1))))

====
CBV

⇒
[rec]

(@+ 3 (@+ 2 (app S ′ (@- 2 1))))

====
CBV

⇒
[-]

(@+ 3 (@+ 2 (app S ′ 1)))

====
CBV

⇒
[β-value]

(@+ 3 (@+ 2 (if (@= 1 0) 0 (@+ 1 (app S (@- 1 1))))))

====
CBV

⇒
[=]

(@+ 3 (@+ 2 (if #f 0 (@+ 1 (app S (@- 1 1))))))

====
CBV

⇒
[if-F]

(@+ 3 (@+ 2 (@+ 1 (app S (@- 1 1)))))

====
CBV

⇒
[rec]

(@+ 3 (@+ 2 (@+ 1 (app S ′ (@- 1 1)))))

====
CBV

⇒
[-]

(@+ 3 (@+ 2 (@+ 1 (app S ′ 0))))

====
CBV

⇒
[β-value]

(@+ 3 (@+ 2 (@+ 1 (if (@= 0 0) 0 (@+ 0 (app S (@- 0 1)))))))

====
CBV

⇒
[=]

(@+ 3 (@+ 2 (@+ 1 (if #t 0 (@+ 0 (app S (@- 0 1)))))))

====
CBV

⇒
[if-T]

(@+ 3 (@+ 2 (@+ 1 0)))

====
CBV

⇒
[+]

(@+ 3 (@+ 2 1))

====
CBV

⇒
[+]

(@+ 3 3)

====
CBV

⇒
[+]

6

Figure 7.3 CBV evaluation involving a recursive summation procedure.

ure 6.20, the value of (prim - 3 1) is calculated five times, compared to only
once in Figure 7.3. In general, evaluating (app S n) can take quadratic time
(time proportional to n2) using CBN but only linear time (time proportional
to n) using CBV.
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2. CBN often requires more space2 than CBV because expressions whose values
are not currently needed may grow as their evaluations are deferred until later.
For example, unwinding S to S ′ creates a new application of S. The operand
of this new application contains exactly one subtraction in CBV, but this
operand grows by one subtraction with every recursive call in CBN.

In practice, there are techniques for ameliorating both of these sources of over-
head. The time inefficiency is typically finessed by memoization,3 a technique
that evaluates an operand and caches its value the first time it is referenced. Fur-
ther references simply return the cached value rather than evaluating the operand
again. We shall investigate this more fully when we study lazy evaluation in
Section 8.4.3.

The space overhead is perhaps more insidious. It can be improved by using so-
called graph reduction to perform rewrites on shared graph structure [Pey87].
However, this technique does not prevent the space consumed by operands for
certain parameters from growing in size with every recursive call. There are cases
where CBN evaluation requires asymptotically more space than CBV evaluation
in FL programs, even in the presence of graph reduction (see Exercise 7.3). When
executing these programs on a machine with finite storage resources, a CBN
strategy is more likely to run out of space than a CBV strategy. A technique called
strictness analysis [Myc80, Pey87, KM89] can improve CBN by modifying it
to use CBV for operand evaluation when it is possible to prove that the value of
the operand will be required at least once.

These techniques for improving CBN make it much more palatable, but the
techniques themselves still involve overheads that some implementers find unac-
ceptable. For example, memoization implies that a flag must be tested at every
variable reference. Since variable references are rather common, the extra check
is often considered prohibitive without special hardware support.

Parameter-passing mechanisms are used to describe not only procedure calls,
but also other constructs that bind names to values. For example, the FL
binding constructs abs and let have an implicit method for associating names
with values because they desugar into FLK’s abstractions and applications. So
(let ((a (/ 1 0))) 3) evaluates to 3 in a CBN language, but signals an er-
ror in a CBV language. There are some thorny issues surrounding constructs
involving recursion (such as rec, letrec, and def) in CBV; we defer discussion
of these until Section 7.1.4.

2Assume that the space taken by an evaluation is the size (measured by number of AST
nodes) of the largest expression in its SOS transition sequence.

3That’s memoizing — making a memo or note about something — not memorizing, although
this has a similar meaning.
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Exercise 7.1 Is the following statement true? If E diverges under CBN then it diverges
under CBV. If so, prove it; if not, give a counterexample.

Exercise 7.2 In a CBV language, it is often useful to delay the evaluation of an ar-
gument until a later time. This behavior can be specified with the pair of constructs
(wrap E) and (unwrap E). Informally, (wrap E) wraps E up without evaluating it,
while (unwrap E) unwraps E until it is no longer embedded in a wrap. On a non-wrap
value, unwrap acts as an identity. For example, in CBV FLK:

(unwrap (prim + 1 2)) −−−−−−−CBV FLK→ 3

(unwrap (wrap (prim + 1 2))) −−−−−−−CBV FLK→ 3

(unwrap (wrap (wrap (prim + 1 2)))) −−−−−−−CBV FLK→ 3

(app (app (lam a (lam b (unwrap a)))

(wrap (prim + 1 2)))

(wrap (prim / 1 0))) −−−−−−−CBV FLK→ 3

(app (app (lam a (lam b (unwrap b)))

(wrap (prim + 1 2)))

(wrap (prim / 1 0))) −−−−−−−CBV FLK→ error:divide-by-zero

a. Extend the operational semantics of FLK to handle wrap and unwrap. Recall that
an SOS has five parts; make whatever changes are necessary to each of the parts.

b. Can wrap and unwrap be implemented by syntactic sugar? If so, give the desugarings;
if not, explain why.

c. Show how to translate CBN FLK into a CBV version of FLK that is equipped with
wrap and unwrap.

Exercise 7.3 Consider the following two versions of an FLK factorial function:

F1 = (rec fact-rec

(lam n

(if (prim = n 0) 1 (prim * n (app fact-rec (prim - n 1))))))

F2 = (lam n (app (app LOOP n) 1))

where LOOP = (rec fact-loop

(lam num

(lam ans

(if (prim = num 0)

ans

(app (app fact-loop (prim - num 1))

(prim * num ans))))))

Suppose that n is a nonnegative integer. For each Fi , calculate the time and space of
the transition sequence starting with (app Fi n) as a function of n using (1) the CBN
strategy and (2) the CBV strategy. Measure the time as the number of steps in the
transition path. Measure the space as the maximum number of primitive applications in
an expression in the transition path.

The space for F1 can be reduced by using graph reduction techniques. But such
techniques do not reduce the space required for the ans parameter in F2 . This problem,
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known as a dragging tail, causes what should intuitively be a constant-space iteration
to take linear space.

7.1.2 Call-by-Name vs. Call-by-Value: The Denotational View

Figure 7.4 summarizes the difference between CBN and CBV in a denotational
framework. For each mechanism, it shows the definition of the Nameable do-
main, the nam-to-comp function, and the valuation clause for app. The valuation
clauses for variable references and lam are the same for both mechanisms and are
shown in a separate box at the bottom of the figure. Since the nam-to-comp func-
tion differs in the two mechanisms and the valuation clause for variable references
uses this function, the CBN and CBV versions of E [[I ]] actually differ slightly in
terms of how entities from the environment are converted to computations. But
the E [[I ]] clause is written in a way that abstracts over this difference.

The denotational framework clarifies the key difference between CBN and
CBV for FLK: CBN allows errors and divergence to be named in environments
whereas CBV does not. We can see this from the definitions of the Nameable
domain for the two mechanisms. (Recall the Nameable is the domain that de-
scribes which values may be associated with names in environments.) In CBV
FLK, Nameable = Value, which contains the “regular” values (unit, integers,
booleans, symbols, pairs, and procedures). But in CBN FLK, Nameable =
Comp = Expressible = (Value + Error)⊥, which includes error and divergence
in addition to the “regular” values.

In CBN, a procedure application can return an element of Value even when
the operand denotes an error or divergence. In other words, CBN procedures are
not strict. Here’s an example (where e is an arbitrary environment and diverr is
an abbreviation for (Error �Expressible divide-by-zero)):

E [[(app (lam x 3) (prim / 1 0))]] e

= with-procedure-comp (E [[(lam x 3)]] e) (λp . (p (E [[(prim / 1 0)]] e)))

= with-procedure-comp (val-to-comp (Proc�Value (λn . (E [[3]] [x �→n]e))))
(λp . (p diverr))

= (λn . (E [[3]] [x �→n]e)) diverr

= E [[3]][x �→ diverr]e

= val-to-comp (Int �Value 3)

The CBV clause for app uses with-value to guarantee that only elements of
the domain Value are passed to p. This accounts for the strict nature of CBV
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n ∈ Nameable = Comp

nam-to-comp : Nameable→ Comp = λn . n

E [[(app E1 E2)]] = λe . (with-procedure-comp (E [[E1 ]] e) (λp . (p (E [[E2 ]] e))))

Call-By-Name (CBN)

n ∈ Nameable = Value

nam-to-comp : Nameable→ Comp = val-to-comp

E [[(app E1 E2)]] = λe . (with-procedure-comp (E [[E1 ]] e)
(λp . (with-value (E [[E2 ]] e) p)))

Call-By-Value (CBV)

E [[I ]] = λe . (with-nameable (lookup I e) (λn . (nam-to-comp n)))

E [[(lam I E)]] = λe . (val-to-comp (Proc�Value (λn . (E [[E ]] [I �→n]e))))

Clauses shared by CBN and CBV

Figure 7.4 The essence of the denotational semantics of CBN and CBV parameter
passing. For FLK, Comp = Expressible, but the CBN semantics will still be valid later
when Comp is updated to reflect extensions to FLK. Likewise, the CBV semantics will
still be valid when the Value domain is extended.

evaluation. As an illustration of CBV, let’s evaluate the above example expression
in CBV:

E [[(app (lam x 3) (prim / 1 0))]] e

= with-procedure-comp (E [[(lam x 3)]] e)
(λp . (with-value (E [[(prim / 1 0)]] e) p))

= with-procedure-comp (E [[(lam x 3)]] e) (λp . (with-value diverr p))

= with-procedure-comp (E [[(lam x 3)]] e) (λp . diverr)

= with-procedure-comp (val-to-comp (Proc�Value (λn . (E [[3]] [x �→n]e))))
(λp . diverr)

= diverr

It is natural to wonder at this point how error or divergence in an argument
can ever lead to error or divergence for an application in a CBN language. That
is, if an argument is simply inserted into the environment upon call and retrieved
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upon lookup, when is the value denoted by the argument ever actually examined?
There are several spots in the denotational definition where information about the
values is required. For example, in the clause for [[(app E1 E2)]] the value of E1

is required to be a procedure; the semantics must check the value to ensure that
this is the case (such checks are hidden in the abstraction with-procedure-comp).
Similarly, an if valuation clause must not only check that the test expression
denotes a boolean, but also use the boolean value in order to determine which
arm is denoted by the entire conditional construct. Handling primitive operators
in FLK is perhaps the most common case where details of the values must be
examined.

Exercise 7.4

a. In CBN FLK, show that for all environments e:

(E [[(app (lam I Ebody) Erand)]] e) = (E [[Ebody ]] [I �→ (E [[Erand ]] e)]e)

b. In CBV FLK, show that for all environments e:

(E [[(app (lam I Ebody) Erand)]] e) = with-value (E [[Erand ]] e)
(λv . (E [[Ebody ]] [I �→ v ]e))

7.1.3 Nonstrict versus Strict Pairs

In most programming languages, data constructors (such as pair in FLK) tend to
have the same strictness properties as procedures. So they are typically nonstrict
in a CBN language but strict in a CBV language. For example, consider the
following expression EpairTest :

(prim snd (pair (prim / 1 0) (prim + 2 3)))

We expect that EpairTest should evaluate to 5 in CBN FLK but should signal a
divide-by-zero error in CBV FLK.

The key semantic differences between nonstrict and strict pairs are summa-
rized in Figure 7.5. The figure omits the operational and denotational semantics
of the fst and snd primitives, which do not differ between the nonstrict and
strict versions and so are the same as those presented for FLK (see Figure 6.19
on page 259 for their operational semantics and Figure 6.29 on page 285 for their
denotational semantics). In both operational and denotational perspectives, the
difference boils down to whether the components of pair values must themselves
be values (yes for CBV and no for CBN).

Strict data structures permit a more interesting output function to be defined
for a language’s operational semantics. If a program in a language with strict
pairs terminates with a pair, the output function can produce a result based on
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Operational:

V ∈ ValueExp ::= . . . nonpair FLK values . . . | (pair Efst Esnd)

E ∈ EvalContext ::= . . . FLK evaluation contexts . . .

Nonstrict Pairs

V ∈ ValueExp ::= . . . nonpair FLK values . . . | (pair Vfst Vsnd)

E ∈ EvalContext ::= . . . FLK evaluation contexts . . .
| (pair E Esnd) | (pair Vfst E)

Strict Pairs

Denotational:

Pair = Comp × Comp

E [[(pair E1 E2)]] = λe . (val-to-comp (Pair �Value 〈(E [[E1 ]] e), (E [[E2 ]] e)〉))

Nonstrict Pairs

Pair = Value × Value

E [[(pair E1 E2)]] =
λe . (with-value (E [[E1 ]] e)

(λv1 . (with-value (E [[E2 ]] e)
(λv2 . (val-to-comp (Pair �Value 〈v1 , v2 〉))))))

Strict Pairs

Figure 7.5 Operational and denotational views of nonstrict and strict pairs.

recursively computing output representations for the pair’s components rather
than yielding a generic output like pairans (see Section 6.4.1, page 266). The
output function is well defined and guaranteed to terminate, because all the
components are already values. In contrast, the output function for a language
with nonstrict pairs cannot do this: the components of a pair may not be values
and may contain errors or infinite computations.

Pairs are a special instance of a more general data structure called a prod-
uct. We will study many design dimensions of products, including alternative
approaches to nonstrictness, in Section 10.1.

We have assumed in our discussion up to this point that every entity that
is nameable may be passed as an argument or bundled into a pair. While this
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tends to be true in functional languages (and is a major source of power in such
languages), it is not true in general. For example, while procedures are almost
universally nameable, there are many languages (e.g., Fortran, Basic, Pascal)
in which procedures cannot be passed as arguments, or can be passed only in a
limited way. Similarly, many languages do not permit data-structure components
to be procedures. In order to give an accurate denotational description of such
languages, it is necessary to distinguish the class of nameable entities from those
which may be passed as arguments and those which can be components of data
structures. To model such languages we would need to introduce new domains,
Passable and Component, that describe these classes of values.

Exercise 7.5

a. Using the operational semantics of pairs presented in Figure 7.5, show the evaluation
of EpairTest in both CBN and CBV versions of FLK.

b. Using the denotational semantics of pairs presented in Figure 7.5, show the evaluation
of EpairTest in both CBN and CBV versions of FLK.

Exercise 7.6 One justification for giving data constructors the same strictness proper-
ties as procedures is that this is consistent with procedural encodings of data (such as the
Church pair encoding in Section 6.6). For example, consider the following expressions
for constructing and deconstructing pairs:

Epair = (lam x (lam y (lam f (app (app f x) y))))

Efst = (lam pr (app pr (lam x (lam y x))))

Esnd = (lam pr (app pr (lam x (lam y y))))

Using these expressions, we can “translate” the EpairTest example to the following ex-
pression:

E ′
pairTest = (app Esnd (app (app Epair (prim / 1 0)) (prim + 2 3)))

Show that E ′
pairTest behaves like EpairTest by doing Exercise 7.5 with EpairTest replaced by

E ′
pairTest . Use the results of Exercise 7.4 to simplify your reasoning for the denotational

case.

7.1.4 Handling rec in a CBV Language

In an operational semantics, rec can be handled by the same rule regardless of
whether the language is CBN or CBV:

(rec I E) � [(rec I E)/I ]E [rec]

(An alternative approach to handling rec under CBV is explored in Exercise 7.8.)
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Unfortunately, things are not so simple in a denotational semantics. In CBN,
where Nameable = Comp, the valuation clause for a CBN version of rec is very
elegant:

E [[(rec I E)]] = λe . (fixComp (λc . (E [[E ]] [I �→ c]e)))

The fixed point defined by this clause is well defined as long as Comp is a pointed
CPO. For this reason, we will always guarantee that Comp is a pointed domain.

However, developing a valuation clause for rec in a CBV language is rather
tricky. In CBV, the corresponding version of the CBN clause is:

E [[(rec I E)]] = λe . (fixValue (λv . (E [[E ]] [I �→ v ]e)))

But since Nameable = Value is not a pointed domain, the fixed point is not well
defined, and the clause is nonsensical.

There are several ways of circumventing this impasse. Here we present two
approaches:

1. In (rec I E), we can limit E to be a subset of expressions that are syntac-
tically guaranteed to be procedures. In CBV, Proc = Nameable→ Comp =
Value → Comp is a pointed CPO (because Comp is always pointed), so it is
always possible to find a fixed point over Proc. That is, suppose we modify
the syntax of FLK as follows:

E ::= . . . non-rec expressions . . . | (rec Ivar ABbody)

AB ∈ Abstraction ::= (lam Iformal Ebody)

If we suppose that AB :Abstraction→ Env→ Proc is the valuation function
for abstractions, then rec is definable as:

E [[(rec I AB)]]
= λe . (val-to-comp

(Proc�Value (fixProc (λp . (AB[[AB ]] [I �→ (Proc�Value p)]e)))))

SML is an example of a CBV language that takes this approach. The SML
grammar permits recursion only over explicit abstractions, not arbitrary ex-
pressions.

A drawback of restricting recursion to syntactic abstractions is that it reduces
the expressive power of rec. For example, in FLK it would no longer be
possible to specify recursions over pairs or over procedures denoted by an
expression that is not an explicit lam. The following FL examples, though
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E [[(rec I E)]] = λe . (fixComp (λc . (E [[E ]] (bind I (extract-value c) e))))

bind : Ident → BindingVal→ Env→ Env
= λIβe . λI2 . if I = Ident I2 then β else (lookup I2 e) end

extract-value : Expressible→ BindingVal
= λc . match c

� (Value �Expressible v) [] (Nameable �BindingVal v)
� (Error �Expressible Y ) [] ⊥BindingVal

end

Figure 7.6 A CBV version of rec that assumes Comp = Expressible.

contrived, are indicative of useful patterns that are disallowed by an approach
that requires the body of a rec to be an explicit abstraction in a CBV language:

(rec ones (pair 1 (abs () ones)))

(rec fact

(let ((fact-of-0 1))

(abs (n)

(if (= n 0) fact-of-0 (* n (fact (- n 1)))))))

2. Recall that the BindingVal domain was defined as a lifted domain:

β ∈ BindingVal = (Nameable + Unbound)⊥

An alternative strategy for CBV rec is to make use of ⊥BindingVal to com-
pute fixed points. Figure 7.6 presents a version of the rec valuation clause
that works in the case where Comp = Expressible. bind is an environment
extension function that is like extend except that it takes an element of Bind-
ingVal where extend takes an element of Nameable. extract-value coerces
a computation into a binding value that can be associated with a name in
the environment. The resulting binding value is either an injected element of
Nameable = Value or it is ⊥BindingVal. (Recall from Section 5.2.7 that match
is strict in its discriminant, so that extract-value maps ⊥Comp to ⊥BindingVal.)

By effectively naming a bottom element in the environment, this approach
provides a suitable starting point for the fixed point iteration technique. It
would also be possible to add a bottom element directly to the Nameable
domain, but that would not faithfully model the intuition that divergence is
not nameable in CBV. The ⊥BindingVal element helps to clarify the difference
between using bottom to solve a recursion equation expressed by a rec and
allowing bottom to be passed as an argument to a procedure.
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We emphasize that the extract-value function in Figure 7.6 works only for
case where Comp = Expressible and needs to be tweaked if the Comp domain
changes. For some definitions of Comp, it may not be possible to define a
suitable extract-value function.

In the remainder of the text, we will assume that the second of these two
approaches is taken whenever recursion is used in CBV FLK.

Exercise 7.7 Use both the operational and denotational rec semantics to compute the
values of the following expressions in both CBN and CBV versions of FLK:

a. (rec a 1)

b. (rec a (prim / 2 0))

c. (rec a a)

d. (rec a (if #t 3 a))

e. (rec a (lam x a))

f. (rec a (pair 4 a))

g. (rec a (pair 5 (lam x a)))

Exercise 7.8 An alternative reduction rule for rec is:

(rec I V ) � [(rec I V )/I ]V [rec ′]

This rule assumes that evaluation contexts have been extended as follows to allow eval-
uation of a rec body:

E ∈ EvalContext ::= . . . FLK evaluation contexts . . . | (rec I E)

a. Write an FLK expression involving rec that takes fewer steps to evaluate in CBV
FLK when [rec ′] is used in place of [rec].

b. For which expressions in Exercise 7.7 does [rec ′] give rise to different behavior than
[rec]?

c. Prove that if a CBV FLK expression evaluates to a value V ′ using the [rec ′] rule,
then it evaluates to a value V using the [rec] rule, where V =obs V ′.

Exercise 7.9 Bud Lojack has designed the following CBV rec clause, which finds fixed
points over the Env domain rather than the Comp domain.

E [[(rec I E)]]
= λerec . E [[E ]] (fixEnv (λefix . match (E [[E ]] efix )

� (Value �Expressible v) [] [I �→ v ]erec

� else erec

end ))
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a. As explained in Chapter 5, fixD is sensible only when the domain D is a pointed
CPO. Explain why Env is a pointed CPO.

b. Characterize the situations in which Bud’s clause gives a different meaning from the
standard CBV rec clause in Figure 7.6. You should consider the rec examples in
Exercise 7.7 as well as design some rec examples of your own.

7.1.5 Thunking

Some important idioms used in CBN do not work in CBV. For example, consider
the following FL unless procedure:

(def unless

(abs (test default exception)

(if test exception default)))

Because procedure arguments that are never referenced in the evaluation of the
procedure body are not evaluated in CBN FL, at most one of the default and
exception arguments will be evaluated. E.g., (unless #f (* 2 3) (/ 4 0))

returns 6 because (/ 4 0) is never evaluated in CBN. However, in CBV FL, the
same invocation of unless signals a divide-by-zero error because all procedure
arguments are evaluated before the procedure is applied.

As another example, in CBN it is possible to define infinite data structures,
such as the following infinite list of the powers of two:4

(def twos

(let ((gen-twos (abs (n) (pair n (gen-twos (* 2 n))))))

(gen-twos 1)))

The elements of twos can be extracted using the nth procedure from FL’s stan-
dard library (Figure 6.8 on page 236). E.g., (nth 11 twos) returns 1024. But
in CBV FL, the application (gen-twos 1) diverges because no pair in the list
can be returned until all the pairs in the list have been created (and this can’t
happen in finite time).

Can we somehow express these idioms in CBV FL? Yes! The key idea is to
delay the evaluation of certain expressions. In CBV FL, a simple way to delay the
evaluation of an expression Ewrapped is to wrap it in a parameterless procedure,
(abs () Ewrapped), which is known as a thunk.5 If Ethunk denotes a thunk, its

4See Section 10.1.3 for a detailed discussion of conceptually infinite data structures.
5The earliest use we know of this term is in [Ing61], but its origins are not explained there.

In computer-science folklore, two etymologies are given for this term. One is that it is called
a “thunk” because all the thinking for it has already been done. The other is that “thunk” is
the sound made when this entity is pushed onto the stack. The terms delay, promise, and
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(app (app (app (lam test {lam begins unless desugaring}
(lam default-thunk

(lam exception-thunk

(if test

(app exception-thunk #u)

(app default-thunk #u))))) {end desugaring}
#f)

(lam ignore.1 (prim * 2 3))) {ignore.1 is fresh}
(lam ignore.2 (prim / 4 0))) {ignore.2 is fresh}

=
∗

===
CBV
⇒

[β-value]
(if #f

(app (lam ignore.2 (prim / 4 0)) #u)

(app (lam ignore.1 (prim * 2 3)) #u))

====
CBV
⇒

[if-F]
(app (lam ignore.1 (prim * 2 3)) #u)

====
CBV
⇒

[β-value]
(prim * 2 3)

====
CBV
⇒

[*]
6

Figure 7.7 CBV evaluation sequence for the sample unless application.

wrapped expression Ewrapped can be evaluated via (Ethunk), which applies Ethunk

to zero arguments. We will also use “thunk” as a verb: we “thunk” Ewrapped via
Ethunk = (abs () Ewrapped) and “dethunk” Ethunk via (Ethunk).

To implement unless in CBV FL, we assume that its second and third ar-
guments are thunked, as in

(unless #f (abs () (* 2 3)) (abs () (/ 4 0)))

The CBV unless procedure dethunks at most one of these thunks:

(def unless

(abs (test default-thunk exception-thunk)

(if test (exception-thunk) (default-thunk))))

Figure 7.7 presents the CBV evaluation sequence for the sample unless appli-
cation after desugaring. The multiplication and division operations are delayed
by thunking because CBV evaluation contexts do not permit evaluation to take
place inside the body of an abstraction.

Thunks can also be used to represent conceptually infinite lists in CBV FL.
Finiteness is achieved by making the second element of each pair a thunk that,
when dethunked, returns the next pair in the list:

suspension are also used, though these terms sometimes imply thunks with memoization, as
discussed in Section 10.1.3.
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(def twos {CBV version}
(let ((gen-twos (abs (n) (pair n (abs () (gen-twos (* 2 n)))))))

(gen-twos 1)))

Of course, we also need a modified version of nth that performs the appropriate
dethunking.

(def nth-inf {CBV version of nth for infinite lists}
(abs (i xs)

(cond ((scor (null? xs) (< i 1))

(error nth-index-out-of-bounds))

((= i 1) (car xs))

(else (nth-inf (- i 1) ((cdr xs))))))) {dethunk the cdr}

Encoding CBN idioms in CBV via thunking and dethunking introduces time
and space execution overheads and can be cumbersome for the programmer.
Some of the overheads are fundamental, but memoization can ameliorate the
execution time overhead; see the discussion in Section 10.1.3. Programming
effort can be reduced by developing abstractions that hide the explicit thunking
and dethunking. The transformation from CBN to CBV can also be automated
by a translation process that inserts the appropriate thunk-manipulation code
[Amt93, SW94].

From a denotational perspective, the essence of simulating CBN in CBV is
finding a way to name errors and ⊥Comp in CBV environments. It is not possible
to name these directly, but it is always possible to name them indirectly, via
procedures. For every computation c, we can construct a procedural value that
returns c when called:

(val-to-comp (Proc�Value (λn . c)))

This means that we can effectively put any computation into an environment by
transforming it into the above form before it is bound to a name and then perform
the inverse transformation when the name is looked up. Since the parameter n
is ignored, the transform and its inverse are equivalent to, respectively, thunking
and dethunking.

Exercise 7.10

a. Can a CBN FL interpreter be written in CBV FL?

b. Can a CBV FL interpreter be written in CBN FL?

Justify your answers.
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Exercise 7.11 The letrec to rec desugaring presented in Figure 6.4 (page 220) does
not work in CBV FLK.

a. Develop a simple example demonstrating that the desugaring does not preserve the
expected semantics of a CBV letrec construct.

b. Show how to fix the desugaring for CBV FLK using thunking and dethunking. You
may use substitution in your desugaring.

c. Does the Bekić expansion desugaring for letrec introduced in Exercise 6.6 work in
CBV? Explain.

Exercise 7.12 In this exercise we explore combining call-by-name and call-by-value
in a single language. Imagine a language NAVAL (NAme/VAlue Language) that is
just like CBN FLK except that (lam I E) has been replaced by the two constructs
(vlam I E) and (nlam I E). Both of these constructs act like lam in that they create
single-argument procedures. The only difference between them is that parameters of
procedures created by nlam are passed using CBN, while those created by vlam use
CBV. For example:

(app (nlam x 3) (prim / 1 0)) −−−−−−NAV AL→ 3
(app (vlam x 3) (prim / 1 0)) −−−−−−NAV AL→ error:divide-by-zero

a. Give an operational semantics for NAVAL by modifying the FLK reduction rules in
Figure 6.19 (page 259). Describe only your changes.

b. Give a denotational semantics for NAVAL by modifying the CBN FLK domain defi-
nitions in Figure 6.23 (page 276) and the valuation clauses in Figure 6.28 (page 283).
Describe only your changes. Hint: In a simple approach to this problem, by-name
and by-value procedures can both be elements of a single Proc domain. What should
Nameable be?

c. Just as it was convenient to extend FLK with the notion of multiple-argument proce-
dures, it would be nice to extend NAVAL with a similar notion. Some method must
be chosen for specifying which parameters are by name and which are by value. For
example, parameters might default to the by-value mechanism, but could be declared
by-name with the token name, as illustrated below:

(def unless

(abs (test (name default) (name exception))

(if test exception default)))

Give the rules for desugaring such a multiple-argument abs construct into NAVAL’s
one-argument nlam and vlam.

d. We have seen how CBN can be simulated in a CBV language by using thunks. For-
malize this transformation by defining a function that translates NAVAL into CBV
FLK.
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n ∈ Nameable = Env→ Comp

E [[I ]] = λe . (with-nameable (lookup I e) (λn . (n e)))

E [[(app E1 E2)]] = λe . (with-procedure-comp (E [[E1 ]] e) (λp . (p E [[E2 ]])))

Call-By-Denotation

Figure 7.8 Essence of the call-by-denotation semantics.

Exercise 7.13 In your favorite programming language, write a program that translates
CBN FL into CBV FL. (Note that a very similar program could be used to translate
CBN FL into Scheme.)

7.1.6 Call-by-Denotation

Sometimes a denotational semantics suggests a feature that is an alternative point
in a dimension of the programming-language design space. A case in point is call-
by-denotation (CBD), a parameter-passing mechanism that is obtained by
tweaking CBN semantics in a straightforward way (see Figure 7.8). Whereas CBN
determines the meaning of an operand expression relative to the environment
available at the point of call, CBD instead determines the meaning of an operand
expression relative to the environment where the formal parameter is referenced.

In CBD, the domain definition

n ∈ Nameable = Env→ Comp

indicates that the nameable entities in the language are functions that map envi-
ronments to computations. Because the signature of E is Exp → Env → Comp,
applying E to an expression creates an element of Nameable. In the app clause,
the expression E [[E2 ]] creates an operand-evaluation function of type Nameable
that is passed as an argument to the applied procedure. In the body of the
applied procedure, the operand-evaluation function is invoked at every variable
reference, where it is supplied with the environment in effect where the variable
is referenced.

As a simple example of CBD, consider the meaning of the FL expression

((abs (y)

(let ((x 3))

y))

x)
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E [[y]] e1
= (λe . (with-nameable (lookup y e) (λn . (n e)))) e1
= (with-nameable (lookup y e1 ) (λn . (n e1 )))
= (with-nameable (Nameable �BindingVal

(λe . (with-nameable (lookup x e) (λn . (n e)))))
(λn . (n e1 )))

= (λe . (with-nameable (lookup x e) (λn . (n e)))) e1
= (with-nameable (lookup x e1 ) (λn . (n e1 )))
= (with-nameable (Nameable �BindingVal

(λe . (val-to-comp (Int �Value 3))))
(λn . (n e1 )))

= (λe . (val-to-comp (Int �Value 3))) e1
= (val-to-comp (Int �Value 3))

Figure 7.9 A calculation of the meaning of y in environment e1 .

in an environment e0 in which the identifier x is unbound. This expression
desugars to

(app (lam y

(app (lam x y)

3))

x)

In both CBN and CBV, the meaning of this expression is an unbound-variable
error, because the value of (the outer) x is required but nowhere defined. In
CBD, however, the unevaluated outer x is effectively substituted for y to yield
the application (app (lam x x) 3), whose value is 3. The outer x is no longer
unbound because it is captured by the inner x.

Let’s understand this example in more detail. The value of the given ex-
pression will end up being the value of the variable y evaluated in the following
environment e1 :

e1 = {x �→ (Nameable �BindingVal (λe . (val-to-comp (Int �Value 3)))),
y �→ (Nameable �BindingVal (λe . (with-nameable (lookup x e) (λn . (n e)))))}

(We leave the details of how this point is reached as an exercise.) The meaning of
y in e1 at this point is presented in Figure 7.9, which shows that the expression
indeed evaluates to 3.

The somewhat bizarre behavior of call-by-denotation in this example is due
to a kind of name capture. The evaluation of the outer x yields not what we
would normally think of as a value but an environment accessor that is eventually
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applied to an environment that has a binding for the inner x. Had the inner x

been named something other than x or y, no capture would have occurred, and
the expression would have denoted an unbound variable error, as in CBN and
CBD. Interestingly, x is not the only outer name that causes trouble. If we replace
the outer x by a reference to y, the expression diverges! (Check it and see.)

Because the semantics of call-by-denotation are so convoluted, it is hardly sur-
prising that this mechanism is not used in any real programming language that
we know of. What is our purpose in introducing so contrived a mechanism? First,
we want to emphasize that in a denotational semantics, names can be bound to
entities much more complex than simple values or expressible values. We shall
see many examples of this later in the text. Second, call-by-denotation highlights
variable capture problems that can be encountered in various programming lan-
guage features that allow programmers to manipulate unevaluated expressions.
Two such features are user-definable macros (such as C’s #define mecha-
nism), which allow programmers to define new syntactic sugar constructs in a
language, and mechanisms in various Lisp dialects (such as MacLisp’s FEXPR

abstractions) that allow the definition of procedures whose arguments are passed
as unevaluated s-expressions.

As a realistic example of the sort of name capture that can occur in CBD
systems, consider the following desugaring rule, which a programmer might be
able to specify via a macro definition:

(ifpos E1 E2) �ds (let ((n E1)) (if (@> n 0) n E2))

The (ifpos E1 E2) construct evaluates and returns E1 if its value is a positive
number and otherwise returns the value of E2 . The desugaring gives the name n

to E1 ’s value so that it needn’t be evaluated again if it’s positive. The problem
with hardwiring a particular name like n into the desugaring is that it can capture
a free n appearing in E2 . For example, consider the expression:

(let ((n 5)) (ifpos (@- 3 10) (@* n -6)))

From the specification of ifpos, we expect that this should evaluate to −30, but
applying the ifpos desugaring rule yields

(let ((n 5)) (let ((n (@- 3 10))) (if (@> n 0) n (@* n -6))))

which evaluates to 42 as a result of capture of the variable n.
This example underscores the importance of choosing fresh variable names in

desugarings. The simplest macro systems do not provide any means for avoiding
hardwired names like n in the above example. In these systems, programmers
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often develop naming conventions involving unusual prefixes and/or suffixes in an
attempt to avoid variable capture. Many dialects of Lisp provide a gensym proce-
dure for generating fresh names that can be used to eliminate variable capture in
the definition of user-defined macros. Still, a user who is defining macros must use
gensym appropriately. A more sophisticated approach is taken in Scheme’s so-
called hygienic macro system, which automatically renames capturable names
to fresh names in desugaring rules that are written in a high-level fashion.

Exercise 7.14 For each of the following FL expressions, give the meaning of the expres-
sion in CBN, CBV, and CBD. Recall that FL’s let inherits its semantics from FLK’s
lam and app.

a. (let ((x 3)

(y (@/ 1 0)))

x)

b. (let ((x 7))

(let ((f (lam y (@+ x y))))

(let ((x 10))

(f x))))

c. (let ((x 3))

((let ((y 19))

(lam z y))

x))

d. (let ((x 23))

(let ((x x))

x))

Exercise 7.15

a. Write a single FL expression that has a different meaning in each of CBN, CBV, and
CBD. Give the meaning of your expression in each mechanism.

b. Bud Lojack hopes to solve part a above with an expression that evaluates to one of
the symbols cbn, cbv, or cbd depending on which parameter-passing mechanism is
being used. Kindly explain to Bud why the expression he desires does not exist.

Exercise 7.16 Macrologist L. N. Baudrate has created the following context for exper-
imenting with definitions of ifpos in various versions of FL.

X = (let ((ifpos (abs (exp1 exp2)

(let ((n exp1))

(if (@> n 0) n exp2)))))

�)
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a. L. N. needs your help. For each of the following expressions E , (1) give the result of
evaluating X{E} (i.e., filling the hole in X with E ) in each of CBN, CBV, and CBD
and (2) indicate how many primitive applications are performed in the evaluation.

i. (ifpos (@+ 1 2) (@* 3 4))

ii. (ifpos (@- 1 2) (@* 3 4))

iii. (ifpos (@+ 1 2) (@/ 3 0))

iv. (let ((n 5)) (ifpos (@- 3 10) (@* n -6)))

v. (let ((n 5)) (ifpos (@- n 12) (@* n -6)))

vi. (let ((exp1 5)) (ifpos (@- 3 10) (@* exp1 -6)))

b. Suppose the (let ((n exp1)) (if . . . )) expression in X were replaced by the
(if . . . ) expression. Which of your answers to part a would change?

7.2 Name Control

The phrase “too much of a good thing” evokes images such as a child getting a
stomachache after eating too much candy or the crew of the starship Enterprise
being swamped by the cute but prolific tribbles. The recent explosion in infor-
mation technology has added a new twist to this phrase. Information consumers,
such as Web surfers, music/video downloaders, and television viewers, have rapid
access to huge stores of information. But changes in the information landscape
have brought new problems, perhaps the most daunting of which is information
overload: there is simply too much information to weed through, to absorb, to
remember.

The area of naming in programming languages harbors its own version of
the information overload problem. While names are an indispensable means of
abstraction, the abundance of names in even modestly sized programs can lead
to a host of complications.

From a cognitive point of view, more names can mean more learning, re-
membering, and model building for programmers. One of the simplest naming
strategies, a single global namespace (in which distinct variables are named by
distinct identifiers), is also one of the most nightmarish for program writers and
readers alike. This approach foists a tremendous amount of mental bookkeeping
on the programmer:

• Nonlocality of naming structure impairs readability because there are no con-
straints on which names the reader needs to search for or remember in order to
understand a given fragment of code. At all times, the reader must potentially
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be aware of the entire namespace. For this reason, a global namespace is not
scalable in a cognitive sense; large programs are much harder to comprehend
than shorter ones.

• The reader has to infer structural groupings intended by the writer but not
expressed because of the flatness of the namespace.

• Every time a new name is needed, the writer must find one that does not clash
with any names already in use.

In order to reduce such unreasonable cognitive demands, programming languages
typically provide mechanisms for reusing names and structuring the scope of
names. Even when these are not supported by the naming system, programmers
often develop naming conventions to simulate such mechanisms.

From an engineering point of view, more names can mean more complex
interactions between program parts. One of the chief methods of controlling the
complexity of large programs is to break them up into smaller units (such as
procedures, methods, classes, abstract data types, modules) having well-defined
interfaces that separate the use of a unit from its implementation. An interface
specifies:

• the names defined external to the unit that are to be imported for use within
the implementation of the unit; and

• the names defined internal to the unit that are to be exported for use outside
of the unit.

It is desirable to make such interfaces narrow — i.e., importing and exporting few
names — to limit dependencies among program parts. Wide interfaces give rise to
spaghetti-like dependencies among program units that are difficult for a program-
mer to keep track of. And the complexities are exacerbated in the more common
situation where a large program is developed in collaboration with others. In this
case, wider interfaces imply increased communication and coordination between
members of a programming team.

From this engineering perspective, a programming language should provide
mechanisms that facilitate the construction of narrow interfaces. The simple
approach of a single global namespace fails here because it allows every name
to be used everywhere throughout a program. A crucial ingredient for narrow
interfaces is some means of name hiding, whereby names purely local to the
implementation of a unit are effectively hidden from the rest of a program.
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In this section, we shall investigate techniques for name control that address
the cognitive and engineering problems outlined above. Unlike our discussion
of names up to this point, these issues are largely orthogonal to the choice of
nameable values. Rather, they specify the relationship between patterns of name
usage and the logical structure of variables in the program.

7.2.1 Hierarchical Scoping: Static and Dynamic

Recall the following terms from our study of variables in FLK:

• A variable is a placeholder for entities manipulated by a program.

• An identifier is a name for a variable. Distinct variables may be named by
the same identifier.

• A binding construct is a construct that introduces a variable.

• A variable declaration is the part of the binding construct that specifies the
identifier to be used for the variable.

• A variable reference is a phrase that stands for the entity denoted by the
variable.

• The scope of a variable is the portion of the program text in which the variable
may be referenced.

For example, in FL, the binding constructs are lam, rec, abs, let, and letrec

expressions, def declarations, and the fl program construct. All variable refer-
ences in FL are written as unadorned identifiers.

For a given language, it may or may not be possible to determine the scope
of a given declaration without running the program. If the scope of a declaration
can always be determined from the abstract syntax tree of a program, the scope
of the declaration is said to be static or lexical. In this case, the variable
declaration associated with any variable reference is apparent from the lexical
structure of the program. If the scope of a declaration depends on details of the
run-time execution of a program, the declaration is said to have dynamic scope.
A language in which all declarations have static (respectively, dynamic) scope is
said to be a statically scoped (respectively, dynamically scoped) language.

Figure 7.10 summarizes the difference between static and dynamic scoping in
both CBN and CBV versions of FLK. We will refer to this figure as we explain
these scoping mechanisms in more detail.
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p ∈ Proc = Nameable→ Comp

E [[(lam I E)]] = λelam . (val-to-comp (Proc�Value (λn . (E [[E ]] [I �→n]elam))))

E [[(app E1 E2)]] = λeapp . (with-procedure-comp (E [[E1 ]] eapp)
(λp . (p (E [[E2 ]] eapp))))

Statically Scoped CBN Procedures

p ∈ Proc = Nameable→ Env→ Comp

E [[(lam I E)]] = λelam . (val-to-comp (Proc�Value (λneapp . (E [[E ]] [I �→n]eapp))))

E [[(app E1 E2)]] = λeapp . (with-procedure-comp (E [[E1 ]] eapp)
(λp . (p (E [[E2 ]] eapp) eapp)))

Dynamically Scoped CBN Procedures

p ∈ Proc = Nameable→ Comp

E [[(lam I E)]] = λelam . (val-to-comp (Proc�Value (λn . (E [[E ]] [I �→n]elam))))

E [[(app E1 E2)]] = λeapp . (with-procedure-comp (E [[E1 ]] eapp)
(λp . (with-value (E [[E2 ]] eapp) (λv . (p v)))))

Statically Scoped CBV Procedures

p ∈ Proc = Nameable→ Env→ Comp

E [[(lam I E)]] = λelam . (val-to-comp (Proc�Value (λneapp . (E [[E ]] [I �→n]eapp))))

E [[(app E1 E2)]] = λeapp . (with-procedure-comp (E [[E1 ]] eapp)
(λp . (with-value (E [[E2 ]] eapp) (λv . (p v eapp)))))

Dynamically Scoped CBV Procedures

Figure 7.10 The essence of the semantics of statically and dynamically scoped CBN
and CBV procedures. In a statically (lexically) scoped procedure, free identifiers ap-
pearing in a lam body are resolved relative to elam , the environment determined by the
program text lexically enclosing the lam expression. In a dynamically scoped procedure,
free identifiers appearing in a lam body are resolved relative to eapp , the environment de-
termined by the dynamic chain of procedure calls in which the procedure is being called.
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Static Scope

All of the languages we have studied so far (other than call-by-denotation FL)
have been statically scoped. In a statically scoped language, every variable refer-
ence refers to the variable introduced by the nearest lexically enclosing variable
declaration of that identifier in the abstract syntax tree of the program. The
nearest lexically enclosing declaration is found by starting at the identifier and
tracing a path up the abstract syntax tree until a binding construct introducing
the identifier is found that has the path in its scope.

As an example, consider the CBN FL expression

(let ((x 20))

((let ((inc-by-x (abs (y) (+ x y)))

(double (abs (x) (* x 2))))

(letrec ((x (cons 1 x)))

(abs (z)

(cons (double (inc-by-x (double z)))

x))))

(- x 15)))

In this expression there are three distinct variables named x declared by three
binding constructs:

1. (let ((x 20)) . . . ) declares x and binds it to the number 20.

2. The (abs (x) (* x 2)) expression named by double declares x but does
not bind it; x will be bound on application of the procedural value of this
abstraction. (The binding of x may be different for every distinct application
of this procedure.)

3. (letrec ((x (cons 1 x))) . . .) declares x and binds it to an infinite list
of 1s.

There are also five variable references involving x:

1. In (+ x y), x is a reference to the let-bound variable named x, so its meaning
in this context is 20. This means that inc-by-x is a procedure that always
adds 20 to its argument, regardless of the binding for x in the environment in
which it happens to be applied.

2. In (* x 2), x is a reference to the abs-bound variable named x, whose meaning
will be determined at application time.
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3. In (cons 1 x), x is a reference to the letrec-bound variable named x, so its
meaning is an infinite list of 1s.

4. In (cons (double (inc-by-x (double z))) x), x refers to the variable in-
troduced by the first lexically enclosing declaration of x, which in this case is
the letrec-bound variable. So here x is an infinite list of 1s as well.

5. In (- x 15), x is a reference to the variable introduced by the first lexically
enclosing declaration of x, which in this case is the let-bound variable. So
here x means the number 20.

Putting together all of the above information, the value of the example expression
is an infinite list whose first element is 60, and the rest of whose elements are
all 1.

In the above expression, some variables references (+, -, *, and cons) refer to
variables in the standard library, which are implicitly declared by the top-level
program in which the expression is embedded.

As we noted before for FLK, when the scope of a declaration contains an-
other declaration of the same name, the inner declaration carves out a hole in
the scope of the outer one. The Stoy diagrams we used to represent the struc-
ture of variables in FLK can easily be adapted to show declaration/reference
relationships in any statically scoped language.

The essence of static scope is in the way environments are handled by abstrac-
tions. Figure 7.10 shows the domains and valuation functions that are crucial
for static scope in CBN and CBV FLK. The clause for lam is exactly the same
for CBN and CBV; it dictates that the body of the abstraction will be evaluated
with respect to the environment in effect when the procedure was created. In
particular, the environment in which the procedure is called can have no effect
on the meaning of names within the abstraction body. This is clear from the
domain definition for Proc, which simply maps nameable values to computations
and ignores whatever the current environment might be. Though the details of
nameable values and computations might differ, the handling of environments
will have this form in any statically scoped language.

All of the FL variants we have studied support a particular discipline of static
scoping known as block structure. In a block-structured language, any of the
kinds of declarations that can be made at the top level of a program can be made
inside of procedures. In particular, block-structured languages allow procedures
to be declared inside of other procedures. Examples of block-structured languages
include Pascal, Scheme, ML, and Haskell. Popular languages that are not
block-structured include C, C++, Java, and Fortran. For example, C does
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not allow defining a function inside another function, and Java does not permit
defining a method inside another method.6

Dynamic Scope

SNOBOL4, APL, most early Lisp dialects, and many macro languages are dy-
namically scoped. In each of these languages, a free variable in a procedure (or
macro) body gets its meaning from the environment at the point where the pro-
cedure is called rather than the environment at the point where the procedure is
created. Thus, in these languages, it is not possible to determine a unique decla-
ration corresponding to a given free variable reference; the effective declaration
depends on where the procedure is called. It is therefore generally impossible to
determine the scope of a declaration simply by considering the abstract syntax
tree of the program.

Instead, in a dynamically scoped language, the scope of a variable declaration
is determined by the execution tree of a program. An execution tree describes
the relationship between binding constructs encountered as the program is exe-
cuted. Each node in an execution tree, which we shall call an execution frame,
contains the bindings introduced by a binding construct. The subtrees of a node
represent the execution of each subexpression evaluated during the evaluation of
the binding construct before it is exited. In dynamic scope, free variables are
evaluated relative to the dynamic chain of execution frames that starts at the
current execution frame and goes to the top of the execution tree. This chain
of execution frames corresponds to the stack of invocation frames in traditional
stack-based implementations of procedure calls.

Figure 7.10 shows the essence of the semantics of dynamic scoping for CBN
and CBV languages. In both case, the Proc domain has been modified to indicate
that procedures take an extra argument: the dynamic environment (i.e., the
call-time environment), which represents the dynamic chain of execution frames
described above. In the valuation clause for lam (which is exactly the same
for CBN and CBV), the body of the abstraction is evaluated in the dynamic
environment rather than the lexical one. The CBN and CBV clauses for app have
been modified to pass the current environment to the procedure being called.

6C supports nested blocks of local variable declarations, but since functions cannot be de-
clared in these blocks, it does not satisfy our definition of block structure. Java’s inner class
feature allows a limited form of block structure in which a method-declaring class can be declared
inside another method.
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Example

As an example of static versus dynamic scoping, consider the following FL ex-
pression:

(let ((a 1))

(let ((f (abs (x) (@+ x a))))

(let ((a 20))

(f 300))))

Informally, we can reason as follows. The procedure named f refers to a free
variable a. Under static scoping, this variable is bound to the value of a where the
procedure is defined (i.e., 1). Thus, the binding between a and 20 is irrelevant,
and the result of the call (f 300) is 301. On the other hand, under dynamic
scoping, the free variable gets its value from whatever binding of a is dynamically
apparent. In the call (f 300), the binding between a and 20 shadows the binding
between a and 1, so the value of the call is 320.

We can use the denotational definitions of scoping to analyze this example
formally. The example FL expression above desugars into the following FLK
expression:

(app (lam a {Elam:a1}
(app (lam f {Elam:f }

(app (lam a (app f 300)) {Elam:a20}
20))

(lam x (primop + x a)))) {Elam:x}
1)

The four lam expressions have been annotated with names that will be used to
abbreviate them. Figures 7.11 and 7.12 highlight the key steps for using the
denotational definitions to derive the value of the desugared expression under
static scoping and dynamic scoping in CBV FLK. The calculations in the two
figures begin similarly, because the following equality holds in both statically and
dynamically scoped CBV FLK, as you should verify:

(E [[(app (lam I Ebody) Erand)]] e) = with-value (E [[Erand ]] e)
(λv . (E [[Ebody ]] [I �→ v ]e))
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E [[(app Elam:a1 1)]] e0

= (with-value (E [[1]] e0 ) (λv . (E [[(app Elam:f Elam:x)]] [a �→ v ]e0 )))

= E [[(app Elam:f Elam:x)]] e1 , where e1 = [a �→ (Int �Value 1)]e0

= (with-value (E [[Elam:x ]] e1 ) (λv . (E [[(app Elam:a20 20)]] [f �→ v ]e1 )))

= E [[(app Elam:a20 20)]] e2 , where e2 = [f �→ vlam:x ]e1
and vlam:x = (Proc�Value (λn . (E [[(primop + x a)]] [x �→n]e1 )))

= (with-value (E [[20]] e2 ) (λv . (E [[(app f 300)]] [a �→ v ]e2 )))

= E [[(app f 300)]] e3 , where e3 = [a �→ (Int �Value 20)]e2

= with-procedure-comp (E [[f]] e3 ) (λp . (with-value (E [[300]] e3 ) p))

= with-procedure-comp (val-to-comp vlam:x ) (λp . (p (Int �Value 300)))

= (λp . (p (Int �Value 300))) (λn . (E [[(primop + x a)]] [x �→n]e1 ))

= (λn . (E [[(primop + x a)]] [x �→n]e1 )) (Int �Value 300)

= E [[(primop + x a)]] [x �→ (Int �Value 300)]e1

= E [[(primop + x a)]] [x �→ (Int �Value 300)][a �→ (Int �Value 1)]e0

= (Int �Value 301)

Figure 7.11 Calculation of E [[(app Elam:a1 1)]] e0 in statically scoped CBV FLK.

The key differences between the two figures are:

1. The procedure value associated with Elam:x in static scope is

vlam:x = (Proc�Value (λn . (E [[(primop + x a)]] [x �→n]e1 )))

whereas in dynamic scope it is

v ′
lam:x = (Proc�Value (λn e ′ . (E [[(primop + x a)]] [x �→n]e ′)))

2. In static scope, E [[(app f 300)]] e3 is equal to

with-procedure-comp (val-to-comp vlam:x ) (λp . (p (Int �Value 300)))

whereas in dynamic scope it is equal to

with-procedure-comp (val-to-comp v ′
lam:x ) (λp . (p (Int �Value 300) e3 ))

The upshot of these two differences is that the environment extended by the
binding [x �→ (Int �Value 300)] is e1 in static scope but e3 in dynamic scope.
Since a has the value 1 in e1 but 20 in e3 , the final results are different.
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E [[(app Elam:a1 1)]] e0

= (with-value (E [[1]] e0 ) (λv . (E [[(app Elam:f Elam:x)]] [a �→ v ]e0 )))

= E [[(app Elam:f Elam:x)]] e1 , where e1 = [a �→ (Int �Value 1)]e0

= (with-value (E [[Elam:x ]] e1 ) (λv . (E [[(app Elam:a20 20)]] [f �→ v ]e1 )))

= E [[(app Elam:a20 20)]] e2 , where e2 = [f �→ v ′
lam:x ]e1

and v ′
lam:x = (Proc�Value (λn e ′ . (E [[(primop + x a)]] [x �→n]e ′)))

= (with-value (E [[20]] e2 ) (λv . (E [[(app f 300)]] [a �→ v ]e2 )))

= E [[(app f 300)]] e3 , where e3 = [a �→ (Int �Value 20)]e2

= with-procedure-comp (E [[f]] e3 ) (λp . (with-value (E [[300]] e3 ) (λv . (p v e3 ))))

= with-procedure-comp (val-to-comp v ′
lam:x ) (λp . (p (Int �Value 300) e3 ))

= (λp . (p (Int �Value 300) e3 )) (λn e ′ . (E [[(primop + x a)]] [x �→n]e ′))

= (λn e ′ . (E [[(primop + x a)]] [x �→n]e ′)) (Int �Value 300) e3

= E [[(primop + x a)]] [x �→ (Int �Value 300)]e3

= E [[(primop + x a)]] [x �→ (Int �Value 300)][a �→ (Int �Value 20)]e2

= (Int �Value 320)

Figure 7.12 Calculation of E [[(app Elam:a1 1)]] e0 in dynamically scoped CBV FLK.

A more graphical perspective of these derivations appears in Figure 7.13.
Each derivation is summarized by an environment diagram that shows key
expressions along with the environments they are evaluated in. An environment
is represented by a chain of bindings that go up the page; this helps to clarify
the relationship between the different environments. The static-scoping example
is depicted in Figure 7.13(a). The arrow from within the procedural value to
the environment starting with [a �→ (Int �Value 1)] emphasizes that a statically
scoped procedure “remembers” the environment in which it was created. This
lexical environment is determined by the text lexically surrounding the lam

expression that gave rise to the procedure value.
The dynamic-scoping example is depicted in Figure 7.13(b). Here, there is

no arrow emanating from the procedural value because the environment e ′ in
which the body is evaluated will be the dynamic environment in effect when
the procedure is called. The dynamic environment is determined by the bindings
in the current branch of the tree of procedure calls made during the execution of
the program. In this example, it is constructed by the procedure calls associated
with the three nested lam expressions.
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Although the environment chains happen to be the same for these two exam-
ples, lexically scoped languages tend to give rise to shallow, bushy environment
diagrams, whereas dynamically scoped languages tend to give rise to deep thin
ones (see Exercise 7.20).

Discussion

In practice, static scoping is often preferable to dynamic scoping. There are
several reasons for this:

• Static scoping has better modularity properties than dynamic scoping. In
a statically scoped language, the particular names chosen for variables in a
procedure do not affect its behavior, so it is always safe to rename them in a
consistent fashion. In contrast, in dynamically scoped systems, the particular
names chosen for variables matter because a local variable name can interact
with a free variable name of a procedure invoked in its scope. Procedure
interfaces are more complex under dynamic scoping because they must mention
the free variables of the procedure.

• Static scoping works nicely with block structure to create higher-order proce-
dures that “remember” information from outer scopes. Many of the functional-
programming idioms we have studied depend critically on this “memory” to
work properly. As a simple example, consider the FLK definition

(def add (lam x (lam y (prim + x y))))

Under static scope, (app add 1) stands for an incrementing procedure because
the returned procedure “remembers” that x is 1. But under dynamic scope,
(app add 1) “forgets” that x is 1. The returned procedure is equivalent to
(lam y (prim + x y)) and will use whatever value for x it finds (if there is
one) in the context where it is called. Clearly, dynamic scope and higher-order
procedures do not mix well!

• Statically scoped variables can be implemented more efficiently than dynami-
cally scoped variables. In a compiler, references to statically scoped variables
can be compiled to code that accesses the variable value efficiently using its
lexical address, a description of its location that can be calculated from the
program’s abstract syntax tree (see Section 17.10). In contrast, looking up
dynamically scoped variables implies an inefficient search through a chain of
bindings for one that has the desired name.
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E [[(app Elam:a1 1)]] e0

E [[(app Elam:f Elam:x)]] [a �→ ]�
�

(Int �Value 1)

E [[(app Elam:a20 20)]] [f �→ ]

�
� (Proc�Value

(λn . (E [[(prim + x a)]] [x �→n]•)))

���

E [[(app f 300)]] [a �→ ]

�
� (Int �Value 20)

(a) Environment diagram for the sample expression under static scoping.

E [[(app Elam:a1 1)]] e0

E [[(app Elam:f Elam:x)]] [a �→ ]�
�

(Int �Value 1)

E [[(app Elam:a20 20)]] [f �→ ]

�
� (Proc�Value

(λne ′ . (E [[(prim + x a)]] [x �→n]e ′)))

E [[(app f 300)]] [a �→ ]

�

� (Int �Value 20)

(b) Environment diagram for the sample expression under dynamic
scoping.

Figure 7.13 Environment diagrams illustrating the difference between static and dy-
namic scoping for the example expression.

Is dynamic scoping ever useful? Yes! There are at least two situations in
which dynamic scoping is important:

• Exception Handling : In the languages we have studied so far, computations
cannot proceed after encountering an error. However, in Section 9.6, we will
study ways to specify so-called exception handlers that describe how a com-
putation can proceed from certain kinds of errors. Since exception handlers are
typically in effect for certain subtrees of a program’s execution tree, dynamic
scope is the most natural scoping mechanism for the namespace of exception
handlers.

• Implicit Parameters: Dynamic scope is also convenient for specifying the val-
ues of implicit parameters that are cumbersome to list explicitly as formal
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parameters to procedures. For example, consider the following derivative

procedure in a version of FL with floating point operations (prefixed with fp):

(def derivative

(abs (f x)

(fp/ (fp- (f (fp+ x epsilon))

(f x))

epsilon)))

Note that epsilon appears as a free variable in derivative. With dynamic
scoping, it is possible to dynamically specify the value of epsilon via any
binding construct. For example, the expression

(let ((epsilon 0.001))

(derivative (abs (x) (fp* x x)) 5.0))

environment where epsilon is bound to 0.001.

However, with lexical scoping, the variable epsilon must be defined at top
level, and, without using mutation, there is no way to temporarily change the
value of epsilon while the program is running. If we really want to abstract
over epsilon with lexical scoping, we must pass it to derivative as an explicit
argument:

(def derivative

(abs (f x epsilon)

(fp/ (fp- (f (fp+ x epsilon))

(f x))

epsilon)))

But then any procedure that uses derivative and wants to abstract over
epsilon must also include epsilon as a formal parameter. In the case of
derivative, this is only a small inconvenience. But in a system with a large
number of tweakable parameters, the desire for fine-grained specification of
variables like epsilon can lead to an explosion in the number of formal pa-
rameters throughout a program.

As an example along these lines, consider the huge parameter space of a typical
graphics system (colors, fonts, stippling patterns, line thicknesses, etc.). It is
untenable to specify each of these as a formal parameter to every graphics
routine. At the very least, all these parameters can be bundled up into a data
structure that represents the graphics state. But then we still want a means
of executing window routines in a temporary graphics state in such a way that
the old graphics state is restored when the routines are done. This behavior
can be achieved with dynamic scoping; alternatively, it can be done with side
effects (see Exercise 8.21).
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Exercise 7.17 Consider a version of FL called FLAT in which a procedure (an abs or
kernel lam expression) is not allowed to have free identifiers. Can the meaning of a FLAT
expression differ under lexical and dynamic scope? If so, exhibit such an expression; if
not, explain why.

Exercise 7.18 Write a single FL expression that exhibits a different behavior in each
of the four following scenarios:

a. statically scoped CBN FL

b. statically scoped CBV FL

c. dynamically scoped CBN FL

d. dynamically scoped CBV FL

Exercise 7.19

a. Can a dynamically scoped FL interpreter be written in statically scoped FL?

b. Can a statically scoped FL interpreter be written in dynamically scoped FL?

Exercise 7.20 This problem considers a dynamically scoped variant of CBV FL called
FLUID. The abstract syntax for FLUID is the same as that for FL except that the
grammar for FLUID does not include any recursion constructs. That is, the FLUID
kernel does not contain the rec construct, and the full FLUID language does not contain
the letrec construct. The denotational semantics for the FLUID kernel is the same as
that for CBV FLK except for the changes specified for dynamic scope in (a CBV version
of) Figure 7.10.

a. For each of the expressions below, show the result of evaluating the expression both in
FL and in FLUID. Refer to the denotational semantics as necessary to reason about
the evaluation process, but don’t get lost in a symbol-manipulation quagmire. You
may find environment diagrams helpful for thinking about these problems.

i. (let ((a 1))

(let ((f (abs (a) (prim + a 20))))

(f a)))

ii. (let ((a 1))

(let ((f (abs (a b) (@+ a b))))

(f 20 300)))

iii. (let ((a 1))

(let ((a 20)

(b 300))

(@+ a b)))

iv. (let ((a 1))

(let ((f (abs (b) (@+ a b))))

(f (let ((a (f 20)))

(f 300)))))
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v. (let ((a 1))

(let ((f (abs (b) (@+ a b))))

(let ((g (abs (a) (f a))))

(g (g a)))))

b. In FLUID, the desugaring of multiple-argument abstractions into single-argument
abstractions no longer behaves as expected. Explain what goes wrong with the usual
desugaring. (You do not need to describe how to fix the problem.)

c. In FLK, the factorial procedure is written as the expression:

(rec fact (lam n

(if (prim = n 0)

1

(prim * n (fact (prim - n 1))))))

FLUID has no recursion constructs, but such constructs are not needed to write
recursive definitions.

i. Briefly explain why FLUID doesn’t need recursion constructs.

ii. Show the definition for the factorial procedure in FLUID.

iii. Explain why your FLUID definition for factorial wouldn’t work in FL.

d. Consider the factorial procedure from part c. When using the denotational seman-
tics to determine the meaning of (app fact 3) in environment e0 , the meaning of
(prim = n 0) is determined in four distinct environments. For both CBV FL and
for FLUID, draw an environment diagram that shows the relationship among these
four environments.

Exercise 7.21 The static scope expressed in Figure 7.10 is typical of block-structured
languages. However, other kinds of static scope are imaginable. For example, suppose
that eglobal is the top-level FL environment — the one that defines the meanings of
the standard library names (+, bool?, cons, etc.). Then global scoping is a static
scoping mechanism in which free identifiers in a lam expression are resolved relative to
eglobal rather than the environment at the time of procedure creation or at the time of
procedure call.

a. Write the valuation clauses for lam and app for a CBV variant of FL with global
scoping.

b. Write a single FL expression whose value is one of the symbols global, dynamic, or
block-structure, indicating the scoping mechanism under which it is evaluated.

Exercise 7.22 Develop an operational semantics for CBV FL that uses explicit envi-
ronments instead of substitution.

Exercise 7.23 Develop an operational semantics for a dynamically scoped version of
CBV FL.
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Exercise 7.24 In response to customer demand, the Analog Equipment Corporation
has hired Alyssa P. Hacker to develop a dynamically scoped version of FL. Alyssa is
asked to do this over a weekend, but she does not panic. Instead, she realizes that with
just a few new primitives, the entire job can be accomplished with a clever translation
from the new dynamically scoped FLK to the existing statically scoped FLK.

Alyssa extends the regular FLK implementation with the following three new prim-
itives for manipulating an explicit user-level enviroment data structure:

(prim new) creates a new, empty environment.

(prim extend sym val env) returns a new environment that extends the bindings of
the environment env with a binding of the name sym (which should be a symbol) to
the value val. Any previous binding for sym is shadowed by the new binding. It is an
error if sym is not a symbol or env is not an environment.

(prim lookup sym env) returns the value bound to the name sym in the environment
env. It is an error if sym is not a symbol, env is not an environment, or sym is not
bound in env.

In Alyssa’s translation, the *dynenv* variable is always assumed to be bound to the
current dynamic environment. Here is Alyssa’s translation rule for app:

T [[(app E1 E2)]] = (app (app T [[E1 ]] *dynenv*) T [[E2 ]])

a. What is the translation rule for I (variable reference)?

b. What is the translation rule for (lam I E)?

c. Do all identifiers have to be looked up in the dynamic environment? If not, state
what optimizations of the translations for identifiers and abs are possible, and when
and how they could be accomplished.

d. Desugar and then apply your translation to the following expression:

(let ((x 1))

(let ((f (lam y (+ x y))))

(let ((x 20))

(f x))))

7.2.2 Multiple Namespaces

Sometimes a single environment is not sufficient to model the naming features of
a programming language. Languages commonly support multiple namespaces
— i.e., several different contexts in which names are associated with values of
various sorts. For example, Figure 7.14 shows a piece of Common Lisp code in
which the name x is used to name five different entities at the same time: an
exit point, a special (dynamic) variable, a lexical variable, a procedure, and a
tagbody tag (which serves as a goto label).
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(block x ; x1 , a exit point
(let ((x 2)) ; x2 , declared to be a special (dynamic) variable

(declare (special x))

(let ((x 3)) ; x3 , a normal lexical variable
(flet ((x (y) (+ x y))) ; x4 , a procedure referring to x3 in its body
(tagbody x ; x5 , a tagbody tag (serves as a goto label)
(if (> x 6) ; this x = x3 = 3

(go x) ; jump to label x5

(return-from x ; return from exit point x1 with following value
(locally

(declare (special x)) ; reference to 2nd x below is special
(x x) ; apply procedure x4 to special variable x2

)))))))) ; the value of this block expression is 3+2 = 5

Figure 7.14 Common Lisp code that uses multiple namespaces

There are two typical situations in which multiple namespaces are useful:

1. The language provides multiple scoping mechanisms. In this case, different
namespaces can be used for different scoping mechanisms. Common Lisp,
for example, supports both lexical and dynamic scoping of variables; variables
are ordinarily scoped lexically, but those marked as special are dynamically
scoped.

2. Different namespaces are used to name different kinds of entities. For example,
exit points, tagbody tags, and procedures are in nonoverlapping namespaces in
Common Lisp. Namespaces used this way are especially useful for modeling
values that are not first class.

Of course, any language with multiple namespaces must provide constructs
for both declaring names and referencing names within each namespace. For
example, consider the namespaces for exit points and tags in the Common Lisp
example above:

• block declares a name in the exit-point namespace, and return-from refer-
ences names in this namespace;

• tagbody declares names in the tag namespace, and go references names in this
namespace.

Multiple namespaces are modeled in denotational semantics by using multi-
ple environments, one per namespace. For example, using two namespaces, we
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can develop variants of FL that support both lexical and dynamic scoping (see
Exercise 7.25) or put second-class procedures in a separate namespace from other
values (see Exercise 7.26).

Exercise 7.25 Understanding the virtues of both lexical and dynamic scoping, Dinah
McScoop designs a language, DYNALEX, that supports both kinds of scoping mech-
anisms. The kernel of DYNALEX is statically scoped CBV FLK extended with the
following extra constructs to support dynamic scoping:

(dyabs (I ∗
dyn) Ebody) is like abs, but binds the names I ∗

dyn in a dynamic environment
rather than a static one.

(dyref I ) looks up I in the dynamic environment rather than the lexical one.

The full DYNALEX language includes the usual FL sugar as well as the following sugar
for the dylet construct:

(dylet ((Ii Ei)
n
i=1) Ebody) �ds ((dyabs (I n

i=1) Ebody) En
i=1)

The following DYNALEX expression illustrates both dynamic and lexical scoping:

(let ((a 1) (b 20))

(let ((f (abs () (+ a (dyref b)))))

(dylet ((a 300) (b 4000))

(f)))) −−−−−−−−DY NALEX→ 4001

a. Give a denotational semantics for DYNALEX that includes the signature of E and
the valuation clauses for the following constructs: I , lam, app, dyref, and dyabs.

b. Explain why Dinah chose to make the multiparameter dyabs abstraction a kernel form
rather than treating dyabs as sugar for a single-parameter abstraction for dynamic
variables.

c. Write translation functions that translate DYNALEX kernel programs and kernel
expressions into, respectively, FLK programs and expressions. The FLK program P ′

that results from translating a DYNALEX program P should have the same behavior
as P on all inputs.

Exercise 7.26 All the variants of FL we have studied thus far treat procedures as first-
class values. A first-class value is one that can be (1) named (denoted) by a variable;
(2) passed to a procedure as an argument; (3) returned from a procedure as a result;
(4) stored in a data structure (e.g., a pair); and (5) created in any context. In FL, all
elements of Value (which includes all elements of Proc) satisfy all of these properties. Yet
in numerous real-world programming languages, procedures are not first class; their use
is restricted in various ways. Here we explore how to model the semantics of a language
with second-class procedures.
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We define a variant of FL named FL−− whose kernel syntax is as follows:

E ∈ Exp ::= L | I | (error Y ) | (prim O E∗) | (if E E E) | (pair E E)

| (app I E) | (vlet I E E) | (plet I D E)

D ∈ ProcDecl ::= (lam I E) | (rec I (lam I E))

Other syntactic domains are unchanged from FLK.

The kernel syntax of FL−− is similar to that of FLK except that:

• The app expression must have an identifier, rather than an arbitrary expression, as its
operator.

• There are two new binding constructs: a local binding construct vlet for values and
a local binding construct plet for procedures.

• FL−− has no stand-alone lam or rec expressions. Instead, these are procedure dec-
larations that must always appear as the second subexpression of a plet. Also, the
rec declaration must have a lam declaration rather than an arbitrary expression as its
second subexpression.

FL−− has two statically scoped namespaces:

• The value namespace: variables are declared in this namespace with vlet and lam

and are referenced via identifiers I not appearing in the app operator position.

• The procedure namespace: variables are declared in this namespace with plet and rec

and are referenced via identifiers I appearing in the app operator position.

The semantics of FL−− is similar to that of CBN FLK except for the following:

• The (vlet Ival Edefn Evbody) construct evaluates and returns the value of Evbody

relative to a value namespace extended by binding Ival to the value of Edefn . The
scope of Ival is Evbody .

• The (plet Iproc Ddefn Epbody) construct declares that Ddefn is a procedure named
Iproc that may be invoked within Epbody and returns the value of Epbody . The scope
of Iproc is Epbody . If Ddefn is the declaration (rec Irec (lam Ifml Elbody)), then Irec
is bound to the procedure Ddefn within Elbody .

• The application (app Iproc Erand) invokes the procedure named by Iproc in the cur-
rent procedure namespace to the result of evaluating Erand relative to both current
namespaces.

• An identifier I that does not appear as the operator of an app is evaluated relative to
the current value namespace.

Figure 7.15 presents examples that illustrate key features of FL−−.
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(plet sqr (lam x (prim * x x))

(app sqr 5)) −−−−
FL−−→ 25

(vlet sqr 5

(plet sqr (lam x (prim * x x))

(app sqr sqr))) −−−−
FL−−→ 25 {illustrates two distinct namespaces}

(vlet scale 7

(plet scale (lam x (prim * x scale))

(plet scale (lam y (prim + scale (app scale y)))

(vlet scale 5

(app scale scale))))) −−−−
FL−−→ 42 {illustrates lexical scoping}

(plet fact (rec inner-fact

(lam n

(if (prim = n 0)

1

(prim * n (app inner-fact (prim - n 1))))))

(app fact 5)) −−−−
FL−−→ 120 {illustrates recursion}

Figure 7.15 Some FL−− examples.

a. Explain why procedures are second-class values in FL−−. As part of your explanation,
give examples of FL programs that cannot be expressed straightforwardly in FL−−.

b. Give a denotational semantics for lexically scoped, CBN FL−−, modeling the two
separate namespaces as two distinct environments. You should modify the FLK se-
mantic domains as necessary and define three valuation functions: E (for expressions),
D (for declarations), and P (for programs). Specify a signature for each of these valua-
tion functions and define valuation clauses for each language construct except literals,
errors, and primitive applications.

c. In FL, the vlet construct could be considered syntactic sugar for lam and app:

(vlet Ival Edefn Evbody) �ds (app (lam Ival Evbody) Edefn)

Consider an analogous desugaring for vlet in FL−−:

(vlet Ival Edefn Evbody) �ds (plet Iproc (lam Ival Evbody) {Iproc fresh}
(app Iproc Edefn))

Is this a valid desugaring for vlet in FL−−? If so, explain why; if not, give an FL−−

expression whose meaning differs under this desugaring from the meaning in part b.
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7.2.3 Nonhierarchical Scope

Philosophy

The binding constructs we have seen so far are all hierarchical in nature. Each
construct establishes a parent/child relationship between an outer context in
which the declaration is not visible and an inner (body) context in which the
declaration is visible. In static scoping, the hierarchy is determined by the ab-
stract syntax tree, while in dynamic scoping, the hierarchy is determined by the
tree of procedure calls generated at run time. In both of these scoping mecha-
nisms, there is no natural way to communicate a declaration laterally across the
tree structure imposed by the hierarchy.

For small programs, this is not ordinarily a problem, but when a large program
is broken into independent pieces, or modules, the constraint of hierarchy can
be a problem. Modules communicate with each other via collections of bindings.
A module provides services to other modules, called clients, by exporting a set
of bindings, and makes use of other modules’ services by importing bindings from
those other modules. These services are specified by its interface. In a hierarchical
language, the scope of a binding is a single subtree of a program’s abstract syntax
tree or procedure-invocation tree. The fact that all clients of a module must reside
in the subtree where the module’s bindings are in scope forces programs to be
organized as trees whose nodes declare module bindings. This organization is not
at all modular: the constraints involved in positioning each module carefully in
a particular program tree discourage viewing it as an independent entity with a
well-defined interface that can be reused in other programs. A strict hierarchy
also prohibits having two modules that use each other’s services.

A popular and somewhat better approach to organize communicating modules
into a program is to use global scoping. In this approach, all exported bindings
from all modules are defined in a single global namespace, and every module gets
all of its imported bindings from this namespace. This technique is more modular
than hierarchical approaches, but it has some major drawbacks:

• In order to avoid accidental name collisions, a programmer writing a module
must be aware of all names exported by all other modules, even those that are
completely irrelevant. This violates basic modularity principles.

• In practice, the dependencies among modules are often poorly documented,
making intermodule dependencies difficult to track. A small change in one
module can have widespread and unanticipated effects on other modules.
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(record (I E)∗) Creates a record in which each field name I is bound to the
value of the corresponding expression E .

(select I E) Returns the value of the field named I in the record denoted
by E . Signals an error if E doesn’t denote a record or it
denotes a record that does not contain a field named I .

(override E1 E2) Returns a new record that combines the fields of the two
records denoted by E1 and E2 , giving precedence to fields
in E1 . Signals an error if E1 or E2 doesn’t denote a record.

(conceal (I ∗) E) Returns a new record containing all the fields of the record
denoted by E except for those with names in I ∗. Signals an
error if E doesn’t denote a record.

Figure 7.16 Kernel record constructs.

A way for languages to overcome the limitations of hierarchical scoping and
global scoping is to provide a value that contains a collection of bindings. Such
a value can bundle up the bindings at one point in a program and communi-
cate them to another point that is related neither lexically nor dynamically to
the declarations of those bindings. We shall use the term record for a value
that consists of name/value bindings, also known as fields. When their fields
define procedures and constants that implement an interface, records serve as
simple kinds of modules. For example, we can represent a matrix module via a
record that defines matrix operations like transposing a matrix and multiplying
two matrices. We use the term “record” rather than “module” for our collection-
of-name/value-bindings value because we are reserving the latter term for more
expressive values whose bindings can name types in addition to values (see Chap-
ter 15). The records described here are similar to C structures, Perl hashes,
and Pascal records except that, unlike the latter two kinds of values, the values
named in our record fields may be procedures.

Record Constructs

We will study records in the context of a version of FL that is extended with the
kernel constructs in Figure 7.16.

The record construct builds a data structure of name/value bindings. For
example, the definitions
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(def r1 (record

(a (@+ 2 3))

(square (abs (x) (* x x)))))

(def r2 (record (a 7) (b 11)))

define two records: a record named r1 whose a field is 5 and whose square field
is a squaring procedure; and a record named r2 whose a field is 7 and whose b

field is 11.
Field values are extracted by field name using the select construct. E.g.:

(select a r1) −−−FL→ 5

((select square r1) (select a r1)) −−−FL→ 25

((select square r1) (select a r2)) −−−FL→ 49

(select b r1) −−−FL→ error:no-such-field

Two records can be combined into a new record with the override construct.
When the two records share field names, precedence is given to the field in the
first record argument. E.g.:

(select a (override r1 r2)) −−−FL→ 5

(select a (override r2 r1)) −−−FL→ 7

(select b (override r1 r2)) −−−FL→ 11

(select b (override r2 r1)) −−−FL→ 11

The conceal construct returns a new record in which some bindings of the
original record have been removed. E.g.:

(select a (conceal (a) r2)) −−−FL→ error:no-such-field

(select b (conceal (a) r2)) −−−FL→ 11

(select b (conceal (a b) r2)) −−−FL→ error:no-such-field

(select a (override (conceal (a) r1) r2)) −−−FL→ 7

Notice that there is a design choice in the semantics of conceal: the English
description for this construct does not specify whether or not it is an error when
conceal attempts to hide a field that isn’t present in the record.

The desugaring rules in Figure 7.17 define additional record constructs that
capture handy idioms that programmers would otherwise invent on their own.
The recordrec construct is like record except that it is a binding construct
in which each of the field names is a declaration whose scope is all the field
expressions. It is used to create records whose fields contain values that may be
mutually recursive. E.g.:
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(recordrec (Ii Ei)
n
i=1) �ds (letrec ((Ii Ei)

n
i=1) (record (Ii Ii)

n
i=1))

(with-fields (I n
i=1) Ercd Ebody) �ds (let ((Ircd Ercd)) ; Ircd is fresh

(let ((Ii (select Ii Ircd))
n
i=1)

Ebody))

(restrict (I n
i=1) Ercd) �ds (with-fields (I n

i=1) Ercd (record (Ii Ii)
n
i=1))

(rename ((Ii I ′
i )

n
i=1) Ercd)

�ds (let ((Ircd Ercd)) ; Ircd is fresh
(override (conceal (I n

i=1) Ircd)
(record (I ′

i (select Ii Ircd))
n
i=1)))

Figure 7.17 Desugarings for the record syntactic sugar.

(def r3

(recordrec (fact (abs (n) (if (@= n 0) 1 (@* n (fact (@- n 1))))))

(even? (abs (n) (if (@= n 0) #t (odd? (@- n 1)))))

(odd? (abs (n) (if (@= n 0) #f (even? (@- n 1)))))

(zero-ones (cons 0 one-zeroes))

(one-zeroes (cons 1 zero-ones)))

(with-fields (I ∗) Ercd Ebody) evaluates Ebody in the current environment
extended with bindings for the specified names I ∗ from the record denoted by
Ercd . This spares the programmer the tiresome task of writing explicit selects
everywhere or manually introducing lets that name the selects. E.g.:

(with-fields (fact even? zero-ones one-zeroes) r3

(even? (+ (fact (car zero-ones)) (fact (car one-zeroes)))))

The explicit identifier list in with-fields is necessary for preserving static
scope. Without this list, it would be impossible in general to match up a vari-
able reference with its variable declaration. For instance, suppose the language
permitted expressions of the form (with-fields Ercd Ebody). Then in the ex-
pression

(lam a (lam r (with-fields r a)))

we wouldn’t be able to determine if the reference a is declared by lam or is
introduced from the record r by with-fields. This would make it impossible
to determine the free variables of a with-fields expression. We will see later in
Chapters 11 and 14 that an explicit identifier list is unnecessary in a statically
typed language because it can be automatically deduced from type information.

What if a name listed in (with-fields (I ∗) Ercd Ebody) isn’t in the record
denoted by Ercd? According to the desugaring rule for with-fields, this will
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be an error in a CBV language because the select on the nonexistent field will
signal an error. However, in a CBN language, any error from the selection of a
nonexistent field I will be delayed until I is referenced in Ebody (if ever).

(restrict (I ∗) Ercd) returns a new record containing only the specified
fields from the record denoted by Ercd . It is a dual to conceal that is useful when
exporting comparatively few names from a record. E.g., (restrict (fact) r3)

is equivalent to:

(conceal (even? odd? zero-ones one-zeroes) r3)

The rename construct helps programmers to avoid name conflicts when using
records that export the same name. For example,

(override (rename ((a a1)) r1) (rename ((a a2)) r2))

creates a record in which a1 is bound to 5 and a2 is bound to 7.

Record Semantics

Figure 7.18 presents a denotational semantics for the kernel record constructs in
an extension to CBV FLK. Since both records and environments associate names
and values, the denotational semantics models a record simply as an environment.
The meanings of the record and override constructs are defined, respectively,
in terms of the extend∗ and merge functions from Figure 6.24 on page 277. To
model records in a CBN language, the clause for the record construct would be
modified as follows to bind the field names directly to computations of the field
values:

E [[(record ((I1 E1) . . . (In En)))]]
= λe . (val-to-comp

(Record �Value (extend∗ [I1 , . . . , In ] [E1 , . . . ,En ] empty-env)))

Record Examples

Figure 7.19 presents two arithmetic modules implemented as records of opera-
tions, one for integers and one for rational numbers. Both export the same names:
{zero, add, sub, mul, div, neg, recip, eq, lt, gt}. In rats, the rat procedure cre-
ates a canonical numerator/denominator pair for a rational number in which
common factors (as calculated by the gcd procedure) have been eliminated. The
parts of such a pair can be extracted via num and den. Because recordrec (and
not record) is used to create rats, the recursive gcd procedure can be defined
in a field and it, along with the rat, num, and den procedures, is visible in the
other field expressions.
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Semantic Algebra
v ∈ Value = . . . usual FLK values . . . + Record
r ∈ Record = Env

with-record-comp : Comp→ (Record→ Comp)→ Comp
defined like with-boolean-comp in Figure 6.26 on page 281

Valuation Clauses
E [[(record ((I1 E1) . . . (In En)))]]
= λe . (with-values (E∗[[[E1 . . . En ]]] e)

(λv* . (val-to-comp
(Record �Value (extend∗ [I1 , . . . , In ] v* empty-env)))))

E [[(select I E)]]
= λe . (with-record-comp (E [[E ]] e)

(λr . match (lookup I r)
� (Nameable �BindingVal n) [] (nam-to-comp n)
� (Unbound �BindingVal unbound) [] (err-to-comp no-such-field)
end ))

E [[(override E1 E2)]]
= λe . (with-record-comp (E [[E1 ]] e)

(λr1 . (with-record-comp (E [[E2 ]] e)
(λr2 . (val-to-comp (Record �Value (merge r1 r2 )))))))

E [[(conceal (I1 . . . In) E)]]
= λe . (with-record-comp (E [[E ]] e)

(λr . (val-to-comp
(Record �Value

(λI . if I ∈ {I1 , . . . , In}
then (Unbound �BindingVal unbound)
else (lookup I r) end)))))

Figure 7.18 Denotational semantics for CBV kernel record constructs.

The gcd procedure is intended only for use within the rat procedure and so
is eliminated from the exported fields via conceal. However, the rat, den, and
num procedures are exported along with the other operations so that clients can
construct and deconstruct rational numbers without relying on their concrete
implementations. Of course, since rational numbers are really just pairs, clients
could manipulate them using pair operations instead. Manipulating elements of
an abstract data type (in this case, rational numbers) via operations other than
the ones provided by the interface to the abstraction (in this case, rat, den, and
num) is called an abstraction violation. In Chapter 14, we will study ways to
prevent such abstraction violations.
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(def ints (record (zero 0) (add +) (sub -) (mul *) (div /)

(neg (abs (x) (- 0 x)))

(recip (abs (x) (/ 1 x)))

(eq =) (lt <) (gt >)))

(def rats

(conceal (gcd)

(recordrec

(rat (abs (num den)

(let ((common (gcd num den)))

(pair (/ num common) (/ den common)))))

(num fst)

(den snd)

(gcd (abs (a b) (if (= b 0) a (gcd b (% a b)))))

(zero (rat 0 1))

(add (abs (r1 r2)

(rat (+ (* (num r1) (den r2)) (* (den r1) (num r2)))

(* (den r1) (den r2)))))

(sub (abs (r1 r2) (add r1 (neg r2))))

(mul (abs (r1 r2)

(rat (* (num r1) (num r2))

(* (den r1) (den r2)))))

(div (abs (r1 r2) (mul r1 (recip r2))))

(neg (abs (r) (rat (- 0 (num r)) (den r))))

(recip (abs (r) (rat (den r) (num r))))

(eq (abs (r1 r2)

(scand (= (num r1) (num r2))

(= (den r1) (den r2)))))

(lt (abs (r1 r2) (< (* (num r1) (den r2))

(* (den r1) (num r2)))))

(gt (abs (r1 r2) (lt r2 r1))))))

Figure 7.19 Two modules for arithmetic.

A benefit of defining records with common interfaces is that we can define
other operations that are generic for these interfaces. For example, the following
sum-of-squares procedure works for both integers and rationals:

(def sum-of-squares

(abs (ops)

(with-fields (add mul) ops

(abs (a b)

(add (mul a a) (mul b b))))))

((sum-of-squares ints) 3 4) −−−FL→25
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(with-fields (rat) rats

((sum-of-squares rats) (rat 1 3) (rat 1 4))) −−−FL→ 〈25, 144〉

For a meatier example of using these arithmetic modules, consider the matrix-
module generator make-matrix-ops in Figure 7.20. We assume that n×n matri-
ces are represented as length-n lists of rows, which are themselves represented as
length-n lists of elements. make-matrix-ops takes a number n and an arithmetic
module a and constructs a record representing a new module that implements
n×n matrices whose components are manipulated by a. For example, if n is 3
and a is rats, then make-matrix-ops returns a record of operations for 3 × 3
matrices over the rational numbers. The input module a must supply a zero

constant and binary add and mul procedures. The resulting module is a record
that also exports these names as matrix operations. This means it is possible
to use n×n matrices as elements in another matrix. Figure 7.21 shows matrix
examples involving 2×2 matrices whose elements are (1) integers, (2) rationals,
and (3) 2×2 matrices whose elements are integers.

The definition of make-matrix-ops uses recordrec to permit recursive defi-
nitions of the procedures in the transpose, map2, and make-list fields. Because
add, mul, and zero are also fields defined by the recordrec, it is necessary to re-
name these fields from the elt-ops record in order to use them in the recordrec
fields. The map2 and make-list fields are eliminated from the returned record
because they are intended for internal use only.

Exercise 7.27

a. Give an operational semantics for records in CBN FLK by doing the following:

• Extend the ValueExp domain in Figure 6.18 on page 258 to include record values.

• Extend the evaluation relation of CBN FLK in Figure 6.19 on page 259 to handle
the kernel record constructs (record, select, override, and conceal). You should
extend both the evaluation contexts and the reduction rules. You may assume the
existence of the following auxiliary function:

deleteBindings : Ident* → (Ident × Exp) * → (Ident × Exp)*
(deleteBindings names bindings) returns a sequence of the bindings (i.e.name
and expression pairs) in bindings whose names do not appear in the sequence
names.

For example, the bindings in the record

(record (a 3) (b (prim + x y)) (c (prim - x y)) (d (prim * x y)))

are represented by the metalanguage binding sequence

B = [〈a, 3〉, 〈b, (prim + x y)〉, 〈c, (prim - x y)〉, 〈d, (prim * x y)〉]

and (deleteBindings [b, d] B) = [〈a, 3〉, 〈c, (prim - x y)〉].

b. What changes need to be made to part a for a CBV version of FLK?
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(def make-matrix-ops

(abs (n elt-ops)

(with-fields (elt-add elt-mul elt-zero)

(rename ((add elt-add) (mul elt-mul) (zero elt-zero)) elt-ops)

(conceal (map2 make-list)

(recordrec

(zero (make-list n (make-list n elt-zero)))

(add (abs (m1 m2)

(map2 (abs (row1 row2) (map2 elt-add row1 row2))

m1

m2)))

(mul (abs (m1 m2)

(map (abs (row1)

(map (abs (row2)

(foldr elt-add

elt-zero

(map2 elt-mul row1 row2)))

(transpose m2)))

m1)))

(transpose (abs (m)

(if (null? (car m))

nil

(cons (map car m)

(transpose (map cdr m))))))

(map2 (abs (f lst1 lst2)

(if (or (null? lst1) (null? lst2))

nil

(cons (f (car lst1) (car lst2))

(map2 f (cdr lst1) (cdr lst2))))))

(make-list (abs (n elt)

(if (= n 0)

nil

(cons elt (make-list (- n 1) elt))))))))))

Figure 7.20 A generator for n×n matrix modules.



7.2.3 Nonhierarchical Scope 361

(def 2x2-int-matrices (make-matrix-ops 2 ints))

(def im1 (quote ((1 2) (3 4))))

(def im2 (quote ((2 3) (4 5))))

im1 −−−−−−CBV FL→ ��1 , 2 �, �3 , 4 ��

im2 −−−−−−CBV FL→ ��2 , 3 �, �4 , 5 ��

((select add 2x2-int-matrices) im1 im2) −−−−−−CBV FL→ ��3 , 5 �, �7 , 9 ��

((select mul 2x2-int-matrices) im1 im2) −−−−−−CBV FL→ ��10 , 13 �, �22 , 29 ��

(def 2x2-rat-matrices (make-matrix-ops 2 rats))

(def rm1 (with-fields (rat) rats

(list (list (rat 1 4) (rat 2 4))

(list (rat 3 4) (rat 4 4)))))

rm1 −−−−−−CBV FL→ ��〈1 , 4 〉, 〈1 , 2 〉�, �〈3 , 4 〉, 〈1 , 1 〉��

(def rm2 (with-fields (rat) rats

(list (list (rat 1 5) (rat 2 5))

(list (rat 3 5) (rat 4 5)))))

rm2 −−−−−−CBV FL→ ��〈1 , 5 〉, 〈2 , 5 〉�, �〈3 , 5 〉, 〈4 , 5 〉��

((select add 2x2-rat-matrices) rm1 rm2)

−−−−−−CBV FL→ ��〈9 , 20 〉, 〈9 , 10 〉�, �〈27 , 20 〉, 〈9 , 5 〉��

((select mul 2x2-rat-matrices) rm1 rm2)

−−−−−−CBV FL→ ��〈7 , 20 〉, 〈1 , 2 〉�, �〈3 , 4 〉, 〈11 , 10 〉��

(def 2x2-matrices-of-2x2-int-matrices

(make-matrix-ops 2 2x2-int-matrices))

(def im3 (quote ((3 4) (5 6))))

(def im4 (quote ((5 6) (7 8))))

im3 −−−−−−CBV FL→ ��3 , 4 �, �5 , 6 ��

im4 −−−−−−CBV FL→ ��5 , 6 �, �7 , 8 ��

(def imm1 (list (list im1 im2) (list im3 im4)))

imm1 −−−−−−CBV FL→ ���〈1 , 2 〉, 〈3 , 4 〉�, �〈2 , 3 〉, 〈4 , 5 〉��,
��〈3 , 4 〉, 〈5 , 6 〉�, �〈5 , 6 〉, 〈7 , 8 〉���

(def imm2 (list (list im2 im3) (list im4 im1)))

imm2 −−−−−−CBV FL→ ���〈2 , 3 〉, 〈4 , 5 〉�, �〈3 , 4 〉, 〈5 , 6 〉��,
��〈5 , 6 〉, 〈7 , 8 〉�, �〈1 , 2 〉, 〈3 , 4 〉���

((select add 2x2-matrices-of-2x2-int-matrices) imm1 imm2)

−−−−−−CBV FL→ ���〈3 , 5 〉, 〈7 , 9 〉�, �〈5 , 7 〉, 〈9 , 11 〉��,

��〈4 , 5 〉, 〈6 , 7 〉�, �〈3 , 4 〉, 〈5 , 6 〉���

((select mul 2x2-matrices-of-2x2-int-matrices) imm1 imm2)

−−−−−−CBV FL→ ���〈41 , 49 〉, 〈77 , 93 〉�, �〈3 , 4 〉, 〈3 , 4 〉��,
��〈89 , 107 〉, 〈125 , 151 〉�, �〈26 , 35 〉, 〈38 , 51 〉���

Figure 7.21 Examples of 2× 2 matrices.
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7.3 Object-oriented Programming

Classification is the objectification of nessness.

— Daniel H. H. Ingalls, Design Principles Behind Smalltalk

Object-oriented programming (OOP) has emerged as an extremely popular pro-
gramming paradigm. Definitions of what constitutes object-oriented program-
ming vary, but they typically involve state-based entities called objects that
communicate by sending messages to each other. The behavior of a related col-
lection of objects is often defined by a class, which specifies the state variables of
an object (its instance variables) and how an object responds to messages (its
instance methods). Objects created from a class specification are called in-
stances of the class. Classes are often organized into inheritance hierarchies,
trees or DAGs of classes that specify how the instance variables and instance
methods of one class in the hierarchy can be inherited, i.e., shared, by its de-
scendants in the hierarchy. Classes themselves are sometimes treated as objects
that can have variables (class variables) and methods (class methods).

Simula 67 is generally regarded as the first programming language to embody
the object-oriented paradigm. The paradigm matured with the development of
SmallTalk and object-oriented packages for several dialects of Lisp. Today,
object-oriented features are embraced by a wide array of languages, including
Java, C++, C#, Common Lisp, OCAML, Dylan, Eiffel, and JavaScript.

Although we will not discuss issues of state until the next chapter, we intro-
duce object-oriented programming here because most of the issues involved in
this paradigm are issues of naming, not issues of state. We will introduce the key
ideas of the object-oriented paradigm in the context of an object-oriented kernel
called HOOK (Humble Object-Oriented Kernel) and its associated full language,
HOOPLA (Humble Object-Oriented Programming Language), which is defined
by extending HOOK with syntactic sugar. Both HOOK and HOOPLA were
designed by Jonathan Rees. Rather than giving an operational or denotational
semantics of HOOK, we will specify its semantics by showing how to translate it
into FL. Defining the semantics of a language by its translation into an already
understood language is an important technique.

7.3.1 HOOK: An Object-oriented Kernel

An s-expression grammar for HOOK is presented in Figure 7.22. The HOOK
syntactic domains are similar to those for FL. One new domain HOOK has
is Message, which is used for naming the messages sent between objects. The
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P ∈ Prog ::= (hook (I ∗
formal) Ebody D∗

defn) [Program]

D ∈ Def ::= (def Iname Edefn) [Definition]

E ∈ Exp ::= L [Literal]
| I [VariableReference]
| (method Mmessage (Ireceiver I ∗

formal) Ebody) [SimpleObject]

| (compose Eobj1 Eobj2) [ObjectComposition]
| (null-object) [NullObject]
| (send Mmessage Ereceiver E∗

arg) [MessageSend]

L ∈ Lit ::= B [BooleanLiteral]
| N [IntegerLiteral]
| (sym Y ) [SymbolicLiteral]

B ∈ BoolLit = {#t, #f}
N ∈ IntLit = {. . . , -2, -1, 0, 1, 2, . . .}
Y ∈ SymLit = {x, lst, make-point, map tree, 4/3*pi*r^2, . . .}
I ∈ Ident = symbols Y that are not keywords and do not begin with $

M ∈ Message = symbols Y that do not begin with $

Figure 7.22 An s-expression grammar for HOOK.

names in Ident and Message cannot begin with $ because names beginning with
this prefix have a special meaning in the HOOK-to-FL translation.

The simplest object that can be constructed in HOOK is an object that
responds to a single message. Such an object is created by the method construct:

(method M (Ireceiver I ∗
formal) Ebody)

Evaluating this construct returns an object that responds to the single message M
by invoking the method. (Traditionally a method is defined in a class, but in our
approach a method is a simple object.) The message should be accompanied by
a number of arguments that matches the number of formal parameters in I ∗formal .
Invoking the method on the message arguments evaluates Ebody in an environment
in which the receiver parameter Ireceiver is bound to the object that is the
receiver of the message and the formal parameters I ∗formal are bound to the
arguments of the message. The receiver parameter is a generalization of the
special self variable in SmallTalk and this variable in Java, which are used
to refer to the receiver within a method body.

For example, FL procedures can be encoded in HOOK as objects that re-
spond to the call message and ignore their receiver parameter:
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(method call ( ) 3) {A nullary procedure that returns three}
(method call ( x) x) {The identity procedure}
(method call ( y z) y) {A procedure returning the 1st of 2 args}
(method call ( y z) z) {A procedure returning the 2nd of 2 args}

By convention, we will use the underscore identifier, , for a receiver parameter
that is ignored.

We will often use HOOK’s def construct to name objects.

(def three (method call ( ) 3))

(def id (method call ( x) x))

(def first (method call ( y z) y))

(def second (method call ( y z) z))

Technically, such definitions can appear only at the top level of a HOOK program,
but for the purposes of exposition we will often interleave such definitions with
HOOK expressions to simplify examples.

A message can be sent to an object via the send expression:

(send Mmessage Ereceiver E∗
arg)

This expression is pronounced “send the message Mmessage to the object Ereceiver

with the arguments E ∗
arg .” It is evaluated by first evaluating the expressions

Ereceiver and E ∗
arg to obtain, respectively, the receiver and arguments of the mes-

sage M . The receiver is consulted to find a method for handling M . If such a
method exists, it is invoked on the receiver and all of the arguments and its result
is returned as the value of the send expression. An error is signaled if no method
is found.

(send call three) −−−−−HOOK→ 3 {This is the integer object 3}
(send call id #t) −−−−−HOOK→ #t {This is the boolean truth object}
(send call first 17 #f) −−−−−HOOK→ 17

(send call second 17 #f) −−−−−HOOK→ #f

(send foo id 17) −−−−−HOOK→ error:no-such-method

In HOOK, an integer like 3 is not just an integer value, but is a message-
passing object that bundles up the usual integer value with methods for handling
all the usual operations on integers (+, *, <, =, etc.):

(send + 2 3) −−−−−HOOK→ 5

(send * 2 3) −−−−−HOOK→ 6

(send < 2 3) −−−−−HOOK→ #t

(send = 2 3) −−−−−HOOK→ #f
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Booleans and symbols are also message-passing objects:

(send not #f) −−−−−HOOK→ #t

(send and #t #f) −−−−−HOOK→ #f

(send or #t #f) −−−−−HOOK→ #t

(send = #f #f) −−−−−HOOK→ #t

(send = #t #f) −−−−−HOOK→ #f

(send = (sym a) (sym a)) −−−−−HOOK→ #t

(send = (sym a) (sym b)) −−−−−HOOK→ #f

(send = #t (sym c)) −−−−−HOOK→ #f

The last few examples show that the HOOK = message can be used to test the
equality of booleans and symbols as well as integers and can even test equality
of different kinds of objects. This differs from FL, where = is reserved for integer
equality, bool=? tests boolean equality, and sym=? tests symbol equality. The
ability of different objects to respond to the same message in different ways is a
key feature of object-oriented programming.

In HOOK, booleans can be used for conditional evaluation because they also
respond to the if-true message. The object #t handles the if-true message
with two arguments, each of which should represent a nullary procedure (i.e., a
thunk). It returns the result of invoking the first thunk by sending it a call

message with no arguments. The #f object is similar except that it returns the
result of invoking the second thunk.

(send if-true #t (method call (_) 2) (method call (_) 3) −−−−−HOOK→ 2

(send if-true #f (method call (_) 2) (method call (_) 3) −−−−−HOOK→ 3

Treating integers and booleans as full-fledged message-passing objects is in
the spirit of SmallTalk. In contrast, languages such as Java, C++, and C#
treat integers and booleans as traditional non-object values like those in FL.

The expression (compose Eobj1 Eobj2) builds complex objects out of simpler
ones. This construct evaluates Eobj1 and Eobj2 , obtaining two objects. These are
combined into a single object whose methods are the union of those of the two
objects. If both objects have methods for handling some message M , the method
belonging to the value of Eobj1 takes precedence.

As a simple example of object composition, consider an object square5 that
represents the side length and area of a square with side length 5:

(def square5 (compose (method side (_) 5)

(method area (_) 25)))

(send + (send side square5) (send area square5)) −−−−−HOOK→ 30
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We would like to be able to create many square objects with different side
lengths. In many object-oriented languages, a description of related objects is
called a class and each object generated from this description is called an in-
stance of the class. A class typically specifies instance variables that char-
acterize the state of an instance (e.g., side length in the square example) and
instance methods specifying how each instance responds to messages (e.g.,
side and area in the square example).

In HOOK, we can represent a class as an object that responds to the new

message by returning an instance of the class. For example, here is a class that
creates square objects:

(def square-class

(method new (_ s)

(compose (method side (_) s)

(method area (self) (send * (send side self)

(send side self))))))

(def square3 (send new square-class 3))

(def square4 (send new square-class 4))

(send + (send side square3) (send side square4)) −−−−−HOOK→ 7

(send + (send area square3) (send area square4)) −−−−−HOOK→ 25

In square-class, the parameter s of the new method plays the role of an instance
variable and the side and area methods serve as instance methods. Like FL,
HOOK has static scoping of identifiers, so the s in the side method inside of
square-class refers to the formal parameter s of the new method. The new

method of square-class corresponds to what is called a constructor method
in languages like Java and C++. For this reason, we will say that it constructs
an instance of square-class.

The area instance method is the first method we have seen that refers to its
receiver parameter (which we will typically call self or variations thereof). Its
body determines the side length via the message send (send side self) rather
than by directly referencing the instance variable s. As we shall see shortly, this
level of indirection makes it easier to modify method behavior via inheritance.
For this reason, it is a common idiom to send messages to the receiver parameter
in instance method bodies.

A key feature of many object-oriented programming languages is that one
class (a so-called subclass) can inherit instance variables and instance methods
from one or more other classes (its so-called superclasses). This encourages a
style of programming known as programming by differences in which a class
specification implicitly shares the code of its superclasses and only explicitly
defines the code that distinguishes it from its superclasses.
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As an example of inheritance, consider the following class of scalable squares:

(def scalable-square-class

(method new (_ s)

(compose (send new square-class s)

(method scale (unscaled-self factor)

(compose (method side (scaled-self)

(send * (send unscaled-self side) factor))

unscaled-self)))))

Instances of scalable-square-class inherit behavior from square-class be-
cause they respond to the side and area messages using the methods from (an
instance of) this class. But they also respond to a new message, scale, which
returns a new object whose side length is the previous side length scaled by
the parameter factor. The recipient of the scale message (which is named
unscaled-self within the scale method) is expected to be an instance of
scalable-square-class. The result of scale is a new object that has the same
behavior as unscaled-self except that it responds to the side message with a
scaled version of the side length of unscaled-self. Because the area method
of square objects determines side length via (send side self), the area of a
scaled square will be calculated correctly. Moreover, a scaled square can itself be
scaled:

(def ss1 (send new scalable-square-class 7))

(send side ss1) −−−−−HOOK→ -> 7

(send area ss1) −−−−−HOOK→ -> 49

(def ss2 (send scale ss1 2))

(send side ss2) −−−−−HOOK→ -> 14

(send area ss2) −−−−−HOOK→ -> 196

(def ss3 (send scale ss2 3))

(send side ss3) −−−−−HOOK→ -> 42

(send area ss3) −−−−−HOOK→ -> 1764

(send side ss2) −−−−−HOOK→ -> 14

(send side ss1) −−−−−HOOK→ -> 7

The last two evaluations illustrate that, because HOOK has no side effects, no
existing objects are changed by sending the scale message.

By composing a new object with the recipient of the method, the scale

method returns an object that has all the behavior of the recipient except for
the behavior that is overridden or newly specified by the new object. This com-
position idiom elegantly supports mixins, which are combinations of orthogonal
object behaviors. We illustrate mixins by an example. Consider the following
class for objects that maintain a color attribute:
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(def color-class

(method new (_ col)

(compose (method color (self) col)

(method new-color (self new-col)

(compose (send new color-class new-col)

self)))))

Not only can we make standalone instances of this class, but we can also use
compose to give existing objects a color attribute. The fact that new-color

returns a new instance of color-class composed with the recipient self means
that all methods in self that are orthogonal to colors will be preserved when
new-color is invoked. This is the sense in which the color attribute can be
“mixed into” other objects. For example:

(def red (send new color-class (sym red)))

(def ss4 (compose red ss1))

(send side ss4) −−−−−HOOK→ 7

(send color ss4) −−−−−HOOK→ (sym red) {This is a symbol object}
(def ss5 (send scale ss4 2))

(send side ss5) −−−−−HOOK→ 14

(send color ss5) −−−−−HOOK→ (sym red) {scale preserves color}
(def ss6 (send new-color ss5 (sym blue)))

(send side ss6) −−−−−HOOK→ 14 {new-color preserves side length}
(send color ss6) −−−−−HOOK→ (sym blue)

Much of the power and flexibility illustrated by the above examples is due
to the fact that the receiver parameter of a method denotes the whole object of
which the method may be only one component. When a message is sent to the
result of combining objects via compose, the receiver parameter of the invoked
method is bound to the result of the compose. So the behavior of a method body
is dependent on how the method has been bundled up with other methods to
form objects.

The one HOOK expression we haven’t illustrated yet is (null-object). This
simply creates an object with no methods. It acts as the identity object for
compose.

7.3.2 HOOPLA

The kinds of HOOK programming idioms seen above can be made more conve-
nient by extending HOOK with the syntactic sugar defined in Figure 7.23. We
give the name HOOPLA to the full language (HOOK + syntactic sugar).

The HOOPLA object expression builds an object by composing arbitrarily
many other objects. The class expression creates an instance-creating object
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(hoopla (I ∗
formal) Ebody D∗

defn) �ds (hook (I ∗
formal) Ebody D∗

defn)

(object) �ds (null-object)

(object E1 E∗
rest) �ds (compose E1 (object E∗

rest))

(class (I ∗
init) E∗

object)

�ds (method new (Iignore I ∗
init) (object E∗

object)) {Iignore is fresh}
(abs (I ∗

formal) Ebody)

�ds (method call (Iignore I ∗
formal) Ebody) {Iignore is fresh}

(Erator E∗
rand) �ds (send call Erator E∗

rand)

(let ((Iname Edefn)
∗) Ebody) �ds ((abs (I ∗

name) Ebody) E∗
defn)

(if Etest Ethen Eelse)

�ds (send if-true Etest (abs () Ethen) (abs () Eelse))

Figure 7.23 Desugaring rules for HOOPLA. The HOOPLA language is the HOOK
language extended with syntactic sugar defined by these rules.

that responds to the single new message. Using these two sugar constructs, we
can give more succinct definitions to the classes studied earlier. (By convention,
we drop the suffix -class from the class names to make them shorter.)

(def square

(class (s)

(method side (self) s)

(method area (self)

(send * (send side self) (send side self)))))

(def scalable-square

(class (s)

(send new square s)

(method scale (unscaled-self factor)

(object (method side (scaled-self)

(send * (send unscaled-self side) factor))

unscaled-self)))) {Support mixins}
(def color

(class (col)

(method color (self) col)

(method new-color (self new-col)

(object (send new color new-col)

self)))) {Support mixins}
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Some additional HOOPLA classes are presented in Figure 7.24. They define
colored “turtles”: objects that have position, angle, and color. Below are some
example turtle manipulations:

(def t1 (send new colored-turtle 0 0 0 (sym green)))

{Define a turtle t1}
(send x t1) −−−−−−−HOOPLA→ 0

(send y t1) −−−−−−−HOOPLA→ 0

(send angle t1) −−−−−−−HOOPLA→ 0

(send color t1) −−−−−−−HOOPLA→ (sym green)

(def t2 (send move (send turn t1 45) 17 23))

{t2 is a rotated and translated version of t1}
(send x t2) −−−−−−−HOOPLA→ 17

(send y t2) −−−−−−−HOOPLA→ 23

(send angle t2) −−−−−−−HOOPLA→ 45)

(send color t2) −−−−−−−HOOPLA→ (sym green)

(def t3 (send home t2)) {t3 is a version of t2 sent home}
(send x t3) −−−−−−−HOOPLA→ 0

(send y t3) −−−−−−−HOOPLA→ 0

(send angle t3) −−−−−−−HOOPLA→ 0

(send color t3) −−−−−−−HOOPLA→ (sym green)

Note that instances of colored-turtle are composed of point, direction, and
color instances, so a turtle instance responds to any of the messages handled by
these instances. Because HOOPLA does not support side effects, methods like
move and turn create new objects rather than changing existing ones.

The HOOPLA syntactic sugar also supports familiar constructs from FL:
abs, let, if, and procedure application. This makes it possible to write FL-like
program fragments within HOOPLA.

7.3.3 Semantics of HOOK

Object composition in HOOK is reminiscent of record overriding in FL. In fact,
the similarity is so great that we will define the semantics of HOOK programs by
translating them into the version of the FL language extended with records that
was presented in Section 7.2.3. The key to this translation is that objects are rep-
resented as records that bind message names to procedures that represent meth-
ods. A message send is then handled by simply looking up the method/procedure
in the receiver record and applying it to the actual arguments.

We formally define the translation from HOOK code to FL code in Fig-
ure 7.25 in terms of the translation functions T pgm , T exp , and T lit , which trans-
late, respectively, HOOK programs, expressions, and literals to FL. The core
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(def point

(class (init-x init-y)

(method x (self) init-x)

(method y (self) init-y)

(method move (self dx dy)

(object (send new point

(send + (send x self) dx)

(send + (send y self) dy))

self)))) {Support mixins}

(def direction

(class (init-angle)

(method angle (self) init-angle)

(method turn (self delta)

(object (send new direction

(send + (send angle self) delta))

self)))) {Support mixins}

(def turtle

(class (x y angle)

(method home (self)

(object (send new turtle x y angle)

self)) {Support mixins}
(send new point x y)

(send new direction angle)))

(def colored-turtle

(class (x y angle col)

(send new turtle x y angle)

(send new color col)))

Figure 7.24 Sample HOOPLA classes.

of the translation is the handling of methods, objects, and message sends. A
HOOK method construct is translated to an FL record construct with a single
binding of the message name to a procedure that does the work of the method.
A HOOK compose construct is translated to an FL override construct; the
semantics of override are such that methods from Eobj1 will take precedence
over methods from Eobj2 . A HOOK send translates to a procedure application
in FL; the procedure is found by looking up the message name in the record that
represents the receiver.



372 Chapter 7 Naming

T pgm : ProgHOOK → ProgFL

T pgm [[(hook (I k
i=1) Ebody (def Idefj Ej)

n
j=1)]]

= (fl (I k
i=1) (let ((Ii ($new-integer Ii))

k
i=1) T exp [[Ebody ]])

(def $new-integer

(abs (n)

(record

($val n)

(+ (abs (self arg)

(override ($new-integer (@+ n (select $val arg)))

self))) {Support mixins}
... {similar for -, *, /, %}

(= (abs (self arg)

($new-boolean (let ((v (select $val arg)))

(scand (@int? v) (@= v n))))))
... {similar for !=}

(< (abs (self arg)

($new-boolean (@< n (select $val arg)))))
... {similar for <=, >=, >}

)))

(def $new-boolean . . . left as an exercise . . . )

(def $new-symbol . . . left as an exercise . . . )

(def Idefj T exp [[Ej ]])
n
j=1

)

T exp : ExpHOOK → ExpFL

T exp [[I ]] = I

T exp [[L]] = T lit [[L]]

T exp [[(method Mmessage (Iself I ∗
formal) Ebody)]]

= (record (Mmessage (abs (Iself I ∗
formal) T exp [[Ebody ]])))

T exp [[(compose Eobj1 Eobj2 )]] = (override T exp [[Eobj1 ]] T exp [[Eobj2 ]])

T exp [[(null-object)]] = (record)

T exp [[(send Mmessage Ereceiver Earg1
. . . Eargn

)]]
= (let ((Ireceiver T exp [[Ereceiver ]])) ; Ireceiver is fresh.

((select Mmessage Ireceiver) Ireceiver T exp [[Earg1
]] . . . T exp [[Eargn

]]))

T lit : LitHOOK → ExpFL

T lit [[N ]] = ($new-integer N )

T lit [[B ]] = ($new-boolean B)

T lit [[(sym Y )]] = ($new-symbol (sym Y ))

Figure 7.25 The HOOK-to-FL translation function.
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The handling of literals (via T lit) is perhaps the trickiest part of the trans-
lation. HOOK literals stand not for simple values but for full-fledged message-
passing objects. A HOOK number object, for instance, must translate into an
FL record that has methods for all the numeric operations. The translation uses
the top-level FL procedure $new-integer to create such a record. The record
must also be able to supply the unadorned version of the value it is holding onto;
this is the purpose of the record binding with the special field named $val. Note
that operations returning the same kind of object being defined (e.g., +, *) return
an extended version of self rather than just a fresh instance of the object. This
means that the returned object retains all the behavior of the receiver that is not
explicitly specified by the definition; this is explored in Exercise 7.32. Note also
that the definition of = uses scand and int? so as to allow the comparison of a
number and a nonnumber to return false. The $new-boolean and $new-symbol

procedures are analogous to $new-integer and are left as Exercise 7.35.
At the program level, HOOK top-level definitions translate to FL top-level

definitions, which have recursive scope. For simplicity, we assume that all HOOK
program arguments are integers. In the translation, the FL arguments will be
regular FL integer values, so they are converted to objects via $new-integer for
use in the translation of the program body expression Ebody .

The fact that HOOK identifiers and message names cannot begin with $

means that there cannot be any name capture issues in translated HOOK ex-
pressions involving the record field $val and top-level procedure names like $new-
integer. We chose this naming convention to highlight the special nature of pro-
cedures and fields beginning with $, but an alternative solution to the problem
would have been to choose fresh identifiers for these special names. Another nam-
ing issue not addressed in the translation is that FL identifiers cannot include
the FL keywords, but certain of these (e.g., letrec) are permitted as identifiers
in HOOPLA. This problem can be solved by alpha-renaming any problematic
names in the HOOK program before performing the translation.

The HOOK-to-FL translation is elegant, but it doesn’t handle certain error
situations in a robust fashion. For example, the message send

(send foo (method bar ( ) 17))

should give rise to a no-such-method error, but in the translation semantics it
gives rise to a no-such-field error. As another example, the informal semantics
for HOOK specifies that the number of arguments in a message send should
match the number of formal parameters in the invoked method; presumably, an
error indicating this fact should be reported when there is a mismatch. However,
because of the details of the translation, such mismatches are not flagged in an
appropriate way (see Exercise 7.34).
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Exercise 7.28 What is the value of the following HOOPLA expression?

(let ((ob1 (object (method value (self) 1)))

(ob2 (object (method value (self) 2)))

(ob3 (object (method value (self) 3)

(method evaluate (self) (send value self)))))

(send evaluate (object ob1 ob2 ob3)))

Exercise 7.29 Here we reconsider the square and scalable-square classes from Sec-
tion 7.3.2.

(def square

(class (s)

(method side (self) s)

(method area (self)

(send * (send side self) (send side self)))))

(def scalable-square

(class (s)

(method scale (unscaled-self factor)

(object (method side (scaled-self)

(send * (send unscaled-self side) factor))

unscaled-self)) {Support mixins}
(send new square s)))

a. What is the value of the following HOOPLA expression using the above classes?

(let ((ss1 (send new scalable-square 10)))

(let ((ss2 (send scale ss1 2)))

(send + (send area ss1) (send area ss2))))

b. Redo part a after square and/or scalable-square are modified in each of the ways
described below.

i. The area method of square is changed to

(method area (self) (send * s s))

ii. The scale method of scalable-square is changed to:

(method scale (unscaled-self factor)

(object unscaled-self

(method side (scaled-self)

(send * (send unscaled-self side) factor))))

iii. The scale method of scalable-square is changed to:

(method scale (self factor)

(object (method side (self)

(send * (send self side) factor))

self))
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iv. The scalable-square class is changed to:

(def scalable-square

(class (s)

(method scale (unscaled-self factor)

(method side (scaled-self)

(send * (send unscaled-self side) factor)))

(send new square s)))

v. The scalable-square class is changed to:

(def scalable-square

(class (s)

(method scale (self factor)

(send new scalable-square (send * s factor)))

(send new square s)))

Exercise 7.30 The HOOK-to-FL translation does not specify whether the target lan-
guage is a CBN or CBV version of FL. Does it matter? Explain.

Exercise 7.31

a. Extend HOOPLA to handle FL’s pair and prim constructs by extending the gram-
mar and desugaring rules in Figure 7.23.

b. Assuming that the semantics of HOOK is defined by a translation into CBN FL, ex-
tend HOOPLA to handle FL’s rec construct by extending the grammar and desug-
aring rules in Figure 7.23.

c. Can rec be defined as a desugaring if the semantics of HOOK is defined by a trans-
lation into CBV FL? Explain.

Exercise 7.32 Using the definition of the color class from Section 7.3.2, is the value
of the following HOOPLA expression well defined?

(let ((n (send + (object 1 (send new color 10))

(object 2 (send new color 20)))))

(send * n (send color n)))

Explain your answer. Hint: Study the definition of $new-integer in Figure 7.25.

Exercise 7.33 Does HOOPLA’s abs construct support currying? Explain.

Exercise 7.34 This problem explores error reporting in HOOPLA. Consider the fol-
lowing object:

(def adder (method add (_ x y) (send + x y)))

Based on the HOOK-to-FL translation, what are the values of the following HOOPLA
expressions?
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a. (send mul adder 2 3)

b. (send add adder 2)

c. (send add adder 2 3 4)

d. (send add adder 2 #t)

Exercise 7.35 Following the example for integer literals, show how boolean and symbol
literals in HOOK translate into FL by fleshing out the definitions of the $new-boolean

and $new-symbol procedures in Figure 7.25.

Exercise 7.36 Anoop Hacker is confused about namespace issues in HOOPLA. For
example, he observes that the color class presented in Section 7.3.2 has a method named
color as well, and wonders if these names can interact in unexpected ways. In the syntax
of the full language, there are several binding constructs: class, abs, let, and method.
The first three constructs all bind formal parameters; the last one binds a message name
and a name for the receiver (i.e., self) parameter in addition to the formal parameters of
the method.

You have volunteered to help Anoop answer the following questions. Carefully study
the definitions of HOOPLA to HOOK desugaring and HOOK to FL translation to
justify your answers. Give examples where appropriate.

a. How many distinct namespaces are there in HOOPLA?

b. Is it possible for a method formal parameter named x to be shadowed by a message
named x?

c. Is it possible for a message named x to be shadowed by a method formal parameter
named x?

d. Do the answers to parts b and c change if the record in the translation for method

becomes a recordrec instead? If so, how?

Exercise 7.37 Polly Morwicz doesn’t like the fact that it’s always necessary to explicitly
name self within a HOOPLA method. She decides to implement a version of HOOPLA
called Selfish in which a reserved word self is implicitly bound within every method
body. For example, in Selfish the point class of Figure 7.24 would be written as follows:

(def point

(class (init-x init-y)

(method x () init-x)

(method y () init-y)

(method move (dx dy)

(object (send new point

(send + (send x self) dx)

(send + (send y self) dy))

self)))) {Support mixins}
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In this example, the occurrences of self within the move method evaluate to the receiver
of the move message. Because self is a reserved word in Selfish, it is illegal to use it
as a formal parameter to a method.

a. Describe what modifications would have to be made to the following in order to specify
the semantics of Selfish:

i. The HOOK grammar.

ii. The HOOPLA to HOOK desugarer.

iii. The HOOK to FL translator.

b. Unfortunately, Selfish doesn’t always give the behavior Polly expects. For example,
she makes a simple modification to the definition of the point class:

(def point

(class (init-x init-y)

(method x () init-x)

(method y () init-y)

(method move (dx dy)

(let ((new-x (send + (send x self) dx))

(new-y (send + (send y self) dy)))

(object (method x () new-x)

(method y () new-y)

self))))

After this change, turtle objects (which are implemented in terms of points) no longer
work as expected. Explain what has gone wrong.

c. Show how to get Polly’s new point definition to work as expected. You can add new
code, but not remove any. You may perform alpha-renaming where necessary.

d. Which do you think is better: the explicit self approach of HOOPLA or the implicit
self approach of Selfish? Explain your answer.

Notes

The call-by-name and call-by-value parameter-passing mechanisms have their
roots in evaluation strategies of the lambda calculus. In the lambda calculus,
the normal-order strategy reduces the leftmost beta redex, so the operand is not
normalized before it is substituted into the body of the operator. This is similar
to CBN. In contrast, the applicative-order strategy resembles CBV, because it
normalizes both the operator and operand before performing a beta reduction.
Unlike the lambda calculus evaluation strategies, which perform beta reductions
in the body of a lambda expression as part of normalizing it, FL (like most real-
world programming languages) does not evaluate the body of a procedure until



378 Chapter 7 Naming

it is applied to an argument. This corresponds to the notion of weak head normal
form in the lambda calculus.

The essence of CBN and CBV is distilled in a classic paper by Plotkin [Plo75].
Plotkin developed a CBV version of the lambda calculus corresponding to the
CBV operational semantics of Landin’s ISWIM language [Lan66]. He also de-
fined a CBN variant of ISWIM and showed that it corresponded to the traditional
lambda calculus. Finally, Plotkin showed how to simulate CBV in CBN and vice
versa. More recently, Wadler has developed a framework that demonstrates a
duality between CBN and CBV [Wad03, Wad05].

Although CBN has more pleasing theoretical properties than CBV, most real
programming languages use CBV (or some variant) for reasons of efficiency.

The challenges we have seen in developing a CBV (as opposed to CBN) se-
mantics of recursion are reflected in special mechanisms needed for implementing
recursion in call-by-value languages (e.g., [BZ02, WSD02, HLW03]). Interest-
ingly, all these mechanisms involve state and side effects.

In order to resolve the meaning of free variables in a procedure body correctly,
static scoping conceptually involves procedural values that pair the procedure
body with the environment in which the abstraction for the procedure was eval-
uated. This pairing was dubbed a closure by Landin [Lan64]. As we will see in
Section 17.10, closures play a key role in the implementation of statically scoped
languages with first-class procedures.

Moses [Mos70] observed that closures could address the FUNARG problem
in early versions of Lisp [McC60], in which dynamic scoping led to the incor-
rect resolution of free variables in the bodies of procedures passed as arguments
or returned as results. The Scheme language of Steele and Sussman solved
the FUNARG problem by creating closures for all procedural values, yielding
the first statically scoped dialect of Lisp [SS75, Ste76, SS78]. They noted that
static scoping led to more efficient variable access than dynamic scoping, and
that the Algol 60-like block structure enabled by static scoping facilitated the
construction of complex programs. They also observed that a closure consist-
ing of a lambda abstraction and an environment was isomorphic to the script
and acquaintance list of actors in actor languages [HBS73, GH75]. The environ-
ment/closure diagrams presented in [ASS96, Section 3.2] are helpful for reasoning
about statically scoped procedures.

The history, applications, and theory of dynamic scoping are explained in
[Mor98]. The two-namespace approach in Exercise 7.25 for supporting both lex-
ical and dynamic scope was presented in [SS78], where it was observed that
dynamic scope can be viewed as a kind of side effect. This view suggests that dy-
namic scope can be simulated in a statically scoped system using side effects,
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the approach taken with Scheme’s fluid-let construct (see Exercise 8.21).
Haskell’s implicit parameters [LLMS00] provide some of the features of dy-
namic scope within a purely functional framework.

User-definable macros are a powerful feature allowing programmers to extend
a programming language with new syntactic sugar. Because s-expressions are con-
venient for describing syntactic transformations, macro research has mostly been
conducted in the context of Lisp dialects (particularly Scheme). Name-capture
problems that naturally arise in these systems have been addressed by various
notions of hygiene [KFFD86, BR88, CR91, RKDB92]. A high-level language
for defining macros [KW87] has been incorporated into the Scheme language
definition [KCR+98].

Object-oriented programming has become a popular programming paradigm,
but the term “object-oriented” is an overloaded one with a host of different mean-
ings [Ree01]. The design landscape for object-oriented languages is rather muddy,
but a tutorial paper by Wegner [Weg87] identifies six orthogonal dimensions of
object-based language design: objects (modular state-based computing agents),
delegation (a resource-sharing mechanism), abstraction (an interface specifica-
tion mechanism), types (an expression classification mechanism), concurrency (a
mechanism for multiple active threads of control), and persistence (a mechanism
for data structures to outlive the lifetime of the process creating them). A later
tutorial paper by Wegner [Weg90] expands on these ideas and explains other
concepts of object-oriented programming.

In traditional object-oriented languages, the state and behavior of objects are
specified by classes, and delegation is achieved by having subclasses inherit state
and behavior from superclasses. The first language to include objects, classes, and
inheritance was Simula 67 [DMN70, ND81], an extension of Algol 60 in which
these features were designed to support discrete-event simulations. SmallTalk
[KG77, Ing81, GR83] was the first language to completely embrace the object-
oriented paradigm. All SmallTalk values (including numbers, booleans, and
characters) are full-fledged message-passing objects that are instances of classes.
The entire SmallTalk system, including the operating system, a garbage col-
lector, and a graphical user interface that was cutting edge for its time, is im-
plemented in SmallTalk itself. Eiffel [Mey92, Mey97] is another example
of a purely object-oriented language. But the two most popular exemplars of
this style of object-oriented programming, C++ [Str86] and Java [GJS96], stray
from the pure object-oriented paradigm. Both languages have numerous values
(particularly “small values” like numbers, booleans, and characters) that are not
objects, and C++ includes many additional non-object-oriented features of the
C language it extends.
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In the class-based object-oriented languages discussed above, the behavior of
objects in a class is specified by methods (called virtual functions in C++) that
are declared within the class and its superclasses. When a message is sent to
a receiver object, the particular method invoked is determined by the class of
the receiver. An alternative approach is to specify object behavior via generic
functions that are not associated with any class. In this approach, numerous
methods may be declared for a given generic function, each of which specifies the
classes for some of its parameters. When a generic function is invoked on object
arguments, the particular method invoked is determined by the classes of its
object arguments. This approach was pioneered in the object systems for several
dialects of Lisp. In the Flavors object system of Lisp Machine Lisp [Moo86],
a generic function dispatches to a method based on the class of a single argument,
which corresponds to the receiver in traditional systems. In the Common Lisp
Object System (CLOS) [DG87] and in the Dylan language [Sha96], the dispatch
can depend on the classes of multiple arguments, in which case the methods
are called multimethods. Another language supporting multimethods is Cecil
[Cha92].

An alternative to using classes to specify objects is to create a new object
by specifying any state/behavior that distinguishes it from one or more existing
prototype objects. Any other state/behavior of the new object is delegated to
(shared with) the prototypes [Lie86]. Early examples of this approach were vari-
ous so-called actor languages [HBS73, GH75, Agh86], the Self language [US87],
and the object system of the T dialect of Scheme [AR88]. More recent examples
of prototype-based languages are Cecil and JavaScript (standardized under
the name ECMAScript [ECM99]).

Some object-oriented systems support multiple inheritance, in which the be-
havior of an object can be determined by multiple classes or prototypes. Exam-
ples include C++, Eiffel, CLOS, and Flavors. Multiple inheritance supports
the composition of orthogonal behaviors in mixins. Indeed, the Flavors system
was inspired by the practice of some ice-cream parlors of creating specialized fla-
vors for individual customers by mixing requested goodies into a base flavor of
ice cream.7

The HOOPLA language presented in this chapter was designed in 1989
by Jonathan Rees, who was inspired by the object systems of Self and T.
HOOPLA is flexible and expressive. Although the underlying kernel language,
HOOK, is prototype-based, the full language supports class-based program-
ming by treating certain objects as instantiatable classes. As illustrated by the

7The base class in Flavors is named Vanilla.
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color-class example, it also supports mixins and multiple inheritance. Al-
though the version of HOOPLA presented here does not support stateful in-
stance variables, these are easy to add. The only sophisticated feature discussed
above that is not supported in HOOPLA is multimethods; method dispatch is
based on a single distinguished receiver object.

The dynamic semantics of objects and modules (including features like inher-
itance, mixins, and recursive bindings) are often described in terms of a lambda
calculus extended with record-like structures, e.g [CM91, BL92, AZ02, Bru02].
An alternative approach for modeling objects is Abadi and Cardelli’s sigma cal-
culus [AC96], in which the fundamental entity is an object with named methods
that can be invoked or updated. Extending these systems with static semantics
(types) involves additional theoretical challenges, some of which are discussed in
the notes at the end of Chapter 12 on page 767.
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State

Man’s yesterday may ne’er be like his morrow;
Nought may endure but Mutability

— Percy Bysshe Shelley, “Mutability,” st. 4

What Is State?

I woke up one morning and looked around the room. Something wasn’t
right. I realized that someone had broken in the night before and replaced
everything in my apartment with an exact replica. I couldn’t believe it . . .
I got my roommate and showed him. I said, “Look at this — everything’s
been replaced with an exact replica!” He said, “Do I know you?”

— Steven Wright

We naturally view the world around us in terms of objects. Each object is
characterized by a set of attributes that can vary with time. The state of an
object is the set of particular attributes it has at a given time. For example, the
state of a box of chocolates includes its size, shape, color, location, whether its
lid is on or off, and the number, types, and positions of the chocolates inside.

Every object has a unique, time-independent attribute that distinguishes it
from other objects: its identity. The notion of identity is at the very heart of
objectness, for it formalizes the intuition that objects exist over extents of time
rather than just at instants of time. Identity allows us to say that an object
at one point in time is the “same” as that at another point, regardless of any
changes of state that may have taken place in between. It also gives us a way of
saying that two objects with otherwise indistinguishable states are “different.”

Consider our box of chocolates again. If we open the lid, the state of the box
has changed, but we still consider it to be the same box of chocolates. Even after
we eat all the goodies inside, we think that the box has become empty, not that
we have a different box of chocolates.

On the other hand, suppose we leave an unopened box of chocolates on the
kitchen table one day and find an unopened box there the next day. We are likely
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to assume that it’s the same box. However, a housemate might later confess to
consuming the entire original box but then buying a replacement box after feeling
pangs of guilt. In light of this confession, we concede that the box on the table is
not the same as the one we bought, even though, from our perspective, its state
is indistinguishable from that of the box we left there the day before.

How could we monitor similar situations in the future without the help of
explicit confessions? Before placing an unopened box of chocolates on the table
we could alter the box in some irreversible way. The next day we could check
whether the box on the table had the same alteration. If the box on the table
the next day does not exhibit the alteration, we are sure that the new box is not
the same as the original. If it does have the alteration, we aren’t 100% sure (our
housemate might have diabolically copied our alteration, or a new box by chance
might exhibit the same alteration), but there is reasonable evidence that the box
is in fact the same one we left the previous day.

This example emphasizes that the notions of time, state, identity, and change
are all inextricably intertwined.1 The purpose of this chapter is to see how these
notions are expressed in a computational framework. We shall see that state
provides new ways to decompose problems but can greatly complicate reasoning
about programs.

8.1 FL Is a Stateless Language

Computing with time-varying state-based entities is an extremely popular pro-
gramming paradigm in traditional imperative languages, such as Fortran,
Cobol, Pascal, C, and Ada as well as in object-oriented languages like
SmallTalk, C++, C#, and Java. We call such languages stateful. One
reason that stateful languages are so popular is that they resonate with our
experience of interacting with objects that change over time in the world. At
the opposite side of the spectrum are stateless languages like Haskell and
Miranda, which are sometimes called purely functional languages. Mostly
functional languages are those, like ML, Common Lisp, and Scheme, that add
stateful features on top of a stateless function-oriented core.

The FL language we have studied thus far is a stateless language — it provides
no support for expressing computational objects with identity and state. In par-
ticular, neither variables nor data structures (pairs) may exhibit time-dependent
behavior. To underscore this point, we will show the difficulties encountered in
modeling a classic example of state — bank accounts — within FL. Our goal is
to implement the following bank account procedures in FL:

1For a further discussion of this philosophical point in a computational framework, see Chap-
ter 3 of [ASS96].
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(make-account amount): Creates and returns an account with amount as its
initial balance.

(balance account): Returns the balance in account.

(deposit! amount account): If amount is nonnegative, increases the balance
of account by amount and returns the symbol succeeded. If amount is nega-
tive, leaves the balance unchanged and returns the symbol failed.

(withdraw! amount account): If amount is less than or equal to the balance of
account, decreases the balance of account by amount, and returns the symbol
succeeded. If amount is negative or is greater than the balance of account,
leaves the balance unchanged and returns the symbol failed.

We adopt the convention that names of procedures that change the state of an
object (such as deposit! and withdraw!) end in the “!” character (pronounced
“bang”).

Note that the specifications of deposit! and withdraw! indicate not only
what value the procedures return (in both cases, one of the symbols succeeded
or failed) but also what effect the procedure has on the state of the account
(increasing or decreasing the balance). Even make-account can be viewed as
having an effect on the state of the bank account system because it updates the
system with a new account. Such changes in state are referred to as side effects
or mutations. In programming languages supporting state, the specification of
a procedure includes both its return value and its side effects.2

It turns out that it is impossible to write a set of FL procedures that satisfies
the above specifications. We will show this by studying a nullary procedure
test-deposit! that performs the following steps in order:

1. create an account acct with a balance of 100;

2. determine the balance bal of acct;

3. deposit 17 dollars into acct;

4. determine the new balance bal ′ of acct;

5. return the difference bal ′ − bal.

2This is true for subroutines that can be invoked in value-accepting contexts, such as functions
in Ada, Fortran, Lisp, and Pascal, non-void functions in C, and non-void methods in Java.
Many languages have a distinct kind of subroutine that does not produce a value and is invoked
only for its effect. Examples include Ada, Fortran, and Pascal procedures, void functions
in C, and void methods in Java.
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Operational Semantics

Reduction Rules (�)

... non-begin reduction rules
(begin V E) � E [begin]

Evaluation Contexts (E)

E ::= . . . non-begin contexts . . . | (begin E E)

Denotational Semantics
E [[(begin E1 E2)]] = λe . (with-value (E [[E1 ]] e) (λv . (E [[E2 ]] e)))

Figure 8.1 Operational and denotational semantics of begin in CBN and CBV.

In a stateful language, (test-deposit!) should return 17. We will demon-
strate that FL is a stateless language by arguing that it must return 0 for
(test-deposit!).

If we try to write test-deposit! in FL, we immediately run into a stum-
bling block. The specified actions are clearly ordered by time, but FL provides
no explicit construct for specifying that expressions should be evaluated in any
particular order. To circumvent this problem, we assume the existence of a con-
struct (begin E1 E2) that evaluates E1 before E2 . Since all FL expressions
must return a value, we dictate that the value returned by a begin expression is
the value of E2 . The formal semantics of begin are specified by the operational
reduction rules and the denotational valuation clause in Figure 8.1.

Using begin, we can write test-deposit! in FL as follows:

(def test-deposit!

(abs ()

(let ((acct (make-account 100)))

(let ((old (balance acct)))

(begin (deposit! 17 acct)

(- (balance acct) old))))))

The abstraction can be desugared into FLK as follows:

(lam ignore {Elam:ignore}
(app (lam acct {Elam:acct}

(app (lam old {Elam:old}
(begin

(app (app deposit! 17) acct) {Eseq1}
(prim - (app balance acct) old) {Eseq2}
))

(app balance acct)))

(app make-account 100)))
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(app Elam:ignore #u)

====
CBN
⇒

[β]
(app (lam acct

(app (lam old

(begin (app (app deposit! 17) acct)

(prim - (app balance acct) old)))

(app balance acct)))

(app make-account 100))

====
CBN
⇒

[β]
(app (lam old

(begin (app (app deposit! 17) (app make-account 100))

(prim - (app balance (app make-account 100))

old)))

(app balance (app make-account 100)))

====
CBN
⇒

[β]
(begin (app (app deposit! 17) (app make-account 100))

(prim - (app balance (app make-account 100))

(app balance (app make-account 100))))

=
∗

===
CBN
⇒ (prim - (app balance (app make-account 100))

(app balance (app make-account 100)))

=
∗

===
CBN
⇒ (prim - 100 100)

====
CBN
⇒

[-]
0

Figure 8.2 Operational evaluation sequence showing that (app test-deposit! #u)

evaluates to 0.

We can now use our semantics frameworks to show that the FLK application
(app test-deposit! #u) must evaluate to 0 regardless of how deposit! is de-
fined. We will use a CBN version of FLK in the example. Since errors and
divergence do not play a role here, the result will be the same for CBV.

An operational trace of the evaluation of (app test-deposit! #u) appears
in Figure 8.2. In the second [β] step, three copies of (app make-account 100)

are made by the substitution process. In FL’s operational semantics, an expres-
sion representing a data structure (an account in this case) for all intents and
purposes is the data structure. Since the second operand of deposit! and the
operand of the two applications of balance are syntactically distinct copies of
(app make-account 100), any operation performed by deposit! on one copy
can’t possibly affect the copies in the operands of the balance calls. If we make
the assumption that (app balance (app make-account 100)) =

∗
===
CBN
⇒ 100 (this

would seem to be required of any reasonable bank account implementation), then
the trace shows that (test-deposit!) indeed evaluates to 0.

Denotational semantics offers another perspective on this example. Recall
that CBN FL’s valuation function E maps expressions and environments to com-
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E [[(app Elam:ignore #u)]] e0

= E [[(app Elam:acct (app make-account 100))]] e1 ,
where e1 = [ignore �→ (E [[#u]] e0 )]e0

= E [[(app Elam:old (app balance acct))]] e2 ,
where e2 = [acct �→ (E [[(app make-account 100)]] e1 )]e1

= E [[(begin Eseq1 Eseq2)]] e3 ,
where e3 = [old �→ (E [[(app balance acct)]] e2 )]e2

= (with-value (E [[Eseq1 ]] e3 ) (λv . (E [[Eseq2 ]] e3 )))

= E [[(prim - (app balance acct) old)]] e3 ,
assuming (E [[Eseq1 ]] e3 ) = (E [[(app (app deposit! 17) acct)]] e3 )

does not denote an error or divergence

= with-value (E [[(app balance acct)]] e3 )
(λv1 . with-value (E [[old]] e3 ) (λv2 . (O[[-]] [v1 , v2 ]))),

using the specialization of prim to the two-argument case shown on page 284

= with-value (E [[(app balance acct)]] e3 )
(λv1 . with-value (E [[(app balance acct)]] e2 ) (λv2 . (O[[-]] [v1 , v2 ]))),

because (E [[old]] e3 ) = (E [[(app balance acct)]] e2 )

= with-value (val-to-comp (Int �Value ibal ))
(λv1 . with-value (val-to-comp (Int �Value ibal)) (λv2 . (O[[-]] [v1 , v2 ]))),

where (E [[(app balance acct)]] e3 )
= (E [[(app balance acct)]] e2 )
= (val-to-comp (Int �Value ibal))

= (O[[-]] [(Int �Value ibal), (Int �Value ibal )]))

= with-integer-val (Int �Value ibal)
(λi1 . (with-integer-val (Int �Value ibal)

(λi2 . (val-to-comp (Int �Value (i1 −Int i2 ))))))

= (val-to-comp (Int �Value (ibal −Int ibal)))

= (val-to-comp (Int �Value 0))

Figure 8.3 Denotational calculation showing that (app Elam:ignore #u) in the empty
environment e0 denotes the 0 computation.

putations that are expressible values. Figure 8.3 shows a calculation of the ex-
pressible value for the expression (app Elam:ignore #u) in the empty environment
e0 . This calculation shows that the meaning of (app Elam:ignore #u) in e0 is
equivalent to the meaning of (prim - (app balance acct) old) in an envi-
ronment e3 in which old is bound to (E [[(app balance acct)]] e2 ). The only
difference between e3 and e2 is the binding for old, which isn’t referenced in
the expression (app balance acct), so (E [[(app balance acct)]] e3 ) must be
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equal to (E [[(app balance acct)]] e2 ). If we assume that these denote the inte-
ger computation (val-to-comp (Int �Value ibal)) for some integer ibal , we con-
clude that the subtraction must yield the computation of the integer 0. In
both the operational and denotational analyses, the fundamental insight is that
(test-deposit!) returns the difference of the values of two occurrences of the
expression (app balance acct), and these must necessarily be the same.

A language in which distinct occurrences of any expression always have the
same meaning within a given naming context is said to be referentially trans-
parent. Of course, the notion of “naming context” needs to be fully specified.
Intuitively, two occurrences of an expression are in the same naming context if
they share the same Stoy diagram — i.e., if every occurrence of a free identifier
in the two expressions refers to a variable declared by the same variable decla-
ration. Stateless languages, such as our mini-language FL and the real language
Haskell, are referentially transparent, while stateful languages are not.

Referential transparency is a property that we frequently use in mathematical
reasoning in the form of “substituting equals for equals.” But it is seriously at
odds with the notions of state and time. State is predicated on the idea that
observable properties of an object can change. But if we make the reasonable
assumption that a property of an object can be accessed by applying a single-
argument procedure to that object (as in (app balance acct) above), referential
transparency dictates that all occurrences of such an expression within a given
environment must denote the same value. Thus, the observable properties of
an object cannot change. And if changes to the state of objects cannot be ob-
served, how meaningful is it to talk about one action happening before or after
another? We shall have more to say about referential transparency and state in
Section 8.3.6.

Finally, suppose we actually try to write the definition of deposit! in FL.
What kind of difficulties do we run into? Below is a skeleton for such a procedure:

(def deposit!

(abs (amount account)

(if (< amount 0)

(sym failed)

(begin EincreaseBalance

(sym succeeded)))))

The body of deposit! returns the right value (one of the symbols failed or
succeeded). But how do we write EincreaseBalance? By reasoning similar to that
used above, no FL expression can possibly alter the state of the account. Obvi-
ously, we are missing something. Shortly, we will introduce constructs that allow
us to fill in the blanks here, and we will explore how the semantics of FL needs
to be changed to accommodate their introduction.
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8.2 Simulating State in FL

FL is an extension to the lambda calculus, which is computationally universal
in the sense that any computation can be encoded in it. So FL must also be
computationally universal. Surely examples such as the bank account scenario
must be expressible within FL somehow, albeit not necessarily in a way that
corresponds to our intuitions about the physical world. We will now explore some
ways in which state can be simulated in FL. The purpose of this exploration is
to give us insight into the nature of state. Later, we will be able to apply what
we learn to the semantics for a stateful dialect of FL.

8.2.1 Iteration

The simulation of state in FL is exemplified by the handling of iteration. An
iteration is a computation that characterizes the state of a system in terms of
the values of a set of variables known as its state variables. The value of each
state variable in an iteration at time t is a function of the values of the state
variables at time t− 1.

As an example of an iteration, consider the problem of reversing the order of
cards in a deck of playing cards. A natural solution is to use two piles, called old
and new, where old is initially the original deck and new is an empty pile. Then,
one by one, cards can be moved from the old pile to the new pile until the old
pile is empty. At this point, the new pile contains the reversed deck of cards. In
this example the state variables are the (ordered) contents of the old and new
piles. These two variables completely characterize the state of the system. If a
person performing the reversal for some reason had to leave before completing
the task, someone else could take over as long as it was apparent which was the
old pile and which was the new.

It is straightforward to express iterations in FL. For example, the above
technique can be applied to list reversal as follows:

(def reverse

(abs (elements) {Eabs:reverse}
(letrec ((iterate

(abs (old-pile new-pile) {Eabs:iterate}
(if (null? old-pile)

new-pile

(iterate (cdr old-pile)

(cons (car old-pile) new-pile))))))

(iterate elements (list)))))
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In this case, the state variables are the parameters old-pile and new-pile of the
local recursive procedure iterate. For example, here is the evaluation sequence
of the reversal of a three-element list:

(Eabs:reverse (list 1 2 3))

=
∗

===
CBV
⇒ (Eabs:iterate (list 1 2 3) (list) )

=
∗

===
CBV
⇒ (Eabs:iterate (list 2 3) (list 1) )

=
∗

===
CBV
⇒ (Eabs:iterate (list 3) (list 2 1) )

=
∗

===
CBV
⇒ (Eabs:iterate (list) (list 3 2 1) )

=
∗

===
CBV
⇒ (list 3 2 1)

We are using CBV instead of CBN here because we want to see the actual list
values that are the arguments to Eabs:iterate at each step, not the expressions that
would produce those list values.

The above example suggests a general approach for expressing iterations in
FL. State variables simply become the arguments to an iterating procedure, and
updating the state variables is expressed by calling the iterating procedure on
values computed from the previous values of the state variables.

Note carefully how an iteration manages to circumvent the constraints of ref-
erential transparency to represent state and time. The state at any point in
time is represented by the values bound to formal parameters associated with
a particular application of the iterating procedure. In the list-reversal example,
the state variables correspond to the formal parameters old-pile and new-pile.
The value of a particular variable named old-pile or new-pile never changes.
However, each application of the iterate procedure effectively creates new vari-
ables that happen to be named by these same identifiers. So for each point in
time t, there are distinct variables old-pilet and new-pilet . State is encoded
not as the changing value of a variable, but rather as the values of a sequence of
immutable variables.

Events in time are ordered by the only means available for ordering in a
stateless language: data dependency. If the value of E1 is needed to compute
E2 , then E2 is said to have a data dependency on E1 . In the list reversal
example, since old-pilet is bound to the value of (cdr old-pilet−1), it has a
data dependency on old-pilet−1 ; new-pilet is dependent on both old-pilet−1

and new-pilet−1 . Data dependencies can be interpreted as a kind of time: if
E2 depends on the result of E1 , it is natural to view the evaluation of E1 as
happening before the evaluation of E2 .
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8.2.2 Single-Threaded Data Flow

Iteration is an instance of a general technique for simulating state in a stateless
language. State can always be simulated by adding state variables both as ar-
guments and return values to every procedure in a program whose body either
accesses or changes the state variables. The state of the program upon entering
a procedure is encoded in the values of the state-variable arguments, and the
state of the program upon exiting a procedure is encoded in the values of the
state variables returned as results. Because state is based on a notion of linearly
ordered time, we must guarantee that the data dependencies among the state
variables form a linear chain. State variables satisfying this constraint are said
to be passed through the program in a single-threaded fashion.

From this perspective, the problem with the bank account procedures is that
the state of the system is not appropriately threaded through calls to these pro-
cedures. Suppose the state of the banking system is modeled by an entity called
a bank state. Then we can simulate state with the bank account procedures by
extending each procedure to accept an additional bank state argument and to
return a pair of its usual return value and a (potentially updated) bank state.

Suppose that every bank account bears a unique account number. Then
we can represent a bank state as a list of pairs of an account number and the
current balance of the account with that number. For example, the bank state
�〈1729 , 200 〉, 〈6821 , 17 〉� indicates that account 1729 has a current balance of
200 dollars and account 6821 has a current balance of 17 dollars. We will allow
the same account number to appear more than once in a bank state; in this case,
the leftmost pair with a given account number indicates the current balance of
that account. For example, in bank state �〈6821 , 52 〉, 〈1729 , 200 〉, 〈6821 , 17 〉�,
account 6821 has 52 dollars.

In FL, we can define versions of the bank account procedures that single-
thread the bank state through a computation. We shall prefix the names of these
procedures with a *, pronounced “star,” which stands for single-threaded action
routine. Here is an implementation of the depositing procedure in this approach:

(def *deposit!

(abs (amount account bank0)

(if (< amount 0)

(pair (sym failed) bank0)

(let ((old&bank1 (*balance account bank0)))

(let ((old (fst old&bank1))

(bank1 (snd old&bank1)))

(pair (sym succeeded)

(cons (pair account (+ old amount)) bank1)))))))



8.2.2 Single-Threaded Data Flow 393

(def *test-deposit!

(abs (bank0)

(let ((acct&bank1 (*make-account 100 bank0)))

(let ((acct (fst acct&bank1))

(bank1 (snd acct&bank1)))

(let ((old&bank2 (*balance acct bank1)))

(let ((old (fst old&bank2))

(bank2 (snd old&bank2)))

(let ((status&bank3 (*deposit! 17 acct bank2)))

(let ((status (fst status&bank3))

(bank3 (snd status&bank3)))

(let ((new&bank4 (*balance acct bank3)))

(let ((new (fst new&bank4))

(bank4 (snd new&bank4)))

(pair (- new old) bank4)))))))))))

Figure 8.4 Definition of *test-deposit, a state-threading version of test-deposit!.

We assume that accounts are represented by their account numbers and that
*balance is a state-threading version of the balance procedure. When it suc-
ceeds, *deposit! creates a new bank state by prepending a new account num-
ber/current balance pair to the old one, effectively overriding the old balance
information. A bank state can be threaded through *make-account,3 *balance,
and *withdraw! in a similar fashion.

The test-deposit! procedure can be changed to a *test-deposit! proce-
dure that takes a bank state and threads it through each of the bank account
operations (Figure 8.4). Given any initial bank state, *test-deposit! will
return a pair of 17 (the desired result) and an updated bank state. Using the
single-threading idiom, we have been able to successfully model the bank account
scenario in the stateless FL language.

Exercise 8.1 Provide definitions of *make-account, *balance, and *withdraw! in
which a bank state is single-threaded through each procedure.

Exercise 8.2 It is only necessary to single-thread state information through procedures
that may update the state. For procedures that only access the state without updating

3*make-account must also create a new, previously unused account number. Asking the
caller to specify the number is an option, but it is better to include the next available account
number as part of the bank state. If we don’t care about wasting computational resources, we
can compute a fresh account number from the current bank state representation by adding 1 to
the largest account number in the bank state.
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(def *test-deposit!

(abs (bank0)

(with-pair (*make-account 100 bank0)

(abs (acct bank1)

(with-pair (*balance acct bank1)

(abs (old bank2)

(with-pair (*deposit! 17 acct bank2)

(abs (status bank3)

(with-pair (*balance acct bank3)

(abs (new bank4)

(pair (- new old) bank4)))))))))))

Figure 8.5 Version of *test-deposit using with-pair.

it, it is sufficient to pass the state as an argument; such a procedure need not return the
state as its result. An example of such a procedure is *balance, which reads the balance
of a bank account but does not write it.

• Write a version of *balance that takes an account and a bank state and returns only
the balance of the account.

• Modify the definitions of *deposit!, *withdraw!, and *test-deposit! to use the
new version of *balance.

8.2.3 Monadic Style

State-threading details make the *test-deposit! code hard to read, but some
well-chosen abstractions can significantly increase readability. It helps to have a
with-pair procedure that decomposes a pair into its component parts and passes
these to a receiver procedure4 that names them:

(def with-pair

(abs (pair receiver)

(receiver (fst pair) (snd pair))))

Using with-pair, *test-deposit! can be simplified as shown in Figure 8.5.
Readability can be increased even further by hiding the threading of the bank

state altogether. Suppose that we define an action as any procedure that takes
an initial state and returns a pair of a value and an updated state. In order to
perform an action, we apply the action to a state, which returns a value/state

4This use of the term “receiver” is different from the one used in object-oriented programming
in Section 7.3, where it referred to the object receiving a message.
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(def after

(abs (action1 val-to-action2)

(abs (state0)

(with-pair (action1 state0)

(abs (val state1)

((val-to-action2 val) state1))))))

{Could simplify (abs (val state1) ((val-to-action2 val) state1))

to (abs (val) (val-to-action2 val))

or even to val-to-action2}

(def return

(abs (val)

(abs (state) (pair val state))))

Figure 8.6 The after and return procedures support a monadic style of threading
state through a program.

pair. Such actions can be glued together by the after procedure in Figure 8.6,
which takes two arguments — a first action and a procedure that maps the value
from performing the first action to a second action — and returns a single action
that performs the first action followed by the second. The figure also contains a
return procedure that converts a value into an action. With these abstractions,
the *test-deposit! procedure can be composed using four occurrences of after
and one return (Figure 8.7). This version of *test-deposit! implicitly depends
on the currying of FL procedures. For example, *make-account is a curried two-
argument procedure that takes an initial balance and a bank state and returns a
pair of an account and a new bank state. When supplied with only one argument,
*make-account returns an action — i.e., a procedure that takes a bank state and
returns a pair of an account and a new bank state.

The version of *test-deposit! using after and return illustrates a tech-
nique for threading state through a program that is known as monadic style.
This style is based on gluing together state-threading components like the bank
account actions in a way that hides the details of the “state plumbing.” We have
already seen monadic style in the denotational semantics of FL in Section 6.5.
There, the Comp domain and functions like with-value are used to hide the messy
details of propagating errors. In Section 8.3.4, we will extend the Comp domain
to include a threaded “store.” By changing the meanings of a few functions
like with-value, it is possible to thread the state through the semantics without
changing many of the existing valuation functions. This illustrates the power of
the monadic style.
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(def *test-deposit!

(after (*make-account 100)

(abs (acct)

(after (*balance acct)

(abs (old)

(after (*deposit! 17 acct)

(abs (status)

(after (*balance acct)

(abs (new)

(return (- new old)))))))))))

Figure 8.7 A version of *test-deposit! written in monadic style.

In stateless languages, monadic style is commonly used to express stateful
computations. The awkwardness of using a combiner like after can be avoided
by syntactic sugar. For example, Haskell supports a do notation in which the
bank account testing function can be written as:

testDeposit =

do a <- makeAccount 100

b1 <- balance a

deposit 17 a

b2 <- balance a

return (b2 - b1)

As we shall see, this notation is not far from the way that stateful computations
are expressed in stateful languages. A similar notation can be developed for FL
(Exercise 8.3).

The name “monadic style” is derived from an algebraic structure, the monad,
that captures the essence of manipulating information that is single-threaded
through a computation. For more information on monads and how monadic
style can be used to express stateful computations in stateless languages like
Haskell, see [PW93] and [Wad95].

Exercise 8.3 We can express Haskell-like do notation in FL via desugaring. Define
desugaring rules for a (do ((I E)∗) E) construct in FL that would permit the following
definition of *test-deposit!:

(def *test-deposit!

(do ((acct (*make-account 100))

(old (*balance acct))

(status (*deposit! 17 acct))

(new (*balance acct)))

(return (- new old))))
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8.2.4 Imperative Programming

The bank account example demonstrates how it is possible to simulate state
within a stateless language. However, even in monadic style, such simulations
can be cumbersome. An alternative strategy is to develop a language paradigm
that abstracts over the notion of state in such a way that the details of single-
threading are automatically managed by the language. This is the essence of
the imperative programming paradigm. In the imperative paradigm, all
program state is conceptually bundled into a single entity called a store that is
implicitly single-threaded through the program execution. Elements of the store
are addressed by locations, unique identifiers that serve as unchanging names
for time-dependent values. In the bank account example, bank states correspond
to stores and account numbers correspond to locations.

The advantage of the imperative programming paradigm is that programs can
be shorter and more modular when the details of single-threading are implicitly
handled by the language. However, implicit single-threading has a downside:
making explicit state variables implicit destroys referential transparency and thus
makes programs harder to reason about.

The rest of this chapter explores how to model languages that exhibit state.
We will see that the notions of store, location, and single-threading crop up in
both operational and denotational descriptions of stateful languages.

8.3 Mutable Data: FLIC

8.3.1 Mutable Cells

A one-slot cons is called a cell,
A two-slot cons makes pairs as well.
But I would bet a coin of bronze
There isn’t any three-slot cons.

— Guy L. Steele Jr.

Data structures whose components can change over time are said to be mutable;
otherwise they are said to be immutable. The simplest kind of mutable data
is the mutable cell, a data structure characterized by a single time-dependent
value called its content. A mutable cell corresponds to a mutable reference in
ML, a one-slot mutable cons cell in Lisp, or a pointer variable in languages like
C and Pascal. We will study mutable data in the context of FLIC, a version of
FL Including mutable Cells. We will use CBV as the default evaluation strategy
for FLIC because, as we shall see later, CBV makes more sense than CBN in
languages that support mutation.
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P ∈ Prog ::= (flick (I ∗
formal) Ebody) [Program]

E ∈ Exp ::= . . . FLK expressions . . .
| (cell EinitialContent) [CellCreation]
| (begin Esequent1 Esequent2 ) [SimpleSequencing]

L ∈ Lit = LitFLK

O ∈ Primop = PrimopFLK ∪ {^, :=, cell=?, cell?}
I ∈ Ident = FLK identifiers, but excluding all keywords

Figure 8.8 An s-expression grammar for FLICK.

We begin by extending CBV FLK with features for supporting mutable cells.
The modified kernel, which we shall call FLICK, has the syntax shown in Fig-
ure 8.8. We have already studied begin in Section 8.1. Here is an informal
specification of the other extensions:

• (cell E) returns a new mutable cell whose initial content is the value of E .
We shall write cells as loc$val, where loc is a natural-number location that
uniquely identifies the cell, and val is the content of the cell. In the following
example, the expression allocates a cell with loc number 1729 and content 3:

(cell (+ 1 2)) −−−−−FLICK→ 1729$3

• (prim ^ E) fetches the content of the cell denoted by E . If the value of E is
not a cell, this expression yields an error.

(prim ^ (cell (+ 1 2))) −−−−−FLICK→ 3
(prim ^ (+ 1 2)) −−−−−FLICK→ error:not-a-cell

• (prim := E1 E2) stores the value of E2 in the cell denoted by E1 . If the value
of E1 is not a cell, this expression signals an error. Since every FLICK ex-
pression must have a value, we shall arbitrarily specify that the value returned
by a cell assignment expression is the unit value.

(let ((c (cell (+ 1 2))))

(list (prim ^ c)

(prim := c 4)

(prim ^ c))) −−−−−FLICK→ �3 , unit , 4 �

Here and in other examples, we use standard FL sugar to enhance readability.
Note that the answer depends critically on the fact that the subexpressions of
pair (and therefore of list) are evaluated in left-to-right order.
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• (prim cell=? E1 E2) returns true if E1 and E2 evaluate to the same cell
(i.e., at the same location) and false otherwise. If at least one of E1 or E2 is
not a cell, the expression signals an error.

(let ((c1 (cell 1))

(c2 (cell 1)))

(let ((c3 c1))

(list (prim cell=? c1 c1)

(prim cell=? c1 c2)

(prim cell=? c1 c3)))) −−−−−FLICK→ �true, false, true �

• (prim cell? E) returns true if E evaluates to a cell and false if it evaluates
to some other value.

(pair (prim cell? 0) (prim cell? (cell 0))) −−−−−FLICK→ 〈false, true〉

FLIC (Figure 8.9) is built on top of the kernel provided by FLICK by adding
the syntactic sugar of FL as well as a few new constructs:

• Unlike the kernel begin construct, which has two sequents, the extended se-
quencing expression (begin E1 . . . En) can have an arbitrary number of se-
quents. This is the first time we’ve seen a sugar construct that has the same
phrase tag as a kernel construct. This situation is common in practice. Of
course, the desugaring for such a construct must guarantee that the general
sugar form rewrites to the more restricted kernel form.

• Unlike the kernel if construct, which has both a then and an else expres-
sion, the sugar expression (if Etest Ethen) omits the else expression when it
is #u. This pattern is common in imperative programs — e.g., see the while

desugaring.

• The looping construct (while Etest Ebody) performs the body expression Ebody

expression every time the test expression Etest evaluates to true and returns
unit the first time Ebody evaluates to false. In languages like FLIC, traditional
looping constructs like while loops can always be expressed via sugar involving
local recursive procedures, but in languages without local recursive procedures,
at least one looping construct must be a kernel construct.

• The flic construct permits top-level definitions and bindings for standard
identifiers as in FL. The only difference from FL is that ^, :=, cell=?, and
cell? are new standard identifiers in FLIC.
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8.3.2 Examples of Imperative Programming

The imperative programming paradigm is characterized by the use of side effects
to perform computations. Because it is equipped with mutable cells, FLIC sup-
ports the imperative paradigm. In this section, we present a few FLIC programs
that illustrate the imperative programming style.

Factorial

Here is an imperative version of an iterative factorial procedure written in FLIC:

(def (fact-imperative n)

(let ((num (cell n))

(ans (cell 1)))

(begin (while (> (^ num) 0)

(begin (:= ans (* (^ num) (^ ans)))

(:= num (- (^ num) 1))))

(^ ans))))

The cells named num and ans serve as the state variables of the iteration. On
each iteration of the while loop, the contents of these state variables are updated
appropriately. The loop terminates when the content of num becomes zero, at
which point the content of the ans cell is returned as the result of the factorial
procedure.

It is instructive to compare the imperative version to a stateless version:

(def (fact-stateless n)

(letrec ((loop (abs (num ans)

(if (= num 0)

ans

(loop (- num 1) (* num ans))))))

(loop n 1)))

In the stateless version, every call to loop creates a new pair of variables named
num and ans. In contrast, the imperative version shares one num and one ans

variable across all the calls to the implicit looping procedure created by the while
desugaring. The correctness of the imperative version depends crucially on the
order of the assignment expressions (:= ans . . .) and (:= num . . .). If these
expressions are swapped, then the imperative version no longer computes the
right answer. This bug is due purely to the time-based nature of the imperative
paradigm; the stateless version does not exhibit the potential for this bug since
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New Productions
P ∈ Prog ::= (flick (I ∗

formal) Ebody) [UnsugaredProgram]

| (flic (I ∗
formal) Ebody D∗

definition) [SugaredProgram]

D ∈ Def ::= . . . as in FL . . .

E ∈ Exp ::= . . . as in FL and FLICK . . .
| (begin E∗

sequent) [ExtendedSequencing]
| (if Etest Ethen) [ElselessIf]
| (while Etest Ebody) [WhileLoop]

SX ∈ SExp ::= . . . as in FL . . .

Desugaring Rules
(begin) �ds #u

(begin E) �ds E

(begin E1 E2 E∗
rest) �ds (begin E1 (begin E2 E∗

rest))

(if Etest Ethen) �ds (if Etest Ethen #u)

(while Etest Ebody) �ds (letrec ((Iloop {Iloop is fresh}
(abs ()

(if Etest (begin Ebody (Iloop))))))
(Iloop))

The flic to flick desugaring is like the fl to flk desugaring except that the
standard identifiers of FL are extended with ^, :=, cell=?, and cell?.

The desugarings for constructs inherited from FL are as in FL.

Figure 8.9 FLIC grammar and sugar.

all expressions have time-independent values. This illustrates one of the dangers
of imperative programming: since many dependencies are implicit rather than
explicit, subtle bugs are more likely, and they are harder to locate.

Bank Accounts

Figure 8.10 shows how the bank account procedures introduced in Section 8.1
can be expressed in FLIC using mutable cells. Each account is represented by
a distinct cell, and the bank account operations examine and change the content
of this cell. Here are some sample bank account manipulations:
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(def (make-account amount)

(if (< amount 0)

(sym failed)

(cell amount)))

(def (balance account) (^ account))

(def (deposit! amount account)

(if (< amount 0)

(sym failed)

(begin (:= account (+ amount (^ account)))

(sym succeeded))))

(def (withdraw! amount account)

(let ((bal (^ account)))

(if (scor (< amount 0) (> amount bal))

(sym failed)

(begin (:= account (- bal amount))

(sym succeeded)))))

Figure 8.10 Bank account procedures written in FLIC.

(def a (make-account 100))

(def b (make-account 100))

(pair (balance a) (balance b)) −−−−FLIC→ 〈100 , 100 〉
(deposit! 17 b) −−−−FLIC→ ′succeeded ′

(pair (balance a) (balance b)) −−−−FLIC→ 〈100 , 117 〉
(list (deposit! 23 a) (deposit! -23 b)

(withdraw! 120 a) (withdraw! 120 b))

−−−−FLIC→ � ′succeeded ′, ′failed ′, ′succeeded ′, ′failed ′ �

(pair (balance a) (balance b)) −−−−FLIC→ 〈3 , 117 〉

While it is natural to represent accounts directly as cells, it is also insecure to
do so. For example, every account should maintain the invariant that the balance
never slips below zero. But if an account is just a cell, then it is possible to violate
this invariant by using := directly to store a negative number into an account. It
is also possible to use ^ and := to add and remove money from accounts without
calling deposit! or withdraw!, thus violating the abstraction barrier provided
by these procedures.

In general, it is wise to package up mutable data in a way that guarantees
that important invariants cannot be violated (either accidentally or maliciously)
by some other part of a software system. First-class procedures provide an el-
egant means of encapsulating state so that it can be manipulated only in con-
strained ways. Figure 8.11 presents an alternative implementation, inspired by
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(def (make-account amount)

(if (< amount 0)

(sym failed)

(let ((account (cell amount)))

(abs (message)

(cond ((sym=? message (sym balance))

(^ account))

((sym=? message (sym deposit!))

(abs (amount)

(if (< amount 0)

(sym failed)

(begin (:= account (+ amount (^ account)))

(sym succeeded)))))

((sym=? message (sym withdraw!))

(abs (amount)

(let ((bal (^ account)))

(if (scor (< amount 0) (> amount bal))

(sym failed)

(begin (:= account (- bal amount))

(sym succeeded)))))))))))

(def (balance account) (account (sym balance)))

(def (deposit! amount account) ((account (sym deposit!)) amount))

(def (withdraw! amount account) ((account (sym withdraw!)) amount))

Figure 8.11 A message-passing implementation of bank accounts.

the message-sending metaphor of object-oriented programming, in which a bank
account is represented as a procedure that dispatches on a message. The ad-
vantage to this approach is that the message-passing account procedure provides
a security wall for accessing and updating the account balance. In particular,
this implementation guarantees that the balance can never fall below zero. In
Chapter 14, we will study several other mechanisms for guaranteeing the safety
of data abstractions.

Object-oriented programming languages are based on the ideas of message
passing, inheritance of behavior, and encapsulation of behavior and state. We
saw how to build a powerful object-oriented language without state in Sec-
tion 7.3. However, the encapsulation of state is the basis for much of the appeal
of object-oriented languages: it is hard to imagine good real-world simulations
without it. Adding mutable cells (or the mutable variables of Section 8.4) to
HOOK/HOOPLA is a very simple matter, and results in a simple and powerful
object-oriented language.
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Tree Decoration

As a final example of imperative programming, we present in Figure 8.12 a FLIC
procedure decorate for “decorating” a “tree” with “ornaments.” For the pur-
poses of this procedure, a tree is recursively defined as either (1) a leaf, which we
defined as any FLIC value that is not the unit value or a pair, or (2) a list of
trees. The “ornaments” used for decorating a tree are any FLIC values collected
together in a nonempty list. Given a tree and an ornament list, the tree decora-
tion procedure returns a new tree that has the same shape as the original tree,
but in which every original leaf has been replaced by an element of the ornament
list. As each leaf is encountered in a left-to-right, depth-first traversal of the tree,
the next ornament in the ornament list becomes the corresponding leaf of the
new tree. If there are still more leaves to process when the end of the ornament
list is reached, the decoration process should continue starting with the original
ornament list. For example:

(def sample-tree (list 17

(list #t

(list (sym foo) (lam x x)))

(sym bar)))

sample-tree −−−−FLIC→ �17 , �true, � ′foo ′, procedure ��, ′bar ′�

(decorate sample-tree (list 1 2 3 4 5 6 7)) −−−−FLIC→ �1 , �2 , �3 , 4 ��, 5 �

(decorate sample-tree (list 1 2 3)) −−−−FLIC→ �1 , �2 , �3 , 1 ��, 2 �

(decorate sample-tree (list 1)) −−−−FLIC→ �1 , �1 , �1 , 1 ��, 1 �

In an imperative setting, the decorate procedure is easy to implement.
The as-yet-unprocessed ornaments are stored in a mutable cell orns, and the
next-ornament! procedure is used to return the next ornament from this list,
cycling back to the front of the list if necessary. The walk procedure copies the
tree structure in a left-to-right, depth-first walk, invoking next-ornament! every
time a leaf is encountered.

Of course, the decorate procedure can also be defined in a stateless language
like FL by using the single-threading idiom studied (Exercise 8.4). However,
threading the additional state information can make the procedure harder to
read and write. Indeed, a key benefit of stateful languages is that they abstract
over this single-threading idiom and hide its messy details from the programmer.

Exercise 8.4 Write a version of the decorate procedure in FL.
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(def (decorate tree ornaments)

(if (null? ornaments)

(error no-ornaments)

(let ((orns (cell ornaments)))

(letrec

((leaf? (abs (t) (not (scor (unit? t) (pair? t)))))

(next-ornament! (abs ()

(let ((rest (if (null? (^ orns))

ornaments

(^ orns))))

(begin (:= orns (cdr rest))

(car rest)))))

(walk (abs (tr)

(cond ((null? tr) tr)

((leaf? tr) (next-ornament!))

(else (cons (walk (car tr))

(walk (cdr tr))))))))

(walk tree)))))

Figure 8.12 A FLIC procedure for decorating a “tree” with “ornaments.”

8.3.3 An Operational Semantics for FLICK

In order to model the state exhibited by FLICK, we will use the notions of
a location and a store introduced in Section 8.2.4. A location is a unique
identifier for a mutable entity, and a store is a structure that associates each
location with its value at a particular point in time. There are many ways to
represent locations and stores. In our operational treatment, we will represent
locations as natural-number literals in the domain Location and stores as elements
of a sequence domain Store over assignments (elements of Assignment), which
are pairs of locations and value expressions (see Figure 8.13).

The function get :Location → Store ⇀ ValueExp finds the first value associ-
ated with a location in a store. It is a partial function that is undefined in the
case where no assignment in the store mentions the given location. For example,
given the store S0 = [〈1, (sym foo)〉, 〈0, #t〉], here are some sample invocations
of get:

(get 0 S0 ) = #t

(get 1 S0 ) = (sym foo)

(get 2 S0 ) = undefined
(get 0 (〈0, 17〉 . S0 )) = 17

(get 2 (〈2, (lam x x)〉 . S0 )) = (lam x x)
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Domains
Syntactic domains from FLICK grammar (Figure 8.8 on page 398) except for Exp,
which is extended as follows:

E ∈ ExpSOS ::= . . . as in FLICK . . . | (*cell* LC)

IE ∈ InputExp ::= L | (pair IE fst IE snd)

V ∈ ValueExp ::= L | (lam Iformal Ebody) | (pair Vfst Vsnd) | (*cell* LC)

A ∈ AnsExp ::= L | procans | pairans | cellans
NT ∈ NatLit = {0, 1, 2, . . .}
LC ∈ Location = NatLit

Z ∈ Assignment = Location × ValueExp

S ∈ Store = Assignment*

Auxiliary Function
get : Location→ Store ⇀ ValueExp
(get LC (〈LC ,V 〉 . S )) = V
(get LC 1 (〈LC 2 ,V 〉 . S )) = (get LC 1 S ), where LC 1 
=Location LC 2

SOS
The FLICK SOS is defined by the tuple 〈CF ,⇒,FC , IF ,OF 〉, where:

CF = ExpSOS × Store

⇒ is the deterministic evaluation relation defined in Figure 8.14.

FC = ValueExp × Store

IF : (Prog× InputExp*)→ CF
IF 〈(flick (I1 . . . In) Ebody), [IE1 , . . . , IE k ]〉

= 〈if n = k then ([IE i/Ii ]
n
i=1)Ebody

else (error wrong-number-of-args) end, [ ]Assignment〉
OF : FC → AnsExp
OF 〈(lam I E), S 〉 = procans

OF 〈(pair V1 V2), S 〉 = pairans

OF 〈(*cell* LC), S 〉 = cellans

OF 〈L, S 〉 = L

Behavior
behdet : (Prog× InputExp*)→ Outcome

behdet 〈P , IE∗〉 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(AnsExp�Outcome (OF cffin)) if cfinit

∗⇒ cffin ∈ FC

stuck if cfinit
∗⇒ cffin 
⇒

and cffin 
∈ FC

∞ if cfinit
∞⇒

where cfinit = (IF 〈P , IE∗〉)

Figure 8.13 An SOS for FLICK.
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An SOS for FLICK is specified in Figure 8.13. It is similar to the SOS for
CBV FL except for a few key differences:

• The expressions ExpSOS that may arise during an operational execution of a
FLICK program are defined by the expression grammar of FLICK extended
with the new construct (*cell* LC). This represents the cell value associated
with location LC . The *cell* construct may not appear in a user program,
but can be introduced into a configuration during the execution of a program.
The value expressions ValueExp are those of CBV FLK extended with these
new cell values. The answer expressions AnsExp are those of FL extended
with a new token, cellans, that represents an answer that is a cell value.

• Unlike FL, but like PostFix, the FLICK SOS has configurations that include
both a code component (an expression in ExpSOS ) and a nontrivial context
component (a store in Store) that represents the current state of the computa-
tion. The input function (IF ) and output function (OF ) are those from FLK
SOS, suitably modified to handle the store component. A computation begins
with an initial configuration consisting of the initial program body (into which
program arguments have been substituted) and an empty store, [ ]Assignment. A
computation runs until the code component becomes a value expression or the
configuration becomes stuck. At this point, an answer representing the final
value is returned as the result of the FLICK program.

• The evaluation relation ⇒ (defined in Figure 8.14 and discussed in more detail
below) maps one stateful configuration to another. This allows evaluation
rules to refer to the store component of a configuration as well as to the code
component.

The definition of the evaluation relation in Figure 8.14 uses two distinct re-
duction relations to represent basic computational steps. One is the stateless
reduction relation � ∈ (ExpSOS × ExpSOS ) with which we are already familiar.
But for the three FLICK constructs — cell, ^, and := — that need to manipu-
late the store, a stateful reduction relation

s
� ∈ (CF × CF ) is needed. The [cell]

stateful reduction rule allocates a new location, LC fresh , which does not appear
in the store, and extends the store with a new association between LC fresh and
the given value. The result of this operation is a *cell* value that maintains
an index into the store. The [^] rule uses get to extract the value stored at the
location specified by the *cell* value. The [:=] rule returns the unit value but
also prepends a new location/value pair to the store to reflect the assignment.
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The definition of the stateful reduction relation guarantees that the store is
single-threaded through a program execution. Each stateful reduction step

s
�

either adds a new assignment to the front of the store (in the [cell] and [:=]
rules) or leaves the store unchanged (in all other rules). The evaluation relation
inherits this property from the stateful reduction relation. So we can think of
an executing program as having a single global store consisting of a sequence of
assignments that only grows over time.

The single-threaded nature of the store is important for reasoning about prop-
erties of state-based programs. For example, even though get is only a partial
function, an expression of the form (^ (*cell* LC)) can never be stuck. The
location LC must have been allocated in the store earlier in the computation by a
cell expression, and, because stores only grow over time, LC must still be a valid
index into the store. The single-threaded nature of the store is also is essential
for implementing stores in terms of physical computer memory devices that have
addressable slots whose contents can change over time. Some interesting pro-
gramming language constructs such as backtracking (Exercise 8.14 on page 422)
and transactions (Exercise 8.15 on page 422) violate the single-threaded property
of the store by allowing a computation to save a store and later reinstall it. Such
constructs are very powerful, but can be challenging to implement efficiently.

We have chosen to represent stores as explicit sequences of assignments, but
other representations are certainly possible (e.g., representing stores as functions
that map locations to values). In our approach, the number of assignments in a
store is equal to the number of cell and := operations performed by the pro-
gram. An actual implementation based on such a strategy would be disastrously
inefficient: the size of the store would grow throughout the computation, and
cell references would take time linear in the size of the growing store. But our
goal here is to give a simple semantics for stores, not to implement them effi-
ciently. Any reasonable implementation of FLICK would represent stores in a
way that takes advantage of the state-based nature of addressable memory in
physical computers.

Since constructs other than cell, ^, and := do not access or update the store,
any stateless reduction E � E ′ can be viewed as a stateful reduction 〈E , S 〉 s

�

〈E ′, S 〉 that leaves an arbitrary store S unchanged. An evaluation step is the
result of performing a stateful reduction step in any evaluation context. That is,
for any evaluation context E and any stateful reduction 〈E , S 〉 s

� 〈E ′, S ′〉, we
consider 〈E{E}, S 〉 ⇒ 〈E{E ′}, S ′〉 to be a valid evaluation step.

The evaluation contexts of FLICK are those of CBV FLK extended with
new contexts for begin, cell, and rec. The stateless reduction rules for FLICK
are those of CBV FLK extended with rules for begin, rec, and the primitive
operators cell=? and cell?.



8.3.3 An Operational Semantics for FLICK 409

Stateless Reduction Relation (�)
... reduction rules for CBV FLK except [rec]

(begin V E) � E [begin]

(rec I V ) � [(rec I V )/I ]V [CBV-rec]

(prim cell=? (*cell* LC) (*cell* LC)) � #t [cell=?-T]
(prim cell=? (*cell* LC 1) (*cell* LC 2)) � #f, [cell=?-F]

where LC 1 
=Location LC 2

(prim cell? (*cell* LC)) � #t [cell?-T]
(prim cell? V ) � #f , where V 
= (*cell* LC) [cell?-F]

Stateful Reduction Relation (
s
�)

〈(cell V ), S 〉 s
� 〈(*cell* LC fresh), (〈LC fresh ,V 〉 . S )〉, [cell]

where LC fresh is a location that does not appear in S .

〈(prim ^ (*cell* LC)), S 〉 s
� 〈V , S 〉, where (get LC S ) = V [^]

〈(prim := (*cell* LC) V ), S 〉 s
� 〈#u, 〈LC ,V 〉 . S 〉 [:=]

〈E , S 〉 s
� 〈E ′, S 〉, where E � E ′ via [label] [label]

Evaluation Contexts
E ∈ EvalContext ::= . . . as in CBV FLK . . .

| (rec I E) | (cell E) | (begin E E)

Evaluation Relation (⇒)
〈E{E}, S 〉 ⇒ 〈E{E ′}, S ′〉, where 〈E , S 〉 s

� 〈E ′, S ′〉

Figure 8.14 The FLICK evaluation relation.

The reason for the new rec reduction rule and evaluation context is that
handling recursion in a CBV language is a bit tricky in the presence of side
effects. The basic problem is illustrated by the following FLIC example:

(let ((counter (cell 0)))

(pair ((rec fact

(begin (:= counter (+ (^ counter) 1))

(abs (n)

(if (= n 0)

1

(* n (fact (- n 1)))))))

5)

(^ counter)))
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The value computed by the rec expression is a factorial procedure, so the value
of the first component of the pair returned by the above expression should be 120.
But for understanding CBV rec in the presence of state, we’re more interested
in the value of the second component of the pair. This value tells us how many
times the counter cell is incremented during the evaluation of the rec expression.
Presumably, this value should be 1, since intuitively the begin expression defining
fact need be evaluated only once. However, if the CBN rule (rec I E) �

[(rec I E)/I ]E were used, then the second component of the pair would be 6
because the begin expression that is the body of the rec would be copied in each
unwinding and would be evaluated six times.

To avoid this behavior, the [CBV-rec] rule unwinds the rec only when the
body is a value. The evaluation context (rec I E) allows the rec body to be
evaluated to a member of ValueExp so that the [CBV-rec] rule will be enabled.
This means that any side effects encountered during the evaluation of the rec

body are performed only once. In a CBV semantics, the rewriting of the rec

body will terminate in a non-stuck state only when all uses of the formal param-
eter introduced by rec that appear in the body are “shielded” from immediate
evaluation by a lam. For example, (rec a a) is stuck (because a is not a value
expression), but (rec a (lam x a)) evaluates to a procedure that returns itself
when called on any argument.

As a simple example of the FLICK SOS, consider the operational evaluation
of the expression (app Elam (cell 3)) where Elam is:

(lam c (begin (prim := c (prim + 1 (prim ^ c)))

(prim ^ c)))

Figure 8.15 shows the transition sequence associated with this expression. Note
how the location 0 in the cell value (*cell* 0) serves as an unchanging index
into the time-dependent store.

Exercise 8.5 The begin construct need not be primitive in FLICK. A desugaring of
begin into other FLICK constructs must take advantage of the fact that the only notion
of time in FL has to do with data dependency. That is, the only thing that forces an
expression to be evaluated is that its value is used in the evaluation of another expression.
This suggests the following desugaring for begin into other FLICK expressions.

(begin E1 E2) �ds (app (lam (Iignore) E2) E1) {Iignore is fresh}

a. The desugaring for begin given above uses constructs only from FLK, which does not
support state. Is it possible to determine whether begin actually works as advertised
(i.e., evaluates E1 before E2 ) in a stateless language like FL? Explain your answer,
using examples where appropriate.
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〈(app Elam (cell 3)), [ ]〉
⇒[cell] 〈(app Elam (*cell* 0)), [〈0, 3〉]〉
⇒[β-value] 〈(begin (prim := (*cell* 0) (prim + 1 (prim ^ (*cell* 0))))

(prim ^ (*cell* 0))),
[〈0, 3〉]〉

⇒[^] 〈(begin (prim := (*cell* 0) (prim + 1 3))

(prim ^ (*cell* 0))),
[〈0, 3〉]〉

⇒[+] 〈(begin (prim := (*cell* 0) 4)

(prim ^ (*cell* 0))),
[〈0, 3〉]〉

⇒[:=] 〈(begin #u (prim ^ (*cell* 0))), [〈0, 4〉,〈0, 3〉]〉
⇒[begin] 〈(prim ^ (*cell* 0)), [〈0, 4〉,〈0, 3〉]〉
⇒[^] 〈4, [〈0, 4〉,〈0, 3〉]〉

Figure 8.15 Operational evaluation of a sample FLICK expression.

b. Explain why the above desugaring would not work for a CBN version of FLICK.

c. Write a desugaring for begin in CBV FLICK that does not require any condition
involving the free variables of E1 or E2 . (Hint: use thunks!)

d. Is it possible to write a desugaring for begin that works in both CBV and CBN
FLICK ? If so, give the desugaring; if not, explain why not.

8.3.4 A Denotational Semantics for FLICK

Now we’ll study the semantics of FLICK from the denotational perspective. As
in the operational approach, notions of location and store will be used to model
state. The notion of computation will be modified so that stores flow through
a computation in a single-threaded fashion. The power of the computation ab-
straction will be illustrated by the fact that only those constructs that explicitly
refer to the store need new valuation clauses; other constructs are described by
their (unmodified) FLK valuation clauses.

Stores

The denotational treatment of stores and locations is summarized in Figure 8.16.
Locations are represented as natural numbers and stores are represented as func-
tions that map locations to elements of the AssignedVal domain. Stores do not
map locations directly to values because it is necessary to encode the fact that not



412 Chapter 8 State

s ∈ Store = Location→ AssignedVal
l ∈ Location = Nat
α ∈ AssignedVal = (Storable + Unassigned)⊥
σ ∈ Storable = language dependent ; = Value in CBV

Unassigned = {unassigned}
next-location : Location→ Location = λl . (l +Nat 1)

empty-store : Store = λl . (Unassigned �AssignedVal unassigned)

fetch : Location→ Store→ AssignedVal = λls . (s l)

assign : Location→ Storable→ Store→ Store
= λl1σs . λl2 . if l1 = Location l2

then (Storable �AssignedVal σ)
else (fetch l2 s)
end

fresh-loc : Store→ Location = λs . (first-fresh s 0)

first-fresh : Store→ Location→ Location
= λsl . match (fetch l s)

� (Unassigned �AssignedVal unassigned) [] l
� else (first-fresh s (next-location l))
end

Figure 8.16 Denotational treatment of locations and stores.

all locations have values assigned to them. The distinguished element unassigned
in the lifted sum domain AssignedVal is used to indicate that a location is unas-
signed. unassigned serves the same purpose for stores that unbound serves for
environments.

The domain Storable of storable entities varies from language to language.
In FLICK, which is a CBV language, Storable = Value, but a CBN version
of FLICK would have Storable = Comp. In both CBV and CBN FLICK,
it happens that Storable = Nameable, but this need not be the case in general.
For example, in Pascal, procedures can be named and (with certain restrictions)
passed as arguments, but they may not be assigned to variables or stored as the
components of data structures.

There are several auxiliary functions for manipulating stores. fetch and assign
are functions on stores that are reminiscent of lookup and extend on environ-
ments. The purpose of fresh-loc is to return an unassigned location from the
given store. Since locations are natural numbers, one way of doing this is by
scanning the store starting with location 0 and incrementing the location until
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an unassigned location is found. We assume an unbounded store, so that fresh-loc
never fails to return a fresh location. To model a bounded store (which would
be more realistic), fresh-loc could be modified to return an indication that the
attempt to find a fresh location failed in some cases.

Exercise 8.6 Mima Rhee doesn’t like the functional representation of the Store domain
and decides to experiment with another representation. In Mima’s representation, a
store is a pair of (1) a natural number n that is the next free location and (2) a length-n
sequence of storable values such that the value at location k is stored at index (n − k)
in the sequence. Recall that sequence elements are indexed starting at 1 and can be
retrieved via the nth function defined on page 1183.

a. Give definitions of the Store domain, empty-store, fetch, assign, and fresh-loc for
Mima’s representation.

b. In what ways is Mima’s representation closer than the functional representation to
traditional efficient representations of stores as indexable arrays in physical computer
memory? In what ways does it still fall short?

Computations

In all the stateless variants of FL we studied, a computation was just an ex-
pressible value. But in the presence of state, a computation needs to embody the
single-threaded nature of stores. The following domain definition captures this
idea:

c ∈ Comp = Store→ (Expressible× Store)

Here, a computation accepts an initial store and returns two entities:

• The expressible value computed by the computation.

• A final store that reflects all the allocations and assignments performed by the
computation.

When composing two computations, single-threadedness can be achieved by sup-
plying the final store of the first computation as the initial store of the second.
This definition of stateful computations is very similar to the notion of a monadic
action studied in Section 8.2.3.

It is not difficult to show that the new Comp domain is pointed (Exercise 8.7).
This means that it is possible to find fixed points over computations, a fact that
will be important when we discuss the semantics of rec.

Recall that numerous auxiliary functions are defined as part of the compu-
tation abstraction. Figure 8.17 shows the definitions of these functions for the
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c ∈ Comp = Store→ (Expressible× Store)
x ∈ Expressible = (Value + Error)⊥

Error = SymLit
v ∈ Value = Unit + Bool + Int + Sym + Pair + Proc + Location

expr-to-comp : Expressible→ Comp = λx . λs . 〈x , s〉
val-to-comp : Value→ Comp = λv . (expr-to-comp (Value �Expressible v))

err-to-comp : Error→ Comp = λY . (expr-to-comp (Error �Expressible Y ))

with-value : Comp→ (Value→ Comp)→ Comp
= λcf . λs1 . match (c s1 )

� 〈(Value �Expressible v), s2 〉 [] (f v s2 )
� 〈xerr , s2 〉 [] 〈xerr , s2 〉 ; xerr must be (Error�Expressible Y )
end

with-location-val : Value→ (Location→ Comp) → Comp
= λvf . match v

� (Location �Value l) [] (f l)
� else (err-to-comp not-a-location)
end

with-values, with-boolean-val, with-boolean-comp, etc. are all written in terms of
with-value and err-to-comp, so their definitions are unchanged from Figure 6.26 on
page 281.

Figure 8.17 Store-based implementation of the computation abstraction.

store-based version of Comp. val-to-comp converts a value into a computation
by threading an unchanged store around the result of injecting the value into
an expressible value. err-to-comp converts an error message to a computation in
a similar fashion. These functions are similar to the monadic return function
studied in Section 8.2.3.

The main means of gluing computations together is with-value. It takes a
computation c and a function f that maps a value to a computation c′ and
returns the computation that results from composing c and c′. Like the action-
combining after procedure in Section 8.2.3, the main purpose of with-value is
to support the monadic style of threading state by handling the “plumbing”
between computations. The value argument to f is the (non-error) expressible
value produced by c and the initial store of c′ is the final store of c. In the case
where c produces an error rather than a value, f is ignored and the resulting
computation is equivalent to c. Unwinding the type of f

Value→ Comp = Value→ Store→ (Expressible× Store)
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allocating : Storable→ (Location→ Comp)→ Comp
= λσf . λs . (f (fresh-loc s) (assign (fresh-loc s) σ s))

fetching : Location→ (Storable→ Comp)→ Comp
= λlf . λs . match (fetch l s)

� (Storable �AssignedVal σ) [] (f σ s)
� else (err-to-comp unassigned-location s)
end

update : Location→ Storable→ Comp
= λlσ . λs . (val-to-comp unit (assign l σ s))

sequence : Comp→ Comp→ Comp
= λc1 c2 . (with-value c1 (λv . c2 ))

Figure 8.18 Auxiliary functions for store-based computations.

makes it clear that f can be viewed as a function that maps two (curried) argu-
ments (a value and a store) to two (paired) results (an expressible value and a
store).

Other with- functions we have seen before (in Figure 6.26 on page 281) like
with-values, with-boolean-val, with-boolean-comp, etc., were written in terms
of with-value and err-to-comp, so their definitions for stateful computations are
unchanged as long as we use the definitions of with-value and err-to-comp that
are appropriate for stateful computations. This highlights the power of using
these abstractions.

In FLICK, the Value domain includes Location to represent cell values. Fig-
ure 8.17 defines a with-location-val function we will later use for manipulat-
ing cells in the valuation clauses for FLICK. It is defined like with-boolean-val,
with-procedure-val, etc.

In the presence of state, there are a few more auxiliary functions involv-
ing computations that are especially handy. These are defined in Figure 8.18.
allocating allocates a location for a storable value and passes it (and the updated
store) to a computation-producing function. fetching finds the storable value at
a location and passes it (and the unchanged store) to a computation-producing
function. update takes a location and storable value and returns a unit-producing
computation whose final store includes an assignment between the location and
value. sequence glues two computations together by supplying the final store of
the first computation as the initial store of the second computation; the express-
ible value produced by the first computation is ignored.
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(with-location-val (Location �Value l) f ) = (f l) (8.1)

(with-value (allocating σ f) g)
= (allocating σ (λl . (with-value (f l) g))) (8.2)

(with-value (fetching l f) g)
= (fetching l (λσ . (with-value (f σ) g))) (8.3)

(with-value (update l σ) f)
= (sequence (update l σ) (f (Unit �Value unit))) (8.4)

(with-value (sequence c1 c2) f)
= (sequence c1 (with-value c2 f)) (8.5)

Figure 8.19 Useful equalities on store-based computations. It is assumed that new
bound variables do not conflict with free identifiers elsewhere in the expressions.

Since reasoning about computations directly in terms of the auxiliary func-
tions can be very tedious, we seek computational laws that simplify such rea-
soning. Remarkably, all of the computational laws presented in Figure 6.27 on
page 282 still hold for stateful computations. Figure 8.19 presents some new laws
involving auxiliary functions for stateful computations. We leave the proofs of
these equalities as Exercise 8.8.

Exercise 8.7 Show that the store-based definition of Comp is pointed.

Exercise 8.8 Assume that Comp = Store→ (Expressible× Store).

a. Prove that all of the equalities in Figure 6.27 on page 282 hold.

b. Prove that all of the equalities in Figure 8.19 hold.

Valuation Clauses

The denotational specification of FLICK is summarized in Figures 8.21 and 8.22.
The Value domain has been extended with locations, which represent cell values.
Since FLICK is a CBV language, both Nameable and Storable equal Value. As
always, E has the signature Exp → Env → Comp. There are two valuation
functions for primitives. OFLICK is the version for FLICK, while OFLK is the
version inherited from FLK. The valuation function P for programs maps a
program and its inputs to an answer, which is an expressible value in FLICK.

With the help of the auxiliary functions, the valuation clauses are surprisingly
compact. In fact, only one clause (rec) explicitly mentions the store! begin se-
quences two computations. cell allocates a location for its content and returns



8.3.4 A Denotational Semantics for FLICK 417

check-unary : Value∗ → (Value→ Comp)→ Comp
= λv∗f . match v∗

� [v ]Value [] (f v)
� else (err-to-comp wrong-number-of-args)
end

check-binary : Value∗ → (Value→ Value→ Comp) → Comp
= λv∗f . match v∗

� [v1 , v2 ]Value [] (f v1 v2 )
� else (err-to-comp wrong-number-of-args)
end

Figure 8.20 Auxiliary functions for arity checking.

the location as its resulting value. ^ fetches the value of a location and returns it,
while := updates a location to contain a new value. cell=? compares the loca-
tions of two cells. cell? checks whether its argument is a location. (The cell op-
erations make use of the auxiliary arity-checking functions defined in Figure 8.20.)
Other primitives are handled by passing them off to OFLK and converting the
result into a computation. This works because none of the primitives inherited
from FLK has any effect on the store. The meaning of a FLICK program is
calculated like that of an FLK program except that the meaning of the body is
determined relative to an empty store in addition to an initial environment that
binds the formal parameters of the program to its inputs.

The only really tricky clause is the one for rec. The valuation clause presented
here is a variant of the CBV version presented in Figure 7.6 on page 322. The
only difference is that it is necessary to supply extract-value with the current
store in order to coerce the computation into a binding value.

And that’s it! By the magic of the monadic style, all the other valuation
clauses are inherited unchanged from the denotational definition of CBV FLK.
For example, the clause for app is still:

E [[(app E1 E2)]] = λe . (with-procedure-comp (E [[E1 ]] e)
(λp . (with-value (E [[E2 ]] e) p))

The valuation clauses are very concise, but their level of abstraction can make
them difficult to understand. To get a better feel for the valuation clauses, it can
be helpful to strip away the abstractions by “inlining” the definitions of auxiliary
functions. For example, here is a version of the app clause without any auxiliary
functions:
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c ∈ Comp = Store→ (Expressible× Store)
x ∈ Expressible = (Value + Error)⊥

Error = SymLit
v ∈ Value = Unit + Bool + Int + Sym + Pair + Proc + Location
n ∈ Nameable = Value
σ ∈ Storable = Value
p ∈ Proc = Nameable→ Comp

Pair = Value × Value

E : Exp→ Env→ Comp
OFLK : Primop→ Value*→ Expressible
OFLICK : Primop→ Value* → Comp
P : Prog→ InputExp*→ Answer ; Answer = Expressible in FLICK

E [[(begin E1 E2)]] = λe . (sequence (E [[E1 ]] e) (E [[E2 ]] e))

E [[(cell E)]] = λe . (with-value (E [[E ]] e)
(λv . allocating v

(λl . (val-to-comp (Location �Value l)))))

E [[(rec I E)]] = λe . fixComp (λc . λs . (E [[E ]] (bind I (extract-value c s) e) s))

extract-value : Comp→ Store→ BindingVal
= λcs . match (c s)

� 〈(Value �Expressible v), s ′〉 [] (Nameable �BindingVal v)
� 〈(Error �Expressible Y ), s ′〉 [] ⊥BindingVal

end

Figure 8.21 Fundamental valuation clauses for FLICK, Part 1. Clauses not shown
here have the same definition as in CBV FLK.

E [[(app E1 E2)]] =
λes0 . match (E [[E1 ]] e s0 )

� 〈(Value �Expressible v), s1 〉 []
match v
� (Proc�Value p) [] match (E [[E2 ]] e s1 )

� 〈(Value �Expressible v), s2 〉 [] (p v s2 )
� 〈xerr , s2 〉 [] 〈xerr , s2 〉
end

� else 〈(Error �Expressible not-a-procedure), s1 〉
end

� 〈xerr , s1 〉 [] 〈xerr , s1 〉
end

The single-threaded nature of the store that is implicit in the original clause is
explicit in the expanded clause. Evaluating E1 in an environment e and store s0
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OFLICK[[^]]
= λv∗ . (check-unary v∗ (λv . (with-location-val v (λl . (fetching l val-to-comp)))))

OFLICK[[:=]]
= λv∗ . (check-binary v∗ (λv1 v2 . (with-location-val v1 (λl . (update l v2 )))))

OFLICK[[cell=?]]
= λv∗ . (check-binary v∗

(λv1 v2 . (with-location-val v1
(λl1 . (with-location-val v2

(λl2 . (val-to-comp
(Bool �Value (l1 = Location l2 )))))))))

OFLICK[[cell?]]
= λv∗ . (check-unary v∗

(λv . (val-to-comp (Bool �Value match v
� (Location �Value l) [] true
� else false end ))))

OFLICK[[O ]] = λv∗ . (expr-to-comp (OFLK[[O ]] v∗)), where O ∈ PrimopFLK

P[[(flick (I ∗) Ebody)]]
= λIE∗ . if (length I ∗) =Int (length IE∗)

then let 〈x , s〉 be E [[Ebody ]] (extend∗ I ∗ (IE∗[[IE∗]]) empty-env)
empty-store

in x
else (Error �Expressible wrong-number-of-args) end

Figure 8.22 Fundamental valuation clauses for FLICK, Part 2. Clauses not shown
here have the same definition as in CBV FLK.

yields an expressible value (call it x1 ) and a store s1 . If x1 is a procedure value p,
E2 is evaluated in environment e and store s1 to yield another expressible value
(call it x2 ) and another store, s2 . If x2 is a value v , then p, whose signature is

Nameable→ Comp = Value→ Store→ (Expressible× Store)

is applied to x2 and s2 . In error situations (x1 is not a procedure or x2 is not a
value), expressible error values are propagated along with the updated store.

It is worth commenting on the signature of procedures just mentioned. In
CBV FLK, Proc maps values to expressible values. In FLICK, procedures take
an extra argument, a store, and return a pair of an expressible value and a store.
The input store represents the state of the computation when the procedure is
called, and the output store represents the state of the computation when the
procedure returns its result.
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You may find it helpful to expand other valuation clauses. After you have
done several, you may start to appreciate the purpose of the Comp abstraction
and its associated auxiliary functions! As usual, it is also instructive to make
sure that all of the valuation clauses type-check.

Exercise 8.9 Use the FLICK denotational semantics to calculate the meaning of the
following expression studied in Section 8.3.3:

(app (lam c {Elam}
(begin (prim := c (prim + 1 (prim ^ c)))

(prim ^ c)))

(cell 3))

Use the laws in Figure 6.27 (page 282), Figure 8.19 (page 416), and Exercise 7.4 (page 318)
to simplify your calculations.

Exercise 8.10 Instead of defining while as syntactic sugar in FLIC, we could make it
a kernel construct in FLICK.

a. Extend the evaluation contexts and reduction rules of the FLICK SOS to specify the
semantics of while. Do not rewrite while to expressions using if or begin in your
reduction rules. Hint: Introduce one or more new intermediate expression constructs
(like *cell*) into the language.

b. Write an E valuation clause that specifies the semantics of while.

Exercise 8.11 Inspired by the repeat/until construct of Pascal, Dewey Lupe sug-
gests that FLICK be extended with the following looping construct:

(repeat Ebody Etest) specifies a loop in which each iteration of the loop first evaluates
Ebody and then evaluates Etest . As long as Etest is false, the loop continues with the
next iteration. If Etest is true, the loop terminates and the repeat expression returns
unit . If Etest does not evaluate to a boolean, or if Ebody or Etest signals an error, the
repeat expression signals an error.

a. Suppose that repeat is a kernel construct. Extend the operational and denotational
semantics of FLICK to handle repeat (compare to Exercise 8.10).

b. It is simpler to define repeat as syntactic sugar for other FLIC constructs. Give a
desugaring rule for repeat.

Exercise 8.12

a. What is the value of (rec a a) under the call-by-value denotational semantics for
FLK in the previous chapter?

b. What is the value of (rec a a) under the operational semantics for FLICK?

c. What is the value of (rec a a) under the denotational semantics for FLICK?
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d. Explain any discrepancies in your answers to the first three parts of this exercise.

Exercise 8.13 FLICK’s pair data structure is immutable. In this problem, we introduce
a mutable pair, a simple kind of mutable structure similar to the mutable records found
in many imperative languages. (See Section 10.1.4 for a discussion of mutable data
structures.)

Suppose that FLICK is extended with the following five constructs for mutable pairs:

E ::= . . . as in FLICK . . .
| (mpair Efst Esnd) | (mfst Emp) | (msnd Emp)

| (set-mfst! Emp Enew) | (set-msnd! Emp Enew)

The new constructs have the following informal semantics:

(mpair Efst Esnd) creates a new mutable pair value with two fields called mfst and
msnd. The values of Efst and Esnd are stored in the mfst and msnd fields, respectively.

(mfst Emp) returns the content of the mfst field of the mutable pair value of Emp .
Signals an error if mfst does not evaluate to a mutable pair. Similarly for msnd.

(set-mfst! Emp Enew) mutates the mutable pair value of Emp so that the mfst field
contains the value of Enew . If Emp does not evaluate to a mutable pair, or if evaluating
Enew signals an error, then set-mfst! signals an error. Similarly for set-msnd!.

For example, here are some expressions involving mutable pairs in the full FLIC
language:

(let ((foo (mpair 1 2)))

(begin

(set-mfst! foo 6)

(+ (mfst foo) (msnd foo)))) −−−−FLIC→ 8

(let ((bar (mpair 8 (mpair 4 3))))

(begin

(set-mfst! bar (msnd bar))

(set-msnd! (msnd bar) (mfst (mfst bar)))

(+ (mfst (msnd bar)) (msnd (mfst bar))))) −−−−FLIC→ 8

a. Extend the denotational semantics of FLICK to handle the five mutable pair con-
structs.

i. Describe any additions or modifications you make to the semantic domains of
FLICK.

ii. Give valuation clauses for the five constructs. (You should not have to modify
any of the existing valuation clauses.)

iii. Define any auxiliary functions necessary for your valuation clauses.

b. Define the five mutable pair constructs as syntactic sugar using existing FLIC con-
structs.
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Exercise 8.14 Clark Smarter of the Photocopy Research Center has developed a new
backtracking construct for FLICK called try:

E ::= . . . | (try E1 E2) [Backtracking]

The informal semantics of (try E1 E2) is as follows: First E1 is evaluated, and if E1

evaluates to true, then try ignores E2 and returns true. If E1 evaluates to false, then
the side effects of E1 are discarded, and the value of try is the value of E2 . If the value
of E1 is neither true nor false, then the try expression yields an error. try is thus an
elementary backtracking construct. It allows the exploration of one alternative, and, if
that does not work, restores the initial state and tries a second alternative.

Here’s an expression illustrating try:

(let ((balance (cell 200)))

(let ((withdraw (abs (n)

(begin (:= balance (- (^ balance) n))

(>= (^ balance) 0)))))

{First try to withdraw 250; if that fails, withdraw 10 from}
{the original balance.}
(begin (try (withdraw 250) (withdraw 10))

(^ balance)))) −−−−FLIC→ 190

Clark knows the pitfalls of informal semantics. When writing up the documentation
for try, he decides to give a formal operational and denotational description for his new
construct.

a. First Clark works on an operational semantics for try:

i. In attempting to give an operational semantics for try, Clark realizes that he
must extend the configuration space CF , so he adds a new intermediate expres-
sion to E . Describe the new intermediate form and its purpose. Hint: you may
want to think about the next part before answering this one.

ii. Provide all of the new evaluation contexts and reduction rules that are necessary
for handling the try construct.

b. Clark is having trouble extending the denotational semantics of FLICK to handle
try. Help Clark by writing the E valuation clause that handles the try expression.

c. Clark shows his operational and denotational semantics definitions of try to language
implementer Hardy Ware. Hardy says, “These semantic definitions are all well and
good, but implementing try efficiently is going to be tough.”

i. Explain what Hardy means by describing what difficulties would be encountered
in implementing try efficiently on physical computers where state-based memory
devices implement the binding of locations to values.

ii. Sketch a strategy for implementing try that does not require making a copy of
the entire store.
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Exercise 8.15 A common problem when working with state is data consistency. For
example, consider a database application that manages bank accounts. Transferring an
amount of money between two accounts implies subtracting the amount from the first
account and adding it to the second one. If we transfer money only between accounts of
the same bank, the total amount of money present in all the accounts should remain the
same. However, if something bad occurs between the subtraction and the addition (e.g.,
a system crash), a certain amount might simply vanish!

This situation can be prevented in database programming by requiring all modifi-
cations to the database to occur within a transaction. Intuitively, a transaction is a
series of modifications to a database that become permanent only when the transaction
is successfully terminated (the technical term is committed). If the user decides to abort
(i.e., cancel) the transaction, or the system crashes before the transaction is committed,
all the modifications are “undone.”

Abby Stracksen, president and CEO of Intrusive Databases, Inc., decides to add
transactions to FLIC. In Abby’s language, the store will act as the database: queries of
the database are performed by ^, and modifications are performed by :=. It is an error
to perform := when there is no active transaction.

Abby extends the grammar of FLICK by the following clauses:

E ::= . . . as in FLICK . . . | (begin-transaction!) | (commit!) | (abort!)

The informal semantics of transactions are:

(begin-transaction!) begins a transaction. The transaction continues until either
a commit! or an abort! is encountered. It is an error if the program ends and a
transaction has not been committed or aborted.

(commit!) successfully terminates the current transaction. It is an error if no transac-
tion is in progress.

(abort!) ends the current transaction and undoes all of its modifications. It is an error
if no transaction is in progress.

Like :=, the three transaction operations all return unit .
Transactions may be nested, in which case abort! and commit! end only the current

(innermost) transaction. An abort! of a transaction undoes the modifications of the
transaction including modifications made by nested transactions.

Here is how Abby writes a transfer between two bank accounts (represented as cells)
using transactions:

(def transfer

(abs (from to amount)

(begin (begin-transaction!)

(:= from (- (^ from) amount))

(:= to (+ (^ to) amount))

(if (< (^ from) 0)

(begin (abort!) (sym failed))

(begin (commit!) (sym succeeded))))))



424 Chapter 8 State

Below are some more examples of the behavior of transactions. Assume that the expres-
sions are evaluated in order:

(def c1 (cell 0))

(def c2 (cell 10))

(def (inc! a-cell) (:= a-cell (+ (^ a-cell) 1)))

(def (current-state) (list (^ c1) (^ c2)))

(current-state) −−−−FLIC→ �0 , 10�

(begin (begin-transaction!)

(inc! c1)

(commit!)

(current-state)) −−−−FLIC→ �1 , 10�

(begin (begin-transaction!)

(inc! c2)

(abort!)

(current-state)) −−−−FLIC→ �1 , 10�

(begin (begin-transaction!)

(inc! c1)

(begin (begin-transaction!)

(inc! c2)

(abort!))

(commit!)

(current-state)) −−−−FLIC→ �2 , 10�

(begin (begin-transaction!)

(inc! c1)

(begin (begin-transaction!)

(inc! c2)

(commit!)) {End inner transaction,}
(abort!) {but abort! outer transaction.}
(current-state)) −−−−FLIC→ �2 , 10�

(begin (begin-transaction!)

(inc! c2)

(commit!)) −−−−FLIC→ unit {commit! returns #u}

(current-state) −−−−FLIC→ �2 , 11�

Abby also points out some expressions that generate errors (assume that each inter-
acts with the database in a completely independent session):

(begin-transaction!) −−−−FLIC→ error:transaction-not-terminated

(commit!) −−−−FLIC→ error:no-current-transaction

(let ((a-cell (cell 0)))

(begin (:= a-cell 5)

(^ a-cell))) −−−−FLIC→ error:not-in-a-transaction
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(let ((a-cell (cell 0)))

(begin (begin-transaction!)

(:= a-cell 5)

(commit!)

(:= a-cell 7) {commit! ends transaction,}
{so invalid modification}

(^ a-cell))) −−−−FLIC→ error:not-in-a-transaction

a. Extend the SOS of FLICK to handle transactions:

i. Define the configurations, the set of final configurations, the input function, and
the output function.

ii. Provide reduction rules for begin-transaction!, commit!, abort!, and :=.

b. Modify the denotational semantics of FLICK to handle transactions.

i. Give the necessary additions or modifications to FLICK’s semantic domains.

ii. Some auxiliary functions used by the FLICK denotational semantics might need
to be modified (e.g., as a result of the changes in the semantic domains). Give
their new definitions.

iii. Write the valuation clauses for begin-transaction!, commit!, abort!, and :=.

8.3.5 Call-by-Name versus Call-by-Value Revisited

The nonstrict nature of CBN does not interact well with mutable cells. To illus-
trate this, we reconsider the following expression studied earlier:

(app (lam c {Elam}
(begin (prim := c (prim + 1 (prim ^ c)))

(prim ^ c)))

(cell 3))

In Figure 8.15 on page 411, we saw how this expression evaluates to 4 in CBV
FLICK. But we will see that in CBN FLICK this expression evaluates to 3!

To see why we get a different answer, we first need to develop the CBN
semantics for FLICK. We can obtain an SOS for CBN FLICK by making the
following modifications to the SOS for CBV FLICK:

• Use the CBN reduction rule and evaluation contexts for app in Figure 7.1 on
page 310.

• Use the evaluation contexts for nonstrict pairs in Figure 7.5 on page 319.

• Use the CBN reduction rule for rec from Figure 6.19 on page 259.
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〈(app Elam (cell 3)), [ ]〉
====
CBN
⇒

[β]
〈(begin (prim := (cell 3) (prim + 1 (prim ^ (cell 3))))

(prim ^ (cell 3))),
[ ]〉

====
CBN
⇒

[cell]
〈(begin (prim := (*cell* 0) (prim + 1 (prim ^ (cell 3))))

(prim ^ (cell 3))),
[〈0, 3〉]〉

====
CBN
⇒

[cell]
〈(begin (prim := (*cell* 0) (prim + 1 (prim ^ (*cell* 1))))

(prim ^ (cell 3))),
[〈1, 3〉, 〈0, 3〉]〉

====
CBN
⇒

[^]
〈(begin (prim := (*cell* 0) (prim + 1 3))

(prim ^ (cell 3))),
[〈1, 3〉, 〈0, 3〉]〉

====
CBN
⇒

[+]
〈(begin (prim := (*cell* 0) 4)

(prim ^ (cell 3))),
[〈1, 3〉, 〈0, 3〉]〉

====
CBN
⇒

[:=]
〈(begin #u (prim ^ (cell 3))), [〈0, 4〉, 〈1, 3〉, 〈0, 3〉]〉

====
CBN
⇒

[begin]
〈(prim ^ (cell 3)), [〈0, 4〉, 〈1, 3〉, 〈0, 3〉]〉

====
CBN
⇒

[cell]
〈(prim ^ (*cell* 2)), [〈2, 3〉, 〈0, 4〉, 〈1, 3〉, 〈0, 3〉]〉

====
CBN
⇒

[^]
〈3, [〈2, 3〉, 〈0, 4〉, 〈1, 3〉, 〈0, 3〉]〉

Figure 8.23 Operational evaluation of a sample expression in CBN FLICK.

Figure 8.23 shows the evaluation of the example expression in CBN FLICK. The
reason it evaluates to 3 rather than 4 is that in CBN each of the three references to
the formal parameter c of Elam is replaced by the operand expression (cell 3).
Since each occurrence of cell creates a different cell, three distinct and unrelated
cells are created, and the changes to one cell do not affect the others.

It should be clear from this example that mutable data cannot be used effec-
tively in CBN FLIC because there is no way to reference the same cell twice. In
Section 8.4.3, we will see a variant of FLIC in which CBN makes more sense,
though it is still difficult to reason about. The example also demonstrates that
side effects destroy the elegant relationship between CBN and CBV (as expressed
in Theorem 7.1 on page 311) enjoyed by stateless languages.

Exercise 8.16 What changes need to be made to the CBV FLICK denotational se-
mantics to obtain a denotational semantics for CBN FLICK?
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8.3.6 Referential Transparency, Interference, and Purity

We noted earlier (page 389) that stateless languages like FL are referentially
transparent. Referential transparency is an important property when reasoning
about programs, especially when analyzing and transforming programs.

Consider the following two program transformations:

T1: (prim + Ea Ea) −simp−−−→ (prim * 2 Ea)

T2: (prim + Eb Ec) −simp−−−→ (prim + Ec Eb)

Under what conditions are such transformations safe, i.e., guaranteed to preserve
the meaning of a program?

For the present discussion, imagine that we modify the definition of the be-
havior of FLK and FLICK programs so that programs terminating with stuck
configurations map to the same outcome (∞) as diverging programs. Treating
all errors and divergence as observationally equivalent significantly enlarges the
set of safe transformations. For example, we do not care if a transformation
changes the error signaled by a program or changes an error-signaling program
to a diverging one (or vice versa).

In a referentially transparent language like FL, these two transformations are
always safe. In T1, Ea always has the same value no matter how many times it is
evaluated. In T2, reordering Eb and Ec cannot change their values because they
are still in the same naming context as before.

However, in a stateful language like FLIC, neither of these transformations is
always safe. For example, in T1, suppose that Ea increments a counter in addition
to returning a value. Then (prim + Ea Ea) will increment the counter twice, but
(prim * 2 Ea) will increment it only once. In T2, suppose that Eb increments
a counter whose value is returned by Ec. Then swapping Eb and Ec changes the
value returned by Ec. The problem in these cases is that expressions can depend
on the implicit store threaded through their evaluation, so it is generally not safe
to replace them by a value or change their relative positions. An expression can
depend on the store by:

• allocating a location in the store (which includes initialization in our seman-
tics),

• reading the value stored at a location, or

• writing a value into a location.

Nevertheless, there are still many situations in which the transformations are
safe, even in a stateful language. Let us say that an expression E1 interferes
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with E2 when E1 allocates or writes a store location that is read and/or written
by E2 . Then T1 is safe as long as Ea does not interfere with itself or the rest of
the program and T2 is safe as long as Eb or Ec do not interfere with each other.
Classical compiler optimizations like code motion, common-subexpression elimi-
nation, and dead-code removal require reasoning about the interference between
expressions (see Section 17.6.2).

A particularly simple form of noninterference involves expressions that do not
depend on the store at all. An expression is pure when it does not allocate, read,
or write any store locations. A pure expression does not interfere with any other
expression, and so it can be treated as if it were in a referentially transparent
language. For instance, it is safe to replace a pure expression by another pure
expression having the same value or to move a pure expression to a different
position in the same naming context.

Neither interference nor purity is a computable property. That is, it is im-
possible to write a program that decides whether an arbitrary expression is pure.
However, we can define a simpler property, syntactic purity, that is computable.
It is a conservative approximation to purity in that every syntactically pure ex-
pression is in fact pure; but not every pure expression is syntactically pure. For
FLICK, we define syntactically pure expressions, called syntactic values, as
follows:

• literals, variable references, and abstractions (lam expressions) do not depend
on the store and so are syntactically pure;

• conditionals, rec expressions, pair expressions, and primitive applications
(except those involving cell primitives) are syntactically pure if all their sub-
expressions are syntactically pure.

All other expressions, including applications of cell primitives and procedure ap-
plications, are assumed to be impure.

For FLIC, we would also want let and letrec expressions to be syntactically
pure if all their subexpressions are syntactically pure. Because the desugarings
for let and letrec include procedure applications, which are deemed impure
by our syntactic purity test, it would be necessary to perform purity analysis on
FLIC before desugaring.

We shall use this notion of syntactic values later, in our discussion of polymor-
phic types (Chapter 12), type reconstruction (Chapter 13), and abstract types
(Chapter 14). Chapter 16 will present a more flexible mechanism for statically
determining the side effects (and therefore interference properties) that an ex-
pression may have.
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Exercise 8.17 Indicate whether each of the following nine expression transformations
(1) is safe in CBV FL and (2) is safe in CBV FLIC. Initially assume that errors and
divergence are observationally indistinguishable. Which answers change if errors and
divergence are not observationally equivalent?

a. (prim + I I ) −simp−−−→ (prim * 2 I )

b. (let ((x E1)) (prim + x E2)) −simp−−−→ (prim + E1 E2)

c. (app (lam I E1) E2) −simp−−−→ [E2/I ]E1

d. (lam I1 (app (lam I2 E) I1)) −simp−−−→ (lam I2 E), where I1 
∈ FrIds[[E ]]

e. (if #t E1 E2) −simp−−−→ E1

f. (if E1 E2 E2) −simp−−−→ E2

g. (if E1 (if E1 E2 E3) (if E1 E4 E5)) −simp−−−→ (if E1 E2 E5)

h. (if (if E1 E2 E3) E4 E5)

−simp−−−→ (if E1 (if E2 E4 E5) (if E3 E4 E5))

i. (app E1 (if E2 E3 E4)) −simp−−−→ (if E2 (app E1 E3) (app E1 E4))

8.4 Mutable Variables: FLAVAR

In FLICK, the only thing that can change over time is the content of a muta-
ble cell. So-called “variables” are actually constants whose value cannot change
during the execution of a program. Mutable cells are sufficient for implementing
any state-based program, and they are the basis for stateful programming in real-
world languages like ML. However, they are not always convenient to use. Here
we explore a variant of FLIC called FLAVAR (FL And mutable VARiables).
in which every variable becomes a mutable entity. We will also revisit the issue
of parameter passing in the context of state by examining four parameter-passing
mechanisms for FLAVAR.

8.4.1 Mutable Variables

In FLIC, it can be difficult to modify a program to make a previously constant
quantity mutable. For example, suppose a FLIC program binds the variable
addresses to a list of names and addresses. Since both variables and pairs
are immutable in FLIC, the meaning of addresses cannot change during the
execution of the program. Suppose that we later decide to modify the program
so that it dynamically updates the address list. Then it is necessary to rebind
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addresses to a mutable cell whose content is a list. Furthermore, we must
find all references to addresses in the existing program and replace them by
(prim ^ addresses).5

Most programming languages offer a more convenient way of making such
changes: mutable variables. A variable is mutable if the value it is bound
to can change over time. The variables of FL and FLIC aren’t variable at all,
because their values can’t vary over time; rather, they are names for constants.
In contrast, variables in languages like Scheme, C, Pascal, and Fortran can
have their values changed by assignment during the execution of the program.
In these languages, modifying the address program would not require finding
and updating all references to addresses, because all variables are assignable
by default. On the other hand, programs in these languages can be tougher to
reason about, because it can be hard to determine which variables change over
time and which do not. This situation can be improved by providing so-called
constant declarations for declaring that certain named entities are immutable.

We have two motivations for studying mutable variables:

1. Many real languages support mutable variables. We want to model this feature
in our mini-languages.

2. Mutable variables shift the way we think about naming. In languages with
mutable variables, names do not denote values, but instead denote locations
in the store at which values are stored.

8.4.2 FLAVAR

We will study mutable variables in FLAVAR, a dialect of FLIC that supports
assignments to variables. The syntax of FLAVAR (and its kernel, FLAVARK)
is the same as that for FLIC (and its kernel, FLICK) except for the addition of
a Scheme-like set! construct:

EFLAVARK ::= . . . FLICK expressions . . . | (set! Ivar Eval) [Assignment]

Informally, (set! Ivar Eval) assigns the value of the expression Eval to the vari-
able named by Ivar and returns the unit value. For example:

(let ((a 3)) (list a (set! a 4) a)) −−−−−−FLAVAR→ �3 , unit , 4 �

(Recall that list elements are evaluated from left to right.)

5We shall see in Section 17.5 that compilers often perform a program transformation like this
called assignment conversion.
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n ∈ Nameable = Location
σ ∈ Storable = depends on parameter-passing mechanism

val-to-storable : Value→ Storable = depends on parameter-passing mechanism

E [[I ]] = depends on parameter-passing mechanism

E [[(app E1 E2)]] = depends on parameter-passing mechanism

E [[(set! I E)]] = λe . (with-value (E [[E ]] e)
(λv . (with-nameable (lookup I e)

(λl . (update l (val-to-storable v))))))

Figure 8.24 Semantics of mutable variables. The definitions of val-to-storable and
Storable and the valuation clauses for I and app depend on the parameter-passing mech-
anism (see Section 8.4.3).

Note the differences between the cell assignment operator, :=, and the variable
assignment construct, set!. The former changes the value of a first-class data
value (a cell), while the latter changes the value of a variable (which is not a
first-class value). In (:= E1 E2), E1 can be any expression that evaluates to a
cell, while in (set! I E), I must be an identifier visible in the current scope.
Mutable cells and mutable variables are orthogonal language features. FLAVAR
contains both.

The denotational semantics of FLAVARK is based on that of FLICK as
presented in Section 8.3.4. Figure 8.24 shows the key differences. The principal
feature of FLAVARK is that variables, like mutable cells, are represented as
locations in the store. This means that locations are the only entity in the
language that can be named, i.e., Nameable = Location. The association between
a name I and a value v that is represented by a single environment binding
in FLIC is represented by two bindings in FLAVAR: an environment binding
between a name I and a location l , and an assignment in the store between l
and v . The indirection through l allows the value associated with the name to be
changed. The details of how the locations are allocated, how they are looked up,
and what values may legally be stored in them are determined by the parameter-
passing mechanism of the language. We shall discuss several mechanisms shortly.

The other key aspect of the FLAVAR semantics is the valuation clause for
set!. In (set! I E), E is evaluated and stored in the location named by I . The
auxiliary function val-to-storable, which depends on the definition of Storable, is
needed to inject the value into the Storable domain. Note that in the expression
(set! a a), the left and right occurrences of a are treated differently. The left
occurrence specifies a location, but the right occurrence specifies the value to
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(letrec ((I1 E1) . . . (In En)) Ebody)

�ds (let ((I1 #u) . . . (In #u))

(begin (set! I1 E1)
...

(set! In En)

Ebody))

Figure 8.25 Desugaring for letrec in FLAVAR.

be stored at that location. For this reason, the location is called the L-value
(left value) of the variable, and the value stored at that location is called the
R-value (right value) of the variable. Determining the R-value associated with
an L-value is called dereferencing the variable. The notions of L-value and R-
value can be extended to expressions. Variables can be viewed as cells in which
dereferencing corresponds to automatically performing the ^ operation at every
variable reference, and (set! I E) performs := on the L-value of I and the
R-value of E .

A somewhat unexpected benefit of mutable variables is that they consider-
ably simplify the treatment of CBV recursion. Figure 8.25 shows how the letrec
construct in FLAVAR can be desugared into other constructs that do not involve
rec. Why does this work? Intuitively, the hard part of recursion, especially mu-
tual recursion, is “tying the knot” between the declaration of a recursive variable
and all of its references. In a language with mutable variables, the knots can be
tied by initially declaring the variables to be bound to dummy values (#u in the
desugaring) and then using set! to assign to each variable Ii the value of the
corresponding definition expression Ei . Since each Ei is in the scope of all the
I1 , . . . , In , the set! changes the meaning of the references to these identifiers
within Ei . Of course, in a CBV language, if such references are not “protected”
by a lam, their evaluation will yield the (incorrect) dummy value rather than the
(correct) recursive value.

8.4.3 Parameter-passing Mechanisms for FLAVAR

Parameter-passing mechanisms for languages with mutable variables are deter-
mined by the domain Storable, the function val-to-storable, and the valuation
clauses for app and I . Figures 8.26 and 8.27 summarize four parameter-passing
mechanisms for FLAVAR. These are explained below.
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Call-by-value

The CBV mechanism for FLAVAR (shown in Figure 8.26) is similar to CBV
for FL and FLIC, except that a procedure call allocates a new location for the
argument value and passes this location (rather than the value) to the procedure.
Since the meaning of an identifier is a location and not a value, every variable
reference requires both a lookup in the environment (to find the location) and a
fetch from the store (to dereference the variable at that location). In CBV, only
elements of the domain Value are storable. For example:

(let ((a 0)

(f (abs (x) (+ x x))))

(f (begin (set! a (+ a 1)) a))) −−−−−−−−−−CBV FLAVAR→ 2

((abs (x) 3) (/ 1 0)) −−−−−−−−−−CBV FLAVAR→ error:divide-by-zero

Call-by-name

CBN in FLAVAR (shown in Figure 8.26) is similar to CBN in FL, except that
here it is Storable (not Nameable) that equals Comp. The app clause indicates
that the computation of the argument expression (not its value) is stored at a
newly allocated location. In FLAVAR, computations are functions that accept
a store, so the current store is supplied to a computation every time the variable
that names it is referenced. If the computation performs a side effect, this
side effect will be performed every time the variable is looked up. Consider the
following example:

(let ((a 0)

(f (abs (x) (+ x x))))

(f (begin (set! a (+ a 1)) a))) −−−−−−−−−−CBN FLAVAR→ 3

In the example, calling f binds x to a location that holds the computation
(E [[(begin (set! a (+ a 1)) a)]] e1 ), where e1 is an environment with bind-
ings for a and f. Each variable reference to x within the procedure body (+ x x)

performs this computation with the current store. So the left reference to x in-
crements a and returns 1, while the right reference to x increments a again and
returns 2. This example illustrates the perils of mixing state with CBN parameter
passing in a language with mutable variables.

As in FL, certain computations in FLAVAR correspond to errors or di-
vergence. Because such computations are nameable in CBN (by an indirection
through the store), procedures can be nonstrict:

((abs (x) 3) (/ 1 0)) −−−−−−−−−−CBN FLAVAR→ 3
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σ ∈ Storable = Value

val-to-storable= λv . v

E [[(app E1 E2)]] = λe . (with-procedure-comp (E [[E1 ]] e)
(λp . (with-value (E [[E2 ]] e)

(λv . (allocating v p)))))

E [[I ]] = λe . (with-nameable (lookup I e) (λl . (fetching l val-to-comp)))

Call-by-Value

σ ∈ Storable = Comp

val-to-storable= val-to-comp

E [[(app E1 E2)]] = λe . (with-procedure-comp (E [[E1 ]] e)
(λp . (allocating (E [[E2 ]] e) p)))

E [[I ]] = λe . (with-nameable (lookup I e) (λl . (fetching l (λc . c))))

Call-by-Name

Figure 8.26 Parameter-passing mechanisms in FLAVAR, part I.

Call-by-need (Lazy Evaluation)

The presence of state in FLAVAR suggests a parameter-passing mechanism
based on a technique called memoization. In this technique, the formal param-
eter name can be bound to a location that originally stores the computation of
the argument expression. The first time the parameter is referenced, the compu-
tation is performed, but the resulting value is cached at the location and is used
on every subsequent reference. Thus, the argument expression is evaluated at
most once and is never evaluated at all if the parameter is never referenced. This
mechanism is called call-by-need or lazy evaluation. Because the acronym
CBN is already taken, we will call this mechanism call-by-lazy and abbreviate
it CBL. (See Figure 8.27.)

Call-by-need can exhibit the desirable behavior of both CBV and CBN:

(let ((a 0)

(f (abs (x) (+ x x))))

(f (begin (set! a (+ a 1)) a))) −−−−−−−−−−CBL FLAVAR→ 2

((abs (x) 3) (/ 1 0)) −−−−−−−−−−CBL FLAVAR→ 3
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σ ∈ Storable = Memo
mm ∈ Memo = Comp + Value

val-to-storable= λv . (Value �Memo v)

E [[(app E1 E2)]] = λe . (with-procedure-comp (E [[E1 ]] e)
(λp . (allocating (Comp�Memo (E [[E2 ]] e)) p)))

E [[I ]] = λe . (with-nameable (lookup I e)
(λl . (fetching l

(λmm . match mm
� (Comp�Memo c)

[] (with-value c
(λv . (sequence (update l (Value �Memo v))

(val-to-comp v))))
� (Value �Memo v) [] (val-to-comp v)
end ))))

Call-by-Need (Lazy Evaluation)

σ ∈ Storable = Value

E : Exp→ Env→ Comp
LV : Exp→ Env→ Comp

val-to-storable= λv . v

E [[(app E1 E2)]] = λe . (with-procedure-comp (E [[E1 ]] e)
(λp . (with-location (LV[[E2 ]] e) p)))

E [[I ]] = λe . (with-nameable (lookup I e) (λl . (fetching l val-to-comp)))

LV [[I ]] = λe . (with-nameable (lookup I e)
(λl . (val-to-comp (Location �Value l))))

LV [[(begin E1 E2)]] = λe . (sequence (E [[E1 ]] e) (LV [[E2 ]] e))

LV [[Eother ]] ; where Eother is not I or (begin E1 E2)

= λe . (with-value (E [[Eother ]] e)
(λv . (allocating v (λl . (val-to-comp (Location �Value l))))))

Call-by-Reference

Figure 8.27 Parameter-passing mechanisms in FLAVAR, part II.
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However, because side effects in argument expressions are performed at the time
of lookup rather than at the time of call, CBL can exhibit different behavior from
CBV. For example, consider the following expression:

(let ((a 0))

(let ((f (abs (x)

(begin (set! a 17)

(+ x x)))))

(f (begin (set! a (+ a 1)) a))))

Under CBV, the call to f first increments a and then binds x to a location
holding 1. The assignment of 17 to a does not affect x, so the result is 2. However,
under CBL, the call to f binds x to a location that holds the computation of
(begin (set! a (+ a 1)) a). This computation is not performed until the
first reference of x, which occurs after a has been set to 17. So this expression
returns 36 under CBL.

Call-by-reference

So far, all the parameter-passing mechanisms we have discussed allocate a new
location for every argument. But in the case where the argument expression is a
variable reference, there is already a location associated with the variable. This
suggests a mechanism that uses the existing location rather than allocating a new
one. Such a mechanism is termed call-by-reference (CBR), and is described in
Figure 8.27. Fortran and Pascal are examples of languages that support CBR.

In CBR, there is the question of what to do with an argument that is not an
explicit identifier. For example, in the application (test (+ 1 2)), the value of
(+ 1 2) has no associated location. Languages handle this situation in different
ways. In Pascal, it is an error to supply anything but an identifier as a CBR
argument. In Fortran, however, a new location will be allocated for any ar-
gument that is not an identifier. The semantics in Figure 8.27 takes this latter
approach. In fact, this is the only mechanism for creating new mutable variables
in CBR FLAVAR. This is a somewhat unrealistic aspect of our language; real
CBR languages have special declarations for introducing new variables.

The denotational semantics for CBR models the special handling of variables
as arguments by providing two valuation functions for expressions: E and LV.
LV finds the L-value of an expression, while E finds the R-value of an expression.
For an expression that is an identifier, LV returns the location associated with
that identifier. For a begin expression, the L-value of the second subexpression
is used, which can make begin expressions ending with a variable reference work
nicely. For any other expression, LV allocates a new location for the R-value of the
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expression and returns this location. The key feature of the CBR semantics is that
LV (rather than E) is used to evaluate the operand of a procedure application.

In FLAVAR, procedure calls are expressions that return results, but in many
imperative languages, procedure calls are commands that do not return results. In
such languages, CBR is useful as a means of extracting a result from a procedure
call. An argument to a procedure can be a variable that the procedure uses to
communicate the result back to the caller. Here is an example of this idiom in
CBR FLAVAR:

(let ((a 0)

(double (abs (in out)

(set! out (+ in in)))))

(begin

{a is 0 here}
(double 17 a)

{now a is 34}
(+ a 1))) −−−−−−−−−−CBR FLAVAR→ 35

The double procedure takes a numeric argument (in) and a variable (out) for
returning the result of doubling in. In the example, the variable a is used to
communicate the result of the doubling operation back to the point of call.

One characteristic of CBR (or any paradigm that allows mutable entities to be
passed as arguments) is that two different names may refer to the same location.
This situation is known as aliasing. Consider the following example:

(let ((x 1))

(let ((test (abs (a)

(begin

(set! x 20)

(+ a x)))))

(test x))) −−−−−−−−−−CBR FLAVAR→ 40

Within the call (test x), both x and a are aliases for the same location, so the
assignment to x changes a. Aliasing is often considered undesirable because it
complicates reasoning about programs.

CBR is similar to passing a mutable cell as an argument to a procedure. The
difference is that variables are more restricted than cells. A mutable cell is a
first-class value: it may be named, passed as an argument to a procedure, re-
turned as a result from a procedure, and stored in any data structure, including
another cell. On the other hand, while a variable may be named by an identifier
and passed as an argument to a procedure, it cannot be returned as a result from
a procedure, and it cannot be stored in a data structure (including another vari-
able). Unlike cells, therefore, variables are not first-class values. Although this



438 Chapter 8 State

restricts the expressive power of variables, it permits variables to be implemented
more efficiently than cells. A variable may be allocated on a run-time execution
stack, while cells generally must be allocated from a garbage-collected heap. We
will have much more to say about tradeoffs between expressiveness and efficiency
when we study pragmatic issues later on.

Exercise 8.18 Give the value of the following FLAVAR expression under each of the
following four parameter-passing mechanisms: call-by-value, call-by-name, call-by-need,
and call-by-reference.

(let ((a 1))

(let ((inc! (abs () (begin (set! a (+ a 1)) a))))

(let ((f (abs (y z)

(begin (set! y (+ y 3))

(+ a (* z z))))))

(f a (inc!)))))

Exercise 8.19 Suppose that you have been provided with a FLAVAR interpreter that
uses one of the four parameter-passing mechanisms described above, but you have not
been told which one. Write a single FLAVAR expression Eparam that you can use to
determine the parameter-passing mechanism of the interpreter. Your expression should
evaluate to one of the following four symbols that names the mechanism used by the
interpreter: (sym value), (sym name), (sym need), or (sym reference). The only
values that you are allowed to use in Eparam are symbols and procedures; you may not
use numbers, pairs, booleans, or cells. Of course, you may use mutable variables as well.

Exercise 8.20 Cy D. Fect thinks that set! should return the previous value of the
variable rather than the unit value. Cy gives the following example of his desired behavior
for set!:

(let ((a 20)) (list (set! a (+ a 1)) (set! a (* a 2)) a))

−−−−−−−−−−CBV FLAVAR→ �20 , 21 , 42 �

a. Change the denotational semantics for CBV FLAVARK to implement Cy’s version
of set!.

b. Use your denotational semantics to explain the meaning of the following idiom using
Cy’s version of set!: (set! I1 (set! I2 I1)).

Exercise 8.21 Renowned naming expert Dinah McScoop has hired you to implement
in FLAVAR a new construct that she calls fluid-let. Here is Dinah’s specification for
her construct:

(fluid-let ((I Edef )) Ebody) temporarily assigns to an existing bound variable I
the value of Edef during the evaluation of Ebody and then resets I to its original value.
Returns the value of Ebody . Signals an error if I is not already bound in the enclosing
lexical scope.
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Note that fluid-let is not a binding construct because it does not declare I as a
new variable. Rather, it temporarily changes the value of an existing variable. Dinah
has designed fluid-let to have a syntax similar to that of let, but for simplicity the
construct only supports one binding.

a. Dinah claims that fluid-let gives much of the behavior associated with dynamic
scoping within a statically scoped language like FLAVAR. What are the values of
the following three FLAVAR expressions using fluid-let?

i. (let ((a 1))

(let f (abs (x) (+ x a))

(+ (fluid-let ((a 20)) (f 300))

(f 4000))))

ii. (let ((a 1))

(+ (fluid-let ((a 20))

(begin (set! a (+ a 300)) a))

a))

iii. (let ((a 1))

(let ((p (fluid-let ((a 20))

(let ((f (abs (x) (+ x a))))

(pair (f a) f)))))

((snd p) (fst p))))

b. fluid-let can be implemented in FLAVAR via desugaring. Extend the desugaring
rules of FLAVAR to implement fluid-let.

Exercise 8.22

a. Mutable variables provide no more expressive power than mutable cells. Show this by
defining a translation from CBV FLAVARK programs to CBV FLICK programs.
Because rec can be expressed as syntactic sugar in FLAVARK, you need not describe
how to translate rec expressions. (Transforming mutable variables to mutable cells
is known as assignment conversion; see Section 17.5 for a discussion of assignment
conversion in the context of a transformation-based compiler.)

b. Modify your translation from part a to handle each of the following alternative
parameter-passing mechanisms for FLAVARK: CBN, CBL, and CBR.

Exercise 8.23 The FLAVAR language was defined denotationally but not operationally.

a. Modify the SOS for CBV FLICK to yield an SOS for CBV FLAVARK.

b. Modify your SOS for CBV FLAVARK to implement CBN parameter passing.

c. Modify your SOS for CBV FLAVARK to implement CBL parameter passing.

d. Modify your SOS for CBV FLAVARK to implement CBR parameter passing.
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Notes

What “state” means is far from obvious. For some interesting reflections on the
notion of state, see [SS78, Part Two], [ASS96, Section 3.1], [Baw93, Chapter 6].

In our operational semantics for FLICK, we model state as a global store
component separate from the program that is threaded through the execution
of a program. An alternative approach is to represent the store as part of the
program itself, as in [FH92]. Regardless of how the store is represented, such
an operational semantics makes it possible to reason about the equivalence of
expressions in a stateful language (e.g., [MT91a, FH92]).

Moggi observed that the monad notion from category theory is useful for de-
scribing the semantics of programming language features like side effects, excep-
tions, continuations, input/output, and nondeterminism [Mog89, Mog91]. Tuto-
rial papers by Wadler [Wad92, Wad95] show how monads can be used to structure
an interpreter to support these kinds of features. Many features/systems that at
first glance might seem to require state can be expressed in a purely functional
framework by using monads or monad-like techniques, including input/ouput
and arrays with in-place update [PW93, LJ95], animations [EH97], and robotic
controllers [HCNP03].

However, monadic approaches to state suffer from a major modularity prob-
lem: In order to add stateful behavior to a program, it is often necessary to
restructure large chunks of it to use a monad. In contrast, traditional approaches
to representing state are more modular for such changes — an observation made
long before the advent of monadic programming [SS78, Part Two].

Alternatively, guided by denotational semantics, programs in stateful lan-
guages can be translated to programs in purely functional ones. For example,
Morris claims that the Euclid language [LHL+77], a restricted subset of Pas-
cal, is effectively a functional language, and backs up this claim by outlining
a simple translation from Euclid to a functional language [Mor82]. He notes
that such a translation is also possible for Pascal, but it would be much more
complicated because of additional stateful features of Pascal.

Hughes argues that lazy evaluation is an essential modularity mechanism in
functional programming because it allows producers and consumers of informa-
tion to work in a coroutining fashion [Hug89].

Lazy evaluation requires some way to share the results of subexpressions eval-
uated during a computation. Frameworks for modeling such sharing include graph
reduction [Pey87], a big-step semantics for lazy evaluation [Lau93], the call-by-
need lambda calculus [AMO+95], and the cyclic lambda calculus [AB97].
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In this text, we have chosen to introduce state in the context of an existing
functional language. An alternative approach is to study the semantics of state
in the context of a very simple imperative language, such as one with mutable
variables and while loops. Examples of this approach are [Sto85, Chapter 9] and
[Win93, Chapters 2–6].

What about stateful objects? As noted earlier, stateful object-oriented pro-
gramming can be achieved by extending the HOOK/HOOPLA languages from
Section 7.3 with mutable cell objects or mutable variables. Another way to do
object-oriented programming in a function-oriented language is to represent ob-
jects as message-passing closures where state is stored in the environment of the
closure. See Exercise 14.1 on page 842 for an example of the message-passing id-
iom. This idiom was discussed in early Scheme papers [SS75, Ste76] and is used
extensively for object-oriented programming in Scheme (e.g., [ASS96, AR88]).
The power and flexibility of this idiom led Norman Adams to quip, “objects are
a poor man’s closures” [Dic92].

It has been suggested that the opposite (“closures are a poor man’s objects”)
may also be true [vS]. After all, as illustrated in HOOPLA, a closure can be
implemented as an object responding to a single message, call. But the ease
with which objects can implement closures in HOOPLA depends critically on the
fact that HOOK object declarations (via method) are statically scoped and can
appear in arbitrary expressions. In many class-based object-oriented languages,
objects can be declared only in top-level classes, not in arbitrary scopes, which
severely impedes their ability to simulate closures. So-called closure conversion
techniques (see Section 17.10) can be used to translate all closures into instances
of top-level classes. Indeed, Java’s inner classes are based on such a translation.
But the translation is complex enough that it is challenging for object-oriented
programmers to perform it by hand on a regular basis, which means that powerful
function-oriented idioms like mapping, filtering, and folding remain out of their
reach. In contrast, object-oriented techniques are more accessible to function-
oriented programmers, especially in dynamically typed languages, where static
typing problems associated with objects are not an issue.

Using operational or denotational semantics to prove properties of individual
programs or program phrases in stateful languages can be tedious. An alternative
approach, known as axiomatic semantics, is often used to describe the meaning
of a program phrase by relating the states of a computation before and after the
execution of the phrase. For an introduction to axiomatic semantics, see [Win93,
Chapter 6], [Gri87].
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Control

I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I —
I took the one less traveled by,
And that has made all the difference.

— Robert Frost, “The Road Not Taken”

9.1 Motivation: Control Contexts and Continuations

So far, we have studied two kinds of denotational context important in the eval-
uation of programming language expressions:

• A naming context that determines the meaning of free identifiers within an
expression.

• A state context that specifies the time-dependent behavior of mutable entities.

By reifying both of these contexts as mathematical entities — environments for
naming contexts and stores for state contexts — the denotational approach pro-
vides significant leverage for us to investigate the space of language features that
depend on these contexts. In the case of naming, environments help us to under-
stand issues like parameter passing, scoping, and inheritance. In the case of state,
stores help us to understand issues involving mutable variables and mutable data
structures.

There is a third major context that is still missing from our toolbox: a control
context. Informally, control describes the path taken by a programmer’s eyes
and fingertips when hand-simulating the execution of code. For example, when
simulating a while or for loop in an imperative language, it is often necessary
to refocus attention to the beginning of the loop after the end of the loop code is
reached. Conditional expressions and procedure calls are other simple examples
of control constructs that we have seen.
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What does it mean for expressions to have a control context? As an example,
consider the following FLIC expression:

(let ((square (abs (x) (@* x x))))

(@+ (square 5) (@* (@- 6 2) (square 5))))

There are two occurrences of the (square 5) expression. What is the difference
between them? Both are evaluated in the same environment and the same store,
so they are guaranteed to yield the same value. What distinguishes them is how
their value is used by the rest of the program. Reading from left to right, the first
(square 5) returns 25 to a process that is collecting the first of two arguments
to the application of the + primitive. The second (square 5) yields its result
to a process that is collecting the second of two arguments to an application of
the * primitive (whose first argument is already known to be 4). This, in turn,
is a subtask of the process that is collecting the second of two arguments to the
application of the + primitive (whose first argument is known to be 25), which
itself is a subtask of whatever process is waiting for the answer to the entire let

expression. What distinguishes the occurrences of (square 5) is their control
context: the part of the computation that remains to be done after the expression
is evaluated.

In an operational framework, evaluation contexts are a way to specify con-
trol contexts. In the above squaring example, the control context of the first
occurrence of (square 5) can be written as

(@+ � (@* (@- 6 2) ((abs (x) (@* x x)) 5)))

and the control context of the second occurrence can be written as

(@+ 25 (@* 4 �))

Even though FLIC is a stateful language, note that the control context does not
mention the state in any way.

The key topic we will study in this chapter is how to represent a control con-
text in a denotational setting. The denotational descriptions we have employed
so far have not explicitly represented the notion of an evaluation context or “the
rest of the computation.” A denotational semantics without an explicit control
model is said to be a direct semantics. A direct semantics for a programming
language cannot deal elegantly with interruptions of the normal flow of control
of a program. As long as valuation clauses are defined by structural induction on
the abstract syntax tree of a program, the flow of control in the clauses has no
choice but to follow the structure of this abstract syntax tree.

A simple example of the limitation of direct semantics can be seen in its clumsy
handling of error conditions in the languages that we have already encountered.
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An error is detected in one part of the semantics, and every other part of the
semantics must be able to cope with the possibility that some subexpression has
produced an error instead of a normal result. This approach to error checking does
not capture the intuition that a computation encountering an error immediately
aborts without further processing. Abstractions like with-value help to hide this
error checking, but they do not eliminate it. Indeed, interpreters based on the
direct semantics of FL and its variants expend considerable effort performing
such checks.

More generally, a direct denotational semantics cannot easily explain con-
structs that interrupt the “normal” flow of control:

• early termination of procedures and loops as provided by Java’s and C’s return,
break, and continue constructs;

• nonlocal exits as provided by setjmp/longjmp in C and throw/catch in Com-
mon Lisp;

• unrestricted jumps permitted in numerous languages via goto;

• sophisticated exception handling as seen in Java, ML, Common Lisp, Dylan,
and CLU;

• coroutines, such as CLU’s iterators, Icon’s generators, and Sather’s iters,
which permit control to pass back and forth between producer and consumer
processes;

• backtracking, which is used to model nondeterministic choices to solve problems,
e.g., to search a tree of possibilities. Backtracking is a common strategy in
artificial intelligence programs and is an essential feature provided by Prolog
and other logic-oriented programming languages.

In each of these cases, a program phrase does not simply return some value
and/or an updated store, but instead bypasses the control context in which it
was executed and transfers control to some other place in the program.

Such control transfers can be modeled denotationally using mathematical
entities called continuations, which are denotational analogues of the evaluation
contexts from operational semantics. A continuation explicitly represents the
“rest” of some computation. In implementation terms, it corresponds to a pair of
(1) the current run-time stack of procedure-call invocation frames and (2) a return
address that specifies what code to run when the currently executing procedure
returns a value. The continuation corresponding to the textually subsequent code
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in a program is usually referred to as the normal continuation. Many control
constructs achieve their effect by substituting some other continuation for the
normal one.

This chapter shows how continuations simplify the descriptions of the lan-
guages we have studied so far and allow the modeling of advanced control features
in these languages. Be forewarned that control constructs are notoriously hard to
think about. Even though many of the formal descriptions of control constructs
are surprisingly concise, this does not imply that they are easy to understand.
The often convoluted nature of control can lead the reader into mental gymnas-
tics that are likely to leave the brain a little bit sore at first. Fortunately, with
sufficient practice, the concepts begin to seem natural, and it becomes clear that
continuations are a remarkably powerful tool for understanding and designing
complex control structures. Indeed, the area of control is the big payoff for our
investment in denotational semantics. Many advanced control constructs that
have succinct denotational descriptions are cumbersome to model in an opera-
tional framework.

To help build up some intuitions about continuations, we will first discuss
how to achieve some sophisticated control behavior using only first-class proce-
dures. Then we will be better prepared to understand the use of continuations
in denotational semantics.

9.2 Using Procedures to Model Control

9.2.1 Representing Continuations as Procedures

In the dialects of FL we have studied, the continuation for an expression E is
the rest of the computation “waiting for” the value of E . It is natural to think
of this continuation as being a unary procedure that takes the value of E and
performs the rest of the computation. For example, in the FL expression

(let ((square (abs (x) (@* x x))))

(@+ (square 5) (@* (@- 6 2) (square 5))))

the continuation of the first (square 5) can be written as the procedure

(abs (v1) (@+ v1 (@* (@- 6 2) ((abs (x) (@* x x)) 5))))

and the continuation for the second (square 5) can be written as

(abs (v2) (@+ 25 (@* 4 v2)))

What we have done in both cases is represent an evaluation context as a procedure
by abstracting over the content of its hole.
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Even in languages that do not support side effects, continuations require a
computation to be viewed in a purely sequential way: some expressions are eval-
uated “before” other expressions. For example, the above continuations highlight
the fact that the operands of an FL primitive application are evaluated in left-to-
right order. When the first call to square is being evaluated, the second operand
to + is the unevaluated expression (@* (@- 6 2) (square 5)). But by the time
the second call to square is evaluated, the first (square 5) has been evaluated
to 25 and the (@- 6 2) operand to * has been evaluated to 4.

When continuations are represented explicitly, every computation can be
viewed as an iteration in two state variables: (1) the expression currently be-
ing evaluated and (2) the continuation of the current expression. For example,
the following table summarizes this iteration for a simple arithmetic calculation:

Expression Continuation
(@/ (@+ (@* 6 5) (@- 7 3)) 2) ktop

(@+ (@* 6 5) (@- 7 3)) k1 = (abs (v1) (ktop (@/ v1 2)))

(@* 6 5) k2 = (abs (v2) (k1 (@+ v2 (@- 7 3))))

30 k2

(@- 7 3) k3 = (abs (v3) (k1 (@+ 30 v3)))

4 k3

(@+ 30 4) k1

34 k1

(@/ 34 2) ktop

17 ktop

By convention, we use the variable k to name continuations. We assume that
an expression is initially evaluated relative to the top-level continuation ktop .
In this case, ktop can be thought of as the identity procedure (abs (v) v), but
sometimes it can be more complex. For example, in an interactive read-eval-print
loop, ktop would be a unary procedure that prints its argument (the value of the
last expression entered by the user) and then prompts the user to enter the next
expression to evaluate.

As a more complex example of the iterative view of computation, consider
the following factorial example written in FL:

((rec fact-rec {Efact-rec}
(abs (n)

(if (@= n 0)

1

(@* n (fact-rec (@- n 1))))))

3)
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This iteration table summarizes key steps in the evaluation of this expression:

Expression Continuation
(Efact-rec 3) ktop

(Efact-rec 2) k1 = (abs (v1) (ktop (@* 3 v1)))

(Efact-rec 1) k2 = (abs (v2) (k1 (@* 2 v2)))

(Efact-rec 0) k3 = (abs (v3) (k2 (@* 1 v3)))

(@* 1 1) k2

(@* 2 1) k1

(@* 3 2) ktop

6 ktop

Note the stack-like nature of the continuations. When the base case of 0 is reached
in the factorial computation, the continuation is k3 . This continuation references
k2 , k2 references k1 , and k1 references ktop . Each of these continuations can be
viewed as representing a procedure-call invocation frame in a traditional stack-
based implementation of procedure calls. Calling a procedure creates a new
continuation that corresponds to the frame that is pushed onto the top of the
call stack. Invoking a continuation corresponds to popping the top frame off the
call stack and returning control to code in the calling procedure, whose frame
becomes the new top-of-stack frame.

It is worthwhile comparing the recursive factorial computation above to an-
other way of computing factorial:

((abs (n) {Efact-iter}
((rec fact-loop {Efact-loop}

(abs (num ans)

(if (@= num 0)

ans

(fact-loop (@- num 1) (@* num ans)))))

n 1))

3)

In the iteration table summarizing the evaluation of this expression, note that
the continuation for every application of Efact-loop is the same as the continuation
for the top-level application (Efact-iter 3):

Expression Continuation
(Efact-iter 3) ktop

(Efact-loop 3 1) ktop

(Efact-loop 2 3) ktop

(Efact-loop 1 6) ktop

(Efact-loop 0 6) ktop

6 ktop
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We will say that a recursive procedure like fact-loop is iterative because
invoking it generates a computation like that expected for iteration constructs
such as while, for, and repeat/until loops in many languages. The defining
characteristic of such iteration constructs is that they repeat a computation using
only constant control space. That is, the space required to control the iteration
(the state variables themselves — e.g., num and ans in the fact-loop example —
and any code pointers needed for the execution) is constant. The control space
is distinguished from the data space required to represent any compound data
stored in the state variables.

Because the fact-loop computation does not involve any new continuations,
an implementation need not push a new invocation frame onto the procedure-
call stack when the fact-loop procedure is called, so the stack size can re-
main constant during this factorial computation. In contrast, invocations of the
fact-rec procedure do involve new continuations and their corresponding invo-
cation frames, so fact-rec is not iterative. When we study compilation, we will
see how a compiler can guarantee that an invocation of an iterative procedure like
fact-loop does not create an invocation frame and so is executed like a looping
construct (see the discussion of the tail-call optimization on page 1064).

9.2.2 Continuation-Passing Style (CPS)

We saw above that every procedure application is evaluated relative to an implicit
continuation. It turns out that we can implement some sophisticated control be-
havior if we make this continuation explicit. We will say that a procedure that
takes an explicit representation of its continuation is written in continuation-
passing style (CPS). For example, here is a CPS version of the recursive fac-
torial procedure studied above:

(def fact-rec-cps

(abs (n k)

(if (@= n 0)

(k 1)

(fact-rec-cps (@- n 1)

(abs (v) (k (@* n v)))))))

The body of a CPS procedure “returns” a value by invoking its continuation on
that value. In the body of fact-rec-cps, there are two such invocations: (k 1)

returns 1 in the base case and (k (@* n v)) returns a product of n and the
value v of the recursive call in the general case. A CPS procedure is invoked
with a second argument that explicitly specifies what to do with the result of the
invocation. For example, in the body of fact-rec-cps, the invocation
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(fact-rec-cps (@- n 1)

(abs (v) (k (@* n v))))

can be read as

Call fact-rec-cps on the result of decrementing n. Name the result of
this call v. Then return the result of multiplying n and v.

When fact-rec-cps is invoked from other parts of a program, a continuation
specifying how to process the result must be supplied. For example:

(fact-rec-cps 3 (abs (v) v)) −−−FL→ 6

(fact-rec-cps 3 (abs (v) (@* v 7))) −−−FL→ 42

The fact that continuations can be explicitly represented as procedures is
intellectually interesting, but is it practically useful? Yes! We shall study two
key applications of this fact:

1. In the remainder of this section, we shall explore some sophisticated con-
trol behavior that can be realized when certain continuations are explicitly
represented as first-class procedures. In particular, we will see how explicit
continuations can be used to implement multiple-value-returning procedures,
nonlocal exits, coroutines, error handling, and backtracking.

2. When we study compilation in Chapter 17, we will see that control aspects
of a program can be made concrete by automatically converting all code into
continuation-passing style (see Section 17.9). Remarkably, this CPS conversion
stage of the compiler makes it unnecessary for the implementation to have
explicit stacks of procedure-call invocation frames; all such invocation frames
are implicit in the continuations.

9.2.3 Multiple-value Returns

It is often useful for a procedure to return more than one value. A classic example
of the utility of multiple-value returns concerns integer division and remainder.
Languages often provide two primitives for these operations even though the same
algorithm computes both. It would make more sense to have a single operation
that returns two values.

As another example, suppose that we want to write an FL program that,
given a binary tree with integer leaves, computes the product of (1) the height of
the tree and (2) the sum of the leaves in the tree. We will assume that such trees
are manipulated using the procedures in Figure 9.1. One approach is to apply
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(def (node left right) (pair left right))

(def (left tree) (fst tree))

(def (right tree) (snd tree))

(def (leaf? tree) (not (pair? tree)))

Figure 9.1 Procedures for manipulating binary trees.

(def (height*sum1 tree)

(letrec ((height (abs (tr)

(if (leaf? tr)

0

(+ 1 (max (height (left tr))

(height (right tr)))))))

(sum (abs (tr)

(if (leaf? tr)

tr

(+ (sum (left tr))

(sum (right tr)))))))

(* (height tree) (sum tree))))

Figure 9.2 The first version of height*sum performs two tree traversals.

two different procedures to the tree and combine the results as in Figure 9.2.1

Notice that height*sum1 requires two walks over the given tree.
A procedure that returns multiple values enables the computation to be per-

formed in a single tree walk. A simple method of doing this is to return a pair
at each node of the tree as in Figure 9.3. However, the bundling and unbundling
of values makes this approach to multiple values messy and hard to read in FL.
This approach is far more palatable in languages like ML and Haskell that
support the deconstruction of structured values via pattern-matching notation.

An alternative approach for returning multiple values is to use first-class pro-
cedures to represent continuations that accept multiple values. If procedure M
is supposed to return multiple values, we can modify it to take an extra argu-
ment R, called the receiver (which, by convention, usually comes last). The

1Henceforth, we will not use @ with arithmetic operators in examples unless we are con-
cerned about name capture or are focusing on formal properties of expressions in the context of
operational rewriting steps or denotational calculations. Otherwise, it doesn’t matter whether
we use the primitive arithmetic operators or the corresponding arithmetic procedures from the
standard library.
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receiver is a procedure that expects the multiple values as its arguments and
combines them into some result. M returns its results by calling R on them.
We have already seen numerous examples of this strategy in metalanguage func-
tions (Section A.2.5) and in the discussion of monadic style (Section 8.2.3). Fig-
ure 9.4 shows how to apply this idea to our current example. This style of
code can be difficult to read. The receiver argument to the inner procedure
acts as a continuation encoding what computation needs to be performed on the
two values that inner “returns.” For example, suppose Einner is the expression
(rec inner (abs (tr receiver) . . .)). Then the call (Einner tree *) starts
off the process by applying the abstraction (abs (tr receiver) . . .) (obtained
from unwinding the rec expression Einner ) to the tree tree with a receiver * that
will take the two results and return their product.

Even though the receiver is an argument, it is typical to ignore its argument
status and view it as a different entity when reading a call to a procedure like
inner. So (inner E1 (abs (I1 I2) E2)) can be read as “Call inner on E1

and apply the procedure (abs (I1 I2) E2) to the results” or “Evaluate E2 in
an environment where I1 and I2 are bound to the two results of applying inner

to E1 .” Note that these readings treat inner as a procedure of one argument
that returns two results, not a procedure of two arguments. Viewing continuation
argument(s) as different entities from other arguments is important for getting a
better working understanding of them.

Unlike the other two approaches, using a receiver forces us to choose a par-
ticular order for examining the branches of the binary tree. The main advantage
of a receiver is that it allows the multiple returned values to be named using the
standard naming construct, abs; it is not necessary to invent a new syntax for
naming intermediate values.

As a concrete example, consider the following application of height*sum3 :

(height*sum3 (pair 6 (pair 7 8)))

(We use pair directly rather than node to simplify the discussion of the evaluation
of this expression.) Figure 9.5 presents a sequence of key evaluation steps for
this example in a CBV version of FL. In this and subsequent figures showing
evaluation sequences, we take two liberties to simplify the notation:

• The evaluation relation is defined only on kernel expressions, but we will use
it on sugared expressions as well. In this case, E1

∗⇒ E2 means that the kernel
expression that results from desugaring E1 rewrites to the kernel expression
that results from desugaring E2 in some number of evaluation steps.
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(def (height*sum2 tree)

(letrec ((inner (abs (tr)

(if (leaf? tr)

(pair 0 tr)

(let ((height&sum1 (inner (left tr)))

(height&sum2 (inner (right tr))))

(pair (+ 1 (max (fst height&sum1)

(fst height&sum2)))

(+ (snd height&sum1)

(snd height&sum2))))))))

(let ((height&sum (inner tree)))

(* (fst height&sum) (snd height&sum)))))

Figure 9.3 The second version of height*sum uses pairs to return multiple values.

(def (height*sum3 tree)

((rec inner {Let Einner be (rec inner . . . )}
(abs (tr receiver)

(if (leaf? tr)

(receiver 0 tr)

(inner (left tr)

(abs (h1 s1)

(inner (right tr)

(abs (h2 s2)

(receiver (+ 1 (max h1 h2))

(+ s1 s2)))))))))

tree {First argument to local recursive procedure inner}
* {Second argument to local recursive procedure inner}
))

Figure 9.4 The third version of height*sum passes multiple values to procedural con-
tinuations.

• We will use the names of standard procedures (e.g., +) in contexts where ab-
stractions wrapping the associated primitives (e.g., (abs (x y) (@+ x y)))
would actually be substituted for the names.

In Figure 9.5, note how the continuation argument to inner acts like a stack
that keeps track of the pending operations.
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(height*sum3 (pair 6 (pair 7 8)))

=
∗

===
CBV
⇒ (Einner (pair 6 (pair 7 8)) *)

=
∗

===
CBV
⇒ (Einner 6

(abs (h1 s1)

(Einner (pair 7 8)

(abs (h2 s2)

(* (+ 1 (max h1 h2)) (+ s1 s2))))))

=
∗

===
CBV
⇒ ((abs (h1 s1)

(Einner (pair 7 8)

(abs (h2 s2)

(* (+ 1 (max h1 h2)) (+ s1 s2)))))

0 6)

=
∗

===
CBV
⇒ (Einner (pair 7 8)

(abs (h2 s2)

(* (+ 1 (max 0 h2)) (+ 6 s2))))

=
∗

===
CBV
⇒ (Einner 7

(abs (h1 s1)

(Einner 8

(abs (h2 s2)

((abs (h2 s2) (* (+ 1 (max 0 h2)) (+ 6 s2)))

(+ 1 (max h1 h2)) (+ s1 s2))))))

=
∗

===
CBV
⇒ ((abs (h1 s1)

(Einner 8

(abs (h2 s2)

((abs (h2 s2) (* (+ 1 (max 0 h2)) (+ 6 s2)))

(+ 1 (max h1 h2)) (+ s1 s2)))))

0 7)

=
∗

===
CBV
⇒ (Einner 8

(abs (h2 s2)

((abs (h2 s2) (* (+ 1 (max 0 h2)) (+ 6 s2)))

(+ 1 (max 0 h2)) (+ 7 s2))))

=
∗

===
CBV
⇒ ((abs (h2 s2)

((abs (h2 s2) (* (+ 1 (max 0 h2)) (+ 6 s2)))

(+ 1 (max 0 h2)) (+ 7 s2)))

0 8)

=
∗

===
CBV
⇒ ((abs (h2 s2) (* (+ 1 (max 0 h2)) (+ 6 s2)))

(+ 1 (max 0 0)) (+ 7 8))

=
∗

===
CBV
⇒ ((abs (h2 s2) (* (+ 1 (max 0 h2)) (+ 6 s2))) 1 15)

=
∗

===
CBV
⇒ (* (+ 1 (max 0 1)) (+ 6 15))

=
∗

===
CBV
⇒ (* 2 21)

=
∗

===
CBV
⇒ 42

Figure 9.5 Key steps in the evaluation of an invocation of height*sum3 .
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Exercise 9.1 Using the continuation-based approach to multiple-value returns, give
definitions of the following procedures:

(p1 int-list): Assume int-list is a list of positive integers. Returns a list with three
elements: (1) the product of the elements of int-list; (2) the maximum of the elements
of int-list; and (3) a list that has the same length as int-list in which each element
has twice the value of the corresponding element of int-list.

(p2 int-tree): Assume int-tree is a binary tree whose leaves are positive integers. Re-
turns a list with three elements: (1) the product of the leaves of int-tree; (2) the
maximum of the leaves of int-tree; and (3) a tree that has the same shape as int-tree
in which each leaf has twice the value of the corresponding leaf of int-tree.

Each of your procedures should traverse its argument list or tree exactly once.

9.2.4 Nonlocal Exits

A continuation represents all of the pending operations that are waiting to be
done after the current operation. When continuations are implicit, the compu-
tation can terminate successfully only when all of the pending operations have
been performed. Yet we sometimes want a computation buried deep in pending
operations to terminate immediately with a result or at least circumvent some of
the pending operations. We can achieve these so-called nonlocal exits by using
procedures to represent explicit continuations. The key idea is this: When con-
tinuations are represented explicitly, we can choose which continuation to invoke
or perhaps choose not to invoke any continuation at all.

As a simple example, consider the task of multiplying the leaves in a binary
tree of integers. Figure 9.6 shows the natural recursive solution to this problem
in FL. For example:

(tree-product1 (node (node 2 3) (node 4 5))) −−−FL→ 120

(tree-product1 (node (node 2 0) (node 4 5))) −−−FL→ 0

Figure 9.7 shows a CPS version of tree-product1 . Its behavior is exactly the
same as tree-product1 ’s; we have just made the continuations explicit.

Notice that tree-product1 and tree-product2 dutifully multiply all the
leaves of the tree even if it contains the leaf 0. This is wasteful since the answer
is known to be 0 as soon as a 0 is encountered. There is no need to look at any
other leaves or to perform any more multiplications. tree-product3 in Figure 9.8
performs this optimization. To accomplish a nonlocal exit, tree-product3 dis-
tinguishes the continuation passed to the initial call (k-outer) from continuations
(k-inner) generated by calls to the local recursive procedure prod. The local
recursive procedure behaves like tree-product2 except that it “returns” imme-
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(def (tree-product1 tree)

(if (leaf? tree)

tree

(* (tree-product1 (left tree))

(tree-product1 (right tree)))))

Figure 9.6 A recursive procedure for computing the product of the leaves of a binary
tree of integers.

(def (tree-product2 tree k)

(if (leaf? tree)

(k tree)

(tree-product2 (left tree)

(abs (vl)

(tree-product2 (right tree)

(abs (vr)

(k (* vl vr))))))))

Figure 9.7 A CPS procedure for computing the product of the leaves of a binary tree
of integers.

(def (tree-product3 tree k-outer)

((rec prod

(abs (tr k-inner)

(if (leaf? tr)

(if (= tr 0)

(k-outer 0) {‘‘return’’ 0 immediately from outer procedure}
(k-inner tr)) {‘‘return’’ integer leaf from inner procedure}

(prod (left tr)

(abs (vl)

(prod (right tr)

(abs (vr)

(k-inner (* vl vr)))))))))

tree {First argument to local recursive procedure}
k-outer {Second argument to local recursive procedure}
))

Figure 9.8 A CPS tree-product procedure that exits immediately with 0 if a 0 leaf is
encountered.
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(def (tree-product4 tree)

((rec prod {Let Eprod be (rec prod . . . )}
(abs (tr k-inner)

(if (leaf? tr)

(if (= tr 0)

0 {return 0 immediately from tree-product4}
(k-inner tr)) {‘‘return’’ integer leaf to inner continuation}

(prod (left tr)

(abs (vl)

(prod (right tr)

(abs (vr)

(k-inner (* vl vr)))))))))

tree {First argument to local recursive procedure}
(abs (v) v) {Second argument to local recursive procedure}
))

Figure 9.9 A non-CPS tree-product procedure that exits immediately with 0 if a 0
leaf is encountered.

diately to k-outer upon encountering a 0. This avoids processing the rest of the
tree and bypasses all pending multiplications represented by k-inner.

In this example, there was actually no need to convert the outer procedure
to CPS form. The only continuations needed are those used by the internal
recursive procedure. This observation leads to the definition of tree-product4

in Figure 9.9. In this procedure, if a 0 leaf is encountered, a 0 is directly returned
as the result of tree-product4 . Explicit continuations are used to represent
pending computations in the local recursive prod procedure so that they can be
bypassed if a 0 is encountered. Figure 9.10 shows key steps in the evaluation
of (tree-product4 (pair (pair 2 0) (pair 4 5))). In particular, it shows
that the continuation in place when 0 is encountered is never invoked; instead, 0
is returned immediately as the result of the invocation of tree-product4 .

9.2.5 Coroutines

Coroutining is a situation in which control jumps back and forth between con-
ceptually independent processes. The most common version is producer/consum-
er coroutines, where a consumer process transfers control to a producer process
when it wants the next value generated by the producer, and the producer returns
control to the consumer along with the value. A classic example of this kind of
coroutine is a compiler front end in which a parser requests tokens from a lexical
scanner that produces them on an as-needed basis.
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(tree-product4 (pair (pair 2 0) (pair 4 5)))

=
∗

===
CBV
⇒ (Eprod (pair (pair 2 0) (pair 4 5)) (abs (v) v))

=
∗

===
CBV
⇒ (Eprod (pair 2 0)

(abs (vl)

(Eprod (pair 4 5)

(abs (vr)

((abs (v) v) (* vl vr))))))

=
∗

===
CBV
⇒ (Eprod 2

(abs (vl)

(Eprod 0

(abs (vr)

((abs (vl)

(Eprod (pair 4 5)

(abs (vr)

((abs (v) v) (* vl vr)))))

(* vl vr))))))

=
∗

===
CBV
⇒ (Eprod 0

(abs (vr)

((abs (vl)

(Eprod (pair 4 5)

(abs (vr)

((abs (v) v) (* vl vr)))))

(* 2 vr))))

=
∗

===
CBV
⇒ (if (= 0 0)

0

((abs (vr)

((abs (vl)

(Eprod (pair 4 5)

(abs (vr)

((abs (v) v) (* vl vr)))))

(* 2 vr)))

0))

=
∗

===
CBV
⇒ 0 {(abs (vr) . . . ) is never invoked!}

Figure 9.10 Key steps in the evaluation of an invocation of tree-product4 .
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(def (count-from num)

((rec new-producer

(abs (n) {Eabs:producer}
(abs (consumer)

(consumer n (new-producer (+ n 1))))))

num))

(def (add-first length)

((rec new-consumer

(abs (len sum) {Eabs:consumer}
(abs (value next-producer)

(if (= len 0)

sum

(next-producer (new-consumer (- len 1) (+ value sum)))))))

length 0))

Figure 9.11 A simple producer/consumer example.

Here, we will show how simple producer/consumer coroutines can be imple-
mented by using first-class procedures to represent control. An alternative tech-
nique for implementing such coroutines is to have the producer and consumer
communicate via conceptually infinite data structures like streams, a notion we
study in Section 10.1.3.

We represent a producer as a procedure that takes a consumer as its argument
and hands that consumer the requested value along with the next producer.
We represent a consumer as a procedure that takes a value and a producer as
arguments, and either returns or calls the producer on the next consumer.

For example, suppose (count-from n) makes a producer that generates the
(conceptually infinite) increasing sequence of integers beginning with n, and
(add-first m) makes a consumer that adds up the first m elements of the
producer to which it’s attached. Then ((count-from 3) (add-first 5)) re-
turns the sum of the integers from 3 to 7, inclusive. Figure 9.11 presents FL
definitions of count-from and add-first and Figure 9.12 shows key steps in the
evaluation of ((count-from 13) (add-first 3)). Note how this coroutining
technique is able to effectively interleave two independently defined loops — the
producer loop (new-producer) and the consumer loop (new-consumer) — by
having control jump back and forth between the loops.
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{Add up the 3 consecutive integers starting at 13}
((count-from 13) (add-first 3))

=
∗

===
CBV
⇒ ((abs (consumer) (consumer 13 (Eabs:producer (+ 13 1))))

(abs (value next-producer)

(if (= 3 0) 0

(next-producer (Eabs:consumer (- 3 1) (+ value 0))))))

=
∗

===
CBV
⇒ ((abs (value next-producer)

(if (= 3 0) 0

(next-producer (Eabs:consumer (- 3 1) (+ value 0)))))

13 (abs (consumer) (consumer 14 (Eabs:producer (+ 14 1)))))

=
∗

===
CBV
⇒ ((abs (consumer) (consumer 14 (Eabs:producer (+ 14 1))))

(abs (value next-producer)

(if (= 2 0) 13

(next-producer (Eabs:consumer (- 2 1) (+ value 13))))))

=
∗

===
CBV
⇒ ((abs (value next-producer)

(if (= 2 0) 13

(next-producer (Eabs:consumer (- 2 1) (+ value 13)))))

14 (abs (consumer) (consumer 15 (Eabs:producer (+ 15 1)))))

=
∗

===
CBV
⇒ ((abs (consumer) (consumer 15 (Eabs:producer (+ 15 1))))

(abs (value next-producer)

(if (= 1 0) 27

(next-producer (Eabs:consumer (- 1 1) (+ value 27))))))

=
∗

===
CBV
⇒ ((abs (value next-producer)

(if (= 1 0) 27

(next-producer (Eabs:consumer (- 1 1) (+ value 27)))))

15 (abs (consumer) (consumer 16 (Eabs:producer (+ 16 1)))))

=
∗

===
CBV
⇒ ((abs (consumer) (consumer 16 (Eabs:producer (+ 16 1))))

(abs (value next-producer)

(if (= 0 0) 42

(next-producer (Eabs:consumer (- 0 1) (+ value 42))))))

=
∗

===
CBV
⇒ ((abs (value next-producer)

(if (= 0 0) 42

(next-producer (Eabs:consumer (- 0 1) (+ value 42)))))

16 (abs (consumer) (consumer 17 (Eabs:producer (+ 17 1)))))

=
∗

===
CBV
⇒ 42

Figure 9.12 Key steps in the evaluation of ((count-from 13) (add-first 3)).
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Exercise 9.2 A problem with the definitions in Figure 9.11 in a CBV version of FLK is
that the producer resulting from count-from can “run ahead” of the consumer resulting
from add-first. For example, in the evaluation sequence in Figure 9.12, the producer
has produced two numbers (16 and 17) beyond the last number that is actually needed
(15). Not only is this inefficient, but in some producers it can cause problems in situations
where attempting to produce the next element beyond the last one needed would lead
to an error. Modify the definitions of count-from and add-first so that no number
is generated by the producer unless it is actually needed by the consumer. Hint: use
thunks!

9.2.6 Error Handling

The dialects of FL that we have studied all use the error construct to indicate
that a computation has encountered an abnormal situation. Executing this con-
struct effectively halts the computation. However, there are many times we want
to handle the error in a way that allows the computation to proceed. Addition-
ally, we want the flexibility to handle the error in different ways under different
circumstances.

For example, consider the implementation of an environment data structure
that binds names to values. Suppose that (env-lookup name env) is an oper-
ation that returns the value bound to the name name in the environment env.
What should env-lookup do if env doesn’t have any binding for name? Some-
times we simply want to terminate the computation with an unbound-variable
error. But there are many situations in which we want the computation to con-
tinue. Perhaps env-lookup is being used to implement an operation that merges
two environments, à la merge in the environments we have studied in denota-
tional semantics (Figure 6.24 on page 277). In this case, if looking up a name in
one environment fails, we want to look up the name in another environment. Or
perhaps env-lookup is being used to look up variables in the implementation of
an interpreter for the FL programming language. If we are testing the interpreter
on a test suite of programs, some of which have unbound-variable errors, we want
looking up an unbound variable to indicate that the current test case resulted
in an unbound-variable error but also continue to run the remaining test cases.
And if we embed the same interpreter in an interactive read-eval-print loop, we
want to handle an unbound variable by indicating that an error has occurred
when evaluating the current expression and then prompt the user for the next
expression to evaluate.

One technique for handling errors is to use two continuations: a success
continuation that is used for normal flow of control and a failure continuation
that is used to handle abnormal situations. For example, Figure 9.13 presents
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an implementation of environments as lists of name/value pairs in which the
env-lookup function takes a success (succ) and failure (fail) continuation in
addition to the name and environment arguments. If the name is bound in the
given environment, the success continuation is called on the associated value.
Otherwise, the failure continuation (which is a nullary procedure) is invoked.
Here is a sample use of env-lookup:

(def e1 (env-extend (sym a) 3

(env-extend (sym b) 2

(env-extend (sym a) 1

(env-empty)))))

(def (env-test1 names env)

(map (abs (name)

(env-lookup name env

(abs (v) v)

(abs () (sym *unbound*))))

names))

(env-test1 (list (sym a) (sym b) (sym c)) e1)

−−−FL→ �3 , 2 , ′∗unbound∗ ′ �

In env-test1, the success continuation for env-lookup returns the value that is
found and the failure continuation returns the symbol *unbound*.

A more interesting use of env-lookup’s failure continuation is illustrated by
env-test2 in Figure 9.14. The env-test2 procedure takes a list of names and an
environment and returns a list of name/value binding pairs for all of the bound
names; the unbound names are ignored. For example:

(env-test2 (list (sym a) (sym c) (sym b) (sym d)) e1)

−−−FL→ �〈 ′a ′, 3 〉, 〈 ′b ′, 2 〉�

The env-test2 procedure is implemented in terms of a loop procedure that uses
an explicit continuation k to collect the binding list. When a name is in the
environment, env-lookup’s success continuation invokes k to add a new bind-
ing to the list that results from processing the remaining names. But when a
name is unbound, env-lookup’s failure continuation just continues processing
the remaining names.

In Figure 9.13, success and failure continuations are also used in the imple-
mentation of (env-extend name val env) to avoid unnecessary data allocation
(pair creation). When name is bound in env, a list of env’s bindings in which a
new binding of name to val is in the same position as the old binding for name
is returned. In this case it is necessary to create only one new binding (pairing
name and val) and to copy the list nodes (the pairs that make up the list) up
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{Returns an empty list of bindings.}
(def (env-empty) (list))

{If there is a name/value binding pair that binds name in the
environment, call the success continuation on the associated value.
Otherwise invoke the failure continuation.}
(def (env-lookup name env succ fail)

(if (null? env)

(fail)

(let ((binding (car env)))

(if (sym=? name (fst binding))

(succ (snd binding))

(env-lookup name (cdr env) succ fail)))))

{If there is a name/value binding pair that binds name in the environment,
return a binding list in which the new binding for name appears instead
of the old binding, in the same position in the list. Otherwise return a
binding list that has a new binding for name to value at the front.}
(def (env-extend name value env)

(let ((new-binding (pair name value)))

(env-extend-loop name value env

(abs (bindings) bindings)

(abs () (cons new-binding env)))))

(def (env-extend-loop name value env succ fail)

(if (null? env)

(fail)

(let ((binding (car env)))

(if (sym=? name (fst binding))

(succ (cons (pair name value) (cdr env)))

(env-extend-loop name value (cdr env)

(abs (bindings) (succ (cons binding bindings)))

fail)))))

{Returns an environment with all the bindings of the two given environments.
If a name is bound in both, precedence is given to the binding in env1.}
(def (env-merge env1 env2)

(foldr (abs (binding env)

(env-extend (fst binding) (snd binding) env))

env2

env1))

Figure 9.13 Implementation of environments as lists of pairs that uses success and
failure continuations.
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(def (env-test2 names env)

(letrec ((loop (abs (ns k)

(if (null? ns)

(k nil)

(env-lookup (car ns) env

(abs (val)

(loop (cdr ns)

(abs (bindings)

(k (cons (pair (car ns) val)

bindings)))))

(abs () (loop (cdr ns) k)))))))

(loop names (abs (bindings) bindings))))

Figure 9.14 The env-test2 procedure uses the failure continuations of env-lookup
to ignore names that are unbound in the environment.

to and including this new binding. But if name is not bound in env, the new
binding of name and val is prepended to the front of the binding list, requiring
only one new binding and one new list node. This behavior could be achieved
in two passes over the bindings by first determining if name is bound in env and
then prepending or updating the binding. But this behavior can be achieved in
a single pass over the bindings using success and failure continuations.

Figure 9.15 presents a more elegant implementation of environments as lookup
procedures that take (1) a name to be looked up; (2) a unary success continuation
to invoke on the value associated with the name if it is bound in the environ-
ment; and (3) a nullary failure continuation to invoke if the name is not bound
in the environment. The empty environment returned by env-empty is a lookup
procedure that simply invokes its failure continuation. env-lookup invokes its
given environment as a lookup procedure on the name and two continuations.
(env-extend name val env) returns a lookup procedure that succeeds with val
when given name and looks up any other name in env. (env-merge env1 env2)
returns a lookup procedure that first looks up a name in env1. If the name is
bound in env1, the success continuation is invoked on the associated value; oth-
erwise the name is looked up in env2. Note that the env-test1 and env-test2

procedures defined earlier will also work with this new implementation of envi-
ronments.

Exercise 9.3 In Figure 9.13, env-extend-loop is defined outside of env-extend. Using
letrec, it is possible to define env-extend-loop as a local recursive procedure inside the
body of env-extend. Show that if this is done, the desirable data allocation behavior
of env-extend-loop can be achieved by using only a success continuation; no failure
continuation is needed.
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(def (env-empty)

(abs (name succ fail) (fail)))

(def (env-lookup name env succ fail)

(env name succ fail))

(def (env-extend name value env)

(abs (name2 succ fail)

(if (sym=? name name2)

(succ value)

(env name2 succ fail))))

(def (env-merge env1 env2)

(abs (name succ fail)

(env1 name succ (abs () (env2 name succ fail)))))

Figure 9.15 Implementation of environments as procedures using success and failure
continuations.

9.2.7 Backtracking

In many problem-solving scenarios, a choice must be made between several ways
to solve a subproblem. Some subproblem solutions may lead to a solution to
the whole problem while others may not. When a particular choice makes it
impossible to solve the whole problem, it is necessary to backtrack to the point
where the choice was made and try a different choice. For example, suppose you
are trying to get out of a maze and you come to a spot where you can either turn
right or turn left. If you turn right and find that all paths lead to dead ends, you
need to backtrack to the same spot and instead turn left.

Backtracking can be programmed using success and failure continuations. The
success continuation represents the normal flow of control through the program.
Every time a choice point is encountered, the success continuation is invoked on
one choice but a new failure continuation is created that represents trying the
other choices. This failure continuation is a nullary procedure that is invoked
if it becomes apparent that the problem cannot be solved with the choices that
have been made already. Invoking the failure continuation backtracks to the last
choice point and makes a different choice at that point.

A good example of backtracking is finding variable assignments that satisfy
a boolean formula. We will represent boolean formulas as s-expressions defined
by the following grammar:

BF ∈ BooleanFormula ::= #t | #f | Y | (not BF)

| (and BF 1 BF 2) | (or BF 1 BF 2)
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(def (not? form)

(and (list? form)

(= (length form) 2)

(sym=? (car form) (sym not))))

(def (negand form) (nth 2 form))

(def (and? form)

(and (list? form)

(= (length form) 3)

(sym=? (car form) (sym and))))

(def (conjunct1 form) (nth 2 form))

(def (conjunct2 form) (nth 3 form))

(def (or? form)

(and (list? form)

(= (length form) 3)

(sym=? (car form) (sym or))))

(def (disjunct1 form) (nth 2 form))

(def (disjunct2 form) (nth 3 form))

Figure 9.16 Procedures for manipulating boolean formulas.

As usual, the literals #t and #f stand for boolean true and false values. The
symbol Y represents a boolean variable named Y . (not BF) is the formula
that negates BF . The logical conjunction of formulas BF 1 and BF 2 is written
(and BF 1 BF 2) while their logical disjunction is written (or BF 1 BF 2). Such
formulas can be written in FL dialects using the quote sugar for s-expressions.
E.g.:

(def bf1 (quote (and (or a (or b c)) (and (not a) (not b)))))

Figure 9.16 presents some FL procedures for manipulating such formulas.
A boolean formula is satisfiable if there is an assignment of truth values to

the boolean variables in the formula that makes the formula true. For example,
bf1 is satisfiable if a is assigned false, b is assigned false, and c is assigned true. On
the other hand, the formula (and a (not a)) is not satisfiable since it denotes
false no matter what value is assigned to a.

Figure 9.17 presents the FL definition of a satisfy procedure that determines
whether a boolean formula is satisfiable. If so, satisfy returns an environment
representing a set of variable assignments under which the formula is true. If not,
satisfy returns the symbol failed. Assuming that the binding-list implementa-
tion of environments from Figure 9.13 is used, here are some sample invocations
of satisfy:
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(satisfy (quote (and a (and (not b) c))))

−−−FL→ �〈 ′c ′, true〉, 〈 ′b ′, false〉, 〈 ′a ′, true〉�
(satisfy (quote (and a (not a)))) −−−FL→ ′failed ′

(satisfy bf1) −−−FL→ �〈 ′c ′, true〉, 〈 ′b ′, false〉, 〈 ′a ′, false〉�
(satisfy (quote (or a (or b c)))) −−−FL→ �〈 ′a ′, true〉�

The last example shows that variables whose values are irrelevant might not ap-
pear in the result. In this example, once a is assigned the value true, the formula
is satisfiable and no more work is done to examine the subformula (or b c).

The satisfy procedure is implemented in terms of the auxiliary procedure
sat, which takes four arguments:

1. the boolean formula form to be processed;

2. an environment asst representing the variable assignments so far;

3. a success continuation succ that takes (1) the boolean value of the formula,
(2) the updated variable assignments from processing the formula, and (3) the
updated failure continuation from processing the formula; and

4. a nullary failure continuation.

Observe how the variable assignments and failure continuation are threaded
through the computation. The success continuation must take the variable as-
signments and failure continuation as arguments in order to thread them appro-
priately. Backtracking is implemented via the interplay between the variable-
handling clause of sat and the invocation (fail) in satisfy. Whenever a vari-
able is encountered, it is looked up in the current variable assignments. If it
is already bound, the computation proceeds with that binding. But if it isn’t
yet bound, a guess must be made as to whether the variable should be true or
false. Here sat always first guesses true by invoking succ on #t with the variable
assignments updated to reflect this guess. But it also updates the failure contin-
uation to make the false guess if the true guess doesn’t work out. The top-level
satisfy procedure invokes sat with a success continuation that checks whether
the formula is true under the guessed assignments. If so, those assignments are
returned. If not, the invocation (fail) will cause the computation to go back to
the most recent choice point and make a different guess.

For example, consider how satisfy processes the formula bf1:

(and (or a (or b c)) (and (not a) (not b)))

sat will first guess true for a and ignore (or b c); but (and (not a) . . .) will
then be false, so bf1 will be false. The failure continuation created at the first
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(def (satisfy formula)

(sat formula

(env-empty)

(abs (b asst fail) (if b asst (fail)))

(abs () (sym failed))))

(def (sat form asst succ fail)

(cond ((bool? form) (succ form asst fail))

((sym? form)

(env-lookup form asst

(abs (b) (succ b asst fail))

(abs ()

(succ #t

(env-extend form #t asst)

(abs () (succ #f (env-extend form #f asst) fail))))))

((not? form)

(sat (negand form) asst

(abs (b asst1 fail1) (succ (not b) asst1 fail1))

fail))

((and? form)

(sat (conjunct1 form) asst

(abs (b1 asst1 fail1)

(if b1

(sat (conjunct2 form) asst1 succ fail1)

(succ #f asst1 fail1)))

fail))

((or? form)

(sat (disjunct1 form)

(abs (b1 asst1 fail1)

(if b1

(succ #t asst1 fail1)

(sat (disjunct2 form) asst1 succ fail1)))))

(else (error illegal-form))

))

Figure 9.17 A backtracking version of a satisfy procedure written in FL. If the
given formula is satisfiable, satisfy returns an environment representing the variable
assignment that makes the formula true. Otherwise, satisfy returns the symbol failed.

reference to a will be invoked to guess false instead. This forces (or b c) to be
processed, and sat will guess that b is true. But bf1 will still be false, so the
failure continuation created at the first reference to b will also be invoked. Under
the assumption that b is false, sat will guess that c is true. With this assignment
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(def (satisfy formula)

(sat formula

(abs (b fail asst) (if b asst (fail)))

(abs () (sym failed))

(env-empty)))

(def (sat form succ)

(cond ((bool? form) (succ form))

((sym? form)

(abs (fail asst) {Only place where fail and asst are explicit}
(env-lookup form asst

(abs (b) (succ b fail asst))

(abs ()

(succ #t

(abs () (succ #f fail (env-extend form #f asst)))

(env-extend form #t asst))))))

((not? form)

(sat (negand form) (abs (b) (succ (not b)))))

((and? form)

(sat (conjunct1 form)

(abs (b1) (if b1 (sat (conjunct2 form) succ) (succ #f)))))

((or? form)

(sat (disjunct1 form)

(abs (b1) (succ #t) (sat (disjunct2 form) succ))))

(else (error illegal-form))

))

Figure 9.18 A version of satisfy in which most of the state-threading details are
hidden by currying. The arguments of sat and the success continuations have been
reordered to put the assignment argument last.

(i.e., a and b are false but c is true), bf1 is satisfied, and the environment
representing this assignment is returned. The failure continuation created at the
reference to c is never invoked.

Much of the code in sat deals with threading the variable assignments and
failure continuation through the computation. It turns out that if a different
parameter order is chosen for the arguments to sat and the success continuation,
many of the threading details can be hidden by currying (see Figure 9.18). These
details need be made explicit only in the one place (the variable-handling clause
of sat) that must explicitly manipulate them. This is reminiscent of the way that
a single-threaded store is hidden in monadic style except for the spots where the
store must be explicitly manipulated. If satisfy is implemented in a stateful
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language like FLIC, then the single-threading of the failure continuation can
be replaced by a cell that holds the current failure continuation. However, the
single-threading of the assignment is trickier to avoid. These issues are explored
in Exercise 9.4.

Exercise 9.4

a. Implement versions of satisfy and sat that do not explicitly single-thread the failure
continuation through the computation, but instead store a stack of failure continua-
tions in a top-level cell named sat-fail. The stack of failure continuations can be
represented as a list ordered from the top (most recent) continuation down. Each
time an unassigned variable is encountered, a new failure continuation is pushed onto
the stack. The top continuation should be popped and invoked by satisfy whenever
the formula is false. If the failure stack is empty, satisfy should return the symbol
failed.

b. Show that the explicit stack in part a is unnecessary by changing the implementation
so sat-fail is a cell containing exactly one failure continuation. The invocation of
this failure continuation should be responsible for resetting the content of sat-fail
appropriately, thus effectively popping an implicit stack.

c. Bud Lojack modifies the implementation from part a to eliminate the single-threading
of the variable assignments through the satisfiability computation by using a top-
level cell named sat-asst that holds a single environment representing the current
assignments. His version of sat begins as follows:

(def (sat form succ)

(cond ((bool? form) (succ form))

((sym? form)

(env-lookup form (^ sat-asst)

(abs (b) (succ b))

(abs ()

(begin

(:= sat-fail

(cons (abs ()

(begin (:= sat-asst

(env-extend form #f (^ sat-asst)))

(succ #f)))

(^ sat-fail)))

(:= sat-asst (env-extend form #t (^ sat-asst)))

(succ #t)))))
...

))

However, he finds that satisfy sometimes returns the symbol failed for a satisfiable
formula. Given an example formula in which this occurs and explain why it happens.

d. Help Bud fix his program from part c by changing sat-asst so that it contains a
stack of environments representing variable assignments.
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e. In a version of FLIC supporting the try construct from Exercise 8.14, show how Bud
can fix his program from part c assuming that sat-asst contains a single environment
representing a set of variable assignments.

f. Without using try, modify the implementation from part b to use a cell sat-asst
that contains only a single variable assignment. Hint: Invoking a failure continuation
needs to reset both sat-asst and sat-fail.

9.3 Continuation-based Semantics of FLICK

Now that we’ve built up some intuitions about continuations, it’s time to model
continuations explicitly in our denotational definitions. To handle state in our
semantics, we took the idiom of single-threading a store through a computation
and made it part of the computational model. Similarly, we will handle control
in our semantics by embedding in our computational model the idiom of passing
explicit continuations through a computation. The strategy of capturing com-
mon programming idioms in a semantic framework — or any language — is a
powerful idea that lies at the foundation of programming language design. In-
deed, languages can be considered expressive to the extent that they relieve the
programmer of managing the details of common programming idioms.

Together, environments, stores, and continuations are sufficiently powerful to
model most programming language features. As noted earlier, a semantics that
uses only environments and stores is called a direct semantics. A semantics
that adds continuations to a direct semantics is called a continuation-based
semantics. A continuation-based semantics with particular conventions about
the signatures of valuation functions is called a standard semantics, since most
denotational definitions are written in this style. One advantage of standard se-
mantics is that following a set of conventions simplifies the comparison of different
programming languages defined by standard semantics. We already saw this kind
of advantage when we studied parameter passing and scoping. Comparing dif-
ferent approaches was facilitated by the fact that the styles of the denotational
definitions being compared were similar.

The conventions used for standard semantics are different from the conven-
tions we’ve been using that involve computations (the Comp domain). Since both
conventions are important, we will present the continuation-based semantics for
FLICK in both styles. Because it manipulates continuations more concretely,
we will first present the standard semantics for FLICK. Then we will present
a continuation-based semantics in the Comp framework, which is more abstract
because it hides the manipulation of continuations. In both semantics, FLICK
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phrases have exactly the same meaning, but these are written down in different
ways that expose or hide details involving continuations.

Moreover, in both semantics, FLICK programs have exactly the same mean-
ing as they have using the direct denotational semantics from Section 8.3.4.
What, then, is the advantage of a continuation-based semantics? Even though
programs have the same meaning under all these different forms of semantics,
other phrases — particularly expressions — have very different meanings in a
direct semantics and in a continuation-based semantics. Just as explicit proce-
dural continuations allowed us to model advanced control idioms in Section 9.2,
in the following sections of this chapter we will use the explicit continuations
in the semantics to capture these idioms in sophisticated programming language
control constructs. A continuation-based semantics is a much more powerful tool
for studying control features than a direct semantics.

9.3.1 A Standard Semantics of FLICK

Semantic Algebra

Figure 9.19 presents the semantic algebra for the standard semantics of FLICK.
The semantic algebra introduces three continuation domains:

γ ∈ Cmdcont = Store→ Answer
k ∈ Expcont = Value→ Cmdcont
j ∈ Explistcont = Value*→ Cmdcont

Cmdcont is the domain of command continuations. These represent the rest
of the computation for commands (also called statements), phrases that may
have side effects but do not return values. Many real-world programming lan-
guages have distinct syntactic categories for commands (which do not return
values) and expressions (which do return values). For example, in Ada, For-
tran, and Pascal, variable assignments, array updates, and program output are
performed via commands. C, C++, and Java are expression-based languages,
but invocations of functions/methods with the void return type are effectively
commands.

FLICK does not have a separate syntactic domain for commands, but some
expressions effectively serve as commands. For example, := expressions return
the uninteresting value #u simply because they are required to return something,
but the reason to execute an assignment is to modify the store. Sequencing using
begin is a natural command context: it exists to enforce an order of state trans-
formations. In (begin E1 E2), the value of E1 is ignored, effectively treating it
as a command.
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Domains
γ ∈ Cmdcont = Store→ Answer
k ∈ Expcont = Value→ Cmdcont
j ∈ Explistcont = Value* → Cmdcont

Answer = Expressible ; language-dependent in general
Nameable = Value ; FLICK is CBV
Storable = Value ; FLICK is CBV

p ∈ Proc = Nameable→ Expcont→ Cmdcont
x ∈ Expressible = (Value + Error)⊥ ; as before
v ∈ Value = . . . as in FLICK direct semantics . . . ; language-dependent in general

Error = SymLit

Constants and Operations
top-level-cont : Expcont = λv . λs . (Value �Expressible v)

error-cont : Error→ Cmdcont = λY . λs . (Error �Expressible Y )

check-location : Value→ (Location→ Cmdcont)→ Cmdcont
= λvf . match v

� (Location �Value l) [] (f l)
� else (error-cont not-a-location) end

similar for check-integer : Value→ (Int→ Cmdcont) → Cmdcont, etc.

ensure-nameable : BindingVal→ Expcont→ Cmdcont
= λβk . match β

� (Nameable �BindingVal v) [] (k v)
; FLICK is CBV; CBN definition would differ

� (Unbound �BindingVal unbound) [] (error-cont unbound-variable) end

similar for ensure-storable : AssignedVal→ Expcont→ Cmdcont
ensure-value : Expressible→ Expcont→ Cmdcont, etc.

boolean-cont : (Bool→ Cmdcont) → Expcont
= λf . (λv . match v

� (Bool �Value b) [] (f b)
� else (error-cont non-boolean) end )

similar for procedure-cont : (Proc→ Cmdcont)→ Expcont, etc.

one-arg : (Value→ Expcont→ Cmdcont)→ (Value* → Expcont→ Cmdcont)
= λf . (λv∗k . match v∗

� [v1 ] [] (f v1 k)
� else (error-cont wrong-number-of-args) end )

two-args : (Value→ Value→ Expcont→ Cmdcont)
→ (Value*→ Expcont→ Cmdcont)

= λf . (λv∗k . match v∗

� [v1 , v2 ] [] (f v1 v2 k)
� else (error-cont wrong-number-of-args) end )

Figure 9.19 Semantic algebra for the standard semantics of FLICK.
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In a standard semantics, a command continuation maps the store represent-
ing the state of the computation after the command has executed to the final
answer of the program. What counts as the “final answer” of a program varies
from language to language and is modeled by the Answer domain. In FLICK,
Answer = Expressible. In interpreter-based languages, the initial continuation
might be an interpreter’s read-eval-print loop, which never returns. In this case,
Answer could be viewed as a mapping from a sequence of input strings read by
the interpreter to the sequence of output strings printed by the interpreter. In
languages like C, Java, and Pascal, for simple programs Answer can be viewed
as a mapping from the initial state of the file system to the final state of the file
system. But a much more complex Answer domain is needed to model the kinds
of input and output systems used with modern programs, e.g., those involving
graphical user interfaces, network communication, robotic sensors and actuators,
and a host of other peripheral devices.

Expcont is the domain of expression continuations, which represent the
rest of the computation for expressions, phrases that return a value in addition
to possibly having side effects. Since expressions both return a value and poten-
tially modify the store, the continuation for an expression expects both the value
and the store produced by that expression. In contrast, a command continuation
expects only a store. Note that because Cmdcont = Store → Answer, we can
also view Expcont as:

Expcont = Value→ Store→ Answer

That is, we can think of an expression continuation as taking a value and returning
a command continuation; or we can think of it as taking a value and a store
and returning an answer. Which perspective is more fruitful depends on the
situation. The argument order (value before store) is arbitrary, but this order
is the convention in a standard semantics because it helps to hide the store in
certain situations.

The first argument of an expression continuation is an element of Value re-
gardless of whether the language being modeled is a CBV or a CBN language.
Such a continuation can never be directly applied to an element of Expressible;
it can only be applied to an element of Value.

The final continuation domain is Explistcont , which is used in contexts in
which a sequence of values is collected. Such a continuation maps the value
sequence and store to the final answer of the program.

Most of the other domains in Figure 9.19 are familiar from the direct semantics
for FLICK. One domain that has been modified from before is the Proc domain,
which now takes an expression continuation in addition to a nameable value:
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Proc = Nameable→ Expcont→ Cmdcont

Intuitively, the new Expcont argument is the “return address” that a procedure
returns to when it returns a value. We can also view this Proc domain as:

Proc = Nameable→ Expcont→ Store→ Answer

The order of these domains (nameable value before expression continuation be-
fore store) is standard. We will see that this particular ordering enables the
continuation and store to be hidden when they are not explicitly needed. We will
see the idiom Expcont → Cmdcont in many other spots in the semantics. Keep
in mind that it can always be viewed as Expcont→ Store→ Answer.

The semantic algebra in Figure 9.19 includes many constants and operations
that are helpful in the valuation functions. top-level-cont is the top-level ex-
pression continuation. Given the value and store at the end of a program, it
ignores the store and converts the value into an expressible value that is the “fi-
nal answer” of the program. error-cont is similar, except that it converts an error
message into a “final answer.” There are many functions whose purpose is to
hide error-handling details. These are grouped according to their signatures:

• check-location serves a purpose similar to that of with-location-val from the
direct semantics, but it has a different signature.

• The ensure-nameable, ensure-storable, and ensure-value functions will invoke
a given expression continuation on the value that results from converting a
binding value from the environment, an assigned value from the store, or an
expressible value to a value. But if these are not convertible to a value (i.e.,
in the case of unbound identifiers, unassigned locations, or errors), an error
continuation is returned.

• The boolean-cont and procedure-cont functions convert an expression contin-
uation for a boolean or procedure value, respectively, into a general expression
continuation.

• The one-arg and two-args functions perform number-of-arguments checking for
primitive operations.

Figure 9.20 presents laws involving these functions that are useful for denotational
calculations.
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(check-location (Location �Value l) f ) = (f l) (9.1)

(check-location v f ) = (error-cont not-a-location), (9.2)
where v is not a location

check-integer, etc. have laws similar to (9.1) and (9.2)

(ensure-nameable (lookup I e) k) = (k v), (9.3)
where I is bound to v in e

(ensure-nameable (lookup I e) k) = (error-cont unbound-variable) (9.4)
where I is unbound in e

ensure-storable, ensure-value, etc. have laws similar to (9.3) and (9.4)

((boolean-cont f ) (Bool �Value b)) = (f b) (9.5)

((boolean-cont f ) v) = (error-cont not-a-boolean), (9.6)
where v is not a boolean

procedure-cont, etc. have laws similar to (9.5) and (9.6)

((one-arg f ) [v ] k) = (f v k) (9.7)

((one-arg f ) v∗ k) = (error-cont wrong-number-of-args), (9.8)
where (length v∗) 
=Int 1

((two-args f ) [v1 , v2 ] k) = (f v1 v2 k) (9.9)

((two-args f ) v∗ k) = (error-cont wrong-number-of-args), (9.10)
where (length v∗) 
=Int 2

Figure 9.20 Laws for reasoning about standard semantics.

Valuation Functions

Figure 9.21 presents the complete valuation functions for the standard semantics
of FLICK except for rec, which will be discussed in Section 9.3.2. (CBV rec

is rather complex and we prefer to use the Comp-based “recipe” that we have
already developed for defining its semantics.) The signatures of P, OFLK, and L
are the same as in the direct semantics of FLICK. But the signatures of E , E∗,
and O have been modified. The signature of E is:

E : Exp→ Env→ Expcont→ Cmdcont

Since Cmdcont = Store→ Answer we can also view the signature of E as:

E : Exp → Env→ Expcont→ Store→ Answer

That is, E takes a syntactic expression and representations of the naming (Env),
control (Expcont), and state (Store) contexts, and finds the meaning of the ex-
pression (an answer in Answer) with respect to these contexts.
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L : Lit→ Value ; as in FLK
E : Exp→ Env→ Expcont→ Cmdcont
E∗ : Exp*→ Env→ Explistcont→ Cmdcont
OFLK : Primop→ Value* → Expressible ; as in FLK
O : Primop→ Value*→ Expcont→ Cmdcont
P : Prog→ InputExp*→ Answer ; Answer = Expressible in FLICK

E [[L]] = λek . (k L[[L]])

E [[(error Y )]] = λek . (error-cont Y )

E [[I ]] = λek . (ensure-nameable (lookup I e) k) ; Nameable = Value in CBV

E [[(lam I E)]] = λeklam . (klam (Proc�Value (λnkapp . (E [[E ]] [I �→n]e kapp))))

E [[(app E1 E2)]] = λekapp . (E [[E1 ]] e (procedure-cont
(λp . (E [[E2 ]] e (λv . (p v kapp))))))

E [[(if E1 E2 E3)]]
= λek . (E [[E1 ]] e (boolean-cont

(λb . if b then (E [[E2 ]] e k) else (E [[E3 ]] e k) end)))

E [[(pair E1 E2)]]
= λek . (E [[E1 ]] e (λv1 . (E [[E2 ]] e (λv2 . (k (Pair �Value 〈v1 , v2 〉))))))

E [[(begin E1 E2)]] = λek . (E [[E1 ]] e (λvignore . (E [[E2 ]] e k)))

E [[(cell E)]] = λek . (E [[E ]] e (λvs . (k (Location �Value (fresh-loc s))
(assign (fresh-loc s) v s))))

E [[(prim O E∗)]] = λek . (E∗[[E∗]] e (λv∗ . (O[[O ]] v∗ k)))

E∗[[]] = λej . (j [ ]Value)

E∗[[Efirst . E∗
rest ]] = λej . (E [[Efirst ]] e (λv . (E∗[[E∗

rest ]] e (λv∗ . (j (v . v∗))))))

O[[^]] = one-arg (λvk . (check-location v (λls . (ensure-storable (fetch l s) k s))))

O[[:=]] = two-args (λv1 v2 k . (check-location v1
(λls . (k (Unit �Value unit) (assign l v2 s)))))

O[[cell=?]]
= two-args (λv1 v2 k . (check-location v1

(λl1 . (check-location v2
(λl2 . (k (Bool �Value (l1 = Location l2 ))))))))

O[[cell?]] = one-arg (λvk . (k (Bool �Value match v
� (Location �Value l) [] true
� else false end )))

O[[O ]] = λv∗k . (ensure-value (OFLK[[O ]] v∗) k), where O ∈ PrimopFLK

P[[(flick (I ∗) Ebody)]]
= λIE∗ . if (length I ∗) =Int (length IE∗)

then E [[Ebody ]] (extend∗ I ∗ (IE∗[[IE∗]]) empty-env)
top-level-cont empty-store

else (Error �Expressible wrong-number-of-args) end

Figure 9.21 Valuation clauses for the standard semantics of FLICK except for rec.
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An expression of the form (E [[E ]] e (λv . �)) can be read as “evaluate E in
e and name the resulting value v in �.” For example, the valuation clause for
pair is:

E [[(pair E1 E2)]]
= λek . (E [[E1 ]] e (λv1 . (E [[E2 ]] e (λv2 . (k (Pair �Value 〈v1 , v2 〉))))))

This can be read as:

To evaluate (pair E1 E2) relative to environment e and continuation k ,
first evaluate E1 , which should yield a value v1 . Then evaluate E2 , which
should yield a value v2 . Finally, continue with the rest of the computation
by invoking the continuation k on the pair value (Pair �Value 〈v1 , v2 〉).

As discussed below, error situations are also implicitly handled by such clauses.
In many cases, the value argument of a continuation has been elided by eta

reduction (see page 295). For example, in the if clause, (E [[E2 ]] e k) is a sim-
plified form of (E [[E2 ]] e (λv2 . (k v2 ))). For this reason, an expression of the
form (E [[E ]] e k) is pronounced as “find the value of E in e and pass it to the
continuation k .”

Since evaluating an expression requires a store in FLICK, why doesn’t a
store explicitly appear in the above examples? The reason is that the order of
arguments to E has been chosen to have the store last, rather than the contin-
uation. This argument order is one of the conventions of a standard semantics;
it is used because it hides the store when it is threaded through an expression
untouched. In essence, Cmdcont fulfills the role that the Comp domain did when
we introduced state into FL.

To specify that an expression transforms a store s0 to a store s1 , we can write
(E [[E ]] e (λvs1 . �) s0 ). In the valuation clauses, our convention is to hide all
stores except those that must be explicitly mentioned (i.e., in cell, ^, and :=).
However, it is possible to expand any clause with implicit stores into one with
explicit stores. For example, the app clause can be written with explicit stores:

E [[(app E1 E2)]]
= λekapps0 . E [[E1 ]] e

(procedure-cont
(λps1 . E [[E2 ]] e

(λvargs2 . (p varg
(λvresults3 . (kapp vresult s3 ))
s2 ))

s1 ))
s0
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In this expanded clause, s0 is the store before the app expression is evaluated, s1
is the store after E1 is evaluated, s2 is the store after E2 is evaluated, and s3 is
the store after the procedure p denoted by E1 returns. The expanded form also
makes explicit the result value vresult returned by the procedure p.

Figure 9.22 shows the calculation of the meaning of a sample FLICK expres-
sion in standard semantics. Many of the steps in the calculation are justified by
the laws in Figure 9.20. Other steps are due to lemmas that we can prove. For
example, if Oarith is one of the binary arithmetic primitive operators +, -, or *,
then

E [[(prim Oarith E1 E2)]] e k

= E [[E1 ]] e
(λv1 . (E [[E2 ]] e

(λv2 . (check-integer v1
(λi1 . (check-integer v2

(λi2 . (k (Int �Value

(i1 opInt i2 )))))))))),
where opInt is the integer operator associated with Oarith (9.11)

We can see that the above metalanguage expression is equivalent to the Fig-
ure 9.21 definition

E∗[[E∗]] e (λv∗ . (ensure-value (OFLK[[Oarith ]] v∗) k))

by an exhaustive case analysis on E1 and E2 :

• if E1 signals an error with message Y1 , both metalanguage expressions are
equivalent to (error-cont Y1 );

• if E1 does not signal an error but E2 signals an error with message Y2 , both
expressions are equivalent to (error-cont Y2 );

• if E1 evaluates to a value v1 and E2 evaluates to a value v2 , then:

• if v1 is not an integer or v2 is not an integer, then both expressions are
equivalent to (error-cont not-an-integer);

• if v1 is (Int �Value i1 ) and v2 is (Int �Value i2 ), then both expressions are
equivalent to (k (Int �Value (i1 opInt i2 )))

In the particular case where Oarith is applied to two integer literals, the above
metalanguage expression can be simplified to:

E [[(prim Oarith N1 N2)]] e k = k (Int �Value (N [[N1 ]] opInt N [[N2 ]])) (9.12)
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Note that keeping stores implicit in Figure 9.22 makes the example much easier
to read, especially since stores are not required to perform any of the calculation
steps.

One way to think of the standard semantics clauses in Figure 9.21 is that
they are the result of transforming the direct semantics clauses from Figures 8.21
and 8.22 on pages 418 and 419 into continuation-passing style. Even though
FLICK does not have any advanced control features (we’ll add many in the re-
mainder of this chapter), there is a benefit to making the continuations explicit:
it simplifies the handling of errors. In the tree-product4 example from Sec-
tion 9.2.4, we saw how a computation could terminate immediately by directly
returning a value rather than invoking a continuation. In the standard seman-
tics, valuation clauses behave similarly: they signal errors by ignoring the current
continuation and terminating with an error. For example, suppose in Figure 9.22
that the value bound to a in e1 were the integer 1 rather than a boolean. Then
at the point where a is looked up in e1 we would have:

ensure-nameable (lookup a e1 ) k2

= k2 (Int �Value 1), by (9.3)

= (boolean-cont (λb . . . . )) (Int �Value 1)

= (error-cont not-a-boolean), by (9.5)

= λs . (Error �Expressible not-a-boolean)

Note that an error is signaled directly without applying the boolean continua-
tion (λb . . . . ). The same thing happens no matter how deeply the expression
(if a . . . ) is nested in a program. This captures the intuition that an error
immediately aborts the computation. It also stands in contrast to error han-
dling in the direct semantics, where the valuation clause for each expression must
propagate any errors generated in its subexpressions.

Exercise 9.5 Use the FLICK standard semantics to calculate the meaning of the fol-
lowing expression studied in Section 8.3.3:

(app (lam c {Elam}
(begin (prim := c (prim + 1 (prim ^ c)))

(prim ^ c)))

(cell 3))

To simplify your calculations, use the laws in Figure 9.20 and develop any lemmas you
find useful.
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Suppose p1 = λn1 k1 . (check-integer n1 (λi1 . (k1 (Int �Value (i1 +Int 1)))))
e1 = {a �→ (Bool �Value true), inc �→ (Proc�Value p1 )}
ktop = top-level-cont

E [[(app (if a (lam x (prim * x 6)) inc) (prim + 3 4))]] e1 ktop

= E [[(if a (lam x (prim * x 6)) inc)]] e1 k1 ,
where k1 = procedure-cont (λp2 . (E [[(prim + 3 4)]] e1 (λv2 . (p2 v2 ktop))))

= E [[a]] e1 k2 ,
where k2 = boolean-cont (λb . if b then (E [[(lam x (prim * x 6))]] e1 k1 )

else (E [[inc]] e1 k1 ) end)

= ensure-nameable (lookup a e1 ) k2

= k2 (Bool �Value true), by (9.3)

= if true then (E [[(lam x (prim * x 6))]] e1 k1 ) else (E [[inc]] e1 k1 ) end,
by (9.5)

= E [[(lam x (prim * x 6))]] e1 k1

= k1 (Proc�Value p3 ), where p3 = λn3 k3 . (E [[(prim * x 6)]] [x �→n3 ]e1 k3 )

= E [[(prim + 3 4)]] e1 (λv2 . (p3 v2 ktop)), by (9.5) for procedure-cont

= (λv2 . (p3 v2 ktop)) (Int �Value 7), by (9.12)

= p3 (Int �Value 7) ktop

= E [[(prim * x 6)]] e2 ktop , where e2 = [x �→ (Int �Value 7)]e1

= E [[x]] e2 k4 ,
where k4 = λv4 . (check-integer v4 (λi4 . (ktop (Int �Value (i4 ×Int 6))))),
by (9.11)

= ensure-nameable (lookup x e2 ) k4

= k4 (Int �Value 7), by (9.3)

= check-integer (Int �Value 7) (λi4 . (ktop (Int �Value (i4 ×Int 6))))

= ktop (Int �Value (7×Int 6)), by (9.1) for check-integer

= ktop (Int �Value 42)

= λs . (Value �Expressible (Int �Value 42)), by the definition of ktop = top-level-cont

Figure 9.22 Calculation of the meaning of a sample FLICK expression in standard
semantics.
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9.3.2 A Computation-based Continuation Semantics of FLICK

The valuation functions for FLICK defined in Figure 9.21 do not employ the
Comp abstraction that we have used in all of our other denotational descriptions
of FL dialects. Instead, to help build intuitions about continuations, they are
presented in a way that makes the manipulation of continuations explicit. How-
ever, we want to be able to compare the continuation-based semantics with other
semantics we have studied. And we want to leverage the work done so far in
defining notions like CBN versus CBV and lexical versus dynamic scope, which
were defined in terms of the Comp domain. For these reasons, here we will recast
the standard semantics of FLICK into the computation framework.

Let’s begin by reviewing our use of the Comp domain thus far. Intuitively,
an element of the Comp domain is the meaning of an expression relative to an
environment. In the stateless FLK, Comp is defined as

Comp = Expressible = (Value + Error)⊥

because evaluating an expression in an environment in a stateless language yields
either a value, an error, or divergence. In Figure 6.26 on page 281, we de-
fined a collection of operations, including val-to-comp, err-to-comp, with-value,
with-values, with-boolean-comp, with-boolean-val, and with-nameable, that ma-
nipulate elements of the Comp domain. In Figure 6.28 (page 283) and Figure 6.29
(page 285) we wrote the valuation functions for FLK using these computation
operations.

When we added state to FLK to create FLICK, we changed the definition
of Comp to be

Comp = Store→ (Expressible× Store)

This captures the intuitions that in a stateful language (1) the value of an ex-
pression may depend on the current state and (2) evaluating an expression may
perform side effects that change the state. In Figure 8.17 on page 414, we
gave modified definitions of val-to-comp, err-to-comp, and with-value in terms
of the state-based definition of Comp. Since other computation operations, like
with-values, with-boolean-comp, with-boolean-val, and with-nameable, were all
defined in terms of err-to-comp and with-value, the definitions of these opera-
tions were simply inherited from Figure 6.26 on page 281. Remarkably, because
they were written in terms of the Comp abstraction, the valuation clauses for all
FLICK expressions inherited from FLK (except for rec) had exactly the same
definitions in FLICK as in FLK. This is because the Comp domain and its as-
sociated operations hide the details of how state is single-threaded through the
execution of a program.
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As discussed in Section 7.1.4, the definition of rec in CBV languages is always
somewhat problematic and depends on particular details of the Comp domain
that cannot be abstracted away. So we expect that the valuation clause for rec

will need tweaking whenever Comp is changed.
Of course, FLICK also introduced some new stateful constructs (cell, ^,

:=, and begin). For writing the valuation clauses of these constructs, some new
stateful computation operations were introduced in Figure 8.18 on page 415:
allocating, fetching, update, and sequence.

Our goal now is to define a continuation-based version of the Comp domain
and to define versions of the associated operations such that the valuation clauses
of FLICK in Figures 8.21 and 8.22 (for the stateful constructs of FLICK) and
in Figures 6.28 and 6.29 (for the stateless constructs of FLICK inherited from
FLK) are unchanged. We expect one exception — rec — because its clause
depends on the details of Comp.

As noted above, an element of Comp is the meaning of an expression in an
environment. In the standard semantics of FLICK in Figure 9.21, the meaning of
an expression in an environment is a function with signature Expcont→ Cmdcont,
so we define the continuation-based version of Comp as

Comp = Expcont→ Cmdcont = Expcont→ Store→ Answer

As usual, for the case of FLICK, we will assume that Answer is synonymous with
Expressible. Intuitively, the evaluation of each expression now takes a continua-
tion k and a store s as implicit arguments. Under regular control assumptions,
evaluation of the expression will yield a value v and a resulting store s ′ and these
will be “returned” by invoking k on v and s ′. But having an explicit continuation
allows for control flows other than the regular ones.

Figure 9.23 presents new implementations of the computation operations that
are consistent with this representation of the Comp abstraction. The application
(val-to-comp v) yields a computation that “returns” v by invoking the expression
continuation on it. (err-to-comp Y ) yields a computation that terminates the
computation with the error message Y by ignoring the expression continuation
and signaling the error directly. The with-value function provides a standard
way to “extract” the value v from a computation c and use it to create another
computation c′ = (f v) via a function f :Value→ Comp. It does so by assuming
that the expression continuation for c′ will be k , and then using λv . (c′ k) =
λv .(f v k) as the expression continuation for c. Unlike the previous definition of
with-value in Figure 6.26 on page 281, the new definition of with-value does not
need to perform a case analysis on the computation c in order to propagate errors.
An error computation generated by err-to-comp will simply ignore the expression
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continuation (λv . (f v k)) and signal the error. Figure 9.23 also reimplements
the state-manipulating functions allocating, fetching, update, and sequence in a
computation-based way.

With the definitions in Figure 9.23, all the computation laws in Figure 6.27
(page 282) and Figure 8.19 (page 416) still hold. Furthermore, all the valuation
clauses in Figures 8.21 and 8.22 (for the stateful constructs of FLICK) and
in Figures 6.28 and 6.29 (for the stateless constructs of FLICK inherited from
FLK) except for rec still hold.

As an example of the computation-based continuation semantics, Figures 9.24
and 9.25 show the calculation of E [[Etest ]] e1 ktop , where Etest , e1 , and ktop are
the same expression, environment, and expression continuation from Figure 9.22.
All but the final three reasoning steps in Figure 9.25 are justified using the valu-
ation functions from Figures 6.28 and 6.29 and the computation laws from Fig-
ure 6.27. Remarkably, the very same steps could be used to calculate the meaning
of E [[Etest ]] e1 in CBV FLK. This illustrates the power of the computation ab-
straction. Only the final three steps rely on details from the continuation-based
definition of a computation.

The meaning calculated in Figures 9.24 and 9.25 is exactly the same as the
one in Figure 9.22. Indeed, all FLICK expressions that do not use rec have
exactly the same meaning under the standard semantics version of E (call this
Estd ) and under the computation-based version of E (call this Ecomp). This can be
formally proved by showing that for each FLICK expression construct E except
rec that appears in the grammar of Exp, Ecomp [[E ]] = Estd [[E ]]. In Exercise 9.7
we encourage you to show this for key constructs.

What about rec? To handle rec in the presence of a continuation-based
Comp domain, we need to tweak the valuation clause for rec from Figure 8.21
as follows:

E [[(rec I E)]]
= λe . fixComp (λc . λks . (E [[E ]] (bind I (extract-value c s) e) k s))

extract-value : Comp→ Store→ BindingVal
= λcs . match (c top-level-cont s)

� (Value �Expressible v) [] (Nameable �BindingVal v)
� (Error �Expressible Y ) [] ⊥Binding

end

As in any CBV treatment of rec, the goal is to extract a value that can be
named in the environment from an element of Comp that is defined as a fixed
point of the rec expression. In Figure 8.21, a value was extracted from a com-
putation by providing it with an initial store. This returned a pair of an ex-
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Domains
c ∈ Comp = Expcont→ Store→ Answer ; Answer = Expressible in FLICK.
All other domains as in Figure 9.19.

Operations

val-to-comp : Value→ Comp = λv . λks . (k v s) = λv . λk . (k v)

err-to-comp : Error→ Comp = λY . λks . (Error �Expressible Y )

with-value : Comp→ (Value→ Comp) → Comp
= λcf . λk . (c (λv . (f v k)))

with-values, with-boolean-val, with-boolean-comp, etc. are all written in terms of
with-value and err-to-comp, so their definitions are unchanged from Figure 6.26 on
page 281.

allocating : Storable→ (Location→ Comp)→ Comp
= λσf . λks . (f (fresh-loc s) k (assign (fresh-loc s) σ s))

fetching : Location→ (Storable→ Comp)→ Comp
= λlf . λks . match (fetch l s)

� (Storable �AssignedVal σ) [] (f σ k s)
� else (err-to-comp unassigned-location k s)
end

update : Location→ Storable→ Comp
= λlσ . λks . (k (Unit �Value unit) (assign l σ s))

sequence : Comp→ Comp→ Comp
= λc1 c2 . (with-value c1 (λvignore . c2 )) ; unchanged from before

Figure 9.23 Continuation-based computation abstraction.

pressible value and a store, and a value was extracted from the first component
of this pair. But here, extracting a value requires providing an initial continua-
tion as well as an initial store. We use the initial continuation top-level-cont =
(λvs . (Value �Expressible v)) to get a computation to “cough up” an expressible
value, and then attempt to extract a value from this. The reason we handle rec

here but not in Section 9.3.1 is that CBV rec is rather complex and we prefer
to use the Comp-based “recipe” that we have already developed for defining its
semantics.

The complexity in dealing with CBV rec is due entirely to the fact that it
calculates a recursively defined value. In contrast, imperative looping constructs
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Suppose p1 = λv1 . with-integer-val v1 (λi1 . (val-to-comp (Int �Value (i1 +Int 1))))
e1 = {a �→ (Bool �Value true), inc �→ (Proc�Value p1 )}
ktop = top-level-cont

(E [[(app (if a (lam x (prim * x 6)) inc) (prim + 3 4))]] e1 ) ktop

= (with-procedure-comp c1 (λp . (with-value c2 p))) ktop ,
where
c1 = E [[(if a (lam x (prim * x 6)) inc)]] e1

= with-boolean-comp (E [[a]] e1 ) f1 ,
where f1 = λb . if b then (E [[(lam x (prim * x 6))]] e1 )

else (E [[inc]] e1 ) end
= with-boolean-comp (with-nameable (lookup a e1 ) (λv . (val-to-comp v))) f1
= with-boolean-comp (val-to-comp (Bool �Value true)) f1 , by (6.12)
= if true then (E [[(lam x (prim * x 6))]] e1 ) else (E [[inc]] e1 ) end, by (6.10)
= E [[(lam x (prim * x 6))]] e1
= val-to-comp (Proc�Value p2 ),

where
p2 = λv3 . (E [[(prim * x 6)]] [x �→ v3 ]e1 ) ; CBV procedure

= λv3 . with-value (E [[x]] [x �→ v3 ]e1 )
(λv1 . (with-value (E [[6]] [x �→ v3 ]e1 ) f2 )), ; see page 284

where f2 = (λv2 . with-integer-val v1
(λi1 . with-integer-val v2

(λi2 . (val-to-comp
(Int �Value (i1 ×Int i2 ))))))

= λv3 . with-value (with-nameable (lookup x [x �→ v3 ]e1 ) val-to-comp)
(λv1 . (with-value (val-to-comp (Int �Value 6)) f2 ))

= λv3 . with-value (val-to-comp v3 )
(λv1 . (with-value (val-to-comp (Int �Value 6)) f2 )), by (6.12)

= λv3 . with-integer-val v3
(λi1 . with-integer-val (Int �Value 6)

(λi2 . (val-to-comp
(Int �Value (i1 ×Int i2 ))))), by (6.5)

= λv3 . with-integer-val v3 (λi1 . (val-to-comp (Int �Value (i1 ×Int 6)))),
by (6.9) for with-integer-val

c2 = E [[(prim + 3 4)]] e1
= val-to-comp (Int �Value 7) ; similar to E [[(prim * x 6)]] [x �→ v3 ]e1

= (continued in Figure 9.25)

Figure 9.24 Calculation of the meaning of a sample FLICK expression in a
computation-based semantics (continued in Figure 9.25).
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(with-procedure-comp c1 (λp . (with-value c2 p))) ktop

= (with-procedure-comp (val-to-comp (Proc�Value p2 ))
(λp . (with-value (val-to-comp (Int �Value 7)) p))) ktop

= (with-value (val-to-comp (Int �Value 7)) p2 ) ktop ,
by (6.10) for with-procedure-comp

= (p2 (Int �Value 7)) ktop , by (6.5)

= (with-integer-val (Int �Value 7) (λi1 . (val-to-comp (Int �Value (i1 ×Int 6))))) ktop

= (val-to-comp (Int �Value (7×Int 6))) ktop , by (6.9) for with-integer-val

= (λv . λk . (k v)) (Int �Value 42) ktop , by the definition of val-to-comp in Figure 9.23

= ktop (Int �Value 42)

= λs . (Value �Expressible (Int �Value 42)), by the definition of ktop = top-level-cont

Figure 9.25 Continued from Figure 9.24.

that are executed for their side effects rather than their value are straightforward
to model in a continuation-based semantics (see Exercises 9.8 and 9.10).

The power of continuation-based semantics is revealed in language features in
which the normal expression continuation is replaced by some other continuation.
We begin to explore such features in the following exercises and continue to
explore them in the remaining sections of this chapter.

Exercise 9.6 Show that all the computation laws in Figure 6.27 (page 282) and Fig-
ure 8.19 (page 416) still hold when the Comp domain and its associated operations have
the definitions in Figure 9.23.

Exercise 9.7 For each of the following expression constructs E , use equational reasoning
to show that Ecomp [[E ]] = Estd [[E ]]: I , (lam I Ebody), (app E1 E2), (cell Eval),
(prim ^ Ecell), and (prim := E1 E2).

Exercise 9.8 Suppose that FLIC’s (while Etest Ebody) construct were a kernel con-
struct rather than syntactic sugar. Recall that while is executed for side effects only
and always returns the unit value.

a. Flesh out the following skeleton for the valuation clause for while written in the style
of the standard semantics:

E [[(while Etest Ebody)]] = λek . (fixCmdcont (λγ . . . . ))

b. Flesh out the following skeleton for the valuation clause for while written in the style
of the computation-based semantics:

E [[(while Etest Ebody)]] = λe . (fixComp (λc . . . . ))
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Exercise 9.9 Inspired by the capability of standard semantics for describing new control
constructs, Ben Bitdiddle has extended FLICK with a new expression construct that
allows a procedure to call itself without using rec or letrec.

E ::= . . . FLICK expressions . . . | (self E)

Informally, (self E) recursively calls the “current” procedure with an actual argument
that is the result of evaluating E . For example:

(let ((fact (abs (n) (if (= n 0) 1 (* n (self (- n 1))))))

(fib (abs (n) (if (< n 2) n (+ (self (- n 1)) (self (- n 2)))))))

(pair (fact 4) (fib 6)) −−−−FLIC→ 〈24 , 8 〉

When (self E) is used outside of any procedure, it causes the program to terminate
immediately with a value that is the result of evaluating E .

Ben starts specifying the formal semantics of his extended language by modifying
the signature of the meaning function E as follows:

E : Exp → Env → Proc ; the current procedure
→ Expcont ; the normal expression continuation
→ Cmdcont ; the normal command continuation

He has also modified E∗ similarly.
In spite of his enthusiasm, Ben is still inexperienced with standard semantics and he

has asked for your help in completing the standard semantics of his extension to FLICK.

a. Write the new E valuation clause for (self E) and the modified clauses for L,
(lam I E), and (app E1 E2). Do the other E clauses need to be modified?

b. Write the modified definition of the P valuation function for programs.

c. Using the clauses from part a and part b:

i. Show that running the program (flick () (self (self 1)) on zero inputs
yields the answer (Value �Expressible (Int �Value 1)).

ii. Show that (lam x (self 1)) evaluates to a procedure that loops forever no
matter what argument it is called with.

d. Ben has based the semantics for his FLICK extension on the standard semantics for
FLICK in Figure 9.21, but he could have based it instead on the continuation-based
computation abstraction in Figure 9.23. Show how to modify the Comp domain and
the val-to-comp, err-to-comp, and with-value functions to describe Ben’s language.
With these changes, is it necessary to modify any of the E or E∗ clauses for constructs
inherited from FLICK? Explain.

Exercise 9.10 Unimpressed with FLIC’s while loops, Dewey Lupe has designed a more
general form of looping that uses the following new kernel constructs:

E ::= . . . FLICK expressions . . . | (loop E) | (break E) | (continue)
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Here is the informal semantics of Dewey’s new constructs:

(loop E) evaluates E (the “looping expression”) repeatedly forever.

(break E) terminates the innermost lexically enclosing loop, which then returns with
the value of E .

(continue) restarts the evaluation of the looping expression for the innermost lexically
enclosing loop.

It is an error to evaluate either a break or a continue expression outside of a loop

expression.
Dewey writes the following procedure to illustrate his constructs:

(def (sum-list elts)

(let ((sum (cell 0)) (es (cell elts)))

(loop (if (null? (^ es))

(break (^ sum))

(let ((e (car es)))

(begin (:= es (cdr (^ es)))

(:= sum (+ (^ sum) (if (int? e)

e

(continue))))

))))))

This procedure returns the sum of all integer elements in a given list; any noninteger
elements are ignored.

a. Show how to desugar (while Etest Ebody) in terms of Dewey’s new constructs.

b. Show how to desugar a construct (repeat Ebody Etest) from Exercise 8.11 in terms
of Dewey’s new constructs.

c. Consider a new looping construct (for I Elo Ehi Ebody) with the following informal
semantics:

First evaluate Elo to an integer ilo and Ehi to an integer ihi . Then re-
peatedly evaluate Ebody with I successively bound to each integer in the
range [ilo ..ihi ]. If (ilo > ihi), Ebody is not evaluated. After all evaluations of
Ebody , the for construct returns the unit value. The for construct signals
an error if either Elo or Ehi signals an error or does not denote an integer,
or if Ebody signals an error.

Show how to desugar the for construct in terms of Dewey’s new constructs.

To better understand his new constructs, Dewey extends the standard denotational
semantics of FLICK to handle them. He changes the signature of E to be

E : Exp → Env → Expcont ; the break continuation
→ Cmdcont ; the continue continuation
→ Expcont ; the normal expression continuation
→ Cmdcont ; the normal command continuation
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and changes E∗ similarly. He also modifies the plumbing of E clauses for existing FLICK
constructs to pass the additional continuations. For example:

E [[(app E1 E2)]]
= λe kbreak γcontinue kapp .

(E [[E1 ]] e kbreak γcontinue

(procedure-cont (λp . (E [[E2 ]] e kbreak γcontinue (λv . (p v kapp))))))

Assume that procedure-cont and similar functions have also been modified appropriately.

d. Write the E clauses for (loop E), (break E), and (continue).

e. Define the P valuation function for a program.

f. Procedures must be handled carefully in the formal semantics order for the extended
language to have the informal semantics specified by Dewey.

i. What should the value of the following expression be?
Elooptest = (loop (let ((f (lam x (break x))))

(break (+ 20 (loop (f 3))))))

ii. Assume that the Proc domain is not changed. Write the E clause for (lam I E)

so that occurrences of break and continue within a procedure body will refer
to the lexically enclosing loop.

iii. Describe all changes that need to be made to the semantics so that occurrences
of break and continue within a procedure body will refer to the dynamically
enclosing loop rather than the lexically enclosing one. What is the value of
Elooptest after these changes?

g. Dewey has based the semantics for his FLICK extension on the standard semantics for
FLICK in Figure 9.21, but he could have based it instead on the continuation-based
computation abstraction in Figure 9.23. Show how to modify the Comp domain and
the val-to-comp, err-to-comp, and with-value functions to describe Dewey’s language.
With these changes, is it necessary to modify any of the E or E∗ clauses for constructs
inherited from FLICK? Explain.

h. In Java, programmers may name a loop statement with a label and provide an op-
tional label in the break and continue statements. When loops are nested, labels
allows the programmer to specify which loop the break or continue statement refers
to. Modify the syntax and semantics of Dewey’s language to handle labeled loops.

Exercise 9.11 Abby Stracksen is aggressively using standard semantics to define the
meaning of some rather nonstandard FLIC constructs. Most recently, she extended
FLIC with some special constructs for Politically Oriented Programming (POP).

E ::= . . . FLICK expressions . . . | (elect Epres Evp) | (impeach) | (reelect)

Here’s the informal semantics of Abby’s new constructs:

(elect Epres Evp): Evaluates to the value of Epres unless (impeach) is evaluated in
Epres , in which case the elect expression evaluates to the value of Evp . It is possible to
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have nested elect constructs, in which case (impeach) affects the innermost lexically
enclosing elect in whose Epres it occurs.

(impeach): When evaluated within the Epres part of an (elect Epres Evp) expression,
this causes the elect expression to evaluate and return Evp . Otherwise, it signals an
error.

(reelect): When evaluated inside the Epres part of an (elect Epres Evp) expression,
this causes control to return to the beginning of the elect construct. Otherwise, it
signals an error.

Abby provides some simple examples of her constructs in action:

(elect (- 1 2) (+ 3 4)) −−−−FLIC→ −1

(elect (- 1 (impeach)) (+ 3 4)) −−−−FLIC→ 7

(elect (- 1 (impeach)) (+ 3 (impeach))) −−−−FLIC→ error:no-elect-for-impeach

(elect (elect (- 1 (impeach)) (+ 3 (impeach))) (* 5 6)) −−−−FLIC→ 30

(let ((scandals (cell 0)))

(elect (if (< (^ scandals) 5)

(begin (:= scandals (+ (^ scandals) 1))

(reelect))

(impeach))

(* (^ scandals) 2))) −−−−FLIC→ 10

In the last example, (reelect) is evaluated five times as the value in the scandals cell
increases from 0 to 5. When scandals becomes 5, (impeach) is evaluated, and the result
of (* (^ scandals) 2) is returned as the value of the elect expression.

You have been hired by Abby to modify the standard denotational semantics of
FLICK in order to define the formal semantics of her new constructs. Abby has modified
the signature of the meaning function E to be

E : Exp → Env → Cmdcont ; the impeach continuation
→ Cmdcont ; the reelect continuation
→ Expcont ; the normal expression continuation
→ Cmdcont ; the normal command continuation

and has modified E∗ similarly. She has also modified E clauses for existing FLICK
constructs to appropriately pass along the two new command continuations.

a. Write the E valuation clauses for (elect Epres Evp), (impeach), and (reelect).

b. Define the P valuation function for programs in Abby’s language.

c. Use your meaning functions to compute the answer for running the nullary programs
(flick () (elect (+ 1 (impeach)) 2)) and (flick () (elect (reelect) 3))

on zero arguments.
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d. Abby shows the semantics for her extended language to Dewey Lupe, who is struck
by the similarities between the semantics for Abby’s elect, impeach, and reelect

constructs and those for his own loop, break, and continue constructs (see Exer-
cise 9.10). Dewey conjectures that it’s possible to desugar Abby’s constructs into
his. Show that Dewey is right by writing a desugaring for (elect Epres Evp) into
FLICK+{loop, break, continue}. Your desugaring should define local nullary pro-
cedures impeach and reelect that behave appropriately.

Exercise 9.12 As part of his new .gov platform for government customers, Sam Antics
has developed FLIC#, a version of FLIC that establishes user quotas for the store. An
important customer observed that government users tended to use the store carelessly,
resulting in expensive memory upgrades. To improve the situation, FLIC# tracks the
current user and maintains a per-user quota on the number of cells a user can create
during program execution.

In Sam’s system, every user is identified by a distinct user ID (a nonnegative integer)
and at most one user can be logged in at any one time. The distinguished user ID 0 is
used to indicate that no one is currently logged in. Associated with each user ID is a
cell quota that is initially 100 cells. Whenever an attempt is made to create a cell, the
system checks that (1) a user is logged in (i.e., the user ID is not 0) and (2) the quota
for the current user is > 0. In this case, the current user’s quota is decremented by 1;
otherwise, an error is signaled. Sam’s system does not support garbage collection (see
Chapter 18), so there is no way to reclaim a cell that is no longer used.

The kernel FLICK# of FLIC# extends FLICK with the following constructs:

E ::= . . . FLICK expressions . . . | (login! N ) | (logout!) | (check-quota)

Here is the informal semantics of these constructs:

(login! N ) logs in the user whose ID is denoted by N and returns this ID. An error
is signaled if another user is already logged in or if N denotes an integer ≤ 0. (Sam’s
system currently has no means of user authentication, so it simply “trusts” that N is
an appropriate user ID.)

(logout!) logs the current user out and returns this user’s ID. It signals an error if no
user is currently logged in.

(check-quota) returns the number of cells remaining in the current user’s quota. It
signals an error if no user is currently logged in.

Sam has hired you, a top FLICK consultant, to assist in formalizing the semantics
of FLICK#. Sam has made the following modifications to the domains for the standard
semantics of FLICK:

u ∈ UserID = Int
q ∈ QuotaEnv = UserID → Int
γ ∈ Cmdcont = UserID → QuotaEnv → Store → Answer

UserID is just a synonym for the Int domain. QuotaEnv is an environment for user
quotas; it maps a user ID to the number of cells remaining in that user’s quota. The
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Cmdcont domain from the FLICK standard semantics has been redefined to take the
user ID of the currently logged-in user and the current quota environment in addition to
the store before yielding an answer. Sam redefines Cmdcont so that most of the semantic
algebra definitions in Figure 9.19 and most of the valuation clauses in Figure 9.21 can
remain unchanged. But Sam needs to redefine top-level-cont and error-cont by adding
extra arguments:

top-level-cont : Expcont = λv . λuqs . (Value �Expressible v)

error-cont : Error → Cmdcont = λY . λuqs . (Error �Expressible Y )

Here is Sam’s valuation clause for check-quota:

E [[(check-quota)]] = λekuq . if u = 0
then (error-cont no-user-logged-in u q)
else (k (Int �Value (q u)) u q) end

a. Help Sam finish his semantics by writing the E valuation clauses for (login! N ),
(logout!), and (cell E). and the P valuation function. Remember that a cell
cannot be created unless a user is logged in.

b. Naturally, Sam Antics wants to embed some “trap doors” into the .gov platform
to enable him to “learn more about his customers.” One of these trap doors is the
undocumented (raise-quota! N ) command, which adds N cells to the quota of the
current user and returns #u. Write the E valuation clause for (raise-quota! N ).

9.4 Nonlocal Exits

A denotational semantics equipped with continuations is especially useful for
modeling advanced control features of programming languages. One such feature
is a nonlocal exit, a mechanism that aborts pending computation by forcing
control to jump to a specified control point in the program. A control point is
a new kind of invokable first-class value representing the rest of the computation
that is waiting for the value of the expression currently being evaluated. When
a control point is invoked with a value v , the computation it represents proceeds
as if the currently evaluating expression evaluated to v . Thus, a control point is
a first-class representation of an evaluation context in operational semantics and
an expression continuation in denotational semantics. For this reason, control
points are often called first-class continuations. However, to distinguish the
first-class values manipulated in our mini-languages from the continuations in the
denotational semantics, we will use the term “control point” for the former and
“continuation” for the latter.
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(@+ 1 (label exit (@* 2 (@- 3 (@+ 4 5))))) −−−−FLIC→ −11

(@+ 1 (label exit (@* 2 (@- 3 (@+ 4 (jump exit 5)))))) −−−−FLIC→ 6

(@+ 1 (label exit

(@* 2 (@- 3 (@+ 4 (jump exit

(@* 5 (jump exit 6)))))))) −−−−FLIC→ 7

(@+ 1 (label exit1

(@* 2 (label exit2

(@- 3 (@+ 4 (@* (jump exit2 5)

(jump exit1 6)))))))) −−−−FLIC→ 11

Figure 9.26 Some examples using label and jump.

9.4.1 label and jump

We study nonlocal exits by extending FLICK with two new constructs for cap-
turing and manipulating control points:

E ::= . . . usual FLICK expressions . . .
| (label IctrlPt Ebody) | (jump EctrlPt Ebody)

The informal semantics of these constructs is as follows:

(label IctrlPt Ebody) evaluates Ebody in an environment that extends the cur-
rent lexical environment with a binding of the name IctrlPt to a first-class
control point value that represents the rest of the computation waiting for the
value of the label expression. The label expression normally returns the
value of Ebody , but a different value can be returned by invoking the control
point named IctrlPt .

(jump EctrlPt Eval) invokes the control point that is the value of EctrlPt with
the value of Eval . If EctrlPt does not evaluate to a control point, jump signals
an error.

Figure 9.26 shows some simple FLIC examples using label and jump. The
first example illustrates that the value of (label I E) is the value of E if E
performs no jumps. In the second example, (jump exit 5) aborts the pending
(@* 2 (@- 3 (@/ 4 �))) computation and returns 5 as the value of the label

expression. The third example demonstrates that a pending jump can itself be
aborted by a jump within one of its subexpressions. In the final example, the
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left-to-right evaluation of the operands of a primitive application causes 5 to be
returned as the value of (label exit2 . . . ). If the operands were evaluated in
right-to-left order instead, the result of the final example would be 7.

In practice, nonlocal exits are a convenient means of communicating informa-
tion between two points of a program separated by pending operations without
performing any of the pending operations. For instance, here is a version of a
recursive procedure for computing the product of integer leaves in a binary tree
that uses label and jump to terminate the tree-walking process when a 0 leaf is
encountered:

(def (tree-product tree)

(label return

(letrec ((prod (abs (tr)

(if (leaf? tr)

(if (= tr 0)

{return 0 immediately from tree-product}
(jump return 0)

tr)

(* (prod (left tr) (prod (right tr))))))))

(prod tree))))

Upon encountering a 0 leaf, the local recursive prod procedure uses jump to
immediately return 0 as the result of a call to tree-product. Any pending mul-
tiplications generated by recursive calls to prod are aborted when the jump is
performed. Compared to the versions of tree-product studied in Section 9.2.4,
this one has the advantage that the prod procedure is written in the “natural”
recursive way rather than in a continuation-passing style that explicitly manipu-
lates procedural representations of continuations for calls to prod. This illustrates
the key to the power of label/jump: programs never need mention continuations
except in spots where they are actually needed.

Like all other values in FLIC, control point values are first class: they can be
named, passed as arguments, returned as results, and stored in data structures
(pairs, cells). An interesting consequence of this fact is that it is possible to
return to the same control point more than once. Consider the following FLIC
expression:

(let ((c (cell #u))) {#u is an arbitrary value that will be overwritten
by := before the first use of ^.}

(let ((n (label bind-n (begin (:= c bind-n) 1))))

(if (> n 17) n (jump (^ c) (* 2 n))))) −−−−FLIC→ 32

Here, bind-n names the control point that is waiting for the value of the label

expression. Invoking the control point on that value will bind n to that value
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and evaluate the if expression. This control point is stored in the cell c for later
use, and then a 1 is returned as the value of the label expression, as part of
the normal flow of control. Since this value for n is less than 17, the jump is
performed, which returns the value of 2 to the same bind-n control point. This
causes n to be rebound to 2 and the if expression to be evaluated a second time.
Continuing in this manner, the expression behaves like a loop that successively
binds n to the values 1, 2, 4, 8, 16, and 32. The final result is 32 because that is
the first power of two that is greater than 17.

A similar technique can be used to phrase an imperative version of an iterative
factorial procedure in terms of label and jump:

(def (fact n)

(let ((ans (cell 1))

(loop (cell #u))) {#u is an arbitrary value that will be overwritten.}
(let ((i (label top (begin (:= loop top) n))))

(if (= i 0)

(^ ans)

(begin (:= ans (* i (^ ans)))

(jump (^ loop) (- i 1)))))))

This code is remarkable for using first-class control points to execute an iterative
process without using any explicit looping or recursion constructs. It iterates
from n down to 0, storing the product of the numbers processed so far in the
cell ans. In each iteration, the name i is bound to the number currently be-
ing processed. In the first iteration, i is bound to the value of the expression
(label top (begin . . . n)), which is the value of fact’s argument n. But this
label expression also stores into the cell named loop a control point that will
perform an iteration of the loop starting with the integer on which it is invoked.
The (jump (^ loop) (- i 1)) causes control to jump to the top of the loop
with the next value of i. Note that jumping back to the top of the loop does not
reset the value of the ans cell back to its initial value. The store continues to be
single-threaded through the computation no matter how convoluted the control
path might be.

It turns out that side effects are not necessary for exhibiting this sort of
looping behavior in the presence of first-class control points. For example, a non-
recursive factorial procedure can be written in a version of the stateless language
FL extended with label and jump (see Exercise 9.15).

The above examples of first-class control points only scratch the surface of
the strange and wonderful behaviors that they enable. As we shall see in Sec-
tion 9.5 and the exercises, first-class control points provide a powerful mechanism
by which programmers can implement advanced control features like coroutines,
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Semantic Domains
ControlPoint = Expcont

v ∈ Value = . . . FLICK values . . . + ControlPoint

Operations
control-point-cont : (ControlPoint→ Cmdcont)→ Expcont
= λf . (λv . match v

� (ControlPoint �Value k) [] (f k)
� else (error-cont non-control-point) end )

New Valuation Clauses (Standard Version)

E [[(label IctrlPt Ebody)]] = λek . (E [[Ebody ]] [IctrlPt �→ (ControlPoint �Value k)]e k)

E [[(jump EctrlPt Eval)]]
= λekignore . (E [[EctrlPt ]] e (control-point-cont (λkctrlPt . (E [[Eval ]] e kctrlPt))))

Figure 9.27 The standard denotational semantics of label and jump in FLICK.

backtracking, and multithreading. But any control abstraction mechanism this
powerful can easily lead to programs that are virtually impossible to understand
and reason about. A key aspect of the so-called “structured programming” revo-
lution of the 1970s was eliminating gotos (i.e., unrestricted jumps) from programs
to avoid “spaghetti code” — programs in which tracking control flow was as dif-
ficult as following a strand of spaghetti through a bowlful of pasta. First-class
control points turn the notion of goto-less programming on its head by promoting
a goto label to a first-class value that can flow anywhere in a program, allow-
ing jumps to that label from arbitrary other points in the program. Moreover,
first-class control points can be challenging to implement efficiently, which is why
so few real-world languages support them (Scheme and various dialects of ML
being the main exceptions). Clearly, great restraint should be exercised in the
use of first-class control points. They should be used sparingly and judiciously —
only in situations where their effect is not easily achievable in a more transparent
fashion.

9.4.2 A Denotational Semantics for label and jump

A standard semantics for label and jump is presented in Figure 9.27. Control
points are modeled as elements of the ControlPoint domain. These are just ex-
pression continuations that are treated as first-class values. Because ControlPoint
= Expcont , we shall use the Expcont domain variable k to range over Control-
Point as well. The valuation clause for label evaluates Ebody in the environment
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e extended with a binding between IctrlPt and the control point value that is the
continuation of the label expression. jump ignores its default continuation and
instead evaluates Eval with the continuation determined by EctrlPt .

Figure 9.28 shows the calculation of the meanings of the first two expressions
in Figure 9.26 in the standard semantics. Since these two expressions are the same
except for the innermost subexpression Ehole , Figure 9.28 begins by calculating
the meaning of an expression in which Ehole is left abstract. When Ehole is
instantiated to 5, the continuation k4 of Ehole is applied to 5, which calculates
(1 +Int (2×Int (3−Int (4 +Int 5)))) = − 11 and passes this result to the initial
continuation k0 . But when Ehole is (jump exit 5), the continuation k4 of Ehole

is ignored. Instead, the exit continuation k1 is applied to 5, which calculates
(1 +Int 5) = 6 and passes this result to the initial continuation k0 .

Figure 9.29 presents the denotational semantics of label and jump in the
continuation-based computation style of Section 9.3.2. In addition to a function
with-control-point-comp that is analogous to with-boolean-comp, there are two
new operations on computations. capturing-cont duplicates the current continu-
ation, passing it both as the control-point argument and the expression contin-
uation to a given f . It is used in the valuation clause for label to capture the
current continuation. (install-cont knew ) transforms a computation c into one
that uses knew instead of its regular continuation. It is used in the valuation
clause for jump to replace the normal continuation of Eval by the control point
denoted by EctrlPt .

Note that label refers to its continuation twice: it both binds it in the
environment and uses it as the continuation of Ebody . This is easier to see in the
standard style than in the computation style, where the duplication is hidden
inside capturing-cont. This means that a value can be returned from a label

expression in two ways: (1) by normal evaluation of Ebody (without any jumps)
and (2) by using jump with a control point that is extracted from the environment.
In contrast, jump does not refer to its normal continuation at all. This means
that a jump expression can never return! So it is meaningless to ask what the
value of a jump expression is. Similarly, expressions containing jump expressions
may also have no value. This is the first time we have seen expressions without
values in a dialect of FL.

Exercise 9.13

a. Use the standard denotational semantics for label and jump to calculate the meanings
of the last two expressions in Figure 9.26.

b. Use the computation-based denotational semantics for label and jump to calculate
the meanings of all four expressions in Figure 9.26.
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E [[(@+ 1 (label exit (@* 2 (@- 3 (@+ 4 Ehole)))))]] e0 k0

= E [[(label exit (@* 2 (@- 3 (@+ 4 Ehole))))]] e0 k1 ,
where k1 = λv1 . (check-integer v1 (λi1 . (k0 (Int �Value (1 +Int i1 ))))),
by (9.11)

= E [[(@* 2 (@- 3 (@+ 4 Ehole)))]] e1 k1 ,
where e1 = [exit �→ (ControlPoint �Value k1 )]e0

= E [[(@- 3 (@+ 4 Ehole))]] e1 k2 ,
where k2 = λv2 . (check-integer v2 (λi2 . (k1 (Int �Value (2×Int i2 ))))),
by (9.11)

= E [[(@+ 4 Ehole)]] e1 k3 ,
where k3 = λv3 . (check-integer v3 (λi3 . (k2 (Int �Value (3−Int i3 ))))),
by (9.11)

= E [[Ehole ]] e1 k4 ,
where k4 = λv4 . (check-integer v4 (λi4 . (k3 (Int �Value (4 +Int i4 ))))),

by (9.11)
= λv4 . (check-integer v4

(λi4 . (k0 (Int �Value

(1 +Int (2×Int (3−Int (4 +Int i4 )))))))),
by simplifications involving (9.1) for check-integer

Instantiating Ehole to 5:

E [[(@+ 1 (label exit (@* 2 (@- 3 (@+ 4 5)))))]] e0 k0

= E [[5]] e1 k4 , by the steps at the top of this figure

= (k4 (Int �Value 5))

= (k0 (1 +Int (2×Int (3−Int (4 +Int 5))))),
by the definition of k4 and (9.1) for check-integer

= (k0 − 11)

Instantiating Ehole to (jump exit 5):

E [[(@+ 1 (label exit (@* 2 (@- 3 (@+ 4 (jump exit 5))))))]] e0 k0

= E [[(jump exit 5)]] e1 k4 , by the steps at the top of this figure

= (E [[exit]] e1 (control-point-cont (λkctrlPt . (E [[5]] e kctrlPt))))

= (ensure-nameable (lookup exit e1 )
(control-point-cont (λkctrlPt . (E [[5]] e kctrlPt))))

= (control-point-cont (λkctrlPt . (E [[5]] e kctrlPt ))) (ControlPoint �Value k1 ),
by (9.3)

= E [[5]] e1 k1 , by (9.5) for control-point-cont

= (k1 (Int �Value 5))

= (k0 (1 +Int 5)), by the definition of k1 and (9.1) for check-integer

= (k0 6)

Figure 9.28 Calculation of the meaning of some expressions with label and jump in
standard semantics.
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New Computation Operations for Control

with-control-point-comp : Comp→ (ControlPoint→ Comp)→ Comp
= λcf . (with-value c (λv . match v

� (ControlPoint �Value k) [] (f k)
� else (err-to-comp not-a-control-point)
end ))

capturing-cont : (Expcont→ Comp)→ Comp = λf . λk . ((f k) k)

install-cont : Expcont→ Comp→ Comp = λknewc . λkold . (c knew )

New Reasoning Laws

(with-value (capturing-cont f ) g) (9.13)
= (capturing-cont (λk . (with-value (f (λv . (g v k))) g))),
where k is not free in f or g

(with-value (install-cont k c) f ) = (install-cont k c) (9.14)

(capturing-cont (λk . (install-cont k c))) = c, where k is not free in c (9.15)

New Valuation Clauses (Computation-based Version)

E [[(label IctrlPt Ebody)]]
= λe . (capturing-cont (λk . (E [[Ebody ]] [IctrlPt �→ (ControlPoint �Value k)]e)))

E [[(jump EctrlPt Eval)]]
= λe . (with-control-point-comp (E [[EctrlPt ]] e)

(λkctrlPt . (install-cont kctrlPt (E [[Eval ]] e)))

Figure 9.29 A computation-based denotational semantics of label and jump in
FLICK.

Exercise 9.14 Suppose that list-prod is defined as follows:

(def (list-prod vals)

(label return

(recur prod ((vs vals))

(cond ((null? vs) 1)

((= 0 (car vs)) (jump return 0))

(else (* (car vs) (prod (cdr vs))))))))

What are the values of the following five expressions?

a. (list-prod (list 2 3 4))

b. (list-prod (list 2 0 (sym yow!)))

c. (list-prod (list (sym yow!) 0 2))



9.4.2 A Denotational Semantics for label and jump 501

d. (let ((twice (abs (f x) (f (f x)))))

(let ((f (label bind-f (abs (new-f) (jump bind-f new-f)))))

((f twice) (+ 1) 0)))

e. (jump (label a a) (label b b))

Exercise 9.15 It is possible to implement loops with label and jump without using
mutation. As an example, here is a template for an iterative factorial procedure in FL
+ {label, jump} (recall that FL does not support mutation):

(def (fact n)

(let ((triple Etriple))

(let ((loop (nth 1 triple))

(num (nth 2 triple))

(ans (nth 3 triple)))

(if (= num 0)

ans

(loop (list loop (- num 1) (* ans num)))))))

Using label and jump, write an expression Etriple such that fact is a procedure that
calculates factorials.

Exercise 9.16 Sam Antics thinks that FLICK should be extended with a (halt E)
expression that evaluates E to a value v and then terminates the current program with
the answer v . For example, suppose

P = (flic (x)

(+ (sq x) (sq (- x 5)))

(def (sq n) (if (< n 0) (halt n) (* n n))))

Then here are some sample executions of P :

P −[-3]−−−FLIC→ −3 P − [4]−−−FLIC→ −1 P − [7]−−−FLIC→ 53

Write the E valuation clause for (halt E).

Exercise 9.17 In FLIC+{label, jump}, it is possible to express the loop, break, and
continue constructs from Exercise 9.10 using syntactic sugar. Show this by writing a
desugaring for (loop E). Your desugaring should define local procedures named break

and continue that behave like the break and continue constructs from Exercise 9.10.

Exercise 9.18 Chris Krenshall finds it hard to reason about FLIC+{label,jump} pro-
grams. He’s never sure where the thread of control will end up! Chris would like more
control over his control points. He wants to be able to declare control regions — areas of
code such that a jump may be made to a control point within the same region but not
to one in a different region.

Here are Chris’s proposed kernel extensions:

E ::= . . . FLICK expressions . . . | (region I E) | (label I E) | (jump E1 E2)
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Informally, the label and jump constructs work as described above: label establishes
first class control points and jump transfers control to them. However, there is one
important difference, related to the region construct: It is only valid to jump to control
points created in the current region, which is named by the identifier of the innermost
lexically enclosing region declaration.

For example, consider the following procedure in Chris’s language:

(def (p x)

(region blue

(label b

(let ((f (abs (y) (if (> y 10) (jump I1 y) (+ y 1))))

(g (region red

(abs (z)

(label r

(* 2 (if (> z 5) (jump I2 z) z)))))))

(pair (f x) (g x))))))

The label b is declared in the blue region, while the label r is declared in the red region.
Since (jump I1 y) occurs in the blue region, the jump is valid only if I1 = b. Similarly,
since (jump I2 z) occurs in the red region, it is valid only if I2 = r.

Assume that the validity of jumps is checked dynamically — i.e, when a jump ex-
pression is evaluated. (For static checking of control regions, see Section 16.3.1.) The
following table shows the result of invoking p on various arguments for the given instan-
tiations of I1 and I2 :

Expression I1 = b
I2 = b

I1 = b
I2 = r

I1 = r
I2 = b

I1 = r
I2 = r

(p 3) −−−−FLIC→ 〈4 , 6 〉 〈4 , 6 〉 〈4 , 6 〉 〈4 , 6 〉

(p 7) −−−−FLIC→ error:invalid-jump 〈8 , 7 〉 error:invalid-jump 〈8 , 7 〉

(p 17) −−−−FLIC→ 17 17 error:invalid-jump error:invalid-jump

In this problem, you will modify the standard semantics for FLICK to specify the
semantics of the region, label, and jump constructs. You may assume that all region
names in a program are unique. (If this property does not hold, the regions can be
renamed to make it hold.)

a. Suppose that the ControlPoint domain is modified as follows:

k ∈ ControlPoint = Region × Expcont
r ∈ Region = Ident

Modify the signatures of E and E∗ as necessary to support control regions.

b. Show the modified definitions of the E clauses for lam and app. (Assume that other
clauses are changed in a similar fashion.)

c. Write the E valuation clauses for (region I E), (label I E), and (jump E1 E2).

d. Define a P valuation function for programs. Assume that the program body is eval-
uated in an implicit top-level region.
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Expressions used in Configurations

E ∈ ExpSOS ::= . . . as in FLICK . . .
| (label I E) | (jump E1 E2) | (*cp* I E)

V ∈ ValueExp ::= . . . as in FLICK . . . | (*cp* I E)

A ∈ AnsExp ::= . . . as in FLICK . . . | controlpointans

New Output Function Clause
OF 〈(*cp* I E), S 〉 = controlpointans

Evaluation Contexts
E ∈ EvalContext ::= . . . as in CBV FLICK . . . | (jump E E) | (jump V E)

New Evaluation Rules (extending the FLICK evaluation relation)

〈E{(label Iname Ebody)}, S 〉
⇒ 〈E{[(*cp* Ifresh E{Ifresh})/Iname ]Ebody}, S 〉, [label]

where Ifresh is fresh

〈E{(jump (*cp* I E) V )}, S 〉 ⇒ 〈[V /I ]E , S 〉 [jump]

Figure 9.30 Changes to the FLICK SOS to handle label and jump.

9.4.3 An Operational Semantics for label and jump

Although many sophisticated control constructs are not straightforward to de-
scribe in operational semantics, label and jump are an exception. We will present
an operational semantics for label and jump because it helps build operational
intuitions for continuations. Figure 9.30 shows the changes that need to be made
to the FLICK SOS from Figure 8.13 (page 406) and Figure 8.14 (page 409) in
order to handle label and jump. The intermediate expressions ExpSOS used in
configurations are not only extended with the new constructs (label I E) and
(jump E1 E2), but there is also a new expression (*cp* I E) that represents
a first-class control point. This can be viewed like a procedure value (lam I E)

except that it is applied to an argument value via jump rather than app. The
ValueExp domain is extended to include control points as first-class values, and
the output function OF is extended to map control points to the new AnsExp
token controlpointans.

The key to the operational semantics is the [label] and [jump] evaluation
rules, whose use is illustrated in Figure 9.31. The [label] rule captures the
evaluation context E in which the label expression is being evaluated and wraps
it up in a control-point value. The appearance of two copies of E in the right-
hand side of this rule mirrors the duplication of the expression continuation in
the denotational semantics. In the control-point value (*cp* Ifresh E), the fresh
identifier Ifresh is used to represent the position of the hole in E . This control-
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; Example where exit is not used as the target of a jump.

(@+ 1 (label exit (@* 2 (@- 3 (@+ 4 5)))))

= (@+ 1 �){(label exit (@* 2 (@- 3 (@+ 4 5))))}
====
CBV
⇒

[label]
(@+ 1 �){[(*cp* h (@+ 1 h))/exit](@* 2 (@- 3 (@+ 4 5)))}

= (@+ 1 �){(@* 2 (@- 3 (@+ 4 5)))}
= (@+ 1 (@* 2 (@- 3 (@+ 4 5))))

=
∗

===
CBV
⇒ -11

; Example where exit is used as the target of a jump.

(@+ 1 (label exit (@* 2 (@- 3 (@+ 4 (jump exit 5))))))

= (@+ 1 �){(label exit (@* 2 (@- 3 (@+ 4 (jump exit 5)))))}
====
CBV
⇒

[label]
(@+ 1 �)

{[(*cp* h (@+ 1 h))/exit](@* 2 (@- 3 (@+ 4 (jump exit 5))))}
= (@+ 1 �){(@* 2 (@- 3 (@+ 4 (jump (*cp* h (@+ 1 h)) 5))))}
= (@+ 1 (@* 2 (@- 3 (@+ 4 (jump (*cp* h (@+ 1 h)) 5)))))

= (@+ 1 (@* 2 (@- 3 (@+ 4 �)))){(jump (*cp* h (@+ 1 h)) 5)}
====
CBV
⇒

[jump]
[5/h](@+ 1 h)

= (@+ 1 5)

====
CBV
⇒

[+]
6

Figure 9.31 Examples illustrating the operational semantics of label and jump.

point value is substituted for the label name Iname in the body expression Ebody

of the label expression.
The [jump] rule is enabled when a control point is applied to an argument

value. In this case, the evaluation context wrapping the jump expression is dis-
carded (like the normal continuation in the denotational semantics) and the result
of replacing the “hole” I in the “evaluation context” E by V becomes the next
expression to be evaluated. The [jump] rule is similar to a beta-reduction step

〈E{(app (lam I E) V )}, S 〉 ⇒ 〈E{[V /I ]E}, S 〉

except that beta reduction keeps the evaluation context discarded by [jump].
Figure 9.31 shows how the operational semantics explains the first two exam-

ples presented in Figure 9.26. Because none of these examples involves state, the
store component is omitted from each of the configurations in the figure. This
highlights that label and jump can be added to a stateless language like FL.
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Exercise 9.19 Use the operational semantics for label and jump to show the evaluation
of the last two expressions in Figure 9.26.

9.4.4 call-with-current-continuation (cwcc)

In the Scheme programming language, first-class control points are made acces-
sible by the standard procedure call-with-current-continuation, which we
will abbreviate as cwcc.2 In FLICK, this procedure can be written in terms of
label and jump as follows:

(def (cwcc proc)

(label here

(proc (abs (val) (jump here val)))))

The proc argument is a unary procedure that is applied to an escape procedure
that, when called, will return a result from the invocation of cwcc. For example,
here is a version of tree-product written in terms of cwcc:

(def (tree-product tree)

(cwcc (abs (return)

(letrec ((prod (abs (tr)

(if (leaf? tr)

(if (= tr 0)

(return 0) {the escape procedure
return returns from cwcc}

tr)

(* (prod (left tr) (right tr)))))))

(prod tree))))

Rather than defining cwcc as a procedure in terms of label and jump, we
could instead make it a standard primitive operator. In this case, we would
no longer need label and jump to be kernel constructs, because they could be
expressed as syntactic sugar (see Exercise 9.20). The advantage of cwcc as an
interface for capturing and invoking continuations is that it does not require
extending a language with any new kernel constructs, just one new standard
primitive. The binding performed by label is instead handled by the usual
binding mechanism (abs), and a jump is encoded as a regular application of an
escape procedure.

Some languages put restrictions on capturable continuations that make them
easier to reason about and to implement. For example, the Dylan language
provides a (bind-exit (I) E) form that is similar to (cwcc (abs (I) E))

except that the lifetime of the escape procedure is limited by the lifetime of the

2Another common abbreviation is call/cc. Some dialects of ML provide a similar procedure;
for example, Standard ML of New Jersey provides a callcc function for this purpose.
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bind-exit construct. Similarly, the C programming language provides a setjmp

construct for capturing an expression continuation whose lifetime is limited to the
lifetime of the procedure call in which it is used; such a continuation is invoked
via a longjmp construct. The catch and throw constructs of Common Lisp are
similar to label and jump except that throw jumps to a named control point
declared by a dynamically enclosing catch. Dynamically declared control points
are a good mechanism for exception handling, which is the topic of study in
Section 9.6.

Exercise 9.20 We have shown that cwcc can be desugared into the kernel constructs
label and jump. Here we suppose instead that cwcc is a kernel primitive operator ∈
Primop in a language that does not have label and jump as kernel constructs.

a. Show how label and jump can be defined as syntactic sugar in a language that
provides cwcc as a primitive operator.

b. Write a standard-style continuation-semantics valuation clause (e.g., O[[cwcc]] = . . .)
for the cwcc primitive operator.

c. Write a computation-style continuation-semantics valuation clause for the cwcc prim-
itive operator. Use capturing-cont and install-cont in your clause.

9.5 Iterators: A Simple Coroutining Mechanism

An iterator is a simple kind of producer coroutine that yields a sequence of ele-
ments to a consumer coroutine. The iterator and the consumer can be viewed as
separate computational processes. When a consumer process invokes an iterator
to yield its next element, the consumer process is suspended and control transfers
to the iterator process. The iterator process computes until it yields a value, at
which point the iterator process is suspended and control is transferred back to
the consumer process along with the yielded value. The consumer process is then
resumed at the point of the iterator invocation with the iterated value returned
as the value of the invocation. The next time the iterator is invoked, the iterator
process is resumed at the point where it was last suspended. Control ping-pongs
back and forth between the consumer process and the iterator process until either
the consumer process requires no more elements or the iterator process has no
more values to yield.

Iterators enhance program modularity because they allow the iterator and
consumer processes to be written as two separate loops rather than as one complex
loop. This makes it possible to mix and match different iterators with different
consumers. Iterators were pioneered in the CLU programming language, but
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similar notions have been adopted in other languages. For example, in the Icon
string-processing language, every procedure (known as a generator) is effectively
an iterator that can return zero, one, or more results to its caller. Sather is a
dialect of Eiffel supporting iterators (which it calls iters) in an object-oriented
setting. C++ and Java also support object-oriented iterating abstractions called
“iterators,” but since they are not coroutines, they are less expressive than CLU-
style iterators (see Exercise 9.23).

Here we will show how iterators can be added to FLIC using first-class con-
trol points to implement the suspension and resumption of the iterator process.
We will begin by describing an iterator construct for creating iterators and will
illustrate it with some examples. Then we will show how to implement iterator
by desugaring it into FLIC using label and jump. Here is the informal specifi-
cation of the iterator construct:

(iterator Iyield Ebody) returns an iterating procedure, a regular FLIC
nullary procedure that represents a sequence of iterated elements. Each time
the iterating procedure is invoked, the next element of the sequence is re-
turned. If there are no more elements, invoking the iterating procedure returns
#u. The first time the iterating procedure is invoked, an iterating process is
started that evaluates Ebody in the lexical environment of iterator extended
with a binding of Iyield to a yielding procedure. Calling the yielding proce-
dure on a value suspends the iterating process and returns the yielded value
to the invoker of the iterating procedure. The next time the iterating pro-
cedure is invoked, the iterating process is resumed by returning #u from the
last invocation of Iyield . The iterating process continues to yield values until
it terminates, at which point invoking the iterating procedure returns #u.

Figure 9.32 presents a few sample iterators. The application (between lo hi)
returns an iterator that yields all the integers from lo through hi. Here is a
summation consumer that adds up all the elements of an iterator that yields
integers:

(def (sum next-int) {next-int is the name of an integer-yielding iterator}
(recur loop ((total 0))

(let ((int (next-int)))

(if (unit? int)

total

(loop (+ total int))))))

For example, (sum (between 3 7)) −−−−FLIC→ 25
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Here is a listing consumer that lists all the elements produced by a finite iterator:

(def (to-list next-elt) {next-elt is the name of an iterator}
(recur collect ((elt (next-elt)))

(if (unit? elt)

nil

(cons elt (collect (next-elt))))))

For example, (to-list (between 3 7)) −−−−FLIC→ �3 , 4 , 5 , 6 , 7 �
Another example of an iterator from Figure 9.32 is (leaves tree), which

returns an iterator that yields the leaves of a binary tree one by one, from left
to right. Because of the modularity supported by iterators, we can use sum and
to-list with leaves as well:

(sum (leaves (node 4 (node (node 1 3) 2)))) −−−−FLIC→ 10
(to-list (leaves (node 4 (node (node 1 3) 2)))) −−−−FLIC→ �4 , 1 , 3 , 2 �

Not all iterators are finite. The application (from lo) returns an iterator
that yields all integers in the increasing sequence beginning with lo. Processing
an infinite iterator requires a consumer that inspects only a finite number of the
yielded values. The prefix iterator transformer is useful for this purpose. Given
a nonnegative integer n and an iterator iter, the application (prefix n iter)
returns an iterator yielding only the first n elements of iter. For example,

(to-list (prefix 4 (from 6))) −−−−FLIC→ �6 , 7 , 8 , 9 �
(to-list (prefix 2 (leaves (node 4 (node 1 3))))) −−−−FLIC→ �4 , 1 �

Now that we have seen iterators in action, we will study how they are imple-
mented. Figure 9.33 shows how the iterator construct can be implemented via
syntactic sugar in FLIC.

Every iterator has two local cells named with fresh identifiers. Iresume is a
cell that holds a resumption thunk that, when dethunked, resumes the itera-
tion process. Ireturn is a cell that holds the control point of the consumer that
is waiting for the next value of the iterator. Both of these cells initially contain
the arbitrary value #u, but in both cases this will be overwritten before the cell
is dereferenced. The initial resumption thunk evaluates Ebody in an environment
where Iyield binds a unary yielding procedure. Invoking the yielding procedure
suspends the iterating process (by setting Iresume to a resumption thunk that
returns #u from the yielding procedure) and returns the yielded value to the
consumer by jumping to the control point in Ireturn . The value of the iterator

expression is a nullary iterating procedure that first remembers the control point
of the consumer invoking the iterating procedure in the cell Ireturn and then re-
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{Returns an iterator yielding all the integers from lo through hi.}
(def (between lo hi)

(iterator yield

(recur loop ((i lo))

(if (<= i hi)

(begin (yield i) (loop (+ i 1)))))))

{Returns an iterator yielding the leaves of a binary tree in a left-to-right traversal.}
(def (leaves tree)

(iterator yield

(recur walk ((tr tree))

(if (leaf? tr)

(yield tr)

(begin (walk (left tr)) (walk (right tr)))))))

{Returns an iterator yielding all the integers from n up.}
(def (from n)

(iterator yield

(recur loop ((i n))

(begin (yield i) (loop (+ i 1))))))

{Assume n is a nonnegative integer. Returns an iterator yielding the first n
elements of the iterator next-elt. The returned iterator signals an error if
an attempt is made to yield more elements than next-elt can yield.}
(def (prefix n next-elt)

(iterator yield

(recur loop ((i n))

(if (> i 0)

(let ((elt (next-elt)))

(if (unit? elt)

(error too-few-elements)

(begin (yield elt) (loop (- i 1)))))

{if i ≤ 0, iterator body terminates and iterator returns #u}
))))

Figure 9.32 Some examples of iterators.

sumes the execution of the iterator by dethunking the current resumption thunk.
When the evaluation of Ebody terminates, Iresume is set to a final resumption thunk
that always returns #u to the consumer to indicate that no more values can be
yielded.
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(iterator Iyield Ebody)

�ds (let ((Iresume (cell #u)) {Iresume is fresh}
(Ireturn (cell #u))) {Ireturn is fresh}

(let ((Iyield (abs (v)

(label resume {continuation of Iyield invocation}
(begin (:= Iresume

(abs () {return #u for Iyield invocation}
(jump resume #u)))

{return v to consumer = caller of iterator}
(jump (^ Ireturn) v))))))

(begin

(:= Iresume

(abs () {initial resumption thunk}
(begin Ebody {first evaluate body}

{then return #u thereafter}
(:= Iresume (abs () (jump (^ Ireturn) #u)))

((^ Iresume)))))

{return iterator = nullary iterating procedure}
(abs ()

(label return {continuation of consumer = caller of iterator}
(begin (:= Ireturn return)

{resume iterator by dethunking resumption thunk}
((^ Iresume))))))))

Figure 9.33 Desugaring of the iterator construct.

For example, consider the steps in the evaluation of the expression

(let ((iter (iterator yield (begin (yield 4) (yield 2)))))

(list (iter) (iter) (iter)))

• Initially, the Iresume cell for iter holds the resumption thunk

(abs () (begin (begin (yield 4) (yield 2))

(:= Iresume (abs () (jump (^ Ireturn) #u)))

((^ Iresume))))

• The initial consumer expression is (list (iter) (iter) (iter)). When the
leftmost (iter) call is made, the Ireturn cell is set to a continuation correspond-
ing to the expression context (list � (iter) (iter)), and the resumption
thunk is dethunked. When (yield 4) is evaluated, the resumption thunk
becomes a thunk that will supply #u to the hole in

(begin (begin � (yield 2)) . . . )



9.5 Iterators: A Simple Coroutining Mechanism 511

and 4 is supplied to the hole in (list � (iter) (iter)), changing the con-
sumer to (list 4 (iter) (iter)).

• Next the middle (iter) call is made. The Ireturn cell is set to a continuation
corresponding to the expression context (list 4 � (iter)), and the resump-
tion thunk is dethunked, which returns from (yield 4) by supplying #u for
the hole in

(begin (begin � (yield 2)) . . . )

and then evaluates (yield 2). This sets the resumption thunk to a thunk that
will supply #u to the hole in (begin (begin #u �) . . . ) and supplies 2 to the
hole in (list 4 � (iter)), changing the consumer to (list 4 2 (iter)).

• Finally, the rightmost (iter) call is made. The Ireturn cell is set to a continua-
tion corresponding to the expression context (list 4 2 �), and the resump-
tion thunk is dethunked. This returns #u for (yield 2) and then evaluates

(begin (:= Iresume (abs () (jump (^ Ireturn) #u)))

((^ Iresume)))

This sets the resumption thunk to its final value

(abs () (jump (^ Ireturn) #u))

and immediately dethunks it, which supplies #u to the hole in (list 4 2 �)

to give the final consumer value (list 4 2 #u). Note that any subsequent
(iter) calls would also return #u.

The iterator construct is a good example of the sophisticated control con-
structs that can be implemented in a language that supports first-class control
points. But first-class control points are not the only way to support interesting
control relationships. In the case of iterators, a simpler way of achieving pro-
ducer/consumer coroutines is to use so-called lazy data structures. We will study
these in Section 10.1.3.

Exercise 9.21 Write a procedure (trees elts) that takes a list of elements elts and
returns an iterator that yields all of the distinct binary trees whose leaves, from left to
right, are elts. The order of the trees does not matter. For instance, the application
(trees (list 1 2 3 4)) should return an iterator that yields the following trees in
any order:

(node 1 (node 2 (node 3 4)))

(node 1 (node (node 2 3) 4))

(node (node 1 2) (node 3 4))

(node (node 1 (node 2 3)) 4)

(node (node (node 1 2) 3) 4)
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Exercise 9.22

a. Write a procedure (assignments vars) that takes a list of variable names (i.e., sym-
bols) and returns an iterator that yields all distinct assignments of the variables
to true and false. As in Section 9.2.7, each set of variable assignments should
be represented as an environment in which each of the variables is bound to ei-
ther true or false. The order of the environments does not matter. For example,
(assignments (list (sym a) (sym b) (sym c))) should return FLICK represen-
tations of the following environments in some order:

{a �→ false, b �→ false, c �→ false}, {a �→ false, b �→ false, c �→ true},
{a �→ false, b �→ true, c �→ false}, {a �→ false, b �→ true, c �→ true},
{a �→ true, b �→ false, c �→ false}, {a �→ true, b �→ false, c �→ true},
{a �→ true, b �→ true, c �→ false}, {a �→ true, b �→ true, c �→ true}

b. Problems that seem to require backtracking can sometimes be solved with a generate-
and-test idiom in which an iterator generates possible solutions until a satisfactory
one is found. For example, the iterator returned by (assignments vars) can be used
to solve the satisfiability problem for boolean formulae discussed in Section 9.2.7.
Implement an alternative version of the satisfy procedure defined there based on
the following strategy:

• Determine the set of variable references in the given boolean formula;

• Use assignments to create an iterator yielding environments that represent all
possible sets of variable assignment for the variables;

• Generate the environments one by one. For each environment, evaluate the boolean
formula relative to the environment. If the value of the boolean formula is true, stop
and return the environment. If the boolean formula is false for all environments,
stop and return the symbol failed.

Exercise 9.23 In C++ and Java, iterators are stateful objects that respond to messages
asking if there are any more values to be iterated and requesting the next value to be
iterated. For example, a Java-style iterator for iterating the integers between lo and hi

can be encoded in FLIC as the following message-passing procedure:

(def (between lo hi)

(let ((i (cell lo)))

(abs (msg)

(cond ((sym=? msg (sym has-next?)) (<= (^ i) hi))

((sym=? msg (sym next))

(let ((result (^ i)))

(begin (:= i (+ result 1))

result)))

(else (error unknown-message))))))

Here is a sample summation consumer that uses iterators written in this style:
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(def (sum iter)

(recur loop ((sum 0))

(if (iter (sym has-next?))

(loop (+ sum (iter (sym next))))

sum)))

In simple cases like between, Java-style iterators are conceptually simpler than
CLU-style iterators because they don’t require the iterator process to be suspended
and resumed. But Java-style iterators can be much more complex than CLU-style it-
erators because they effectively force the programmer to explicitly encode the state of
a suspended process in an iterator. To see this, write versions of the following iterators
studied above using Java-style message-passing procedures:

a. (leaves tree)

b. (prefix n iterator)

c. (trees elts) (Exercise 9.21)

d. (assignments vars) (Exercise 9.22)

Exercise 9.24 Abby Stracksen thinks it is inelegant that FLICK iterators use the unit
value to indicate that they have no more values to yield. Instead, she thinks that an
iterator should be a procedure that takes two arguments: (1) a success continuation, a
unary procedure that is invoked on the yielded value, if there is one, and (2) a failure
continuation, a nullary procedure that is invoked if there are no more values to yield.
Here are versions of between and sum written using Abby’s interface:

(def (between lo hi)

(iterator yield fail {iterator now names the failure continuation}
(recur loop ((i lo))

(if (<= i hi)

(begin (yield i) (loop (+ i 1)))

(fail)))))

(def (sum next-int)

(recur loop ((total 0))

(next-int (abs (int) (loop (+ total int)))

(abs () total))))

Modify the desugaring for iterator so that it implements Abby’s interface.

9.6 Exception Handling

A common reason to alter the usual flow of control in a program is to respond to
exceptional conditions. For example, upon encountering a divide-by-zero error,
the caller of the division procedure may want the computation to proceed with
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a large number rather than terminate with an error. Dynamically responding to
exceptional conditions is known as exception handling.

One strategy for exception handling is for every procedure to return values
that are tagged with a return code that indicates whether the procedure is
returning normally or in some exceptional way. The caller can then test for the
return code and handle the situation accordingly. Although popular, the return
code technique is unsatisfactory in many ways. It effectively requires every call to
a procedure to explicitly test for all return codes the procedure could potentially
generate. By treating normal and exceptional returns in the same fashion, return
codes fail to capture the notion that exceptions are generally perceived as rare
events compared to normal returns. In addition, return codes provide a very
limited way in which to respond to exceptional conditions. All responsibility for
dealing with the condition resides in the caller; in particular, the point at which
the condition was generated has been lost.

Another strategy for handling exceptional conditions is to let a procedure
raise (or signal) an exception as an alternative to returning a value. The
immediate caller may then handle the exception, or it might decline to handle
the exception and instead allow other callers in the current dynamic procedure-
call chain to handle the exception. There are two basic strategies for handling
the exception:

1. In termination semantics, the handler receives control from the signaler of
the exception and keeps it. This is the approach taken by Java’s throw and
try/catch, Common Lisp’s throw and catch, SML’s raise and handle,
and CLU’s signal and except when.

2. In resumption semantics, the handler receives control from the signaler of
the exception but later passes control back to the computation that raised the
exception. Operating system traps usually follow this model.

Some languages (such as CLU) require the caller to explicitly resignal excep-
tions in order to propagate them up the call chain. In other languages (including
Common Lisp and ML), unhandled exceptions propagate up the call chain un-
til an appropriate handler is found. In these languages, programs are implicitly
wrapped in a default handler that handles otherwise uncaught exceptions. Java
uses a hybrid approach in which certain exceptions (instances of the Error or
RuntimeException classes) are automatically propagated up the call chain, but
others are resignaled by a method only if they are explicitly declared in the
throws clause of the method definition.
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An exception is usually an entity that glues a tag indicating the name or
kind of the exception together with information summarizing the details of the
exceptional situation. For example,

• dividing an integer i by 0 might raise an exception with tag divide-by-zero

and information i ;

• looking up an unbound symbol Y in an environment might raise an exception
with tag unbound-variable and information Y ;

• depositing a negative amount amt in a bank account acct might raise an ex-
ception with tag negative-deposit and information that pairs amt and acct.

9.6.1 raise, handle, and trap

To study exception handling, we extend FLICK with the following constructs to
accommodate both termination-style and resumption-style exception handling:

E ::= . . . FLICK expressions . . . | (raise Itag Einfo)

| (handle Itag Ehandler Ebody) | (trap Itag Ehandler Ebody)

The informal semantics of these constructs is as follows:

(raise Itag Einfo) evaluates Einfo to a value Vinfo and raises an exception with
tag Itag and information Vinfo .

(handle Itag Ehandler Ebody) is for termination-style exception handling. First
Ehandler is evaluated to a unary exception-handling procedure Vhandler . (It
is an error if Ehandler does not denote a procedure.) Then Ebody is evaluated.
If no exception is raised in the evaluation of Ebody , its value is the value of
the handle expression. If an exception with tag Itag and information Vinfo is
raised and not handled within Ebody , the value of the handle expression is the
result of applying Vhandler to Vinfo . If an exception with a tag different from
Itag is raised and not handled within Ebody , it should be handled by another
exception handler that dynamically encloses the handle expression.

(trap Itag Ehandler Ebody) is for resumption-style exception handling. It is
evaluated like a handle expression except that if an exception with tag Itag
and information Vinfo is raised and not handled within Ebody , the value of the
raise expression (rather than the trap expression) is the result of applying
Vhandler to Vinfo .
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Note that the expression (raise Itag Einfo) never returns a value if the handler
for Itag is defined by a handle expression: In this case, raise acts like a jump

that returns from the handle expression. In contrast, when the handler for Itag
is defined by a trap expression, the raise expression does return a value (as long
as Einfo returns normally).

As a simple example of exceptions, consider a FLIC add procedure that
normally returns the sum of its two arguments but raises a noninteger exception
if one of its arguments is not an integer:

(def (add x y)

(let ((check (abs (n) (if (@int? n) n (raise noninteger n)))))

(@+ (check x) (check y))))

(In a language supporting exceptions, the underlying + primitive might raise a
noninteger exception rather than signaling an error, but we are assuming the
semantics of FLICK primitives here.) Now suppose we use add to find the sum
of the elements in a list:

(def (list-sum elts) (foldr add 0 elts))

If the argument to list-sum is a list of integers, list-sum behaves as expected:

(list-sum (list 6 8 2 1)) −−−−FLIC→ 17

We can use exception handlers to specify what to do if the argument to list-sum

is a list with noninteger elements, such as the following list elts1:

(def elts1 (list 3 #t 7 (sym foo) (list 4 5) 2))

For example we could find the sum of just the integers in the list by treating
every noninteger as the number 0:

(trap noninteger (abs ( ) 0) (list-sum elts1)) −−−−FLIC→ 12

(We often use the underscore identifier, , for a procedure parameter that is
ignored in the procedure body.) If we want to include the integers in embedded
integer lists in the sum, we can express that, too:

(trap noninteger (abs (v) (if (list? v) (list-sum v) 0))

(list-sum elts1)) −−−−FLIC→ 21

What happens if an embedded list itself contains nonintegers? For that detail
we’ll need to consult the formal semantics carefully later.

We can use handle in the case where we want to abort the list-summation
computation. For example, to return 0 for the sum if there is a noninteger element
in the list, we write:

(handle noninteger (abs ( ) 0) (list-sum elts1)) −−−−FLIC→ 0
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(def (env-empty)

(abs (name) (raise unbound-variable name)))

(def (env-lookup name env) (env name))

(def (env-extend name value env)

(abs (name2) (if (sym=? name name2) value (env name2))))

(def (env-merge env1 env2)

(abs (name)

(handle unbound-variable (abs ( ) (env2 name))

(env1 name))))

Figure 9.34 Implementation of environments as procedures using exceptions for un-
bound variables.

To return one of the noninteger elements found in the list, we write:

(handle noninteger (abs (v) v) (list-sum elts1)) −−−−FLIC→ �4 , 5 �

Why is the list �4 , 5 � returned rather than true? Because foldr combines the el-
ements of elts1 with add from right to left and encounters the sublist (list 4 5)

as the first noninteger element.
What happens if an exception is raised and there is no handler to handle it?

We will assume that exceptions not handled by a dynamically enclosing handle

or trap expressions are converted into errors by a default top-level exception
handler. E.g.:

(list-sum elts1) −−−−FLIC→ error:noninteger

As a more realistic example of exception handling, reconsider the environment
example from Section 9.2.6. In Figure 9.13 (page 463), the env-lookup proce-
dure took procedural success and failure continuations to permit the handling of
unbound-variable errors. Additionally, in the procedural implementation of envi-
ronments in Figure 9.15 on page 465, the procedures representing environments
also take explicit success and failure continuations.

Using exceptions, we can simplify both the interface to and the implemen-
tation of environments by eschewing explicit continuations and mentioning ex-
ceptional cases only when necessary. Figure 9.34 presents a procedural imple-
mentation of environments using exceptions to model unbound variables. The
env-lookup procedure takes just name and environment arguments (no contin-
uations) and procedures representing environments take only a name argument.
Looking up an unbound variable raises an unbound-variable exception. This
exception is handled within the env-merge procedure to look up a name in env2



518 Chapter 9 Control

if the name is unbound in env1. We can also handle it in more complex uses of en-
vironments. For example, here are exception-handling versions of the env-test1
procedure from page 462 and the env-test2 procedure from page 464:

(def (env-test1 names env)

(trap unbound-variable (abs ( ) (sym *unbound*))

(map (abs (name) (env-lookup name env)) names)))

(def (env-test2 names env)

(foldr (abs (name vals)

(handle unbound-variable (abs ( ) vals)

(cons (env-lookup name env) vals)))

nil

names))

Exception handling significantly simplifies the definition of env-test2 because
the standard foldr accumulator can be used in place of a specialized value-
accumulating recursion written in continuation-passing style.

While the informal semantics for raise, handle, and trap given above may
seem like an adequate specification, it harbors many ambiguities. For example,
in the expression

(trap noninteger (abs (v) (if (list? v) (list-sum v) 0))

(list-sum (list 3 #t 7 (sym foo) (list #f 5) 2)))

the noninteger #f is encountered while executing the exception handler for the
noninteger element (list #f 5). What happens? As another example, suppose
that handler1 , handler2 , and handler3 are chosen from {handle, trap} in the
following expression:

(handler1 a (abs (x) (@+ 4000 x))

(handler2 b (abs (y) (@+ 300 (raise a (@+ y 4))))

(handler3 a (abs (z) (@+ 20 z))

(@+ 1 (raise b 2)))))

The raise of b invokes handler2 , which raises the exception a. But which of the
two a handlers should be used? Does it depend on the choices for the handleri?
To predict the values of these expressions, we need to know details not expressed
in the informal semantics, like what exception handlers are in effect when an
exception handler is being processed.

Once again, formal semantics comes to the rescue. In fact, because complex
control constructs can easily befuddle our intuitions, we look more than ever to
the guidance of formal semantics. A denotational semantics is an excellent tool
for concisely and precisely specifying the meaning of complex control constructs
like raise, trap, and handle.
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9.6.2 A Standard Semantics for Exceptions

Our approach is to treat trap and handle as binding constructs that associate
exception tags with exception handlers in a dynamic environment. An exception
handler is just a regular FLICK procedure. raise looks up the handler asso-
ciated with the given exception name in the current dynamic environment and
applies the resulting procedure to the argument of raise. The exception han-
dlers introduced by trap and handle differ in terms of whether they keep control
at the point where the exception is raised or transfer it to the point where the
exception is handled.

To express these extensions formally, we will modify the continuation-based
semantics of FLICK. As usual, we begin by modifying the standard semantics
(Figure 9.35) because it is more concrete than the computation-style continuation-
based semantics.

The semantics uses two different environments: the regular environment Env
introduced in Section 6.5.1 models the namespace for all FLICK binding con-
structs while HandlerEnv is a new handler environment that is a special
namespace used for the binding constructs trap and handle. Unlike Env , which
associates names with any nameable value, HandlerEnv only associates exception
tags with exception handlers, which are represented as regular procedures in the
Proc domain. The get-handler function looks up the handler associated with an
exception tag in a handler environment. The extend-handlers function extends a
given handler environment with a binding between a tag and a handler. The ini-
tial handler environment default-handlers binds every exception tag to a default
handler that converts the tag to an error.

Whereas the binding constructs used by Env have static scope, trap and
handle have dynamic scope. Like procedure calls, trap and handle conceptually
introduce execution frames into the program execution tree. The frame created
by trap or handle contains a binding of an exception tag to an exception han-
dler that is visible in all the procedure call and handler frames appearing in its
subtrees. This allows a raise performed in a procedure or a handler to refer
to exception tags that are dynamically apparent, i.e., declared above it in the
program execution tree, but may not be lexically apparent, i.e., declared above
it in the abstract syntax tree of the program. If handlers were instead declared
in Env , they would be statically scoped and it would be impossible to specify
exception handlers for a procedure on a per-call basis. For example, the add

and sum-list procedures studied earlier are both declared at the top level of the
program and so are not in the lexical scope of any handler named noninteger.
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Exception handling is an excellent example of the utility of dynamic scoping in
a programming language feature that is important in practice.

In Section 7.2.1, we saw that the essence of dynamic scoping was modifying
procedures to receive a dynamic environment as an implicit argument passed at
every procedure call. The semantics in Figure 9.35 follows this recipe to make
HandlerEnv a dynamic environment. The Proc domain is changed from

Proc = Nameable→ Expcont→ Cmdcont

to

Proc = Nameable→ HandlerEnv→ Expcont→ Cmdcont

It is also necessary to modify the signatures of the valuation functions E and E∗
to evaluate every expression relative to both the lexical environment Env and the
dynamic environment HandlerEnv :

E :Exp→ Env→ HandlerEnv→ Expcont→ Cmdcont
E∗ :Exp*→ Env→ HandlerEnv→ Expcont→ Cmdcont

The essence of the dynamic scoping of HandlerEnv is seen in the modified valua-
tion clauses for lam and app. A procedure value created by (lam I Ebody) takes
an implicit dynamic handler environment happ that is passed by app and uses this
dynamic handler environment (rather than the static handler environment hlam)
for evaluating the body expression Ebody . All other E and E∗ clauses must be
modified to pass a handler environment in tandem with the regular environment.

The valuation clauses for raise, trap, and handle define the semantics of
exceptions. Both trap and handle extend the dynamic handler environment
with a binding between the tag Itag and a handler procedure that results from
evaluating Ehandler and evaluate their body Ebody in this extended handler envi-
ronment. (raise Itag Einfo) simply looks up the handler procedure associated
with Itag in the dynamic handler environment and applies it to the value of Einfo .

Note that raise also supplies the handler procedure with the handler en-
vironment hraise in effect at the point of the raise and with the continuation
kraise at the point of the raise. The main choice in designing a handler binding
construct is whether the handlers declared by the construct should use these or
should instead use the handler environment and expression continuation in ef-
fect at the point where the handler is declared. The following two independent
questions must be answered when designing a handler declaration:

1. To what point in the program does a handler procedure return? A trap handler
uses kraise to return to the point where the exception was raised (resumption
semantics), but a handle handler uses khandle to jump to the point where the
handler was declared (termination semantics).
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New and Modified Domains
h ∈ HandlerEnv = Ident → Proc
p ∈ Proc = Nameable→ HandlerEnv→ Expcont→ Cmdcont

Operations on the HandlerEnv Domain

default-handlers : HandlerEnv = λI . λnhk . (error-cont I ) ; Recall Ident ⊆ SymLit

get-handler : Ident → HandlerEnv→ Proc = λI h . (h I )

extend-handlers : Ident → Proc→ HandlerEnv→ HandlerEnv
= λI1ph . λI2 . if I1 = Ident I2 then p else (h I2 ) end

Modified Valuation Clauses (Standard Style)

E : Exp→ Env→ HandlerEnv→ Expcont→ Cmdcont

E [[(lam I Ebody)]]
= λehlamklam . (klam (Proc�Value (λnhappkapp . (E [[Ebody ]] [I �→n]e happ kapp))))

E [[(app E1 E2)]]
= λehappkapp . (E [[E1 ]] e happ (procedure-cont

(λp . (E [[E2 ]] e happ (λv . (p v happ kapp))))))

Other FLICK expression clauses from Figure 9.21 on page 477 must be similarly
modified to pass a dynamic exception-handler environment.

New Valuation Clauses (Standard Style)

E [[(trap Itag Ehandler Ebody)]]
= λehtrapktrap .

(E [[Ehandler ]] e htrap

(procedure-cont
(λp . (E [[Ebody ]] e

(extend-handlers Itag
(λnhraisekraise . (p n hraise kraise))
; can eta-reduce the above to p
htrap)

ktrap))))

E [[(handle Itag Ehandler Ebody)]]
= λehhandlekhandle .

(E [[Ehandler ]] e hhandle

(procedure-cont
(λp . (E [[Ebody ]] e

(extend-handlers Itag
(λnhraisekraise . (p n hhandle khandle))
hhandle)

khandle))))

E [[(raise Itag Einfo)]]
= λehraisekraise . (E [[Einfo ]] e hraise

(λvinfo . ((get-handler Itag hraise) vinfo hraise kraise)))

Figure 9.35 Standard semantics of exception handling.
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2. Which handler environment is used when a handler is executed? A handle

handler uses the handler environment hhandle in effect when the handle ex-
pression was evaluated. This choice, called dismissal semantics, dismisses
all handlers dynamically declared between the handler declaration and the
raise and enables the handler to pass exceptions on to dynamically enclosing
handlers. In contrast, a trap handler uses the handler environment hraise in
effect where the raise was invoked, which we will call nondismissal seman-
tics. This approach is more consistent with the view that exception handlers
are regular procedures, since regular procedures use the handler environment
in place at the point where the procedure is called, not where it is created.
These will be our default treatments of trap and handle, but the semantics
makes it easy to consider a dismissal version of trap (by changing hraise to
htrap in the valuation clause for trap) and a nondismissal version of handle
(by changing hhandle to hraise in the valuation clause for handle).

Figure 9.36 shows the calculation of the meaning of the expression

(handler a (lam z (@+ 20 z)) (@+ 1 (raise a 2)))

relative to an initial environment e0 , handler environment h0 , and expression
continuation k0 , where handler is instantiated to both trap and handle. In both
cases, the exception handler procedure named a has the form

λvhraisekraise . (check-integer v (λi . (khandler (Int �Value (20 +Int i)))))

The key difference between the two cases is the choice of the continuation khandler .
In the trap case, khandler is the continuation parameter kraise . The continuation

k1 = λv2 . (check-integer v2 (λi2 . (k0 (Int �Value (1 +Int i2 )))))

of the expression (raise a 2) is supplied for this parameter, so the result of
adding 20 in the handler procedure is incremented before being passed to the
initial continuation k0 . However, in the handler case, khandler is k0 , so the result
of adding 20 is passed directly to k0 , bypassing the pending computation around
the raise.

Although it doesn’t play a role in this example, note that the handler body
(@+ 20 z) is evaluated relative to the extended handler environment [a �→ p1 ]h0

(nondismissal semantics) in the trap handler but relative to the initial handler
environment h0 (dismissal semantics) in the handle handler. This distinction
would make a difference if the handler body were modified to raise an exception
with tag a.
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E [[(trap a (lam z (@+ 20 z)) (@+ 1 (raise a 2)))]] e0 h0 k0

= E [[(lam z (@+ 20 z))]] e0 h0

(procedure-cont (λp . (E [[(@+ 1 (raise a 2))]] e0 [a �→ p]h0 k0 ))),
by E clause for trap

= ((procedure-cont (λp . (E [[(@+ 1 (raise a 2))]] e0 [a �→ p]h0 k0 )))
(Proc�Value (λvhraisekraise . (E [[(@+ 20 z)]] [z �→ v ]e0 hraise kraise)))),

by E clause for lam

= E [[(@+ 1 (raise a 2))]] e0 [a �→ p1 ]h0 k0 , by (9.5) for procedure-cont
where p1 = λvhraisekraise . (E [[(@+ 20 z)]] [z �→ v ]e0 hraise kraise)

= λvhraisekraise . (check-integer v
(λi . (kraise (Int �Value (20 +Int i))))),

by (9.11), E clauses for L and I , (9.3), and (9.1) for check-integer

= E [[(raise a 2)]] e0 [a �→ p1 ]h0 k1
where k1 = λv2 . (check-integer v2 (λi2 . (k0 (Int �Value (1 +Int i2 ))))),

by (9.11), E clause for L, and (9.1) for check-integer

= E [[2]] e0 [a �→ p1 ]h0 (λvinfo . (p1 vinfo [a �→ p1 ]h0 k1 )),
by E clause for raise and definition of get-handler

= (p1 (Int �Value 2) [a �→ p1 ]h0 k1 )

= (k1 (Int �Value (20 +Int 2))), by definition of p1 and (9.1) for check-integer

= (k1 (Int �Value 22))

= (k0 (Int �Value (1 +Int 22))), by definition of k1 and (9.1) for check-integer

= (k0 (Int �Value 23))

E [[(handle a (lam z (@+ 20 z)) (@+ 1 (raise a 2)))]] e0 h0 k0

= E [[(lam z (@+ 20 z))]] e0 h0

(procedure-cont (λp . (E [[(@+ 1 (raise a 2))]] e0
[a �→ (λvhraisekraise . (p v h0 k0 ))]h0 k0 ))),

; Justifications for individual steps are the same as above and so are omitted.

= ((procedure-cont (λp . (E [[(@+ 1 (raise a 2))]] e0
[a �→ (λvhraisekraise . (p v h0 k0 ))]h0 k0 ))),

(Proc�Value (λvhappkapp . (E [[(@+ 20 z)]] [z �→ v ]e0 happ kapp))))

= E [[(@+ 1 (raise a 2))]] e0 [a �→ p2 ]h0 k0 , by (9.5) for procedure-cont
where p2 = λvhraisekraise . (E [[(@+ 20 z)]] [z �→ v ]e0 h0 k0 )

= λvhraisekraise . (check-integer v
(λi . (k0 (Int �Value (20 +Int i)))))

= E [[(raise a 2)]] e0 [a �→ p2 ]h0 k1 , where k1 is defined as in the trap example

= E [[2]] e0 [a �→ p2 ]h0 (λvinfo . (p2 vinfo [a �→ p2 ]h0 k1 ))

= (p2 (Int �Value 2) [a �→ p2 ]h0 k1 )

= (k0 (Int �Value (20 +Int 2)))

= (k0 (Int �Value 22))

Figure 9.36 Calculation of the meaning of expressions with trap, handle, and raise

in standard semantics.
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One detail not shown in Figure 9.35 is how top-level programs are handled.
The meaning of a program is the same as in Figure 9.21 on page 477 except that
default-handlers is specified as the initial handler environment:

P[[(flick (I ∗) Ebody)]]
= λIE∗ . if (length I ∗) =Int (length IE∗)

then E [[Ebody ]] (extend∗ I ∗ (IE∗[[IE∗]]) empty-env)
default-handlers top-level-cont empty-store

else (Error �Expressible wrong-number-of-args) end

This takes care of converting all unhandled exceptions into errors.

9.6.3 A Computation-based Semantics for Exceptions

The computation-style approach to exceptions is presented in Figure 9.37. The
key domain change is that Comp is extended from

Comp = Expcont→ Cmdcont = Expcont→ Store→ Answer

to take a handler environment as an additional argument:

Comp= HandlerEnv→ Expcont→ Cmdcont
= HandlerEnv→ Expcont→ Store→ Answer

Because the Proc domain, as always, is defined as Proc = Nameable → Comp,
it is automatically extended to take HandlerEnv as an additional argument.

As with stores and continuations, the Comp domain serves to hide the plumb-
ing of the handler environment so that it need not be mentioned except where it
is actually needed. The definitions of val-to-comp, err-to-comp, and with-value
must be modified to handle the plumbing of the handler environment. With these
changes, the definitions of all other computation operations (such as with-values,
with-procedure-val, and with-procedure-comp) are unchanged from Figure 9.23
on page 485. Additionally, it is not necessary to modify any of the valuation
clauses for FLICK constructs because they all “do the right thing” in terms of
passing the handler environment around. Remarkably, the unmodified lam and
app valuation clauses for CBV FL (Figure 7.4 on page 317) end up automatically
treating HandlerEnv as a dynamic environment in the extended Comp domain
(Figure 9.38). The dynamic nature of HandlerEnv is the consequence of three
details:

1. Including HandlerEnv as an additional argument in the Comp domain means
that procedures in the domain Proc = Nameable → Comp have access to
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New and Modified Domains
h ∈ HandlerEnv = Ident → Proc ; as in Figure 9.35
c ∈ Comp = HandlerEnv→ Expcont→ Cmdcont
p ∈ Proc = Nameable→ Comp ; as usual (Figure 6.23 on page 276)

Operations on the HandlerEnv Domain
default-handlers : HandlerEnv = λI . λn . (err-to-comp I ) ; Recall Ident ⊆ SymLit

get-handler : Ident → HandlerEnv→ Proc = as defined in Figure 9.35

extend-handlers : Ident → Proc→ HandlerEnv→ HandlerEnv
= as defined in Figure 9.35

New Computation Operations Involving HandlerEnv

extending-handlers : Ident → Proc→ Comp→ Comp
= λIpc . λh . (c (extend-handlers I p h))

getting-handler : Ident → (Proc→ Comp) → Comp
= λIf . λh . (f (get-handler I h) h)

Modified Computation Operations
val-to-comp : Value→ Comp = λv . λhk . (k v)

err-to-comp : Error→ Comp = λY . λhks . (Error �Expressible Y )

with-value : Comp→ (Value→ Comp) → Comp
= λcf . λhk . (c h (λv . (f v h k)))

with-values, with-boolean-val, with-boolean-comp, etc. are all written in terms of
with-value and err-to-comp, so their definitions are unchanged from Figure 6.26
on page 281. The definitions of store-manipulating functions like allocating and
fetching are unchanged from Figure 9.23 on page 485.
New Valuation Clauses (Computation Style)
E : Exp→ Env→ Comp ; as usual (Figure 6.28 on page 283)

E [[(trap Itag Ehandler Ebody)]]
= λe . (with-procedure-comp (E [[Ehandler ]] e)

(λp . (extending-handlers Itag
(λnhraisekraise . (p n hraise kraise))
; can eta-reduce the above to p
(E [[Ebody ]] e))))

E [[(handle Itag Ehandler Ebody)]]
= λehhandlekhandle .

(with-procedure-comp (E [[Ehandler ]] e)
(λp . (extending-handlers Itag

(λnhraisekraise . (p n hhandle khandle))
(E [[Ebody ]] e))))

hhandle khandle ; arguments to (with-procedure-comp . . .) computation

E [[(raise Itag Einfo)]]
= λe . (with-value (E [[Einfo ]] e) (λvinfo . (getting-handler Itag (λp . (p vinfo)))))

All other computation-style valuation clauses for FLICK are unchanged.

Figure 9.37 Computation-style continuation semantics of exception handling.
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E [[(lam I Ebody)]] in Figure 7.4

= λe . (val-to-comp (Proc�Value (λn . (E [[Ebody ]] [I �→n]e))))

= λe . (λhk . (k (Proc�Value (λn . (E [[Ebody ]] [I �→n]e))))), by val-to-comp defn.

= λehlamklam . (klam (Proc�Value (λnhappkapp . (E [[Ebody ]] [I �→n]e happ kapp)))),
by eta expansion of (λn . . . . )

= E [[(lam I Ebody)]] in Figure 9.35

E [[(app E1 E2)]] in Figure 7.4

= λe . (with-procedure-comp (E [[E1 ]] e) (λp . (with-value (E [[E2 ]] e) p)))

= λe . (with-value (E [[E1 ]] e)
(λv . (with-procedure-val v (λp . (with-value (E [[E2 ]] e) p))))),

by the definition of with-procedure-comp in Figure 6.26 on page 281

= λe . (λhk . (E [[E1 ]] e h
(λv . ((with-procedure-val v

(λp . (λh ′k ′ . (E [[E2 ]] e h ′ (λv ′ . (p v ′ h ′ k ′))))))
h k)))),

by the definition of with-value in Figure 9.37

= λe . (λhk . (E [[E1 ]] e h
(λv . (match v

� (Proc�Value p)
[] (λh ′k ′ . (E [[E2 ]] e h ′ (λv ′ . (p v ′ h ′ k ′))))

� else (err-to-comp not-a-procedure)
end h k)))),

by the definition of with-procedure-val in Figure 6.26

= λe . (λhk . (E [[E1 ]] e h
(λv . match v

� (Proc�Value p)
[] (E [[E2 ]] e h (λv ′ . (p v ′ h k)))

� else (error-cont not-a-procedure)
end ))),

by distributing the operands h and k over the functions in the match clauses
and by the definitions of err-to-comp (Figure 6.26) and error-cont (Figure 9.37)

= λehappkapp . (E [[E1 ]] e happ (procedure-cont
(λp . (E [[E2 ]] e happ (λv . (p v happ kapp)))))),

by the definition of procedure-cont in Figure 9.19 on page 473

= E [[(app E1 E2)]] in Figure 9.35

Figure 9.38 Denotational equivalence of the E clauses for lam and app in the
computation-style semantics and the standard semantics.
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the handler environment of the application expression, which is essential for
passing dynamic information from the caller to the called procedure.

2. In the computation-style valuation clause for (lam I Ebody), the procedure
body Ebody is implicitly evaluated with respect to all of the arguments in the
Comp domain in effect when the procedure is called, not the ones in effect when
the abstraction expression is evaluated. This implements dynamic rather than
static scoping.

3. with-value passes the same handler environment h to both the computation
c and the Value → Comp function f . This means that h is treated like an
environment (passed down from above to all subexpressions) rather than like
a store (single-threaded through the computation).

It is possible to pass any information dynamically through a computation by
treating it like handler environments in the computation-based semantics for
exceptions.

The valuation clauses for trap, handle, and raise use the new computation
operations extending-handlers and getting-handler to hide the explicit manip-
ulation of handler environments. Given a tag Itag , a handler phandler , and a
computation c, extending-handlers returns a new computation that will extend
the dynamic handler environment with a binding of Itag to phandler before pro-
ceeding with c. This is used to declare the handler in the trap and handle

clauses. Given an exception tag Itag and a function f mapping a handler proce-
dure to a computation, getting-handler calls f on the handler associated with Itag
in the current handler environment. This is used in the raise clause to find the
current handler. With these abstractions, all manipulations of the dynamic han-
dler environment and expression continuation are hidden except in the handle

clause, where the handler environment hhandle and continuation khandle in effect
at the handler declaration must be made explicit so that they can be used in the
handler procedure to replace the dynamic handler environment hraise and raise

continuation kraise .
3

9.6.4 A Desugaring-based Implementation of Exceptions

Exception handling effectively combines dynamic scoping (for handler environ-
ments) with nonlocal exits (for exception handlers introduced by handle). This

3In the trap clause, we have eta-expanded the handler procedure p for the purpose of com-
parison with the handler procedure in the handle clause. But this could have been written
simply as p, thereby hiding the handler environment and continuation.
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is made clear by implementing exception handling via syntactic sugar in a lan-
guage that supports (1) first-class control points and (2) a dynamically scoped
namespace separate from the regular statically scoped one. Imagine a version of
FLIC that is extended with label and jump from Section 9.4 and also supports a
separate dynamically scoped namespace manipulated by the following constructs:

(dylet ((I1 E1) . . . (In En)) Ebody) is like let, but it binds the names I1 ,
. . . , In to the values of E1 , . . . , En , respectively, in the dynamic namespace
rather than the static one.

(dyref I) looks up I in the dynamic namespace rather than the static one.

In this version of FLIC, raise, trap, and handle can be implemented via the
desugarings in Figure 9.39. For comparison purposes, both nondismissal and
dismissal versions of handle are presented. The desugarings for trap and raise

highlight that these constructs are nothing more than ways to bind and look up
procedures in a dynamic namespace. For comparison purposes, we can rewrite
the desugaring for trap as:

; Nondismissal semantics for trap (the default trap semantics)
(trap Itag Ehandler Ebody)

�ds (let ((Ihandler Ehandler))

(dylet ((Itag (abs (vinfo) (Ihandler vinfo))))

Ebody))

In this form, it is easy to see that the only difference between trap and the
nondismissal version of handle is that a handle exception handler returns to
the point of the handle (using (jump Ireturn . . . )) rather than to the point
of the raise. In the handle desugarings, there are two reasons to name the
result of Ehandler : (1) it forces Ehandler to be evaluated before Ebody and (2) it
guarantees that Ehandler is evaluated exactly once. Both of these are required
by the semantics, but neither would be true if Ihandler were replaced by Ehandler

within (abs (vinfo) . . . ).
In the first handle desugaring, whenever Itag is raised in Ebody , Ihandler will be

invoked on the information value vinfo using the handler environment in place
at the point of the raise, so this is a nondismissal semantics. For a dismissal
semantics (the second desugaring) of handle, the application (Ihandler vinfo)

is delayed in a thunk that is returned to a dethunking context at the point of
the handle, where it will use the handler environment at that point when it is
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(raise Itag Einfo) �ds ((dyref Itag) Einfo)

; Nondismissal semantics for trap (the default trap semantics)
(trap Itag Ehandler Ebody) �ds (dylet ((Itag Ehandler)) Ebody)

; The dismissal semantics for trap is Exercise 9.29.

; Nondismissal semantics for handle
(handle Itag Ehandler Ebody)

�ds (label Ireturn {Ireturn is fresh}
(let ((Ihandler Ehandler)) {Ihandler is fresh. Evaluate Ehandler before}

{Ebody and name it so only evaluated once}
(dylet ((Itag (abs (vinfo)

{Return vinfo from handle rather than raise}
(jump Ireturn (Ihandler vinfo))))

Ebody)))

; Dismissal semantics for handle (the default handle semantics)
(handle Itag Ehandler Ebody)

�ds ({This left paren begins the application dethunking
the thunk returned by label}
(label Ireturn {Ireturn is fresh}
(abs () {The ‘‘normal’’ thunk returned from the label}
(let ((Ihandler Ehandler)) {Ihandler is fresh}

(dylet ((Itag (abs (vinfo)

{Return a handler thunk from label}
(jump Ireturn (abs () (Ihandler vinfo))))))

Ebody)))))

Figure 9.39 Desugaring of exceptions in a language that supports first-class control
points and a dynamically scoped namespace.

dethunked. Since label is assumed to return a thunk for the exception case, it
must also return a thunk for the normal case. It is possible to give a desugaring
for a dismissal version of trap and a thunkless desugaring for the dismissal version
of handle (see Exercise 9.29).

The desugarings in Figure 9.39 assume that the exception-handling constructs
have exclusive access to the dynamic environment. If programs could use dylet

and dyref to explicitly access the dynamic environment, some method for pre-
venting name clashes of exception tags with other names bound in the dynamic
environment would have to be employed.
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9.6.5 Examples Revisited

With the formal semantics in hand, we can now definitively answer questions
about the evaluation of expressions that use exceptions in complex ways. For
example, reconsider the expression

EhandlerTest = (handler1 a (abs (x) (@+ 4000 x))

(handler2 b (abs (y) (@+ 300 (raise a (@+ y 4))))

(handler3 a (abs (z) (@+ 20 z))

(@+ 1 (raise b 2)))))

in which each handleri is either trap or handle. First consider the case in
which every handleri is trap. Because handler2 is trap, (@+ 1 (raise b 2))

is equivalent to

(@+ 1 ((abs (y) (@+ 300 (raise a (@+ y 4)))) 2))

evaluated in a dynamic environment that binds all three handlers. This is equiva-
lent to Eraise = (@+ 1 (@+ 300 (raise a 6))). Under the default nondismissal
semantics of trap, the handler found for a is the inner one (i.e., the one in-
troduced by handler3 ), yielding (@+ 1 (@+ 300 ((abs (z) (@+ 20 z)) 6))),
which evaluates to 327. If dismissal semantics were used instead, Eraise would be
evaluated in an exception environment containing the binding for the outer a,
and the result would be 4307.

For the case in which each handleri is handle, the result of each raise is re-
turned directly to the point of the handle, so the (@+ 1 . . . ) and (@+ 300 . . . )

pending operations are bypassed. In the default dismissal semantics for handle,
this leads to the result 4006, but the result would be 26 in a nondismissal se-
mantics. There are many other possibilities for instantiating the handleri in this
example, which you are asked to consider in Exercise 9.27.

What is the value of the following expression?

(trap noninteger (abs (v) (if (list? v) (list-sum v) 0))

(list-sum (list 3 #t 7 (list #f 6) (sym foo) 2)))

Since trap uses nondismissal semantics, the noninteger handler introduced by
the trap is still in effect when list-sum is applied in the handler to the element
(list #f 6). So this inner application of list-sum returns 6 and the outer
application of list-sum (as well as the trap expression) returns 18 . But if
trap used a dismissal semantics, the inner application of list-sum would raise
an unhandled noninteger exception that would be converted to a noninteger

error by the default exception handler.
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Exercise 9.25 The following procedures are variants of the add and list-sum proce-
dures discussed in the text.

(def (mul x y)

(let ((check (abs (n)

(if (@int? n)

(if (@= n 0) (raise zero #u) {trivial info} n)

(raise noninteger n)))))

(@* (check x) (check y))))

(def (list-prod elts) (foldr mul 1 elts))

Here are some lists whose definitions are used below:

(def elts1 (list 3 #t 7 (sym foo) (list 4 5) 2))

(def elts2 (list 3 #t 7 (sym foo) (list #f 5) 2))

(def elts3 (list 3 #t 0 (sym foo) (list 4 5) 2))

a. Evaluate each of the following expressions (1) when handler is handle and (2) when
handler is trap.

i. (handler noninteger (abs ( ) 1) (list-prod elts1))

ii. (handler noninteger (abs ( ) 0) (list-prod elts1))

iii. (handler noninteger (abs (v) v) (list-prod elts1))

iv. (handler noninteger (abs (v) (if (list? v) (list-prod v) 1))

(list-prod elts1))

v. (handler noninteger (abs (v) (if (list? v) (list-prod v) 1))

(list-prod elts2))

vi. (handler zero (abs ( ) 0) (list-prod elts3))

vii. (handler zero (abs ( ) 0)

(trap {Fix this handler as trap} noninteger (abs (v) 0)

(list-prod elts3)))

(How many multiplications are performed in this case?)

b. Here are two versions of list-prod that attempt to avoid unnecessary multiplications
when a 0 is encountered. Compare the benefits and drawbacks of the two versions.

(def (list-prod2 elts)

(handle zero (abs ( ) 0)

(foldr mul 1 elts)))

(def (list-prod3 elts)

(label return

(recur prod ((es elts))

(if (@null? elts)

1

(let ((n (@car elts)))

(if (@= n 0)

(jump return 0)

(* n (prod (@cdr elts)))))))))
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Exercise 9.26 Evaluate the following expression (1) when handler is handle and (2)
when handler is trap:

(handler exn (abs (x) x)

(handler exn (abs (y) (if (@= y 0) 1 (@* y (raise exn (@- y 1)))))

(raise exn 5)))

Exercise 9.27 In the test expression EhandleTest presented in the text, there are eight
possible ways to instantiate handler1 , handler2 , handler3 from the set {trap, handle}.
Two combinations have already been analyzed in the text.

a. Write the result of evaluating EhandleTest for the other six combinations, assuming
the default semantics for trap and handle.

b. Let V be the set of all result values from part a. If you instead assume dismissal
semantics for trap and/or nondismissal semantics for handle, for which combinations
does EhandleTest have a different result value than any of the values in V ?

Exercise 9.28 The implementation of env-merge in Figure 9.34 uses handle to catch
an unbound variable exception from looking up the variable in env1. Could trap be used
instead? Explain, using concrete examples where appropriate.

Exercise 9.29 Figure 9.39 presents desugarings for some versions of trap and handle.

a. The desugaring for trap in Figure 9.39 is for the default nondismissal version. Give
a desugaring for a dismissal version of trap.

b. In Figure 9.39, the dismissal semantics for handle is achieved via thunks. Give a
thunkless desugaring for the dismissal semantics of handle by fleshing out the � in
the following skeleton:

(handle Itag Ehandler Ebody)

�ds (label Inormal {Inormal is fresh}
(Ehandler (label Iraise {Iraise is fresh} �)))

Exercise 9.30 Inspired by Java features for exception handling, Abby Stracksen is
experimenting with adding two kernel constructs to FLIC+{handle, raise}:

E ::= . . . FLICK+{raise, handle} expressions . . .
| (raises (I ∗

tag) Ebody) | (finally Ebody Efinally)

Since Java uses termination semantics for exceptions, Abby does not include trap in
her language.

Here is the informal semantics of Abby’s constructs:

(raises (I ∗
tag) Ebody) evaluates and returns the value of Ebody . However, Ebody is only

allowed to raise exceptions whose tags are listed in I ∗
tag . If Ebody dynamically raises

an exception that is not in I ∗
tag , the program halts with an illegal-exception error.

(A different approach would be to statically determine which exceptions Ebody might
raise; see Section 16.3.3.)
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(finally Ebody Efinally) first evaluates Ebody to the value vbody , then evaluates Efinally

(whose value is discarded), and then returns vbody . If an exception is raised by Ebody ,
Efinally is still evaluated before the exception is handled. So Efinally is evaluated
regardless of whether Ebody evaluates normally or raises an exception.

The raises construct is useful for documenting which exceptions an expression or
procedure can raise. For example,

(def p (abs (x y) (raises (negative zero) Epbody)))

declares that the procedure p might raise the negative or zero exceptions. So it’s a
good idea to wrap calls to p in handle expressions that handle these two exceptions. If p
is invoked with arguments that cause Epbody to raise an exception that is not negative
or zero, the program will halt with an illegal-exception error.

The (finally Ebody Efinally) construct is useful for guaranteeing that the cleanup
operations in Efinally are performed regardless of how Ebody is exited. For example,
consider the following procedure:

(def (with-cell-set-to c temp-value thunk)

(let ((old-value (^ c)))

(finally (begin (:= c temp-value) (thunk))

(:= c old-value))))

This dethunks thunk in a context where the cell c is temporarily set to temp-value and
then resets c to its original value. The cell c is reset to its original value even if dethunking
thunk raises an exception. Here’s an example illustrating with-cell-set-to:

(let ((a (cell 10)))

(let ((f (abs (x) (@* (^ a) (if (@< x 0) (raise negative x) x))))))

(list (f 2)

(with-cell-set-to a 3 (abs () (f 4)))

(handle negative (abs (v) (@- 0 v))

(with-cell-set-to a 5 (abs () (f -6))))

(f 7)))) −−−−FLIC→ �20 , 12 , 6 , 70 �

Note that cell a holds the value 10 before and after the evaluation of each of the four
subexpressions in (list . . . ).

a. Write the E valuation clause for raises.

b. Write the E valuation clause for finally.

c. The informal semantics for finally does not specify what happens when an exception
is raised within Efinally . According to your semantics for finally, what is the value
of the following expression?

(let ((b (cell 10)))

(handle exn1 (abs (x) (@* x (^ b)))

(handle exn2 (abs (y) (@+ y (^ b)))

(finally (begin (:= b 200)

(handle exn2 (abs (y) (:= b (@/ (^ b) y)))

(@* 3 (raise exn1 4))))

(begin (@- 6 (raise exn2 5))

(:= b 10)))))
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Exercise 9.31 Sam Antics thinks that exception handlers should be able to dynamically
choose between termination and resumption semantics. Sam likes the termination seman-
tics of handle but occasionally he would prefer the resumption semantics of trap. He
decides to extend FLIC+{raise, handle} with a new expression construct (resume E)

that helps to simulate some of the behavior of trap.
Informally, (resume E) causes a handler to resume at the point of the raise rather

than terminating at the point of the handle. resume first evaluates E using the current
dynamic handler environment and then returns control to the point of the most recent
raise with the value of E . Any program that does not use resume should behave just
as it would in FLIC+{raise, handle}. Figure 9.40 shows some examples that Sam has
developed to illustrate his (resume E) construct.

a. Unfortunately, Sam has fallen ill, and you must flesh out his design. You should
extend the standard semantics for FLIC+{raise, handle} as follows.

i. Modify the signatures of E and E∗ and the definition of the semantic domain
Proc to support the resume construct.

ii. Give the valuation clauses for lam, app, raise, handle, and resume. (Assume
that the clauses for other FLICK constructs are modified appropriately.)

iii. Give the P valuation clause for a program.

b. It is possible to define a translation function T from FLIC+{trap, handle, raise} to
FLIC+{handle, raise, resume} that preserves the meaning of expressions. This is a
translation between two different languages and not a desugaring from a language to
itself. The translation of most expressions is purely structural — i.e., translating the
expression merely glues together the translation of its subexpressions. For example,

T [[(app E1 E2)]] = (app T [[E1 ]] T [[E2 ]])

Define the translation clauses for trap, handle, and raise. Recall that the trap

construct presented in the text combines resumption semantics with nondismissal
semantics. The resumption semantics can be achieved via resume; the tricky part
is simulating the nondismissal semantics of trap using handle (which uses dismissal
semantics).

Exercise 9.32 Sam Antics has developed Switcheroo, a version of FLIC extended
with a kernel switch expression that allows a program to both generate and handle
exceptions:

E ::= . . . FLICK expressions . . . | (switch E)

In Switcheroo, every expression is implicitly provided with two expression continua-
tions, which Sam calls the A and B continuations:



9.6.5 Examples Revisited 535

{handle behaves as normal}
(handle exn (abs (x) (@+ x 2))

(@+ 20 (raise exn 1))) −−−−FLIC→ 3

{handle using resume is similar to trap}
(handle exn (abs (x) (resume (@+ x 2)))

(@+ 20 (raise exn 1))) −−−−FLIC→ 23

{It is an error to use resume outside an exception handler}
(resume 7) −−−−FLIC→ error:no-raise

{resume need not be syntactically inside the handler expression to work}
(let ((f (abs (x) (resume (@+ x 4)))))

(handle exn (abs (y) (f (@+ y 300)))

(@+ 20 (raise exn 1)))) −−−−FLIC→ 324

{When resume is invoked, any pending computation in the}
{handler is discarded, including any other resumes}
(handle exn (abs (x) (resume (@+ 300 (resume (@+ x 2)))))

(@+ 20 (raise exn 1))) −−−−FLIC→ 23

(handle exn1 (abs (x) (@+ 50000 (resume (@+ x 4))))

(@+ 4000

(handle exn2 (abs (x) (@+ 300 (raise exn1 (@+ x 2))))

(@+ 20 (raise exn2 1))))) −−−−FLIC→ 4307

{handle with resume differs from trap: handle uses dismissal while trap does not.}
(handle exn1 (abs (x) (@+ 50000 (resume (@+ x 4))))

(@+ 4000

(handle exn2 (abs (x) (resume (@+ 300 (raise exn1 (@+ x 2)))))

(handle exn1 (abs (x) (@+ 600000 x))

(@+ 20 (raise exn2 1)))))) −−−−FLIC→ 4327

{With resume, handlers can choose between termination and resumption}
(let ((f (abs (x)

(handle exn (abs (y)

(if (@< y 3)

(@+ y 300)

(@+ 50000 (resume (@+ y 4000)))))

(@+ 20 (raise exn x))))))

(pair (f 2) (f 4))) −−−−FLIC→ 〈302 , 4024 〉

Figure 9.40 Sam’s examples illustrating his resume construct (Exercise 9.31).
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E : Exp → Env → Expcont ; the A continuation
→ Expcont ; the B continuation
→ Cmdcont ; the normal command continuation

E∗ : Exp* → Explistcont → Explistcont → Cmdcont ; takes both A and B continuations

Proc = Nameable → Expcont → Expcont → Cmdcont ; takes both A and B continuations

Sam has modified the E and E∗ valuation clauses so that expressions and expression
sequences inherited from FLICK provide their return value to the A continuation but
pass the B continuation along as an extra argument. For example:

E [[L]] = λekakb . (ka L[[L]])

E [[(lam I E)]]
= λekalamkblam . (kalam (Proc�Value (λnkaappkbapp . (E [[E ]] [I �→n]e kaapp kbapp))))

E [[(app E1 E2)]] = λekappkbapp . (E [[E1 ]] e (procedure-cont
(λp . (E [[E2 ]] e (λv . (p v kapp kbapp)))))

kbapp)

The key feature of Switcheroo is that the (switch E) construct swaps the A and
B continuations for the evaluation of the component expression E :

E [[(switch E)]] = λekakb . (E [[E ]] e kb ka)

Whereas the A continuation usually corresponds to a normal return, the B continuation
usually corresponds to an exceptional return. Sam calls values that are passed to A
continuations “A values” and values that are passed to B continuations “B values.”

Sam gives the following example of using switch to generate and handle exceptions:

(let ((inc (lam x

(if (@= x 0)

(switch (sym zero))

(if (@< x 0)

(switch (sym negative)

(@+ x 1)))))))

(let ((f (lam y

(switch (let ((exn (switch (inc (@* y 10)))))

(switch (if (sym=? exn (sym negative))

-1

0)))))))

(list (f 5) (f 0) (f -5)))) −−−−FLIC→ �51 , 0 , −1 �

The inc procedure increments a positive integer, but switch is used to raise exceptions
(i.e., return B values) if the argument is zero or negative. In the f procedure, if the
invocation of inc returns an A value vnorm (a normal value), then the switch around
(inc . . . ) is canceled by the switch around (let ((exn . . . )) . . .), and f returns
vnorm as well. But if the invocation of inc returns a B value vexn (an exception value),
this value is named exn, and f returns -1 for a negative exception and 0 for any other
exception (i.e., zero). The switch around (if . . . ) is necessary for returning the -1

or 0 from f as a normal value rather than as an exception value.
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a. Suppose that pinc is the meaning of the inc procedure in Sam’s example. Use Sam’s
semantics to find the meaning pf of the f procedure and verify that it behaves like
Sam claims on the arguments 5, 0, and -5.

b. Use Sam’s semantics to show that (switch (switch E)) has the same meaning as
E .

c. Write the valuation function P for Switcheroo. If the body of a program returns a
B value, the program should signal an unhandled-exception error.

d. Sam observes that, in Switcheroo, raise and handle can be defined as syntactic
sugar. Here is Sam’s desugaring for raise:

(raise Itag Einfo) �ds (switch (pair (sym Itag) Einfo)) ; Recall Ident ⊆ SymLit

Write a corresponding desugaring for (handle Itag Ehandler Ebody). Explain why
your solution implements the termination semantics and dismissal semantics of the
handle construct.

e. Basing the Switcheroo semantics on the standard semantics of FLICK requires
making many minor changes to domain signatures and valuation clauses. Far fewer
changes need to be made if the Switcheroo semantics is based on the computation-
style semantics FLICK. Give the modified definition of the Comp domain and the
val-to-comp, err-to-comp, and with-value functions for Switcheroo. With these def-
initions, explain why the computation-based E and E∗ valuation clauses from FLICK
can be used without modification in Switcheroo.

Notes

John Reynolds’s history of continuations [Rey93] credits Adriaan van Wijngaar-
den with the discovery of the notion of continuation, but notes that many others
— including F. Lockwood Morris, Chris Wadsworth, James Morris, and Michael
Fischer — rediscovered the idea or contributed to its early development. It ap-
pears that the term “continuation” was coined by Wadsworth. Continuations
played an important role in the development of actor languages [Hew77] and of
Scheme [SS75, Ste76, SS76, Ste78].

Strachey and Wadsworth used continuations to model control-point-capturing
constructs in the denotational semantics framework [SW74]. For more coverage of
the use of continuations in denotational semantics see [Ten76, Sto85, Sch86]. For
treatments of control constructs in operational semantics, see [SF89, FH92, FFF].

Early examples of programming language constructs for capturing control
points include Landin’s J operator [Lan65a, Lan65b, Lan98], Reynolds’s escape
construct [Rey72], and the catch construct in the initial version of Scheme
[SS75]. Later versions of Scheme provide the power of these earlier constructs via
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a procedure in the standard library named call-with-current-continuation

(often abbreviated call/cc) [AA+85]. Continuations have been used to im-
plement a wide range of sophisticated control features, including backtracking
[FHK84], coroutines [HFW86], multitasking with process threads [Wan80], timed
preemption [HF87], and Web applications [Que04]. Many applications of contin-
uations are surveyed in [SF89, Que93, FD01].

Continuations support nondeterministic programming, a paradigm in which
expressions can have multiple values and there is a means of specifying when a
suitable one has been found. This model is based on a pair of constructs: one, of-
ten called amb, choice, or choose, conceptually makes a nondeterministic choice
between a set of alternatives; the other, typically called fail, indicates that the
current alternative is unacceptable [McC67, ZMC87]. Such nondeterminism can
be implemented by backtracking-based search techniques using success and fail-
ure continuations [ASS96, Section 4.3]. Combining unification (see Section 13.3.2)
with nondeterministic choice is the basis for a style of programming known as
logic programming (e.g., [RW89], [ASS96, Section 4.4]), whose goal is to sepa-
rate the logic of an algorithm from its step-by-step realization in an executing
program [Kow79]. The chief exemplar of the style is the Prolog programming
language [WPP77]. The relationship between nondeterministic programming and
logic programming is discussed in [RH04, Chapter 9].

For more on continuation-passing style (CPS), see [DF92, SF93],[FWH01,
Chapter 8]. CPS plays an important role in the transformation-based compiler
we present in Chapter 17. Stoy argues that embedding continuations in the
semantics is better for expressing the meaning of programs than transforming
programs into CPS and then using direct semantics [Sto85].

The modularity benefits of coroutines were elucidated in [Con63] in the con-
text of structuring a compiler. Coroutining-based forms of iteration were included
in CLU[L+79], Icon [GG00], and Sather [MOSS96]. The enumerations and it-
erators supported in C++ and Java provide the modularity benefits of these
forms of iteration, but do so using hand-crafted state-based traversals of collec-
tions in place of coroutines.
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Data

Conjunction Junction, what’s their function?
I got “and”. . . and “or,”
They’ll get you pretty far.

“And”: That’s an additive, like “this and that.” . . .
And then there’s “or”:
O-R, when you have a choice like “this or that”.
“And”. . . and “or,”
Get you pretty far.

— Bob Dorough, “Conjunction Junction (Schoolhouse Rock)”

Well-designed data structures can make programs efficient, understandable, ex-
tensible, secure, and easy to debug. For this reason, programmers focus much of
their energy on designing and using data structures. How successful they are de-
pends in part on the tools provided by their programming language for declaring
and manipulating data.

This chapter explores key data dimensions in programming languages, be-
ginning with products (this and that) in Section 10.1 and then moving on to
sums (this or that) in Section 10.2. Typical data structures are naturally ex-
pressed using a combination of these, yielding sum-of-products data introduced
in Section 10.3. Sum-of-products data are more convenient to use if they can be
manipulated with constructor and deconstructor procedures created by the data
declarations presented in Section 10.4. Deconstructor procedures are somewhat
awkward to use directly, but the pattern matching facility of Section 10.5 provides
a simple and powerful interface for deconstructing sum-of-products data.

10.1 Products

Products are compound values that result from gluing other values together.
They are data structures that correspond to the product domains we have been
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using in our mathematical metalanguage (see Section A.3.3) to represent struc-
tured mathematical values with components. Standard examples of products are
two-dimensional points (consisting of x and y components), employee records
(consisting of name, sex, age, identification number, hiring date, etc.), and the
sequences of points in polygons.

There is a wide variety of product data structures in programming languages
that differ along a surprising number of dimensions:

• How are product values created and later decomposed into parts?

• Are the components of the product indexed by position or by name?

• When accessing a component, can its index be calculated or must an index be
an explicit constant?

• Are the components values (as in call-by-value) or computations (as in call-by-
name/call-by-need)?

• Are the components of the product immutable or mutable?

• Is the length of the product fixed or variable?

• Are all components of the product required to have the “same type”? I.e., are
products homogeneous?

• Can components of a product be products? If so, are the component products
all required to have the same size and/or “shape”?

• How are products passed as arguments, returned as results, and stored via
assignments?

• Can a product created within a procedure invocation outlive that invocation?

In this section, we will explore many of these dimensions, using our operational
and denotational tools where appropriate to explain interesting points in the
design space of products.

Products are known by a confusing variety of names — such as array, vector,
sequence, tuple, string, list, structure, record, environment, table, module, and
association list — that are used inconsistently between languages. We shall be
using some of these names in our study of products, but it is important to keep
in mind that our use of a name may denote a different kind of product than what
you might be familiar with from your programming experience.
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10.1.1 Positional Products

Simple Positional Products

The simplest kind of product is a pair, which glues two values together. In
Section 7.1.3, we studied the semantics of strict and nonstrict pairs in FL.

Pairs are an example of a positional product, in which component values
are indexed by their position in the product value. We can extend pairs into
more general positional products by adding the following two kernel expressions
to CBV FLIC:1

E ::= ...

| (prod E∗
component) [ProductCreation]

| (get Nindex Eprod) [ProductProjection]

The expression (prod E1 . . . En) constructs an immutable positional product
value whose n components are the values of the subexpressions E1 through En .
Such a value is traditionally known as a tuple. (get Nindex Eprod) extracts
the component of the tuple denoted by Eprod that is at the index denoted by
the integer literal Nindex , where the components of an n-component product are
indexed from 1 to n. An attempt to extract a component outside this index range
is an error. In the terminology of general products, the get operation is often
called a projection.

Because there is no mechanism to change a component of a tuple, tuples are
an example of an immutable product. In our initial exploration of products, we
will focus on immutable products because mutability introduces extra complexity
into the semantics. We will study mutable products in Section 10.1.4.

The operational and denotational semantics of immutable positional products
in CBV FLICK are presented in Figure 10.1. In the operational semantics, a
prod expression with value-expression components is considered a new kind of
value expression. The new evaluation context (prod V k−1

i=1 E En
j=k+1) dictates

that the subexpressions of a prod expression are evaluated from left to right. For
example,

(let ((c (cell 3)))

(prod c (:= c (* 2 (^ c))) c (:= c (+ 1 (^ c))) c))

evaluates to the value expression

(prod 3 #u 6 #u 7)

The new evaluation context (get Nindex E) evaluates the tuple argument to get.
The [get] reduction rule extracts the value component denoted by index Nindex .

1We use a stateful language to facilitate discussion of product design issues involving state.
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Using these contexts and rule, it is straightforward to show that the following
FL expression evaluates to 9 :

(let ((p (prod (= 0 1) (* 2 3) (+ 4 5))))

(if (get 1 p) (get 2 p) (get 3 p)))

In the corresponding denotational semantics, the Value domain is extended
with a new summand, Prod , whose elements — sequences of values — represent
product values. The evaluation of the subexpressions of a prod expression is
handled by with-values, and nth is used to extract the component at a given index
in a get expression. The with-prod-and-checked-index function ensures that (1)
the given computation produces a product value and (2) the given integer is in
the range of valid indices for the product value.

Both the operational and denotational treatments of get perform what is
known as a bounds check to ensure that the specified index is in the valid
range. If the bounds check fails, the get expression is an error. This is modeled
by a stuck expression in the operational semantics and an error computation
in the denotational semantics. In many programming languages, the size of a
product is known by the compiler or interpreter, and a bounds check for every
projection can be performed either at compile time or at run time. Important
exceptions are C and C++, in which arrays carry no size information and bounds
checks are not performed when array components are accessed. Programmers in
these languages must pass array size information separately from the array itself
and are expected to perform their own bounds checks. The lack of automatic
bounds checks in C/C++ is the root cause of a high percentage of security
flaws in modern software applications, many of which are due to so-called buffer
overflow exploits that take advantage of C’s permissiveness to fill memory with
malicious code that can then be executed by a privileged process [KBO+05].

A product value with n components is often drawn as a box with n slots,
sometimes with explicit indices. For example, the three-component product value
(prod #f 6 7) would be drawn as

false 6 7
1 2 3

Such a diagram suggests a low-level implementation in which the n components
of a product are stored as the contents of n successive addresses in the memory
of the computer, something we shall explore in more detail in Section 18.2.3.

We emphasize that tuples in FLIC are immutable: there is no way to change
the value stored in a slot. We will study mutable products in Section 10.1.4. But
first we discuss many possible variants of the simple products presented above.
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Values
V ∈ ValueExp ::= . . . | (prod V1 . . . Vn)

The AnsExp domain and output function OF would also have to be extended to
handle prod values.

Evaluation Contexts
E ∈ EvalContext ::= . . . | (prod V k−1

i=1 E En
j=k+1) | (get Nindex E)

New Stateless Reduction Rule
(get Nindex (prod V1 . . . Vn)) � Vi , [get]

where i = N [[Nindex ]] and 1≤ i ≤ n

Operational semantics for CBV products

New and Modified Semantic Domains
Prod = Value*

v ∈ Value = . . . + Prod

New Computation Operation
with-product-comp : Comp→ (Prod→ Comp) → Comp
The definition is similar to that of with-boolean-comp in Figure 6.26 on page 281.

with-prod-and-checked-index : Comp→ Int→ (Prod→ Int→ Comp) → Comp
= λcif . with-product-comp c

(λv∗ . if (1≤ i) ∧ (i ≤ (length v∗))
then (f v∗ i)
else (err-to-comp out-of-bounds-product-index)
end)

New Valuation Clauses
E [[(prod E∗)]] = λe . (with-values (E∗[[E∗]] e) (λv∗ . (Prod �Value v∗)))

E [[(get Nindex Eprod)]]
= λe . with-prod-and-checked-index (E [[Eprod ]] e) N [[Nindex ]]

(λv∗i . (val-to-comp (nth i v∗)))

Denotational semantics for CBV products

Figure 10.1 Operational and denotational semantics of immutable positional products
in CBV FLICK.
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Sequences

In the projection expression considered above, the index is an integer literal, not
an integer expression. This means that the projection index cannot be calculated.
As we discuss later (page 548), literal indices facilitate reasoning about programs
written in statically typed languages.

The positional products studied above do not include any way to dynami-
cally determine the size of the product, i.e., the number of components. It is
assumed that the programmer knows the size of every tuple when writing the
program. However, there are many situations where it is necessary or convenient
to determine the size of a product and to extract a product component at an
index calculated from an expression. For instance, given an arbitrary product
containing numbers, determining the average of these numbers requires knowing
the number of components and looping through all indices of the product to find
the sum of the components. Such capabilities are normally associated with prod-
ucts called arrays. But since arrays are usually mutable, we will instead use
the name sequence for immutable products with calculated indices and dynam-
ically determinable sizes. This terminology is consistent with our use of the term
“sequence” in our mathematical metalanguage.

We can extend FLIC with immutable sequences by adding the following con-
structs to the language:

E ::= ...

| (seq E∗
component) [SequenceCreation]

| (seq-get Eindex Eseq) [SequenceProjection]
| (seq-size Eseq) [SequenceSize]

The expression (seq E1 . . . En) creates and returns a size-n sequence whose
components are the values of the expressions E1 through En . The expression
(seq-get Eindex Eseq) returns the ith component of the sequence denoted by
Eseq , where i is the integer denoted by the arbitrary expression Eindex (which must
be checked against the bounds of the sequence). The expression (seq-size Eseq)

returns the number of components in the sequence. The formal semantics of
sequences is left as Exercise 10.1.

As an example of sequence manipulation, here is a procedure that finds the
average of a sequence of numbers:

(def (average s)

(let ((n (seq-size s)))

(recur loop ((i n) (sum 0))

(if (= i 0)

(/ sum n)

(loop (- i 1) (+ sum (seq-get i s)))))))
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Exercise 10.1

a. Give an operational semantics for sequences in CBV FLICK.

b. Give a denotational semantics for sequences in CBV FLICK.

c. Explicitly enumerating the elements of a sequence in a seq expression can be incon-
venient. For example, a sequence of the squares of the integers from 1 to 5 would be
written:

(seq (* 1 1) (* 2 2) (* 3 3) (* 4 4) (* 5 5))

An alternative means of specifying such sequences is via a new construct

(tabulate Esize Eproc)

where Esize denotes the size of the sequence and Eproc denotes a unary procedure f
that maps the index i to the value (f i). For instance, using tabulate, the above
five-element sequence could be written

(tabulate 5 (abs (i) (* i i)))

Give an operational and denotational semantics for tabulate in CBV FLICK.

Updatable Sequences

Even with immutable products, it is still useful to provide a facility for updating
elements in, inserting elements into, and removing elements from a product. Since
the product is immutable, these operations don’t actually change a given product
value: Instead they return a new product value that shares most of its components
with the given product value. We shall call sequences that support one or more of
these operations updatable sequences, though this is by no means a standard
term. Haskell’s arrays, SML’s vectors,2 and CLU’s sequences are examples of
updatable sequences in real languages.

Consider the following constructs for one form of updatable sequence:

E ::= ...

| (useq E∗
component) [UpdatableSequenceCreation]

| (useq-get Eindex Euseq) [UpdatableSequenceProjection]
| (useq-size Euseq) [UpdatableSequenceSize]
| (useq-update Eindex Eval Euseq) [UpdatableSequenceUpdate]
| (useq-insert Eindex Eval Euseq) [UpdatableSequenceInsertion]
| (useq-delete Eindex Euseq) [UpdatableSequenceDeletion]

The useq, useq-get, and useq-size constructs are the updatable sequence ver-
sions of the corresponding (non-updatable) sequence constructs. For the other
constructs, suppose that Eindex denotes an integer i, Eval denotes a value vnew ,

2Vectors are not part of the SML standard but are supported by many dialects.
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and Euseq denotes a size-n updatable sequence vuseq . If v is an updatable se-
quence, let #v denote the size of v and v ↓ j denote the jth component value of
v , where 1 ≤ j ≤ #v . Finally, for the following examples, suppose that u denotes
the sequence with integer values [7, 5, 8]. Then:

• if 1 ≤ i ≤ n, (useq-update Eindex Eval Euseq) returns a size-n updatable
sequence vuseq2 such that

vuseq2 ↓ i = vnew ; and

vuseq2 ↓ j = vuseq ↓ j for all 1 ≤ j ≤ n where j 
= i.

For example, (useq-update 2 6 u) returns the updatable sequence [7, 6, 8].

• if 1 ≤ i ≤ n + 1, (useq-insert Eindex Eval Euseq) returns a size-(n + 1)
updatable sequence vuseq2 such that

vuseq2 ↓ j = vuseq ↓ j for all 1 ≤ j < i;

vuseq2 ↓ i = vnew ; and

vuseq2 ↓ k = vuseq ↓ (k − 1) for all i < k ≤ (n + 1);

For example, (useq-insert 2 6 u) returns the updatable sequence [7, 6, 5, 8].

• if 1 ≤ i ≤ n, (useq-delete Eindex Euseq) returns a size-(n − 1) updatable
sequence vuseq2 such that

vuseq2 ↓ j = vuseq ↓ j for all 1 ≤ j < i; and

vuseq2 ↓ k = vuseq ↓ (k + 1) for all i ≤ k ≤ (n− 1);

For example, (useq-delete 2 u) returns the updatable sequence [7, 8].

All of the above constructs signal an error when Euseq does not denote an updat-
able sequence or when Eindex is not an integer or is out of bounds.

Exercise 10.2 Define a procedure (sort less-than elts) that takes a less-than predicate
less-than and an updatable sequence elts and returns an updatable sequence with the
same elements as elts sorted from low to high by less-than.

Exercise 10.3

a. Give an operational semantics for updatable sequences in call-by-value FLICK.

b. Give a denotational semantics for updatable sequences in call-by-value FLICK.

c. Show that useq-update is not strictly necessary in a language with updatable se-
quences by showing how to desugar it into other constructs.
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d. Consider a language with updatable sequences that also has a (useq-empty) construct
that returns an empty updatable sequence. Show that useq is not strictly necessary
in such a language by showing how to desugar it into other constructs. What are the
benefits and drawbacks of such a desugaring?

Product indexing

The positional products discussed above use 1-based indexing, in which the
components of an n-component tuple are accessed via the indices 1 . . . n. Many
languages instead have 0-based indexing, in which the slots are accessed via
the indices 0 . . . n− 1. For example:

false 6 7
0 1 2

Why use the index 0 to access the first slot of a product? One reason is
that it can simplify some addressing calculations in the compiled code, which
results in the execution of fewer low-level instructions when projecting compo-
nents from products. Another reason is that 0-based indexing simplifies certain
addressing calculations for the programmer. For example, compare the following
expressions for accessing the slot in row i and column j of a conceptually two-
dimensional matrix m with width w and height h that is actually represented as
a one-dimensional sequence with w × h components stored in row-major order:3

{0-based indexing of matrices and sequences}
(nth (+ (* w i) j) m)

{1-based indexing of matrices and sequences}
(nth (+ (* w (- i 1)) j) m)

The 0-based approach is simpler because it does not require the subtraction of 1
seen in the 1-based approach.

Using 0 or 1 as the index for the first component is not the only choice when
it comes to indexing. Some languages allow using any integer range for product
indices. Pascal even allows using as index ranges any range of values that is
isomorphic to an integer range. For instance, a Pascal array can be indexed by
the alphabetic characters from 'p' to 'u' or the days of the week from monday

through friday (where an enumeration of days has been declared elsewhere).

3Row-major order means the elements of each row are stored in consecutive locations in
the sequence. This makes accessing elements along a row very inexpensive. Likewise, column-

major order means elements of each column are stored in consecutive sequence locations.
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Types

FL is a dynamically typed language, in which each value is conceptually
tagged with its type, and type errors are not detected until the program is run.
In contrast, many modern languages are statically typed languages, in which
the type of every expression is known when the program is compiled. The goal
of static typing affects the design of positional products in these languages. In
particular, it must be possible for the type checker to determine the type of every
value projected from a product value.

For instance, SML and Haskell support so-called heterogeneous tuples,
in which each tuple component may have a different type. In order to determine
the type of a projection, both tuple indices and tuple sizes must be statically
determinable (i.e., they cannot be determined at run time as the value of an
arbitrary expression). In contrast, products whose projection indices or size can
be dynamically computed must be homogeneous — i.e., all components are
required to have the same type. Examples of homogeneous products are the
mutable arrays of Ada, C, Java, and Pascal and the immutable updatable se-
quences of Haskell and CLU. Many languages treat homogeneous sequences of
characters, known as strings, as a special kind of positional product. Immutable
strings appear in languages such as Java, SML, Haskell and CLU, while C
and Scheme provide mutable strings.

Product indices are usually restricted to the integer type, but, as mentioned
above, some languages allow index types that are isomorphic to the integers or
some finite range of the integers. For example, the Haskell language allows
arrays to be indexed by any type that provides the operations of an “indexable”
type. In Pascal, arrays can be indexed by any range type that is isomorphic to
a finite integer range. Oddly, the index range (not merely the index type) is part
of the array type in Pascal, which means that the size of every Pascal array is
statically known, and it is not possible to write procedures that are parameterized
over arrays of different lengths.

We will have much more to say about product types when we study types in
more detail (see Section 11.8.1).

Specialized syntax

Many languages provide specialized syntax for product manipulation. For in-
stance, SML tuples are constructed by comma-separated expressions delimited
by parentheses, and the ith tuple component is extracted via the syntax #i. Here
is an SML version of the example we expressed earlier in s-expression syntax:
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let val p = (0=1, 2*3, 4+5)

in if #1(p) then #2(p) else #3(p)

end

For immutable sequences (as well as for mutable arrays) a subscripting no-
tation using square brackets is a standard way to project components, and :=

might be used for an update operation.

Exercise 10.4

a. What changes would need to be made in Exercise 10.1 (page 545) to specify 0-based
indexing rather than 1-based indexing?

b. What changes would need to be made to the syntax for sequences and in Exercise 10.1
to specify an indexing scheme that starts at an arbitrary dynamically determinable
value low rather than 0 or 1?

10.1.2 Named Products

In a named product, components are indexed by names rather than by po-
sitions. In Section 7.2.3, we introduced the record, a classic form of named
product, and studied its semantics. We saw that records were effectively reified
environments. Here we discuss some of the design issues for named products.

The simplest form of named product is a named version of positional products
with a product creator (record) and a product projector (select):

E ::= . . .
| (record (IfieldName EfieldDefn)

∗) [RecordCreation]
| (select IfieldName Ercd) [RecordProjection]

As above, we assume that such constructs are embedded in a call-by-value lan-
guage and denote immutable products.

As a simple example of records, consider the following expression, which eval-
uates to 9 :

(let ((r (record (test (= 0 1)) (yes (* 2 3)) (no (+ 4 5)))))

(if (select test r) (select yes r) (select no r)))

The order of bindings in the record constructor is irrelevant, so the value of the
above expression would not change if the record subexpression were changed to

(record ((no (+ 4 5)) (test (= 0 1)) (yes (* 2 3))))

Many languages with named products have special syntax for record creation and
projection. For instance, here is our example expressed in SML record syntax:
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let val r = {test=(0=1), yes=2*3, no=4+5}

in if #test(r) then #yes(r) else #no(r)

end

A more common syntax for record selection is the “dot notation” used with C
structures, Pascal records, and Java objects, as in:

if r.test then r.yes else r.no fi

In a language like SML that permits numeric record labels, positional prod-
ucts can be viewed as syntactic sugar for named products. E.g., the SML tuple
(true, 17) is syntactic sugar for {1=true, 2=17}.

Simple records can be augmented with operations that parallel many of the
extensions for positional products:

(record-size Ercd): Returns the number of components in a record.

(record-insert I Eval Ercd): Let vrcd be the record denoted by Ercd . Then
the record-insert expression returns a new record that has a binding of I
to the value of Eval in addition to all the bindings of vrcd . If vrcd already
has a binding for I , the new binding overrides it. With named products,
record-insert corresponds to both useq-insert and useq-update for posi-
tional products.

(record-delete I Ercd): Let vrcd be the record denoted by Ercd . Then the
record-delete expression returns a new record that has all the bindings of
vrcd except for any with the name I .

The override construct of Section 7.2.3 is a generalization of record-insert
that combines two environments, while the conceal construct presented there
is a generalization of record-delete. Other forms of record combination and
name manipulation are also possible. For instance, it is possible to take the
“intersection” or “difference” of two records, or to specify the names that should
be kept in a record rather than those that should be concealed.

It is even possible, but rare, to have a named index that can be calculated.
In FL, such a construct might have the form (select-sym Esym Ercd), where
Esym is an expression denoting a symbol value vsym and select-sym selects from
the record denoted by Ercd the value associated with vsym . It would be hard to
imagine such a construct in a statically typed language. However, this idiom is
often used in dynamically typed languages (especially Lisp dialects) in the form
of association lists, which are lists of bindings between explicit symbols and
values.
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10.1.3 Nonstrict Products

Our discussion so far has focused on strict products, in which the expres-
sions specifying the product components are fully evaluated into values that are
stored within the resulting product value. Another option is to have nonstrict
products, in which the component computations themselves are stored within
the product value and are performed only when their values are “demanded.”
Such products are the default in nonstrict languages like Haskell, but we will
see that there are considerable benefits to integrating nonstrict products into a
call-by-value language, which is the focus of this section.

Call-by-Name (CBN) Products

A simple approach to nonstrict products is to adapt the call-by-name parameter-
passing mechanism to product formation. We will call the resulting data call-by-
name (CBN) products in contrast to the call-by-value (CBV) products
we have studied so far. An operational and denotational semantics for immutable
positional CBN products in a call-by-value version of FLIC is presented in Fig-
ure 10.2. We use the names nprod/nget instead of prod/get to syntactically
distinguish CBN products from CBV products. This allows us to support both
kinds of products in the CBV FLIC language.

In the operational semantics, the delayed computation of CBN product com-
ponents is modeled by not having any evaluation contexts for evaluating the
component expressions of an nprod expression (but an evaluation context is still
needed to evaluate the nonstrict-tuple argument to nget). In the denotational se-
mantics, a product value is represented as a sequence of computations rather than
as a sequence of values. Intuitively, these computations are “forced” into values
only upon projection from the CBN product by the occurrences of with-value
that are sprinkled throughout the rest of the denotational semantics for CBV
FLICK.

As a simple example of how CBN products differ from CBV products, consider
the following expression:

(let ((c (cell 5)))

(let ((p (nprod (begin (:= c (+ (^ c) 1)) (^ c))

(begin (:= c (* (^ c) 2)) (^ c)))))

(list (nget 2 p) (nget 1 p) (nget 1 p) (nget 2 p))))

The value of this expression is �10 , 11 , 12 , 24 �, indicating that the increments
and doublings of the argument expressions are performed at every projection
rather than when the CBN product is formed. If we had instead used CBV
products, the above expression would yield �12 , 6 , 6 , 12 �, indicating that the
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Values
V ∈ ValueExp ::= . . . | (nprod E1 . . . En)

The AnsExp domain and output function OF would also have to be extended to
handle nprod values.

Evaluation Contexts
E ∈ EvalContext ::= . . . | (nget Nindex E)

New Stateless Reduction Rule
(nget Nindex (nprod E1 . . . En)) � Ei , [nget]

where i = N [[Nindex ]] and 1≤ i ≤ n

Operational semantics for CBN products

New and Modified Semantic Domains
NProd = Comp*

v ∈ Value = . . . + NProd

New Computation Operation
with-nprod-and-checked-index : Comp→ Int→ (NProd→ Int→ Comp)→ Comp
The definition is similar to that of with-prod-and-checked-index in Figure 10.1
on page 543.

New Valuation Clauses
E [[(nprod E∗)]] = λe . (NProd �Value (E∗[[E∗]] e))

E [[(nget Nindex Eprod)]]
= λe . with-nprod-and-checked-index (E [[Eprod ]] e) N [[Nindex ]]

(λc∗i . (nth i c∗))

Denotational semantics for CBN products

Figure 10.2 Operational and denotational semantics for CBN positional products in
call-by-value FLICK.

side effects of the argument expressions are performed exactly once, when the
product is created.

Lazy (CBL) Products

In CBN products, the component computation is reevaluated at every projec-
tion. Another option, inspired by the call-by-need (a.k.a. call-by-lazy) parameter-
passing mechanism, is to evaluate the component computation at the very first
projection and memoize the resulting value for later projections. We shall call
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Modified Domains
LC ∈ Location = NatLit ; as usual

S ∈ Store = Assignment* ; as usual
Z ∈ Assignment = Location × Exp ; use Exp rather than ValueExp

; in Figure 8.13 on page 406

V ∈ ValueExp ::= . . . | (*lprod* LC 1 . . . LC n)

The AnsExp domain and output function OF would also have to be extended to
handle *lprod* values.

Modified Store Operations
get : Location→ Store ⇀ Exp; uses Exp rather than ValueExp
The definition is similar to that of get in Figure 8.13 on page 406.

Evaluation Contexts
E ∈ EvalContext ::= . . . | (lget Nindex E)

New Stateful Reduction Rules
〈(lprod E1 . . . En), S 〉

s
� 〈(*lprod* LC 1 . . . LC n), [〈LC 1 ,E1 〉 . . . 〈LC n ,En〉] @ S 〉 [lprod]
where LC 1 . . . LC n are locations that do not appear in S .

〈(lget N (*lprod* LC 1 . . . LC n)), S 〉 s
� 〈V , S 〉, [lget]

where i = N [[N ]], 1≤ i ≤ n, and (get LC i S ) = V

New Evaluation Progress Rule
〈E , S 〉 ⇒ 〈E ′, S ′〉

〈E{(lget N (*lprod* LC 1 . . . LC n))}, S 〉
⇒ 〈E{(lget N (*lprod* LC 1 . . . LC n))}, (〈LC i ,E

′〉 . S ′)〉

[lget-progress]

where i = N [[N ]], 1≤ i ≤ n, and (get LC i S ) = E

Figure 10.3 Operational semantics for lazy (CBL) products in call-by-value FLICK.

this form of nonstrict product a lazy (CBL) product. Using a lazy product in
the above example would yield the list �10 , 11 , 11 , 10 �, which indicates that the
side effects are performed on the first projection of each component but not on
subsequent projections.

The operational semantics of lazy products is presented in Figure 10.3. We
use the names lprod and lget to distinguish lazy products from CBV and CBN
products. A lazy product value (introduced by the keyword *lprod*) is a se-
quence of locations in a store that has been extended to map locations to ar-
bitrary expressions, not just value expressions. Only lazy products will make
use of this generality; cells will continue to store only values at locations. The
new stateful reduction rule [lprod] allocates a location to hold each unevaluated
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〈(app (lam lp (prim * (lget 1 lp) (lget 1 lp)))

(lprod (prim + 1 2) (prim - 9 5))), [ ]〉
====
CBV
⇒

[lprod]
〈(app (lam lp (prim * (lget 1 lp) (lget 1 lp)))

(*lprod* 0 1)),
[〈0, (prim + 1 2)〉, 〈1, (prim - 9 5)〉]〉

====
CBV
⇒

[β-value]
〈(prim * (lget 1 (*lprod* 0 1)) (lget 1 (*lprod* 0 1))),

[〈0, (prim + 1 2)〉, 〈1, (prim - 9 5)〉]〉
====
CBV
⇒ 〈(prim * (lget 1 (*lprod* 0 1)) (lget 1 (*lprod* 0 1))),

[〈0, 3〉, 〈0, (prim + 1 2)〉, 〈1, (prim - 9 5)〉]〉
; This step is justified by both [lget-progress] and [+]

====
CBV
⇒

[lget]
〈(prim * 3 (lget 1 (*lprod* 0 1))),

[〈0, 3〉, 〈0, (prim + 1 2)〉, 〈1, (prim - 9 5)〉]〉
====
CBV
⇒

[lget]
〈(prim * 3 3), [〈0, 3〉, 〈0, (prim + 1 2)〉, 〈1, (prim - 9 5)〉]〉

====
CBV
⇒

[*]
〈9, [〈0, 3〉, 〈0, (prim + 1 2)〉, 〈1, (prim - 9 5)〉]〉

Figure 10.4 Evaluation steps in a lazy product example.

component expression. The [lget-progress] evaluation progress rule permits the
evaluation process to “reach into” the store and perform an evaluation step on
a stored expression E , but only when the value of that expression is demanded
in an evaluation context as a projection of the ith component of a lazy product.
Whatever progress is made in evaluating the configuration 〈E , S 〉 to 〈E ′, S ′〉 is
“remembered” in the store by prepending the assignment 〈LC i ,E

′〉 to S ′, where
LC i is the location of the ith component of the lazy product. A progress rule
(rather than some sort of extended evaluation context) seems to be required here
to handle cases in which projecting a lazy product component requires projecting
other lazy product components. If the lazy-product projection process eventually
massages the stored expression into a value, that value will be memoized at the
component location and will be returned directly by every future lget of that
component without further evaluation.

For example, Figure 10.4 shows the evaluation steps in a simple example
involving a lazy product. Note that the expression (prim + 1 2), which is refer-
enced twice as the first component of the lazy product lp, is evaluated only once.
The second component of lp, the expression (prim - 9 5), is never referenced
and so is never evaluated. The third step in the evaluation sequence is justified
by two evaluation rules. First,

〈(prim + 1 2), S 〉 ====
CBV
⇒

[+]
〈3, S 〉
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for any store S , including S0 = [〈0, (prim + 1 2)〉, 〈1, (prim - 9 5)〉]. Since

(prim * (lget 1 (*lprod* 0 1)) (lget 1 (*lprod* 0 1)))

= (prim * � (lget 1 (*lprod* 0 1))){(lget 1 (*lprod* 0 1))}

the following evaluation step can be justified via the [lget-progress] rule in con-
junction with the [+] evaluation step:

〈(prim * � (lget 1 (*lprod* 0 1))){(lget 1 (*lprod* 0 1))}, S0 〉
====
CBV
⇒ 〈(prim * � (lget 1 (*lprod* 0 1))){(lget 1 (*lprod* 0 1))},

(〈0, 3〉 . S0 )〉

In the denotational semantics for lazy products (Figure 10.5), the memoizing
behavior of lazy products is modeled by extending Storable to be Memo,4 which
includes both values and computations. For a CBV language, we modify the
allocating function to inject the initial value to be stored in a location into Memo,
and introduce allocatingComp and allocatingComps for storing computations in
freshly allocated locations. We modify fetching so that whenever the content of
a location is fetched, any computation stored at that location is evaluated to a
value that is memoized at that location. A lazy product itself is modeled as a
sequence of locations holding elements of Memo.

Nonstrict products may be also added to stateless languages like FL, some-
thing we have already seen in our study of CBN pairs in FL (Section 7.1.3). Here
we have chosen to focus on the stateful language FLIC for two reasons:

1. It is easier to demonstrate the differences between the three forms of products
(prod, nprod, lprod) in a language with state. In stateless FL, CBN and
CBL products are observationally indistinguishable, and only termination and
errors can be used to distinguish strict and nonstrict products.

2. Explaining the memoization of CBL products requires some form of state, so
for presentational purposes it is easier to add these to a language like FLIC
that already has state.

Streams

The main benefit of nonstrict products is that they enable the creation of concep-
tually infinite data structures that improve program modularity. For instance,

4This domain implies that computations could be stored at any location (such as cell loca-
tions), but in fact they can be stored only in lazy-product locations. A practical implementation
of lazy products would localize the overhead of memoization to lazy-product component loca-
tions so that the efficiency of manipulating cell locations would not be affected.
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we can introduce potentially infinite lists, sometimes called streams, into a CBV
language with the following sugar for scons (stream cons):

(scons E1 E2) �ds (lprod E1 E2)

along with the following definitions:

(def (scar s) (lget 1 s))

(def (scdr s) (lget 2 s))

(def snil #u)

(def (snull? s) (unit? s))

For example, the stream of all natural numbers can be created via (from 0),
where the from procedure is defined as

(def (from n) (scons n (from (+ n 1))))

The fact that the evaluation of the component expression (from (+ n 1)) is
delayed until it is accessed prevents what would otherwise be an infinite recursion
if cons were used instead of scons.

To view a prefix of a stream as a regular list, we can use the following two
procedures:

(def (prefix n str)

(cond ((= n 0) snil)

((snull? str) (error empty-stream))

(else (scons (scar str) (prefix (- n 1) (scdr str))))))

(def (to-list str)

(if (snull? str)

nil

(cons (scar str) (to-list (scdr str)))))

For example:

(to-list (prefix 5 (from 3))) −−−−FLIC→ �3 , 4 , 5 , 6 , 7 �

As illustrated by these examples, streams are a simpler way to represent
the sequences of numbers generated by the coroutining iterators presented in
Section 9.5. With streams, there is no need for complex manipulation of first-class
control points to suspend an iterator process. Instead, the nonstrictness of lazy
evaluation automatically effectively suspends the sequence-generating process.
Moreover, the fact that streams are a data structure with memoized elements
makes them more convenient to use in many situations than a nullary element-
generation procedure that returns the next element each time it is called.
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Modified Semantics Domains
mm ∈ Memo = Comp + Value

σ ∈ Storable = Memo ; like call-by-need semantics in Figure 8.27 on page 435
LProd = Location*

v ∈ Value = . . . + LProd

New and Modified Computation Operations
with-lprod-and-checked-index : Comp→ Int→ (LProd→ Int→ Comp) → Comp

The definition is similar to that of with-prod-and-checked-index in Figure 10.1 on
page 543.

allocating : Value→ (Location→ Comp)→ Comp
= λvf . λs . (f (fresh-loc s) (assign (fresh-loc s) (Value �Memo v) s))

allocatingComp : Comp→ (Location→ Comp)→ Comp
= λcf . λs . (f (fresh-loc s) (assign (fresh-loc s) (Comp�Memo c) s))

allocatingComps : Comp* → (Location*→ Comp)→ Comp
= λc∗f . (match c∗

� [ ]Comp [] (f [ ]Location)
� (c . c∗) [] allocatingComp c (λl . (allocatingComps c∗ (λl∗ . (f (l . l∗)))))
end )

fetching : Location→ (Value→ Comp)→ Comp
= λlf . λs . match (fetch l s)

� (Storable �AssignedVal mm) []
match mm
� (Value �Memo v) [] (f v s)
� (Comp�Memo c) []

with-value c (λvs ′ . (f v (assign l (Value �Memo v) s ′)))
end

� else (err-to-comp unassigned-location s)
end

New Valuation Clauses
E [[(lprod E∗)]] = λe . (allocatingComps (E∗[[E∗]] e) (λl∗ . (LProd �Value l∗)))

E [[(lget Nindex Eprod)]]
= λe . with-lprod-and-checked-index (E [[Eprod ]] e) N [[Nindex ]]

(λl∗i . (fetching (nth i l∗) val-to-comp))

Figure 10.5 Denotational semantics for CBL products in CBV FLICK.
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{A stream of all natural numbers}
(def nats (scons 0 (smap (+ 1) nats))) {(+ 1) is a curried incrementing proc.}
(to-list (prefix 5 nats)) −−−−FLIC→ �0 , 1 , 2 , 3 , 4 �

{A stream of all even natural numbers}
(def evens (sfilter (abs (x) (= (% x 2) 0)) nats))

(to-list (prefix 5 evens)) −−−−FLIC→ �0 , 2 , 4 , 6 , 8 �

{A stream of all powers of two}
(def twos (scons 1 (smap (* 2) twos))) {(* 2) is a curried doubling proc.}
(to-list (prefix 5 twos)) −−−−FLIC→ �1 , 2 , 4 , 8 , 16 �

{A stream of all Fibonacci numbers}
(def fibs (scons 0 (scons 1 (smap2 + fibs (scdr fibs)))))

(to-list (prefix 10 fibs)) −−−−FLIC→ �0 , 1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 �

{A stream of all prime numbers (created via the sieve of Eratosthenes)}
(def primes

(recur sieve ((str (from 2)))

(scons (scar str)

(sieve (sfilter (abs (x) (not (= (% x (scar str)) 0)))

(scdr str))))))

(prefix 10 primes) −−−−FLIC→ �2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 �

Figure 10.6 Some sample streams of numbers.

Some of the power of streams is suggested by the examples in Figure 10.6,
which use the stream mapping and filtering procedures in Figure 10.7. Note how
laziness enables the streams nats, twos, and fibs to all be defined directly in
terms of themselves, without the need for an explicit recursive generating function
like from. The stream of prime numbers, primes, is calculated using the sieve of
Eratosthenes method, which begins at 2 and keeps as primes only those following
integers that are not multiples of previous primes. It is worth emphasizing that
all of these examples could be implemented using regular lists (manipulated via
cons, car, and cdr) in a call-by-name language or a call-by-need language; special
lazy products are necessary only in a call-by-value language.

To appreciate the modularity benefits of the conceptually infinite data struc-
tures enabled by nonstrict products, consider the following first-bigger-than

procedure, which returns the first value in an infinite numeric stream that is
strictly bigger than a given threshold n.
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{Returns the stream that results from the elementwise application
of a unary procedure f to the stream str}
(def (smap f str)

(if (snull? str)

snil

(scons (f (scar str)) (smap f (scdr str)))))

{Returns the stream that results from the elementwise application
of a binary procedure g to the streams str1 and str2}
(def (smap2 g str1 str2)

(if (scor (snull? str1) (snull? str2))

snil

(scons (g (scar str1) (scar str2))

(smap2 g (scdr str1) (scdr str2)))))

{Returns a stream with only those elements of str satisfying the predicate pred}
(def (sfilter pred str)

(cond ((snull? str) snil)

((pred (scar str))

(scons (scar str) (sfilter pred (scdr str))))

(else (sfilter pred (scdr str)))))

Figure 10.7 Mapping and filtering procedures for streams.

(def (first-bigger-than n str)

{no base case since str is assumed to be infinite}
(if (> (scar str) n)

(scar str)

(first-bigger-than n (scdr str))))

(first-bigger-than 1000 nats) −−−−FLIC→ 1001
(first-bigger-than 1000 evens) −−−−FLIC→ 1002
(first-bigger-than 1000 twos) −−−−FLIC→ 1024
(first-bigger-than 1000 fibs) −−−−FLIC→ 1597
(first-bigger-than 1000 primes) −−−−FLIC→ 1009

Infinite lists allow a list-processing termination condition to be specified in the
consumer of a list rather than in its producer. With strict lists, all lists must be
finite, so the termination condition must be specified when the list is produced.
To get the behavior of first-bigger-than with strict lists, it would be necessary
to intertwine the details of generating the next element with checking it against
the threshold — a strategy that would compromise the modularity of having a
separate first-bigger-than procedure.
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Exercise 10.5 Write stream versions of the following iterators from Section 9.5:

a. (between lo hi) (Figure 9.32)

b. (prefix n iterator) (Figure 9.32)

c. (trees elts) (Exercise 9.21)

d. (assignments vars) (Exercise 9.22)

Exercise 10.6 The Hamming numbers are all positive integers whose nontrivial fac-
tors are 2, 3, and 5 exclusively.

a. Define a stream of the Hamming numbers. Hint: Write auxiliary procedures to scale a
stream of integers and to merge sorted streams of integers. What is the first Hamming
number strictly larger than 1000?

b. Define an iterator that yields the Hamming numbers one by one.

c. Compare the stream approach to the iterator approach for generating the sequence
of Hamming numbers. Which is easier?

Exercise 10.7 Even one-element lazy products are useful simply for delaying and mem-
oizing a computation in the context of an abstraction variously known as a suspension,
a promise, or a delayed value. They are often manipulated via the following delay
and force constructs:

(delay E) �ds (lprod E)

(def (force suspension) (lget 1 suspension))

For example:

(let ((c (cell 0)))

(let ((inc! (abs () (begin (:= c (+ 1 (^ c))) (^ c)))))

(let ((susp (delay (inc!))))

{susp is a suspension that will compute (inc!) later}
(begin (:= c 17)

(list (force susp) (force susp)))))) −−−−FLIC→ 〈18 , 18 〉

Here, the incrementing of the cell c is delayed (via delay) in the suspension susp and is
performed (via force) only after c is set to 17. Once a suspension has been performed,
its value is memoized, and subsequent forces return the same value as the first force.

a. In a stateful language like FLICK, lazy products are not necessary to implement
delay and force. Give an alternative implementation of these (using desugaring
and/or procedure definitions) in the kernel FLICK language without any extensions.

b. Using delay and force from part a, show how lprod and lget can be defined as
nonkernel constructs in FLICK + {prod, get} (using desugaring and/or procedure
definitions).
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Exercise 10.8 Many Scheme implementations support a form of stream created out of
pairs where the second component is lazy but the first is not:

(cons-stream E1 E2) �ds (pair E1 (lprod E2))

(def (head str) (fst str))

(def (tail str) (lget 1 (snd str)))

a. Show that it is possible to define all lazy lists illustrated in this section as Scheme
streams.

b. Design a stream in which laziness in the first component is essential — that is, a
stream that can be defined via scons, scar, scdr but not via cons-stream, head,
tail.

Exercise 10.9

a. Use lprod/lget to define procedures for creating and decomposing potentially infinite
binary trees in which each node holds a value in addition to its left and right subtrees.

b. Use your procedures to define an infinite binary tree whose left-to-right breadth-first
traversal yields the positive integers in order of magnitude.

c. Define a breadth-first-elts procedure that returns a stream of the elements of
an infinite binary tree as they would be encountered in a left-to-right breadth-first
traversal.

10.1.4 Mutable Products

Thus far we have discussed only immutable products — those whose components
do not change over time. But in popular imperative languages, the vast majority
of built-in data structures are mutable products. Here we explore some design
dimensions of mutable products and some examples of mutable products in real
languages.

All of the dimensions we explored above for immutable products are rele-
vant to mutable products. For example, mutable product components are either
named or positional. Examples of mutable products with named components
include C’s structures and Pascal’s records. An example of a fixed-size mutable
product with positional components is Scheme’s pairs, whose two components
may be altered via set-car! and set-cdr!. Mutable sequences are typically
called arrays (as in C/C++, Pascal, Fortran, and CLU) or vectors (as in
Scheme); Java supports both fixed-length mutable sequences (arrays) and dy-
namically sized mutable sequences (vectors). All of these support the ability
to update the component at any index, often via a special subscripting nota-
tion, such as the array notation a[i] = 2*a[i] in C/C++/Java. Only some
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of these — CLU’s arrays and Java’s vectors (but not Java’s arrays) — support
the ability to expand or contract the size of the mutable sequence by inserting
or removing elements. All of these examples of mutable products have 0-based
indexing except for Fortran (which has 1-based arrays), CLU (whose arrays
can have any lower bound but are 1-based by default), and Pascal (whose arrays
support arbitrary enumerations as indices). In all of these array and vector ex-
amples, all components are required to be of the same type, except for Scheme’s
vectors (where any slot may contain any value) and Java’s vectors (where any
slot may contain any object).

Although the mutable products mentioned above seem similar on the surface,
their semantics differ in fundamental ways. Below we explore some of the dimen-
sions along which mutable products can differ. For simplicity, we consider only
mutable fixed-length positional products of heterogeneous values, which we shall
call mutable tuples. It is easy to generalize these to other kinds of mutable
products. We will study the addition of mutable tuples to FLIC. We assume a
CBV parameter-passing mechanism unless otherwise stated.

Here are the constructs we will consider:

E ::= ...

| (mprod E∗
component) [MutableTupleCreation]

| (mget Nindex Emprod) [MutableTupleProjection]
| (mset! Nindex Emprod Enew) [MutableTupleAssignment]

Informally, these constructs have the following semantics:

(mprod E1 . . . En): Creates a new mutable tuple with n mutable slots, indexed
from 1 to n, where slot i is initially filled with the value of Ei .

(mget Nindex Emprod): Let i=N [[Nindex ]] and assume that Emprod evaluates to
a mutable tuple vmprod with n slots, where 1 ≤ i ≤ n. Then mget returns the
value in the ith slot of vmprod . Otherwise, mget signals an error.

(mset! Nindex Emprod Enew): Let i=N [[Nindex ]] and assume that Emprod eval-
uates to a mutable tuple vmprod with n slots, where 1 ≤ i ≤ n, and Enew

evaluates to v . Then mset! changes the value in the ith slot of vmprod to be v .
Otherwise, mset! signals an error.

For example, here is an expression involving a mutable tuple:

(let ((m (mprod 3 4)))

(begin

(mset! 1 m (+ (mget 1 m) (mget 2 m))) {1st slot is now 7}
(mset! 2 m (+ (mget 1 m) (mget 2 m))) {2nd slot is now 11}
(* (mget 1 m) (mget 2 m)))) −−−−FLIC→ 77
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A very simple way to include mutable products in a language is to have a
single kind of mutable entity — such as a mutable cell — and allow this entity to
be a component of otherwise immutable structures. This is the approach taken
in SML, where immutable tuples, vectors, and user-defined data types may have
mutable cells as components. We can model this approach in FLIC with the
following desugarings for mprod, mget, and mset!:

(mprod E1 . . . En) �ds (prod (cell E1) ... (cell En))

(mget Nindex Emprod) �ds (^ (get Nindex Emprod))

(mset! Nindex Emprod Enew) �ds (:= (get Nindex Emprod) Enew)

In typical imperative languages, a more common design is to directly support
various kinds of mutable products, perhaps along with some immutable ones.
The CLU language, for example, supports a variety of different built-in data
types, each of which comes in both mutable and immutable flavors.

In most imperative languages, mutable products would be modeled as a se-
quence of locations, as shown in the denotational semantics presented in Fig-
ure 10.8, which is a straightforward generalization of the semantics of mutable
cells. Mutable tuple values are represented as sequences of locations. This is sim-
ilar to the representation of lazy products, except that in mprod, the computed
values of the subexpressions (rather than the computations for these subexpres-
sions) are stored at the locations.

A key issue in the semantics of mutable products is how they are passed as
parameters. When mutable products are added as values to the CBV version of
FLIC we have studied, we shall say that they are passed via a call-by-value-
sharing (CBVS) mechanism, because both the caller and the callee share access
to the same locations in the mutable product. For example, in the following
expression, t and m in the body of the procedure f refer to the same mutable
product, so that changes to the components of one are visible in the other:

(let ((t (mprod 5 6)))

(let ((f (abs (m)

(begin

(mset! 1 t (* 10 (mget 1 t)))

(mset! 2 m (* 100 (mget 2 m)))

(mget 1 m)))))

(+ (f t) (mget 2 t)))) −−−−−−−−−CBV S FLIC→ 650

This is the behavior exhibited for mutable products in languages such as Java
and Scheme. Conceptually, when a mutable product is assigned to a variable,
passed as a parameter, returned as a result, or stored in a data structure, no new
product locations are created; the existing product locations are simply shared
in all parts of the program to which the given product value has “flowed.”
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Modified Semantic Domains
MProd = Location*

v ∈ Value = . . . + MProd

New Computation Operations

allocatingVals : Value*→ (Location*→ Comp) → Comp
= λv∗f . match v∗

� [ ]Value [] (f [ ]Location)
� (v . v∗) [] (allocating v (λl . (allocatingVals v∗ (λl∗ . (f (l . l∗))))))
end

Use the following definitions from Figure 8.18 on page 415, where Storable = Value
(because FLICK is CBV):
allocating : Storable→ (Location→ Comp)→ Comp
fetching : Location→ (Storable→ Comp) → Comp
update : Location→ Storable→ Comp

with-mprod-and-checked-index : Comp→ Int→ (LProd→ Int→ Comp) → Comp

The definition is similar to that of with-prod-and-checked-index in Figure 10.1 on
page 543.

New Valuation Clauses
E [[(mprod E∗)]]
= λe . (with-values (E∗[[E∗]] e)

(λv∗ . (allocatingVals v∗ (λl∗ . (MProd �Value l∗))))

E [[(mget Nindex Emprod)]]
= λe . with-mprod-and-checked-index (E [[Emprod ]] e) N [[Nindex ]]

(λl∗i . (fetching (nth i l∗) val-to-comp))

E [[(mset! Nindex Emprod Enew)]]
= λe . with-mprod-and-checked-index (E [[Emprod ]] e) N [[Nindex ]]

(λl∗i . (with-value (E [[Enew ]] e) (λvnew . (update (nth i l∗) vnew ))))

Figure 10.8 Denotational semantics of mutable tuples with CBVS parameter passing.

An alternative strategy for passing mutable products in a CBV language is
to create a new product with new locations whenever a product is passed from
one part of a program to another. This approach, which we shall term call-by-
value-copy (CBVC) is explained by the denotational semantics in Figure 10.9.
Before a value v is passed as an argument to a procedure p, it is “copied” by the
deepCopying function. Primitive values, pairs, procedures, and locations (i.e.,
cells) are passed along unchanged, but a mutable tuple with n slots is copied
by allocating n new locations and filling these with copies of the contents of the
existing locations. In the allocatingCopies function, the g argument specifies how
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New Computation Operations

allocatingCopies : Location* → (Value→ (Value→ Comp)→ Comp)
→ (Location* → Comp)→ Comp

= λl∗gf . match l∗

� [ ]Location [] (f [ ]Location)
� (lold . l∗old) [] fetching lold

(λv . g v (λv ′ . allocating v ′

(λlnew . allocatingCopies l∗old
(λl∗new . (f (lnew . l∗new ))))))

deepCopying : Value→ (Value→ Comp)→ Comp
= λvf . match v

� (MProd �Value l∗old)
[] (allocatingCopies l∗old deepCopying (λl∗new . (f (MProd �Value l∗new ))))

� else f v
end

Modified Valuation Clause

(compare to the CBVS app clause in Figure 7.4 on page 317)

E [[(app E1 E2)]] = λe . with-procedure-comp (E [[E1 ]] e)
(λp . with-value (E [[E2 ]] e)

(λv . (deepCopying v p)))

Figure 10.9 Call-by-value-copy (CBVC) semantics for passing mutable tuples.

the components of a mutable tuple should be copied. The kind of data copying
performed in Figure 10.9 is known as a deep copy because deepCopying is
supplied as the g argument, recursively applying the copying process at all levels
of the data. An alternative strategy, known as a shallow copy, is to copy only
the first level of a data structure and share the contents of the other levels.
Although it would be possible to use shallow copying in the CBVC strategy, we
do not know of a real programming language that uses this strategy.

In a CBVC interpretation of the example expression considered above for
CBVS, the names t and m refer to two distinct mutable tuples, so that changes
to the components of one are not visible in the other:

(let ((t (mprod 5 6)))

(let ((f (abs (m)

(begin

(mset! 1 t (* 10 (mget 1 t)))

(mset! 2 m (* 100 (mget 2 m)))

(mget 1 m)))))

(+ (f t) (mget 2 t)))) −−−−−−−−−CBV C FLIC→ 11
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New Valuation Clause for LV
(this extends LV for the CBR FLAVAR semantics in Figure 8.27 on page 435)

LV [[(mget Nindex Emprod)]]
= λe . with-mprod-and-checked-index (E [[Emprod ]] e) N [[Nindex ]]

(λl∗i . (val-to-comp (Location �Value (nth i l∗))))

Figure 10.10 Extension to the CBR FLAVAR semantics to handle mutable tuples.

The CBVC strategy for passing mutable products is used for passing arrays
and records by value in Pascal and for passing structures by value in C. On the
other hand, arrays in C are passed via CBVS. Passing arrays in C via CBVC can
be achieved by embedding an array in a one-component structure! The inconsis-
tency between the mechanisms for passing named versus positional products in
C is perplexing from the viewpoint of semantics.

In languages supporting the call-by-reference (CBR) mechanism presented in
Section 8.4.3, mutable products introduce new ways to alias locations between
the caller and callee. When an mget construct is used in a parameter position, its
L-value (the location of the product slot, as determined by LV in Figure 10.10)
is passed rather than its R-value (the content of the L-value). In the following
CBR example, the L-values of (mget 2 u) and r denote the same location:

(let ((u (mprod 7 8)))

(let ((g (abs (p r)

(begin

(set! r (+ 20 r))

(mset! 2 p (+ 100 (mget 2 p)))))))

(begin (g u (mget 2 u))

(mget 2 u)))) −−−−−−−−−−CBR FLAVAR→ 128

In contrast, under a CBV interpretation, changes to r would not affect u and p.
The above expression would evaluate to 108 under CBVS and 8 under CBVC.

Exercise 10.10 Write a single FLIC expression that returns the symbol sharing under
CBVS, deep under CBVC with deep copying, and shallow under CBVC with shallow
copying. Your expression should use only symbols, mutable tuples, and procedures.

Exercise 10.11

a. Modify the CBVC denotational semantics in Figure 10.9 to use shallow rather than
deep copying.

b. Write three versions of an operational semantics for FLIC with mutable tuples that
differ in their parameter-passing mechanism: (1) CBVS (2) CBVC with deep copying
(3) CBVC with shallow copying.
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10.2 Sums

Here’s hoping we meet now and then
It was great fun
But it was just one of those things.

— Cole Porter, “Jubilee”

A sum is a data structure that can hold one of several different kinds of values.
Sums are used in situations where programmers use the terms “either” or “one
of” to informally describe a data structure. For example:

• A linked list is either a list node (with head and tail components) or the empty
list.

• A graphics system might support shapes that are either circles, rectangles, or
triangles.

• In a banking system, a transaction might be one of deposit, withdrawal, trans-
fer, or balance query.

Intuitively, a sum value pairs an underlying value, which we call its payload,
with a tag that indicates which kind of value the payload is. Processing a sum
value usually involves performing a case analysis on its tag and manipulating its
payload accordingly. For example, consider a system for manipulating geometric
figures that can either be circles of a given radius or squares of a given side length.
To determine the perimeter of a figure, we need to check its tag, because we can’t
determine from the payload alone (a floating point number, say) what kind of
figure it is.

It may seem counterintuitive to view a sum as a pair — after all, isn’t a
pair a product? While sums may be implemented as pairs, they are not treated
as full-fledged pairs, because the tag and payload are strongly linked and must
not be manipulated separately in an uncoordinated way. For example, a list-
node payload should not be tagged with an empty-list tag. Many dynamically
typed languages like Lisp do not provide built-in sum types, and programmers use
tag/payload pairs and certain programming idioms to keep the tag and payload in
sync.5 It can still be valuable to provide support for these idioms in a dynamically
typed language, as we shall see in the extended-number arithmetic example below.

5Statically typed languages must provide linguistic types to avoid type loopholes that arise
from the ability to set tags and payloads separately. C’s union and Pascal’s variant record
facility expose the pair representation of sums, and thus suffer from this type loophole.
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Sums are data structures that correspond to the sum domains that we have
been using in our mathematical metalanguage (see Section A.3.4) to represent
mathematical values that can come from several different component domains. In
programming languages, sums are known by such names as tagged sums, unions,
tagged unions, discriminated unions, oneofs, and variants. Although sums are a
very simple kind of data structure, they are rarely found in their pure form in
real-world programming languages. Instead, as we shall see in the next section,
sums are typically joined with products to form so-called sum-of-products data
structures. Notable exceptions are CLU, which provides both immutable and
mutable sum values, and Haskell, which provides a two-summand positional
sum called an Either. (Exercise 10.12 explores extending FLIC with a similar
feature.) The union construct of C creates an untagged sum that the programmer
must explicitly tag using C’s struct construct. We will see an example of this
in the next section (Figure 10.17 on page 582).

Example: Extended-Number Arithmetic

Consider the problem of defining arithmetic on extended numbers, where such
a number can be (1) an integer, (2) positive infinity (+inf), (3) negative infinity
(-inf), or (4) undefined (undef). Suppose (int i) converts an integer i to
an extended number and EN stands for any extended number. We expect the
following rules to hold for the add operator on extended numbers:

(add (int i1) (int i2)) = (int (i1 + i2 ))
(add (int i) +inf) = (add +inf (int i)) = (add +inf +inf) = +inf

(add (int i) -inf) = (add -inf (int i)) = (add -inf -inf) = -inf

(add +inf -inf) = (add -inf +inf) = undef

(add EN undef) = (add undef EN ) = undef

Suppose we use the following conventions for representing extended numbers
as sum values:

• All tags are represented as symbols.

• An integer is represented using the integer tag and an integer payload.

• The two infinities are represented by the infinity tag and a boolean payload
(#t for +inf and #f for -inf).

• The undefined value undef is represented by the undefined tag and a #u

payload.
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(def (make-sum tag payload) (pair tag payload))

(def (tag oneof) (fst oneof))

(def (payload oneof) (snd oneof))

(def (int num) (make-sum (sym integer) num))

(def +inf (make-sum (sym infinity) #t))

(def -inf (make-sum (sym infinity) #f))

(def undef (make-sum (sym undefined) #u))

(def (add num1 num2)

(cond ((sym=? (tag num1) (sym integer))

(if (sym=? (tag num2) (sym integer))

(int (+ (payload num1) (payload num2)))

num2))

((sym=? (tag num1) (sym infinity))

(cond ((sym=? (tag num2) (sym integer)) num1)

((sym=? (tag num2) (sym infinity))

(if (bool=? (payload num1) (payload num2))

num1

undef))

((sym=? (tag num2) (sym undefined)) undef)

))

((sym=? (tag num1) (sym undefined)) undef)

))

Figure 10.11 Extended-number addition in FL using explicit tags.

Addition on extended numbers with these representations is a good example
for illustrating sums because it involves several different kinds of payloads and
a nontrivial case analysis. Figure 10.11 shows how extended-number addition
can be expressed in FL using tag/payload pairs to represent sum values. The
make-sum procedure creates such a pair, and the tag and payload procedures
extract its components. The int procedure converts an integer to an extended
number, and +inf, -inf, and undef are defined as particular sum values. The
add procedure performs a case analysis on the tags of its arguments to determine
the result. When adding two extended integers or two infinities, it is necessary
to examine their payloads; in all other cases, the result can be determined from
their tags.

Rather than rely on programming conventions, we can support sums directly
by adding two new kernel constructs for manipulating sum values:



570 Chapter 10 Data

E ::= ...

| (one Itag Epayload) [NamedInjection]

| (tagcase Edisc Ipayload (Itag Ebody)
∗ (else Eelse)

?) [NamedCaseAnalysis]

The expression (one Itag Epayload) creates a sum value, which we shall call a
oneof, that conceptually pairs the tag name Itag with the payload value denoted
by Epayload . We say that one injects the value of Epayload into a sum value. We
can imagine that one is defined by the following desugaring:

(one Itag Epayload) �ds (pair (sym Itag) Epayload)

Oneofs are decomposed with (tagcase Edisc Ipayload (Itag Ebody)
∗), which

evaluates the discriminant Edisc to what should be a oneof value vdisc , and
dispatches to the body clause (Ii Ei) whose tag Ii matches the tag of vdisc . The
value of the tagcase expression is the result of evaluating the body expression
Ei of the matching body clause in a scope where Ipayload is bound to the payload
of vdisc . A tagcase expression may have an optional6 else clause whose body
Eelse is used when no body-clause tag matches the discriminant tag. Ipayload is
unbound in the else clause. It is an error if Edisc does not evaluate to a oneof or
if there is no clause in an else-less tagcase whose tag matches the discriminant
tag. We can imagine that tagcase is defined by the following desugaring:

(tagcase Edisc Ipayload (Ii Ei)
n
i=1 (else Eelse)

?)

�ds (let ((Idisc Edisc)) {Idisc fresh}
(let ((Itag (fst Idisc))) {Itag fresh}

(cond

((sym=? Itag (sym Ii)) (let ((Ipayload (snd Idisc))) Ei))
n
i=1

(else Eelse)
?)))

Figure 10.12 presents a definition of extended-number addition using one and
tagcase. In the add procedure, tagcase clarifies the case analyses performed on
the arguments num1 and num2 and highlights the cases where the payload values
(v1 and v2) are used instead of the oneofs that carry them.

Using one and tagcase to abstract over the creation and case analysis of
tagged values has several advantages over using explicit pairs. As illustrated by
the extended-number addition example, it makes programs that use tagged values
easier to read, write, and debug. In Section 11.8.4, we shall see that the ability
to associate different types with the payloads of different tags (e.g., the payload
for the integer tag is an integer whereas the payload for the infinity tag is
a boolean) allows oneofs to be type-checked. Finally, these abstractions give an
implementer the freedom to use more efficient implementations. For instance, if

6Recall from page 32 that a postfix ? indicates an optional syntactic element.
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(def (int num) (one integer num))

(def +inf (one infinity #t))

(def -inf (one infinity #f))

(def undef (one undefined #u))

(def (add num1 num2)

(tagcase num1 v1

(integer (tagcase num2 v2

(integer (int (+ v1 v2)))

(else num2)))

(infinity (tagcase num2 v2

(integer num1)

(infinity (if (bool=? v1 v2) num1 undef))

(undefined undef)))

(undefined undef)))

Figure 10.12 Extended-number addition in FL using oneofs.

tags are represented as small integers rather than symbols, in tagcase they can
be used as indices that enable jumping into a dispatch table for tagcase clauses
rather than linearly checking through all possible tags. In the extended-number
example, the integer, infinity, and undefined tags could be represented as 0,
1, and 2, respectively.7

Design Dimensions of Sums

In category theory, sum domains are the mathematical dual of product domains:
For any theorem about products, there is a dual theorem about sums. This du-
ality carries over to the programming language notions of sums and products. A
named product datum (i.e., record) can be viewed as an entity that is created by
combining multiple named component values and is decomposed via a projection
operator that supplies one named component value of the datum to a single con-
tinuation. Dually, a named sum datum (i.e., oneof) can be viewed as an entity

7Both type checking and the improved tagging scheme require some way of knowing which
tags are used together — e.g., extended numbers use one of the three tags integer, infinity,
and undefined. This information is not readily apparent in the setting considered here, but can
be determined in other settings. For example, it can be explicitly declared by users in the form
of data declarations that group related tags (e.g., see Section 10.4 and Section 13.5.4) or in the
form of explicit type annotations on the one construct (see Section 11.8.4). Tag relationships
can also be automatically deduced by a type-reconstruction process; see the discussion of row
types in Section 13.5.3.
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Values
V ∈ ValueExp ::= . . . | (one Itag Vpayload)

The AnsExp domain and output function OF would also have to be extended to
handle one values.

Evaluation Contexts
E ∈ EvalContext ::= . . . | (one Itag E)

| (tagcase E Ipayload (Itag Ebody)
∗ (else Eelse)

?)

New Stateless Reduction Rules
(tagcase (one Itag Vpayload) Ipayload (Ii Ei)

n
i=1 (else Eelse)

?)

�[Vpayload/Ipayload ]Ej , where 1≤ j ≤ n and Itag = Ij [tagcase]

(tagcase (one Itag Vpayload) Ipayload (Ii Ei)
n
i=1 (else Eelse))

�Eelse , where Itag 
∈ {I1 , . . . , In} [tagcase-else]

Figure 10.13 CBV operational semantics for named sums (oneofs).

that is created by applying an injection operator to one named component value
(i.e., a tagged payload) and is decomposed by supplying the datum to multi-
ple named continuations (i.e., the clauses of tagcase). Because of this duality,
sums vary along the same dimensions as products: e.g., positional versus named,
immutable versus mutable, call-by-value versus call-by-name, and dynamically
typed versus statically typed. Here, we focus on immutable, dynamically typed
call-by-value sums with named components, but other variations (e.g., positional
components) are considered in the exercises.

Operational Semantics of Oneofs

We have already given an informal semantics for call-by-value oneofs based on
desugaring. A formal operational semantics for call-by-value oneofs is presented
in Figure 10.13. The new evaluation contexts evaluate the payload of a one ex-
pression and the discriminant of a tagcase expression. The [tagcase] rule is
enabled when the discriminant of a tagcase is a value (one Itag Vpayload), in
which case Vpayload is substituted for Ipayload in the matching body expression.
The [tagcase-else] rule is for the case where the oneof tag does not match any
of the tagged body clauses, in which case Eelse is used as the body expression
(and Ipayload is not substituted away). Stuck states arise when any of the subex-
pressions get stuck, when the discriminant does not evaluate to a oneof value,
or when the discriminant’s tag does not have a matching body in an else-less
tagcase. Call-by-name sums would be treated similarly, except that no attempt
would be made to evaluate the expression being injected by one.
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Denotational Semantics of Oneofs

Figure 10.14 presents the denotational semantics for call-by-value oneofs. It might
seem odd that the domain Oneof of sum values is modeled by a product domain
that pairs an identifier tag and the injected value. But such a product domain
is isomorphic to a domain that is an infinite sum, each of whose summands (one
for each identifier) is the Value domain. That is, for each identifier I ∈ Ident,
imagine we define a domain DI that is a synonym for Value. Then Oneof is
isomorphic to the sum domain ΣI∈IdentDI .

The valuation clause for (one Itag E) simply creates a oneof value that pairs
Itag with the value of E . The two clauses for tagcase use elements of the TagEnv
domain to express how a tagcase body expression matching the tag of the dis-
criminant value is found and evaluated. In (tagcase Edisc Ipayload (Ii Ei)

n
i=1),

each body expression Ei effectively stands for a “body abstraction” of the form
(abs (Ipayload) Ei) that will be applied to the payload of the discriminant value
if its tag is Ii . If the tagcase expression is evaluated in an environment e, then
the meaning of this body abstraction is a “body procedure”: the element of Proc
= Nameable→ Comp that is pi = λn . (E [[Ei ]] [Ipayload �→n]e).

Elements of TagEnv are tag environments that simply bind tag names
to body procedures. (extend-tenv Itag Ei e Ipayload t0 ) extends an initial tag
environment t0 with a binding of Itag to the body procedure pi described above.
extend-tenv∗ is similar, but works for a list of tags and their associated bodies.
empty-tenv is the tag environment that for any tag Itag returns a body procedure
that, when called, gives an error indicating that Itag is unmatched in the tagcase.

The valuation clause for an else-less tagcase looks up the tag Itag of the
discriminant oneof value in the tag environment corresponding to the tagcase’s
body clauses and applies the resulting body procedure to the payload vpayload of
the oneof. The initial environment for extend-tenv∗ in this case is empty-tenv,
which will lead to an unmatched-tag error if there is no body expression tagged
with Itag . Handling a tagcase with an else clause is similar, except that the
initial tag environment for extend-tenv∗, which is used for any tag not mentioned
in a body clause, is a tag environment telse that returns a body procedure for
Eelse that does not provide a binding for Ipayload .

The use of tag environments in the denotational semantics of oneofs highlights
their duality with records. Records use an environment to glue together named
values, one of which is later chosen at each select site. Dually, one creates a
oneof value that is later processed in the context of a tagcase that uses a tag
environment to glue together named body procedures for processing the payload.
In a continuation-based semantics, the tag environments used in the semantics
of tagcase would map names to continuations for processing the payload.
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Exercise 10.12 The simplest kind of positional product is a pair, which glues together
two component values. Dually, the simplest kind of positional sum chooses between two
component values. Such a sum value is called an either. It has two possible tags: left
or right.

Here we consider an extension to FLICK that supports eithers:

E ::= ...

| (inleft Epayload) [LeftInjection]
| (inright Epayload) [RightInjection]
| (ecase Edisc Ipayload Eleft Eright) [EitherAnalysis]

(inleft Epayload) creates an either whose tag is left and whose payload is the value of
Epayload .

(inright Epayload) creates an either whose tag is right and whose payload is the value
of Epayload .

(ecase Edisc Ipayload Eleft Eright) examines the discriminant value represented by
Edisc , binds its payload to the identifier Ipayload , and then evaluates Eleft , if the
tag of the discriminant value is left, or Eright , if the tag is right. It is an error if Edisc

is not an either.

For example, we can use eithers in a version of FLICK that also has floating point
numbers to encode whether a geometric shape is a square (in which case the payload is
the length of a side) or a circle (in which case the payload is the radius). We can then
write a procedure for computing the area of a shape:

(def (square side) (inleft side))

(def (circle radius) (inright radius))

(def pi 3.14159)

(def (area shape)

(ecase shape v

(f* v v) {square case (assume f* multiplies floating point numbers)}
(f* pi (f* v v)) {circle case}
))

(area (square 10.0)) −−−−FLIC→ 100 .0
(area (circle 10.0)) −−−−FLIC→ 314 .159

a. Write an operational semantics for CBV eithers. What causes stuck states in your
semantics?

b. Write a denotational semantics for CBV eithers. You may find it convenient to have
a new domain for eithers as well as new Left and Right domains.

c. In CBN eithers, the expressions (inleft Epayload) and (inright Epayload) do not
tag the value denoted by Epayload but rather the computation denoted by Epayload .
Make any necessary modifications to your semantics for both part a and part b to
support CBN rather than CBV eithers.
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New Semantic Domains
Oneof = Ident × Value

v ∈ Value = . . . + Oneof
t ∈ TagEnv = Ident → Proc
p ∈ Proc = Nameable→ Comp ; as usual

New Computation Operation

with-oneof-comp : Comp→ (Oneof→ Comp) → Comp
The definition is similar to that of with-boolean-comp in Figure 6.26 on page 281.

Operations on the TagEnv Domain
empty-tenv : TagEnv = λI n . (err-to-comp unmatched-tagcase-tag)

extend-tenv : Ident → Exp → Env→ Ident → TagEnv→ TagEnv
= λI E e Ipayload t . (λI ′ n . if I ′ = I then (E [[E ]] [Ipayload �→n]e) else (t I ′))

extend-tenv∗ : Ident* → Exp*→ Env→ Ident → TagEnv→ TagEnv
= λI ∗ E∗ e Ipayload t . match 〈I ∗,E∗〉

� 〈[ ]Ident, [ ]Exp〉 [] t
� 〈Ifst . I ∗

rest ,Efst . E∗
rest 〉

[] (extend-tenv∗ I ∗
rest E∗

rest e Ipayload
(extend-tenv Ifst Efst e Ipayload t))

� else empty-tenv
end

New Valuation Clauses
E [[(one Itag Epayload)]]
= λe . with-value (E [[Epayload ]] e)

(λvpayload . (val-to-comp (Oneof �Value 〈Itag , vpayload〉)))
E [[(tagcase Edisc Ipayload (I1 E1) . . . (In En))]]
= λe . (with-oneof-comp (E [[Edisc ]] e)

(λ〈Itag , vpayload〉 .
((extend-tenv∗ [I1 . . . In ] [E1 . . .En ] e Ipayload empty-tenv)
Itag vpayload )))

E [[(tagcase Edisc Ipayload (I1 E1) . . . (In En) (else Eelse))]]
= λe . (with-oneof-comp (E [[Edisc ]] e)

(λ〈Itag , vpayload〉 .
let telse be (λI n . (E [[Eelse ]] e))
in ((extend-tenv∗ [I1 . . . In ] [E1 . . .En ] e Ipayload telse)

Itag vpayload )))

Figure 10.14 CBV denotational semantics of named sums (oneofs).
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Exercise 10.13 The two-summand positional sums considered in Exercise 10.12 can be
generalized to positional sums with any number of summands. Just as positional product
data structures use integer indices to distinguish product components, positional sums
use integer tags to distinguish summands. To add positional sums to FLICK, we extend
the kernel expression syntax as follows:

E ::= ...

| (inj N Epayload) [PositionalInjection]
| (sumcase Edisc Ipayload E∗

body) [PositionalCaseAnalysis]

(inj N Epayload) creates a positional sum value whose tag is N , where N is an inte-
ger literal for a positive integer and not a computed value. Positional sum values are
taken apart with the expression (sumcase Edisc Ipayload E1 . . . En), which evaluates
the discriminant Edisc to what should be a positional sum value, examines the numeric
tag N of this positional sum value (which should denote an integer i in the range [1..n]),
and evaluates Ei with Ipayload bound to the payload. It is an error if Edisc is not a
positional sum value or if i is not in the range [1..n].

a. Express the addition of extended numbers in Figure 10.12 using positional sums rather
than named sums. Which is better? Why?

b. Write an operational semantics for CBV positional sums. What causes stuck states
in your semantics?

c. Write a denotational semantics for CBV positional sums.

d. In CBN positional sums, the expression (inj N Epayload) does not tag the value
denoted by Epayload but rather tags the computation denoted by Epayload . Modify the
operational and denotational semantics for positional sums in part b and part c to
be CBN rather than CBV.

Exercise 10.14

a. Modify the operational semantics for named sums in Figure 10.13 to be call-by-name
rather than call-by-value.

b. Modify the denotational semantics for named sums in Figure 10.14 to be call-by-name
rather than call-by-value.

c. Write a continuation-based denotational semantics for call-by-name and call-by-value
named sums.
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10.3 Sum of Products

I think that I shall never see
A matrix lovely as a tree.
. . .
But any fool can plainly see
Inherent flexibility
In data structured as a tree.
. . .
Arrays are used by clods like me,
But only LISP can make a tree.

— Guy L. Steele Jr.

In practice, sum and product data are often used together in idiomatic ways.
Many common data structures can be viewed as a tree constructed from different
kinds of nodes, each of which has multiple components. Here are some examples:

• A shape in a simple geometry system is either:

• a circle with a radius;

• a rectangle with a width and a height;

• a triangle with three side lengths.

• A list of integers is either:

• an empty list;

• a list node with an integer head and an integer-list tail.

• An ELM expression is either:

• an integer literal;

• an argument expression with an index;

• an arithmetic operation with an operator symbol, a left operand expression,
and a right operand expression.

In each of the above examples, the variety of possible nodes for a data structure
can be modeled as a sum, and each individual kind of node can be modeled as a
product. For this reason, such data structures are known as sum-of-products
structures.
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As a simple example, consider the following list of geometric shapes:

(list (one rectangle (record (width 3) (height 4)))

(one triangle (record (side1 5) (side2 6) (side3 7)))

(one square (record (side 2))))

In this encoding, oneof tags are used to distinguish squares, rectangles, and tri-
angles. The two sides of a rectangle (width and height) and three sides of a
triangle (side1, side2, and side3) are named as fields in a record. Even though
a square has only a single side length (side), it too is encapsulated in a record for
uniformity. Of course, we could have used positional rather than named products,
in which case the meaning of each position would need to be specified.

Manipulating a sum-of-products datum typically involves performing a case
analysis on its tag and extracting the components of the associated record. For
example, here is a procedure that calculates the perimeter of a shape:

(def (perim shape)

(tagcase shape r

(square (* 4 (select side r)))

(rectangle (* 2 (+ (select width r) (select height r))))

(triangle (+ (select side1 r)

(+ (select side2 r) (select side3 r))))))

As another example, consider the sum-of-products encoding of the ELM
temperature conversion expression (/ (* 5 (- (arg 1) 32)) 9) shown in Fig-
ure 10.15. In this encoding, oneof tags distinguish integer literals (lit), arith-
metic operations (arithop), and argument references (arg). The three compo-
nents of an arithmetic operation — the operation symbol (op) and two operands
(rand1 and rand2) are represented as a record. As with square shapes, the sin-
gle number component of a literal expression and the index component of an
argument expression are boxed up into records for uniformity.

To handle this representation for ELM expressions, the elm-eval procedure
from Figure 6.13 on page 243 would be rewritten:

(def (elm-eval exp args)

(tagcase exp r

(lit (select num r))

(arg (get-arg (select index r) args))

(arithop ((primop->proc (select op r))

(elm-eval (select rand1 r) args)

(elm-eval (select rand2 r) args)))))

The rigidity of the above sum-of-products encodings is sometimes relaxed in
practice. For instance, the case where a product has a single component can be
optimized by replacing the product by the component value. If a product has no
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(one arithop

(record

(op (sym /))

(rand1 (one arithop

(record

(op (sym *))

(rand1 (one lit (record (num 5))))

(rand2 (one arithop

(record

(op (sym -))

(rand1 (one arg (record (index 1))))

(rand2 (one lit (record (num 32))))))))))

(rand2 (one lit (record (num 9))))))

Figure 10.15 A sum-of-products encoding of the ELM temperature-conversion ex-
pression (/ (* 5 (- (arg 1) 32)) 9).

components, it can be replaced by the unit value. In several popular data struc-
tures (including linked lists and binary trees), there are only two summands, one
of which has no components. This situation is often handled by representing the
nontrivial summand (e.g., list or tree node) directly as a product and representing
the no-component summand (e.g., empty list or tree leaf) as a distinguished null
pointer value. Conceptually, there is still a sum in this case: a value is either
a null pointer or a node. But pragmatically, it is not necessary to associate a
tag with a node because it is assumed that there is a cheap test that determines
whether a node is the null pointer. For example, many implementations repre-
sent a null pointer as zero to take advantage of (1) efficient machine instructions
for testing for zero and (2) the fact that the zero memory address is protected
in many architectures (so an attempt to dereference the null pointer causes a
segmentation violation).

Programming languages differ widely in terms of their support for sum-of-
products data. For example:

• The ML and Haskell programming languages have powerful facilities for
declaring and manipulating sum-of-products data. We shall see similar facilities
in Sections 10.4 and 10.5.

• In object-oriented languages, such as Java, C++, and SmallTalk, the dy-
namic dispatch performed when invoking a method on an object effectively
performs a case analysis on the class (effectively a tag) of the object, whose
instance variables can be viewed as a record.
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• In Lisp dialects, it is common to represent a sum-of-products datum as a list
s-expression whose first element is a symbolic tag indicating the summand and
whose remaining elements are the components of the product. For instance,
the Fahrenheit-to-Celsius conversion expression given on page 578 can be rep-
resented as the following Lisp s-expression:

(arithop /

(arithop *

(lit 5)

(arithop - (arg 1) (lit 32)))

(lit 9))

This, in turn, can be optimized without ambiguity into an s-expression identical
to the ELM concrete s-expression syntax:

(/ (* 5 (- (arg 1) 32)) 9)

Indeed, syntax trees are without a doubt the most important sum-of-products
data structure used in the study of programming languages. The ease with
which they can be represented as s-expressions is the reason we have adopted
s-expression grammars for the mini-languages in this book.

• In document-description languages like HTML and XML, summand tags ap-
pear in begin/end markups and product components are encoded in the asso-
ciation lists of markups as well as in components nested within the begin/end
markups. For instance, Figure 10.16 shows how the Fahrenheit-to-Celsius ex-
pression might be encoded in XML. The reader is left to ponder why XML,
which essentially is a verbose encoding of s-expressions, is a far more popular
standard for expressing structured data than s-expressions. In fact, the Wa-
ter language [Plu02] goes even further, using XML as a representation for
s-expressions in a language with Scheme-like semantics.

• In the C programming language, programmers must “roll their own” sum-of-
products data structures using the union and struct constructs. For instance,
Figure 10.17 shows how the geometric shape example from above can be ex-
pressed in C. In C, union is used to declare storage that can contain one
of several different kinds of values. However, there is no built-in support for
tagging such values. Instead, an explicit struct is typically used to associate
a tag (shapetag in the example) with the value (sum in the example). Val-
ues with multiple components (e.g., rect and tri) are themselves encoded via
additional struct declarations.

As is apparent from the example in Figure 10.17, encoding sum-of-products
data in C is awkward. Nesting struct declarations to provide explicit tags is
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<arithop>

<op name="/"/>

<rand1>

<arithop>

<op name="*"/>

<rand1>

<lit num="5"/>

</rand1>

<rand2>

<arithop>

<op name="-"/>

<rand1>

<arg index="1"/>

</rand1>

<rand2>

<lit num="32"/>

</rand2>

</arithop>

</rand2>

</arithop>

</rand1>

<rand2>

<lit num="9"/>

</rand2>

</arithop>

Figure 10.16 The ELM Fahrenheit-to-Celsius expression in XML notation.

cumbersome and leads to unwieldy name paths like s.sum.rect.width. But
much worse is the fact that the language enforces no connection between the tag
and the sum. For instance, consider the following sequence of C statements:

shape s4;

s4.tag = square;

s4.sum.rect.width = 8;

s4.sum.rect.height = 9;

printf("The perimeter of s4 is %d\n", perim(s4));

Although conceptually it makes no sense to manipulate a rectangle’s components
in a square, in many C implementations, the above code compiles and runs
without error, yielding 32 as the perimeter of s4. Why? Because the storage
set aside for a union type is that required for the largest summand (in this case,
the three integers of a triangle) and s4.sum.side, s4.sum.rect.width, and
s4.sum.tri.side1 are just synonyms referencing the first slot of this storage.
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typedef enum {square, rectangle, triangle} shapetag;

typedef struct {

shapetag tag;

union {

int side;

struct {int width; int height;} rect;

struct {int side1; int side2; int side3;} tri;

} sum;

} shape;

int perim (shape s) {

switch (s.tag) {

case square:

return 4*(s.sum.side);

case rectangle:

return 2*(s.sum.rect.width + s.sum.rect.height);

case triangle:

return (s.sum.tri.side1 + s.sum.tri.side2 + s.sum.tri.side3);

}

}

int main () {

shape s1, s2, s3;

s1.tag = square;

s1.sum.side = 2;

s2.tag = rectangle;

s2.sum.rect.width = 3;

s2.sum.rect.height = 4;

s3.tag = triangle;

s3.sum.tri.side1 = 5;

s3.sum.tri.side2 = 6;

s3.sum.tri.side3 = 7;

printf("The perimeter of s1 is %d\n", perim(s1));

printf("The perimeter of s2 is %d\n", perim(s2));

printf("The perimeter of s3 is %d\n", perim(s3));

}

Figure 10.17 The shape example encoded using struct and union in C.
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This is a classic example of a type loophole in C. Pascal’s variant records,
which encode sum-of-products data types in a way reminiscent of C, exhibit a
similar type loophole. The same sort of undesirable behavior can be exhibited
with the Lisp s-expression (square 8 9), for which a perimeter procedure would
return 32 if the means of extracting the side of a square was returning the second
element of an s-expression list. But the difference between Lisp and C/Pascal
on this score is that C and Pascal, unlike Lisp, sport a static type system that
might be expected to catch such type-related bugs at compile time. We will have
much more to say about static typing in Chapter 11.

10.4 Data Declarations

Programming with “raw” sums and products is cumbersome and error-prone.
Here we study a high-level facility for data declaration that simplifies the creation
and manipulation of sum-of-products data. We extend our FL family of languages
with a def-data declaration that specifies a new kind of sum-of-products data.
We introduce this construct via a declaration for geometric shapes:

(def-data shape

(square side)

(rectangle width height)

(triangle side1 side2 side3))

This declaration specifies that a shape is either a square with one component, a
rectangle with two components, or a triangle with three components. Each of the
names square, rectangle, and triangle is a value constructor procedure
(or just constructor for short) that takes the specified number of components
and returns a sum-of-products datum with those components. For example, the
list of shapes

(list (square 2) (rectangle 3 4) (triangle 7 8 9))

is equivalent to the list

(list (one square (prod 2))

(one rectangle (prod 3 4))

(one triangle (prod 5 6 7)))

In contrast with Section 10.3, the sum-of-products data created by def-data

constructors uses positional rather than named products.
In the example, the data name shape and the component names side, width,

height, etc., are just comments. Only the number of components specified for
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a constructor is relevant. For instance, we could emphasize that all components
are integers by writing

(def-data shape

(square int)

(rectangle int int)

(triangle int int int))

or we could use nonsense words to specify an equivalent declaration, as in

(def-data frob

(square foo)

(rectangle bar baz)

(triangle quux quuux quuuux))

The reason for requiring such comments is that the comment positions will assume
a nontrivial meaning when we study a typed version of def-data in Section 13.5.4.

For every constructor procedure C that takes n arguments, def-data also
declares an associated deconstructor procedure that takes three arguments:

1. the value v to be deconstructed;

2. a success continuation, an n-argument procedure that is applied to the n
components of v in the case where v was constructed by C ;

3. a failure continuation, a nullary procedure that is invoked in the case where
v was not constructed by C .

We assume a convention in which the deconstructor has a name that is the
name of the constructor followed by the tilde character, ~, which is pronounced
“twiddle.” For instance, the square~, rectangle~, and triangle~ deconstruc-
tors introduced by the shape declaration can be used to calculate the perimeter
of a shape:

(def (perim shape)

(square~ shape (abs (s) (* 4 s))

(abs ()

(rectangle~ shape (abs (w h) (* 2 (+ w h)))

(abs ()

(triangle~ shape (abs (s1 s2 s3) (+ s1 (+ s2 s3)))

(abs ()

(error not-a-shape))))))))

Deconstructors are somewhat awkward to use directly. In the next section we
will study a pattern-matching facility based on deconstructors that significantly
simplifies the deconstruction of sum-of-products data.
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(def-data elm-exp

(lit num)

(arg index)

(arithop op rand1 rand2))

(def f2c (arithop (sym /)

(arithop (sym *)

(lit 5)

(arithop (sym -)

(arg 1)

(lit 32)))

(lit 9)))

(def (elm-eval exp args)

(lit~ exp (abs (n) n)

(abs ()

(arg~ exp (abs (i) (get-arg i args))

(abs ()

(arithop~ exp

(abs (op r1 r2)

((primop->proc op) (elm-eval r1 args) (elm-eval r2 args)))

(abs () (error not-an-elm-exp))))))))

Figure 10.18 ELM examples.

As another example of constructors and deconstructors, consider the elm-exp
declaration in Figure 10.18. The lit, arg, and arithop constructors introduced
by this declaration are illustrated in the Fahrenheit-to-Celsius expression f2c,
and the deconstructors lit~, arg~, and arithop~ are used to define elm-eval.

We can even use def-data to define list constructors and deconstructors
(Figure 10.19), replacing the list procedures in the FL standard library defined
in Figure 6.8 (page 236). The standard procedures for pairs can be defined in a
similar fashion (Figure 10.20).

A formal definition of def-data is presented in Figure 10.21. The syntax
of FLIC programs is extended to include def-data declarations along with the
usual definitions. The meaning of a def-data declaration can be explained by
desugaring the declaration into a sequence of procedure definitions via an explicit
desugaring function DSdef , which has signature Def → Def*. We assume that
the resulting sequence of definitions is spliced into the flic program construct,
and that all program definitions are further desugared by the program desugaring
specified in Figure 6.5 on page 231. Each summand clause (Itag I1 . . . Ik) is
desugared by DScl into a sequence of two procedure definitions:
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(def-data list-data

(null)

(cons car cdr))

(def (null? xs)

(null~ xs (abs () #t) (abs () #f)))

(def nil (null))

(def (car xs)

(cons~ xs (abs (hd tl) hd)

(abs () (error car-of-nonlist-or-empty-list))))

(def (cdr xs)

(cons~ xs (abs (hd tl) tl)

(abs () (error cdr-of-nonlist-or-empty-list))))

Figure 10.19 Defining lists via def-data.

(def-data pair-data

(pair x y))

(def (fst p)

(pair~ p (abs (x y) x) (abs () (error fst-of-nonpair))))

(def (snd p)

(pair~ p (abs (x y) y) (abs () (error snd-of-nonpair))))

Figure 10.20 Defining pairs via def-data.

1. A k-parameter constructor procedure named Itag that constructs a oneof with
tag Itag of a product whose components are its k argument values. The no-
tation I ��n stands for the identifier that results from concatenating the char-
acters of the name I with the digit characters of the numeral for the natural
number n. For example, x��3 denotes the identifier x3. The parameters of the
constructor procedure are constructed in this fashion to guarantee that they
are distinct — something that may not be true for I1 , . . . , Ik .

2. A three-argument deconstructor procedure that expects a oneof value as its
first argument (val). If this oneof has the tag Itag , the deconstructor applies
its second argument (a k-argument success continuation, succ) to the k com-
ponents of the product that is the oneof’s payload. Otherwise, it invokes the
nullary failure continuation, fail, that is its third argument. The name of
this deconstructor procedure is created from the name Itag by adding the char-
acter ~ as a suffix. The notation I1��I2 stands for the identifier that results
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Modified Syntax

P ::= (flic (I ∗
formal) Ebody D∗

defn) [Program]

D ::= (def Iname Edefn) [ValueDefinition]
| (def (IprocName I ∗

formal) Ebody) [ProcedureDefinition]

| (def-data Idata (Itag I ∗)∗) [DataDeclaration]

New Desugaring
DSdef : Def → Def*

DSdef [[(def-data Idata (Itag1
I1 ,1 . . . I1 ,k1

) ... (Itagn
In,1 . . . In,kn

))]]
= DScl [[(Itag1

I1 ,1 . . . I1 ,k1
)]] @ · · · @DScl [[(Itagn

In,1 . . . In,kn
)]]

where DScl [[(Itag I1 ... Ik)]]

= [(def (Itag x��1 ... x��k) ; constructor procedure
(one Itag (prod x��1 ... x��k))),

(def (Itag��~ val succ fail) ; deconstructor procedure
(tagcase val payload

(Itag (succ (get 1 payload) . . . (get k payload)))

; For i ∈ Int, the notation i stands for
; the IntLit N such that N [[N ]] = i

(else (fail))))
]

Figure 10.21 Syntax and desugaring of def-data.

from concatenating the characters of two identifiers. For example, square��~
denotes the identifier square~.

For example, Figure 10.22 shows the constructors and deconstructors introduced
by the shape declaration.

Exercise 10.15 Extend the declaration of elm-exp and the definition of elm-eval to
handle the full EL language presented in Figure 2.4 on page 25.

Exercise 10.16 It is possible to tweak the desugaring of def-data to use more efficient
representations than those given in Figure 10.21.

a. Modify the def-data desugaring to avoid creating products for constructors that take
fewer than two arguments.

b. Modify the def-data desugaring to represent a sum-of-products datum with tag Itag
and components v1 . . . vn as the heterogeneous sequence

(seq (sym Itag) v1 . . . vn)

(This desugaring makes sense for a dynamically typed language but not a statically
typed one.)



588 Chapter 10 Data

The shape declaration

(def-data shape

(square int)

(rectangle int int)

(triangle int int int))

desugars into the following constructors and deconstructors:

(def (square x1)

(one square (prod x1)))

(def (square~ val succ fail)

(tagcase val payload

(square (succ (get 1 payload)))

(else (fail))))

(def (rectangle x1 x2)

(one rectangle (prod x1 x2)))

(def (rectangle~ val succ fail)

(tagcase val payload

(rectangle (succ (get 1 payload) (get 2 payload)))

(else (fail))))

(def (triangle x1 x2 x3)

(one triangle (prod x1 x2 x3)))

(def (triangle~ val succ fail)

(tagcase val payload

(triangle (succ (get 1 payload) (get 2 payload) (get 3 payload)))

(else (fail))))

Figure 10.22 Value constructors and deconstructors introduced by the shape decla-
ration.

Exercise 10.17 SML and Haskell support user-defined data-type declarations. Below
are the geometric shape declarations expressed in SML and Haskell:

SML Haskell
datatype Shape =

Square of int

| Rectangle of int * int

| Triangle of int * int * int

data Shape =

Square Int

| Rectangle Int Int

| Triangle Int Int Int

In SML, passing multiple arguments to a data constructor is modeled by collecting
the arguments into a tuple, as in Triangle(5,6,7), where the tuple (5,6,7) has type
int * int * int. It is a type error to supply the constructor with the wrong number
of arguments, as in Triangle(5,6).
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In contrast, Haskell data declarations allow curried constructors that can take
multiple arguments one at a time. For instance, the invocation Triangle 5 6 denotes a
unary function that “expects” the third side of the triangle.

Is FL extended with def-data more like ML or Haskell in this respect? For
example, does (triangle 5 6) denote an error or a unary function? How would you
change the desugaring of def-data to model the other language?

Exercise 10.18 The desugaring for def-data in Figure 10.21 introduces two procedures
for each summand clause (Itag I1 . . . Ik) — a constructor Itag and a deconstructor
Itag��~. An alternative approach is to introduce k + 2 procedures:

• A k-argument constructor procedure named Itag .

• A unary predicate named Itag��? that returns true for a oneof value with tag Itag and
false for any other oneof value. It is an error to apply this predicate to a value that is
not a oneof value.

• k unary selector procedures named I1 . . . Ik , where Ii extracts the ith component of a
product tagged with Itag . It is an error to apply a selector procedure to a value that
is not a oneof value or a oneof value with a tag that is not Itag .

In this approach, the component names matter, since they are names of selectors, not
just comments. For example, here is the perim procedure in this approach:

(def (perim s)

(cond ((square? s) (* 4 (side s)))

((rectangle? s) (* 2 (+ (width s) (height s))))

((triangle? s) (+ (side1 s) (+ (side2 s) (side3 s))))

))

a. Give a desugaring for def-data that implements the new approach.

b. In your new desugaring, compare the evaluation of the conditional clause

((triangle? s) (+ (side1 s) (+ (side2 s) (side3 s))))

with the following deconstructor application in the original desugaring

(triangle~ s (abs (s1 s2 s3) (+ s1 (+ s2 s3)))

(abs () (error not-a-shape)))

Which evaluation is more efficient?

c. One drawback of having def-data desugar into so many procedures is that it increases
the possibility of name conflicts. For instance, the shape declaration introduces pro-
cedures with names like square, rectangle?, and width that very well might be
useful in other contexts. One way to address this problem is for programmers to use
more specific names within data declarations, as in:

(def-data shape

(shape-square shape-side)

(shape-rectangle shape-width shape-height)

(shape-triangle shape-side1 shape-side2 shape-side3))
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Another approach is to modify the desugaring for def-data to automatically con-
catenate the data name with the name of every constructor, predicate, and selector
procedure. For instance, something like this is done in Common Lisp’s defstruct

facility. Discuss the benefits and drawbacks of these two ways to address potential
name conflicts in a program with data declarations.

d. Yet another way to address name conflicts is to treat constructor, predicate, and
selector applications as kernel constructs that refer to a different namespace than the
usual value namespace. Design an extension to FL that handles data declarations
based on this idea. Do you think it is a good way to handle name conflicts?

10.5 Pattern Matching

10.5.1 Introduction to Pattern Matching

Deconstructors are a sufficient mechanism for dispatching on and extracting the
components of sum-of-products data, but they are awkward to use in practice. It
is more convenient to manipulate sum-of-products data using a pattern match-
ing facility that simultaneously tests for a summand and names the components
of the associated product when the test succeeds. We have made extensive use
of a form of pattern matching (via the match construct) in the mathematical
metalanguage of this book. Pattern matching is also an important feature of
some real-world programming languages, such as Prolog, ML, and Haskell.

We will study pattern matching in the context of an extension to FL that
includes def-data from the previous section along with a new match construct.
First we will give an informal introduction to match via a series of examples.
Then we will describe the semantics of match in detail by desugaring it into
deconstructor applications.

The match construct has the form (match Edisc (PT pat Ebody)
∗), where

Edisc is the discriminant and each match clause of the form (PT pat Ebody)

has a pattern PT pat and a body Ebody . A pattern PT consists of either an FL
literal value, an identifier, a wild card8 (_), or a constructor application pattern:

PT ∈ Pattern ::= L [Literal]
| I [PatternVariable]
| _ [WildCard]
| (Iconstr PT ∗) [ConstructorApplication]

A match expression is evaluated by first evaluating Edisc into a value vdisc , then
finding the first clause whose pattern PT i matches vdisc , and finally evaluating

8We assume that the definition of Ident is modified so that it no longer contains _ as an
identifier.
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the associated body Ei of this clause relative to any bindings introduced by the
successful match of vdisc to PT i . If no clause has a pattern that matches vdisc ,
the match expression signals an error.

A literal pattern matches only the same literal value and does not intro-
duce any bindings. An identifier pattern I matches any value v and binds I
to v in the clause body. A wildcard pattern _ also matches any value v but
does not introduce any bindings. Intuitively, a constructor application pattern
(Iconstr PT 1 . . . PT n) matches a value that could be the result of a construc-
tor application (Iconstr v1 . . . vn). In this case, the patterns PT 1 . . . PT n are
recursively matched against the values v1 . . . vn , and all bindings introduced by
a successful matching process are available in the clause body.

We begin with a few examples of match involving patterns that are just liter-
als, identifiers, or wild cards. Here is a procedure that converts a boolean to an
integer (and signals an error for a nonboolean input).

(def (bool->int b)

(match b

(#f 0)

(#t 1)))

The negate procedure below returns a symbol that negates the sense of a yes or
no input but returns unknown for any other input. The underscore pattern is a
wildcard pattern that matches any discriminant.

(def (negate s)

(match s

((sym yes) (sym no))

((sym no) (sym yes))

(_ (sym unknown))))

The following procedure returns one more than the square of a given number,
except at the inputs −1 and 1, where it returns 0:

(def (squarish n)

(match (* n n)

(1 0)

(x (+ 1 x))))

A pattern variable like x successfully matches any discriminant value, and the
name may be used to denote this value in the associated body expression.

To introduce constructor application patterns, we consider pattern matching
involving lists of integers. Consider the following two procedures, in which cons

and null are constructors from the list-data declaration in Figure 10.19 on
page 586:
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(def (match-ints-1 ints)

(match ints

((cons x (null)) (* x x))

(_ 17)

))

(def (match-ints-2 ints)

(match ints

((cons x (null)) (* x x))

((cons 3 (cons y ns)) (+ y (length ns)))

(_ 17)

))

• The pattern (cons x (null)) matches a list that contains exactly one ele-
ment, and names that element x in the scope of the body. So both procedures
return the square of the first (only) element of the list when given a single-
ton list.

• The pattern (cons 3 (cons y ns)) matches a list that has at least two el-
ements, the first of which is the integer 3. In the case of a match, the body
is evaluated in a scope where the second element is named y and the list of
all but the first two elements is named ns. So when this pattern matches, the
second procedure returns the sum of the second element and the length of the
rest of the list.

• The final wildcard pattern in both procedures matches any value not matched
by the first two patterns, in which case a 17 is returned.

The following table shows the results returned by these two procedures when
supplied with various integer lists as an argument:

(list) (list 3) (list 3 4) (list 6 8) (list 3 6 8)

match-ints-1 17 9 17 17 17
match-ints-2 17 9 4 17 7

One restriction on patterns not reflected in the Pattern grammar is that the
same variable name may not be used twice in the same pattern. For example,
the pattern (cons x (cons x ns)) is illegal. To match lists whose first two
elements are the same, the pattern (cons x (cons y ns)) can be used along
with a body beginning with the test (if (equal? x y) . . .).

The most important use of match is to perform pattern matching on user-
defined sum-of-products data. For instance, here is a succinct version of the
perimeter procedure of Section 10.4 based on pattern matching:
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(def (perim shape)

(match shape

((square s) (* 4 s))

((rectangle w h) (* 2 (+ w h)))

((triangle s1 s2 s3) (+ s1 (+ s2 s3)))))

The pattern (square s) matches a sum-of-products value constructed by the
constructor application (square vside), in which case s names vside in the body
of the match clause. Similarly, the pattern (rectangle w h) matches a value
constructed by (rectangle vwidth vheight), where w names vwidth and h names
vheight . The triangle pattern is handled similarly.

Examples involving the ELM language nicely illustrate the elegant concise-
ness of pattern matching. Figure 10.23 presents a complete ELM expression
evaluator based on pattern matching. The twelve lines of code are easy to under-
stand and analyze. A compelling use of nested patterns is in the crude algebraic
simplifier for ELM expressions in Figure 10.24. The second match clause in
the simp procedure expresses the fact that literals and argument references are
self-evaluating (i.e., they simplify to themselves). The first clause simplifies an
arithop by simplifying the arguments and then attempting to further simplify
the resulting arithop. simp-arithop handles six special cases. The first four
clauses express the facts that zero is an identity for addition and one is an identity
for multiplication. The next two clauses capture the fact that multiplication by
zero yields zero.9 In order to appreciate the succinctness of pattern matching,
the reader is encouraged to express the simp procedure in a version of FL that
does not support pattern matching.

All the examples so far are “well typed” in the sense that the discriminant of
the match is “expected” to be a particular type (e.g., a list of integers, a shape,
an ELM expression) and the results of all the clause bodies in a given match

have the same type as each other. But in a dynamically typed language, match
is not required to have this behavior, as indicated by the following example:

(def (dynamic x)

(match x

((0 #f)

(#t (sym zero))

((sym one) 17))))

In Chapter 11, we will study a statically typed version of FL in which dynamic

will not be a legal procedure. However, all the other match examples above will
still be legal.

9This is not a safe transformation when the other subexpression signals an error!
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(def (elm-eval exp args)

(match exp

((lit n) n)

((arg i) (get-arg i args))

((arithop op r1 r2)

((primop->proc op) (elm-eval r1 args) (elm-eval r2 args)))))

(def (get-arg index nums)

(match (pair index nums)

((pair 1 (cons n _)) n)

((pair i (cons _ ns)) (get-arg (- i 1) ns))))

(def (primop->proc name)

(match name

((sym +) +) ((sym -) -) ((sym *) *) ((sym /) /) ((sym %) %)))

Figure 10.23 A complete ELM evaluator based on pattern matching. This assumes
the def-data declaration for ELM expressions in Figure 10.18 on page 585 and the
declarations for list and pair data in Figures 10.19 and 10.20.

10.5.2 A Desugaring-based Semantics of match

In order to motivate the structure of the desugaring of match, which is rather
complex, we will incrementally develop the desugaring in the context of some
concrete match examples rather than simply present the final desugaring. We
begin with the bool->int procedure from the previous subsection:

(def (bool->int b)

(match b

(#f 0)

(#t 1)))

It would be natural to desugar the match in bool->int into a series of if ex-
pressions:

(def (bool->int b)

(if (equal? b #f)

0

(if (equal? b #t)

1

(error no-match))))

The case where b is not a boolean is handled by an explicit error expression
indicating that the value of the discriminant did not match the pattern of any
match clause.
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(def (simp exp)

(match exp

((arithop p r1 r2) (simp-arithop (arithop p (simp r1) (simp r2))))

(x x)))

(def (simp-arithop exp)

(match exp

((arithop (sym +) (lit 0) x) x)

((arithop (sym +) x (lit 0)) x)

((arithop (sym *) (lit 1) x) x)

((arithop (sym *) x (lit 1)) x)

((arithop (sym *) (lit 0) _) (lit 0))

((arithop (sym *) _ (lit 0)) (lit 0))

(_ exp)))

Figure 10.24 An algebraic simplifier for ELM expressions.

In general, the discriminant of a match will be an arbitrary expression whose
value should be calculated only once. To avoid recalculation of the discriminant,
our match desugaring first names the discriminant (using let) and then performs
a case analysis on the name. As shown in Exercise 10.23, this name can be
eliminated when it is not necessary. For example, in bool->int, the discriminant
is already bound to the variable b. Here is a revised desugaring for bool->int

that names the discriminant:10

(def (bool->int b)

(let ((disc b))

(if (equal? disc #f)

0

(if (equal? disc #t)

1

(error no-match)))))

Whenever a mismatch between a pattern and a discriminant value is dis-
covered, the matching process should stop processing the pattern in the current
match clause and begin processing the pattern in the next match clause. When
we study the desugaring of constructor application patterns later, we will see that
such a mismatch may be discovered at many different points in the processing of
a given pattern. To avoid replicating the code that begins processing the pattern
in the next match clause, our desugaring will wrap this code into a failure thunk
that may potentially be invoked from several different points in the desugared

10In the examples, all new identifiers introduced by the desugaring are assumed to be fresh
so they do not clash with any program variables.
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code. Here is a version of the desugaring for bool->int that includes failure
thunks named fail1 and fail2:

(def (bool->int b)

(let ((disc b))

(let ((fail1 (abs ()

(let ((fail2 (abs () (error no-match))))

(if (equal? disc #t)

1

(fail2))))))

(if (equal? disc #f)

0

(fail1)))))

In the simple match within bool->int, each failure thunk is invoked exactly once.
But soon we will see examples in which the failure thunk is invoked multiple times.
In the case where the failure thunk is invoked zero or one times, it is possible for
the desugarer to avoid introducing a named failure thunk. We leave this as an
exercise (see Exercise 10.23).

The discussion so far leads to a first cut for the match desugaring, shown in
Figure 10.25. The desugaring of match is performed by DSmatch . For simplicity,
we assume that all match constructs are first eliminated by DSmatch in a separate
pass over the program before other FL desugarings are performed. It is possible
to merge all desugarings into a single pass, but that would make the description
of the match desugaring more complex.
DSmatch first introduces the fresh name Idisc for the value of the discrimi-

nant expression Edisc and then processes the match clauses with DSclauses . The
DSclauses function takes three arguments: (1) a list of clause patterns, (2) a list
of clause body expressions, and (3) the identifier naming the discriminant. The
third argument allows the desugarer to refer to the discriminant by its identi-
fier when processing the clauses. The DSclauses function uses DSpat to process
the first pattern and body expression in a context where the fresh identifier Ifail
names the failure thunk that processes the rest of the clauses. When no clauses
remain, the desugarer yields an error expression that will be reached only when
the desugared code for processing the clauses finds no pattern that matches the
discriminant.

The core of the match desugaring is the DSpat function. This takes four
arguments: (1) the pattern being matched, (2) the identifier naming the discrim-
inant, (3) the success expression that is evaluated when the pattern matches
the discriminant, and (4) the name of the failure thunk that is invoked when the
pattern does not match the discriminant. A literal pattern is an easy case. The
desugared code first compares the literal and the discriminant via the equality
operator equalL. In a dynamically typed language, equalL is just the generic
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DSmatch : Exp → Exp

DSmatch [[(match Edisc (PT 1 E1) ... (PTn En))]] =
(let ((Idisc Edisc)) ; Idisc is fresh

(DSclauses [PT 1 , . . . ,PTn ] [E1 , . . . ,En ] Idisc))

DSclauses : Pattern*→ Exp*→ Ident → Exp

DSclauses [ ] [ ] Idisc = (error no-match)

DSclauses (PT 1 . PT ∗
rest) (E1 . E∗

rest ) Idisc =
(let ((Ifail ; Ifail is fresh

(abs () ; Failure thunk: if PT 1 doesn’t match, try the other clauses
(DSclauses PT ∗

rest E∗
rest Idisc))))

(DSpat [[PT 1 ]] Idisc E1 Ifail))

DSpat : Pattern→ Ident → Exp → Ident → Exp

DSpat [[L]] Idisc Esucc Ifail = (if (equalL Idisc L) Esucc (Ifail))

DSpat [[_]] Idisc Esucc Ifail = . . . to be added . . .

DSpat [[I ]] Idisc Esucc Ifail = . . . to be added . . .

DSpat [[(Iconstr PT 1 . . . PTn)]] Idisc Esucc Ifail = . . . to be added . . .

Figure 10.25 A first cut of the match desugaring.

equality-testing procedure equal?, but when desugaring match in a statically
typed language (as in Section 13.5.4 or in Section 15.4.6), the equality operator
equalL depends on the domain of the literal L. If the literal and discriminant
are the same, the success expression is evaluated; otherwise, the failure thunk is
invoked, which will either process the next match clause (if there is one) or signal
a no-match error (if there is no next clause).

The literal case is the only DSpat case that is needed to explain the bool->int
desugaring. The desugarings for the other three types of patterns (wild cards,
identifiers, and constructor applications) are not shown in Figure 10.25 but will
be fleshed out in the following discussion.

We first consider the wildcard pattern, as used in the negate procedure:

(def (negate s)

(match s

((sym yes) (sym no))

((sym no) (sym yes))

(_ (sym unknown)))

The wildcard pattern always matches the discriminant, so the desugarer can
simply emit the success expression for this case:

DSpat [[_]] Idisc Esucc Ifail = Esucc
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The result of desugaring the match expression within the negate procedure is

(def (negate s)

(let ((disc s))

(let ((fail1

(abs ()

(let ((fail2

(abs ()

(let ((fail3 (abs ()

(error no-match))))

(sym unknown))))

(if (equal? disc (sym no)) (sym yes) (fail2))))))

(if (equal? disc (sym yes)) (sym no) (fail1)))))

It turns out that fail3 can never be referenced, so the subexpression

(let ((fail3 (abs () (error no-match))))

(sym unknown))

could simply be replaced by (sym unknown). This optimization could be per-
formed by the desugarer itself or by a post-desugaring optimization pass (see
Exercise 10.23).

The case of patterns that are identifiers is similar to the wildcard case, ex-
cept that the success expression must be evaluated in an environment where the
identifier is bound to the value of the discriminant:

DSpat [[I ]] Idisc Esucc Ifail = (let ((I Idisc)) Esucc)

As an example, consider the squarish procedure introduced above:

(def (squarish n)

(match (* n n)

(1 0)

(x (+ 1 x))))

After the match expression within squarish is desugared, the procedure becomes:

(def (squarish n)

(let ((disc (* n n)))

(let ((fail1

(abs ()

(let ((fail2 (abs () (error no-match))))

(let ((x disc))

(+ x 1))))))

(if (equal? disc 1)

0

(fail1)))))
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As in the negate example, the creation of the innermost failure thunk can be
eliminated by an optimization (see Exercise 10.23). Note that the binding of the
discriminant (* n n) to an identifier (disc) is significant here: (* n n) would
otherwise be evaluated twice. If the discriminant expression performed any side
effects, this would be a semantic issue as well as an efficiency concern.

The last case for DSpat is a constructor application pattern of the form
(Iconstr PT 1 . . . PT n). Recall that Iconstr in this case is some sort of con-
structor procedure, such as cons or triangle in the earlier pattern-matching
examples. Handling this case is tricky because it requires decomposing a con-
structed discriminant value into parts and recursively matching the subpatterns
PT 1 . . . PT n against these parts. A deconstructor procedure is just the right
tool for decomposing the discriminant and matching the subpatterns:

DSpat [[(Iconstr PT 1 ... PTn)]] Idisc Esucc Ifail =
(Iconstr��~ Idisc

(abs (I1 . . . In) ; Fresh identifiers for components
; Body (call it Epats) matches the component parts of the constructed value
(DSpats [PT 1 , . . . ,PTn ] [I1 , . . . , In ] Esucc Ifail))

Ifail)

DSpats [ ] [ ] Esucc Ifail = Esucc

DSpats (PT 1 . PT ∗
rest ) (I1 . I ∗

rest) Esucc Ifail =
DSpat [[PT 1 ]] I1 (DSpats PT ∗

rest I ∗
rest Esucc Ifail) Ifail

The DSpat function processes a constructor application pattern (Iconstr PT 1 . . .
PT n) by emitting code that invokes the deconstructor associated with Iconstr

on the discriminant value denoted by Idisc , a success continuation whose body
(call it Epats) is constructed by DSpats , and the current failure thunk, denoted
by Ifail . The Epats expression is constructed by recursively matching the patterns
PT 1 . . . PT n against the components of Idisc denoted by the success continuation
parameters I1 . . . In relative to the initial success expression Esucc and the failure
thunk Ifail . Observe that Ifail is the same for all invocations ofDSpat andDSpats in
the processing of a single match clause, and that this Ifail denotes the failure thunk
that processes the rest of the match clauses. This means that should there be
any mismatch between the patterns and the component values of the discriminant
when Epats is evaluated, Ifail will be invoked, terminating the attempt to match
the current match clause against the discriminant and starting to match the next
match clause against the discriminant. On the other hand, if no mismatch is
found when Epats is evaluated, then the initial success expression Esucc will be
evaluated in a context where all pattern variables are bound to the appropriate
discriminant-component values.
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As concrete examples of desugaring constructor application patterns, we will
study the desugarings of match within the match-ints-1 and match-ints-2

procedures presented earlier. Recall that match-ints-1 was defined as follows:

(def (match-ints-1 ints)

(match ints

((cons x (null)) (* x x))

(_ 17)

))

Here is a version of match-ints-1 in which the match expression has been desug-
ared:

(def (match-ints-1 ints)

(let ((disc ints))

(let ((fail1 (abs ()

(let ((fail2 (abs ()

(error no-match))))

17))))

(cons~ disc

(abs (v1 v2)

(let ((x v1))

(null~ v2

(abs () (* x x))

fail1)))

fail1))))

If the value denoted by ints and disc is a singleton list, then the cons~ and
null~ deconstructors will both succeed, and (* x x) will be evaluated in an
environment where x is bound to the single element (denoted by x and v1). If
the discriminant is not a singleton list, then one of cons~ or null~ will invoke the
failure continuation fail1, which returns the 17 specified in the second clause.

The code generated by the desugarer for match-ints-1 is inefficient in many
respects. By making the desugarer cleverer and/or transforming the result of
the desugarer by a simple optimizer, it is possible to generate the following more
compact and efficient code:

(def (match-ints-1 ints)

(let ((fail1 (abs () 17)))

(cons~ ints

(abs (v1 v2)

(null~ v2

(abs () (* v1 v1))

fail1))

fail1)))
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As a second example of desugaring constructor application patterns, recon-
sider match-ints-2:

(def (match-ints-2 ints)

(match ints

((cons x (null)) (* x x))

((cons 3 (cons y ns)) (+ y (length ns)))

(_ 17)

))

The match desugaring functions yield the desugared definition in Figure 10.26.
Everything is the same as the desugaring for match-ints-1 except that the fail-
ure thunk fail1 now corresponds to matching the second and third clauses of
the match within match-ints-2 and the failure thunk fail2 now corresponds to
matching the third clause. Note how the desugaring guarantees that the expres-
sion (+ y (length ns)) is evaluated in an environment that contains correct
bindings for the names y and ns. Also observe that the second clause pattern
(cons 3 (cons y ns)) can fail to match the discriminant for three distinct rea-
sons, all of which cause the invocation of the failure thunk fail2:

1. the discriminant disc is not a pair;

2. the discriminant disc is a pair whose first element v3 is not 3;

3. the discriminant disc is a pair whose first element v3 is 3 but whose second
element v4 is not a pair.

In general, a failure thunk is invoked in only two situations: (1) a literal is
not equal to the value it is matched against or (2) a deconstructor invokes the
failure thunk as its failure continuation when the discriminant does not match
the associated constructor.

With the handling of constructor application patterns, we have completed the
presentation of the desugaring of match. Whew! The complete desugaring rules
for match are presented in Figure 10.27. Recall that we assume that the usual FL
desugaring is performed on the expression resulting from the match desugaring.

We have presented an approach to pattern matching based on desugaring and
deconstructors. But this is by no means the only way to specify or implement
pattern matching. For instance, the dynamic semantics for the core language of
SML [MTHM97] treats pattern matching as a fundamental language feature that
is explained via operational semantics rules. Whereas the deconstructor-based
desugaring requires linearly testing the match clauses, one by one, in order, the
SML definition does not imply a particular implementation. Indeed, there are
clever implementations of SML pattern matching that can greatly reduce the
number of tests that need to be performed [BM85].
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(def (match-ints-2 ints)

(let ((disc ints))

(let ((fail1

(abs ()

(let ((fail2

(abs ()

(let ((fail3 (abs ()

(error no-match))))

17))))

(cons~ disc

(abs (v3 v4)

(if (equal? v3 3)

(cons~ v4

(abs (v5 v6)

(let ((y v5))

(let ((ns v6))

(+ y (length ns)))))

fail2)

(fail2)))

fail2)))))

(cons~ disc

(abs (v1 v2)

(let ((x v1))

(null~ v2

(abs () (* x x))

fail1)))

fail1))))

Figure 10.26 The result of desugaring match in match-ints-2.

Exercise 10.19 If match were a kernel expression rather than syntactic sugar, it would
be necessary to define the free identifiers of match. Extend FrIds to handle match ex-
pressions.

Exercise 10.20 Extend the match desugaring to handle record and oneof patterns:

PT ::= ... | (one Itag PT payload) | (record (Ifield PTfield)
∗)

As an example of such patterns, consider the following alternative definition of the
perimeter procedure.
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DSmatch : Exp → Exp

DSmatch [[(match Edisc (PT 1 E1) ... (PTn En))]] =
(let ((Idisc Edisc)) ; Idisc is fresh

(DSclauses [PT 1 . . .PTn ] [E1 , . . . ,En ] Idisc))

DSclauses : Pattern*→ Exp*→ Ident → Exp

DSclauses [ ] [ ] Idisc = (error no-match)

DSclauses (PT 1 . PT ∗
rest) (E1 . E∗

rest ) Idisc =
(let ((Ifail ; Ifail is fresh

(abs () ; Failure thunk: if PT 1 doesn’t match, try the other clauses
(DSclauses PT ∗

rest E∗
rest Idisc))))

(DSpat [[PT 1 ]] Idisc E1 Ifail))

DSpat : Pattern→ Ident → Exp → Ident → Exp

DSpat [[L]] Idisc Esucc Ifail = (if (equalL Idisc L) Esucc (Ifail))

DSpat [[_]] Idisc Esucc Ifail = Esucc

DSpat [[I ]] Idisc Esucc Ifail = (let ((I Idisc)) Esucc)

DSpat [[(Iconstr PT 1 . . . PTn)]] Idisc Esucc Ifail =
(Iconstr��~ Idisc
(abs (I1 . . . In) ; Fresh identifiers for components

; Body (call it Epats) matches the component parts of the constructed value
(DSpats [PT 1 , . . . ,PTn ] [I1 , . . . , In ] Esucc Ifail))

Ifail)

DSpats : Pattern*→ Ident*→ Exp→ Ident → Exp

DSpats [ ] [ ] Esucc Ifail = Esucc

DSpats (PT 1 . PT ∗
rest ) (I1 . I ∗

rest) Esucc Ifail =

DSpat [[PT 1 ]] I1 (DSpats PT ∗
rest I ∗

rest Esucc Ifail) Ifail

Figure 10.27 The final version of the match desugaring.

(def (perim shape)

(match shape

((one square (record (side s)))

(* 4 s))

((one rectangle (record (width w) (height h)))

(* 2 (+ w h)))

((one triangle (record (side1 s1) (side2 s2) (side3 s3)))

(+ s1 (+ s2 s3)))

))
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Exercise 10.21 The definition of lists in Figure 10.19 on page 586 allows cons and null

to be used in patterns. But it would be nice to handle list patterns as well:

PT ::= ... | (list PT ∗
elt)

For example:

(def (match-list ints)

(match ints

((list x) (+ x 1))

((list _ y) (* 2 y))

((list x y 3) (* x y))

(_ 0)

))

(match-list (list)) −−−FL→ 0

(match-list (list 4)) −−−FL→ 5

(match-list (list 7 8)) −−−FL→ 16

(match-list (list 5 4 3)) −−−FL→ 20

(match-list (list 3 4 5)) −−−FL→ 0

(match-list (list 1 2 3 4)) −−−FL→ 0

Extend the match desugaring to handle list patterns.

Exercise 10.22 Consider the following procedure for removing duplicates from a sorted
list of integers:

(def (remove-dups sorted-list)

(match sorted-list

((cons x (cons y zs))

(if (= x y)

(remove-dups (cons y zs))

(cons x (remove-dups (cons y zs)))))

(_ sorted-list)

))

Matching with nested constructor application patterns helps to extract the first two
elements (x and y) of a list with at least two elements. But it is inelegant to name the
remainder of such a list (zs) and to rebuild the tail of sorted-list via (cons y zs).

One way to avoid these problems is to use nested match constructs:

(def (remove-dups-2 sorted-list)

(match sorted-list

((cons x ys)

(match ys

((cons y _)

(if (= x y)

(remove-dups ys)

(cons x (remove-dups ys))))

(_ sorted-list)))

(_ sorted-list)

))
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But this is verbose and requires duplication of the last match clause, (_ sorted-list).
A more elegant approach is to introduce patterns of the form (<-> I PT). When

such a pattern is matched against a value v :

• if PT matches v , then (<-> I PT) also matches v , and the environment is extended
with a binding between I and v as well as with any bindings implied by the match of
PT against v ;

• if PT does not match v , then (<-> I PT) does not match v .

For example, with named patterns, remove-dups can be elegantly expressed as:

(def (remove-dups-3 sorted-list)

(match sorted-list

((cons x (<-> ys (cons y _)))

(if (= x y)

(remove-dups ys)

(cons x (remove-dups ys))))

(_ sorted-list)

))

Extend the match desugaring to handle <-> patterns and show the result of your extended
match desugaring for remove-dups-3.

Exercise 10.23 Modify the match desugaring functions and/or define a post-desugaring
optimizer to make the desugared code more compact and efficient. You should handle
at least the following optimizations:

• Optimize unnecessary renamings of the form (let ((I1 I2)) ...). E.g., the expres-
sion (let ((x v1)) (* x x)) should be replaced by (* v1 v1).

• Eliminate the creation of failure thunks that are never used. E.g., the expression
(let ((fail (abs () E1))) E2) should be replaced by E2 if fail is not free within
E2 .

• Eliminate the naming of failure thunks that are referenced only once. The single
reference should be replaced by the thunk itself. E.g., the expression

(let ((fail E1)) (cons~ E2 E3 fail))

should be replaced by (cons~ E2 E3 E1).

• Optimize the application of an explicit thunk. E.g., ((abs () E)) should be replaced
by E .

10.5.3 Views

While the deconstructor-based desugaring of pattern matching may be inherently
inefficient compared to other approaches, it provides an important advantage in
expressiveness for the programmer. In languages like ML and Haskell, sum-
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of-products data types can be deconstructed only by referencing the constructor
in a pattern context. But using match, programmers can define arbitrary decon-
structors from scratch and use them in patterns.

As an example, consider the snoc11 procedure, which postpends an element
to the back of a list:

(def (snoc xs x)

(if (null? xs)

(list x)

(cons (car xs) (snoc (cdr xs) x))))

It is often handy to have a deconstructor corresponding to snoc that decomposes
a nonempty list L into two values: the list of all elements in L excluding the last,
and the last element L. This can be expressed with the following deconstructor:12

(def (snoc~ xs succ fail)

(if (null? xs)

(fail)

(if (null? (cdr xs))

(succ nil (car xs))

(snoc~ (cdr xs)

(abs (but-last last)

(succ (cons (car xs) but-last) last))

(abs () (error cant-fail))))))

For example:

(snoc~ (list 1 2 3)

(abs (ns n) (cons n ns))

(abs () nil)) −−−FL→ �3 , 1 , 2 �

Because of the way the match desugaring is defined, it is possible to invoke
snoc~ by referencing snoc in a pattern context, even though snoc was not defined
as a constructor in a def-data. For example, here is a compact definition of a
quadratic-time list-reversal procedure using snoc~ via pattern matching:

(def (reverse xs)

(match xs

((null) xs)

((cons _ (null)) xs)

((snoc ys y) (cons y (reverse ys)))))

11So called because it is a “backward cons.”
12An alternative approach to defining snoc~ would be to express it in terms of two auxiliary

procedures, one of which returns all but the last element of a nonempty list and the other of
which returns the last element of a nonempty list. In such a definition, snoc~ would walk over
the given list twice. The definition given above effectively uses the success continuation to return
multiple values and walks over the given list only once.
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The ability to choose from multiple deconstructors when decomposing a data
structure characterizes what is known as a views facility, so called because it
allows a compound data value to be viewed from different perspectives depending
on the context [Wad87]. For example, among the many possible views of a
nonempty length-n list are

• the cons view: the list is the first element prepended to a list containing
elements 2 through n.

• the snoc view: the list is the nth element postpended to the sublist containing
elements 1 through (n− 1).

• the split view: a list is the result of appending a left sublist (elements 1
through �n/2�) and a right sublist (elements �n/2�+ 1 through n).

• the interleave view: a list is the result of interleaving a list containing all the
odd-indexed elements with a list containing all the even-indexed elements.

• the join view: the list is the result of sandwiching element �n/2� between a left
sublist (elements 1 through �n/2� − 1) and a right sublist (elements �n/2�+ 1
through n).

These views show up in many standard list algorithms. For instance, the
interleave (or split) view is at the heart of a merge sort algorithm for sorting
lists:

(def (merge-sort nums)

(match nums

((null) nums)

((cons _ (null)) nums)

((interleave ms ns) {Could decompose with split as well}
(merge (merge-sort ms) {merge left as an exercise}

(merge-sort ns)))))

In addition to allowing compound data to be decomposed via pattern match-
ing in different ways in different contexts, the views facility provided by user-
defined deconstructor procedures helps to overcome a key drawback of ML- and
Haskell-style pattern matching: the lack of abstraction in patterns. While
such patterns are wonderful for concisely specifying algorithms that manipulate
sum-of-products data, the fact that they expose concrete implementation details
hinders program development by making it difficult to change the implementation
of data abstractions.
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As an example of the sort of flexibility lost with ML-style patterns, consider
a simple implementation of binary trees with integers stored in the leaves:

(def (node left right) (prod left right))

(def (leaf n) n)

(def (leaf? t) (integer? t))

(def (left t) (get 1 t))

(def (right t) (get 2 t))

Given these basic tree-manipulation primitives, we can define many other tree
procedures. For example:

(def (sum t)

(if (leaf? t)

t

(+ (sum (left t))

(sum (right t)))))

(def (height t)

(if (leaf? t)

0

(+ 1 (max (height (left t))

(height (right t))))))

Suppose we wish to modify this implementation so that each node additionally
keeps track of its height. This can be accomplished with only minor changes:

(def (node left right)

(prod left right

(+ 1 (max (height left)

(height right)))))

(def (height t) (get 3 t))

No other changes need to be made. In particular, procedures like sum that do
not use the height remain unchanged.

Now instead suppose that we used sum-of-products data and pattern matching
to implement the initial version of trees, where nodes did not maintain their height
(Figure 10.28).

Let’s now modify the nodes so that they maintain a height component. If we
want node to remain a two-argument procedure, in an ML-style system, we must
give a different name (say, hnode) to the constructor that takes a third argument,
the height. In every pattern that uses node, we must change the constructor name
to hnode and add an extra pattern to each hnode match clause to account for
the height component (Figure 10.29).
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(def-data int-tree

(leaf int)

(node left right))

(def (sum t)

(match t

((leaf n) n)

((node l r) (+ (sum l) (sum r)))))

(def (height t)

(match t

((leaf _) 0)

((node l r)

(+ 1 (max (height l) (height r))))))

Figure 10.28 Integer binary trees expressed via def-data and match.

(def-data int-tree

(leaf int)

(hnode left right height))

(def (node l r)

(hnode l r (+ 1 (max (height l) (height r)))))

(def (sum t)

(match t

((leaf n) n)

((hnode l r _) (+ (sum l) (sum r)))))

(def (height t)

(match t

((leaf _) 0)

((hnode l r h) h)))

Figure 10.29 Adding a height component requires changing all node patterns.
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It might seem easy to make these changes. But suppose we have hundreds
of tree procedures in our program that needed to be changed in this manner. It
would be tedious and error-prone to make the change everywhere — so much so
that we might avoid making such representation changes. The concrete nature
of ML-style patterns thus stands in the way of a software engineering principle
that dictates that programming languages should be designed in such a way as
to facilitate changing representations.

A view mechanism like explicit deconstructors addresses this issue. When we
introduce hnode, in addition to defining a new node procedure that has the same
meaning as the old node constructor, we can define a new node~ deconstructor:

(def (node~ val succ fail)

(match val

((leaf _) (fail))

((hnode l r h) (succ l r))))

With this deconstructor, the original definition of sum that used node in its match
clause need not be modified even though the representation of nodes has changed.
In this way, user-defined deconstructors (and view facilities in general) facilitate
representation changes to programs.

Exercise 10.24 Define the list deconstructors split~, interleave~, and join~ de-
scribed in the discussion on views. Give examples of algorithms where such views are
helpful.

Exercise 10.25 Define a partition~ deconstructor for a nonempty list of integers L
that decomposes it into three parts:

a. the first element of L (known as the pivot);

b. a list of all elements in the tail of L less than or equal to the pivot (with the same
relative order as in L);

c. a list of all elements in the tail of L that are strictly greater than the pivot (with the
same relative order as in L).

Using your partition~, it should be possible to define the quicksort algorithm for sorting
lists:

(def (quicksort nums)

(match nums

((null) nums)

((cons _ (null)) nums)

((partition pivot lesses greaters)

(append (quicksort lesses)

(cons pivot (quicksort greaters))))))
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Exercise 10.26 The convention of naming deconstructors by extending the constructor
name with the suffix ~ is really just a crude but simple way of associating a deconstructor
with a constructor. Here we consider an alternative way to specify this association.

Suppose that FL is extended with a declaration construct, def-constructor, that
associates a constructor name with two procedures: a constructor and its associated
deconstructor. Using this construct, new list constructors kons and knull could be
specified as follows:

(def-constructor kons

(abs (elt lst) (pair elt lst)) {Constructor}
(abs (val succ fail) {Deconstructor}

(if (pair? val)

(succ (left pair) (right pair))

(fail)))

)

(def-constructor knull

(abs () #u) {Constructor}
(abs (val succ fail) {Deconstructor}

(if (unit? val) (succ) (fail)))

)

The intention is that the name declared by def-constructor can be used within expres-
sions to denote the constructor procedure and within patterns to denote the deconstructor
procedure. Sometimes it is necessary to access the deconstructor procedure within an
expression; for this case, FL is also extended with a new expression (decon I ) that
accesses the “deconstructor part” of I . For example:

(kons 1 (kons 2 (knull))) −−−FL→ �1 , 2 �

(match (kons 1 (kons 2 (knull)))

((kons x (kons y (knull))) (+ x y))) −−−FL→ 3

((decon kons) (kons 1 (kons 2 (knull)))

(abs (hd tl) (kons hd (kons hd tl)))

(abs () (kons 5 (knull)))) −−−FL→ �1 , 1 , 2 �

((decon kons) (knull)

(abs (hd tl) (kons hd (kons hd tl)))

(abs () (kons 5 (knull)))) −−−FL→ �5 �

The match desugaring for this extended version of FL is the same as before except that
within DSpat , the occurrence of I ��~ is replaced by (decon I ).

a. One way to model the semantics of (def-constructor I E1 E2) is to say that it
binds the name I to the pair of values that result from evaluating E1 and E2 . Extend
the denotational semantics of FL to reflect this model, and explain (1) the meaning
of def-constructor, (2) the application of constructors, and (3) the semantics of
decon.
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b. Another way to model the semantics of (def-constructor I E1 E2) is to say that
the extended version of FL has two namespaces: one for “normal” values (includ-
ing constructors) and one for deconstructors. Extend the denotational semantics of
FL to reflect this model, and explain (1) the meaning of def-constructor, (2) the
application of constructors, and (3) the semantics of decon.

c. What are the benefits and drawbacks of using def-constructor and decon versus
the convention of naming deconstructors with a ~?

Notes

Although algorithms have traditionally been described in terms of mutable data
structures, algorithms using immutable data structures can be very elegant and
surprisingly efficient [Oka98].

As emphasized by Hughes in [Hug89], lazy data structures (and laziness in
general) enhance modularity between producers and consumers of data by al-
lowing termination conditions to be chosen by the consumer rather than the
producer. Lazy data structures effectively establish a coroutine between produc-
ers and consumers and constitute a much simpler mechanism for doing so than
the iterator mechanism presented in Section 9.5. Compelling examples of streams
and other lazy data structures can be found in [Hug89, Bir98, Tho99], [ASS96,
Sections 3.5 and 4.4].

Not only can streams express coroutines, they can also represent a sequence
of choices made in a backtracking system. This is nicely illustrated in [ASS96,
Section 4.4], where streams are used to implement backtracking in a logic pro-
gramming language. A formal correspondence between streams and the suc-
cess/failure continuation approach to backtracking (see Section 9.2.7) has been
shown in [WV04].

Numerous examples of sum-of-products data types with pattern matching can
be found in textbooks for ML (e.g., [Pau96, Ull97, CM98, Hic08]) and Haskell
(e.g., [Bir98, Tho99, Hud00]).

An early description of a compiler for ML-style pattern-matching is in [Aug85].
An efficient pattern-matching compiler is presented in [Wada]. [Ses96] derives an
efficient pattern-matching compiler from an inefficient one. The use of decision
trees to improve ML pattern matching is described in [BM85]. This techinque
is applicable only in strict dialects of ML like SML and OCAML, where match
clauses can be examined in any order. In lazy dialects, pattern matching is
sensitive to clause ordering.

The data-type facility and associated desugaring-based pattern matcher de-
scribed in this chapter were developed by Jonathan Rees in 1989. The Scheme+



Notes for Chapter 10 613

language described in the Web Supplement includes similar facilities. Another
data-declaration and pattern-matching facility for Scheme is described in [WD94].

Sum and product data types have elegant descriptions in category theory (in
which the notions of sum and product are dual) [Pie91]. Such descriptions have
inspired generalizations of list operations like map and foldr on general recursive
sum-of-products data types (e.g., see [MFP91]).

The kinds of data structures supported by a language can influence the way
programmers solve problems. In [Bac78], Backus argues that applicative lan-
guages manipulating compound structures like sequences, arrays, and matrices
free programmers from one-word-at-time programming and allows them to fo-
cus on the big picture. This style of programming, in which programs can be
expressed in terms of higher-order operators that generate, map, filter, and ac-
cumulate compound data, was pioneered by Lisp (using lists) and APL (using
arrays). This style is also an elegant and effective way to describe algorithms
for massively parallel processing systems (e.g., see [HS86a, Sab88, Ble90]). The
MapReduce model [DG08] for the parallel processing of enormous data sets ex-
tracted from the Web is a shining example of the practical utility of this style.
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Simple Types

Type of the wise who soar, but never roam,
True to the kindred points of heaven and home

— William Wordsworth, “To a Skylark”

11.1 Static Semantics

Our emphasis until this point has been the dynamic semantics of programming
languages, which covers the meaning of programming language constructs and the
run-time behavior of programs. We will now shift our focus to static semantics,
in which we describe properties of programs that can be determined without
executing them.

Programs have both dynamic and static properties:

• A dynamic property is one that can be determined in general only by exe-
cuting the program. Such a property is determined at run time — i.e., when
the program is executed.

• A static property is one that can be determined without executing the pro-
gram. Unlike a dynamic property, a static property must be independent of the
particular argument values on which a parameterized program is invoked. A
static property can be determined at analysis time — i.e., when the program
is analyzed before execution. In many implementations, program analysis is
performed by the compiler, in which case it happens at compile time. How-
ever, a program may be analyzed without compiling it (i.e., translating it to
another, usually lower-level, language), so we distinguish these two times in
general. When a program is compiled, we will generally assume that analysis
time precedes compile time, though certain kinds of analysis may be performed
during or even after compilation.
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For instance, consider the following FL program:

(fl (n)

(let ((sq (abs (x) (* x x))))

(if (int? n)

(+ (sq (- n 1)) (sq (+ n 1)))

0)))

We assume that the program input n can be any input expression in InputExp.
The result of the program is a dynamic property, because it cannot be known until
run time what input will be entered by the user. However, there are numerous
static properties of this program that can be determined at analysis time:

• the free identifiers of the program body are int?, +, -, and *;

• the result of the program is a nonnegative even integer;

• the program is guaranteed to terminate.

In general, we’re interested in static properties that aid in the verification,
optimization, and documentation of programs. For instance, we’d like to ask the
following kinds of questions about a given program:

• Is this program consistent with a given specification?

• Can this program possibly encounter a certain error situation?

• When the program executes, is a certain variable guaranteed to contain a value
consistent with its declared type?

• Can this program be optimized in a particular way without changing its mean-
ing?

Of course, there are certain questions that simply cannot be answered in gen-
eral. “Does this program halt?” is the most famous example of an undecidable
question. Yet undecidability does not necessarily spell defeat for the goal of de-
termining static properties of programs. There are two ways that undecidability
is finessed in practice:

1. Make a conservative approximation to the desired property. E.g., for termi-
nation analysis (determining whether a program halts), allow three answers:

(a) yes, it definitely halts;

(b) it might not halt (but I’m not sure);

(c) no, it definitely doesn’t halt.
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A termination analysis is sound if it answers (a) or (b) for a program that
halts and (b) or (c) for a program that doesn’t halt. Of course, a trivial sound
analysis answers (b) for all programs. In practice, we’re interested in sound
analyses that answer (a) or (c) in as many cases as possible.

2. Restrict the language to the point where it is possible to determine the prop-
erty unequivocally. Such restrictions allow precise static information to be
calculated at analysis time, but reduce expressiveness by forbidding many
programs that would otherwise be valid.

For instance, languages with static type systems (see Section 11.3.1) pro-
hibit writing many expressions whose evaluation would not signal dynamic
type errors. Consider the following FL expression, in which the procedure f

returns the square of a negative number but a scaling procedure for a nonneg-
ative number:

(let ((f (abs (x)

(if (< x 0) (* x x) (abs (y) (* x y))))))

(+ ((f 4) (f -3)) ((f 6) (f -1))))

This expression evaluates to 42 without encountering a type error at run time.
But such an expression is illegal in most languages with static type systems,
because the type system is too weak to specify that the type of the value
returned by f depends on the value of f’s argument.

Sometimes writing an expression in a different way permits it to be analyzed
more precisely or transforms it from an illegal expression to a legal one. For
example, many languages with static type systems can express a version of the
above example in which f is split into a squaring procedure and a curried scaling
procedure:

(let ((f1 (abs (x) (* x x)))

(f2 (abs (x) (abs (y) (* x y)))))

(+ ((f2 4) (f1 -3)) ((f2 6) (f1 -1))))

In our study of static semantics, we shall take the second approach to ensur-
ing that the properties of interest are decidable. Starting with a general language
about which we can determine very few properties, we shall remove features or
add restrictions until the desired properties can be determined statically. Unfor-
tunately, the increase in our ability to reason about the programs is offset by a
decrease in the expressive power of the programming language. This is a fun-
damental tension in the design of programming languages: the more we can say
about programs, the less we can say with them.
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Static semantics adds new dimensions to the programming language design
space. As we shall see, points in the design space can often be characterized by
different tradeoffs among the expressive power of the language, the expressiveness
of the static properties, and the complexity of the analyses that determine the
static properties.

In this chapter, we introduce key concepts in static semantics in the con-
text of a simple type system. In the following five chapters, we explore more
sophisticated systems for static analysis.

11.2 What Is a Type?

When reading or writing code, it is common to describe expressions in terms of
the kinds of values they manipulate. This is especially true when talking about
procedures. For example, we typically describe > as a procedure that takes two
integers and returns a boolean. At a more detailed level, > certainly performs
an operation much more specific than indicated by this fuzzy description, but in
many situations the fuzzy description is all we need.

For example, suppose we want to know whether > would make sense as the
content of the hole in the following FL expression context:

(if (� 1 2) (sym three) (sym four))

We can reason as follows about the content of the hole: because the hole appears
as the leftmost subexpression of an application, it must be a procedure; because
it is supplied with 1 and 2 as arguments, it must take two integer arguments; and
because the result of the application is used as the test in an if expression, the
procedure in the hole must return a boolean. Thus, > would make sense as the
content of the hole. But more important, any value satisfying the description “a
procedure that maps two integer arguments to a boolean result” would be valid
as the content of the hole.

This example illustrates that it is not necessary to know precise values in order
to reason about a program. The reasoning used above was based on abstract
descriptions of values rather than on concrete values. Abstract descriptions of
values are known as types. Types are often distinguished by the legal usage
contexts for the values they describe. For example, in FL, integers may be
used as the arguments to arithmetic and relational operators, but they cannot
be applied to arguments or used to select a conditional branch. Types help
programmers reason about a program, e.g., by enabling them to determine the
number, order, and suitability of the actual arguments that should be passed to
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a given procedure. Types also guide programming language implementations by
indicating the size and layout of values in computer memory.

There are many ways to think about types. One way to think of a type is as a
value with only partial information. For example, the type “boolean” describes a
value that may be used to control a conditional but doesn’t indicate whether the
value is true or false. From another perspective, a type is an approximation to a
value. For example, the type “integer” is an approximation to the integers 1 and
2, while the type “procedures from two integers to a boolean” is an approximation
to > and =. From yet another point of view, types are arbitrary sets. Some
examples of such sets include the integers, the natural numbers less than 5, the
prime numbers, and procedures that halt on the input 3.

The last example (procedures that halt on the input 3) shows that types we
might like to describe may not even be computable. In other cases (e.g., the prime
numbers), types might be exceedingly difficult to reason about in an automated
way. It is often necessary to restrict these very general notions of type to ones
that are less general, but simpler to reason about. A language incorporating such
types must be carefully crafted to facilitate reasoning about them.

Types naturally arise from the fact that certain values can be meaningfully
used only in certain contexts. For this reason, almost all programming languages
support some notion of type and a type system for reasoning about types.
The chief purpose of a type system is to detect type errors — attempts to
perform an inappropriate operation on a value. Examples of type errors are
adding an integer and a string, calling a procedure with the incorrect number
and/or types of arguments, calling an integer as a procedure, and interpreting
the bits of a floating point number as an integer, a memory address, or a machine
instruction. Some type systems detect type errors when the program is executed,
while others detect them when the program is analyzed before it is executed (see
Section 11.3.1). We say that a programming language is type-safe if its type
system prevents attempts to perform inappropriate operations. It might do this
by aborting program execution when a type error is detected at run time, or by
aborting program compilation when a type error is detected at compile time.

A type system has a type loophole if it allows a value of one type to mas-
querade as a value of another type. The C language is rife with type loopholes.
An example of a type loophole involving C union types is presented on page 581;
Pascal’s variant records exhibit a similar loophole. As another C example, sup-
pose a is declared as a local array of integers with two elements (accessed via a[0]

and a[1]). C permits out-of-bounds array accesses (such as a[-1] and a[2])
that return the contents (interpreted as integers) of the memory slots directly
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before and after the slots where the elements of a are stored. A programmer
who understands how the C compiler allocates local variables can store values of
other types (e.g., floating-point numbers) in these slots and then use a[-1] and
a[2] to interpret the bits of these values as integers. A programming language
with type loopholes is obviously not type-safe.

Some languages have subsets that are type-safe, but the full language includes
features that destroy type safety. For example, the Ada language provides certain
safety guarantees as long as operations whose names begin with UNCHECKED_ are
not used. Even languages generally considered to be type-safe, such as ML,
Haskell, and Common Lisp, have implementations supporting unsafe features
like unchecked array accesses; such implementations are not type-safe if these
unsafe features are used.

Not all programming languages have type systems. In order for a language
to be truly typeless, it must be the case that every value can be used in every
context. The untyped lambda calculus, in which every value is a function, is
one example of a typeless language. Another example of a typeless language is a
machine language in which all instructions, memory addresses, and data words
have the same size and any bit pattern of this size can be interpreted as a legal
instruction, address, or datum. However, if certain bit patterns are considered
illegal as instructions, addresses, or data in certain contexts, then the distinctions
between legal and illegal patterns are the basis of a type system. Moreover, even
if all bit patterns can safely be used in all contexts, the fact that bit patterns
have particular meanings to the programmer at certain points in the program
(e.g., as instructions, addresses, or data) is the foundation for a type system.

11.3 Dimensions of Types

Types do not constitute a monolithic feature that is either present or absent in
a language. Rather, there is a rich diversity of ways that types may appear in a
programming language. In this section, we discuss three dimensions along which
type systems vary:

1. dynamic versus static types;

2. explicit versus implicit types;

3. simple versus expressive types.
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11.3.1 Dynamic versus Static Types

Languages in which all values conceptually carry type annotations that can be
inspected at run time are said to be dynamically typed or latently typed.
All the mini-languages we have studied so far are dynamically typed. FL, for
instance, partitions nonerror values into six types: unit, integers, booleans, sym-
bols, procedures, and pairs. The language includes primitive operators (unit?,
int?, etc.) allowing the programmer to test if a value has one of these six types.
The operational and denotational semantics for FL use the type information in
values to determine the meanings of programs. For example, the value of the
expression (prim + E1 E2) is an integer if both E1 and E2 have integer val-
ues, but is an error if one of E1 or E2 has a noninteger value. The process of
inspecting type information at run time is called dynamic type checking. In
implementations of dynamically typed languages, dynamic type checking incurs
both space and time costs at run time: Space is necessary to encode the type
of a value at the bit level, and inspecting these types when performing certain
primitive operations takes time.

An alternative to processing types at run time is to statically analyze a pro-
gram before executing it to determine whether type information is consistent.
The process of analyzing the types of phrases is called static type checking,
and languages using this approach are said to be statically typed. In static type
checking, types are associated with phrases in the language rather than with run-
time values. If types can be consistently assigned to all of its phrases, a program
is said to be well typed. Typically, well-typed programs are guaranteed not
to encounter type errors at run time, because all such errors should have been
discovered during static type checking.

Examples of real-world statically typed languages include Ada, C, C++,
Fortran, Haskell, ML, and Pascal. In most statically typed languages,
static type information plays an important role in the process of translating
programs to executable code. For example, the number of bits that need to be
allocated in computer memory for a variable is typically determined by the static
type of the variable.

Examples of real-world dynamically typed languages include APL, Common
Lisp, Erlang, JavaScript, Logo, Perl, Python, Scheme, SmallTalk, and
many scripting languages (such as those for Linux shells). Many dynamically
typed languages are interpreted languages, in which abstract syntax trees for
whole programs and even program phrases can be directly executed without first
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being analyzed or translated into some execution language. Dynamic type check-
ing is a natural choice for interpreted languages, because there is not necessarily
any analysis phase during which static types can be determined. However, many
dynamically typed languages are amenable to forms of type analysis and transla-
tion that can eliminate some of the overhead of dynamic type checking (e.g., see
the discussion of soft typing on page 837).

Not all languages can be easily classified as statically or dynamically typed.
For example, Java employs type checking at many different phases of program
implementation. At compile time, static type checking is performed on a Java
class with the available type information. But when a Java class is loaded for
execution, it can load other classes that were not known at compile time. Some
type checking must be performed at load time to ensure that the loaded classes are
type-compatible with the given class. Various other features of Java (reflection,
safe down-casts, safe array subtyping) require that Java objects carry dynamic
type information and that certain type checks be delayed until run time.

The choice between dynamic and static typing has been a source of a great
debate in the programming language community. Adherents of static typing offer
the following arguments in favor of static types:

• Safety: Static type checking eliminates certain kinds of errors that can occur
at run time. It is often extremely desirable to catch as many errors as possible
before the program is run, especially in software that is safety critical (e.g.,
control software for airplanes, nuclear power plants, communication grids, and
medical instruments) or financially important (e.g., software for banking, e-
commerce sites, and satellites).

• Efficiency: Statically typed programs can execute more efficiently than dynam-
ically typed ones, because no run-time storage is required for type information
and static type checks eliminate the need to check types at run time.1

• Documentation: Static types provide documentation about the program that
can facilitate reasoning about the program, both by humans and by other pro-
grams (e.g., analyzers and translators). Such information is especially valuable
in large programs. For example, programmers can often deduce how to use the
operations of a data-structure library based on the names of the operations
along with their argument types and return types.

1Even in statically typed languages, there are still run-time space and time overheads for
representing and checking the tags of sum values (see Section 10.2). Indeed, many dynamically
typed languages can be viewed as having a single sum data type that describes all values.
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• Program Development: Static types help programmers catch errors in their
programs before running them and help programmers make representation
changes. For example, suppose a programmer decides to change the interface
of a procedure in a large program. The type checker helps the programmer by
finding all the places in the program where there is a mismatch between the
old and new interfaces.

Proponents of dynamic typing counter with the following claims:

• The restrictions placed on a language in order to make it statically type-
checkable force the programmer into a straitjacket of reduced expressive power.

• In most statically typed languages, types serve mainly to make the language
easier to implement, not easier for writing programs.

• Finding type errors at analysis time is overrated. The hard-to-find errors that
occur in practice are logical errors, not type errors. Finding logical errors
requires testing programs with extensive test suites that would uncover type
errors anyway. Eliminating the time-consuming static type-checking phase
allows programmers to test for logical errors sooner in the program development
process.

• Using programmer time more efficiently is more important than using computer
resources more efficiently. Dynamically typed languages allow programmers to
be more productive. They can build prototype systems more quickly because
they don’t waste time wrestling with type annotations and static type checkers.

The relative benefits of static versus dynamic type checking are often debated
in electronic forums. Some spirited discussions can be found at [LTU].

11.3.2 Explicit versus Implicit Types

Another dimension on which type systems vary is the extent to which they force
a programmer to declare explicit types. Although some dynamically typed lan-
guages have simple type markers,2 dynamically typed languages typically have
no explicit type annotations. The converse is true in statically typed languages,
where explicit type annotations are the norm. Most languages descended from
Algol 68, such as Ada, C/C++, Java, and Pascal, require that types be
explicitly declared for all variables, all data-structure components, and all func-

2E.g., Perl variable names begin with a character that indicates the type of value: $ for
scalar values, @ for array values, and % for hash values (key/value pairs).
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tion/procedure/method parameters and return values. However, some languages
(e.g., ML, Haskell, FX, Miranda) achieve static typing without explicit type
declarations via a technique called type reconstruction or type inference.
We shall study type reconstruction in Chapter 13.

For example, here is a Java method that determines whether a string s con-
tains a character c:

public static boolean contains (String s, char c) {

int len = s.length();

for (int i = 0; i < len; i++) {

if (s.charAt(i) == c) {

return true;

}

}

return false;

}

In Java, it is necessary to explicitly declare the types of the method parameters s
(String) and c (char), the return type (boolean) of the method, and the types of
the local variables len (int) and i (int). In contrast, the following declaration
of the corresponding function in the SML dialect of ML has no explicit type
annotations:

fun contains (s,c) =

let val len = String.size s

in let fun loop i =

if i = len then false

else if String.sub(s, i) = c then true

else loop (i+1)

in loop 0

end

end

SML is a statically typed language in which type information is deduced based
on how variables are used within the program.

One argument for explicit types is that the types serve as important docu-
mentation in a program and therefore make programs easier to read and write.
Often, however, explicit types make programs easier for compilers to read, not
easier for humans to read. And explicit types are generally cumbersome for the
program writer as well. In languages with sophisticated type systems, explicit
type annotations can even be larger (in some case, much larger) than the un-
derlying program being annotated. In such languages, programmers may spend
more time writing the types to satisfy the type checker than writing the part of
their program that expresses the desired computation.
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Implicitly typed programming languages thus have clear advantages in terms
of readability and writability. Unfortunately, certain restrictions must be placed
on a language in order to make type reconstruction possible. This means that
some programs that can be written with explicit types cannot be written with
implicit ones. A compromise between the two approaches, adopted by ML,
Haskell, and FX, is to make most types implicit by default, but to allow (or
require) explicit declarations in situations where types cannot be reconstructed.

11.3.3 Simple versus Expressive Types

A third dimension along which typed languages can vary is the expressiveness of
their type systems. Languages with simple type systems facilitate type checking
and type reconstruction, but generally severely restrict the kinds of programs that
can be written. Advanced type features make it possible to express a broader
range of programs at the cost of making the type system more complex.

For example, in Pascal (at least in pre-ANSI Pascal) the length of an array
is a part of its type; this makes it impossible to write a sorting procedure that
can accept an array of any length. The Java type system prohibits defining
a single array reversal method that reverses the elements in both an array of
integers and an array of strings.3 In contrast, languages supporting universal
polymorphism (such as Haskell and ML) permit procedure declarations that
are parameterized over the types of their inputs.4 We will study polymorphism
in Chapter 12.

We shall study several other sophisticated type features. Subtyping (Sec-
tion 12.1) allows certain types to be used in contexts where a related type is ex-
pected. Existential types (Section 14.3) model aspects of abstract data types.
Systems with dependent types allow the type of a phrase to depend on the
value of an expression. We will study a simple form of dependent types in Sec-
tion 14.5. Module types (Chapter 15) are a convenient way to package types
(including abstract data types) together with procedures and values whose spec-
ifications use these types. Effect systems (Chapter 16) extend type systems to
track descriptions of the side effects performed by a program phrase in addition
to an approximation of the value of the phrase.

Each of these features extends the range of expressible programs and/or the
kinds of reasoning that can be performed about programs. However, each feature

3In Java, it is possible to define a single array-reversal method that works for any array
whose elements are objects. But arrays whose elements have a primitive type like int or double
require different methods.

4The generics feature of Java 5.0 allows classes and static methods to be parameterized over
types, but these types cannot be instantiated to primitive types. So the generics mechanism is
not truly universal. See Section 12.2.5.
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P ∈ Prog ::= (flexk ((Iformal TformalType)
∗) Ebody) [Program]

E ∈ Exp ::= L | I | (error Ymessage TerrorType)

| (if Etest Ethen Eelse) | (prim Oprimop E∗
arg)

| (abs ((Iformal TformalType)
∗) Ebody) | (Erator E∗

rand)

| (let ((Iname Edefn)
∗) Ebody)

| (letrec ((Iname TdefnType Edefn)
∗) Ebody)

| (the TbodyType Ebody) [TypeAscription]

L ∈ Lit ::= #u | B | N | (sym Y ) ; as in FL.

B ∈ BoolLit = {#t, #f} as in FL.

N ∈ IntLit = as in FL.

Y ∈ SymLit = as in FL.

O ∈ Primop = usual FL primitives except no type predicates or pair operators

Keyword = {abs, error, flexk, if, let, letrec, prim, sym, the}
SugarKeyword = defined in Figure 11.2

I ∈ Ident = SymLit − ({Y |Y begins with @} ∪Keyword ∪ SugarKeyword)

T ∈ Type ::= BT [BaseType]
| τ [TypeIdentifier]
| (-> (T ∗

arg) Tresult) [ArrowType]

BT ∈ BaseType = {unit, int, bool, symb}
τ ∈ TypeId = SymLit − (BaseType ∪ {->})

PT ∈ ProgType ::= (=> (T ∗
arg) Tresult) [ProgamType]

Figure 11.1 Kernel grammar for μFLEX, a monomorphic, explicitly typed language.
This grammar will be extended with additional expressions and types to yield the full
FLEX language in Figure 11.31 on page 697.

makes the type system more complex. Furthermore, many of these features do not
interact well with type reconstruction, so programmers must often write complex
type annotations in order to use these features.

In the remainder of this chapter, we will study an explicitly typed language
whose type system has only the most basic features. We call such a system a
simple type system because it does not support any of the advanced features
mentioned above.

11.4 μFLEX: A Language with Explicit Types

Our study of types begins with the study of FLEX, a statically typed dialect of
FL with explicit types. We use the name FLEX because the language combines
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FL with EXplicit types and because it serves as a flexible base for exploring many
aspects of type systems. Because it contains numerous features, the full-fledged
FLEX language is daunting to cover all at once. So we will introduce the basic
notions of types and type checking in the context of a small subset of FLEX
named μFLEX (micro-FLEX). Once these notions are understood, it will be
easier to explain the remaining features of FLEX.

FLEX has a monomorphic type system, which means that each valid ex-
pression in the language is described by exactly one type. In a monomorphic type
system, procedures cannot be parameterized over the types of their arguments.
For example, a procedure that reverses lists of integers cannot be used to reverse
lists of strings, even though the reversal procedure never needs to examine the
components of the list. Despite this lack of expressiveness, a monomorphic type
system is worth studying because (1) it simplifies the discussion of many type
issues and (2) a number of popular languages (e.g., C, Fortran, and Pascal)
have monomorphic type systems.5 As evidenced by the success of these lan-
guages, monomorphic type systems can still be very useful in practice. As we
shall see, such languages can even support features like higher-order procedures
and recursive types.

The kernel grammar for μFLEX is presented in Figure 11.1. It is similar to
the FL grammar, but there are some important differences. Most prominently,
several expressions include explicit type annotations (using the domain variable
T from the domain Type) and some expressions that were syntactic sugar in FL
are kernel expressions in μFLEX. We discuss the features of μFLEX in detail
in the remainder of this section.

11.4.1 Types

The μFLEX grammar has a new syntactic domain Type that is used to specify
the types of μFLEX expressions. A μFLEX type has one of three forms:

1. a base type, which specifies one of the built-in types of primitive data:

• unit, the type of the one-element set {#u};
• bool, the type of the two-element set {#t, #f};
• int, the type of integers; and

• symb, the type of symbols.

5Some of these languages provide ad hoc overloading and type-casting mechanisms that
make it possible to go beyond monomorphism in limited ways. However, because they provide
no principled mechanisms for polymorphism, we consider them to be monomorphic.
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2. an arrow type of the form (-> (Targ1 . . . Targn) Tresult), which specifies
the type of an n-argument procedure that takes arguments of type Targ1

through Targn and returns a result of type Tresult . Because it specifies the
type of a procedure, an arrow type is also called a procedure type. For ex-
ample, an incrementing procedure on integers has type (-> (int) int), an
addition procedure on integers has type (-> (int int) int), and a less-than
procedure on integers has type (-> (int int) bool).

Arrow types can be nested, in which case they describe higher-order proce-
dures. For example:

• a procedure that returns either an incrementing or decrementing procedure
based on a boolean argument has type (-> (bool) (-> (int) int));

• a procedure that takes an integer predicate and determines if it is true for
any numbers in the range [1..10] has type (-> ((-> (int) bool)) bool);
and

• a procedure that returns an approximation to the derivative of an integer
function has type (-> ((-> (int) int)) (-> (int) int)).

Because -> is used to combine simpler types into more complex types, it is
known as a type constructor. It is the first of several type constructors that
we will encounter in FLEX. We will meet several others in Section 11.8.

3. a type identifier, which is a name from the domain TypeId, a domain con-
taining all symbols except for the names of base types and type constructors.6

Type identifiers can be associated with types via the let-type, let-type*,
and def-type syntactic sugar constructs (Section 11.4.3).

The prefix form of μFLEX arrow types may seem unusual to those accus-
tomed to the infix type notation that is standard in the types literature and in
languages like ML and Haskell. The following table shows examples of the two
notations side by side:

μFLEX types ML types
(-> (bool) (-> (int) int)) bool -> (int -> int)

(-> ((-> (int) bool)) bool) (int -> bool) -> bool

(-> ((-> (int) int)) (-> (int) int)) (int -> int) -> (int -> int)

(-> ((-> (int int) bool))
(-> (int int) int))

(int * int -> bool)
-> int * int -> int

Because a program maps arguments to a result, the form of a program type,
(=> (T ∗

arg) Tresult), is similar to a procedure type, except that it uses the key-

6In μFLEX, the only type constructor is ->, but in Section 11.8 we will see that the full
FLEX language has more type constructors.
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word => rather than ->. For example, the program type (=> (int bool) int)

describes a program that takes two arguments, an integer and a boolean, and
returns an integer. It is necessary to distinguish program and procedure types
because programs and procedures are invoked by different mechanisms and so are
not interoperable.

11.4.2 Expressions

Some μFLEX expressions — literals, variable references, conditionals, primitive
and nonprimitive applications, and let — are unchanged from FL. But other
expressions have been extended with type annotations that are used to determine
the types of the expressions:

• In abstractions, parameters are specified by a sequence of name/type associa-
tions (I T) that specify both the name and the type of each formal parame-
ter.7 For example, an averaging abstraction is written

(abs ((a int) (b int)) (/ (+ a b) 2))

and an abstraction that chooses an incrementing or decrementing procedure
based on a boolean argument is written

(abs ((b bool))

(if b

(abs ((x int)) (+ x 1))

(abs ((x int)) (- x 1))))

• Unlike let expression bindings, which have the form (I E), each letrec bind-
ing (I T E) has a type T in addition to the name I and definition expression
E . For example, the following letrec expression introduces a summer proce-
dure that sums all the integer values in the range lo to hi satisfying a unary
predicate pred. The letrec syntax requires that the type of summer be written
down explicitly:

(letrec ((summer (-> ((-> (int) bool) int int) int)

(abs ((pred (-> (int) bool)) (lo int) (hi int))

(if (> lo hi)

0

(+ (if (pred lo) lo 0)

(summer pred (+ lo 1) hi))))))

{Sum the multiples of 3 between 1 and 100}
(summer (abs ((x int)) (= (% x 3) 0)) 1 100))

7Although not specified in the μFLEX grammar, the same name may not appear more than
once in a flexk or abs formal parameter list or in a let or letrec binding list.
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• μFLEX requires the programmer to specify the type of an error construct
explicitly. For example, consider the following higher-order procedure:

(abs ((n int))

(if (< n 0)

(error negative (-> (int) bool))

(abs ((d int))

(if (= d 0)

(error zero bool)

(= (% n d) 0)))))

Although error expressions never return a value, the type annotations specify
that the first error expression should be treated as if it returns a procedure
with type (-> (int) bool) and the second error expression should be treated
as if it returns a boolean value. These type declarations specify that the error
expressions have the same type as the other branches of their corresponding
if expressions.

Unlike FL, μFLEX treats multiparameter abstractions (abs), multiargument
applications, let, and letrec as kernel forms rather than as syntactic sugar.
The reason for this is that such desugarings would not preserve expression types.
In μFLEX, a two-argument procedure with type (-> (int int) int) is not
equivalent to the curried procedure with type (-> (int) (-> (int) int)). A
μFLEX let construct cannot desugar into an application of a multiargument
abstraction because the parameter types necessary for the abstraction are not
apparent. For instance, (let ((x 2)) (* x 3)) cannot be desugared to the ex-
pression ((abs ((x T?)) (* x 3)) 2) because it is not apparent to the desug-
aring process what the type T? should be.

You may wonder why μFLEX has type annotations for some expressions but
not others. For instance:

• Why are types required in letrec bindings but not let bindings?

• Why do abstractions require specifying the types of the parameters but not
the type of the returned value? After all, procedure and method declarations
in languages like C, Java, and Pascal require explicit return types.

• Why are types required in error expressions?

The answer is that type annotations in μFLEX expressions were chosen to be
the minimal annotations that allow the type of any expression in a program to be
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determined without “guessing” the types of any expressions. We will formalize
this notion when we study the type checking of FLEX expressions in Section 11.5.

There are several other differences between μFLEX and FL:

• Unlike FL, which has pairs and lists, μFLEX has no data structures. How-
ever, full FLEX supports several forms of typed data. We will study these in
Section 11.8.

• μFLEX supports fewer primitive operations than FL. In particular, because
the type of every μFLEX expression is known at type-checking time, there is
no need for type predicates like bool?, int?, proc?. Because μFLEX does
not support pairs, the associated pair operations are not included.

• μFLEX has a new type-ascription construct (the T E) that asserts that
expression E has type T . In other languages, type ascription is often written
with a notation like E : T . The expression (the T E) returns the value of
E , so it can be used wherever E is used. E.g., it can be used to explicitly
declare that the return type of the following procedure is int:

(abs ((b bool) (x int))

(the int (if b (+ x 1) (- x 2))))

The the construct is not strictly necessary, but it is handy for documenting
the types of expressions. Assertions made with the are automatically verified
by a type checker. For example:

(+ 1 (the int (* 2 3))) {well-typed}
(+ 1 (the bool (* 2 3))) {ill-typed: (* 2 3) is an int}

Type ascriptions in μFLEX are safe in the sense that inserting the can never
change a fundamentally ill-typed expression into a well-typed one that can
be executed. But in some languages, such a construct can indicate a type
conversion that may be an unsafe type loophole. For example, consider the
array subscripting expression i[3] in C. If the variable i is declared to be an
integer, then this expression causes a compile-time type error, because i is an
integer, not an array. However, the explicit type cast ((int*) i) can be used
to force the compiler to treat i as if it were a pointer to an integer (i.e., the
address of a memory location storing an integer). Since pointers to integers
and arrays of integers are indistinguishable in C, the expression ((int*) i)[3]

compiles without error, even though it may lead to a run-time error.



634 Chapter 11 Simple Types

SugarKeyword = {cond, def, def-type, else, flex,
let-type, let-type*, scand, scor}

@O , cond, scand, and scor are desugared as in FL.

(let-type ((τi Ti)
n
i=1) Ebody) �ds [Ti/τi ]

n
i=1Ebody

(let-type* () Ebody) �ds Ebody

(let-type* ((τ1 T1) (τi Ti)
n
i=2) Ebody)

�ds (let-type ((τ1 T1)) (let-type* ((τi Ti)
n
i=2) Ebody))

(def (IprocName Treturn (Ii Ti)
n
i=1) EprocBody)

�ds (def IprocName (-> (Tn
i=1) Treturn) (abs ((Ii Ti)

n
i=1) EprocBody))

(flex ((Ifmli Tfmli)
h
i=1) Ebody (def-type τdtj Tdtj )

m
j=1 (def Idk

Tdk
Edk

)n
k=1)

{Assume procedure defs already desugared to (def I T E) by previous rule.}
�ds (flexk ((Ifmli Tfmli)

h
i=1)

(let {Standard library bindings}
((not (abs ((x bool)) (prim not x)))

(and (abs ((x bool) (y bool)) (prim and x y)))
... {Similar for or and bool=?}

(+ (abs ((x int) (y int)) (prim + x y)))
... {Similar for -, *, /, %, <, <=, =, !=, >=, >}

(sym=? (abs ((x symb) (y symb)) (prim sym=? x y)))

(true #t) (false #f))

(let-type* ((τdtj Tdtj )
m
j=1) {Type definitions from program}

(letrec ((Idk
Tdk

Edk
)n

k=1) {Value definitions from program}
Ebody))))

Figure 11.2 Desugaring rules that define the syntactic sugar of μFLEX.

11.4.3 Programs and Syntactic Sugar

A kernel μFLEX program is like an FLK program except that (1) each program
parameter is annotated with a type and (2) the program keyword is flexk rather
than flk.

μFLEX also supports the syntactic sugar defined in Figure 11.2. The @O ,
cond, scand, and scor constructs are desugared exactly as in FL. The new
expression construct (let-type ((τi Ti)

n
i=1) Ebody) is sugar for the result of

simultaneously substituting the types Tn
i=1 for the type identifiers τn

i=1 in the
expression Ebody . (This notion of substitution is formalized in Section 11.4.4.)
let-type* is like let-type but performs the substitutions sequentially rather
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than in parallel. The let-type and let-type* constructs improve the readability
and writability of large and cumbersome types by allowing them to be locally
abbreviated by type identifiers. For example,

(let-type* ((intfun (-> (int) int))

(transform (-> (intfun) intfun)))

(the (-> (transform transform) transform)

(abs ((t1 transform) (t2 transform))

(abs ((f intfun)) (t1 (t2 f))))))

is an alternative way of writing

(the (-> ((-> ((-> (int) int)) (-> (int) int))

(-> ((-> (int) int)) (-> (int) int)))

(-> ((-> (int) int)) (-> (int) int)))

(abs ((t1 (-> ((-> (int) int)) (-> (int) int)))

(t2 (-> ((-> (int) int)) (-> (int) int))))

(abs ((f (-> (int) int))) (t1 (t2 f)))))

As suggested by this example, the let-type and let-type* constructs can make
explicitly typed programs smaller (as measured by number of AST nodes) and
easier to understand.

As we will see in Section 11.4.4, value identifiers (I ) — which we have called
just identifiers up to this point — and type identifiers (τ) are in separate name-
spaces, so they do not interact in any way. For example,

(let-type ((x bool)) (abs ((x int)) (abs ((y x)) x)))

and

(abs ((x int)) (let-type ((x bool)) (abs ((y x)) x)))

both are equivalent to (abs ((x int)) (abs ((y bool)) x)). Note that the
domain TypeId of type identifiers excludes the base type names (unit, bool, int,
and symb) and the arrow symbol (->), so these cannot be bound by let-type or
let-type*. For example, (let-type ((bool int)) (the bool 3)) is syntac-
tically malformed.

The flex program sugar defines global procedures for each primitive op-
erator and defines the standard library values true and false. It also per-
mits top-level value definitions with def and type definitions with def-type

in addition to a body expression. The μFLEX version of def has the form
(def I T E), where T is the explicit type of E that is used when desug-
aring a def into a letrec binding. The procedure-defining sugar construct
(def (IprocName Treturn (Ii Ti)

n
i=1) Ebody) is also supported; the procedure re-

turn type Treturn must be explicitly declared because it is needed for the defini-
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tion of recursive procedures. The new declarations (def-type τ T) are sugar
for global nested type definitions that surround the recursive value definitions.
This desugaring allows a type identifier defined by one def-type to be used in
subsequent def-types, and any type identifier defined by a def-type to be used
in any def as well as in the body expression Ebody .

Because μFLEX does not support lists, the flex desugaring does not include
bindings for list procedures in the standard library. However, we will assume
that these are included in the full FLEX language. One FL standard library
function that is not included even in full FLEX is the generic equality-testing
procedure equal?. In FL, this procedure tests the equality of two values having
any (perhaps even different) types. But in FLEX, it is possible to test the
equality only of two values with the same type via =, bool=?, and sym=?.

Here is an example program that determines whether the integer input i is
positive or even, depending on the boolean input b:

(flex ((b bool) (i int)) (if b (pos? i) (even? i))

(def-type intfun (-> (int) int))

(def-type intpred (-> (int) bool))

(def dec intfun (abs ((x int)) (- x 1)))

(def pos? intpred (abs ((y int)) (> y 0)))

(def even? intpred

(abs ((x int)) (if (= x 0) #t (odd? (dec x)))))

(def odd? intpred

(abs ((y int)) (if (= y 0) #f (even? (dec y))))))

Note that the def desugaring rule in Figure 11.2 also permits the even? definition
to be expressed as:

(def (even? bool (x int)) (if (= x 0) #t (odd? (dec x))))

The program type of the above program is (=> (bool int) bool).

11.4.4 Free Identifiers and Substitution

Notions of free identifiers and substitution are necessary for describing the dy-
namic and static semantics of μFLEX. A consequence of having two different
namespaces, one for value identifiers and one for type identifiers, is that the no-
tions of free identifiers and substitution are more complex in μFLEX than they
were in FL. As shown in Figure 11.3, there are now three notions of free identifier:

1. The free value identifiers in an expression (FrIds): The interesting cases for
FrIds are value identifiers (for which it returns a singleton set) and the value-
identifier binding constructs abs, let, and letrec (for which it removes the
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newly bound identifiers from the free identifiers of the subexpressions that
are in the scope of the new identifiers). Otherwise FrIds simply calculates
the union of the free value identifiers in the subexpressions of an expression.
Note that FrIds never explores any types within an expression, because types
cannot harbor value identifiers.8

2. The free type identifiers in a type (FrTyIdsty): The definition of FrTyIdsty is
particularly simple because the Type domain contains no binding constructs.

3. The free type identifiers in an expression (FrTyIdsexp): The FrTyIdsexp defi-
nition is the most interesting of the three. FrTyIdsexp explores all the subex-
pressions of a given expression, but returns an empty set for both kinds of leaf
expressions (literals and value identifiers). It does its work by using FrTyIdsty

to collect the free type identifiers residing in the types in all the expressions it
visits.

As examples of free-identifier calculations, suppose that

Eabs1 = (abs ((f (-> (b intpred) i)))

(f y (abs ((x i)) (not (g x y)))))

where b is a type identifier that is an abstracted form of bool, i is an abstracted
form of int, and intpred is an abstracted form of (-> (int) bool). Then:

FrTyIdsty [[(-> (int) bool)]] = {}
FrTyIdsty [[(-> (i) b)]] = {b, i}
FrTyIdsty [[(-> (b intpred) i)]] = {b, i, intpred}
FrTyIdsexp [[(f y (abs ((x i)) (not (g x y))))]] = {i}
FrIds[[(f y (abs ((x i)) (not (g x y))))]] = {f, g, not, y}
FrTyIdsexp [[Eabs1 ]] = {b, i, intpred}
FrIds[[Eabs1 ]] = {g, not, y}

Because there are now three notions of free identifiers, there are now three
notions of substitution (Figures 11.4 and 11.5):

1. substituting expressions for free value identifiers in an expression ([E1/I ]E2 );

2. substituting types for free type identifiers in a type ([T1/τ ]T2 ); and

3. substituting types for free type identifiers in an expression ([T/τ ]E ).

8That is, not until dependent types are introduced in Section 14.5.
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FrIds : Exp→ P(Ident)

FrIds[[L]] = {}
FrIds[[I ]] = {I }
FrIds[[(prim O En

i=1)]] = ∪n
i=1FrIds[[Ei ]]

FrIds[[(if E1 E2 E3)]] = ∪3
i=1FrIds[[Ei ]]

FrIds[[(abs ((Ii Ti)
n
i=1) E)]] = FrIds[[E ]] − ∪n

i=1{Ii}
FrIds[[(E0 En

i=1)]] = ∪n
i=0FrIds[[Ei ]]

FrIds[[(let ((Ii Ei)
n
i=1) E0)]] = (∪n

i=1FrIds[[Ei ]]) ∪ (FrIds[[E0 ]]− ∪n
i=1 {Ii})

FrIds[[(letrec ((Ii Ti Ei)
n
i=1) E0)]] = (∪n

i=0FrIds[[Ei ]]) − ∪n
i=1{Ii}

FrIds[[(error Y T)]] = {}
FrIds[[(the T E)]] = FrIds[[E ]]

FrTyIdsty : Type→ P(TypeId)

FrTyIdsty [[BT ]] = {}
FrTyIdsty [[τ ]] = {τ}
FrTyIdsty [[(-> (Tn

i=1) T0)]] = ∪n
i=0FrTyIdsty [[Ti ]]

FrTyIdsexp : Exp→ P(TypeId)

FrTyIdsexp [[L]] = {}
FrTyIdsexp [[I ]] = {}
FrTyIdsexp [[(prim O En

i=1)]] = ∪n
i=1FrTyIdsexp [[Ei ]]

FrTyIdsexp [[(if E1 E2 E3)]] = ∪3
i=1FrTyIdsexp [[Ei ]]

FrTyIdsexp [[(abs ((Ii Ti)
n
i=1) E)]] =

(
∪n

i=1FrTyIdsty [[Ti ]]
)
∪ FrTyIdsexp [[E ]]

FrTyIdsexp [[(E0 En
i=1)]] = ∪n

i=0FrTyIdsexp [[Ei ]]

FrTyIdsexp [[(let ((Ii Ei)
n
i=1) E0)]] = ∪n

i=0FrTyIdsexp [[Ei ]]

FrTyIdsexp [[(letrec ((Ii Ti Ei)
n
i=1) E0)]]

=
(
∪n

i=1FrTyIdsty [[Ti ]]
)
∪

(
∪n

i=0FrTyIdsexp [[Ei ]]
)

FrTyIdsexp [[(error Y T)]] = FrTyIdsty [[T ]]

FrTyIdsexp [[(the T E)]] = FrTyIdsty [[T ]] ∪ FrTyIdsexp [[E ]]

Figure 11.3 Definitions of free value and type identifiers for μFLEX.

The abbreviated notation [A/B]C is used for all three substitution functions; we
rely on the domains of the syntactic values A, B, and C for disambiguation. All
three notions of substitution can be straightforwardly extended to the simulta-
neous substitution of multiple entities for multiple names.
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subst : Exp → Ident → Exp → Exp
The notation [E1/I ]E2 abbreviates (subst E1 I E2 ).

[E/I ]L = L

[E/I ]I = E [E/I ]I ′ = I ′ , where I 
= I ′

[E/I ](prim O En
i=1) = (prim O ([E/I ]Ei)

n
i=1)

[E/I ](if Etest Ethen Eelse) = (if [E/I ]Etest [E/I ]Ethen [E/I ]Eelse)

[E/I ](abs ((Ii Ti)
n
i=1) Ebody) = (abs ((Ii Ti)

n
i=1) Ebody) , where I ∈ ∪n

i=1{Ii}.
[E/I ](abs ((Ii Ti)

n
i=1) Ebody) = (abs ((I ′

i Ti)
n
i=1) [E/I ]

(
[I ′

j /Ij ]
n
j=1Ebody

)
),

where I 
∈ ∪n
i=1{Ii} and I ′

1 , . . . , I ′
n are fresh.

[E/I ](Erator En
i=1) = ([E/I ]Erator ([E/I ]Ei)

n
i=1)

[E/I ](let ((Ii Ei)
n
i=1) Ebody) = (let ((Ii [E/I ]Ei)

n
i=1) Ebody),

where I ∈ ∪n
i=1{Ii}.

[E/I ](let ((Ii Ei)
n
i=1) Ebody) = (let ((I ′

i [E/I ]Ei)
n
i=1) [E/I ]

(
[I ′

j /Ij ]
n
j=1Ebody

)
),

where I 
∈ ∪n
i=1{Ii} and I ′

1 , . . . , I ′
n are fresh.

[E/I ](letrec ((Ii Ti Ei)
n
i=1) Ebody) = (letrec ((Ii Ti Ei)

n
i=1) Ebody),

where I ∈ ∪n
i=1{Ii}.

[E/I ](letrec ((Ii Ti Ei)
n
i=1) Ebody)

= (letrec ((I ′
i Ti [E/I ]

(
[I ′

j /Ij ]
n
j=1Ei

)
)n

i=1) [E/I ]
(
[I ′

j /Ij ]
n
j=1Ebody

)
),

where I 
∈ ∪n
i=1{Ii} and I ′

1 , . . . , I ′
n are fresh.

[E/I ](error Y T) = (error Y T)

[E/I ](the T E) = (the T [E/I ]E)

Figure 11.4 Expression substitution for μFLEX.

The substitution definitions have a structure similar to the free-identifier def-
initions in terms of how they process subphrases and handle binding constructs,
but they return an expression or type instead of a set of identifiers. Here are
some example substitutions:

[b/i](-> (b intpred) i) = (-> (b intpred) b)

[b/i]Eabs1 = (abs ((f (-> (b intpred) b)))

(f y (abs ((x b)) (not (g x y)))))

[(> z 0)/y]Eabs1 = (abs ((f (-> (b intpred) i)))

(f (> z 0) (abs ((x i)) (not (g x (> z 0))))))

[(f x y)/g]Eabs1 = (abs ((f1 (-> (b intpred) i)))

(f1 y (abs ((x1 i)) (not ((f x y) x1 y)))))
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Exercise 11.1 Handling type abbreviations via substitution-based desugarings (as with
let-type, let-type*, and def-type) is simple, but can lead to kernel expressions con-
taining large types, many of which are duplicated. E.g., the desugaring of the let-type*
expression on page 635 contains many instances of the types (-> (int) int) and
(-> ((-> (int) int)) (-> (int) int)).

One way to stem this blowup in the size of types in kernel expressions is to define
type abbreviations via kernel constructs rather than desugarings. In this exercise, we
explore this notion by extending μFLEX with a new kernel expression for local type
abbreviations:

E ::= . . . | (tbind ((τ T))∗ Ebody)

Like (let-type ((τi Ti)
n
i=1) Ebody), (tbind ((τi Ti)

n
i=1) Ebody) locally defines the

type identifiers τn
i=1 as abbreviations for the types Tn

i=1 within the scope of Ebody . How-
ever, unlike let-type, tbind is a kernel binding construct for type identifiers, so the
definitions of free identifiers and substitution must be extended to handle this new ker-
nel form.

a. Extend FrIds and FrTyIdsexp in Figure 11.3 on page 638 with clauses for tbind.

b. Here is an incorrect clause for substituting an expression E into a tbind expression:

[E/I ](tbind ((τi Ti)
n
i=1) Ebody) = (tbind ((τi Ti)

n
i=1) ([E/I ]Ebody))

Give a simple example exhibiting variable capture if this incorrect clause is used.

c. Extend subst and substTyexp in Figures 11.4 and 11.5 (pages 639 and 641) with
correct clauses for tbind.

d. Consider the following μFLEX expression Etest :

(abs ((g t))

(f (tbind ((t (-> (s) t)))

(abs ((y s) (z t))

(g y z f)))))

Using your substitution definitions from part c, give the results of the following sub-
stitutions:

i. [t/s]Etest (assume s, t ∈ TypeId)

ii. [(abs ((h (-> (s) t))) (h g y))/f]Etest

11.5 Type Checking in μFLEX

11.5.1 Introduction to Type Checking

In a statically typed language, a program phrase is said to be well typed if
it is possible to assign a type to the phrase based on a process known as type
checking. This process is typically expressed using a collection of formal rules
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substTy ty : Type→ TypeId → Type → Type
The notation [T1/τ ]T2 abbreviates

(
substTy ty T1 τ T2

)
.

[T/τ ]BT = BT

[T/τ ]τ = T [T/τ ]τ ′ = τ ′, where τ 
= τ ′

[T/τ ](-> (Tn
i=1) Tresult) = (-> (([T/τ ]Ti)

n
i=1) [T/τ ]Tresult)

substTyexp : Type→ TypeId → Exp→ Exp
The notation [T/τ ]E abbreviates

(
substTyexp T τ E

)
.

[T/τ ]L = L

[T/τ ]I = I

[T/τ ](prim O En
i=1) = (prim O ([T/τ ]Ei)

n
i=1)

[T/τ ](if Etest Ethen Eelse) = (if [T/τ ]Etest [T/τ ]Ethen [T/τ ]Eelse)

[T/τ ](abs ((Ii Ti)
n
i=1) Ebody) = (abs ((Ii [T/τ ]Ti)

n
i=1) [T/τ ]Ebody)

[T/τ ](Erator En
i=1) = ([T/τ ]Erator ([T/τ ]Ei)

n
i=1)

[T/τ ](let ((Ii Ei)
n
i=1) Ebody) = (let ((Ii [T/τ ]Ei)

n
i=1) [T/τ ]Ebody)

[T/τ ](letrec ((Ii Ti Ei)
n
i=1) Ebody)

= (letrec ((Ii [T/τ ]Ti [T/τ ]Ei)
n
i=1) [T/τ ]Ebody)

[T/τ ](error Y T) = (error Y [T/τ ]T)

[T/τ ](the T E) = (the [T/τ ]T [T/τ ]E)

Figure 11.5 Type substitution for μFLEX.

and a reasoning system that uses these rules. A phrase is said to be ill typed
if it is not possible to assign it a type. Only well-typed phrases are considered
legal phrases of the language. Only well-typed programs can be executed.

Type checking is similar to evaluation, except that rather than manipulating
the run-time values associated with expressions, it manipulates the static types
associated with the expressions. Recall that it is possible to view types as approx-
imations to values. From this perspective, a type checker evaluates the program
with approximations rather than actual values.

As an example of the kind of reasoning used in type checking, consider the
type analysis of the following μFLEX abstraction:

Eabs2 = (abs ((b bool) (x int) (f (-> (int int) int)))

(prim > (if b x (f x 2)) 0))

The type annotations on the parameters indicate that b is assumed to be a
boolean, x is assumed to be an integer, and f is assumed to be a procedure
that maps two integer arguments to an integer result. Based on the assumptions
for x and f, the type of (f x 2) is int, because applying a procedure of type
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(-> (int int) int) to two integers yields an integer. Based on this conclusion
and the assumptions for b and x, the body expression (if b x (f x 2)) is well
typed, because the test subexpression has type bool, and the two branches both
have the same type, int. The type of the if expression is int, because that
is the type of the value returned by the expression for any values of b, x, and
f satisfying the type assumptions. The type of the (prim > . . . ) expression is
bool, because both the if expression and 0 denote integers, and comparing two
integers via > yields a boolean. Since the abstraction takes three parameters, a
bool, an int, and a procedure of type (-> (int int) int), and it returns a
bool, Eabs2 has the arrow type (-> (bool int (-> (int int) int)) bool).
Since we can assign a type to Eabs2 , Eabs2 is well typed.

If we changed the if expression in the example to (if x x (f x 2)), the
if expression would not be well typed because the test subexpression does not
have type bool. Similarly, the if expression would not be well typed if it were
(if b b (f x 2)), because then the two conditional branches would have in-
compatible types: bool and int.9 The expression (if #t b (f x 2)) is not
considered to be well typed in our system, even though it is guaranteed to return
a boolean value when executed. Why? Our type checker, like most type check-
ers, manipulates only approximations to values. It does not “know” that the test
expression is the constant true value. All it “knows” is that the test expression
is a boolean, and so it cannot determine which branch is taken.10

From the above examples, it is clear that just as the value of an expression
is determined from the values of its subexpressions, so too is the type of the
expression determined from the type of its subexpressions. However, the actual
rules for determining the type of the whole from the types of the parts may be
very different from the rules for determining the value of the whole from the
values of the parts. For instance:

• An evaluator evaluates only one branch of a conditional, but a type checker
checks both branches of a conditional.

• An evaluator does not evaluate the body of an abstraction until it is applied
to arguments, but a type checker checks the body of an abstraction regardless
of whether or not it is applied.

9There are sophisticated type systems in which (if b b (f x 2)) would be considered well
typed with a so-called union type that is either bool or int. In order to guarantee type
soundness (see Section 11.6), such systems must constrain the ways in which a value with union
type may be manipulated. In this presentation, we focus on simpler type systems that do not
allow union types.

10In some sophisticated type systems, (if #t b (f x 2)) would be considered well typed
with type bool.
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TEprim = {not : (-> (bool) bool), and : (-> (bool bool) bool),
or : (-> (bool bool) bool), bool=? : (-> (bool bool) bool),
< : (-> (int int) bool), <= : (-> (int int) bool),
= : (-> (int int) bool), != : (-> (int int) bool),

>= : (-> (int int) bool), > : (-> (int int) bool),
+ : (-> (int int) int), - : (-> (int int) int),
* : (-> (int int) int), / : (-> (int int) int),
% : (-> (int int) int), sym=? : (-> (symb symb) bool) }

Figure 11.6 Primitive type environment TEprim for μFLEX.

• An evaluator associates the actual arguments with the formal parameters when
applying a procedure to arguments, but a type checker simply checks that the
types of the actual arguments are compatible with the argument types expected
by the procedure.

11.5.2 Type Environments

Just as expressions are evaluated with respect to a dynamic value environment
that associates free value identifiers with their run-time values, they are type-
checked with respect to a static type environment that associates free value
identifiers with their types. Type environments are partial functions from value
identifiers to types:

TE ∈ TypeEnvironment = Ident ⇀ Type

If TE is a type environment and I∈dom(TE ), then the notation TE (I ) designates
the type assigned to I in TE .

The association of a type T with a value identifier I is known as a type
assignment, which is written I :T and pronounced “I has type T .” We will
write a type environment as a set of type assignments whose names are distinct.
For instance, {} is the empty type environment, and the type environment used
to check the body of the abstraction Eabs2 in the discussion on page 641 is

TE1 = {b : bool, x : int, f : (-> (int int) int)}

So dom(TE 1 ) = {b, f, x} and TE 1 (b) = bool, TE1 (f) = (-> (int int) int),
and TE 1 (x) = int. Figure 11.6 shows a type environment TE prim that assigns an
appropriate arrow type to each μFLEX primitive operator name. For example,
TEprim(<) = (-> (int int) bool).
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TE � #u : unit [unit] TE � N : int [int] TE � B : bool [bool]

TE � (sym Y ) : symb [symb] TE � (error Y T) :T [error]

TE � I :TE (I ) where I ∈ dom(TE ) [var]

TE � Etest : bool TE � Ethen :T TE � Eelse :T
TE � (if Etest Ethen Eelse) :T

[if ]

TE [Ii :Ti ]
n
i=1 � Ebody :Tbody

TE � (abs ((Ii Ti)
n
i=1) Ebody) : (-> (Tn

i=1) Tbody)
[→-intro]

TE � Erator : (-> (Tn
i=1) Tresult) ∀n

i=1 . TE � Ei :Ti

TE � (Erator En
i=1) :Tresult

[→-elim]

∀n
i=1 . TE � Ei :Ti TE [Ii :Ti ]

n
i=1 � E0 :T0

TE � (let ((Ii Ei)
n
i=1) E0) :T0

[let]

∀n
i=0 . TE [Ij :Tj ]

n
j=1 � Ei :Ti

TE � (letrec ((Ii Ti Ei)
n
i=1) E0) :T0

[letrec]

TEprim � Oop : (-> (Tn
i=1) Tresult) ∀n

i=1 . TE � Ei :Ti

TE � (prim Oop En
i=1) :Tresult

[prim]

TE � E :T
TE � (the T E) :T

[the]

{Ii :Ti}n
i=1 � Ebody :Tbody

�prog (flexk ((Ii Ti)
n
i=1) Ebody) : (=> (Tn

i=1) Tbody)
[prog ]

Figure 11.7 Type rules for μFLEX.

As with value environments, it is often necessary to extend a type environment
with additional bindings. We use the notation

TE [I1 :T1 , . . . , In :Tn ]

(often abbreviated TE [Ii :Ti ]
n
i=1) to indicate the type environment that results

from extending TE with the given type assignments. The identifiers I1 , . . . , In
must be distinct, and the extensions override any assignments that TE may
already have for them. E.g., suppose that TE 2 = TE 1 [b : symb, t : bool]. Then
dom(TE 2 ) = {b, f, x, t} and TE 2 (b) = symb, TE2 (f) = (-> (int int) int),
TE 2 (x) = int, and TE2 (t) = bool.
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11.5.3 Type Rules for μFLEX

We now describe a formal process for determining the types of μFLEX expres-
sions and programs. The assertion that an expression E has type T with respect
to type environment TE is known as a type judgment and is written

TE � E :T

This is pronounced “expression E has type T in type environment TE” or, more
loosely, “TE proves that E has type T .” When such an assertion is true, we say
that the type judgment is valid. If TE � E :T is valid for some T , we say that
E is well typed with respect to TE . Otherwise, E is ill typed with respect
to TE . If the type environment is understood from context, we just say that E
is well typed or ill typed.

There are also type judgments for μFLEX programs. These have the form

�prog P : (=> (T1 . . . Tn) Tresult)

where T1 . . . Tn are the types of the program arguments and Tresult is the type of
the value computed by the program. Program judgments use a different turnstile
symbol, �prog , than the one used in expression judgments. Also, they do not have
a type environment, because well-typed programs are required to have no free
value identifiers. However, well-typed programs may mention free type identifiers
(see Exercise 11.3 on page 652).

Valid type judgments can be determined via type rules that have a form sim-
ilar to the rewrite rules we introduced for operational semantics in Section 3.2.3.
Each type rule has the form

premise1 . . . premisen
conclusion

[rule-name]

where conclusion and each premisei are type judgments. A rule without any
premises is an axiom, and is written without a horizontal line. We will call
a type rule with a nonempty set of premises an inference rule. If all of the
premises of a rule are valid, then the type judgment in the conclusion of the rule
is valid.

The type rules for μFLEX are presented in Figure 11.7. The [unit], [bool],
[int], [symb], and [error] rules are axioms that hold for any type environment TE .
As in the operational semantics rules, type rules are really rule schemas in which
every domain variable can be instantiated by any element of its domain. So [int]
represents the infinite number of rules that can be obtained by instantiating TE
with any type environment and N with any integer literal.
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The [if ] rule requires that the test expression denote a boolean and the two
branches have the same type T . If these requirements are met, the type of the
if expression is the type T of the branches. The constraint that the two branch
types and return type must all be the same is specified by using the same domain
variable, T , for all three types.

Many of the ways to instantiate the [if ] rule schema may not make sense at
first glance. For example, here is one instantiation of the if rule:

{} � 1 : bool {} � 2 : symb {} � 3 : symb

{} � (if 1 2 3) : symb

Certainly we should not be able to prove that (if 1 2 3) has type symb! But the
rule doesn’t say that (if 1 2 3) has type symb. Rather, it says that (if 1 2 3)

would have type symb if the integer 1 had type bool and the integers 2 and 3

had type symb. But it is impossible to prove these false premises, and so the false
conclusion will never be declared to be a valid judgment by the type system.

The [→-intro] and [→-elim] rules are the rules for abstractions and applica-
tions, respectively. The rule names emphasize that abstractions are the source
expressions that produce values of arrow type and that applications are the sink
expressions that use values of arrow type. In our study of typed data in Sec-
tion 11.8, we shall see many other examples of introduction and elimination
rules. In the [→-intro] rule, the type of an abstraction is an arrow type that
maps the explicitly declared parameter types to the type of the body, where the
body type is determined relative to an extended environment that includes type
assignments for the parameters. The [→-elim] rule requires that the operator
of an application be an arrow type whose number of parameters is the same as
the number of supplied operands and whose parameter types are the same as
the corresponding operand types. In this case, the type of the application is the
result type of the operator type. When we reason that applying a procedure of
type (-> (int bool) symb) to an int expression and a bool expression yields
a value of type symb, we are using the [→-elim] rule.

The [let] and [letrec] rules are similar to the [→-elim] rule. Both type-check a
body expression E0 with respect to the given type environment TE extended with
type assignments for the named definition expressions E1 , . . . , En in the bindings.
The difference is that let definitions are not in the scope of the bindings, and so
can be type-checked relative to TE . However, letrec definitions are in the scope
of the bindings, and so must be type-checked relative to an environment TE ′ that
extends TE with type assignments for the bindings. Since the definition types
in a let can be determined from the supplied type environment TE , there is no
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need for the types of the definitions to be explicitly declared. But in the letrec

case, determining the extended type environment TE ′ in general would require
finding a fixed point over type environments. μFLEX requires the programmer
to explicitly declare the types of letrec definitions so that the type checker need
not compute fixed points.

The [prim] rule treats primitive operators as if they have arrow types deter-
mined by the primitive type environment TEprim . This allows the type checker
to handle primitive applications via what is essentially a specialized version of
[→-elim].

For the type ascription expression (the T E), the [the] rule simply checks
that E has the specified type T .

The [prog] rule type-checks a program. It is similar to the [→-intro] rule,
except that: (1) because a program has no type environment, its body is checked
only with respect to the type bindings for its formal parameters; and (2) a pro-
gram type uses => rather than ->.

In the μFLEX type system, the standard library bindings in a program in-
troduced by the flex keyword are handled by the flex desugaring rule presented
in Figure 11.2. An alternative strategy is to handle flex programs directly via
the following type rule (where, for simplicity, it is assumed that there are no
def-types):

∀k
j=1 . TE body � Edj

:Tdj
TE body � Ebody :Tbody

�prog (flex ((Ifmlh
Tfmlh

)m
h=1) Ebody (def Idj

Tdj
Edj

)k
j=1)

: (=> (Tfml1
. . . Tfmlm

) Tbody)

[prog ′]

where TE body =TEprim [Ifmlh
:Tfmlh

]mh=1[Idj
:Tdj

]kj=i

This reflects the way that top-level programs are usually type-checked in practice:
The types of standard bindings are summarized in a standard type environment
(such as TE prim) rather than being type-checked anew for every program.

All the type rules are purely structural in the sense that the premise judg-
ments involve subexpressions of the expression that appears in the conclusion
judgment. Just as purely structural rewrite rules guarantee meaningful transi-
tions in an SOS (see Section 3.2.5), purely structural type rules guarantee that the
type checking process will terminate. The initial expression being type-checked
has a finite AST. In any rule each premise subexpression necessarily has a strictly
smaller AST than the conclusion expression. By structural induction, the type-
checking process must eventually bottom out at the axioms.

Another important property of the μFLEX type system is that each μFLEX
expression construct appears in the conclusion of exactly one type rule. A type
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system with this property is said to be syntax directed. It is straightforward to
turn syntax-directed type rules into an efficient type-checking algorithm because
the type-checking process is completely deterministic. For example, the type
rules in Figure 11.7 can be encoded in a type-checking function TC that takes
a type environment TE and an expression E and either returns the type T (in
the case where TE � E :T ) or indicates that the expression is ill typed. The
body of this function would be a dispatch on the kind of expression. If E is a
primitive expression, TC would succeed or fail immediately as specified by the
associated axiom. For compound expressions, TC would be called recursively
on the subexpressions of E as specified by the premises of the single inference
rule whose conclusion matches E . The syntax-directed nature of the type rules
means that it is never necessary to guess which type rule should be used for a given
expression, so the type-checking process can be performed without backtracking.

11.5.4 Type Derivations

The proof that a type judgment is valid is called a type derivation, also known
as a typing. A type derivation is a tree in which each node is a type judgment.
Each type judgment must be the conclusion of an instantiated type rule whose
premises are its children in the tree. The root judgment of the tree is the desired
type judgment and the leaf judgments are instantiated type-checking axioms.

Consider the following μFLEX expression Elet :

(let ((app5 (abs ((f (-> (int) bool))) (f 5)))

(pos (abs ((x int)) (prim > x 0))))

(app5 pos))

A type derivation TD let proving that Elet has type bool in the empty type
environment is shown in Figure 11.8. The figure employs several abbreviations
for expressions, types, type environments, and three subderivations. Without
these abbreviations, the derivation would be too wide to display on the page.

To reduce the width of type derivations, we will present them in a vertical
style. In this style, horizontal-style type-rule instantiations of the form

premise1 . . . premisen
conclusion

[rule-name]

are presented vertically as

premise1
...

premisen
conclusion [rule-name]
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Abbreviations
Tib = (-> (int) bool)

Tiib = (-> (int int) bool)

TE f = {f :Tib}
TE x = {x : int}

TE body = {app5 : (-> (Tib) bool), pos :Tib}
Eapp5 = (abs ((f Tib)) (f 5))

Epos = (abs ((x int)) (prim > x 0))

TDapp5 =

[var]
TE f � f : (-> (int) bool)

[int]
TE f � 5 : int

[→-elim]
TE f � (f 5) : bool

[→-intro]
{} � (abs ((f Tib)) (f 5)) : (-> (Tib) bool)

TDpos =

[var]
TEprim � > :Tiib

[var]
TE x � x : int

[int]
TE x � 0 : int

[prim]
TE x � (prim > x 0) : bool

[→-intro]
{} � (abs ((x int)) (prim > x 0)) :Tib

TDbody =

[var]
TE body � app5 : (-> (Tib) bool)

[var]
TE body � pos :Tib

[→-elim]
TE body � (app5 pos) : bool

Type Derivation TD let for Elet

rest of TDapp5

{} � Eapp5 : (-> (Tib) bool)

rest of TDpos

{} � Epos :Tib

rest of TDbody

TE body � (app5 pos) : bool
[let]

{} � (let ((app5 Eapp5) (pos Epos)) (app5 pos)) : bool

Figure 11.8 Type derivation for Elet .

All premises of a conclusion are individually boxed and aligned vertically such
that the leftmost sides of the boxes are directly above the leftmost side of the
conclusion. For example, the horizontal-style derivation
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[var]
TEprim � > : (-> (int int) bool)

[var]
TE x � x : int

[int]
TE x � 0 : int

[prim]
TE x � (prim > x 0) : bool

is presented in the vertical style as

TEprim � > : (-> (int int) bool) [var]

TE x � x : int [var]

TE x � 0 : int [int]

TE x � (prim > x 0) : bool [prim]

The vertical style makes more efficient use of the real estate on the page. E.g.,
Figure 11.9 shows a vertical-style presentation for the type derivation TD let .
Note that a boxed premise may itself be a conclusion of other boxed premises,
naturally leading to the nesting of boxes.

Figure 11.10 presents a program Ppow that exercises many features of μFLEX.
Figure 11.12 shows the type derivation for Ppow that illustrates all of the μFLEX
type rules except for [unit], [bool], [symb], and [error] in a single example.

The reason that we emphasize the structure of and notation for type deriva-
tions is that such derivations are essential for understanding typed programming
languages. Every valid type judgment TE � E :T must be justified by a type
derivation, so type derivations (rather than individual type judgments) are often
the key entity manipulated when reasoning formally about type systems. For
example, in Section 11.6 we will see that proving the soundness of a type system
involves showing that when expression E rewrites to E ′, the type derivation for E
can be transformed to an appropriate type derivation for E ′. In Chapter 13 and
Chapter 16, we will see that type and effect reconstruction can be understood
using derivations that are remarkably similar to the ones presented here.

Additionally, visual representations of type derivations serve as compact exe-
cution traces for a type-checking algorithm. For example, when the type-checking
function TC sketched on page 648 is executed on Ppow :

• each type judgment TE � E :T in Figure 11.12 represents a call to TC that
takes two arguments (a type environment TE and an expression E ) and returns
a type T ;

• each box appearing at the same indentation level above a judgment for E
represents a recursive call to TC on a subexpression of E that is made as part
of determining the type for E .
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Abbreviations
Tib = (-> (int) bool)

TE f = {f :Tib}
TE x = {x : int}

TE body = {app5 : (-> (Tib) bool), pos :Tib}
Eapp5 = (abs ((f Tib)) (f 5))

Epos = (abs ((x int)) (prim > x 0))

Type Derivation TD let for Elet

TE f � f : (-> (int) bool) [var]

TE f � 5 : int [int]

TE f � (f 5) : bool [→-elim]

{} � (abs ((f Tib)) (f 5)) : (-> (Tib) bool) [→-intro]

TEprim � > : (-> (int int) bool) [var]

TE x � x : int [var]

TE x � 0 : int [int]

TE x � (prim > x 0) : bool [prim]

{} � (abs ((x int)) (prim > x 0)) : (-> (int) bool) [→-intro]

TE body � app5 : (-> (Tib) bool) [var]

TE body � pos :Tib [var]

TE body � (app5 pos) : bool [→-elim]

{} � (let ((app5 Eapp5) (pos Epos)) (app5 pos)) : bool [let]

Figure 11.9 Vertical-style type derivation for Elet .

Exercise 11.2 Consider the following closed FL expressions:

E1 = (((abs (a b) (abs (f) (f b a)))

1 #t)

(abs (x y) (if x y 2)))

E2 = (let ((add (abs (x y) (prim + x y))))

(letrec ((sum (abs (i done? next)

(if (done? i)

0

(add i (sum (add i 1)))))))

sum))
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Ppow = (flexk ((n int))

(let ((dbl (the (-> (int) int) (abs ((x int)) (prim * x 2)))))

(letrec ((loop (-> (int) int)

(abs ((i int))

(if (prim >= i n)

i

(loop (dbl i))))))

(loop 1))))

Figure 11.10 A sample μFLEX program, Ppow .

Tii = (-> (int) int)

TE loop = {n : int, dbl :Tii , loop :Tii}
Ppow = (flexk ((n int)) Eletdbl))

Eletdbl = (let ((dbl (the Tii Edblabs))) Erecloop)

Edblabs = (abs ((x int)) (prim * x 2))

Erecloop = (letrec ((loop Tii Eloopabs)) (loop 1))

Eloopabs = (abs ((i int)) Eif )

Eif = (if (prim >= i n) i (loop (dbl i)))

Figure 11.11 Abbreviations for Figure 11.12.

a. Translate each expression into a well-typed μFLEX expression by adding appropriate
type annotations.

b. For each of your translations, give a type derivation that shows that it is well typed
in the empty type environment.

Exercise 11.3

a. Give a type derivation showing that for any type T , the following μFLEX program
has type (=> (int) T):

(flexk ((n int))

(if (< n 0)

(error negative T)

(letrec ((loop (-> () T) (abs () (loop))))

(loop))))

b. The type T used in part a could be any type, including one that contains type
identifiers that are free in the program. Does this indicate that μFLEX has a type
loophole? That is, might there be an expression whose static type does not match
the dynamic type of the run-time value of that expression? Explain.
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Type Derivation TDpow for Ppow

See abbreviations in Figure 11.11.

TEprim � * : (-> (int int) int) [var]

{n : int, x : int} � x : int [var]

{n : int, x : int} � 2 : int [int]

{n : int, x : int} � (prim * x 2) : int [prim]

{n : int} � (abs ((x int)) (prim * x 2)) :Tii [→-intro]

{n : int} � (the Tii (abs ((x int)) (prim * x 2))) :Tii [the]

TEprim � >= : (-> (int int) bool) [var]

TE loop [i : int] � i : int [var]

TE loop [i : int] � n : int [var]

TE loop [i : int] � (prim >= i n) : bool [prim]

TE loop [i : int] � i : int [var]

TE loop [i : int] � loop : (-> (int) int) [var]

TE loop [i : int] � dbl : (-> (int) int) [var]

TE loop [i : int] � i : int [var]

TE loop [i : int] � (dbl i) : int [→-elim]

TE loop [i : int] � (loop (dbl i)) : int [→-elim]

TE loop [i : int] � (if (prim >= i n) i (loop (dbl i))) : int [if ]

TE loop � (abs ((i int)) Eif ) : (-> (int) int) [→-intro]

TE loop � loop : (-> (int) int) [var]

TE loop � 1 : int [int]

TE loop � (loop 1) : int [→-elim]

{n : int, dbl :Tii} � (letrec ((loop Tii Eloopabs)) (loop 1)) : int [letrec]

{n : int} � (let ((dbl (the Tii Edblabs))) Erecloop) : int [let]

�prog (flexk ((n int)) Eletdbl) : (=> (int) int) [prog ]

Figure 11.12 Vertical-style type derivation for Ppow .
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Exercise 11.4 Abby Stracksen likes the power of the PostFix+{dup} language from
Section 3.8, but doesn’t want to rely on dynamic typing. So she develops a type system
for PostFix+{dup}. First, she defines the type grammar:

T ::= int [IntType]
| (-> (T ∗) (T ∗)) [TransformType]

A type is either an integer type int or a transform type of the form (-> (T ∗
in) (T ∗

out)).
A transform type models the type of a stack transform that consumes some number of
values from the top of the stack (by popping them off the input stack) and produces
some (other) number of values for the top of the stack (by pushing them onto the output
stack). In the transform type (-> (T ∗

in) (T ∗
out)), T ∗

in are the types of the values, in
order, that are consumed by the transform and T ∗

out are the types of the values that are
produced by the transform. In both sequences, the leftmost type represents the item on
the top of the stack.

Next, Abby writes type rules of the form �C C :T to describe the transform type
T of a command C . Here are some of her rules:

�C N : (-> () (int)) [int]

�C pop : (-> (T) ()) [pop]

�C dup : (-> (T) (T T)) [dup]

�C Aop : (-> (int int) (int)) [arithop]

�C Rop : (-> (int int) (int)) [relop]

The [arithop] rule works for all arithmetic commands Aop (add, sub, mul, div, and rem)
and the [relop] rule works for all relational commands Rop (lt, eq, and gt).

a. Give type rules for the swap and sel commands.

b. The above type rules define the types of individual PostFix+{dup} commands, but
Abby still needs the “glue” to paste together the transform types of individual com-
mands to result in the transform type of a command sequence. For this purpose,
Abby develops command-sequence type rules of the form �Q Q :T to describe the
transform type T of the command sequence Q . Complete the following type rules by
filling in the holes with appropriate transform types:

�Q [ ] :� [seq-empty ]

�C C : (-> (T1 . . . Ti) (T ′
1 . . . T ′

j ))

�Q Q : (-> (T ′
1 . . . T ′

m) (T ′′
1 . . . T ′′

n ))

�Q C . Q :�

where j < m [seq-<]

�C C : (-> (T1 . . . Ti) (T ′
1 . . . T ′

j ))

�Q Q : (-> (T ′
1 . . . T ′

m) (T ′′
1 . . . T ′′

n ))

�Q C . Q :�

where j = m [seq-=]
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�C C : (-> (T1 . . . Ti) (T ′
1 . . . T ′

j ))

�Q Q : (-> (T ′
1 . . . T ′

m) (T ′′
1 . . . T ′′

n ))

�Q C . Q :�

where j > m [seq->]

Rules like this naturally arise in other languages that manipulate a stack, including
typed assembly languages (e.g., [MCG+99]).

c. Use the type rules for commands and command sequences developed so far to derive
the transform type of the following command sequence:

(pop swap 2 mul add dup)

d. One PostFix command not considered so far is nget.

i. Explain why the nget command is problematic in a typed version of PostFix.

ii. Suppose that nget is replaced by a command of the form (get Nindex), where
Nindex specifies the index of the (not necessarily integer) stack value to be copied
to the top of the stack. Write a type rule for (get Nindex).

e. To handle command-sequence values within her typed version of PostFix+{dup},
Abby modifies the exec command. Instead of a single exec command she introduces
a family of commands of the form exec-m-n, where m and n are nonnegative inte-
gers. exec-m-n works like exec, except that it expects the top of the stack to be a
command sequence that consumes m stack values and produces n stack values. Give
the type rules for the commands exec-m-n and (Q).

f. Translate the following PostFix command sequence into Abby’s typed language
and use the above type rules for commands and command sequences to derive the
transform type of your translation:

((pop add) (exec) sel exec)

g. Abby uses the notation �P (postfix N Q) to indicate that a program in her typed
version of PostFix+{dup} is well typed. Write a type rule that defines �P .

11.5.5 Monomorphism

The μFLEX type system is monomorphic, meaning that each μFLEX expres-
sion can be assigned at most one type in a given type environment. This is
formalized by the following theorem:

Theorem 11.1 (μFLEX Type Uniqueness) If a μFLEX expression E
is well typed with respect to a type environment TE, then there is a unique
type T such that TE � E :T.

This theorem formalizes the claim that a μFLEX type checker never has to
guess types or perform any backtracking. Another consequence of this theorem
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is that there is a partial function typeof that maps pairs of expressions and type
environments to their types:

typeof : (Exp× TypeEnvironment) ⇀ Type

typeof 〈E ,TE 〉 =

{
T , if TE � E :T
undefined, otherwise

In other words, it makes sense to talk about the type of a well-typed expression
relative to a given environment.

It is worthwhile to prove this theorem both to understand why it is true and
to see an example of how proofs involving types are structured.

Proof of Theorem 11.1: Since E is well typed with respect to TE , there
must be a judgment TE � E :T (call it TJ ) that is the root of a type derivation
TD . We will not only show that T is unique; we will prove the stronger claim
that TD is unique. This implies that any type-checking process based on the
type rules is deterministic.

The proof is by induction on the height of TD . The base cases of the induction
are the type derivations for literals, variable references, and error expressions.
In each of these cases, a type judgment matches exactly one type axiom, and the
type derivation is uniquely determined by TE and E . Note that (1) TE only
matters in the [var] case and (2) the explicit type T in (error Y T) is critical
for making the theorem hold in the [error] case.

The uniqueness of the remaining cases can be shown by case analysis. Each
remaining kind of type judgment TJ matches the conclusion of exactly one in-
ference rule, which is determined by the structure of the expression E in TJ .

For each such rule, we can argue that all the premise judgments are uniquely
determined by the conclusion judgment. These premises must be the roots of the
subderivations of TD . By induction, all these subderivations are unique, so TD
is also unique.

The easy cases are the [if ], [→-intro], [letrec], and [the] rules, in which all
syntactic entities mentioned in the rule premises are either constants (e.g., the
type identifier bool, the type environment TE prim) or domain variables that
appear in the conclusion. So in every instantiation of these inference rules, the
instantiations of the rule premises are uniquely determined by the instantiation
of the conclusion.

In the other cases (the [→-elim], [let], and [prim] rules), the argument is
more delicate because the premises mention some domain variables that do not
appear in the conclusion but do appear in other premises. We spell out the
details for [→-elim]; the other two rules are similar. Suppose TD is rooted at
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TE � (Erator En
i=1) :Tresult . By [→-elim], TD has subderivations TD1 , . . .,

TDn rooted at judgments of the form TE � Ei :Ti . By induction, these are
unique, so the Ti are unique. The remaining judgment mentions these types
in addition to TE , Erator , and Tresult from the conclusion, so it is completely
determined and is also unique. �

From the [prog] rule, it is easy to see that the uniqueness of types and type
derivations carries over from μFLEX expressions to μFLEX programs.

Minor modifications to the μFLEX syntax and type rules can invalidate the
uniqueness of types. For example, consider a variant of μFLEX in which the
error construct has the form (error Y ) — i.e., it does not include an explicit
type. Then a type rule for such a construct might be:

TE � (error Y ) :T [error ′]

In this rule, T is unconstrained, so an error expression may be assigned any
type. Clearly its type would no longer be unique! Omitting the explicit type
declarations for parameters in abs would also cause types to be unconstrained.
For example, the expression (abs (x) x) could be assigned an infinite number
of types, such as (-> (int) int) and (-> (bool) bool). Exercise 11.7 shows
that changes to the letrec syntax and type rules can similarly lead to situations
where the type checker must “guess” a type. Such changes aren’t necessarily bad
— indeed, we will institute such changes when we consider type reconstruction
in Chapter 13. However, such changes can alter the character of a type system.
For instance, the typeof function is not well defined after such changes.

A monomorphic type system is very simple to understand and to implement,
but it can create headaches for the programmer. As a simple example, suppose
we want to translate the following FL expression into μFLEX:

(let ((id (abs (x) x)))

(if (id #t) 1 ((id id) 2)))

Intuitively, the identity function id takes a value of any type and returns the
same value. But the monomorphism of μFLEX forbids us from specifying “any
type”; we must write particular types. We can often circumvent this restriction by
defining multiple copies of an expression that differ only in their type annotations.
In this case, we need to define three versions of the identity function to achieve
a well-typed μFLEX translation:

(let ((id_bool (abs ((x bool)) x))

(id_int (abs ((x int)) x))

(id_intfun (abs ((x (-> (int) int))) x)))

(if (id_bool #t) 1 ((id_intfun id_int) 2)))
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Although this example is contrived, it represents a real problem faced by pro-
grammers in languages like C, Java,11 and Pascal. In the next chapter, we will
see how polymorphic type systems address this problem.

Exercise 11.5 Translate each of the following FL expressions into a well-typed μFLEX
expression by (1) adding explicit type annotations and (2) duplicating expressions when
necessary.

a. (abs (a b c)

(let ((appc (abs (f) (f c)))

(make-sub (abs (n) (abs (x) (prim - x n))))

(make-geq (abs (k) (abs (y) (prim >= y k)))))

(scand (appc (make-geq (appc (make-sub a))))

((appc make-geq) ((appc make-sub) b)))))

b. (let ((inc (abs ((x int)) (prim + x 1)))

(compose (abs (f g) (abs (x) (f (g x)))))

(thrice (abs (f) (abs (x) (f (f (f x)))))))

(let ((nat (abs (g) ((g inc) 0))))

(+ (nat (abs (h) (compose (thrice h) (thrice h))))

(+ (nat (compose thrice thrice))

(nat (thrice thrice))))))

Exercise 11.6 Suppose that the following two constructs were added to the μFLEX
kernel (rather than being defined as syntactic sugar):

a. (cond (Etest Ethen)
∗ (else Edefault))

b. (scand E∗
conjunct) (The type rule for scor is similar.)

Give a type rule for each of these two constructs.

Exercise 11.7 Suppose that μFLEX’s letrec were changed so that (1) letrec bindings
had the form (I E ) rather than (I T E ) and (2) the type rule for letrec became:

∀n
i=0 . TE [Ij :Tj ]

n
j=1 � Ei :Ti

TE � (letrec ((Ii Ei)
n
i=1) E0) :T0

[letrec ′]

These modifications invalidate the unique type property of μFLEX (Theorem 11.1).
Demonstrate this by constructing a type derivation showing that the following looping
expression can be assigned any type T :

(letrec ((loop (abs () (loop)))) (loop))

Exercise 11.8 Thai Ping wants to extend μFLEX with label and jump from Sec-
tion 9.4. Recall the informal semantics of these constructs:

11The generics feature of Java version 5.0 goes a long way toward addressing this problem,
but does not eliminate it. See the discussion in Section 12.2.5.
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(label I E) evaluates E in an environment where I is bound to the control point
receiving the value of the label expression.

(jump E1 E2) first evaluates E1 to a control point value, then evaluates E2 to a value,
and then “returns” the value of E2 to the control point value.

Below are some simple examples of label and jump in a version of FL extended with
these constructs. Assume that the names +, *, and < are bound to the usual standard
procedures.

E1 = (+ 1 (label exit (* 2 3))) −−−FL→ 7

E2 = (+ 1 (label exit (* 2 (jump exit (+ 3 (jump exit 4)))))) −−−FL→ 5

E3 = (* 2 (label out (if (label test (< 3 (if (jump test #f)

(jump test #t)

(jump out 4))))

5

((jump out 6) 7)))) −−−FL→ 12

Thai modifies the grammar of μFLEX as follows:

E ::= . . . | (label T I E) | (jump T E1 E2)

T ::= . . . | (controlpointof T)

The label and jump constructs have been annotated with explicit types that specify the
types of these expressions. These annotations are similar to the explicit types in letrec

and error expressions, respectively, which allow a type checker to determine the type of
these expressions without “guessing” any types. The domain of types has been extended
with a new type of the form (controlpointof T). This type describes control points
that expect a value of type T . For example, in the μFLEX expression

(+ 1 (label int return (if (jump bool return 2) 3 4)))

• the label expression is given the explicit type int because it appears in a context
that expects an integer;

• the control point named return has type (controlpointof int), because the label

expression returns an integer;

• the jump expression is given the explicit type bool because it appears in a context
where a boolean is expected;

• the value passed to return by jump must be an integer because return has type
(controlpointof int).

a. Using Thai’s framework, give type rules for label and jump.

b. Translate E1 , E2 , and E3 into Thai’s extended version of μFLEX, and show that
each translation is well typed by constructing a type derivation for it.

c. Is it possible to remove the explicit type annotation T from the label or jump con-
struct without invalidating the type uniqueness property of μFLEX (Theorem 11.1)?
Explain.
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Exercise 11.9 Mona Morwicz is upset that expressions like let cannot be defined as syn-
tactic sugar in μFLEX. To address this problem, she designs the following new μFLEX
expression:

(bindtypeof τ E1 E2): In the dynamic semantics, this expression evaluates and re-
turns E2 ; it never evaluates E1 , whose only purpose is for type checking. In the static
semantics, this expression is type-checked by finding the type T1 of E1 and substi-
tuting T1 for τ in E2 before type-checking it. The unique type derivation property
of μFLEX guarantees that T1 is unique.

The power of bindtypeof is illustrated by the following desugaring:

(test Etest Ethen) �ds (if Etest Ethen (bindtypeof t Ethen (error fail t)))

This desugaring uses bindtypeof to automatically determine the type of the error

expression. Without bindtypeof, the test construct would need to include an explicit
type for Ethen .

a. Write a type rule for bindtypeof.

b. Argue that adding bindtypeof to μFLEX preserves unique type derivations.

c. With Mona’s new construct, show that let can be defined as syntactic sugar rather
than being a kernel form.

d. Bud Lojack thinks that Mona’s bindtypeof expression is too complex. He prefers to
extend the type syntax of μFLEX with a typeof construct:

T ::= . . . | (typeof E)

Bud explains that (typeof E) simply denotes the type of E . Using typeof, Bud
gives a simpler desugaring for test:

(test Etest Ethen) �ds (if Etest Ethen (error fail (typeof Ethen)))

Is Bud’s construct a good idea? Discuss any difficulties that would be encountered in
extending μFLEX with typeof.

Exercise 11.10 Based on the type-checking rules presented in Section 11.5.3, write a
type checker for μFLEX programs in your favorite programming language. The core of
the type checker can be structured as an interpreter that takes an expression and a type
environment. If the expression is well typed, it returns the type of the expression; if the
expression is ill typed, it should somehow indicate this fact.

Exercise 11.11 Just because μFLEX has explicit types doesn’t necessarily imply that
it must be type-checked at compile time. It is possible to imagine a version of μFLEX in
which all type checking is done at run time. Demonstrate this by writing an interpreter
for μFLEX that performs all type checking dynamically. For example, when a procedure
is called, the types of the arguments should be checked before the body of the procedure
is evaluated.
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11.6 Type Soundness

11.6.1 What Is Type Soundness?

We expect that any language with a static type system should come with a
guarantee that the execution of well-typed programs will not encounter dynamic
type errors. The notion of what constitutes a dynamic type error depends on
the language. In μFLEX, dynamic type errors include:

• a reference to an unbound variable (i.e., one that is free in the program);

• a primitive application with the wrong number of operands, such as the ex-
pressions (prim not #t #f), (prim + 1), and (prim < 1 2 3);

• a primitive application with an operand of the wrong type, such as the expres-
sions (prim not 17) and (prim + 1 #t);

• a conditional expression with a nonboolean test, such as (if 1 2 3);

• an application of a nonprocedural value, such as (1 2 3);

• a procedure application with the wrong number of operands, such as the ex-
pressions ((abs ((x Tx)) E) 1 2) and ((abs ((y Ty) (z Tz)) E) 3).

There are also dynamic nontype errors that program execution may en-
counter. In μFLEX, these include division/remainder by zero and user-specified
error conditions (using error). In languages with data structures, common dy-
namic nontype errors include out-of-bounds indexing of positional products and
performing an operation on the wrong element of a sum type (e.g., taking the
head of an empty list). Some sophisticated type systems are able to detect some
of these errors at analysis time. But catching all such errors statically is usually
undecidable, so no type system could possibly detect all of them.

A type system is said to be sound if a well-typed program cannot encounter
a dynamic type error. This property is often summarized by the slogan “well-
typed programs do not go wrong” [Mil78]. This slogan is somewhat misleading,
since it seems to imply that well-typed programs cannot encounter any dynamic
error. There are some very simple languages (such as the simply typed lambda
calculus and some of its rudimentary extensions) in which all dynamic errors are
indeed type errors. But, as illustrated above, more full-featured languages may
encounter many kinds of nontype errors at run time. So a more accurate slogan is
“well-typed programs do not encounter dynamic type errors (but may encounter
other dynamic errors).”
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Type soundness relates the dynamic semantics (usually an operational se-
mantics) of a language to the static semantics (type system). A proof of type
soundness is generally decomposed into two parts:

1. A preservation (also called subject reduction) theorem stating that if a
configuration cf has type T and cf ⇒ cf ′, then cf ′ has type T .

2. A progress theorem stating that if cf is well typed, then either it is reducible,
a final configuration, or stuck at a nontype error. In other words, a well-typed
configuration cannot be stuck at a type error.

With these two theorems, it is easy to prove two aspects of type soundness:
(1) an initially well-typed configuration cf0 can never lead to a dynamic type
error and (2) if a final configuration is reached, it has the same type as the initial

configuration. Suppose cf0 has type T and cf0 =
n
=⇒ cfn, where cfn is irreducible.

By preservation, each configuration in the transition path from cf0 to cfn has
type T . Since cfn is well typed, by progress, it cannot be stuck at a type error,
proving (1). If cfn is a final configuration, it has the same type T as the initial
configuration, proving (2).

In the remainder of this section, we follow this recipe to prove the type sound-
ness of μFLEX. Since the proof strategy requires an operational semantics, we
must first develop an operational semantics for μFLEX (Section 11.6.2). Then
we will demonstrate the type soundness of μFLEX by developing appropriate
preservation and progress theorems (Section 11.6.3).

11.6.2 An Operational Semantics for μFLEX

We begin by presenting an operational semantics for a CBN version of μFLEX.
(The type soundness argument can be adapted to CBV, but the CBN version
is simpler to describe because it involves checking fewer cases.) The SOS in
Figures 11.13 and 11.14 is similar to the SOS for FL in Figure 6.18 (page 258)
and Figure 6.19 (page 259) except that:

• Unlike FL, μFLEX does not support pairs, so the InputExp and ValueExp
domains do not include pair expressions, and the AnsExp domain does not
contain the pairans token. (All these domains must be extended appropriately
when μFLEX is extended to full FLEX.)

• μFLEX’s [β] rule is a generalization of FL’s [β] rule to the case of applying a
multiparameter abstraction to multiple arguments.
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• μFLEX has rules for the let, letrec, and the constructs, which are new kernel
constructs in μFLEX. The let rule substitutes the definition expressions for
the associated names in the body. The letrec rule is similar to the let

rule except that the definition expressions are wrapped in a letrec before
substitution to implement the semantics of recursion. This is a generalization
of FL’s [rec] rule. The rule for the simply returns the underlying expression.

• In addition to checking the number of inputs, the input function IF checks
the types of inputs (using the function typeinp) to verify that they match the
declared types of the formal parameters of the program. Any mismatch results
in an initial configuration that is an error expression. Such dynamic type
checking of program inputs is performed in most real-world languages in some
guise, either by the programmer or by the implementation. Program inputs are
typically extracted from a command-line string, an input stream, one or more
files, and/or input specifications entered via a graphical user interface. Such
inputs must often be checked dynamically for well-formedness. For example,
if a program expects a command-line argument string to represent an integer,
the programmer must write code checking that the string is a sequence of
characters representing a valid integer and indicate some sort of error if this
check fails.

Note that in μFLEX it is possible to have well-typed programs that cannot
be executed nontrivially on any inputs. For example, consider the following
programs:

P1 = (flexk ((x t)) x)

P2 = (flexk ((f (-> (int) bool))) (f 5))

Both of these programs are well typed. But all μFLEX program inputs must
be literals, and no literal has a type identifier (such as t) or an arrow type
(such as (-> (int) bool)) as its type. So the execution of these programs on
any input will immediately get stuck at a bad-arg-type error. This awkward
situation could be avoided by modifying the μFLEX type system to restrict
declared program parameter types to be the types of valid inputs (i.e., base
types), in which case P1 and P2 would no longer be valid programs.

In order to prove the soundness of the μFLEX type system, we need to
define type and nontype errors in μFLEX. This is the purpose of the following
two lemmas, which can be proven via easy case analyses on the grammars for E
and E .
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Domains
Syntactic domains are from the μFLEX grammar (Figure 11.1 on page 628)
V ∈ ValueExp ::= L | (abs ((Iformal TformalType)

∗) Ebody)

IE ∈ InputExp ::= L

A ∈ AnsExp ::= L | procans

Reduction Relation (�)

((abs ((Ii Ti)
n
i=1) Ebody) En

i=1) � [Ei/Ii ]
n
i=1Ebody [β]

(let ((Ii Ei)
n
i=1) Ebody) � [Ei/Ii ]

n
i=1Ebody [let]

(letrec ((Ii Ti Ei)
n
i=1) Ebody)

� [(letrec ((Ik Tk Ek)
n
k=1) Ei)/Ii ]

n
i=1Ebody [letrec]

(the T E) � E [the]

The μFLEX reduction rules also include [if-T], [if-F], and application rules for
μFLEX primitives from the FL reduction relation shown in Figure 6.19 (page 259).

Evaluation Contexts
E ∈ EvalContext ::= � | (if E Ethen Eelse)

| (prim Oprimop V k−1
i=1 E En

j=k+1) | (E En
i=1)

Evaluation Relation (⇒)
E{E} ⇒ E{E ′}, where E � E ′

Figure 11.13 A context-based SOS for μFLEX, Part 1.

Lemma 11.2 (Decomposition of μFLEX Expressions) If E is not a
value expression V, then E can be uniquely decomposed into an evaluation
context E and expression E ′ having one of the forms

1. I

2. (if Vtest Ethen Eelse)

3. (Vrator En
i=1)

4. (let ((Ii Ei)
n
i=1) Ebody)

5. (letrec ((Ii Ti Ei)
n
i=1) Ebody)

6. (prim O V n
i=1)

7. (error Y T)

8. (the T E)

such that E = E{E ′}.
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SOS
The μFLEX SOS is defined by the tuple 〈Exp,⇒, ValueExp, IF ,OF 〉, where:

IF : (Prog× InputExp*)→ Exp
IF 〈(flexk ((I1 T1) . . . (In Tn)) Ebody), [IE1 , . . . , IE k ]〉

= if n 
= k then (error wrong-number-of-args int)

else if ∀i ∈ [1..n] .
(
typeinp [[IE i ]] = Ti

)
then [IE i/Ii ]

n
i=1Ebody

else (error bad-arg-type int) end
end

typeinp : InputExp→ Type
typeinp [[#u]] = unit

typeinp [[B ]] = bool

typeinp [[N ]] = int

typeinp [[(sym Y )]] = symb

OF : ValueExp→ AnsExp
OF L = L
OF (abs ((I T)∗) E) = procans

Behavior
behdet : (Prog× InputExp*)→ Outcome

behdet 〈P , IE∗〉 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(AnsExp�Outcome (OF Efin)) if Einit

∗⇒ Efin ∈ ValueExp

stuck if Einit
∗⇒ Efin 
⇒

and Efin 
∈ ValueExp

∞ if Einit
∞⇒

where Einit = (IF 〈P , IE∗〉)

Figure 11.14 A context-based SOS for μFLEX, Part 2.

That is, E = E{E ′} for a unique E ′ that cannot itself be expressed as a non-
trivial (non-�) evaluation context filled with something. E ′ is the next redex to
be reduced in the evaluation of E ; it cannot have one of the more general forms
(if Etest Ethen Eelse), (Erator En

i=1), or (prim O En
i=1), because the defini-

tion of evaluation contexts allows descending into a nonvalue Etest in an if, a
nonvalue Erator in an application, and a nonvalue operand Ei in a prim.

With the Decomposition Lemma, we can precisely characterize the μFLEX
configurations (i.e., expressions) that are stuck: the cases where E = E{E ′} and
E ′ does not match the left-hand side of a reduction rule (�):
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Lemma 11.3 (Characterization of μFLEX Stuck Expressions) If
E is a stuck expression in the μFLEX SOS, then it can be decomposed into
E{E ′} where E ′ has one of the following forms:

1. I

2. (if V Ethen Eelse), where V is not #t or #f

3. (V En
i=1), where V is not an abstraction

4. ((abs ((Ii Ti)
m
i=1) Ebody) En

j=1), where m 
= n

5. (prim O V n
i=1), where the number or type of arguments is incorrect

for O

6. (prim O N 0), where O is / or %

7. (error Y T)

We will classify forms 1–5 as dynamic type errors and forms 6–7 as dy-
namic nontype errors.12 Depending on the form of E ′, we will say that
E{E ′} is stuck at a type error or stuck at a nontype error.

Note that although a stuck expression E may be a let, letrec, or the expression,
the “place” E ′ where it is stuck cannot be one of these kinds of expressions.

The next section will show the soundness of the μFLEX type system by
showing that a well-typed program cannot encounter a dynamic type error —
that is, that the type rules prevent the dynamic type errors detailed above. In
fact, the type rules prevent even more errors than those we have classified as
dynamic type errors.

Because the μFLEX SOS does not keep track of the types of arbitrary expres-
sions, there are certain ill-typed expressions that we might wish would produce
dynamic type errors but will not become stuck in our SOS and thus are not
covered by Lemma 11.3:

• A procedure application with an operand of the wrong type, such as the applica-
tion ((abs ((x int)) Ebody) (= 1 2)). In this case, the SOS will substitute
(= 1 2) for x in Ebody even though x is supposed to have type int but (= 1 2)

has type bool.

• A letrec with a binding of the wrong type, such as

(letrec ((f (-> (int) bool) (abs ((x int)) x))) (f 3))

12In case 1, I is an unbound variable. Since no binding has provided a type for I , we can
consider the error to be a type error.
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Here the SOS will eventually substitute (abs ((x int)) x) for f in (f 3)

even though it has the type (-> (int) int) and not (-> (int) bool).

• A type ascription whose declared type does not match the value type, such as
(the bool (+ 1 2)). The SOS will rewrite this to (+ 1 2) even though it
has type int, not bool.

It is possible to modify the reduction rules to handle these cases using the typeof
function from Section 11.5.5. This is left as an exercise. The type soundness
proof can be extended to handle the resulting new cases of dynamic type errors.

Exercise 11.12 Using the typeof function, modify the reduction rules for the μFLEX
SOS so that the uncaught dynamic type errors discussed above lead to stuck configura-
tions. Think carefully about the type environment you should use for typeof.

11.6.3 Type Soundness of μFLEX

In this section, we present a proof of the type soundness for the μFLEX type
system. This proof will be our main example of formal reasoning involving types.
To avoid getting bogged down, we focus on a relatively high-level sketch of the
proof and offload numerous details to the exercises and the Web Supplement.

To state the type soundness theorem for μFLEX, we need to relate SOS
answers to types:

Definition 11.4 (μFLEX Answer Compatibility) An answer A in
AnsExp is compatible with a type T iff (1) A is a literal L and {} �
L :T or (2) A is the token procans and T is an arrow type.

Using this notion, we now formalize what we mean by type soundness in μFLEX:

Theorem 11.5 (Type Soundness of μFLEX) Suppose that μFLEX
program P is well typed with type (=> (Tn

i=1) Tans). Executing P on
inputs IEn

i=1 having corresponding types Tn
i=1 will either:

1. return an answer compatible with Tans ;

2. get stuck at a nontype error;

3. loop infinitely.

In particular, the execution of P will never get stuck at a type error.

In the first outcome, the program result type Tans must accurately describe
the answer computed by the program. This type is irrelevant in the other two
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outcomes, where no answer is returned. The theorem implies that the execution
of a μFLEX program on appropriate inputs cannot get stuck at a type error,
since this possibility is not allowed by any of the three outcomes.

In order to prove Theorem 11.5, we will first specialize the type soundness
recipe discussed on page 662 to μFLEX by proving the following two theorems:

Theorem 11.6 (Preservation for μFLEX) If {} � E :T and E ⇒ E ′

then {} � E ′ :T.

Theorem 11.7 (Progress for μFLEX) If {} � E :T then E is not
stuck at a type error.

The reason why both theorems use an empty type environment rather than an
arbitrary one is that the expressions in the theorems represent SOS configura-
tions, which in μFLEX must be closed expressions. Before we prove these two
theorems, we will establish three technical lemmas that simplify the presentation
of the proofs. After stating the three lemmas and sketching their justifications,
we will then prove the Preservation and Progress Theorems, and conclude by
proving the μFLEX Type Soundness Theorem.

The first lemma says that within a well-typed expression E , any free identifier
Ii with type Ti can be replaced by an expression Ei with type Ti without changing
the well-typedness of E :

Lemma 11.8 (Substitution) Suppose that TE [Ii :Ti ]
n
i=1 � E :T and

that ∀n
i=1 . TE � Ei :Ti . Then TE � [Ei/Ii ]

n
i=1E :T.

Intuitively, this is true because a type derivation for TE � [Ei/Ii ]
n
i=1E :T can be

constructed by starting with the type derivation for TE [Ii :Ti ]
n
i=1 � E :T and

replacing each leaf judgment of the form TE before � Ii :Ti by a derivation tree
rooted at the judgment TE after � Ei :Ti . The tricky aspect of formalizing this
intuition is choosing a TE after for each TE before that makes the new derivation
valid. A proof of the Substitution Lemma can be found in the Web Supplement.

The second lemma says that each SOS reduction E � E ′ preserves types:

Lemma 11.9 (Type Preservation of Reduction) If TE � E :T and
E � E ′ then TE � E ′ :T.

Proof: This lemma is proved by showing that it holds for each reduction rule
E � E ′ in Figure 11.13. Here we show that it holds for the [β] rule and leave
the other cases as an exercise (Exercise 11.13).
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Suppose that TJ is the type judgment

TE � ((abs ((Ii Ti)
n
i=1) Ebody) En

i=1) :T

Since ((abs ((Ii Ti)
n
i=1) Ebody) En

j=1) � [Ei/Ii ]
n
i=1Ebody , we need to show

that TE � [Ei/Ii ]
n
i=1Ebody :T . The type derivation for TJ must have the follow-

ing form:

TE [Ii :Ti ]
n
i=1 � Ebody :T

TE � (abs ((Ii Ti)
n
i=1) Ebody) : (-> (Tn

i=1) T) [→-intro]

∀n
i=1 . TE � Ei :Ti

TE � ((abs ((Ii Ti)
n
i=1) Ebody) En

i=1) :T [→-elim]

Thus, we deduce that TE [Ii :Ti ]
n
i=1 � Ebody :T and ∀n

i=1 . TE � Ei :Ti . The
Substitution Lemma (Lemma 11.8) implies that TE � [Ei/Ii ]

n
i=1Ebody :T , which

is what we need to show for this case. �

The third lemma is useful for reasoning about μFLEX configurations:

Lemma 11.10 (Context Filling) Suppose {} � E{E1} :T. Then:

1. there exists a type T1 such that {} � E1 :T1 ;

2. if {} � E ′
1 :T1 , then {} � E{E ′

1} :T.

The lemma uses empty type environments because configurations are guaranteed
to be closed expressions. Why? A well-typed program cannot have any free
variables, so the initial configuration (which is the result of substituting literal
values for program parameters in the program body) is also closed. All subsequent
configurations are closed because each SOS reduction step preserves the closed
property of the configuration.

The first part of the lemma is based on the fact that holes in evaluation
contexts do not appear in the scope of any identifiers (that is, holes do not appear
inside the body of a let, letrec, or abs expression). Since the configuration is
well typed in the empty environment (and therefore closed), this means that the
expression filling the hole must also be well typed in the empty environment (and
therefore closed). The second part of the lemma says that replacing the closed
expression filling the hole of a context with another closed expression of the same
type does not change the type of the filled context. Both parts are easy to prove
by induction on the structure of the evaluation context E (Exercise 11.14).
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Armed with Lemmas 11.8–11.10, we are now ready to prove the Preservation
Theorem, Progress Theorem, and Type Soundness Theorem for μFLEX.

Theorem 11.6 (Preservation for μFLEX) If {} � E :T and E ⇒ E ′

then {} � E ′ :T.

Proof: Suppose {} � E :T and E ⇒ E ′. We need to show {} � E ′ :T .
By the definition of ⇒, it must be that E = E{Eredex}, E ′ = E{E ′

redex}, and
Eredex � E ′

redex . So we are given {} � E{Eredex} :T and we need to show
{} � E{E ′

redex} :T .
By part 1 of the Context Filling Lemma (Lemma 11.10), there is a type Tredex

such that {} � Eredex :Tredex . By Type Preservation of Reduction (Lemma 11.9),
{} � Eredex :Tredex and Eredex � E ′

redex imply that {} � E ′
redex :Tredex . Finally,

by part 2 of the Context Filling Lemma, {} � E{E ′
redex} :T . �

Theorem 11.7 (Progress for μFLEX) If {} � E :T then E is not
stuck at a type error.

Proof: Suppose that {} � E :T — that is, E is well typed. Like any expression,
E is either reducible, a value expression, or stuck. We wish to show that E cannot
be stuck at a type error. By the Characterization of μFLEX Stuck Expressions
(Lemma 11.3), if E is stuck, it must have the form E{E ′}, where E ′ has one of
seven forms. By part 1 of the Context Filling Lemma, there is some type T ′ such
that {} � E ′ :T ′. A case analysis of the type-error forms (cases 1–5) shows that
none of them can be well typed:

1. E ′ = I : In an empty type environment, any identifier I is unbound, and so
it cannot be the case that {} � I :T ′.

2. E ′ = (if V Ethen Eelse), where V is not #t or #f: The [if ] type rule requires
{} � V : bool, but #t or #f are the only value expressions with type bool.

3. E ′ = (V En
i=1), where V is not an abstraction: The [→-elim] rule requires

{} � V :TV , where TV is an arrow type, but abstractions are the only value
expressions with an arrow type.

4. E ′ = ((abs ((Ii Ti)
m
i=1) Ebody) En

j=1), where m 
= n: If the abstraction
is well typed in the empty environment, the [→-intro] rule implies that its
type must have the form (-> (Tm

i=1) Tresult). But for the application of this
abstraction to be well typed, the [→-elim] rule requires that m = n.13

13The [→-elim] rule also requires that the parameter and argument types match, but a mis-
match would not result in a stuck expression in our SOS.
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5. E ′ = (prim O V n
i=1), where the number or type of arguments is incorrect

for O : The [prim] rule requires that the number and type of arguments must
be correct.

However, the nontype error forms can be well typed:

6. E ′ = (prim O N 0), where O is / or %: E ′ is well typed in the empty
environment by the [prim] rule and has type int because {} � N : int, {} �
0 : int, and TEprim � O : (-> (int int) int).

7. E ′ = (error Y T): By the [error] rule, {} � (error Y T) :T .

Since only the nontype errors can be well typed, E cannot be stuck at a type
error. �

Theorem 11.5 (Type Soundness of μFLEX) Suppose that μFLEX
program P is well typed with type (=> (Tn

i=1) Tans). Executing P on
inputs IEn

i=1 having corresponding types Tn
i=1 will either:

1. return an answer compatible with Tans ;

2. get stuck at a nontype error;

3. loop infinitely.

In particular, the execution of P will never get stuck at a type error.

Proof: Suppose that μFLEX program P has program type (=> (Tn
i=1) Tans).

The [prog] type rule implies that P has the form (flexk ((Ii Ti)
n
i=1) Ebody)

and {I1 :T1 , . . . , In :Tn} � Ebody :Tans . By the assumption that we have the
correct number of program inputs IEn

i=1 with the types specified by the program
parameters, we know that ∀n

i=1 . {} � IE i :Ti . By the Substitution Lemma
(Lemma 11.8), the initial configuration E0 = [IE i/Ii ]

n
i=1Ebody is well typed via

the judgment {} � E0 :Tans .
The evaluation path starting at E0 will either be an infinite path (outcome 3 in

Theorem 11.5) or a finite path E0 =
n
=⇒ En , where En is irreducible. By preservation

(Theorem 11.6), each Ei in the finite path will be well typed with the judgment
{} � Ei :Tans . By progress (Theorem 11.7), En is not stuck at a type error, so
it must either be stuck at a nontype error (outcome 2 in Theorem 11.5) or be a
final configuration (i.e., a value expression). If En is a value expression Vn , then
Vn has type Tans , and it is easy to see that the answer (OF Vn) is compatible
with Tans (outcome 1 in Theorem 11.5). �
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In Section 11.8, we will extend μFLEX to full FLEX by adding numerous
constructs. This affects the details of the SOS (e.g., there are new input ex-
pressions, value expressions, answer expressions, reduction rules, and evaluation
contexts) and the type soundness proof (e.g., type preservation must be shown
for each new reduction rule). However, the basic structure of the type soundness
proof for FLEX remains unchanged from μFLEX.

Exercise 11.13 For each of the following reduction rules in the μFLEX SOS (Fig-
ure 11.13), show that the Type Preservation of Reduction Lemma (Lemma 11.9) holds:

a. [+] (other primitive operators are similar)

b. [if-T] ([if-F] is similar)

c. [the]

d. [let]

e. [letrec]

Exercise 11.14 Prove both parts of the Context Filling Lemma (Lemma 11.10) by
structural induction on evaluation contexts.

Exercise 11.15

a. Modify the evaluation contexts and reduction rules for the μFLEX SOS in Fig-
ure 11.13 to express CBV semantics rather than CBN semantics for application, let,
and letrec.

b. Modify the Characterization of μFLEX Stuck Expressions (Lemma 11.3) to be con-
sistent with a CBV version of μFLEX.

c. Describe any modifications that need to be made to the μFLEX type soundness proof
to show type soundness for the CBV version of μFLEX.

Exercise 11.16 The FL language supports currying: the application of a procedure to
too few arguments returns another procedure that takes the remaining arguments. For
example, consider the following FL abstraction:

Elinear = (abs (a b x) (prim + (prim * a x) b))

• (Elinear 2 3 4) evaluates to 11;

• (Elinear 2 3) evaluates to a procedural value that is described by the abstraction
(abs (x) (prim + (prim * 2 x) 3));

• (Elinear 2) evaluates to a procedural value that is described by the abstraction
(abs (b x) (prim + (prim * 2 x) b)).
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As described, μFLEX does not support currying. The μFLEX analogue of the
Elinear abstraction is:

E ′
linear = (abs ((a int) (b int) (x int)) (prim + (prim * a x) b))

In μFLEX (E ′
linear 2 3 4) is well typed and evaluates to 11, but neither (E ′

linear 2 3)

nor (E ′
linear 2) is well typed.

In this exercise, you will modify μFLEX to support currying. In the curried version
of μFLEX, both (E ′

linear 2 3) and (E ′
linear 2) are well typed, but (E ′

linear 2 #t) and
(E ′

linear #u) are not well typed.

a. Modify the μFLEX type rules in Figure 11.7 to describe a version of μFLEX that
supports currying:

b. Using the modified type rules, (1) give type derivations showing that (E ′
linear 2 3)

and (E ′
linear 2) are well typed and (2) argue that (E ′

linear 2 #t) and (E ′
linear #u)

are not well typed.

c. Modify the dynamic semantics of μFLEX in Figure 11.13 to describe a version of
μFLEX that supports currying.

d. Modify the Characterization of μFLEX Stuck Expressions (Lemma 11.3) to be con-
sistent with a version of μFLEX that supports currying.

e. Describe the modifications that need to be made to the μFLEX type soundness proof
to show type soundness for the curried version of μFLEX.

11.7 Types and Strong Normalization

In general, the evaluation of μFLEX expressions may not terminate. Here is a
simple nonterminating expression:

(letrec ((loop (-> () unit) (abs () (loop))))

(loop))

It is unsurprising that a language with a recursion construct like letrec can
express infinite loops. But the following fact might come as a surprise: any well-
typed μFLEX program that does not use letrec is guaranteed to terminate!
That is, μFLEX−{letrec} is strongly normalizing.

The reason that this may come as a surprise is that the same fact does not
hold for FL−{rec}. Recall from page 263 that we can express an infinite loop
in FL using just abstractions, applications, and variables:

Eloop = ((abs (x) (x x)) (abs (x) (x x)))

The fact that μFLEX−{letrec} is strongly normalizing implies that it is im-
possible to annotate Eloop with explicit types so that it is a well-typed μFLEX
expression.
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Why is μFLEX−{letrec} strongly normalizing? Intuitively, μFLEX pro-
cedure types significantly constrain the way in which procedures can be used.
It turns out that procedure types can be used to define an energy function on
μFLEX−{letrec} expressions that strictly decreases when certain beta reduc-
tions are performed, and this energy function can be used to show that evaluation
in μFLEX−{letrec} must terminate (see the Web Supplement for details). In
particular, for n > 1, it is impossible to have a typed version E ′

loop of Eloop such

that E ′
loop =

n
=⇒ E ′

loop because the energy of E ′
loop would not have decreased even

though beta reductions were performed.
Does μFLEX−{letrec} remain strongly normalizing if we extend it to sup-

port FLK-like simplification steps (see Section 6.4.2) — i.e., reductions in any
context as opposed to reductions only in evaluation contexts? Unlike evalua-
tion, which is deterministic in μFLEX−{letrec}, simplification is not deter-
ministic — in general, there may be many different simplification steps that
can be performed on a given expression. Strong normalization of evaluation in
μFLEX−{letrec} means that the unique evaluation path is finite. In contrast,
strong normalization of simplification would mean that all simplification paths
are finite.

Remarkably, even simplification in μFLEX−{letrec} is strongly normal-
izing! This can be shown by adapting to μFLEX−{letrec} techniques from
the literature for proving the strong normalization of beta reduction in what is
known as the simply typed lambda calculus, the subset of μFLEX includ-
ing only single-parameter abstractions, single-operand applications, and variable
references. Adding the additional features of μFLEX (except letrec) does not
change this result. So any simplification strategy in μFLEX−{letrec} is guar-
anteed to terminate, regardless of the order in which the simplifications are per-
formed.

How important are these strong normalization results? Most realistic pro-
grams are likely to use looping/recursion constructs like letrec, so the results
are unlikely to be of much use to the typical programmer. However, compiler
writers care about these results because they guarantee that certain rewriting
processes will terminate when performed on parts of a program that don’t use
looping/recursion constructs. The results are also important for the designers
and implementers of statically typed languages. As we shall see in Section 12.3.2,
powerful type systems include features at the type level (e.g., abstractions and
applications) that are similar to the features μFLEX has at the expression level.
Strong normalization at the type level means that types mentioning user-defined
type abstractions can be normalized and guarantees that type checkers for these
languages will terminate.
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Syntax

E ::= . . . | (pair Efst Esnd) | (fst Epair) | (snd Epair)

T ::= . . . | (pairof Tfst Tsnd)

Type Rules

TE � Efst :Tfst TE � Esnd :Tsnd

TE � (pair Efst Esnd) : (pairof Tfst Tsnd)
[pairof-intro]

TE � Epair : (pairof Tfst Tsnd)

TE � (fst Epair) :Tfst
[pairof-elim-fst]

TE � Epair : (pairof Tfst Tsnd)

TE � (snd Epair) :Tsnd
[pairof-elim-snd]

Figure 11.15 Static semantics of pairs in FLEX.

11.8 Full FLEX: Typed Data and Recursive Types

We now extend μFLEX to full FLEX by adding typed versions of the forms of
data studied in Chapter 10, the mutable cells and mutable variables studied in
Chapter 8, and recursive types. We will see that the goal of maintaining static
type checking constrains the ways in which we create and manipulate some data
structures.

Since we have already studied the dynamic semantics (i.e., evaluation rules)
of all the constructs covered in this section, we will not describe how to extend
the μFLEX SOS to handle each construct. Instead, we will focus on the static
semantics (i.e., type rules). It is possible to extend the type soundness proof for
μFLEX to full FLEX, but we will not present the details of this proof. Each
new construct preserves the fundamental monomorphic nature of μFLEX (as
embodied in Theorem 11.1), so every well-typed FLEX expression in a given type
environment has a unique type (modulo the notion of type equivalence discussed
in Section 11.8.2).

11.8.1 Typed Products

Pairs

Figure 11.15 shows the syntax and type rules needed to extend FLEX with pairs,
the simplest kind of product. Types formed by the pairof type constructor keep
track of the types of the first and second components of a pair. This type is
introduced by the pair construct and eliminated by either fst or snd. For
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Syntax

E ::= . . . | (prod E∗
component) | (get Nindex Eprod)

T ::= . . . | (prodof T ∗
component)

Type Rules
∀n

i=1 . TE � Ei :Ti

TE � (prod En
i=1) : (prodof Tn

i=1)
[prodof-intro]

TE � Eprod : (prodof Tn
j=1)

TE � (get Nindex Eprod) :Ti
[prodof-elim]

where i = N [[Nindex ]] and 1 ≤ i ≤ n

Figure 11.16 Static semantics of immutable positional products (tuples) in FLEX.

example, the expression (pair (+ 1 2) (pair (= 3 4) (sym yes))) has the
type (pairof int (pairof bool symb)).

Although fst and snd are primitive operators in FL, they cannot be primitive
operators in FLEX because of the monomorphic nature of the language. For
example, the [pairof-elim-fst] rule says that fst returns a value whose type is
the first type component of the type (pairof Tfst Tsnd). Without some form of
polymorphism (see Section 12.2) it is not possible to describe this behavior via a
single type assignment for fst in the primitive type environment.

The type rules for pairs (and the other products we study) are the same
regardless of whether they are strict or nonstrict.14 A product component ex-
pression that does not terminate or signals an error must be given the same type
in either case.

Tuples

Pairs can be generalized to tuples (positional products with an arbitrary number
of components), whose syntax and type rules are presented in Figure 11.16. The
prodof type tracks the number of components and type of each component in a
product value. For example, the type of

(prod (+ 1 2) (= 3 4) (abs (x) (> x 5)))

is

(prodof int bool (-> (int) bool))

14Using the naming conventions of Section 10.1.3, we would have to replace prod by
nprod/lprod and get by nget/lget in the type rules.
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Syntax

E ::= . . . | (seq E∗
component) | (seq-get Eindex Eseq) | (seq-size Eseq)

T ::= . . . | (seqof Tcomponent)

Type Rules
∀n

i=1 . TE � Ei :T
TE � (seq En

i=1) : (seqof T)
[seqof-intro]

TE � Eindex : int TE � Eseq : (seqof T)

TE � (seq-get Eindex Eseq) :T
[seqof-elim]

TE � Eseq : (seqof T)

TE � (seq-size Eseq) : int
[seqof-size]

Figure 11.17 Static semantics of sequences in FLEX.

The [prodof-elim] rule clarifies why the index in a get form must be an explicit
integer literal rather than the result of evaluating an arbitrary expression. Oth-
erwise, the type checker would not “know” which component was being extracted
and different types could not be allowed at different indices.

Sequences

Recall from Section 10.1.1 that sequences differ from tuples in that the index
used to project a tuple component must be an integer literal while the index used
to project a sequence component can be the result of evaluating an arbitrary
expression that denotes an integer. The simplest way to handle sequences in a
typed setting (Figure 11.17) is to require all sequence components to have the
same type T , in which case the type of a sequence can be written (seqof T). We
can then reason that performing seq-get on a sequence of type (seqof T) yields
a component of type T regardless of which index is specified. Thus, computable
indices (at least in simple type systems) imply homogeneous products, but explicit
integer indices permit heterogeneous products.

Records

Handling named products in a typed language requires additional complexity.
As shown in Figure 11.18, the recordof type associates record field names with
types. Although the [recordof-elim] rule is concise, the ellipses in the premise type
(recordof . . . (I T) . . .) obscure the fact that the type checker must somehow
find the binding associated with the selected field name in the list of name/type
associations. Moreover, the fact that the name/type associations may be in any
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Syntax

E ::= . . . | (record (Iname Edefn)
∗) | (select Iname Ercd) | (with Ercd Ebody)

T ::= . . . | (recordof (Iname Tdefn)
∗)

Type Rules
∀n

i=1 . TE � Ei :Ti

TE � (record (Ii Ei)
n
i=1) : (recordof (Ii Ti)

n
i=1)

[recordof-intro]

TE � E : (recordof . . . (I T) . . .)
TE � (select I E) :T

[recordof-elim]

TE � Ercd : (recordof (Ii Ti)
n
i=1) TE [Ii :Ti ]

n
i=1 � Ebody :Tbody

TE � (with Ercd Ebody) :Tbody
[recordof-with]

Figure 11.18 Static semantics of records in FLEX.

order complicates the notion of type equivalence — an issue that we discuss next
in Section 11.8.2.

The record operations in Figure 11.18 include (with Ercd Ebody), a statically
typed analog of the (with-fields (I ∗) Ercd Ebody) construct introduced on
page 355 for the dynamically typed FL language. This construct evaluates Ebody

in an environment that extends the current environment with the bindings from
the record value of Ercd . In a dynamically typed language, the explicit identifier
list I ∗ in with-fields is necessary to declare the names that will be extracted
from the record value; otherwise the free identifiers of with-fields cannot be
determined. But in the statically typed with construct, an explicit identifier list
is not necessary because it can be determined from the type of the record value.15

Other record constructs are considered in Exercise 11.18.

Exercise 11.17 Consider extending FLEX with a construct (pair=? Epair1
Epair2

)

that returns true if the respective components of the pair values of Epair1
and Epair2

are
equal, and returns false otherwise.

a. Give a type rule for pair=?.

b. In dynamically typed FL, write pair=? as a user-defined procedure (using the generic
equal? procedure to compare components).

c. In FLEX, is it possible to write pair=? as a user-defined procedure? Explain.

15Because of this, the FrIds function in full FLEX must take an additional type environment
argument in order to determine the type of the record expression in the with construct. However,
we will typically omit this argument in discussions of FLEX and its extensions.
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Exercise 11.18 Give a type rule for each of the following record constructs presented
in the earlier discussion of records (pages 353–356):

a. (conceal (I ∗
name) Ercd)

b. (override Ercd1
Ercd2

)

c. (recordrec (Iname Edefn)
∗)

d. (restrict (I ∗
name) Ercd)

e. (rename (IoldName I ′
newName)

∗
Ercd)

11.8.2 Type Equivalence

Before the introduction of recordof types, it was reasonable to assume that
two types were equivalent if and only if they were syntactically identical. This
assumption is no longer valid in the presence of recordof types, because two
recordof types with different binding orders can be considered equal. For
example, (recordof (a int) (b bool)) and (recordof (b bool) (a int))

are equivalent types.
One way to handle record-type equivalence is to require that all recordof

types be put into a canonical form — e.g., with name/type associations alpha-
betically ordered by name. However, not all forms of type equivalence we will
discuss are easily addressed by canonical forms. So here we will instead develop
a collection of rules that formalize when types T1 and T2 are equivalent, written
T1 ≈ T2 . In this approach, two types are equivalent if and only if a proof of
equivalence can be derived from the rules.

Figure 11.19 presents a collection of type-equivalence rules for the FLEX
types studied thus far. The [reflexive-≈], [symmetric-≈], and [transitive-≈] rules
guarantee that ≈ is an equivalence relation. The [→-≈], [pairof-≈], [prodof-≈],
and [seqof-≈] rules ensure that ≈ is a congruence over the ->, pairof, prodof,
and seqof type constructors — that is, that the constructed types are equivalent
if their component types are equivalent.16 The [recordof-≈] rule allows the field-
name/type associations of a recordof type to appear in permuted order as long
as the types associated with each field name are equivalent.

How do we use type equivalence in proofs of well-typedness? The approach
we adopt in Figure 11.20 is to introduce a new type rule, [type-≈], that allows
a judgment TE � E :T ′ to be transformed to the judgment TE � E :T when
T ′ ≈ T .

16Suppose D is a recursive domain with a constructor C :Dn → D. Then an equivalence
relation =R on D is a congruence over C iff applications of C are equivalent when their
operands are equivalent: (∀n

i=1 . di =R d ′
i) implies (C d1 . . . dn) =R (C d ′

1 . . . d ′
n).
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T ≈ T [reflexive-≈]

T1 ≈ T2

T2 ≈ T1
[symmetric-≈]

T1 ≈ T2 T2 ≈ T3

T1 ≈ T3
[transitive-≈]

∀n
i=1 . (T ′

i ≈ Ti) T ′
body ≈ Tbody

(-> (T ′n
i=1) T ′

body) ≈ (-> (Tn
i=1) Tbody)

[→-≈]

∀2
i=1 . (T ′

i ≈ Ti)
(pairof T ′

1 T ′
2) ≈ (pairof T1 T2)

[pairof-≈]

∀n
i=1 . (T ′

i ≈ Ti)
(prodof T ′n

i=1) ≈ (prodof Tn
i=1)

[prodof-≈]

T ′ ≈ T
(seqof T ′) ≈ (seqof T)

[seqof-≈]

∀n
i=1 . ∃j ∈ [1..n] .

((
I ′
j = Ii

)
∧

(
T ′

j ≈ Ti

))
(recordof (I ′

j T ′
j )

n
j=1) ≈ (recordof (Ii Ti)

n
i=1)

[recordof-≈]

Figure 11.19 Type-equivalence rules for FLEX.

TE � E :T ′ T ′ ≈ T
TE � E :T

[type-≈]

Figure 11.20 Type rule for using type-equivalence information in type derivations.

Rather than having a separate [type-≈] rule, an alternative approach would
be to embed type-equivalence conditions into the other type rules. For example,
we could modify the [if ] rule to include explicit type-equivalence premises as
follows:

TE � Etest :Ttest TE � Ethen :Tthen TE � Eelse :Telse

Ttest ≈ bool Tthen ≈ Telse Tthen ≈ Tresult

TE � (if Etest Ethen Eelse) :Tresult

[if ′]

With the introduction of type equivalence, the μFLEX type uniqueness the-
orem needs to be tweaked in order to hold for FLEX. In particular, the types of
well-typed FLEX expressions are unique only modulo type equivalence.
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Syntax

E ::= . . . | (begin E1 E2) | (set! Ivar Eval)

| (cell Econtent) | (^ Ecell) | (:= Ecell Eval) | (cell=? E1 E2)

T ::= . . . | (cellof Tcontent)

Syntactic Sugar

(begin) �ds #u

(begin E) �ds E

(begin E1 E2 E∗
rest) �ds (begin E1 (begin E2 E∗

rest))

Type Rules
∀2

i=1 . TE � Ei :Ti

TE � (begin E1 E2) :T2
[begin]

TE � Ivar :T TE � Eval :T
TE � (set! Ivar Eval) : unit

[assign]

TE � Econtent :Tcontent

TE � (cell Econtent) : (cellof Tcontent)
[cellof-intro]

TE � Ecell : (cellof T)

TE � (^ Ecell) :T
[cellof-elim]

TE � Ecell : (cellof Tval) TE � Eval :Tval

TE � (:= Ecell Eval) : unit
[cell-set]

∀2
i=1 . TE � Ei : (cellof T)

TE � (cell=? E1 E2) : bool
[cell-eq]

Type Equivalence
T1 ≈ T2

(cellof T1) ≈ (cellof T2)
[cellof-≈]

Figure 11.21 Static semantics of mutable cells and mutable variables in FLEX.

11.8.3 Typed Mutable Data

Mutable variables and mutable data (such as mutable cells, tuples, records, and
arrays) are straightforward to handle in an explicitly typed framework. The type
rules for mutable variables and mutable cells are presented in Figure 11.21. Both
subexpressions of a begin construct are required to be well typed, but only the
type of the second expression appears in the result type. In the [assign] rule, the
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new value for the mutable variable Ivar is constrained to have the same type as
the value already in the variable. The unit result type of the set! construct
indicates that it is performed for its side effect, not for its value.

The cellof type constructor tracks the type of the content of a cell. The
content type is determined in the [cellof-intro] rule. It is used in the [cellof-elim]
rule to determine the type of a cell reference, in the [cell-set] rule to constrain
the new value to have the same type as the value already in the cell, and in the
[cell-eq] rule to constrain the contents of the two argument cells to have the same
type. Like set!, := is performed for its side effect, not for its value. As with the
pair operators fst and snd, FLEX’s lack of polymorphism prevents treating the
cell operators ^, :=, and cell=? as primitive operators.

The type rules in Figure 11.21 are sound regardless of which parameter-
passing mechanism is employed by μFLEX. When using the imperative features
of FLEX in examples, we will generally assume CBV semantics, but we could
just as well use CBN, CBL, or CBR semantics.

Note that Figure 11.21 includes a type-equivalence rule for cellof types.
From now on, we must specify type-equivalence rules for each new type construc-
tor in order to test for equivalence on the types it constructs.

11.8.4 Typed Sums

Recall from Section 10.2 that sums (such as oneof values) are used to express
that a datum can be one of several different kinds of values. Conceptually, a
oneof value pairs a tag indicating the “kind of value” with a payload value of
the appropriate kind. In practice, sums are commonly used in conjunction with
products to create sum-of-products data.

Oneofs can be incorporated into FLEX with the following expressions and
types:

E ::= . . . | (one Toneof Itag Epayload)

| (tagcase Edisc Ipayload (Itag Ebody)
∗ (else Eelse)

?)

T ::= . . . | (oneof (Itag Tpayload)
∗)

A oneof type lists all possible tags of a oneof value along with the types of their
associated payloads. For example, the following shape type is an abbreviation
for a oneof type with three tags:

(def-type shape

(oneof (square int) {payload = side length}
(rectangle (pairof int int)) {payload = width and height}
(triangle (prodof int int int)) {payload = three side lengths}

))
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Such abbreviations enhance code readability; any shape-manipulation procedures
would be more verbose without the abbreviation. We could have consistently used
prodof or recordof types for all of the oneof components, but have chosen to
use different type constructors for different components just to show that this is
possible.

Before we study the type rules for one and tagcase, we will consider a few
motivating examples. The following perim procedure calculates the perimeter of
a shape:

(def perim (-> (shape) int)

(abs ((sh shape))

(tagcase sh v

(square (* 4 v))

(rectangle (* 2 (+ (fst v) (snd v))))

(triangle (+ (get 1 v) (+ (get 2 v) (get 3 v)))))))

The tagcase construct performs a case analysis on the three possible tags of
the discriminant shape sh. Each tagcase clause uses the identifier v to name
the payload of the discriminant in the body of the clause. Since the payloads
have different types for different tags, v must assume a different type in different
clauses: v has type int in the square clause, type (pairof int int) in the
rectangle clause, and type (prodof int int int) in the triangle clause.

The following scale procedure, which scales a shape sh by a scaling factor n,
illustrates the oneof introduction construct (one Toneof Itag Epayload):

(def scale (-> (shape int) shape)

(abs ((sh shape) (n int))

(tagcase sh v

(square (one shape square (* n v)))

(rectangle (one shape rectangle

(pair (* n (fst v)) (* n (snd v)))))

(triangle (one shape triangle

(prod (* n (get 1 v))

(* n (get 2 v))

(* n (get 3 v))))))))

Note that the one construct explicitly specifies the type Toneof of the resulting
oneof value. This is necessary to preserve the monomorphism property of FLEX
— i.e., the type of any FLEX expression in a given type environment is unique
(up to type equivalence) and can be determined without any guessing.

The type rules for one and tagcase are presented in Figure 11.22. The
[oneof-intro] rule simply assigns a one expression the specified oneof type Toneof

after verifying that the type of the payload expression Epayload is the payload type
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Syntax

E ::= . . . | (one Toneof Itag Epayload)

| (tagcase Edisc Ipayload (Itag Ebody)
∗ (else Eelse)

?)

T ::= . . . | (oneof (Itag Tpayload)
∗)

Type Rules
TE � Epayload :Tpayload

TE � (one Toneof Itag Epayload) :Toneof
[oneof-intro]

where Toneof = (oneof . . . (Itag Tpayload) . . .)

TE � Edisc : (oneof (Ii Ti)
n
i=1)

∀n
i=1 . TE [Ipayload :Ti ] � Ei :Tresult

TE � (tagcase Edisc Ipayload (Ii Ei)
n
i=1) :Tresult

[oneof-elim1]

where 1 ≤ n

TE � Edisc : (oneof (Ii Ti)
n
i=1)

∀k
i=1 . TE [Ipayload :Ti ] � Ei :Tresult TE � Eelse :Tresult

TE � (tagcase Edisc Ipayload (Ii Ei)
k
i=1 (else Eelse)) :Tresult

[oneof-elim2]

where k ≤ n

Type Equivalence
∀n

j=1 . ∃i ∈ [1..n] .
((

I ′
j = Ii

)
∧

(
T ′

j ≈ Ti

))
(oneof (I ′

j T ′
j )

n
j=1) ≈ (oneof (Ii Ti)

n
i=1)

[oneof-≈]

Figure 11.22 Static semantics of oneofs in FLEX.

Tpayload in Toneof . Note that the order of tagged types in a oneof type is irrelevant
because they can be rearranged according to the [oneof-≈] type equivalence rule.

There are two type rules for tagcase: [oneof-elim1] handles the case with no
else clause and [oneof-elim2] handles the case with an else. In each tagcase

clause (Ii Ei), the body Ei is type-checked in a type environment extended with
a binding of the name Ipayload to the type Ti associated with the tag Ii in the
oneof type of the discriminant. All clause bodies (including any else clause
body Eelse) must have the same type (Tresult), which is the type of the whole
tagcase expression. Note that a well-typed else-less tagcase expression must
have at least one clause of the form (Ii Ei) in order to preserve the monomor-
phism property of FLEX (because the result type of a clauseless body would be
unconstrained).

For simplicity, the [oneof-elim1] rule requires that the order of tags in the
tagged types in the oneof type be the same as the order of tags in the tagged
clauses in the tagcase construct. In the [oneof-elim2] rule, the ordered tags in a
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(flavar (n) (test (make-cell))

(def (make-cell)

(let ((val #u))

(record

(get (abs () (if (int? val) val (error uninitialized))))

(init (abs (v) (set! val v)))

(set (abs (v)

(if (int? val)

(let ((old val)) (begin (set! val v) old))

(error uninitialized)))))))

(def (test c)

(begin ((select init c) 2)

(* ((select set c) n)

((select get c))))))

Figure 11.23 A sample CBV FLAVAR program for Exercise 11.20.

tagcase expression with an else clause may be a prefix of the ordered tags in the
oneof type. If the order were different, it would be necessary to use the [type-≈]
type rule in conjunction with the [oneof-≈] type equivalence rule to reorder the
tagged types appropriately within the oneof type.

In the [oneof-elim2] rule, note that the name Ipayload cannot be referenced
within the else expression Eelse . The type of the payload of the discriminant
value is unknown in this case. To maintain type soundness, the type system
forbids references to Ipayload within Eelse . This is consistent with the dynamic
semantics for tagcase studied in Section 10.2.

Exercise 11.19 Construct type derivations showing that the abstractions in the perim

and scale definitions are well typed.

Exercise 11.20 Using recordof and oneof types, translate the CBV FLAVAR pro-
gram in Figure 11.23 to a well-typed FLEX program that exhibits similar structure. We
assume here that FLAVAR supports records.

11.8.5 Typed Lists

The shape examples from the previous section show that simple sum-of-products
data types can be expressed in FLEX by composing sums and products. How-
ever, as it stands, FLEX does not have the power to express recursively struc-
tured sum-of-products data types like lists and trees. Here we extend FLEX with
a built-in list data type. In Section 11.8.6, we extend FLEX with a recursive
type mechanism that allows lists and trees to be constructed by programmers.
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Syntax

E ::= . . . | (cons Ehead Etail) | (car Elist) | (cdr Elist)

| (null Telt) | (null? Elist)

T ::= . . . | (listof Telt)

Syntactic Sugar
(list T) �ds (null T)

(list T E1 E∗
rest) �ds (cons E1 (list T E∗

rest))

Type Rules
TE � Ehead :T TE � Etail : (listof T)

TE � (cons Ehead Etail) : (listof T)
[cons]

TE � Elist : (listof T)

TE � (car Elist) :T
[car]

TE � Elist : (listof T)

TE � (cdr Elist) : (listof T)
[cdr]

TE � (null T) : (listof T) [null]

TE � Elist : (listof T)

TE � (null? Elist) : bool
[null? ]

Type Equivalence
T1 ≈ T2

(listof T1) ≈ (listof T2)
[listof-≈]

Figure 11.24 Static semantics of lists in FLEX.

Figure 11.24 presents the essence of typed lists in FLEX. Unlike in FL, where
lists are just sugar for idiomatic uses of pairs, FLEX supplies kernel constructs
for creating empty lists (null), creating nonempty lists (cons), decomposing
nonempty lists (car and cdr), and testing for empty lists (null?). All of these
manipulate values of types created with the listof type constructor. The type
(listof T) describes lists whose elements all have the same type T . FLEX
lists are said to be homogeneous, in contrast to the heterogeneous lists of
FL. To model heterogeneous lists within FLEX, such as a list of integers and
booleans, it is necessary to inject the different types into an explicit sum type.

To preserve the monomorphism property of FLEX, the null construct in-
cludes the element type of the empty list, which cannot otherwise be determined
except by guessing. So (null int) is an empty integer list, (null bool) is an
empty boolean list, and (null (listof int)) is an empty list of integer lists.
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Because each empty list has an explicit type, the list syntactic sugar construct
must also be modified to have an explicit element type, as in (list int 5 2 3).

In a monomorphic language like FLEX, it is not possible for the programmer
to define generic list-processing procedures like map, filter, and foldr that work
for any list, but it is possible to define specialized versions that work on lists with
particular types. For example, here is a mapping procedure that maps a list of
shapes to a list of integers:

(def map-shape-int (-> ((-> (shape) int) (listof shape))

(listof int))

(abs ((f (-> (shape) int)) (ss (listof shape)))

(if (null? ss)

(null int)

(cons (f (car ss))

(map-shape-int f (cdr ss))))))

(map-shape-int perim

(list shape

(one shape rectangle (pair 4 5))

(one shape triangle (product 7 8 9))

(one shape square 3))) −−−−−FLEX→ �18 , 24 , 12 �

Exercise 11.21 Translate each of the following FL expressions into a well-typed FLEX
expression by (1) adding explicit type annotations, (2) introducing oneofs when necessary,
and (3) duplicating expressions when necessary.

a. (letrec ((map (abs (f xs)

(if (null? xs)

(null)

(cons (f (car xs)) (map f (cdr xs)))))))

(map (abs (x) (if (bool? x) (if x 1 0) (= 0 (% x 2))))

(list 2 3 #t #f 6)))

b. (abs (b)

(letrec ((gen (abs (seed next done?)

(if (done? seed)

(null)

(cons seed (gen (next seed) next done?)))))

(foldr (abs (binop init xs)

(if (null? xs)

init

(binop (car xs)

(foldr binop init (cdr xs)))))))

(let ((ns (gen b (abs (x) (- x 1)) (abs (y) (= y 0)))))

(if (foldr (abs (x y) (or (> x 3) y)) #f ns)

(foldr (abs (x y) (cons (= 0 (% x 2)) y)) (null) ns)

(gen #t (abs (x) (not x)) (abs (y) y))))))
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11.8.6 Recursive Types

Recursive procedures often manipulate recursively structured data that cannot
be described in terms of compound types alone. trec and tletrec (Figure 11.25)
are used to specify the types of such data.

trec allows the specification of a single recursive type in the same manner
that the FL rec construct specifies a single recursive value. For example, here
trec is used to specify the type of a binary tree with integer leaves:

(trec int-tree

(oneof (leaf int)

(node (recordof (left int-tree)

(right int-tree)))))

In the literature, recursive types are often expressed using μ notation. For exam-
ple, the FLEX type (trec t (pairof int (pairof bool t))) is traditionally
written μt.int× (bool× t).

tletrec is the type-domain analogue to letrec. It permits a mutually re-
cursive set of named types to be used in a body type. For example, here is a use
of tletrec to specify a binary tree that has integers at odd-numbered levels and
booleans at even-numbered levels:

(tletrec ((int-level (oneof (leaf int)

(node (recordof (left bool-level)

(right bool-level)))))

(bool-level (oneof (leaf bool)

(node (recordof (left int-level)

(right int-level))))))

int-level)

Just as letrec can be expressed as sugar for rec in FL, it is possible to express
tletrec as sugar for trec. But since this is cumbersome, tletrec is provided
as a kernel type construct.

Both trec and tletrec are binding constructs for type identifiers, so it is
necessary to extend the FrTyIdsty function appropriately to handle them.

Introducing recursive types into a programming language can change its ter-
mination properties. In particular, although μFLEX−{letrec} is strongly nor-
malizing, FLEX−{letrec} is not strong normalizing. For example, as explored
in Exercise 11.24, recursive types make it is possible to annotate the looping
FL expression ((abs (x) (x x)) (abs (x) (x x))) with types to yield a well-
typed FLEX expression.

What does it mean for two recursive types to be equivalent? For example,
consider the four types in Figure 11.26. All of the types describe infinite lists of
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T ::= . . . | (trec τname Tbody) | (tletrec ((τname Tdefn)
∗) Tbody)

Figure 11.25 Syntax for recursive types in FLEX.

Tib1 = (trec iblist (pairof int (pairof bool iblist)))

Tib2 = (trec int-bool-list (pairof int (pairof bool int-bool-list)))

Tib3 = (pairof int

(pairof bool

(trec iblist (pairof int (pairof bool iblist)))))

Tib4 = (pairof int (trec bilist (pairof bool (pairof int bilist))))

Figure 11.26 Four types describing infinite lists with alternating integer and boolean
values.

(trec τ T) ≈ (trec τnew [τnew/τ ]T) where τnew 
∈ FrTyIdsty [[T ]] [trec-α]

(trec τ T) ≈ [(trec τ T)/τ ]T [trec-β]

Figure 11.27 Isorecursive type-equivalence rules for trec types.

alternating integer and boolean values. Tib2 is a copy of Tib1 in which the trec-
bound type identifier has been consistently renamed. Tib3 is a copy of Tib1 in
which the definition of iblist has been unwound one level. In Tib4 , the recursive
type bilist describes an infinite list of alternating boolean and integer values.
Which pairs of these four types are equivalent?

We shall study two common approaches for determining the type equivalence
of recursive types expressed via trec. (These can be extended to handle tletrec
as well.) The so-called isorecursive approach to formalizing type equivalence
is based on the two type-equivalence rules shown in Figure 11.27. The [trec-α]
rule says that the name of the bound variable in a trec doesn’t matter. So
Tib1 ≈ Tib2 via [trec-α]. The [trec-β] rule says that a trec type is equivalent to
the result of substituting the entire trec type expression for its bound identifier
in the body of the trec. So Tib1 ≈ Tib3 via [trec-β], and Tib2 ≈ Tib3 by the
symmetry and transitivity of type equivalence.

Can Tib4 be shown to be equivalent to Tib1 , Tib2 , or Tib3 using [trec-α] and
[trec-β]? No! We can prove this via the following observation. In each of Tib1 ,
Tib2 , and Tib3 , the number of occurrences of the type int is equal to the number
of occurrences of the type bool. In Tib4 , the number of occurrences of int is one
more than the number of occurrences of bool. Since each application of [trec-α]



690 Chapter 11 Simple Types

and [trec-β] preserves the difference between the number of occurrences of int
and of bool, Tib4 can never be shown to be equivalent to the other types via
these rules.

There is another approach to recursive type equivalence in which Tib4 is equiv-
alent to the other types. In this so-called equirecursive approach, two recursive
types are considered to be equivalent if their complete (potentially infinite) un-
windings are equal. Under this criterion, all four of the types in Figure 11.26
are equivalent, because all of them unwind to an infinite type describing a list of
alternating integers and booleans:

(pairof int (pairof bool (pairof int (pairof bool . . .))))

In our subsequent discussion of types, equirecursive type equivalence will be as-
sumed unless explicitly stated otherwise.

There are two ways to formalize equirecursive type equivalence: canonical
forms for recursive types and type-equivalence rules with assumptions.

Canonical Forms for Recursive Types

The complete unwinding of a type can be viewed as a (potentially infinite) ab-
stract syntax tree whose leaves are base types and type identifiers and whose
nodes are type constructors (->, pairof, cellof, etc.). Even though it may be
infinite, any tree generated in this fashion has the property that it contains only
a finite number of distinct subtrees — the defining property of a regular tree.
Such a tree is called “regular” because it can be described by a finite-state au-
tomaton accepting a language that describes all paths down the tree beginning at
its root. For instance, here is a depiction of a finite-state automaton describing
the types Tib1 through Tib4 (assume PairState1 is the start state and all states
are final states):

PairState1 PairState2

IntState BoolState

EndState

pair-snd

pair-sndpair-fst pair-fst

int bool
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There is a straightforward correspondence between FLEX type expressions and
such automata. Since finite-state automata can be minimized, FLEX type ex-
pressions can also be “minimized” to a canonical form. So FLEX type equiva-
lence can be determined by finding the canonical forms of two type expressions
and checking if they are the same.

Type-Equivalence Rules with Assumptions

Another approach to checking equirecursive type equivalence is a recursive “two-
finger” process that simultaneously explores the tree structures denoted by two
type expressions,T1 and T2 . If a difference is detected between the two trees,
the types are not equivalent. But if both trees are completely explored without
detecting a difference, they must be equivalent.

The process compares the types pointed to by two “fingers,” initially T1

and T2 . If both fingers point to the same base type or the same childless type
constructor (e.g., the empty product type (prodof)), the comparison of the types
currently pointed at by the fingers succeeds. If both fingers point to a type with
the same type constructor and the same number of children, the process checks
the equivalence of the corresponding children in turn. If either finger points to a
trec (or tletrec) type, that type is unwound and the comparison is performed
again. In any other case, a difference is detected between the two types. The
comparison process continues until a difference is detected (in which case T1 and
T2 are not equivalent) or there are no more comparisons to perform (in which
case T1 and T2 are equivalent).

As described, this comparison process has a problem: it may not terminate for
types that denote infinite trees. This can be fixed by adopting a strategy similar to
that of a person exploring a maze with cyclic paths: dropping breadcrumbs along
the path already taken makes it possible to avoid taking any path more than once.
In the realm of type equivalence, the analogue of breadcrumbs is the set of type
pairs that have already been visited by the two fingers. We will call each such pair
〈T ,T ′〉 an assumption because the types are assumed to be equivalent. If the
process encounters a comparison of two types in an assumption, the comparison
succeeds because no evidence contradicting the assumed equivalence has been
discovered since the last time the two types were encountered. Because T1 and T2

are finite expressions, there can be only a finite number of assumptions involving
their parts. Since the set of assumptions grows whenever a new comparison
is encountered and the set of assumptions is bounded, the comparison process
must terminate. It is not necessary to store all type pairs encountered in the
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New Domain
AN ∈ Assumption = Type × Type

AS ∈ AssumptionSet = P(Assumption)

Type-Equivalence Rules
T1 ≈{} T2

T1 ≈ T2
[simple-≈AS ]

T1 ≈AS T2 where 〈T1 ,T2 〉 ∈ AS [assumed-≈AS ]

[(trec τ1 T1)/τ1 ]T1 ≈{〈(trec τ1 T1 ),T2 〉}∪AS T2

(trec τ1 T1) ≈AS T2
[trec-≈AS ]

For each type-equivalence rule presented in Sections 11.8.2–11.8.5, there should be a
similar rule here in which every occurrence of ≈ is replaced by ≈AS . For example:

∀2
i=1 . (T ′

i ≈AS Ti)
(pairof T ′

1 T ′
2) ≈AS (pairof T1 T2)

[pairof-≈AS ]

Figure 11.28 Rules for equirecursive type equivalence.

comparison process as assumptions; it is sufficient to store only those pairs in
which at least one type is a trec (or tletrec) type.

Based on the idea of using assumptions, Figure 11.28 presents a set of type
rules for equirecursive type equivalence. The notation T1 ≈AS T2 indicates
that T1 and T2 are equivalent relative to the assumptions in the set AS . The
[simple-≈AS ] rule says that two types are equivalent if they are equivalent relative
to the empty set of assumptions. The [assumed-≈AS ] rule says that T1 and T2

are equivalent relative to AS if the assumption 〈T1 ,T2 〉 is in AS . The [trec-≈AS ]
rule says that a recursive type (trec τ1 T1) is equivalent to a type T2 relative
to the assumptions AS if the unwound type [(trec τ1 T1)/τ1 ]T1 is equivalent
to T2 in AS extended with the new assumption 〈(trec τ1 T1),T2 〉. All other
rules are versions of the type-equivalence rules presented in Sections 11.8.2–11.8.5
with ≈ replaced by ≈AS . Note that a rule handling trec as the left component
of ≈AS is sufficient because any trec in the right component can be handled by
using the [symmetric-≈AS ] rule.

Figure 11.29 illustrates the equirecursive type-equivalence rules by showing
that Tib1 and Tib4 from Figure 11.26 are equivalent in the equirecursive approach.
Recall that these two types are not equivalent in the isorecursive approach.
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Abbreviations
T ′

ib1 = (pairof int (pairof bool iblist))

Tib1 = (trec iblist T ′
ib1)

= (trec iblist (pairof int (pairof bool iblist)))

T ′′
ib1 = (pairof bool Tib1) = (pairof bool (trec iblist T ′

ib1))

T ′′
ib4 = (pairof bool (pairof int bilist))

T ′
ib4 = (trec bilist T ′′

ib4)

= (trec bilist (pairof bool (pairof int bilist)))

Tib4 = (pairof int T ′
ib4)

= (pairof int (trec bilist T ′′
ib4))

= (pairof int (trec bilist (pairof bool (pairof int bilist))))

Derivation of Equirecursive Type Equivalence of Tib1 and Tib4

int ≈{〈Tib1 ,Tib4 〉} int [reflexive-≈AS ]

bool ≈{〈T ′

ib4
,T ′′

ib1
〉,〈Tib1 ,Tib4 〉} bool [reflexive-≈AS ]

Tib1 ≈{〈T ′

ib4
,T ′′

ib1
〉,〈Tib1 ,Tib4 〉} Tib4 [assumed-≈AS ]

Tib4 ≈{〈T ′

ib4
,T ′′

ib1
〉,〈Tib1 ,Tib4 〉} Tib1 [symmetric-≈AS ]

(pairof bool Tib4)
≈{〈T ′

ib4
,T ′′

ib1
〉,〈Tib1 ,Tib4 〉} (pairof bool Tib1) [pairof-≈AS ]

(trec bilist T ′′
ib4) ≈{〈Tib1 ,Tib4 〉} (pairof bool Tib1) [trec-≈AS ]

(pairof bool Tib1) ≈{〈Tib1 ,Tib4 〉} (trec bilist T ′′
ib4) [symmetric-≈AS ]

(pairof int (pairof bool Tib1))
≈{〈Tib1 ,Tib4 〉} (pairof int (trec bilist T ′′

ib4)) [pairof-≈AS ]

(trec iblist T ′
ib1) ≈{} (pairof int (trec bilist T ′′

ib4)) [trec-≈AS ]

(trec iblist T ′
ib1) ≈ (pairof int (trec bilist T ′′

ib4)) [simple-≈AS ]

Figure 11.29 A derivation of equirecursive type equivalence for two types, Tib1 and
Tib4 , that are not isorecursive type-equivalent.
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T1 = (trec it

(oneof (leaf int)

(node (recordof (left it)

(right it)))))

T2 = (trec int-tree

(oneof (leaf int)

(node (recordof (left int-tree)

(right int-tree)))))

T3 = (trec it

(oneof (leaf int)

(node (recordof

(left (trec it2

(oneof (leaf int)

(node (recordof (left it2)

(right it2))))))

(right it)))))

T4 = (trec it

(oneof (leaf int)

(node (recordof

(left it)

(right (trec it2

(oneof (leaf int)

(node (recordof (left it2)

(right it2))))))))))

T5 = (oneof (leaf int)

(node (recordof

(left (trec it

(oneof (leaf int)

(node (recordof (left it)

(right it))))))

(right (trec it

(oneof (leaf int)

(node (recordof (left it)

(right it))))))))))

Figure 11.30 Five types for integer-leaved binary trees, for Exercise 11.22.

Exercise 11.22 Figure 11.30 presents five types. Which of these types are considered
equivalent (a) under the isorecursive approach and (b) under the equirecursive approach?

Exercise 11.23 Give isorecursive and equirecursive type-equivalence rules for tletrec.
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Exercise 11.24

a. Show that the following FLEX expression is well typed for any type T :

Eself = (abs ((x (trec s (-> (s) T)))) (x x))

b. Show that (Eself Eself ) is well typed. Since evaluation of this expression does not
terminate, this demonstrates that FLEX−{letrec} is not strongly normalizing.

c. Here is a definition of a factorial procedure in CBN FL that does not use any explicit
expression-level recursion constructs:

Efact = ((abs (f)

((abs (x) (f (x x)))

(abs (x) (f (x x)))))

(abs (g)

(abs (n)

(if (= n 0) 1 (* n (g (- n 1)))))))

Using recursive types, annotate Efact with types so that it is a well-typed expression
denoting a factorial procedure in CBN FLEX.

d. Modify the expression in part c to yield a factorial procedure in CBV FLEX defined
without letrec.

Exercise 11.25

a. Figure 6.13 on page 243 presents an interpreter for the ELM language written in
FL. Here we consider an interpreter for ELM written in FLEX. Suppose that ELM
expressions and programs are described in FLEX by the following types:

TelmExp = (trec numexp

(oneof (intval int)

(input int)

(arithop (prodof symb numexp numexp))))

TelmPgm = (recordof (nargs int) (body TelmExp))

Define a FLEX procedure with type (-> (TelmPgm (listof int)) int) that runs
an ELM program on a list of integer arguments. In your definition, use letrec to
define any auxiliary procedures that you need (such as elm-eval and get-arg from
Figure 6.13).

b. Define a procedure that runs a full EL program on a list of integer arguments. A
grammar for EL is defined in Figure 2.4 on page 25. In your definition, use tletrec

to define the mutually recursive types for numerical and boolean expressions.

Exercise 11.26 Define a FLEX procedure that executes a PostFix program on a list
of integers. As part of your definition, you will need to write types that describe PostFix
programs, commands, and command sequences.



696 Chapter 11 Simple Types

Exercise 11.27 In your favorite programming language, write a program that deter-
mines equirecursive type equivalence for FLEX types using either the assumption-based
approach or the canonicalization approach.

11.8.7 Full FLEX Summary

Thus far, we have presented the constructs of FLEX in bits and pieces. Fig-
ure 11.31 presents the entire kernel grammar of FLEX in one place. The syn-
tactic sugar for FLEX (not shown) is that of μFLEX extended with the begin

sugar from Figure 11.21 on page 681 and the list sugar from Figure 11.24 on
page 686.

In order to specify the dynamic semantics of FLEX (which is necessary to
prove type soundness), we could extend the dynamic semantics of μFLEX from
Section 11.6.2 to handle the additional constructs of FLEX. Since the dynamic
semantics of each of these constructs has been studied previously, we do not flesh
out the details of the FLEX SOS. Note that the ValueExp and AnsExp domains
of the SOS must be extended to handle product, sum, list, and cell values. The
presence of mutable variables and cells means that configurations in the FLEX
SOS must have a store component and that both variables and cells must be
associated with locations in the store. As usual, we will assume a CBV semantics
for procedure application and data components in the presence of imperative
features.

The type soundness argument for μFLEX from Section 11.6 can be extended
to full FLEX. In order to handle mutable variables and cells, each location in
the store can be assigned a type, and only values of this type can be stored at
the location [Pie02, Chapter 13].

Full FLEX is monomorphic in the sense that every well-typed expression has
a unique type up to type equivalence.

As seen in Exercise 11.24 (page 694), the full FLEX language without letrec
is not strongly normalizing. Recursive types make it possible to write nontermi-
nating expressions in FLEX even without letrec.

Sum-of-products data types can be expressed in FLEX using typed sums,
typed products, and recursive types, but this is rather cumbersome. It would
be helpful to have a more convenient means for specifying such data types, such
as a typed analogue of FL’s def-data/match facility. However, as we shall
see in Section 12.2.3, FLEX’s monomorphism stands in the way of specifying
the deconstructor procedures used by this facility. Nevertheless, as explored in
Exercise 11.28, it is still helpful to extend FLEX with an s-expression data type
for describing generic tree-structured data, and to extend the domain of program
inputs in a similar fashion.
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P ∈ Prog ::= (flexk ((Iformal TformalType)
∗) Ebody)

E ∈ Exp ::= L | I | (error Ymessage TerrorType)

| (if Etest Ethen Eelse) | (prim Oprimop E∗
arg)

| (abs ((Iformal TformalType)
∗) Ebody) | (Erator E∗

rand)

| (let ((Iname Edefn)
∗) Ebody)

| (letrec ((Iname TdefnType Edefn)
∗) Ebody)

| (the TbodyType Ebody)

| (begin E1 E2) | (set! Ivar Eval)

| (cell Econtent) | (^ Ecell) | (:= Ecell Eval) | (cell=? E1 E2)

| (pair Efst Esnd) | (fst Epair) | (snd Epair)

| (prod E∗
component) | (get Nindex Eprod)

| (seq E∗
component) | (seq-get Eindex Eseq) | (seq-size Eseq)

| (cons Ehead Etail) | (car Elist) | (cdr Elist)

| (null Telt) | (null? Elist)

| (record (Iname Edefn)
∗) | (select Iname Ercd)

| (with Ercd Ebody)

| (one Toneof Itag Epayload)

| (tagcase Edisc Ipayload (Itag Ebody)
∗ (else Eelse)

?)

L ∈ Lit ::= #u | B | N | (sym Y ) ; as in FL.

B ∈ BoolLit = {#t, #f} as in FL.

N ∈ IntLit = as in FL.

Y ∈ SymLit = as in FL.

O ∈ Primop = usual FL primitives except no type predicates or pair operators

Keyword = the set of all FLEX kernel-expression and program keywords

SugarKeyword = the set of all FLEX syntactic sugar keywords

I ∈ Ident = SymLit − ({Y | Y begins with @} ∪Keyword ∪ SugarKeyword)

T ∈ Type ::= BT | τ | (-> (T ∗
arg) Tresult) | (cellof Tcontent)

| (pairof Tfst Tsnd) | (prodof T ∗
component)

| (seqof Tcomponent) | (listof Telt)

| (recordof (Iname Tdefn)
∗) | (oneof (Itag Tpayload)

∗)

| (trec τname Tbody) | (tletrec ((τname Tdefn)
∗) Tbody)

BT ∈ BaseType = {unit, int, bool, symb}
TypeKeyword = BaseType ∪ {->, cellof, listof, oneof, pairof, prodof,

recordof, seqof, tletrec, trec}
τ ∈ TypeId = SymLit − TypeKeyword

PT ∈ ProgType ::= (=> (T ∗
arg) Tresult)

Figure 11.31 Kernel grammar for full FLEX. The syntactic sugar for FLEX is that
of μFLEX extended with the begin sugar from Figure 11.21 on page 681 and the list

sugar from Figure 11.24 on page 686.
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Exercise 11.28 This exercise considers extending FLEX with s-expressions having the
following recursive type:

Tsexp = (trec sexp

(oneof (unit->sexp unit)

(int->sexp int)

(bool->sexp bool)

(symb->sexp symb)

(list->sexp (listof sexp))))

Assume that every free occurrence of the type identifier sexp appearing in a FLEX
program (including in the types of its formal parameters) is replaced by Tsexp .

a. Write the s-expression (1 #t ((a #u) #f)) as a FLEX expression with type Tsexp .

b. Extend FLEX with desugaring rules for an FL-like quote construct for conveniently
writing s-expressions (see Figure 6.7 on page 233), so that the s-expression from part
a can be written directly in FLEX as (quote (1 #t ((a #u) #f))).

c. S-expressions representing phrases defined by an s-expression grammar can be parsed
into FLEX sum-of-products values representing abstract syntax trees, such as the
ELM expression type TelmExp from part a of Exercise 11.25. Define a procedure
sexp->elm with type (-> (sexp) TelmExp) that parses s-expressions into ELM ex-
pressions. An invalid-elm-exp error should be generated for any input s-expression
that does not correspond to a valid ELM expression.

d. A limitation of FLEX is that program inputs must be literals. It would be nice
to allow inputs with type sexp in order to handle programs (list/tree manipulation
programs, interpreters, compilers, etc.) with tree-structured inputs. This can be
accomplished by modifying the InputExp domain in the SOS so that all inputs are
s-expressions:

IE ∈ InputExp ::= #u | N | B | Y | (IE∗)

For example, this allows the s-expression from part a to be used as a program input.

Give a modified definition of the input function IF that works with this new domain.
Note that InputExp no longer describes a subset of Exp, so inputs must be converted
to expressions before being substituted for program parameters. Your definition of
IF should allow any integer literal input N to be used for an int parameter or an
sexp parameter; unit, boolean, and symbol literals should be handled similarly.

Notes

A good introduction to various dimensions of type design is a survey article
written by Cardelli and Wegner [CW85]. For more in-depth coverage on many
facets of type systems and typed programming languages, we recommend [Pie02,
Pie05, Mit96, Sch94].
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Many dimensions of types have been fruitfully studied in the context of the
lambda calculus. Church described an explicitly typed version of the lambda
calculus in [Chu40], and Curry and his colleagues formulated implicitly typed
versions of the lambda calculus in [CF58, CHS72]. These are two variants of
what is known as the simply typed lambda calculus. Consult [HS86b, Hin97] for
coverage of the simply typed lambda calculus. For a discussion of how to extend
the simply typed lambda calculus with additional typing features, see [Bar92].

Another standard language in which types are studied is PCF, which stands
for Programming Computable Functions [Plo77], [Mit96, Chapter 2]. PCF is an
explicitly typed, monomorphic language that extends the simply typed lambda
calculus with integers, booleans, conditionals, and a fixed-point operator. FLEX
can be viewed as an extension to PCF with even more features: positional and
named products, named sums, lists, mutable variables and cells, and recursive
types. Extensions to PCF with these kinds of features are often considered in
the literature.

The vertical-style type derivations in this text were inspired by the vertically
oriented type derivations in [AC96]. The vertical style enables far more complex
type derivations to fit on a standard page than does the traditional horizontal
style.

The preservation/progress recipe for proving type soundness was championed
by Wright and Felleisen in [WF94]. More detailed coverage of type soundness
issues can be found in [Pie02].

In the literature, strong normalization of typed functional languages is usu-
ally studied in typed variants of the lambda calculus. A standard proof that
simplification in the simply typed lambda calculus is strongly normalizing can be
found in [HS86b, Appendix 2]; it uses a proof method known as logical relations
pioneered in [Tai67], but does not call attention to this general technique. [Pie02,
Chapter 12] presents a proof emphasizing the general logical relations technique
and gives pointers to the history and uses of this technique. A different proof
technique for strong normalization is presented in [KW95].

In [Pie02, Chapter 21], Pierce presents the theory underlying the equivalence
and subtyping of equirecursive types. He explains how the assumption-based
approach to equirecursive type equivalence calculates a greatest fixed point of
a relation between types, and presents an alternative approach to equirecursive
type equivalence that is more efficient than the one in Figure 11.28.

Type checking exemplifies a form of static analysis in which a program is
“executed” in a way that is guaranteed to terminate by using a finite set of value
approximations in place of an infinite set of values. This style of program analysis,
known as abstract interpretation [CC77, JN95], [NNH98, Chapter 4], is used for
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many kinds of program analysis, such as termination analysis, strictness analysis,
and flow analysis.

Throughout this book, we adopt the view that types are descriptions of values.
But this is not the only interpretation. A very different perspective is that types
are logical propositions, and an expression with a given type is a proof of the
corresponding proposition. This types-as-formulas perspective is the foundation
of what is known as the Curry-Howard Isomorphism. See [SU06] for detailed
coverage of this notion.
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Polymorphism and
Higher-order Types

He will put some things behind, will pass an invisible boundary; new, uni-
versal, and more liberal laws will begin to establish themselves around and
within him; or the old laws be expanded, and interpreted in his favor in
a more liberal sense, and he will live with the license of a higher order of
beings. . . . If you have built castles in the air, your work need not be lost;
that is where they should be. Now put the foundations under them.

— Henry David Thoreau, Walden

Types can be thought of as describing the size and shape of values manipulated
by a program. Strictly monomorphic languages, like FLEX, impose two onerous
requirements:

• Whenever two types must be compatible, they must be exactly the same (e.g.,
the two arms of a conditional or the formal-parameter and actual-argument
types of a procedure).

• Every program expression has exactly one type.

Polymorphism allows program expressions that would previously have re-
quired data of a single size and shape to work with values of different sizes and
shapes. It relaxes the above constraints and adds considerable expressive power
to our language and its type system. Subtyping provides relief from the first
restriction above; and polymorphic types provide relief from the second.

12.1 Subtyping

To understand why we want to develop a notion of compatible types looser than
exact type equivalence, consider a get-age procedure that extracts the contents
of the age field of a record:
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(def get-age (-> ((recordof (age int))) int)

(abs ((r (recordof (age int))))

(select age r)))

In the FLEX type system, the following use of get-age does not type-check:

(get-age (record (name (symb Polly_Morwicz)) (age 35) (student? #f)))

The problem is that the given record has three fields, but the type of get-age
dictates that the argument record must have exactly one field. Yet the presence
of the extra fields does not compromise the type safety of the expression — i.e.,
evaluating the expression will not perform an illegal operation. We can reliably
extract an integer from the age field of any record that binds age to an integer
value. No constraints on the number or nature of other fields are implied by the
extraction of the age field.

Situations like get-age can be addressed by the notion of subtyping (also
called type inclusion). We say that T ′ is a subtype of T (written T ′�T ) if
all expressions of type T ′ can be used (in a type-safe manner) in every situation
where an expression of type T is used. Viewing types as sets, T ′�T means that
T ′ ⊆ T . If T ′ is a subtype of T , we can also say that T is a supertype of T ′.

12.1.1 FLEX/S: FLEX with Subtyping

FLEX/S is a variant of FLEX that supports subtyping. The type rules of
FLEX/S are the same as those for FLEX except for the addition of the [inclusion]
rule of Figure 12.1. This rule formalizes the notion that a subtype element can be
used in any situation where a supertype element is expected. It says that E can
be treated as having type T if it is known to have type T ′ and T ′ is a subtype
of T .

Subtyping of Nonrecursive Types

The subtype relation for nonrecursive types in FLEX/S is defined by the subtype
rules in Figure 12.2. The [equiv-�] rule is a generalized reflexivity rule stating
that any two type-equivalent types are in the subtype relation. It is possible
to show that the subtype relation is antisymmetric: T �T ′ and T ′�T imply
T ≈ T ′. Because it is also reflexive and transitive, the subtype relation is a
partial order on types.

The [pairof-�] rule says that one pairof type is a subtype of another if
its corresponding components are subtypes in the same direction. When two
corresponding type components are related via subtyping in the same direction
as their enclosing compound types, the subtyping relation on these component



12.1.1 FLEX/S: FLEX with Subtyping 703

TE � E :T ′ T ′�T
TE � E :T

[inclusion]

Figure 12.1 The type rules of FLEX/S are those of FLEX extended with this single
rule.

T ′ ≈ T
T ′�T

[equiv-�]

T1 �T2 T2 �T3

T1 �T3
[transitive-�]

∀2
i=1 . T ′

i �Ti

(pairof T ′
1 T ′

2)� (pairof T1 T2)
[pairof-�]

∀n
i=1 . T ′

i �Ti

(prodof T ′n
i=1)� (prodof Tn

i=1)
[prodof-�]

T ′�T
(seqof T ′)� (seqof T)

[seqof-�]

T ′�T
(listof T ′)� (listof T)

[listof-�]

∀n
i=1 . ∃j ∈ [1..m] .

((
I ′
j = Ii

)
∧

(
T ′

j � Ti

))
(recordof (I ′

j T ′
j )

m
j=1)� (recordof (Ii Ti)

n
i=1)

[recordof-�]

∀m
j=1 . ∃i ∈ [1..n] .

((
I ′
j = Ii

)
∧

(
T ′

j � Ti

))
(oneof (I ′

j T ′
j )

m
j=1)� (oneof (Ii Ti)

n
i=1)

[oneof-�]

(∀n
i=1 . (Ti � T ′

i )) T ′
body �Tbody

(-> (T ′n
i=1) T ′

body)� (-> (Tn
i=1) Tbody)

[→-�]

Figure 12.2 Subtype rules for nonrecursive types in FLEX/S.

types is said to be covariant. Both component types of a pairof type have
covariant subtyping. All components of prodof, seqof, and listof types also
have covariant subtyping.

The [recordof-�] rule says that a record type T ′ = (recordof (I ′j T ′
j)

m
j=1)

is a subtype of a record type T = (recordof (Ii Ti)
n
i=1) if (1) T ′ has at least

the fields of T and (2) for each of the common fields, the type of the field in T ′

is a subtype of the type of the field in T (i.e., the common fields have covariant
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� T ′
1

...

� T ′
n T ′

T ′
res �

T1

...

Tn

T

Tres

T ′�T

Figure 12.3 A depiction of (-> (T ′n
i=1) T ′

res)=T ′ � T=(-> (Tn
i=1) Tres) that sug-

gests why procedure subtyping is covariant in result types but contravariant in argument
types.

subtyping). It is safe for T ′ to have extra fields because those fields are ignored
by any code that uses only the fields mentioned in T . For example:

(recordof (a int) (b (recordof (c bool) (d symb))))

� (recordof (a int) (b (recordof (c bool))))

� (recordof (b (recordof (c bool))))

The [oneof-�] rule is a dual of the [recordof-�] rule: a oneof type T ′ =
(oneof (I ′j T ′

j)
m
j=1) is a subtype of a oneof type T = (oneof (Ii Ti)

n
i=1) if it

has fewer tags. This makes sense because if a program is prepared to handle
all the cases of the supertype, T , then it is prepared for the fewer cases of
the subtype, T ′. Additionally, the types associated with the shared tags have
covariant subtyping. For example:

(oneof (b (oneof (c bool))))

� (oneof (a int) (b (oneof (c bool))))

� (oneof (a int) (b (oneof (c bool) (d symb))))

In the [→-�] rule for procedure subtyping, the subtyping of result types is
covariant, but the subtyping of argument types is contravariant — that is,
arrow types as a whole are related via subtyping in a direction that is opposite to
the subtyping of argument types. The reason for this is suggested by Figure 12.3,
which depicts a procedure with type T ′ = (-> (T ′n

i=1) T ′
res) filling a context

where a procedure of type T = (-> (Tn
i=1) Tres) is expected. The result type

T ′
res of T ′ is used where a type Tres is expected, so it is safe to use only a procedure

that returns a “smaller” result type in place of one that returns a “larger” result
type. In contrast, the argument type Ti is used in a context where T ′

i is expected,
so it is safe to use only a procedure that takes a “larger” argument type in place
of one that takes a “smaller” argument type.
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Subtyping for Mutable Structures

Note that there is no subtype rule for cellof types. This is not an oversight.
Two cellof types are in a subtyping relation if and only if they are equivalent
(as implied by the [equiv-�] rule), and two cellof types are equivalent if and
only if their component types are equivalent (as specified by the [cellof-≈] rule).
In other words, it is as if the cellof subtype rule were:

T ′ ≈ T
(cellof T ′)� (cellof T)

[cellof-�]

This rule may be somewhat surprising. The following covariant subtype rule for
cellof seems natural, but it is actually unsound:

T ′�T
(cellof T ′)� (cellof T)

[unsound-cellof-�]

To see why this second rule is incorrect, consider the following example:

(let ((stuffit (abs ((r (cellof (recordof (a int)))))

(:= r (record (a 2)))))

(c (cell (record (a 1) (b #t)))))

(begin (stuffit c)

(select b (^ c))))

The type of stuffit is (-> ((cellof (recordof (a int)))) unit) and the
type of the cell c is Tc = (cellof (record (a int) (b bool))). Using the
[unsound-cellof-�] subtype rule in conjunction with the [recordof-�] rule, we can
deduce that Tc � (cellof (record (a int))). This together with the [inclu-
sion] rule allows us to prove that the application (stuffit c) is well typed, and
then it is easy to show that the whole expression is well typed.

However, evaluating this expression leads to a dynamic type error! The
cell c initially contains a record with both a and b fields, but the application
(stuffit c) changes c so that it contains a record with only an a field. So the
attempt to select b from the record in c after stuffit is called is a dynamic
type error. A type system is sound only if well-typed programs are guaranteed
not to encounter any type errors at run time. Clearly the type system with the
[unsound-cellof-�] type rule is unsound.

Requiring the cellof component types to be equivalent, as in the [cellof-�]
subtype rule, maintains the soundness of the type system. In the above example,
this subtype rule makes the call (stuffit c) ill typed. The intuition behind
this rule is that cells are equivalent to a pair of a “getter” procedure with sub-
typing covariant in the component type and a “setter” procedure with subtyping
contravariant in the component type. The only way to satisfy both constraints
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is to require that subtyping be invariant in the component type — that is, the
component types must be equivalent regardless of the direction of subtyping of
the compound types. This perspective is explored more fully in Exercise 12.2.

The invariance of component subtyping for cellof generalizes to any muta-
ble data structure. For example, if we were to extend FLEX/S with mutable
arrays with types of the form (arrayof T), then (arrayof T ′) would be a
subtype of (arrayof T) if and only if T ′ ≈ T . However, if the arrayof type
described immutable arrays, then the subtyping of components would be covari-
ant: (arrayof T ′) would be a subtype of (arrayof T) if and only if T ′�T .
Some languages, like CLU, have both mutable and immutable product types. In
such a language, the immutable product can support more flexible subtyping.

Subtyping of Recursive Types

The FLEX/S subtype rules in Figure 12.2 do not include any subtype rules
involving trec or tletrec. Without any additional rules, a recursive type would
be in a subtyping relation with another type if and only if it is equivalent to that
type.

However, it is desirable to have a more permissive notion of subtyping in-
volving recursive types. Suppose that Ta = (recordof (a int)) and Tab =
(recordof (a int) (b bool)), so that Tab �Ta . Now consider the following
recursive types:

Trs = (trec s (pairof Tab s))

Trt = (trec t (pairof Ta t))

Tru = (trec u (pairof Tab (-> (Ta) u)))

Trv = (trec v (pairof Ta (-> (Tab) v)))

Intuitively, we expect that Trs is a subtype of Trt because these specify infi-
nite lists whose element types are in a covariant subtyping relation. We also
expect that Tru is a subtype of Trv because (1) the first components of the pairs
are related covariantly; (2) the argument types of the procedures in the second
components of the pairs are related contravariantly; and (3) by assumption, the
result types of the procedures in the second components of the pairs are related
covariantly.

In order to express these sorts of nontrivial subtypings involving recursive
types, we can modify the assumption-based approach to equirecursive type equiv-
alence presented in Figure 11.28 on page 692 to handle subtyping instead. Fig-
ure 12.4 shows the new subtyping rules. The rules maintain a set of subtyping
assumptions represented as a sequence of type pairs. If 〈T1 ,T2 〉 is in the set of
assumptions AS , then T1 is a subtype of T2 by the [assumed-�AS ] rule. When-
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New Domain
AN ∈ Assumption = Type × Type

AS ∈ AssumptionSet = P(Assumption)

Subtype Rules
T1 �{} T2

T1 �T2
[simple-�AS ]

T1 �AS T2 where 〈T1 ,T2 〉 ∈ AS [assumed-�AS ]

[(trec τ1 T1)/τ1 ]T1 �({〈(trec τ1 T1 ),T2 〉}∪AS) T2

(trec τ1 T1) �AS T2
[trec-left-�AS ]

T1 �({〈T1 ,(trec τ2 T2 )〉}∪AS) [(trec τ2 T2)/τ2 ]T2

T1 �AS (trec τ2 T2)
[trec-right-�AS ]

For each subtype rule presented in Figure 12.2, there should be a similar rule here in
which every occurrence of � is replaced by �AS . For example:

∀2
i=1 . (T ′

i �AS Ti)
(pairof T ′

1 T ′
2) �AS (pairof T1 T2)

[pairof-�AS ]

Figure 12.4 Rules for equirecursive subtyping.

ever a recursive type is encountered, the set of type assumptions is extended with
an assumption involving this type, and the subtype-checking process continues
with the result of unwinding the recursive type. Because subtyping is an asym-
metric relation, it is necessary to have two rules for handling recursive types: one
where the recursive type appears to the left of �AS , and one where it appears
to the right. It is also necessary to have assumption-based versions of each of
the subtype rules in Figure 12.2. The [simple-�AS ] rule says that two types are
related by � if they are related by the extended subtype relation with an empty
set of assumptions.

With these new rules, it is possible to show that Trs �Trt and Tru �Trv (see
Exercise 12.4).

Recall that assumption-based rules were only one approach for showing the
equivalence of recursive types in Section 11.8.6. Another approach was based
on viewing recursive types as finite-state automata. So it is natural to wonder
whether it is possible to check the subtyping of recursive types using the au-
tomata approach. The answer is yes: an automata-based subtyping algorithm
for recursive types is described in [KPS93].
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Subtyping and Type Equivalence

In the subtype rules of Figure 12.2, the [equiv-�] rule mediates between the type-
equivalence relation ≈ and the subtype relation �. This rule treats subtyping
as a secondary relation defined in terms of a primary type-equivalence relation.
An alternative approach is to make subtyping the primary relation and define
two types to be type-equivalent if they are mutually inclusive according to the
subtype relation. This can be formalized by replacing the [equiv-�] subtype rule
and all type-equivalence rules by the following two rules:

T �T [reflexive-�]

T �T ′ T ′�T
T ≈ T ′ [type-≈]

The Soundness of Subtyping

Any change in a language’s type rules or dynamic semantics immediately raises
the issue of type soundness. It is easy to extend the soundness argument for
FLEX to show the soundness of FLEX/S, because the two languages have the
same dynamic semantics, and the only difference in the type system is the in-
troduction of the [inclusion] rule. The FLEX soundness proof (Section 11.6)
consisted of two parts: preservation, which says that {} � E :T and E ⇒ E ′

implies {} � E ′ :T ; and progress, which says that E is not stuck at a type error
if {} � E :T .

Preservation for FLEX/S is the more straightforward part. As before, this
is proved by showing that reduction preserves types (if TE � E :T and E �

E ′ then TE � E ′ :T ) and that the well-typedness of a filled context E{E} is
preserved if E is replaced by E ′, where both E and E ′ have the same type in the
empty type environment. The only change is that the well-typedness of contexts
in which reductions are performed may depend on the [inclusion] rule.

In the progress argument for FLEX/S, the analysis of each kind of stuck
expression must account for possible use of the [inclusion] rule. Consider record-
selection expressions as an example (other cases are similar). The expression
Eselect = (select I (record (Ii Ei)

n
i=1) is stuck (at a type error) only if I 
∈

∪n
i=1{Ii}. We need to argue that Eselect cannot be stuck if it is well typed — i.e.,

we need to prove that if Eselect is well typed, then I must be in ∪n
i=1{Ii}.

The type derivation for Eselect must use the [recordof-elim] rule to show
that the record expression has a type (recordof (I ′i Ti)

n
i=1) such that I ∈

∪n
i=1{I ′i }. In FLEX, which does not have the [inclusion] rule, this record ex-

pression has a type, determined by the [recordof-intro] rule, of the form Trecord =
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(recordof (Ii Ti)
n
i=1), so I ∈ ∪n

i=1{Ii}, and we are done. But in FLEX/S, one
or more instantiations of the [inclusion] rule can assign to (record (Ii Ei)

n
i=1)

any supertype T ′
record of Trecord , where the fields ∪n

i=1{I ′i } in T ′
record may be a

subset of the fields ∪n
i=1{Ii} in Trecord . In order for Eselect to be well typed (via

the [recordof-elim] rule), however, T ′
record must still contain the I field, so I ∈

∪n
i=1{I ′i } ⊆ ∪n

i=1{Ii}, as desired. In essence, subtyping can eliminate any fields
except I , so the expression cannot be stuck.

This proof provides extra insight into what goes wrong if we choose an incor-
rect subtyping rule. Consider a proposal to define record subtyping so that the
subtype has a subset of the fields and the supertype has more fields. Then the
[inclusion] rule could be used to introduce I as a record field name in T ′

record even
though it didn’t appear in the record expression, effectively promising the avail-
ability of a field the dynamic semantics cannot deliver. This record subtyping
relation would be unsound because a well-typed expression could become stuck
at a dynamic type error.

In practice, additional static or dynamic checks are sometimes used to en-
sure the soundness of type systems with subtyping rules that would otherwise be
unsound. For example, the original definition of the Eiffel object-oriented lan-
guage included several features that made subtyping unsound [Coo89], including
procedure-argument subtyping that was covariant rather than contravariant. By
requiring additional static restrictions, it is possible to make Eiffel type-safe
even in the presence of procedure-argument covariance [Mey97, Chapter 17].

Java supports covariant subtyping on mutable arrays, which is unsound by
itself, but preserves type safety by requiring a dynamic check for array subtyping
[GJS96]. For example, the Java program in Figure 12.5 is an adaptation of
the stuffit example from the earlier cellof subtyping discussion that compiles
without error. The main program calls the stuffit method on an array bs

whose single slot contains an instance of class B even though stuffit expects an
array of instances of class A. Java accepts this because it treats B as a subtype
of A (because of the subclass relationship between the B and A classes — see
Section 12.1.3 below) and B[] as a subtype of A[].

If the program were allowed to run without intervention, there would be a
dynamic type error: stuffit modifies the first slot of its array argument to
contain an instance of A, and after the method invocation stuffit(bs) returns,
bs[0] contains an instance of A rather than an instance of B. This is problematic,
because the subsequent attempt to extract the b field of bs[0] will fail because
instances of A do not have a b field.

To preserve type safety, the Java run-time system performs a dynamic check
that prevents the assignment of an instance of class C to a slot of an array whose
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element type is a subclass of C. This check signals an ArrayStoreException

error at run time for the array slot assignment in stuffit when it is called on
bs. This is one reason that Java objects must carry dynamic type information.

Why doesn’t Java simply disallow covariant subtyping on arrays? Because
there are many situations where such subtyping is dynamically safe and useful
for programming. In this case, the Java designers chose to make the language
more expressive by replacing a static type check by a dynamic one.

Exercise 12.1 Bud Lojack thinks that the [→-�] rule should be changed to specify
covariant subtyping for procedure arguments rather than contravariant subtyping.

a. Define a procedure-subtyping rule [→-� ′] based on Bud’s idea. In the rest of this
problem, assume that FLEX/S is modified by replacing [→-�] by [→-� ′].

b. Show that [→-� ′] is unsound by defining a FLEX/S expression Eunsound that is
well typed in the modified version of FLEX/S but encounters a dynamic type error
when it is evaluated. For simplicity, Eunsound should use only values that are integers,
records, and procedures.

c. Give a type derivation showing that Eunsound is well typed in the modified version of
FLEX/S.

d. Show that the evaluation of Eunsound encounters a dynamic type error according to
the SOS for FLEX (the SOS for μFLEX extended to handle the semantics of FLEX’s
data structures).

Exercise 12.2 In a language like FLEX/S that supports mutable variables, it is possible
to represent cells as pairs of getter and setter procedures via the following desugarings:

(cell E) �ds (let ((v E))

(pair (abs () v) {getter procedure}
(abs (new) (set! v new)))) {setter procedure}

(^ Ecell) �ds ((fst Ecell)) {extract and call nullary getter procedure}

(:= Ecell Enew) �ds ((snd Ecell) Enew) {extract and call unary setter procedure}

a. What is the desugaring of the type (cellof T) that is consistent with the above
expression desugarings?

b. Based on your answer from part a, use the [pairof-�] and [→-�] subtype rules to
explain why cellof subtyping needs to be invariant in the component type.

Exercise 12.3 Ben Bitdiddle wants to allow FLEX/S expressions (especially procedure
applications) to return multiple values instead of just one. He extends the grammar of
FLEX/S as follows:

E ::= . . . | (result E+) | (result-bind Eresult (I+) Ebody)
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class A {

public int a;

public A (int initial_a) {a = initial_a;}

}

class B extends A {

public boolean b;

public B (int initial_a, boolean initial_b) {

super(initial_a); b = initial_b;

}

}

public class CovariantArrayTest {

public static void stuffit (A[] as) {

as[0] = new A(3);

}

public static void main (String [] args) {

B[] bs = new B[1];

bs[0] = new B(2, true);

System.out.println("Before: " + bs[0].b);

stuffit(bs);

System.out.println("After: " + bs[0].b);

}

}

Figure 12.5 Java program that compiles without error but signals a run-time type
error involving an ill-typed array assignment.

The expression (result En
i=1) returns the values of the expressions En

i=1, where n ≥ 1.
The expression (result-bind Eresult (I m

i=1) Ebody) denotes the value of Ebody in an
environment where the identifiers I m

i=1 name the values V n
i=1 returned by Eresult ; it is

an error if m 
= n. For example:

(result-bind (result (* 2 3) (+ 4 5)) (x y)

(- y x)) −−−−−−FLEX/S→ 3 {x names 6 and y names 9}

(let ((f (abs ((x int)) (result (* x x) (< x 10)))))

(result-bind (f 4) (i b)

(if b (+ i 1) 2))) −−−−−−FLEX/S→ 17 {i names 16 and b names #t}

Like prod, result glues together an arbitrary number of values, but unlike prod,
result does not create a first-class value: the entity denoted by result cannot be passed
as an argument to a procedure, named by a let, or stored in a data structure. It is mean-
ingful to use result only in a context where result-bind is waiting to deconstruct it.
Although procedures may use result to return multiple values, they can still return a
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single value without using result, as in FLEX/S. Furthermore, (result E) and E are
not equivalent — the former must be deconstructed by result-bind while the latter
cannot be.

a. Extend the dynamic semantics of CBV FLEX/S (which is inherited from CBV
FLEX) to handle the result and result-bind constructs. Because result does
not create a first-class value, expressions like the following should become stuck in
your semantics:

(result-bind (let ((x (result 4 5))) x) (y z) (* y z))

(result-bind (fst (pair (result 1 2) 3)) (x y) (+ x y))

b. Ben’s intern Bud Lojack suggests that the Type domain include a new resultof type
constructor to model the type of expressions returning multiple values:

T ∈ Type ::= . . . | (resultof T+)

What is wrong with Bud’s plan? Hint: Consider the following expressions:

(fst (pair (result 1 2) 3))

(let ((x (result 4 5))) x)

(abs ((x (resultof int bool))) x)

c. Ben convinces Bud that there should be a new domain for specifying the type of
expressions that might denote multiple values:

MMT ∈ MaybeMultiType ::= T | (resultof T+)

“Of course,” notes Ben, “type judgments may now have the form TE � E :MMT .”

i. The grammar of FLEX/S is the same as that of FLEX in Figure 11.31 on
page 697. Which occurrences of the metavariable T should be replaced by
MMT in expressions, types, programs, and program types?

ii. Which FLEX/S type rules inherited from FLEX must be modified to replace
occurrences of T by MMT?

iii. Give the type rules for the result and result-bind constructs.

iv. The binary subtyping relation on the Type domain can be extended to the
MaybeMultiType domain. What is the subtype rule for resultof?

d. Except for the first subexpression position of result-bind, all FLEX/S evaluation
contexts expect a single value. Ben’s design treats result in any other evaluation
context as an error. An alternative approach is that a result in a non-result-bind
context should automatically be converted to its first value. For example, with this
approach, the following expression evaluates without error.

(let ((f (abs ((x int)) (result (* x x) (< x 10)))))

(let ((p (pair (f 1) (f (f 2))))) {p is a pair of 1 and 16}
(+ (fst p) (snd p)))) −−−−−−FLEX/S→ 17

Modify the dynamic and static semantics of FLEX/S to handle this alternative in-
terpretation of multiple values.



12.1.2 Dimensions of Subtyping 713

Exercise 12.4 Using the type definitions on page 706 give derivations of the following
subtypings:

a. Trs �Trt

b. Tru �Trv

Exercise 12.5 Bud Lojack suggests the following subtype rule for trec:

[τfresh/τ1 ]T1 � [τfresh/τ2 ]T2

(trec τ1 T1)� (trec τ2 T2)
where τfresh is fresh [unsound-trec-�]

Show that this rule is unsound. That is, write an expression that is well typed if this
rule is used but encounters a dynamic type error when it is evaluated.

12.1.2 Dimensions of Subtyping

Having studied one approach to subtyping in FLEX/S, we now explore some
dimensions of subtyping in the context of variations of FLEX/S as well as some
real languages.

Implicit versus Explicit Subtyping

Type rules are often written to specify type properties of a language to humans.
An expression is well typed if there is a way to use the rules to derive a type
for that expression. In order to make rules compact or to leave room for future
extensions, a set of type rules may not specify a deterministic way to derive a type
for all typable expressions. A case in point is the [inclusion] rule of FLEX/S,
a single type-inclusion rule that allows implicit subtyping to occur for any
expression in a type derivation. Although the [inclusion] rule is very flexible and
simple to specify, we shall see that it can create complex problems for a language
implementer.

In FLEX, every expression has exactly one type, modulo type equivalence,
because of the syntax-directed nature of the type rules. The [inclusion] rule
destroys the syntax-directed nature of the type rules. Since the [inclusion] rule
can be used for any kind of expression, the kind of expression no longer uniquely
determines the type rule used for that expression. For instance, in FLEX/S, it
is possible to prove that the expression

(record (a 3) (b #t))

has each of the following types:

(recordof (a int) (b bool))

(recordof (a int))

(recordof (b bool))

(recordof)
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The lack of unique types is not itself a problem, but it can complicate other
analyses. In the case of FLEX/S, the lack of unique types makes it difficult to
write a type checker. The problem is that a straightforward type checker needs to
choose one of many possible types before enough information is known to make
a correct decision.

For example, consider the following expression:

(let ((c (cell (record (a 3) (b #t)))))

(begin (:= c (record (a 4)))

(select a (^ c))))

This expression is well typed according to the type rules of FLEX/S. The type
derivation must use the [inclusion] rule to hide the b field of the first record so that
c has the type (cellof (recordof (a int))). A straightforward type checker
needs to assign a type to c before it examines the rest of the program. But when
it encounters the definition of c, the type checker does not “know” which fields
of the record stored in c will be accessed later and how c will be mutated. In
fact, such details are undecidable in general. Without such knowledge, the type
checker may make an inappropriate choice. For instance, upon encountering the
cell expression, it seems prudent to assume that c has the type

(cellof (recordof (a int) (b bool)))

Unfortunately, the program is not well typed under this assumption. In this case,
the correct type for c is

(cellof (recordof (a int)))

but this is OK only because it so happens that the program does not later extract
the b field. Without backtracking or some sophisticated mechanism for manag-
ing constraints, simple expressions like the one above will not be type-checked
properly.

It is possible to restore unique types and make type checking easier by using
syntax-directed type rules that restrict the contexts in which subtyping is allowed.
The simplest way to do this is to require that all type inclusions be specified
by the programmer using declarations for explicit subtyping. For example,
Figure 12.6 presents a [the-inclusion] type rule in which the is no longer merely a
type declaration, but a means of upward type conversion — that is, a means of
making a value appear to have as its type a supertype of its actual type. Replacing
the [inclusion] and [the] type rules by [the-inclusion] in FLEX/S would make all
subtyping explicit rather than implicit.

In this modified version of FLEX/S, reconsider the above example:
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TE � E :T ′ T ′�T
TE � (the T E) :T

[the-inclusion]

Figure 12.6 A type rule for explicit subtyping specified by the the construct. Replac-
ing the [inclusion] and [the] type rules by [the-inclusion] would make FLEX/S subtyping
explicit rather than implicit.

(let ((c (cell (record (a 3) (b #t)))))

(begin (:= c (record (a 4)))

(select a (^ c))))

Under the alternative type rules, this expression is not well typed. The variable
c is found to have the type (cellof (recordof (a int) (b bool))). Because
the [cell-set] type rule requires the new value to have the same type as that stored
in the cell, type checking fails at the := expression. However, well-typedness can
be restored by using an explicit type conversion, as in the following well-typed
variant of the example:

(let ((c (cell (the (recordof (a int)) (record (a 3) (b #t))))))

(begin (:= c (record (a 4)))

(select a (^ c))))

Here, (the (recordof (a int)) . . . ) effectively hides the b field of the record
so that the variable c has type (cellof (recordof (a int))).

Explicit subtyping declarations greatly simplify type checking by indicat-
ing exactly where type inclusions occur in a type derivation, thus eliminat-
ing any need for guessing/backtracking. But this design choice has a price:
Programmers are burdened with declaring all type inclusions, many of which
seem obvious. For example, suppose that get-age is a procedure with type
(-> ((recordof (age int))) int) that extracts the age field of a record and
Epolly is the record

(record (name (symb Polly_Morwicz)) (age 35) (student? #f))

In a version of FLEX/S with explicit subtyping, invoking get-age on Epolly

requires a type inclusion declaration:

(get-age (the (recordof (age int)) Epolly))

This situation can be improved by allowing implicit subtyping in certain con-
texts that do not affect the deterministic type checking and only requiring pro-
grammers to use explicit subtyping elsewhere. Figure 12.7 illustrates how this
strategy could be instituted in the FLEX/S type system. The [inclusion], [the],
and [→-elim] type rules have been merged to form two type rules:
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TE � Erator : (-> (Tn
i=1) Tresult)

∀n
i=1 . ((TE � Ei :T ′

i ) ∧ (T ′
i �Ti))

TE � (Erator En
i=1) :Tresult

[→-elim-inclusion]

TE � E :T ′ T ′�T
TE � (the T E) :T

[the-inclusion]

Figure 12.7 Type rules for supporting a combination of implicit and explicit subtyping
in FLEX/S. The [→-elim-inclusion] rule supports implicit subtyping for arguments to a
procedure call, but all other contexts must use explicit subtyping via the [the-inclusion]
rule.

• The [→-elim-inclusion] rule permits actual arguments to be subtypes of the
formal parameters of the called procedure, thus pinpointing procedure-call
boundaries as the most useful places to support implicit subtyping. For exam-
ple, this rule can be used to show that (get-age Epolly) is well typed without
resorting to an explicit subtype declaration. This rule avoids any guessing by
effectively using the explicitly declared parameter types of procedures as the
type-inclusion supertype.

• The [the-inclusion] rule allows programmers to explicitly specify type-inclusion
supertypes in other contexts using the.

In practice, languages typically support some combination of implicit and
explicit type conversions. Virtually all languages with subtyping permit implicit
subtyping in procedure calls via a type rule like [→-elim-inclusion]. For example,
Java allows methods to accept arguments whose class is a subclass of the expected
class. It is also common to allow a value to be assigned to a variable of any
supertype of the value’s type. The formal specifications for languages like Ada, C,
C++, Java, and Pascal include a complicated set of rules precisely describing
all the contexts in which implicit type conversions may take place. They also
provide ways for programmers to specify type conversions explicitly.

For example, in C/C++/Java, there are numerous rules governing the sit-
uations in which values of the integer type int are automatically converted to
values of the floating-point number type float. Consider the expression x/y,
which denotes an integer resulting from integer division if both x and y have type
int but denotes a floating-point number if at least one of x and y has type float.
In the latter case, if one of x and y has type float and the other has type int, the
integer is first implicitly converted to a floating-point number before the division
takes place. If both x and y are integers and a floating-point result is desired,
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one or both of the operands can be converted to a floating-point number via an
explicit type cast expression. For example, the type cast expression (float) x

denotes the result of converting the contents of x to a floating-point value.

Exercise 12.6 The type rules in Figure 12.7 can be extended to handle limited subtyping
for certain data operations while still maintaining the unique-type property. For example,
if recs is defined as

(def recs (listof (recordof (a int)))

(cons (record (a 3)) (null (recordof (a int)))))

then it seems reasonable that

(cons (record (a 7) (b #t)) recs)

should be well typed with (listof (recordof (a int))) as its type.
Extend the rules of Figure 12.7 to permit implicit type inclusion in the type rules for

the data operations for which this makes sense. Argue that your rules (1) are sound and
(2) preserve the unique-type property of expressions.

Exercise 12.7 The � relation defines a partial order on types. Can we define a bottom
element (⊥T ) for this partial order, and might this be useful? Yes! We can extend the
FLEX/S type system with a new base type, void, that serves as a bottom type — i.e.,
it is a subtype of every type:

void�T [void]

Viewing types as sets, the only meaningful interpretation of void is the empty set, i.e.,
void is a type that contains no values.

The void type can simplify a type system by giving a type to expressions that do
not return a value, such as error expressions, infinite loops, and jumps to nonlocal exits.
For example, in a version of FLEX/S extended with void, the explicit type T appearing
in an empty list expression (null T) or in an error expression (error Y T) can be
eliminated and the associated type rules can be changed to:

TE � (null) : (listof void) [null ′]

TE � (error Y ) : void [error ′]

a. Write a simple FLEX/S expression Eloop that loops infinitely and show it can be
assigned the void type.

b. Argue that your Eloop expression from part a can be assigned any type.

c. Show how a void type can simplify the syntax and type rule for a jump construct (see
Exercise 11.8) in a version of FLEX/S extended with nonlocal exits.

d. Give the syntax and type rule for a kernel version of the cwcc construct from Sec-
tion 9.4.4 in a dialect of FLEX/S with void.

Can you write the type rule without using void? Explain.
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Subset Semantics versus Coercion Semantics of Subtyping

Thus far, we have assumed what is known as the subset semantics of subtyping,
in which a value of a subtype may directly be used as a value of the supertype
without performing any computation at run time. But many applications of sub-
typing use a coercion semantics, in which some sort of run-time computation
(typically involving a change in representation) must be performed to convert a
value of a subtype to a value of a supertype. For example, in C/C++/Java,
integers and floating-point numbers have different, incompatible bit-level repre-
sentations, so converting an int to a float requires a change in representation at
run time. Henceforth, we will use the term type coercion to refer to any form
of type conversion that implies a representation conversion — i.e., a change
in representation at run time.

A subset semantics may be easy to express in an SOS, but it can imply
implementation inefficiencies that are better addressed with a coercion semantics.
Record implementations illustrate the tradeoffs between these two approaches.
Suppose that a record value V1 with type

T1 = (recordof (age int) (name symb) (salary int))

is used in a context that selects the salary field from a value whose type is

T2 = (recordof (salary int))

• In a subset semantics, no computation is done in order to view V1 as having
type T2 ; the extra fields are just ignored. However, because the number and
order of the fields in a record is unknown, (1) the run-time representation
of a record must include the field names along with the field values, and (2)
selecting a field from a record implies a search process that must examine field
names at run time.

• In a coercion semantics, each value of record type (recordof (Ii Ti)
n
i=1) may

be assumed to have exactly the fields I1 , . . . , In , which are known at type-
checking time and so do not need to be included in the run-time representation
of a record. A record value can be implemented as a positional product whose
components are the field values (stored in some canonical order), and field se-
lection can be efficiently performed using an index for the field that is statically
determined from the record type. For example, the salary component would
be at index 3 in a record value with type T1 but at index 1 in a record value
with type T2 . But now converting V1 from type T1 to T2 requires a run-time
representation conversion that creates a new record value V2 containing only
the salary field of V1 .
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A language designer can fiddle with subtype rules in order to reduce or elimi-
nate the work of the run-time representation conversion in a coercion semantics.
For example, if record subtyping is modified so that only field permutations
are allowed (i.e., subtypes cannot add new fields), then an implementation can
represent records using a canonical form (fields in alphabetical order, for exam-
ple). This eliminates any need for representation conversion, but cannot handle
more compelling examples of record subtyping, such as the get-age example on
page 701. See Exercise 12.8 for yet another take on record subtyping.

The soundness argument for FLEX/S discussed on page 708 uses a subset
semantics of subtyping, because it assumes that the SOS for FLEX/S is the
same as the SOS for FLEX. Alternatively, we can give a coercion semantics
to FLEX/S by translating any well-typed FLEX/S expression to a well-typed
FLEX expression by performing an explicit representation conversion in FLEX
from values of type T to values of type T ′ whenever the FLEX/S type derivation
uses an [inclusion] rule to mediate between T and T ′. For example, suppose that
(Eproc Ercd) is a FLEX/S expression well typed in the empty type environment
via the following type derivation:

...
{} � Eproc : (-> ((recordof (age int) (salary int))) int)

...
{} � Ercd : (recordof (age int) (name symb) (salary int))

{} � Ercd : (recordof (age int) (salary int)) [inclusion]

{} � (Eproc Ercd) : int [→-elim]

Since the type of Ercd is (recordof (age int) (name symb) (salary int))

but the argument type of Eproc is (recordof (age int) (salary int)), the
[inclusion] type rule is needed to mediate between the record types. If E ′

proc

and E ′
rcd are the FLEX expressions that result from translating Eproc and Ercd ,

respectively, then here is a FLEX expression that explicitly performs a repre-
sentation conversion (by constructing a new two-component record) in place of
letting type inclusion take place, as happened in the example derivation:

(let ((Ircd E ′
rcd)) {Ircd is fresh}

(E ′
proc (record (age (select age Ircd))

(salary (select salary Ircd)))))

The translation-based approach to defining the coercion semantics of subtyping
for FLEX/S is further explored in Exercise 12.9.
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Exercise 12.8 Why would a rational language designer propose to replace [recordof-�]
by the following subtype rule for records?

∀n
i=1 . ((I ′

i = Ii) ∧ (T ′
i �Ti))

(recordof (I ′
j T ′

j )
m
j=1)� (recordof (Ii Ti)

n
i=1)

where m ≥ n. [recordof-� ′]

Discuss the implications of the new rule for run-time record representations and repre-
sentation conversions.

Exercise 12.9 Thai Ping sets out to formally define the coercion semantics of subtyping
for FLEX/S based on a translation function with the following specification:

coerce :Type → Type → ExpFLEX/S ⇀ ExpFLEX

Suppose E is a FLEX/S expression such that TE �FLEX/S E :T for some type
environment TE and type T , where T �T ′. Then (coerce T T ′ E ) denotes a
FLEX expression E ′ such that TE �FLEX E ′ :T ′.

To avoid certain technical difficulties, Thai assumes that the types T and T ′ mentioned
in the specification of the coerce function do not mention any seqof types or recursive
types. Subject to this assumption, the coerce function can be used to translate any
expression that is well typed in FLEX/S to a corresponding expression that is well typed
in FLEX by performing an explicit representation conversion in FLEX from values of
type T to values of type T ′ whenever the FLEX/S type derivation uses an [inclusion]
rule to mediate between T and T ′.

The coerce function is an example of a type-directed translation — a translation
between languages that is guided by type information.

Here are two clauses from Thai’s definition of coerce:

(coerce T T E) = E

(coerce (pairof T1 T2) (pairof T ′
1 T ′

2) E)
= (let ((Ipair E)) {Ipair fresh}

(pair (coerce T1 T ′
1 (fst Ipair)) (coerce T2 T ′

2 (snd Ipair))))

a. Give definitions for the following five clauses of coerce:

i. (coerce (prodof Tn
i=1) (prodof T ′n

i=1) E )

ii. (coerce (-> (Tn
i=1) Tres) (-> (T ′n

i=1) T ′
res) E )

iii.
(
coerce (recordof (Ij Tj)

m
j=1) (recordof (I ′

i T ′
i )

n
i=1) E

)
, where there is a

function f : [1..n]→ [1..m] such that ∀n
i=1 . ((I(f i) = I ′

i ) ∧ (T(f i)�T ′
i )).

iv.
(
coerce (oneof (Ij Tj)

m
j=1) (oneof (I ′

i T ′
i )

n
i=1) E

)
, where there is a func-

tion f : [1..m]→ [1..n] such that ∀m
j=1 . ((Ij = I ′

(f j )) ∧ (Tj �T ′
(f j ))).

v. (coerce (listof T) (listof T ′) E )

b. Explain why Thai’s coerce function cannot handle seqof types. What if updatable
sequences (see Section 10.1.1) were used instead?
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c. For simplicity, Thai assumed that his coerce function did not have to handle recursive
types. “However,” observes Thai, “coerce could handle recursive types if it were
modified to take an additional argument corresponding to the subtyping assumptions
in Figure 12.4 on page 707.” Based on Thai’s comment, show how a modified coerce
function can handle conversions involving recursive types. Comment on any efficiency
issues in your solution.

Downward Type Conversions

In a version of FLEX/S with the [the-inclusion] type rule, the can convert a
value of type T only to a value of a supertype of T , which is always type safe.1

This sort of explicit upward type conversion is sometimes called an upcast.
Sometimes it is helpful to perform an explicit downward type conversion, or

downcast. For example, consider the following abstraction written in FLEX/S
(with mutable cells and immutable records):

EincAge = (abs ((r (recordof (age (cellof int)))))

(let ((age (select age r)))

(begin (:= age (+ (^ age) 1))

r))))

This abstraction has the type

TincAge = (-> ((recordof (age (cellof int))))

(recordof (age (cellof int))))

Using the [inclusion] type rule, EincAge can be assigned any type that is a super-
type of TincAge — i.e., any type of the form (-> ((Targ)) Tres), where

Targ � (recordof (age (cellof int)))�Tres

The subtype relation on the argument type Targ says that EincAge can be used to
increment the age of any record containing at least an updatable integer age field:
student records, employee records, etc. But the subtype relation on the result
type Tres says that EincAge returns a record that the type system treats as having
at most an updatable integer field. E.g., if EincAge is applied to a record Ercd of
type (recordof (age (cellof int)) (name symb)), the type system necessar-
ily “forgets” the name field in the result type, (recordof (age (cellof int))).
So (select name (EincAge Ercd)) is ill typed, even though, according to a subset
semantics of subtyping, the name field is still present in the record value returned
by EincAge and no dynamic type error would occur. The FLEX/S type system

1In fact, the as an upward conversion operator does not actually provide any new power to
a language with implicit subtyping on procedure calls: Any upward conversion can be written
as an appropriately typed identity procedure.
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New Type Rule
TE � E :T ′ T �T ′

TE � (downcast T E) :T
[downcast]

New Evaluation Context
E ∈ EvalContext ::= . . . | (downcast T E)

New Reduction Rules
(downcast T V ) � V , where typeof 〈V , {}〉�T [downcast-succeed]
(downcast T V ) � (error downcast-failure T),

where typeof 〈V , {}〉 
�T
[downcast-fail]

Figure 12.8 Static and dynamic semantics of downcasting in FLEX/S.

is simply too weak to express the idea that the return type of EincAge is the same
as the argument type for any subtype of (recordof (age (cellof int))).

One way to address this problem is to strengthen the type system so that it
can express the relationship between the argument type and result type of EincAge .
This approach, which involves combining notions of subtyping and polymorphism,
is explored in Section 12.2.4.

In practice, a simpler but less satisfying approach is often used: Allow the
programmer to declare explicitly where a downward type conversion should take
place. For example, we can extend FLEX/S with a downcasting expression
(downcast T E) that asserts that E has a type T that is a subtype of E ’s type
(Figure 12.8). We can then use downcast to create a well-typed expression that
extracts the name field from the result of invoking EincAge on Ercd :

(select name (downcast (recordof (age (cellof int)) (name symb))

(EincAge Ercd)))

Unlike upcasting, which is always type-safe, downcasting is potentially dan-
gerous. In (downcast T E), the type system simply accepts the programmer’s
assertion that the run-time value of E will actually have type T . But what if
the programmer is wrong? For instance, in the above example, if the value of
Ercd does not have a name field at run time, then a dynamic type error will occur
when the name field is selected.

As shown in Figure 12.8, we can fix this type-safety problem by modifying
the SOS to force the evaluation of E to the value V , and dynamically check
that V ’s type is compatible with T . This dynamic check preserves type safety
by preventing illegal operations (e.g., attempting to select the name field from
a record that does not have this field). Dynamic type checks are performed for
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all downcasts in Java, where downcasting is a common idiom. However, this
approach is rather unsatisfying for a statically typed language, because it implies
that values must carry dynamic type information that is checked at run time.

In some languages, such as C, the programmer’s downcast assertions are
simply trusted by the compiler without performing any run-time type check,
giving rise to type loopholes that destroy type safety. For example, suppose that
the C variable p has type int* — i.e., it is either a pointer to an integer or an
array of integers. The declaration statement

void *q = (void *)p;

defines q as a copy of p whose type, void* (which means “a pointer to some
unknown type”), effectively hides the representation of the value p points to.
The expression (void *)p is an upcast — any pointer type can safely be cast to
void*. But dereferencing the integer pointed at by q requires a downcast, as in
*((int *)q). Although this is safe, C permits arbitrary casts on pointer types.
For example, *((float *)q) treats the bits in the value pointed at by q as a
floating point number rather than an integer, which is clearly not type-safe. A
cast can even be used to treat an arbitrary memory address as a pointer to any
type (e.g., (int *)3221202052), even though a compiler can’t possibly know in
general what kind of value will be in that address at run time.

Proponents of weak type systems often claim that they are necessary to sup-
port flexibility in systems programming. However, recent research (e.g. [JMG+02,
NMW02]) suggests that many low-level programming tasks can be performed in
a type-safe way.

12.1.3 Subtyping and Inheritance

There is a great deal of confusion about the relationship between inheritance
in object-oriented languages and subtyping. A class is not really a type, and
inheritance is not the same as subtyping. In particular, types are specifications
of functionality whereas classes are implementations of some functionality.

Subtyping specifies an abstract relationship between values computed by pro-
gram expressions: Any expression whose value is described by the subtype can
be used anywhere the supertype is needed. In contrast, the purpose of class in-
heritance is to support sharing/reuse of implementation code. Java and many
other object-oriented languages confuse the distinction between types and classes
by creating a type corresponding to every class and treating a subclass as a sub-
type of its superclass in addition to having the subclass inherit code from its
superclass. Though the languages and literature make these distinctions hard to
notice, they are worth keeping in mind.
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Classes are often motivated by a desire to model objects with state (sometimes
even real-life objects). Good programmers design class hierarchies so that they
represent some useful ontology, provide clean abstraction boundaries (with nicely
related specifications), and maximize code reuse. But there are times when these
goals are at odds.

A complication that arises when inheritance is used as a proxy for subtyping
involves cases where specification should be inherited with only partial (or per-
haps no) common implementation code. For example, Java provides two different
mechanisms for this:

• An interface declares type specifications for instance methods without any
associated code. A class can implement one or more interfaces by defining
instance methods satisfying all the type specifications in the interface(s).

• An abstract class2 declares type specifications (but no code) for so-called
abstract instance methods, but can also include code for other components,
which we will call concrete. It is not possible to make instances of an abstract
class. A subclass inherits the concrete code components of an abstract class and
also the unimplemented specifications of any abstract methods. The subclass
can provide implementations for any of the abstract methods. If it implements
all the abstract methods of its superclass, the subclass is no longer abstract
and it is possible to make instances of the subclass.

For example, Java defines a Graphics abstract class for objects that support
drawing on a display device. It has abstract specifications for methods like
drawLine and drawOval. The class does not actually provide any implemen-
tation of these methods, because the implementation would depend on the
particular device. One cannot, therefore, create a Graphics object directly:
one must define a subclass of Graphics that provides implementations of all
the abstract methods, and then create an object of the subclass. However,
Graphics does define some concrete methods, such as drawRect, which draws
the outline of a rectangle, presumably by drawing four lines with drawLine.
A subclass of Graphics inherits the code for drawRect, something that would
not be possible if Graphics were an interface.

It would seem that an interface is simply an abstract class with no concrete
components. Then why does Java provide two mechanisms? Because Java’s
classes may implement any number of interfaces, but can inherit from only a

2Eiffel uses the term deferred classes for this.
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single superclass. Thus, interfaces and abstract classes fill gaps in an ontology
and enforce a relationship on the specifications of several classes when there is
no shared implementation code for some specifications (i.e., the functionality is
not actually inherited, but the specification is).

A more vexing problem arises when there is code to inherit, but the spec-
ification should not be inherited. Consider a system for manipulating geomet-
ric shapes3 in which there is a Shape class with abstract methods for drawing
shapes, determining if a shape contains a given point, etc. Typically, there will
be a variety of subclasses of Shape to support different sorts of shapes: Circle,
Rectangle, and Polygon, for example. Suppose that instances of the Polygon

class are constructed by creating an empty polygon and then adding vertices using
an add-vertex method. Should the Rectangle class be a subclass of Polygon?
From the code-reuse perspective, the answer should be yes, since Rectangle

instances can then inherit code for drawing, point containment, etc., from the
Polygon class. And mathematically, a rectangle is a polygon, so this subclass
relation seems natural in the classes-are-types interpretation. But this interpre-
tation also implies that we can safely pass a Rectangle instance to any code that
manipulates Polygon instances. This isn’t true for Polygon code that uses the
add-vertex method, which should not be permitted for Rectangle instances!

In this case, there is an ontological relationship, and there is useful code to
be appropriated, but there is not a subtype relationship. One solution to this
problem is for the Rectangle class to override add-vertex with a method that
generates a dynamic method-not-implemented error, but this undermines the
goal of statically detecting all such errors. A better solution is to define the
Rectangle class as a subclass of Shape (but not of Polygon) and store a hidden
instance of a Polygon in each Rectangle instance. Then code reuse can still be
achieved by delegating relevant messages to the Polygon instance.

12.2 Polymorphic Types

12.2.1 Monomorphic Types Are Not Expressive

Monomorphic type systems are easy to reason about, but they hinder the de-
velopment of reusable code. In particular, monomorphic languages prevent the
programmer from expressing polymorphic values — values (typically proce-
dures) that can have different types in different contexts. In this section, we
develop a type system that allows the expression of polymorphic values.

3[Ros92] has a very good discussion of this and related issues. This is where we first saw this
example, which originated in a debate on the comp.lang.eiffel bulletin board.
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As an example of a polymorphic value, consider the FL map procedure:

(def map (abs (f xs)

(if (null? xs)

(null)

(cons (f (car xs)) (map f (cdr xs))))))

We have seen that aggregate data operators like map are a powerful means of com-
posing programs out of reusable, mix-and-match parts. In large part, this power
is due to the fact that the same operator works over many types of operands.
The map procedure, for instance, can be viewed as having an infinite number of
possible types, including:

(-> ((-> (int) int) (listof int)) (listof int))

(-> ((-> (int) bool) (listof int)) (listof bool))

(-> ((-> ((listof int)) int) (listof (listof int))) (listof int))

(-> ((-> (int) (-> (bool) int)) (listof int))

(listof (-> (bool) int)))

The type of map for any particular call depends on the types of its arguments.
So, in the call

(map (abs (x) (* x x)) (list 1 2 3)) ,

map effectively has type

(-> ((-> (int) int) (listof int)) (listof int)) ,

whereas in the call

(map (abs (x) (< x 17)) (list 23 13 29)) ,

it has type

(-> ((-> (int) bool) (listof int)) (listof bool)) .

Other common examples of useful polymorphic procedures include the iden-
tity procedure, the procedure-composing procedure, searching and sorting proce-
dures, and numerous list utilities like length, reverse, filter, and foldr.

Unfortunately, the type system of FLEX requires the types of values like map
to be specified where they are defined, not where they are used. A programmer
wishing to use map on different types of arguments must write a different version
of map for every different set of argument types. For example, here are two FLEX
versions of map that correspond to the two calls mentioned above:
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(def map (-> ((-> (int) int) (listof int)) (listof int))

(abs ((f (-> (int) int)) (xs (listof int)))

(if (null? xs)

(null int)

(cons (f (car xs)) (map f (cdr xs))))))

(def map (-> ((-> (int) bool) (listof int)) (listof bool))

(abs ((f (-> (int) bool)) (xs (listof int)))

(if (null? xs)

(null bool)

(cons (f (car xs)) (map f (cdr xs))))))

Except for type information, the two definitions are exactly the same.
Any language like FLEX that forces the programmer to reimplement func-

tionality in order to satisfy the type system thwarts the goal of writing reusable
software components. There is a broad class of general-purpose procedures and
data structures that are inexpressible in such languages because of the shackles
of the type system. This lack of expressiveness is indicative of the price that
programmers may have to pay for types. Indeed, fundamental limitations of
languages such as Pascal and C stem from their monomorphic type systems.

12.2.2 Universal Polymorphism: FLEX/SP

Polymorphism can be introduced into a language by generalizing the types of
values where they are created and then specializing these types where the values
are used. Reconsider the types of map listed above. All of them are instances of
a common pattern:

(-> ((-> (T) T ′) (listof T)) (listof T ′))

We would like to be able to declare that map has this general type, but then spe-
cialize this type (by specifying T and T ′) wherever map is applied. This approach
to polymorphism is called universal polymorphism or parametric polymor-
phism because the types T and T ′ are parameters that may be independently
instantiated to any types.

Constructs for Universal Polymorphism

A polymorphic language needs to specify polymorphic types and create and
use polymorphic values. FLEX/SP (the P stands for Polymorphism) extends
FLEX/S with three new constructs:4

4Since universal polymorphism does not depend on subtyping, we could also add universal
polymorphism to a language without subtyping. We will use the name FLEX/P for FLEX
extended with universal polymorphism. FLEX/P is FLEX/SP without the [inclusion] type
rule.
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(pabs (τ∗) E) creates a first-class polymorphic value that is parameterized
over the type identifiers τ∗.

(pcall E T ∗) projects the polymorphic value denoted by E onto the types
T by instantiating the type identifiers of E .

(forall (τ∗) T) is a polymorphic type — a type in which the type T is pa-
rameterized over the type variables τ∗. Polymorphic values have polymorphic
types.

We use forall to express the type of polymorphic values like map:

map : (forall (s t) (-> ((-> (s) t) (listof s)) (listof t)))

This says that map is a polymorphic value that, when projected onto any types s
and t, yields a procedure that takes a procedure from s to t and a list of s and
returns a list of t. Similarly, the type of the polymorphic identity procedure is
(forall (t) (-> (t) t)), and the type of a polymorphic procedure returning
the length of a list is (forall (t) (-> ((listof t)) int)).

The type identifiers τ∗ in (forall (τ∗) T) are formal type parameters that
stand in the place of actual types that will be supplied later. They serve the same
role as the formal parameters of an abs, the only difference being that abs-bound
names stand for values whereas forall-bound names stand for types. forall

types can be nested, and their type identifiers obey standard scoping conventions.
For instance, in the type

(forall (s t) (-> (s) (forall (u) (-> (u) t))))

the u introduced by the inner forall can be renamed to s without changing the
meaning of the type, but it cannot be renamed to t because of variable capture.

In the literature, polymorphic types are often written using ∀ notation and
are referred to as “universally quantified.” In this notation, the type of map is

∀ s t . ((s → t) × (list s))→ (list t)

Polymorphism allows general operations on data structures like pairs, se-
quences, lists, and cells to be built-in procedures in the standard library rather
than kernel constructs. For example, here are types for the standard list proce-
dures, which no longer require special syntactic support:

cons : (forall (t) (-> (t (listof t)) (listof t)))

car : (forall (t) (-> ((listof t)) t))

cdr : (forall (t) (-> ((listof t)) (listof t)))

null? : (forall (t) (-> ((listof t)) bool))

null : (forall (t) (-> () (listof t)))
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Without polymorphism, these must be kernel constructs, because there is no
way to write their types. In FLEX, their polymorphic behavior is achieved by
having a special type rule for each operation, but in FLEX/SP their types can
be described using universal polymorphism. In FLEX/SP, it is even possible to
have a polymorphic empty list nil with type (forall (t) (listof t)). This
underscores the fact that polymorphism can be used with all values, not only
procedures.

Assuming that we have some way to create polymorphic values (which we’ll
see below), we need some way to supply actual types for the formal type param-
eters in the forall type of a polymorphic value. This is accomplished by the
polymorphic projection construct (pcall Epoly Tn

i=1). Here, Epoly must de-
note a polymorphic value with type Tpoly = (forall (τn

i=1) Tbody). The pcall

construct specializes the type Tpoly by substituting the actual type parameters
Tn

i=1 for the formal type parameters τn
i=1 in Tbody . A forall type is some-

what like a procedure waiting for type arguments, where pcall is the “call” that
supplies these “arguments.” For example:

(pcall cons int) : (-> (int (listof int)) (listof int))

(pcall cons bool) : (-> (bool (listof bool)) (listof bool))

(pcall map int int) : (-> ((-> (int) int) (listof int)) (listof int))

(pcall map int bool) : (-> ((-> (int) bool) (listof int)) (listof bool))

The process of instantiating the type identifiers found in the universal type of
a polymorphic value with particular types via pcall is called projection. For
instance, (pcall map int bool) can be pronounced “the result of projecting
the polymorphic map value onto int and bool.”

Projecting a polymorphic procedure allows it to be used with different types
of arguments in different calls. If il is an integer list and bl is a list of booleans,
then ((pcall null? int) il) and ((pcall null? bool) bl) test each list for
emptiness. The following expression makes a one-element integer list whose only
element is 1:

((pcall cons int) 1 ((pcall null int)))

And here are two examples of different uses of map:

((pcall map int int) (abs ((x int)) (* x x)) (list int 1 2 3))

((pcall map int bool) (abs ((x int)) (< x 17)) (list int 23 13 29))

Finally, we need a way to create polymorphic values. This is the purpose of the
construct (pabs (τ∗) E), which denotes a polymorphic value that abstracts over
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the type identifiers τ∗ within E . For example, the polymorphic identity procedure
is written (pabs (t) (abs ((x t)) x)). Here is a polymorphic version of map
written in FLEX/SP, in which we assume that list procedures are polymorphic,
as discussed above:

(def map (forall (s t)

(-> ((-> (s) t) (listof s)) (listof t)))

(pabs (s t)

(abs ((f (-> (s) t)) (xs (listof s)))

(if ((pcall null? s) xs)

((pcall null t))

((pcall cons t) (f ((pcall car s) xs))

((pcall map s t)

f ((pcall cdr s) xs)))))))

The (pabs (s t) . . .) creates a polymorphic value (in this case, a procedure)
whose type is abstracted over the type identifiers s and t.

pabs and pcall have a similar contract to abs and procedure application.
But whereas abs and procedure call imply computation at run time, pabs and
pcall imply computation during type checking. That is, pabs builds abstractions
over types during static analysis; these abstractions are also unwound by pcall

during static analysis. Every polymorphic value must have its types instantiated
(via pcall) before it can be used.

In the literature, abstraction over types is often written using Λ, and projec-
tion onto types is often written using brackets, juxtaposition, or subscripts. For
example, the definition of map above might begin

Λ s t . λ f : (s→ t) xs : (list s) . . . .

and the projection (pcall map int bool) might be written map [int] [bool].
FLEX/SP requires the explicit projection of polymorphic values via pcall.

But some polymorphic languages support implicit projection, in which the
type arguments of projection are automatically deduced from context. Implicit
projection makes polymorphic programming more palatable by removing some
of the overhead of writing explicit types. We shall study an example of implicit
projection in Section 15.4.5.

Static Semantics of Universal Polymorphism

Figure 12.9 shows the changes to the FLEX/S type system to support universal
polymorphism. The [∀-intro] rule gives a forall type to a pabs, while the [∀-elim]
rule specifies a beta reduction in the type domain. To illustrate these two new
type rules, we revisit the FL example from page 657:
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Syntax

E ∈ Exp ::= . . . | (pabs (τ∗) E) | (pcall E T ∗)

T ∈ Type ::= . . . | (forall (τ∗) T)

Free Identifiers
FrIds[[(pabs (τn

i=1) E)]] = FrIds[[E ]]

FrIds[[(pcall E Tn
i=1)]] = FrIds[[E ]]

FrTyIdsty [[(forall (τn
i=1) T)]] = FrTyIdsty [[T ]] − ∪n

i=1{τi}
FrTyIdsexp [[(pabs (τn

i=1) E)]] = FrTyIdsexp [[E ]] − ∪n
i=1{τi}

FrTyIdsexp [[(pcall E Tn
i=1)]] = FrTyIdsexp [[E ]] ∪

(
∪n

i=1FrTyIdsty [[Ti ]]
)

New Type Rules
TE � E :T

TE � (pabs (τn
i=1) E) : (forall (τn

i=1) T)
[∀-intro]

where ∀n
i=1 . τi 
∈ ∪I∈FrIds[[E ]]

(
FrTyIdsty [[TE (I )]]

)
[import restriction]

E is pure [purity restriction]

TE � E : (forall (τn
i=1) T)

TE � (pcall E Tn
i=1) : ([Ti/τi ]

n
i=1)T

[∀-elim]

New Type-Equivalence Rule
([τi/τ ′

i ]
n
i=1)T

′ ≈ T
(forall (τ ′n

i=1) T ′) ≈ (forall (τn
i=1) T)

[∀-≈]

where ∀n
i=1 .

(
τi 
∈ FrTyIdsty [[T ′]]

)
New Subtype Rule

([τi/τ ′
i ]

n
i=1)T

′�T
(forall (τ ′n

i=1) T ′)� (forall (τn
i=1) T)

[∀-�]

where ∀n
i=1 .

(
τi 
∈ FrTyIdsty [[T ′]]

)
New Value
V ∈ ValueExp ::= . . . | (pabs (τ∗) Ebody)

New Evaluation Context
E ∈ EvalContext ::= . . . | (pcall E T ∗)

New Reduction Rule
(pcall (pabs (τn

i=1) Ebody) Tn
i=1) � ([Ti/τi ]

n
i=1)Ebody [polymorphic projection]

Figure 12.9 Changes to FLEX/S to handle universal polymorphism in FLEX/SP.
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Eid = (let ((id (abs (x) x))) {FL expression}
(if (id #t) 1 ((id id) 2)))

Translating this expression into FLEX required making three copies of the id

procedure that differed only in type annotations. But translating this expression
into FLEX/SP requires only a single polymorphic version of id:

EpolyId = (let ((id (pabs (t) (abs ((x t)) x)))) {FLEX/SP expression}
(if ((pcall id bool) #t)

1

(((pcall id (-> (int) int)) (pcall id int)) 2)))

Figure 12.10 presents a type derivation showing that this expression is well typed
in the FLEX/SP type system.

The [∀-intro] rule includes a restriction that pabs-bound type identifiers can-
not be elements of the set FrTyIdsty [[TE (I )]] for any I ∈ FrIds[[E ]] — i.e., they
cannot appear in the free type identifiers of the types of free identifiers in the
expression E . We call this the import restriction because it involves type
identifiers that are “imported” as types of the free identifiers in E .

The import restriction prohibits a subtle form of variable capture. Consider
the following example:

(def polytest

(pabs (t)

(abs ((x t))

(pabs (t) x))))

What is the type of polytest? To say that it is

(forall (t) (-> (t) (forall (t) t)))

is incorrect, because the t introduced by the outer pabs and used as the type of
x has been captured by the inner pabs. If this capture were allowed to happen,
and polytest had the type above, then

(pcall ((pcall polytest int) 3) bool)

would have the type bool, thus misinterpreting an integer value as a boolean!
In the [∀-intro] rule, we simply outlaw such situations.5 An implementation

could insist that programmers enforce the rule, or it could alpha-rename type
identifiers to guarantee that no capture is possible no matter what names the
programmer used. E.g., in the polytest example, the two pabs-bound identifiers
t would have different names, and the type of x would be the one bound by the
outer pabs.

5Another way to outlaw such situations without the import restriction is to have the [∀-intro]
rule extend the type environment with forall-bound variables and prohibit duplication of these
variables in the type environment. This is the approach taken in [Pie02, Chapter 23].
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Abbreviations
TE letbody = {id : (forall (t) (-> (t) t))}
EpolyId = (let ((id Epabs)) (if (EboolId #t) 1 ((EintProcId EintId) 2)))

Epabs = (pabs (t) (abs ((x t)) x))

EboolId = (pcall id bool)

EintId = (pcall id int)

EintProcId = (pcall id (-> (int) int))

Type Derivation for EpolyId

{x : t} � x : t [var]

{} � (abs ((x t)) x) : (-> (t) t) [→-intro]

{} � (pabs (t) (abs ((x t)) x)) : (forall (t) (-> (t) t)) [∀-intro]

TE letbody � id : (forall (t) (-> (t) t)) [var]

TE letbody � (pcall id bool) : (-> (bool) bool) [∀-elim]

TE letbody � #t : bool [bool]

TE letbody � (EboolId #t) : bool [→-elim]

TE letbody � 1 : int [int]

TE letbody � id : (forall (t) (-> (t) t)) [var]

TE letbody �(pcall id (-> (int) int))
:(-> ((-> (int) int)) (-> (int) int)) [∀-elim]

TE letbody � id : (forall (t) (-> (t) t)) [var]

TE letbody � (pcall id int) : (-> (int) int) [∀-elim]

TE letbody � (EintProcId EintId) : (-> (int) int) [→-elim]

TE letbody � 2 : int [int]

TE letbody � ((EintProcId EintId) 2) : int [→-elim]

TE letbody � (if (EboolId #t) 1 ((EintProcId EintId) 2)) : int [if ]

{} � (let ((id Epabs)) (if (EboolId #t) 1 ((EintProcId EintId) 2))) : int [let]

Figure 12.10 Derivation showing the well-typedness of EpolyId in FLEX/SP.
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The [∀-intro] rule also contains a purity restriction that insists that a poly-
morphic expression be referentially transparent. (Section 8.3.6 discusses referen-
tial transparency.) Chapter 16 will introduce a more precise way to enforce this
restriction, but we shall require here that an expression be a syntactic value in
the sense of Section 8.3.6, page 428. That is, the expression must be

• a variable reference (if there are no mutable variables) or an abstraction (abs
expression), or

• a conditional, let expression, primitive application (except those dealing with
cells), or an immutable data-structure constructor (e.g., pair) whose subex-
pressions are all syntactic values.

All other expressions — including procedure applications and invocations of cell
primitives — are potentially impure and are not syntactic values.

The purity restriction in the [∀-intro] rule has both practical and theoretical
motivations. The practical motivation is that we’d like to be able to define a
dynamic semantics for FLEX/SP expressions that ignores all type information
— an idea we formalize in Section 13.2.1 using a notion called type erasure.
From this perspective, constructs like pabs and pcall are compile-time fictions
that can be erased from a program after the type-checking phase because they
don’t affect the run-time behavior of a program. For instance, the FLEX/SP
polymorphic procedure

(pabs (s t)

(abs (p (pairof s t))

((pcall pair t s) ((pcall snd t) p) ((pcall fst s) p))))

can simply be implemented as if it were the FL procedure

(abs (p) (pair (snd p) (fst p)))

after type checking is performed.
Unfortunately, this implementation strategy no longer works if polymorphic

values with impure bodies are allowed. For example, suppose that (inc!) incre-
ments a global cell holding an integer. Then the FLEX/SP expression

(let ((id (pabs (t) (begin (inc!) (abs ((x t)) x)))))

((pcall pair int bool) ((pcall id int) 1)

((pcall id bool) #t)))

presumably should increment the cell twice, but the type-erased expression,

(let ((id (begin (inc!) (abs (x) x))))

(pair (id 1) (id #t)))
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increments the cell only once (assuming a CBV evaluation strategy). Requiring
every pabs body Ebody to be pure means that the number of times Ebody is eval-
uated cannot affect program behavior and so erasing pabs and pcall remains a
viable implementation strategy.

The theoretical motivation for the purity restriction in the [∀-intro] rule is
that the FLEX/SP type system is unsound if pabs is allowed to abstract over
the types in arbitrary impure expressions. To see why, we start with the following
CBV FL expression:

EpolyCell = (let ((c (cell (null))))

(begin (:= c (cons 1 (null)))

(not (car (^ c)))))

This expression encounters a dynamic type error because it attempts to use the
first element of an integer list in cell c as a boolean. We can translate EpolyCell

into the following FLEX/SP expression:

E ′
polyCell =

(let ((c (pabs (t) ((pcall cell (listof t)) ((pcall null t))))))

(begin ((pcall := (listof int))

(pcall c int)

((pcall cons int) 1 ((pcall null int))))

(not ((pcall car bool)

((pcall ^ (listof bool)) (pcall c bool))))))

If we removed the purity restriction from the [∀-intro] rule, then c could be
given the type (forall (t) (cellof (listof t))) and E ′

polyCell would be well
typed (verify this for yourself). But this well-typed expression would encounter
a dynamic type error (at least according to the type-erasure semantics discussed
above), so the type system would be unsound without the purity restriction.

Note that the rules for type equivalence and type inclusion allow alpha-
renaming of the forall-bound type identifiers. E.g.,

(forall (s) (-> (s) s)) ≈ (forall (t) (-> (t) t))

The type (forall (τn
i=1) T) is said to be a universal type because the

type parameters τn
i=1 range over the universe of types. Does the universe of

types over which type parameters range include universal types themselves? If
the answer is “yes” (as in the FLEX/SP type system), the type system is said
to be impredicative, while if the answer is “no,” the type system is said to
be predicative. In a predicative type system, there is a hierarchy of types:
there is a universe U1 of “regular” types that does not include forall types, a
universe U2 that includes forall types quantified over the regular types in U1,
a universe U3 that includes forall types quantified over the types in U2, and
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so on. Although the FLEX/SP type system is impredicative, we shall see (in
Section 13.4.2) that type reconstruction for universal types uses a predicative type
system instead. For more on impredicative versus predicative polymorphism, see
[Mit96, Chapter 9].

Dynamic Semantics of Universal Polymorphism

The dynamic semantics of universal polymorphism is expressed by extending the
FLEX SOS in Figure 12.9. The new evaluation context (pcall E T ∗) permits
the evaluation of the expression Epoly in (pcall Epoly T ∗) to a polymorphic
value (pabs (τ∗) Ebody), and the new [polymorphic projection] reduction rule
substitutes the actual type arguments of the pcall for the formal type param-
eters of the pabs. The modified SOS can be used to show the type soundness
of FLEX/SP by extending the preservation/progress recipe to handle the new
constructs of FLEX/SP (Exercise 12.15).

Figure 12.9 does not describe the changes in the type rules or the SOS of
FLEX/S that are needed to replace the kernel constructs for operations on lists,
pairs, cells, and sequences by primitive operators or built-in procedures. The
usual primitive-application construct (prim O E ∗) is not sufficient for poly-
morphic primitives like cons and pair, which need to be projected onto type
arguments. We could address this by modifying prim to specify the projection
types for polymorphic primitives, as in (prim pair (int bool) 3 #t).

Exercise 12.10 As illustrated in Exercise 11.5 on page 658 and Exercise 11.21 on
page 687, translating FL expressions into the monomorphic FLEX language often re-
quires making duplicate copies of procedure definitions differing only in type annotations.
FLEX/SP’s universal polymorphism makes such duplication unnecessary. Show this by
translating the expressions from these two exercises into FLEX/SP without duplicating
any procedure definitions.

Exercise 12.11 Polly Morwicz wants to simplify FLEX/SP by introducing into the
standard library a built-in polymorphic err procedure that replaces the kernel error
construct.

a. Specify the type of Polly’s err procedure.

b. Illustrate the use of Polly’s err procedure by filling in the hole in the following example
to produce a well-typed FLEX/SP expression:

(abs ((x int) (y int)) (if (= x 0) � (/ y x)))

Exercise 12.12 Bud Lojack is having trouble implementing letrec in a call-by-name
version of FLEX/SP. He decides that recursion should instead be specified by a polymor-
phic fix procedure in the standard library that computes the fixed point of a generating
procedure. For example, here is Bud’s correct definition of a factorial procedure:
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(let ((fact-gen

(abs ((fact (-> (int) int)))

(abs ((n int))

(if (= n 0) 1 (* n (fact (- n 1))))))))

((pcall fix (-> (int) int)) fact-gen))

a. What is the type of fact-gen?

b. What is the type of fix?

c. What is the type of ((pcall fix (-> (int) int)) fact-gen)?

d. Bud asks his friend Thai Ping to define a version of fix that works in call-by-name
FLEX/SP, and Thai quickly produces the following:

(def fix T0

(pabs (t)

(abs ((f T1))

((abs ((x T2)) (f (x x)))

(abs ((x T2)) (f (x x)))))))

What are T0 , T1 , and T2 ? Hint: Compare to Exercise 11.24 on page 694.

e. Is it possible to define a version of fix for call-by-value FLEX/SP?

f. Rather than making fix a standard library procedure, Bud could have made it a
kernel construct of the form (fix E), in which case his factorial procedure would be
written (fix fact-gen). What is the type rule for the kernel fix construct?

Exercise 12.13 Translate the following FL procedures for manipulating Church pairs
into FLEX/SP:

(def church-pair (abs (x y) (abs (f) (f x y))))

(def church-fst (abs (p) (p (abs (x y) x))))

(def church-snd (abs (p) (p (abs (x y) y))))

Exercise 12.14 Consider a version of FLEX/SP that includes (cwcc E) from Sec-
tion 9.4.4 as a kernel construct.

a. Give a type rule for (cwcc E).

b. Translate the following FL abstraction that uses cwcc to a FLEX/SP abstraction
that is well typed assuming your type rule from part a.

(abs (x y)

(cwcc (abs (return)

(if (or (< x y) (and (< y (* 2 x)) (return x)))

(return y)

(+ x y)))))

c. Can (cwcc E) be added as a kernel construct to FLEX? Explain.

(See part d of Exercise 12.7 on page 717 for another approach to typing cwcc.)
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Exercise 12.15

a. Sketch a proof for the following lemma:

If TE � E :T, then (([Ti/τi ]
n
i=1)TE ) � ([Ti/τi ]

n
i=1)E : ([Ti/τi ]

n
i=1)T

b. Using the lemma from part a, show that the [polymorphic projection] reduction
rule preserves types in the empty type environment. This extends Lemma 11.9 on
page 668, which is the key step in showing that the Preservation Theorem for μFLEX
(Theorem 11.6 on page 668) holds for FLEX/SP.

c. Extend the proof of the Progress Theorem for μFLEX (Theorem 11.7 on page 668)
to show that FLEX/SP expressions that are well typed in the empty environment
cannot be stuck at a dynamic type error. You need only consider the new kinds of
stuck expressions that are possible in the presence of pabs and pcall.

12.2.3 Deconstructible Data Types

Universal polymorphism makes it possible to express simple forms of the de-
constructible sum-of-products data types from Section 10.4 in a statically typed
language. Data-type deconstructors must be polymorphic because they need to
return different types in different contexts. Such deconstructors cannot be defined
as regular procedures in a monomorphic language.

An Example: Integer Lists

Consider the following data-type declaration for lists of integers:

(def-datatype intlist

(inull)

(icons int intlist))

As shown in Figure 12.11, this declaration can be viewed as introducing a recur-
sive sum-of-products type, Tintlist , along with procedures for constructing (inull,
icons) and deconstructing (inull~, icons~) values of this type.

The intlist deconstructors are polymorphic procedures that are parameter-
ized over a type t specifying the type of the value returned when the deconstruc-
tor is invoked. For example, Figure 12.12 presents three recursive procedures in
which these deconstructors are projected onto three different types:

1. the sum procedure (in which t = int) adds the elements of an integer list;

2. the all-positive? procedure (in which t = bool) determines whether all the
elements of an integer list are positive; and

3. the map-squares procedure (in which t = intlist) returns an integer list
containing the squares of the corresponding integers in a given list.
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Data-Type Declaration
(def-datatype intlist

(inull)

(icons int intlist))

Sum-of-products Data Type
Tintlist = (trec intlist

(oneof (inull (prodof))

(icons (prodof int intlist))))

Constructors
(def inull (-> () Tintlist)

(abs () (one Tintlist inull (prod))))

(def icons (-> (int Tintlist) Tintlist)

(abs ((x1 int) (x2 Tintlist))

(one Tintlist icons (prod x1 x2))))

Deconstructors
(def inull~ (forall (t) (-> (Tintlist (-> () t) (-> () t)) t))

(pabs (t)

(abs ((disc Tintlist) {discriminant}
(succ (-> () t)) {success continuation}
(fail (-> () t))) {failure continuation}

(tagcase disc payload

(inull (succ))

(else (fail))))))

(def icons~

(pabs (t) (forall (t) (-> (Tintlist (-> (int Tintlist) t) (-> () t)) t))

(abs ((disc Tintlist) {discriminant}
(succ (-> (int Tintlist) t)) {success continuation}
(fail (-> () t))) {failure continuation}

(tagcase disc payload

(icons (succ (get 1 payload) (get 2 payload)))

(else (fail))))))

Figure 12.11 The type, constructor procedures, and deconstructor procedures intro-
duced by an intlist data-type declaration.

The General Case

A formal definition of the desugaring for def-datatype is presented in Fig-
ure 12.13. This is similar to the desugaring of the def-data declaration (see
Figure 10.21 on page 587) in a dynamically typed language except for the follow-
ing differences:
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(def sum (-> (Tintlist) int)

(abs ((ns Tintlist))

((pcall inull~ int) ns

(abs () 0)

(abs ()

((pcall icons~ int) ns

(abs ((n int) (ms Tintlist))

(+ n (sum ms)))

(abs () (error shouldnt-happen int)))))))

(def all-positive? (-> (Tintlist) bool)

(abs ((ns Tintlist))

((pcall inull~ bool) ns

(abs () #t)

(abs ()

((pcall icons~ bool) ns

(abs ((n int) (ms Tintlist))

(scand (> n 0) (all-positive? ms)))

(abs () (error shouldnt-happen bool)))))))

(def map-square (-> (Tintlist) Tintlist)

(abs ((ns Tintlist))

((pcall inull~ Tintlist) ns

(abs () (inull))

(abs ()

((pcall icons~ Tintlist) ns

(abs ((n int) (ms Tintlist))

(cons (* n n) (map-square ms)))

(abs () (error shouldnt-happen Tintlist)))))))

Figure 12.12 Three recursive procedures illustrating use of intlist deconstructors.

• In each def-datatype clause (Itagi Ti ,1 . . . Ti ,ki), the entities Ti ,1 . . . Ti ,ki

are not mere placeholders for product components but are bona fide types
describing the product components.

• In addition to defining constructor and deconstructor procedures for each
clause, the (def-datatype τdata . . .) declaration defines a recursive sum-of-
products type named τdata . The scope of the type identifier τdata includes the
clauses of the current def-datatype declaration, any following declarations,
and the program body.6

6This scope is based on the assumption that all def-type declarations that result from the
desugaring of def-datatype are moved in front of all def declarations, preserving their relative
order, before the program desugaring in Figure 11.2 on page 634 is performed. The program
desugaring replaces all occurrences of τdata by the corresponding sum-of-products type.
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Modified Syntax

P ::= (flex/SP ((Iformal TformalType)
∗) Ebody D∗

defn) [Program]

D ::= (def Iname TdefnType Edefn) [ValueDefinition]
| (def (Iproc Treturn (Iformal TformalType)

∗) Ebody) [ProcedureDefinition]
| (def-datatype τdata (Itag T ∗)∗) [DataTypeDeclaration]

New Desugaring
; This desugaring rule interleaves def-type and def declarations. We assume
; that all def-type declarations are moved in front of the def declarations
; before the program desugaring defined in Figure 11.2 on page 634 is performed.

DSdef : Def → Def*

DSdef [[(def-datatype τdata (Itagi
Ti,1 . . . Ti,ki

)n
i=1)]]

= (def-type τdata Tdata) . (@n
i=1DScl [[(Itagi

Ti,1 . . . Ti,ki
)]])

where Tdata = (trec τdata (oneof (Itagi
(prodof Ti,1 . . . Ti,ki

))n
i=1))

and DScl [[(Itag T k
i=1)]]

= [; constructor procedure
(def Itag (-> (T k

i=1) τdata)
(abs ((x��1 T1) ... (x��k Tk))

(one τdata Itag (prod x��1 ... x��k)))),
; polymorphic deconstructor procedure
(def Itag��~
(forall (τret) ; τret is the deconstructor return type
(-> (τdata ; discriminant type

(-> (T k
i=1) τret) ; success continuation type

(-> () τret)) ; failure continuation type
τret))

(pabs (τret) ; τret is a fresh return type
(abs ((val τdata) ; discriminant

(succ (-> (T k
i=1) τret)) ; success continuation

(fail (-> () τret))) ; failure continuation
(tagcase val payload

(Itag (succ (get i payload)k
i=1))

; For i ∈ Int, the notation i stands for
; the IntLit N such that N [[N ]] = i

(else (fail))))))
]

Figure 12.13 Syntax and desugaring of def-datatype in FLEX/SP.
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• Each constructor procedure abstraction specifies explicit types for the formal
parameters and the sum-of-products injection.

• Each deconstructor is a polymorphic procedure parameterized over the return
type τret used in the explicit types for the success and failure continuations.

Pattern Matching for Deconstructing Data Types

Since explicit deconstructor applications are cumbersome to read and write, it
would be nice to have a more convenient way to write them, such as the match

construct from Section 10.5. For example, we’d like to define the all-positive?
procedure as

(def all-positive? (-> (Tintlist) bool)

(abs ((ns Tintlist))

(match ns

((inull) #t)

((icons n ms) (scand (> n 0) (all-positive? ms))))))

and have it automatically transformed into the definition in Figure 12.12. Unfor-
tunately, the match desugaring for the dynamically typed FL language presented
in Figure 10.27 on page 603 does not work in FLEX/SP because it doesn’t handle
the fact that FLEX/SP deconstructors are polymorphic procedures that need
to be projected onto the return type of the match expression. Here are two ways
to address this problem, which are explored further in Exercise 12.20.

1. We can extend the match construct with an explicit return type that can be
used in a suitably modified desugaring. For example, in the all-positive?

procedure, we could replace (match ns . . . ) by (match ns bool . . . ) to
explicitly declare that this match returns a boolean value. Adding explicit type
information is consistent with other FLEX/SP constructs (such as error and
null), but is a hassle for the programmer. Intuitively, it is also unnecessary,
because the type system must be able to determine the return type of the
match expression when there is at least one clause. Explicit types become
even more cumbersome when parameterized data types such as (listof t)

and (pairof s t) are considered (see Exercise 12.25 on page 766).

2. A more flexible approach is to treat the match construct as a kernel construct
for the purposes of type checking and to delay the transformation of match
into deconstructor applications until after type checking is complete. Then the
type of the match expression determined during type checking can be used as
the projection type when match is transformed to deconstructor applications.
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We will see in Section 13.5.4 that many of the complications involving pat-
tern matching in an explicitly typed language disappear in the presence of type
reconstruction.

Exercise 12.16 Suppose that the shape data type in Figure 10.22 on page 588 is defined
in FLEX/SP using def-datatype.

a. Define a FLEX/SP procedure perim that calculates the perimeter of a shape.

b. Define a FLEX/SP procedure scale that, given a shape and an integer scaling factor,
returns an appropriately scaled shape.

Exercise 12.17 Exercise 11.25 (page 695) considers an ELM interpreter written in
FLEX based on explicit types TelmExp and TelmPgm .

a. Define TelmExp and TelmPgm using def-datatype.

b. Write an ELM interpreter in FLEX/SP in which all data-type deconstruction is
performed via deconstruction procedures.

c. Using def-datatype, define an s-expression data type sexp (see Exercise 11.28 on
page 698) and define a procedure sexp->elm that parses s-expressions into ELM
expressions.

Exercise 12.18 Deconstructors for individual constructors are helpful when we want
to define pattern-matching approaches to data-type deconstruction in FLEX/SP (e.g.,
see Exercise 12.20). However, they are clumsy in the common case where there is one
deconstruction clause for each constructor. Later clauses end up being embedded in
the failure continuations for earlier clauses, and the final failure continuation is an error
expression (such as (error shouldnt-happen int) in Figure 12.12) that will never be
executed because all cases have already been covered.

For this common case, it is helpful to define a single deconstructor that has one
success continuation for each constructor tag, as suggested by the following example:

(def sum (-> (Tintlist) int)

(abs ((ns Tintlist))

((pcall intlist~ int) ns

(record (inull {success continuation for inull}
(abs () 0))

(icons {success continuation for icons}
(abs ((n int) (ms Tintlist)) (+ n (sum ms))))))))

For a data type named τdata , the new deconstructor is named τdata��~. Its first argument
is a value of type τdata to be deconstructed and its second argument is a record of success
continuations, one for each constructor tag in the data-type declaration.

Extend the desugaring of def-datatype to provide this new kind of deconstructor.
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Exercise 12.19 Data types sometimes need to be mutually recursive. For example,
mutually recursive data types would be needed to express the definitions of numerical
expressions and boolean expressions in the EL language in Figure 2.4 on page 25:

(def-datatype numexp

(intval int)

(input int)

(arithapp arithop numexp numexp)

(conditional boolexp numexp numexp))

(def-datatype boolexp

(boolval bool)

(relapp relop numexp numexp)

(logapp logop boolexp boolexp))

(def-datatype arithop (+) (-) (*) (/) (%))

(def-datatype relop (<) (=) (>))

(def-datatype logop (and) (or))

However, the desugaring for def-datatype defined in Figure 12.13 (in conjunction with
the program desugaring defined in Figure 11.2 on page 634) does not support mutually
recursive datatypes.

Modify the handling of def-datatype declarations within a FLEX/SP program to
allow mutually recursive datatypes like numexp and boolexp.

Exercise 12.20

a. Suppose FLEX/SP is extended with the following match sugar expression for decom-
posing sum-of-products data types:

E ∈ Exp ::= . . . | (match Edisc Tmatch (PT E)∗)

PT ∈ Pattern ::= L | I | _ | (Iconstr PT ∗)

The programmer-supplied type Tmatch in the match construct describes the value of
the match expression.

Modify the match desugaring in Figure 10.27 on page 603 to desugar the FLEX/SP
match construct. You may assume that there is a type environment TEdatatypes

containing the types of constructor and deconstructor procedures for all programmer-
declared data types in the program.

b. Now consider a FLEX/SP match construct (1) that does not have the explicit return
type Tmatch ; (2) that has at least one clause; and (3) in which patterns are restricted
to constructor application patterns of the form (Iconstr I ∗):

E ∈ Exp ::= . . . | (match Edisc (PT E)+)

PT ∈ Pattern ::= (Iconstr I ∗)

i. Suppose that the type checker treats this match expression as a kernel construct.
Give the type rule for match.
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ii. Define the following translation function, T , which transforms match expressions
into appropriate deconstructor applications:

T :ExpFLEX/SP+{match} → TypeEnvironment → ExpFLEX/SP

If E is a FLEX/SP+{match} expression that is well typed in TE , then
T [[E ]] TE should be a FLEX/SP expression that is well typed in TE and
has the same meaning as E .

iii. Generalize parts i and ii to handle more expressive patterns defined by the
following grammar:

PT ∈ Pattern ::= L | I | _ | (Iconstr PT ∗)

12.2.4 Bounded Quantification

A problem with the notion of subtyping studied in Section 12.1.1 is that there is
no way to express dependencies between the argument types and result type of
a procedure. For example, as explored on page 721, the procedure

EincAge = (abs ((r (recordof (age (cellof int)))))

(let ((age (select age r)))

(begin (:= age (+ (^ age) 1))

r))))

can be given any supertype of the procedure type

TincAge = (-> ((recordof (age (cellof int))))

(recordof (age (cellof int))))

But any such type necessarily “forgets” any fields other than the age field. For
example, if Ercd is a record with type

Trcd = (recordof (age (cellof int)) (name symb))

then (select name (EincAge Ercd)) is ill typed. Even though (EincAge Ercd)

has a name field at run time, the best the FLEX/S type system can do is assign
to (EincAge Ercd) the type (recordof (age (cellof int))).

Bounded quantification combines subtyping with universal polymorphism
to allow us to express the idea that the return type of EincAge is the same as
the argument type for any subtype of (recordof (age (cellof int))). Each
pabs parameter specification (τ <= T) now includes an upper type bound T
in addition to the type identifier τ . When a pabs is projected, each actual type
parameter must be a subtype of the upper type bound in the corresponding
formal parameter specification.
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For example, we can now write our procedure that increments any record’s
updatable integer age field and returns the updated record as:

E ′
incAge = (pabs ((t <= (recordof (age (cellof int)))))

(abs ((r t))

(let ((age (select age r)))

(begin (:= age (+ (^ age) 1))

r))))

This polymorphic procedure has the type:

T ′
incAge = (forall ((t <= (recordof (age (cellof int)))))

(-> (t) t))

The (-> (t) t) in the polymorphic type specifies that the return type of EincAge

is the same as the argument type, and the bound in the parameter specification
(t <= (recordof (age (cellof int)))) says that this argument/result type
can be any subtype of (recordof (age (cellof int))).

This polymorphic procedure can be projected onto any record type containing
an updatable integer age field; but it doesn’t forget the other fields of the record
type it is projected onto. For example, we can now safely extract the name field
from the result of using E ′

incAge to increment the age field of an expression Ercd

with a type Trcd containing both an age and name field:

(select name ((pcall E ′
incAge Trcd) Ercd))

This is well typed because (pcall E ′
incAge Trcd) has the type (-> (Trcd) Trcd)

that results from projecting the polymorphic type T ′
incAge onto Trcd . This projec-

tion is sensible because Trcd is a subtype of the bound specified for t in E ′
incAge :

(recordof (age (cellof int))).
Figure 12.14 shows the changes necessary to add bounded quantification to

FLEX/SP. Of course, we still want the unrestricted polymorphism of FLEX/SP.
Rather than have separate type abstraction and projection facilities for the two
cases, we introduce the new type top as the top of the type lattice. Every type is a
subtype of top, and every binding occurrence τ that appears in a FLEX/SP pabs

expression or forall type without an upper bound is replaced by the bounded
specification (τ <= top).

Exercise 12.21 Write the type-equivalence rule and subtype rule for forall types in a
system with bounded quantification.
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Syntax

E ∈ Exp ::= . . . all FLEX/SP expressions except pabs . . .
| (pabs ((τ <= T)∗) E)

T ∈ Type ::= . . . all FLEX/SP types except forall . . .
| (forall ((τ <= T)∗) T) | top

Syntactic Sugar

(forall (... τi ...) E) �ds (forall (... (τi <= top) ...) E)

(pabs (... τi ...) E) �ds (pabs (... (τi <= top) ...) E)

Free Identifiers
FrIds[[(pabs ((τi <= Ti)

n
i=1) E)]] = FrIds[[E ]]

FrTyIdsty [[(forall ((τi <= Ti)
n
i=1) T)]]

=
(
FrTyIdsty [[T ]]− ∪n

i=1 {τi}
)
∪

(
∪n

i=1FrTyIdsty [[Ti ]]
)

FrTyIdsexp [[(pabs ((τi <= Ti)
n
i=1) E)]]

=
(
FrTyIdsexp [[E ]]− ∪n

i=1 {τi}
)
∪

(
∪n

i=1FrTyIdsty [[Ti ]]
)

New Type Rules
TE � E :T

TE � (pabs ((τi <= Ti)
n
i=1) E) : (forall ((τi <= Ti)

n
i=1) T)

[∀-introBQ ]

where ∀n
i=1 . τi 
∈ ∪I∈FrIds[[E ]]

(
FrTyIdsty [[TE (I )]]

)
[import restriction]

E is pure [purity restriction]

TE � E : (forall ((τi <= Ti)
n
i=1) T) ∀n

i=1 . T ′
i �Ti

TE � (pcall E T ′n
i=1) : ([T ′

i /τi ]
n
i=1)T

[∀-elimBQ ]

New Type-Equivalence Rule
Left as Exercise 12.21. [∀-≈BQ ]

New Subtype Rules
T � top [top-�BQ ]

Left as Exercise 12.21. [forall-�BQ ]

New Value
V ∈ ValueExp ::= . . . | (pabs ((τ <= T)∗) Ebody)

New Reduction Rule
(pcall (pabs ((τi <= Ti)

n
i=1) Ebody) T ′n

i=1) � ([T ′
i /τi ]

n
i=1)Ebody ,

where ∀n
i=1 . T ′

i �Ti [polymorphic projectionBQ ]

Figure 12.14 Adding bounded quantification to FLEX/SP.
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12.2.5 Ad Hoc Polymorphism

There is another way in which program code can have more than one type.
Consider the Java + operator, which can mean integer addition, floating point
addition, or string concatenation. So the type of + can be any of the following:

(int× int)→ int
(float× float)→ float
(double× double)→ double
(string × string)→ string

This is unlike universal polymorphism, because the program code that imple-
ments the + operator is different for each of these types. The different operators
just happen to share the same name.

When a procedure or operator has a different meaning depending on the
number and/or types of its arguments, this is called ad hoc polymorphism or
overloading. Overloading arises in three ways:

• As noted above, built-in operators like + can have multiple meanings. This
feature is present in most common programming languages. Some languages
allow the programmer to further overload built-in operators. For example, in
C++ one can define a meaning for infix + (or any of a large number of built-in
operators) when applied to objects of a user-defined class.

• Languages like Java, C++, and Dylan generalize overloaded operators by
supporting multiple methods/functions defined with the same name as long
as they are distinguished by the number and/or types of their arguments. A
particular method/function will be chosen by the compiler or run-time system
based on the invocation context.

• In many object-oriented languages, dynamic method dispatch and the ability of
a subclass to override a superclass’s methods imply that the code implementing
a method is chosen at run time depending on the actual class of an object.

This last form of ad hoc polymorphism is at the very heart of object-oriented
programming. When one hears people refer to object-oriented languages as poly-
morphic, this is typically the sort of polymorphism they have in mind.

There are other forms of ad hoc polymorphism that are closer in spirit to
universal polymorphism. C++ provides templates that allow class and function
declarations to be parameterized over types. For example, templates can be used
to define a stack whose elements have type T or a sorting function that sorts
arrays with elements of type T using a < operator. When these templates are
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instantiated with a particular argument type, the compiler effectively makes a
copy of the template code in which the argument type is substituted for the type
parameter T. Although similar to universal polymorphism, this approach is still
ad hoc because different instantiations use different code. For example, elements
in an int stack have a different size than elements in a double stack, and <

stands for a different less-than operator when used to compare two int values
than when used to compare two double values.

In Java prior to version 5.0, programmers compensated for the lack of uni-
versal polymorphism by adopting a programming idiom that takes advantage of
subtyping, the Java class hierarchy, and casts (with dynamic type checking).
Because the Object class is at the top of the inheritance hierarchy in Java, it
functions as the top of the type partial order for object types. Thus, code that
one would like to work for any object type is written to use the Object type. For
example, a stack class can be defined as a collection of values of type Object.
Because any object has a type that is a subtype of Object, we can push elements
of any object type, say String, onto a stack. However, when popping a String

element from a stack, the type system only “knows” that the returned element is
an Object; the programmer has to supply a downcast to declare that the result
is really a String.

There are two main problems with this Java idiom. First, the use of explicit
downcasts is inelegant and error-prone. Second, the idiom can only be used with
object types and does not work for primitive types like int and boolean. Values
of these primitive types must be packaged into instances of so-called wrapper
classes (like the Integer class for holding int values) before they can be used in
this idiom. For example, we can use our stack class to make a stack of Integer
instances but not a stack of int values.

Version 5.0 of Java introduces several features for alleviating these problems.
The most important of these is its generics facility, which allows classes, inter-
faces, and static methods to be parameterized over types and then instantiated
with particular types. Unlike in C++ templates, all instantiations of a Java
generic type use the same code, which is closer in spirit to universal polymor-
phism. For compatibility with earlier versions of Java, the semantics of generics is
defined by erasing the generic type parameters and effectively translating generic
code to the Object/downcast idiom described above. But from the programmer’s
perspective, generics provide most of the benefits of universal programming and
bounded quantification. For example, it is possible to define a stack with ele-
ments of type T such that popping a stack of String elements returns a String

object without an explicit downcast.
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(def-type int-tree (trec tr (oneof (leaf int) (node (prodof tr tr)))))

(def make-int-node (-> (int-tree int-tree) int-tree)

(abs ((l int-tree) (r int-tree))

(one int-tree node (prod l r))))

Figure 12.15 Defining the int-tree type simplifies the definition of make-int-node.

Primitive types are still a sore point, but the autoboxing/autounboxing fea-
tures of Java 5.0 will automatically wrap primitive values into and unwrap them
from wrapper classes in many situations. For example, pushing an int onto a
stack will implicitly wrap the int into an Integer instance before pushing it.

However, for many problems involving collections of elements, it is still not
possible to define a single generic method that works for any type of element,
including primitive types. E.g., reversing the elements of an array of int values
requires a different method from one that reverses the elements of an array of
objects.

12.3 Higher-order Types: Descriptions and Kinds

12.3.1 Descriptions: FLEX/SPD

Chapter 11 showed how type synonyms (introduced by let-type, let-type*,
and def-type) can make explicitly typed programs more compact and readable,
just as let allows us to give readable names to values. The remainder of this
chapter explores the symmetry between programming with types and program-
ming with values. In particular, we will motivate the need for functions on types
and the need for checking the “types” (called the kinds) of such functions.

The desire to modularize a program into reusable components motivates pro-
cedural abstraction: procedures (constructed using FLEX’s abs) allow us to
write code that can be reused in different contexts with different arguments.
Universal polymorphism extends this idea into the world of typed programs by
allowing us to abstract an expression over type identifiers (using pabs) so it can
be reused in various situations. The very same principle of abstraction can be
used again to support modularity and reuse of type expressions.

To motivate abstractions at the type level, consider the make-int-node proce-
dure (Figure 12.15), which glues two int-trees (binary trees with integer leaves)
into a single int-tree. Using def-type to introduce the name int-tree as a
synonym for a recursive sum-of-products type is essential for keeping the example
succinct. Without this synonym, each of the six occurrences of int-tree in the
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(def make-node

(forall (t)

(-> ((trec tr (oneof (leaf t) (node (prodof tr tr))))

(trec tr (oneof (leaf t) (node (prodof tr tr)))))

(trec tr (oneof (leaf t) (node (prodof tr tr))))))

(pabs (t)

(let-type ((t-tree (trec tr (oneof (leaf t)

(node (prodof tr tr))))))

(abs ((l t-tree) (r t-tree))

(one t-tree node (prod l r))))))

Figure 12.16 make-node, a version of make-int-node parameterized over the leaf
type.

definition of make-int-node would need to be a copy of the trec type specifying
the type of integer trees.

The importance of type abstraction is highlighted when make-int-node is
generalized to a make-node procedure that abstracts over the type t of the tree
leaves (Figure 12.16). The definition of make-node contains four copies of the
type (trec tr . . . ), which describes a binary tree with leaves of type t. In the
body of the procedure, let-type is used to give this type the name t-tree. But
let-type cannot be used to abstract over the three occurrences of the tree type
within the forall type, because the body of let-type must be an expression,
not a type. Nor can we use def-type to define t-tree globally, because it refers
to the type t, which is declared locally by forall and pabs within make-node.

FLEX/SPD addresses this problem by generalizing types to more expressive
phrases called descriptions. FLEX/SPD’s description-naming construct, dlet,
is similar to FLEX’s let and let-type (renamed here to plet7) except that it
names a description within another description.

Let Keyword Binding Definitions Body
let expressions expression
plet descriptions expression
dlet descriptions description

Using dlet, we can simplify the type of make-node to:

(forall (t)

(dlet ((t-tree (drec tr {drec is FLEX/SPD’s generalization of trec}
(oneof (leaf t) (node (prodof tr tr))))))

(-> (t-tree t-tree) t-tree)))

7In FLEX/SPD, let-type is renamed plet to emphasize the correspondences between
let/abs, plet/pabs, and dlet/dabs.
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(def-desc treeof {def-desc is FLEX/SPD’s generalization of def-type}
(dabs (leaf-type)

(drec tr {drec is FLEX/SPD’s generalization of trec}
(oneof (leaf leaf-type) (node (prodof tr tr))))))

(def make-node (forall (t) (-> ((treeof t) (treeof t)) (treeof t)))

(pabs (t)

(abs ((l (treeof t)) (r (treeof t)))

(one (treeof t) node (prod l r)))))

Figure 12.17 Version of make-node written in FLEX/SPD, which permits the defi-
nition of a treeof type constructor.

FLEX/SPD has a description abstraction construct, dabs, analogous to abs and
pabs.

Abstraction Keyword Operands Body
abs expressions expression
pabs descriptions expression
dabs descriptions description

Using dabs it is possible to simplify the definition of make-node even more (Fig-
ure 12.17) by defining a global treeof type abstraction that maps a given leaf
type leaf-type to a type of binary trees whose leaves have this type. An ab-
straction like treeof that maps types to types is called a type constructor or
a type operator. abs and pabs are not adequate for defining type constructors:
abs creates procedures that map values to values, and pabs creates polymorphic
abstractions that map types to values, but a type constructor maps types to
types.

The key syntactic changes needed to extend FLEX/SP to FLEX/SPD are
summarized in Figure 12.18. FLEX/SPD replaces the notion of type with a
more general notion of description. FLEX/SPD descriptions include8

• types, such as base types (unit, int, bool, and symb), arrow types (->),
recordof types, prodof types, oneof types, and forall types;

• base type constructors (cellof and seqof);9

8Descriptions can be extended to include other information as well, such as effects, which
describe the allocation, reading, or writing of mutable data structures (see Chapter 16).

9Types of the form (cellof T) and (seqof T) can now be expressed as description appli-
cations using a base type constructor. Intuitively, ->, oneof, recordof, and prodof can also
be viewed as base type constructors. However, although prodof types can be expressed using
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New Kernel Syntax

P ∈ Prog ::= (flexk/SPD ((Iformal DformalDesc)
∗) Ebody)

E ∈ Exp ::= . . . FLEX/SP expressions with T replaced by D . . .

D ∈ Desc ::= . . . FLEX/SP types (excluding cellof, listof, pairof,
seqof, trec, and tletrec) with τ replaced by δ
and T replaced by D . . .

| BTCR | (dabs (δ∗formal) Dbody)

| (Drator D∗
rand) | (dletrec ((δname Ddefn)

∗) Dbody)

PD ∈ ProgDesc ::= (=> (D∗
arg) Dresult)

BTCR ∈ BaseTypeConstructor = {cellof, seqof}
DK ∈ DescKeyword = BaseType ∪ BaseTypeConstructor

∪ {->, dabs, dletrec, forall
oneof, prodof, recordof}; kernel keywords

∪ {dlet, drec, plet, pletrec} ; sugar keywords

δ ∈ DescId = SymLit − DescKeyword

New Syntactic Sugar

(dlet ((δi Di)
n
i=1) Dbody) �ds [Di/δi ]

n
i=1Dbody

(drec δname Dbody) �ds (dletrec ((δname Dbody)) δname)

(plet ((δi Di)
n
i=1) Ebody) �ds [Di/δi ]

n
i=1Ebody

(pletrec ((δi Di)
n
i=1) Ebody) �ds [(dletrec ((δj Dj)

n
j=1) δi)/δi ]

n
i=1Ebody

Figure 12.18 Syntactic changes for adding descriptions to FLEX/SP to yield
FLEX/SPD.

• description abstractions (dabs (δ∗) D) that specify type constructors and
other description operators that take descriptions as arguments and return
descriptions as results;

• description applications (Drator D∗
rand), used for applying type constructors

and other description operators, as in ((dabs (t) (prodof t t)) int) and
(seqof int);

• a description recursion construct, (dletrec ((δ D)∗) Dbody), and its associ-
ated sugar form (drec δ D), which are the description analogues of tletrec
and trec types;

description applications, ->, oneof, and recordof types cannot because of their special syntax.
Moreover, even if we modified the syntax, we would not be able to assign kinds to ->, oneof,
recordof, and prodof in the kind system presented in Section 12.3.2, so we choose to treat
them specially in FLEX/SPD.
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(flex/SPD ((Ifmli
Dfmli

)h
i=1) Ebody

(def-desc δddj
Dddj

)m
j=1 (def Idk

Ddk
Edk

)n
k=1)

{Assume procedure defs are desugared to (def I D E)}
�ds

(flexk/SPD ((Ifmli
Dfmli

)h
i=1)

(pletrec ((pairof (dabs (s t) (prodof s t)))

(listof (dabs (t)

(drec listof-t

(oneof (null unit)

(cons (prodof t listof-t)))))))

(let {Standard library bindings for values}
((null (pabs (t) (abs () (one (listof t) null #u))))

(cons (pabs (t) (abs ((x t) (xs (listof t)))

(one (listof t) cons (prod x xs)))))

(null? (pabs (t) (abs ((xs (listof t)))

(tagcase xs _ (null #t) (cons #f)))))

(car (pabs (t) (abs ((xs (listof t)))

(tagcase xs p (null (error car-of-nil t))

(cons (get 1 p))))))
... {cdr, pair operations, and other standard bindings go here}

)

(pletrec ((δddj
Dddj

)m
j=1) {Description definitions from program}

(letrec ((Idk
Ddk

Edk
)n

k=1) {Value definitions from program}
Ebody))))

Figure 12.19 Desugaring rule for FLEX/SPD programs.

• a description-binding sugar construct (dlet ((δ D)∗) Dbody) that allows the
naming of descriptions within other descriptions;

• description identifiers (δ ∈ Desc), the generalization of type identifiers, which
are introduced via pabs, plet, pletrec, forall, dabs, dlet, dletrec, and
drec.

Since descriptions include types, the description domain variable D is used ev-
erywhere in the FLEX/SPD grammar that the type domain variable T is used
in the FLEX grammar.

The FLEX/SPD plet expression supersedes FLEX’s let-type expression
and the pletrec expression supports the definition of locally recursive descrip-
tions. These are similar to dlet and dletrec except that they return values
rather than descriptions, allowing the naming of descriptions within expressions.
For example,
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{dlet returns a description}
(dlet ((pairof (dabs (s t) (prodof s t))))

(pairof int (pairof bool symb)))

{plet returns a value}
(plet ((pairof (dabs (s t) (prodof s t))))

(the (pairof int (pairof bool symb))

(prod 3 (prod #f (sym Abby)))))

The scope of plet/dlet-bound identifiers is only the body of the plet/dlet,
while the scope of pletrec/dletrec-bound identifiers includes all definitions as
well as the body.

Pair and list types and operations are not included in the kernel grammar of
FLEX/SPD because they can be defined in the standard library specified in the
desugaring of programs (Figure 12.19). This desugaring allows the definition of
top-level descriptions (via def-desc) and values (via def). def-desc can name
any description, including types, as in (def-desc intlist (listof int)), and
type constructors, as in (def-desc twiceof (dabs (t) (prodof t t))).

Because the arguments and results of description operators may include ar-
bitrary descriptions, it is possible to have higher-order description operators. As
an example where this power can be put to use, suppose we are defining mapping
procedures for several different homogeneous aggregate data structures, such as
lists and sequences. The types of the procedures list-map and seq-map would be:

list-map: (forall (in-type out-type)

(-> ((-> (in-type) out-type) (listof in-type))

(listof out-type)))

seq-map: (forall (in-type out-type)

(-> ((-> (in-type) out-type) (seqof in-type))

(seqof out-type)))

Clearly there is a common pattern in the types of the two mapping procedures.
We can capture this pattern by creating a higher-order description operator
mapperof:

(def-desc mapperof

(dabs (type-constructor)

(forall (in-type out-type)

(-> ((-> (in-type) out-type) (type-constructor in-type))

(type-constructor out-type)))))

Then the types of list-map and seq-map can be written more succinctly as

list-map :(mapperof listof)

seq-map :(mapperof seqof)
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Type Rules

For each type rule in FLEX/SP, FLEX/SPD has a corresponding type rule
that replaces all occurrences of T by D and replaces the notion of type equiv-
alence by description equivalence.

Description-Equivalence Rules

([δ′i/δi ]
n
i=1)D ≈ D ′

(dabs (δn
i=1) D) ≈ (dabs (δ′ni=1) D ′)

[dabs-α-≈]

where ∀n
i=1 . (δ′i 
∈ FrDescIdsdesc [[D ]])

((dabs (δn
i=1) Dbody) Dn

i=1) ≈ ([Di/δi ]
n
i=1)Dbody [dabs-β-≈]

(dabs (δn
i=1) (D δn

i=1)) ≈ D , where ∀n
i=1 . (δi 
∈ FrDescIdsdesc [[D ]]) [dabs-η-≈]

∀n
i=0 . (Di ≈ D ′

i )
(D0 Dn

i=1) ≈ (D ′
0 D ′n

i=1)
[dapply-≈]

For each type-equivalence rule in FLEX/SP, FLEX/SPD has a corresponding
description-equivalence rule that replaces all occurrences of T by D .

Figure 12.20 Static semantics of FLEX/SPD.

Intuitively, constructs in the description domain (dabs, description-operator
application, dlet, and dletrec) have a close correspondence with value-domain
constructs (abs, procedure application, let, and letrec). But how do we for-
mally describe the meanings of the new descriptions that we have introduced?

Modulo replacing T by D , the type rules for FLEX/SPD are the same as
those for FLEX/SP. What distinguishes FLEX/SPD from FLEX/SP is a no-
tion of description equivalence that generalizes the notion of type equivalence
and defines when two descriptions are considered to be the same. FLEX/SPD
inherits all the type-equivalence rules of FLEX/SP (with T replaced by D)
but also includes the new description-equivalence rules in Figure 12.20. Some of
these rules use the function FrDescIdsdesc to determine the free description iden-
tifiers in a description. FrDescIdsdesc is a straightforward generalization of the
FrTyIdsty function defined in Figure 11.3 on page 638, so we leave its definition
as an exercise (Exercise 12.22).

The [dabs-α-≈], [dabs-β-≈], and [dabs-η-≈] rules correspond to the alpha,
beta, and eta reduction rules of the lambda calculus, respectively. For example:

(dabs (t) t) ≈ (dabs (s) s) (via [dabs-α-≈])

((dabs (s t) (prodof s t)) int bool) ≈ (prodof int bool) (via [dabs-β-≈])

(dabs (s t) (pairof s t)) ≈ pairof (via [dabs-η-≈])
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[dapply-≈] is a structural rule that permits description equivalence on the oper-
ator and operand positions of a description application.

We assume that equivalence of recursive descriptions involving dletrec is
defined in an equirecursive fashion using a generalization of the rules for trec in
Figure 11.28 on page 692.

There is an interesting design choice in the definitions of dlet and plet.
These constructs are defined by desugarings that substitute away the bound
description identifiers. But just as let can be desugared into an application of
an abstraction, we might have defined plet by the desugaring

(plet ((δi Di)
n
i=1) Ebody) �ds ((pabs (δn

i=1) Ebody) Dn
i=1)

and used a similar desugaring for dlet. In this alternative desugaring, the type
bindings for plet/dlet-bound names are opaque, i.e., the names are not equiv-
alent to their definitions. In particular, two description identifiers that have
the same definition are not considered equivalent. In contrast, the substitution-
based desugarings used in FLEX/SPD give rise to transparent type bindings
in which description names are equivalent to their definitions. The difference
between these approaches is illustrated by the expression

(plet ((s int) (t int))

(abs ((b bool) (x s) (y t))

(if b x y)))

which is well typed with transparent bindings (because both if branches have the
type int) but ill typed with opaque bindings (because the types s and t of the
if branches are not equivalent). Although we do not choose to use opaque types
here, we do use them in Chapter 15 to implement abstract types in a module
system.

Our system of descriptions, while adding considerable power to FLEX/SPD,
has two big problems:

• It is possible to write meaningless descriptions in programs. Not all descrip-
tions actually represent types of values. There is no value of type cellof or
(dabs (t) t), for instance. Yet there is nothing to prevent one from writing

(abs ((x cellof) (y (dabs (t) t))) (prod x y))

One can also write description applications that have no meaning, such as
(int bool). In fact, the type rules for FLEX/SPD are problematic because
an assignment I :D in a type environment makes sense only if D is a type.
Since one can never construct or use values of these meaningless types, it is
“safe” nonsense, but it is disturbing nonetheless.
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• Description equivalence is not decidable. We have embedded a general, un-
typed notion of abstraction and application (the untyped lambda calculus, a
universal programming language) in the description domain. Since equality in
a universal programming language is necessarily undecidable, there is no effec-
tive procedure to decide description equivalence using the rules in Figure 12.20.
The fact that we can write pathological descriptions such as the looping descrip-
tion ((dabs (d) (d d)) (dabs (d) (d d))) or the Y operator underscores
this problem and suggests that type checking may not terminate.

We will address these issues in the next section.

Exercise 12.22 Define the following functions for FLEX/SPD. The first three func-
tions are generalizations of the free-identifier functions defined in Figure 11.3 on page 638.
The last three functions are generalizations of the substitution functions defined in Fig-
ures 11.4 and 11.5 on pages 639 and 641.

a. FrIds : Exp → P(Ident)
FrIds[[E ]] returns the set of free value identifiers in E .

b. FrDescIdsdesc : Desc → P(DescId)
FrDescIdsdesc [[D ]] returns the set of free description identifiers in D .

c. FrDescIdsexp : Exp → P(DescId)
FrDescIdsexp [[E ]] returns the set of free description identifiers in E .

d. subst : Exp → Ident → Exp → Exp
(subst E1 I E2 ), abbreviated [E1/I ]E2 , returns the expression that results from
substituting E1 for every free occurrence of I in E2 .

e. substDescdesc : Desc → DescId → Desc → Desc
(substDescdesc D1 δ D2 ), abbreviated [D1/δ]D2 , returns the description that results
from substituting D1 for every free occurrence of δ in D2 .

f. substDescexp : Desc → DescId → Exp → Exp
(substDescdesc D δ E ), abbreviated [D/δ]E , returns the expression that results from
substituting D for every free occurrence of δ in E .

12.3.2 Kinds and Kind Checking: FLEX/SPDK

We would like to ensure that descriptions make sense, both intrinsically and in
context (e.g., that one cannot apply int to bool, and that descriptions associated
with actual program values must be types). Moreover, we want to guarantee that
type checking in the presence of descriptions is still static — i.e., is guaranteed
to terminate and can be performed before the program is executed.
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K ∈ Kind ::= type | (->> (K ∗
arg) Kresult)

E ∈ Exp ::= . . . all FLEX/SPD expressions except pabs . . .
| (pabs ((δ K)∗) E)

D ∈ Desc ::= . . . all FLEX/SPD descriptions except forall and dabs . . .
| (forall ((δ K)∗) D) | (dabs ((δ K)∗) D)

Figure 12.21 Grammar modifications to extend FLEX/SPD to FLEX/SPDK.

The first problem is a lot like the one we already solved for expressions by using
types. Showing that (int bool) is not a meaningful description is similar to
showing that (1 2) is not a meaningful expression. We’d like to have something
akin to types for descriptions. These are called kinds; kinds are the types of
descriptions.

The second problem is that the structure of descriptions is so general that
they are powerful enough to express any computation. This means that they
cannot always be normalized and there is no effective procedure for deciding the
equivalence of descriptions. However, just as a simple type system is able to carve
out a strongly normalizing subset of FL (see Section 11.7), a kind system can
be used to carve out a restricted subset of descriptions on which equivalence is
decidable.

We incorporate the notion of kinds into an extension of FLEX/SPD named
FLEX/SPDK. Figure 12.21 shows the necessary changes to the grammar. The
domain variable K ranges over kind expressions, which are now required to an-
notate all description identifiers declared in pabs, forall, and dabs.10 The
simplest kind is the base kind type. Intuitively, all well-formed FLEX types
(suitably modified to be legal FLEX/SPDK descriptions) have kind type. For
example, the following descriptions all have kind type:

int

(-> (int) bool)

(recordof (name symb) (age int))

(drec intlist (oneof (inull unit)

(icons (prodof int intlist))))

A description operator has an arrow kind (->> (Karg1 . . . Kargn) Kresult)

that reflects the kinds of the operator’s arguments (Karg1 , . . . , Kargn ) and the
kind of the operator’s result (Kresult). We use the double arrow ->> in the kind
of a description operator to distinguish it from the arrow -> used in the type

10dletrec doesn’t need kind annotations because, as we’ll see below, its declared identifiers
are required to be of kind type.
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Base Kind Environment
KE base = {unit::type, int::type, bool::type, symb::type,

cellof::(->> (type) type), seqof::(->> (type) type)}

Kind Rules
KE � BT :: KE base(BT ) [base-type]

KE � BTCR :: KE base(BTCR) [base-tycon]

KE � δ :: KE (δ) where δ∈dom(KE ) [var]

∀n
i=0 . (KE � Di :: type)

KE � (-> (Dn
i=1) D0) :: type

[→]

The kind-checking rules for prodof, recordof, and oneof are similar to [→].

KE [δi :: Ki ]
n
i=1 � Dbody :: type

KE � (forall ((δi Ki)
n
i=1) Dbody) :: type

[forall]

KE [δi :: Ki ]
n
i=1 � Dbody :: Kbody

KE � (dabs ((δi Ki)
n
i=1) Dbody) :: (->> (Kn

i=1) Kbody)
[->>-intro]

KE � Drator :: (->> (Kn
i=1) Kresult) ∀n

i=1 . (KE � Di :: Ki)
KE � (Drator Dn

i=1) :: Kresult
[->>-elim]

∀n
i=1 . (KE ′ � Di :: type) KE ′ � Dbody :: Kbody

KE � (dletrec ((δi Di)
n
i=1) Dbody) :: Kbody

[dletrec]

where KE ′ = KE [δi ::type]
n
i=1

Figure 12.22 Kind-checking rules for FLEX/SPDK.

of a procedure. This notational difference is not strictly necessary but serves
to emphasize the distinction between the two levels. For example, the cellof,
seqof, and listof type constructors all have kind (->> (type) type), because
they take a single type and return a type. The pairof type constructor has kind
(->> (type type) type), because it takes two types and returns a type. The
mapperof operator on page 755 has kind (->> ((->> (type) type)) type)

because it takes a unary type constructor and returns a forall type.
In the literature, the kind type is often written • or ∗ and our prefix kind

arrow ->> is often written as an infix ⇒. In this notation, the mapperof kind is
(• ⇒ •) ⇒ •.

A description is well kinded if it can be assigned a kind according to the
kind-checking rules in Figure 12.22. Kind checking is analogous to type checking.
The kind judgment KE � D :: K means that the description D has kind K
relative to a kind environment KE , which is a partial function from kind names
to kinds:
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KN ∈ KindName = DescId ∪ BaseType ∪ BaseTypeConstructor

KE ∈ KindEnvironment = KindName ⇀ Kind

In addition to description identifiers, kind names include base types and base type
constructors so that the meanings of these can be modeled by the base kind en-
vironment, KE base . The kind assignment notation KN ::K , pronounced “KN
has kind K ,” represents the association of a kind K with a kind name KN . As
with type environments, we write kind environments as sets of kind assignments
and use the notation KE [δ1 ::K1 , . . . , δn ::Kn ], abbreviated KE [δi ::Ki ]

n
i=1, to in-

dicate the kind environment that results from extending KE with the given kind
assignments. Since base types and base type constructors appear as kind names
only in the base kind environment, each kind name in the kind-environment ex-
tension notation is guaranteed to be a description identifier δ.

The kind-checking rules in Figure 12.22 prohibit nonsensical descriptions like
(int bool) and guarantee that descriptions like cellof, (dabs (t type) t),
and mapperof are always used as description operators and never as types. Fur-
thermore, the rules are carefully formulated to ensure that description equivalence
is decidable. The subset of the description language excluding dletrec is analo-
gous to the simply typed lambda calculus and the simply typed μFLEX language
without letrec (Section 11.7) — languages in which evaluation and simplifica-
tion are strongly normalizing. All descriptions in this subset have a normal form
that can be computed by the kind checker before equivalence is tested. The
kind-checking rules prohibit using dabs and description application to write a
description-level Y operator or looping descriptions like

((dabs ((d K)) (d d)) (dabs ((d K)) (d d))).

To write these descriptions in an explicitly kinded system, we would need recur-
sion at the kind level (see Exercise 12.24).

Recursive descriptions (expressed using dletrec) do not undermine the de-
cidability of description equivalence. To see this, note that all descriptions named
in a dletrec are required to have kind type. This prevents using them to define a
recursive description operator like a looping operator or the Y operator. Once all
descriptions in the strongly normalizing subset of the description language have
been reduced to normal form, dletrec descriptions denote regular trees similar
to those described in Section 11.8.6. Equivalence of regular trees is decidable for
both isorecursive and equirecursive interpretations of recursive types.

The kind restrictions in dletrec constrain the way in which it can be used to
define type constructors and other higher-order descriptions. For example, the
listof type constructor cannot be defined as
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(dletrec ((listof (dabs (t type)

(oneof (null unit)

(cons (prodof t (listof t)))))))

listof)

because the dletrec-bound identifier listof has kind (->> (type) type) and
not the required kind type. However, in this case, the dletrec and dabs con-
structs can be reordered to yield a well-kinded description:

Dlistof = (dabs (t type)

(dletrec ((listof-t (oneof (null unit)

(cons (prodof t listof-t)))))

listof-t))

The effect of kind restrictions on general parameterized sum-of-products data-
type definitions is explored in Exercise 12.25.

How do kinds and kind checking interact with types and type checking? First,
all programmer-supplied descriptions in an expression must be well kinded. Sec-
ond, in some contexts, descriptions are required to be of a particular kind, typ-
ically type. For example, the descriptions annotating the formal parameters of
an abs expression must be of kind type. We express these relationships in the
type-checking rules for FLEX/SPDK (Figure 12.23) by including constraints on
kinds in rule premises. The type/kind judgment TE ,KE � E : D means that
E has type D (that is, E has a description D whose kind is type) relative to the
type environment TE and the kind environment KE . The rules in Figure 12.23
suggest that the type-checking and kind-checking processes can be interleaved
into a single process that uses both a type environment and a kind environment.
It is also possible to perform kind checking as a separate phase that precedes
type checking.

The [→-intro] and [letrec] rules in Figure 12.23 also extend the type environ-
ment with some bindings. Kind checking is used in these situations to guarantee
that the extensions bind identifiers to types and not to arbitrary descriptions.
That is, the notationTE [Ii :Di ]

n
i=1 makes sense only when all of the Di have

kind type.
In the FLEX/SPDK type-checking rules, if all descriptions in the image of

TE have kind type with respect to KE , then TE ,KE � E : D implies that
KE � D :: type. This property is easy to show by induction on the structure
of a type derivation (see Exercise 12.23). It explains why the first four type
rules do not need to kind-check Dbody , D0 , or D , although the [error] and [oneof-
intro] type rules need an explicit premise requiring the resulting description in
the conclusion to be of kind type. It also explains why the [desc-inclusion] rule
kind-checks D but does not need to kind-check D ′.
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∀n
i=1 . (KE � Di :: type) TE [Ii :Di ]

n
i=1,KE � Ebody : Dbody

TE ,KE � (abs ((Ii Di)
n
i=1) Ebody) : (-> (Dn

i=1) Dbody)
[→-intro]

∀n
i=1 . (KE � Di :: type) ∀n

i=0 . (TE [Ii :Di ]
n
i=1,KE � Ei : Di)

TE ,KE � (letrec ((Ii Di Ei)
n
i=1) E0) : D0

[letrec]

TE ,KE [δi :: Ki ]
n
i=1 � E : D

TE ,KE � (pabs ((δi Ki)
n
i=1) E) : (forall ((δi Ki)

n
i=1) D)

[∀-intro]

where ∀n
i=1 . δi 
∈ ∪I∈FrIds[[E ]] (FrDescIdsdesc [[TE (I )]]) [import restriction]

E is pure [purity restriction]

TE ,KE � E : (forall ((δi Ki)
n
i=1) Dbody) ∀n

i=1 . (KE � Di :: Ki)
TE ,KE � (pcall E Dn

i=1) : ([Di/δi ]
n
i=1) Dbody

[∀-elim]

KE � Doneof :: type TE ,KE � Epayload : Dpayload

TE � (one Doneof Itag Epayload) :Doneof
[oneof-intro]

where Doneof = (oneof . . . (Itag Dpayload) . . .)

KE � D :: type
TE ,KE � (error Ymsg D) : D

[error]

TE ,KE � E : D ′ KE � D :: type D ′�D
TE ,KE � E : D

[desc-inclusion]

All other type rules are inherited from FLEX, replacing each judgment of the
form TE � E :T by one of the form TE ,KE � E : D .

Figure 12.23 Type rules for FLEX/SPDK.

The [desc-inclusion] rule uses the notation D ′�D , which we have not defined
yet. Since both D ′ and D must have kind type, the notation D ′�D can denote
the subtyping relation for FLEX/SP (as defined in Figure 12.2 on page 703,
Figure 12.4 on page 707, and Figure 12.9 on page 731) modulo the following
changes:

• In the [equiv-�] rule from Figure 12.2 on page 703, ≈ denotes description
equivalence as defined in Figure 12.20 on page 756 (where the dabs rules and
the inherited [∀-≈] rule need to include kind annotations on bound description
identifiers and check that corresponding kinds are the same);

• The [∀-�] rule from Figure 12.9 on page 731 must be extended to include
kind annotations on bound description identifiers and check that corresponding
kinds are the same;

• The rules for equirecursive subtyping in Figure 12.4 on page 707 must be
generalized to handle dletrec.
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Type System Typed Calculus Our Typed Language

System F1
simply typed

lambda calculus

FLEX
(no explicit kinds, but all kinds implicitly

in the domain K 1 ∈ Kind1 ::= type)

System F2

(a.k.a. System F)

polymorphic
(second-order)

lambda calculus

FLEX/SP
(no explicit kinds, but all kinds implicitly

in the domain K 2 ∈ Kind2 ::= type)

System F3
third-order

lambda calculus

FLEX/SPDK with kinds in the domain
K 3 ∈ Kind3 ::= K 2 | (->> (K 2 ∗

) K 3)

...
...

...

System Fi
ith-order

lambda calculus

FLEX/SPDK with kinds in the domain
K i ∈ Kindi ::= K i−1 | (->> (K i−1 ∗

) K i)

...
...

...

System Fω

higher-order
polymorphic

lambda calculus

FLEX/SPDK

Figure 12.24 Some typed lambda calculi and their relationship to languages we have
studied.

12.3.3 Discussion

In the literature, typed versions of the lambda calculus are classified according to
the structure of their kind system. Figure 12.24 presents a table of the traditional
names for these languages and their correspondence to the languages we have
studied. In each row of the table, the language we studied provides more features
than the typed lambda calculus (e.g., recursion, side effects, data structures,
recursive types, subtyping), but the typed lambda calculus is a proper subset of
the language we studied. The simply typed lambda calculus is the lambda-
calculus subset of FLEX, in which abstraction parameters are annotated with
types. The polymorphic lambda calculus (also known as the second-order
lambda calculus, System F , and System F2) is the subset of FLEX/SP that
extends the simply typed lambda calculus with polymorphic values (i.e., type
abstraction over expressions), type projection, and polymorphic (∀) types. There
are no explicit kinds in this language; all kinds are implicitly in the trivial domain
K 2 ∈ Kind2 ::= type. For i ≥ 3, System Fi is the subset of FLEX/SPDK
that extends the polymorphic lambda calculus with explicit kind annotations
from the restricted kind domain K i ∈ Kindi (in which the arguments in arrow
kinds must have kinds from System Fi−1). The higher-order polymorphic
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lambda calculus (also known as System Fω) is the lambda calculus subset of
FLEX/SPDK without any kind restrictions.

If you’re wondering whether it’s possible for kinds themselves to have some-
thing similar to types or kinds, the answer is yes. We will use the term sort
to refer to the “type” of a kind. All kind expressions we have examined have
the base sort kind. But it is possible to consider operators on kinds that would
have more interesting sorts. Similarly, we could construct a “typing” system for
sorts that distinguishes base sorts from operators on sorts. This process can be
repeated ad infinitum (and ad nauseam!), giving rise to an infinite “tower” of
typing systems. However, only the lowest levels of the tower — types and kinds
— are useful in most practical situations.

Earlier, we observed that FLEX/SPD has three kinds of abstractions: abs

maps values to values, pabs maps descriptions to values, and dabs maps descrip-
tion to descriptions. There is a fourth kind of abstraction missing: one that takes
values as arguments and returns descriptions. Such constructs are dependent
descriptions — descriptions that contain value expressions.11 The array-type
constructor in Pascal is a simple example of a dependent description; every ar-
ray type has an integer that indicates the length of the array. Of course, in order
to ensure static type checking, the argument values to such an abstraction would
have to be statically determinable. We will investigate dependent descriptions in
more detail in Section 14.5.

Some find four different constructs that are so similar disturbing. The need
for the differing constructs arises from the fact that we have maintained a rigid
distinction between descriptions and values. In the interest of notational (and
perhaps conceptual) economy, some languages, such as Pebble, blur the distinc-
tion between descriptions and values; a single abstraction construct can do the
job of abs, pabs, and dabs (and even the fourth kind of abstraction). Since types
can be treated as values in these languages, type checking generally cannot be
performed statically. Instead, it may have to be interleaved with the execution
of the program; in such cases, type checking is effectively dynamic. In fact, in
some languages with first-class types, type checking might never even terminate!

Exercise 12.23

a. Prove the following theorem by structural induction on the derivation of the type/kind
judgment TE ,KE � E : D .

FLEX/SPDK Type/Kind Judgment Theorem
If TE ,KE � E : D and ∀ (D ′ ∈ img(TE )) . (KE � D ′ :: type) then
KE � D :: type.

11Dependent type is the more common term in the literature.
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b. The FLEX/SPDK type rule for the is:

TE ,KE � E : D
TE ,KE � (the D E) : D

[the]

Based on part a, explain why it is not necesesary to kind-check D in the premise of
the [the] rule, even though D is an arbitrary user-supplied description.

c. Explain why the explicit kind checks are necessary in the premises of the [oneof-intro]
and [desc-inclusion] type rules. What could go wrong if these checks were omitted?

Exercise 12.24

a. Show that there is no kind K in FLEX/SPDK that will make the following descrip-
tion well kinded:

((dabs ((d K)) (d d)) (dabs ((d K)) (d d)))

b. Suppose that the kind grammar for FLEX/SPDK is extended as follows:

κ ∈ KindId = SymLit − {kind}

K ∈ Kind ::= . . . as in FLEX/SPDK . . . | κ | (krec κ K)

Assume that krec is a kind-level recursion construct analogous to rec for expressions
and drec for descriptions. Using the new kind constructs, write a kind K such that
the description in part a is well kinded. Explicitly state any assumptions you need to
make concerning (1) kind equivalence and (2) changes to the kind-checking rules.

Exercise 12.25

a. Extend FLEX/SPDK to have parameterized data-type declarations with the form

(def-datatype (δdata δh
j=1) (Itagi Di,1 . . . Di,ki )

n
i=1)

(Compare to def-datatype in Section 12.2.3.) This should introduce a type con-
structor named δdata that takes h arguments of kind type and returns a recursive
sum-of-products data type. For each tag Itagi

, it should also introduce a polymorphic
constructor procedure named Itagi

with type

(forall (δh
j=1) (-> (Di,1 . . . Di,ki ) (δdata δh

j=1)))

and a polymorphic deconstructor procedure named Itagi
��~ with type

(forall (δreturn δh
j=1) {δreturn is a fresh name for the return type.}

(-> ((δdata δh
j=1) {discriminant type}

(-> (Di,1 . . . Di,ki) δreturn) {success continuation type}
(-> () δreturn)) {failure continuation type}

δreturn)

For example, the pairof and listof type constructors can now be defined by the
programmer as:
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(def-datatype (pairof s t)

(pair s t))

(def-datatype (listof t)

(null)

(cons t (listof t)))

The listof type constructor introduced by this definition should be the description
Dlistof on page 762.

As illustrated by Dlistof , care must be taken to ensure that the type constructor δdata is
well kinded. In particular, dletrec cannot be used outside dabs to define a recursive
type constructor; it must be used inside dabs to define a recursive sum-of-products
type. To support this, we make the simplifying assumption that in the definition of
δdata , all uses of the type constructor δdata within the clauses (Itagi

Di,1 . . . Di,ki
)n

i=1

are description applications of the form (δdata δh
j=1). E.g., in a data-type declaration

(def-datatype (mydataof s t) . . .), all uses of mydataof in the declaration must
have the form (mydataof s t); uses like (mydataof int t), (mydataof t s), or
(mydataof s (mydataof s t)) are not permitted.

b. Parameterized data types like pairof and listof are more useful if data-type de-
construction can be performed via pattern matching. Exercise 12.20 on page 744
explores how this can be done for parameterless data types in FLEX/SP using two
approaches. Generalize these two approaches to handle parameterized data types in
FLEX/SPDK:

i. As in part a of Exercise 12.20: Extend the match construct with explicit type
information that can be used for polymorphic projection in the desugaring of
match into deconstructor applications.

ii. As in part b of Exercise 12.20: For the purposes of type checking, treat match as
a kernel construct with its own type rule, and then use the type information in
the type derivation of match to guide a post-type-checking translation of match
into deconstructor applications.

Notes

An early paper on the subtyping of recursive types, which uses an automata-based
approach, is [KPS93]. For a tutorial on the theory and practice of subtyping on
recursive types, see [GLP00] or [Pie02, Chapter 21]; these also present a more
efficient subtyping algorithm for recursive types than the one presented here.

A nice example of balancing theory and practice in types is the design of
Haskell’s extensible records [JP99].

The importance of separating inheritance from subtyping in object-oriented
languages is argued in [CHC90, Ame91, Por92, Coo92]. The notion that inheri-
tance compromises the benefits of data abstraction is presented in [Sny86].
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The polymorphic lambda calculus (also known as System F ) was invented by
Girard ([Gir71]) and later independently reinvented by Reynolds [Rey74]. See
[Hue90] for some papers on the polymorphic lambda calculus, including retro-
spectives by Reynolds [Rey90] and Girard [Gir90].

Cardelli [Car88b] recognized that record subtyping could model aspects of
typed object-oriented languages. In [CW85], Cardelli and Wegner married sub-
typing with universal polymorphism to yield bounded quantification, which gave
an even more powerful way to specify types in object-oriented languages. Their
paper also serves as a good introduction to subtyping and universal and existential
quantification in type systems. The standard type system with bounded quantifi-
cation, known as system F<: (pronounced “F sub”), is described in [CMMS94].
An extension to bounded quantification known as F-bounded polymorphism was
introduced in [CCH+89] to properly handle subtyping on the recursive types that
are typically used to model objects.

The generics feature introduced in version 5.0 of Java is an example of
bounded quantification in a real-world programming language [NW06]. This
feature arose out of work in the language GJ [BOSW98], a key goal of which was
to add a form of universal polymorphism to Java in a way that was backward-
compatible with existing programs. Because Java is such a large, complex lan-
guage, its semantics is often studied in the context of pared-down subsets. One
such subset is Featherweight Java (FJ) [IPW01].

For more information about typing, subtyping, and polymorphism in object-
oriented languages, we recommend starting with the following textbooks and
collections: [GM94], [AC96], [Bru02], [Pie02], [Mit03, Chapters 10, 11, 12].

See [McC79] for an early description of a kinded type system. This idea
was used as the basis for the language used in [Luc87] and [LG88]. These ideas
were further developed into a system of types, kinds, and descriptions for FX87
[GJLS87] and FX91 [GJSO92], both of which supported implicit projection of
polymorphic values.

Languages that eschew a kind system and instead allow type to have type
type (i.e., in which type : type) include Pebble [BL84]. See [Car86] for an
investigation into the meaning and utility of programs that rely on type : type.

Many people associate polymorphism with implicitly typed languages such
as ML. Such languages do not have the full power of the polymorphic lambda
calculus, but they relieve the programmer of the task of writing most or all types.
We shall explore such languages in considerable detail in Chapter 13.

ML [MTHM97] introduced typed pattern matching and data definitions,
which have been incorporated into its various implementations and successors
as well as into other languages, such as Haskell [HPW+92].
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Type Reconstruction

The faculty of deduction is certainly contagious . . .

— Sherlock Holmes in The Problem of Thor Bridge
by Sir Arthur Conan Doyle

13.1 Introduction

In the variants of FLEX that we’ve studied so far, it is necessary to specify
explicit type information in certain situations. All parameter names introduced
by an abs must be explicitly typed, for instance. Not all type information needs
to be explicitly specified, however. For example, the return type of a procedure
need not be declared.

The placement of explicit type annotations in FLEX is determined by the
top-down, evaluator-like structure of the type checker. Explicit types are used in
FLEX to avoid any guessing/backtracking in the type-checking process. Consider
the type checking of an abs expression. When entering an abs expression, the
type checker has no information about the types of the formal parameters, so
these must be provided explicitly. However, once the types of the formals are
known, it is easy for the type checker to determine the type of the body, so this
information need not be declared.

Could a more sophisticated type checker do its job with even less explicit
information? Certainly, programmers can reason proficiently about type infor-
mation in many programs where there are no explicit types at all. Such reasoning
is important because understanding the type of an expression, especially one that
denotes a procedure, is often a major step in figuring out what purpose the ex-
pression serves in the program. As an example of this kind of type reasoning,
consider the following FL abstraction:

(abs (f g x y)

(if (f x y) (prim + x 1) (g (f x (sym static)))))

By studying the various ways in which f, g, x, and y are used in the body of this
abstraction, we can piece together complete information about the types of these
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names. For example, we know that the application (f x y) returns a boolean,
because it is used as the predicate in an if expression. Thus, f is a procedure of
two arguments that returns a boolean. The subexpression (prim + x 1), tells
us that x is an integer. From the two calls (f x y) and (f x (sym static)),
we know that the type of the first argument to f is an integer and the types of
y and the second argument to f are symbols. So f must be a procedure that
takes an integer and a symbol and returns a boolean. Since g is applied to the
result of f, it must be a procedure that takes a single boolean argument. The
fact that (prim + x 1) and (g (f x (sym static))) are branches of the same
if implies that their return types must be the same. We deduce that the result
type of g, the type of the if expression, and the return type of the abs expression
must all be the same: an integer.

There is no reason that a program cannot carry out the same kinds of rea-
soning exhibited above. Automatically computing the type of an expression that
does not contain type information is known as type reconstruction or type
inference. Type reconstruction is more complicated than type checking be-
cause type reconstruction must operate properly without (or with only partial)
programmer-supplied type information.

Type reconstruction formalizes the kind of reasoning seen in the example
above. A type reconstruction algorithm is an automatic way of determining
the type of an expression (and of all of its subexpressions). We can think of the
various subexpressions in the above example as specifying constraints on the types
of the expressions. It is possible to view these constraints as a set of simultaneous
type equations that restrict the type of an expression. If these equations can be
solved, then the expression is well typed; otherwise, it is ill typed.

Consider the abs expression discussed above. Let’s introduce some type iden-
tifiers to stand for types that arise as we try to reconstruct types for the ex-
pression. We use a ? prefix on these identifiers to emphasize that they are the
unknown variables in the type constraints. Assume:

• ?abs is the type of the abs expression;

• ?if is the type of the if expression;

• ?f is the type of f;

• ?g is the type of g;

• ?x is the type of x;

• ?y is the type of y;
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• ?+res is the type of (prim + x 1);

• ?fres1 is the result type of the first call to f;

• ?fres2 is the result type of the second call to f; and

• ?gres is the result type of the call to g.

Then the type constraints (written using the notation T1
.
= T2 ) that are implied

by the expression are:

?f
.
= (-> (?x ?y) ?fres1) Procedure type implied by first call to f

?f
.
= (-> (?x symb) ?fres2) Procedure type implied by second call to f

?g
.
= (-> (?fres2) ?gres) Procedure type implied by call to g

?fres1
.
= bool Type of if test must be boolean

?x
.
= int Operand of addition must be an integer

?+res
.
= int Result of addition is an integer

?+res
.
= ?gres Branches of if must have the same type

?if
.
= ?+res Type of if is type of its first branch

?abs
.
= (-> (?f ?g ?x ?y) ?if) Procedure type is from arg types to body type

A solution to the above type constraints yields the following bindings for the
type identifiers:

?x �→ int

?y �→ symb

?fres1 �→ bool

?f �→ (-> (int symb) bool)

?fres2 �→ bool

?+res �→ int

?gres �→ int

?g �→ (-> (bool) int)

?if �→ int

?abs �→ (-> ((-> (int symb) bool) (-> (bool) int) int symb) int)

A system of type equations need not always have such a neat solution, how-
ever. For example, the system associated with

(abs (f x)

(if (f x) (f 3) (f (sym static))))

has no solution since it is overconstrained: x (and the argument of f) must have
type int and type symb, which is impossible. On the other hand, a system may
be underconstrained, as in the following example:

(abs (h x y)

(if (h x y) (h 3 y) (h x y)))
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In this case, the type of y is unknown, and the type deduced for the expression
will be something like

(-> ((-> (int ?y) bool) int ?y) bool)

The appearance of an unknown type identifier in a type suggests polymorphism;
If we assume that h is polymorphic, then ?y can be instantiated to any type. In
other notations we have seen, this type might be expressed as:

(forall (t) (-> ((-> (int t) bool) int t) bool))

or

∀t . (((int× t) → bool)× int× t)→ bool

In Section 13.4, we will study an approach to type reconstruction that capitalizes
on the polymorphism implied by underconstrained type identifiers.

13.2 μFLARE: A Language with Implicit Types

We will explore type reconstruction in the context of the language FLARE, so
named because it combines FL and type reconstruction. We will first study
a simple subset of FLARE named μFLARE, and then extend it to the full-
featured FLARE language in Section 13.5.

13.2.1 μFLARE Syntax and Type Erasure

The syntax of μFLARE (Figure 13.1) is similar to that for FL, but its multiple-
parameter abstractions, multiple-argument applications, and multiple-binding
lets and letrecs are treated as kernel forms rather than as syntactic sugar.
μFLARE can be viewed as a version of μFLEX in which all explicit type an-
notations have been erased. This view is formalized in Figure 13.2 by defining
a type erasure transformation on μFLEX expressions (written �E�) and pro-
grams (written �P�pgm) that yields μFLARE expressions and programs, respec-
tively.

For example, reconsider the μFLEX program Ppow from page 652:

Ppow = (flexk ((n int))

(let ((dbl (the (-> (int) int)

(abs ((x int)) (prim * x 2)))))

(letrec ((loop (-> (int) int)

(abs ((i int))

(if (prim >= i n)

i

(loop (dbl i))))))

(loop 1))))
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Kernel Grammar
P ∈ Prog ::= (flarek (I ∗

formal) Ebody)

E ∈ Exp ::= L | I | (error Ymessage) | (if Etest Ethen Eelse)

| (prim Oprimop E∗
arg) | (abs (I ∗

formal) Ebody) | (Erator E∗
rand)

| (let ((Iname Edefn)
∗) Ebody) | (letrec ((Iname Edefn)

∗) Ebody)

L ∈ Lit ::= #u | B | N | (sym Y ) ; as in FL.

B ∈ BoolLit = {#t, #f} as in FL.

N ∈ IntLit = as in FL.

Y ∈ SymLit = as in FL.

O ∈ Primop = as in μFLEX — i.e., usual FL primitives except
no type predicates or pair operators

Keyword = {abs, error, flarek, if, let, letrec, prim, sym}
SugarKeyword = {cond, def, flare, recur, scand, scor}

I ∈ Ident = SymLit − ({Y | Y begins with @} ∪Keyword ∪ SugarKeyword)

Syntactic Sugar
@O , cond, scand, scor, recur, and def as in FL (page 233).

(flare (I ∗
pgmFormal) EpgmBody (def Inamei

Edefni
)n

i=1)

{Assume procedure defs already desugared to (def I E)

by the def desugaring rule inherited from FL.}
�ds (flarek (I ∗

pgmFormal)

(letrec {Standard library bindings}
{None of these bindings are recursive, but new ones might be.}
((not (abs (x) (prim not x)))

(+ (abs (x y) (prim + x y)))
... {Similar for other primitive operators.}

(true #t) (false #f) {Synonyms for literals.}
)

(letrec ((Inamei
Edefni

)n
i=1)

EpgmBody)))

Figure 13.1 Grammar and syntactic sugar for μFLARE.

The type erasure of Ppow is the following μFLARE program:

P ′
pow = �Ppow� = (flarek (n)

(let ((dbl (abs (x) (prim * x 2))))

(letrec ((loop (abs (i)

(if (prim >= i n)

i

(loop (dbl i))))))

(loop 1))))
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typeErasepgm : ProgμFLEX → ProgμFLARE

The notation �P�pgm abbreviates
(
typeErasepgm P

)
.

�(flexk ((Ii Ti)
n
i=1) Ebody)�pgm = (flarek (I n

i=1) �Ebody�)

typeEraseexp : ExpμFLEX → ExpμFLARE

The notation �E� abbreviates
(
typeEraseexp E

)
.

�L� = L �I � = I �(error Ymsg T)� = (error Ymsg)

�(if Etest Ethen Eelse)� = (if �Etest� �Ethen� �Eelse�)
�(prim Oop En

i=1)� = (prim Oop �Ei�ni=1)

�(abs ((Ii Ti)
n
i=1) Ebody)� = (abs (I n

i=1) �Ebody�)
�(Erator En

i=1)� = (�Erator� �Ei�ni=1)

�(let ((Ii Ei)
n
i=1) Ebody)� = (let ((Ii �Ei�)n

i=1) �Ebody�)
�(letrec ((Ii Ti Ei)

n
i=1) Ebody)� = (letrec ((Ii �Ei�)n

i=1) �Ebody�)
�(the T E)� = �E�

Figure 13.2 Type-erasure function transforming μFLEX to μFLARE.

In addition, μFLARE supports many of the syntactic sugar constructs of FL.
These are especially useful in the compiler source language we will study in
Section 17.2.2 that is an extension to μFLARE.

13.2.2 Static Semantics of μFLARE

μFLARE is said to be an implicitly typed language because it has a type
system even though the programmer does not have to write down any types
explicitly. The type system for μFLARE is presented in Figure 13.3. Types and
type environments are the same as in μFLEX. The μFLARE type rules are the
same as the corresponding ones for μFLEX except that in the [error], [→-intro],
[letrec], and [prog] rules, the type system “guesses” certain types and checks that
these guesses are correct. The type rules do not specify how to make such guesses.
In Section 13.3, we will see how the type reconstruction algorithm generates a
fresh type identifier whenever it needs to make a guess, and then determines the
types designated by such identifiers by collecting and solving a collection of type
constraints.

Observe that each of the type rules in Figure 13.3 can be obtained from the
corresponding type rule for μFLEX (Figure 11.7 on page 644) by applying type
erasure to each expression mentioned in the μFLEX rules. So we can naturally
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Type Domains (as in μFLEX)
T ∈ Type ::= BT | τ | (-> (T ∗) Tresult)

BT ∈ BaseType = {unit, int, bool, symb}
τ ∈ TypeId = SymLit − (BaseType ∪ {->})

PT ∈ ProgType ::= (=> (T ∗
arg) Tresult)

TE ∈ TypeEnvironment = Ident ⇀ Type

Type Rules
TE � #u : unit [unit] TE � N : int [int] TE � B : bool [bool]

TE � (sym Y ) : symb [symb] TE � (error Y ) :T [error]

TE � I :TE (I ) where I ∈ dom(TE ) [var]

TE � Etest : bool TE � Ethen :T TE � Eelse :T
TE � (if Etest Ethen Eelse) :T

[if ]

TE [Ii :Ti ]
n
i=1 � Ebody :Tbody

TE � (abs (I n
i=1) Ebody) : (-> (Tn

i=1) Tbody)
[→-intro]

TE � Erator : (-> (Tn
i=1) Tresult) ∀n

i=1 . TE � Ei :Ti

TE � (Erator En
i=1) :Tresult

[→-elim]

∀n
i=1 . TE � Ei :Ti TE [Ii :Ti ]

n
i=1 � E0 :T0

TE � (let ((Ii Ei)
n
i=1) E0) :T0

[let]

∀n
i=0 . TE [Ij :Tj ]

n
j=1 � Ei :Ti

TE � (letrec ((Ii Ei)
n
i=1) E0) :T0

[letrec]

TEprim � Oop : (-> (Tn
i=1) Tresult) ∀n

i=1 . TE � Ei :Ti

TE � (prim Oop En
i=1) :Tresult

[prim]

{Ii :Ti}n
i=1 � Ebody :Tbody

�prog (flarek (I n
i=1) Ebody) : (=> (Tn

i=1) Tbody)
[prog ]

Figure 13.3 Types and type rules for μFLARE, an implicitly typed language.

extend the notion of type erasure to type judgments and type derivations, as
shown in Figure 13.4. Type erasure for a judgment erases all types in the expres-
sion of the judgment. Type erasure for derivations removes derivation tree nodes
for the and type-erases the judgment in every other tree node. For example, Fig-
ure 13.5 shows the type derivation TD ′

pow = �TDpow�TD , where TDpow (defined
in Figure 11.12 on page 653) is the type derivation for the μFLEX program Ppow .
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typeEraseTJ : TypeJudgmentμFLEX → TypeJudgmentμFLARE

The notation �TJ �TJ abbreviates (typeEraseTJ TJ ).

��prog,μFLEX P :PT�TJ = �prog,μFLARE �P�pgm :PT

�TE �μFLEX E :T �TJ = TE �μFLARE �E� :T

typeEraseTD : TypeDerivationμFLEX → TypeDerivationμFLARE

The notation �TD�TD abbreviates (typeEraseTD TD).⌈
TD

TE �μFLEX (the T E) :T

⌉
TD

= �TD�TD

⌈
TD1 . . .TDn

TJ

⌉
TD

=
�TD1 �TD . . . �TDn�TD

�TJ �TJ

, for all other type derivations.

Figure 13.4 Type erasure for type judgments and type derivations.

Note that TD ′
pow is also a type derivation of P ′

pow = �Ppow�. This illustrates
the following theorem relating μFLEX and μFLARE type judgments and type
derivations.

Theorem 13.1 (μFLEX/μFLARE Static Correspondence)

1. If the μFLEX type judgment TJX is justified by the type derivation
TDX , then the μFLARE type judgment �TJX �TJ is justified by the
type derivation �TDX �TD .

2. If the μFLARE type judgment TJR is justified by the type derivation
TDR, then there exists a μFLEX type judgment TJX justified by TDX

such that �TJX �TJ = TJR and �TDX �TD = TDR.

Part 1 is easily shown by induction on the structure of TDX . For part 2, an
induction on the structure of TDR leads to the construction of explicitly typed
versions of the expressions (and possibly program) mentioned in TDR. The
explicit types need not be guessed because all relevant type information is already
present in TDR. (Any guessing of types already took place in the construction
of TDR.)

Unlike μFLEX, μFLARE does not have a unique-type property. Some
μFLARE expressions can be assigned infinitely many types in a given type en-
vironment. For example, in μFLARE, (error Y ) can be assigned any type
and (abs (x) x) can be assigned the type (-> (T) T) for any type T . Nev-
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Abbreviations
Tii = (-> (int) int)

TE loop = {n : int, dbl :Tii , loop :Tii}
P ′

pow = (flarek (n) (let ((dbl E ′
dblabs)) E ′

recloop))

E ′
dblabs = (abs (x) (prim * x 2))

E ′
recloop = (letrec ((loop E ′

loopabs)) (loop 1))

E ′
loopabs = (abs (i) Eif )

Eif = (if (prim >= i n) i (loop (dbl i)))

Type Derivation TD ′
pow for P ′

pow

TEprim � * : (-> (int int) int) [var]

{n : int, x : int} � x : int [var]

{n : int, x : int} � 2 : int [int]

{n : int, x : int} � (prim * x 2) : int [prim]

{n : int} � (abs (x) (prim * x 2)) : (-> (int) int) [→-intro]

TEprim � >= : (-> (int int) bool) [var]

TE loop [i : int] � i : int [var]

TE loop [i : int] � n : int [var]

TE loop [i : int] � (prim >= i n) : bool [prim]

TE loop [i : int] � i : int [var]

TE loop [i : int] � loop : (-> (int) int) [var]

TE loop [i : int] � dbl : (-> (int) int) [var]

TE loop [i : int] � i : int [var]

TE loop [i : int] � (dbl i) : int [→-elim]

TE loop [i : int] � (loop (dbl i)) : int [→-elim]

TE loop [i : int] � (if (prim >= i n) i (loop (dbl i))) : int [if ]

TE loop � (abs (i) Eif ) : (-> (int) int) [→-intro]

TE loop � loop : (-> (int) int) [var]

TE loop � 1 : int [int]

TE loop � (loop 1) : int [→-elim]

{n : int, dbl :Tii} � (letrec ((loop E ′
loopabs)) (loop 1)) : int [letrec]

{n : int} � (let ((dbl E ′
dblabs)) E ′

recloop) : int [let]

�prog (flarek (n) (let ((dbl E ′
dblabs)) E ′

recloop)) : (=> (int) int) [prog ]

Figure 13.5 Vertical-style type derivation for P ′
pow .
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Domains
Syntactic domains are from the μFLEX grammar (Figure 11.1 on page 628)
V ∈ ValueExp ::= L | (abs (I ∗

formal) Ebody)

IE ∈ InputExp ::= L

A ∈ AnsExp ::= L | procans

Reduction Relation (�)

((abs (I n
i=1) Ebody) En

i=1) � ([Ei/Ii ]
n
i=1)Ebody [β]

(let ((Ii Ei)
n
i=1) Ebody) � ([Ei/Ii ]

n
i=1)Ebody [let]

(letrec ((Ii Ei)
n
i=1) Ebody)

� ([(letrec ((Ik Ek)
n
k=1) Ei)/Ii ]

n
i=1)Ebody [letrec]

The μFLARE reduction rules also include [if-T], [if-F], and application rules
for μFLARE primitives from the FL reduction relation shown in Figure 6.19 on
page 259.

Evaluation Contexts
E ∈ EvalContext ::= � | (if E Ethen Eelse)

| (prim Oprimop V k−1
i=1 E En

j=k+1) | (E En
i=1)

Evaluation Relation (⇒)

E{E} ⇒ E{E ′}, where E � E ′

Figure 13.6 A context-based SOS for μFLARE, Part 1.

ertheless, μFLARE still has a monomorphic flavor because it does not have an
effective form of polymorphism. For example, in μFLARE the expression

Eid = (let ((id (abs (x) x)))

(if (id #t) 1 ((id id) 2)))

is not well typed because id has the type (-> (Tx) Tx) for exactly one type Tx

and each of the three references to id requires a different Tx . In Section 13.4 we
will see how a small modification to the type rules and reconstruction algorithm
can empower μFLARE with an effective form of polymorphism.

13.2.3 Dynamic Semantics and Type Soundness of μFLARE

In order to show the soundness of the μFLARE type system, we need a dynamic
semantics for μFLARE. Figures 13.6 and 13.7 present a context-based SOS for
μFLARE, which is essentially the result of erasing types in the μFLEX SOS
in Figures 11.13 and 11.14 on pages 664 and 665. In particular, (1) all type



13.2.3 Dynamic Semantics and Type Soundness of μFLARE 779

SOS
The μFLARE SOS is defined by the tuple 〈Exp,⇒, ValueExp, IF ,OF 〉, where:

IF : (Prog× InputExp*)→ Exp
IF 〈(flarek (I n

i=1) Ebody), [IE1 , . . . , IE k ]〉
= if n 
= k then (error wrong-number-of-args)

else if ∃T . ((�prog (flarek (I n
i=1) Ebody) :T )

∧ (T = (=> (Tn
i=1) Tbody))

∧
(
∀i ∈ [1..n] .

(
typeinp [[IE i ]] = Ti

))
)

then [IE i/Ii ]
n
i=1Ebody

else (error bad-arg-type) end
end

typeinp : InputExp→ Type
typeinp [[#u]] = unit

typeinp [[B ]] = bool

typeinp [[N ]] = int

typeinp [[(sym Y )]] = symb

OF : ValueExp→ AnsExp
OF L = L
OF (abs (I ∗ E)) = procans

Behavior
behdet : (Prog× InputExp*)→ Outcome

behdet 〈P , IE∗〉 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(AnsExp�Outcome (OF Efin)) if Einit

∗⇒ Efin ∈ ValueExp

stuck if Einit
∗⇒ Efin 
⇒

and Efin 
∈ ValueExp

∞ if Einit
∞⇒

where Einit = (IF 〈P , IE∗〉)

Figure 13.7 A context-based SOS for μFLARE, Part 2.

annotations have been erased from abs and letrec expressions and the program
form (flarek) and (2) there is no reduction rule for the, which is not a μFLARE
expression. As in μFLEX, the input function IF must dynamically check that
the types of the program inputs match those of the program parameters. But
since the program parameter types are not explicitly declared, they must be
determined by the type rules.

The following are the μFLARE versions of the corresponding lemmas and
theorems for μFLEX. The proofs are all analogous to those for μFLEX.
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Lemma 13.2 (Characterization of μFLARE Stuck Expressions) If
E is a stuck expression in the μFLARE SOS, then it can be decomposed
into E{E ′} where E ′ has one of the following forms:

1. I

2. (if V Ethen Eelse), where V is not #t or #f

3. (V En
i=1), where V is not an abstraction

4. ((abs (I m
i=1) E0) En

j=1), where m 
= n

5. (prim O V n
i=1), where the number or type of arguments is incorrect

for O

6. (prim O N 0), where O is / or %

7. (error Y )

We classify the forms 1–5 as dynamic type errors and forms 6–7 as dynamic
nontype errors. Depending on the form of E ′, we will say that E{E ′} is
stuck at a type error or stuck at a nontype error.

Theorem 13.3 (Preservation for μFLARE) If {} �μFLARE E :T and
E ⇒μFLARE E ′ then {} �μFLARE E ′ :T.

Theorem 13.4 (Progress for μFLARE) If {} �μFLARE E :T then E
is not stuck at a type error.

Theorem 13.5 (Type Soundness of μFLARE) If μFLARE program
P is well typed with type (=> (Tn

i=1) Tans), then executing P on inputs
IEn

i=1 having corresponding types Tn
i=1 will either:

1. return an answer compatible with Tans ;

2. get stuck at a nontype error; or

3. loop infinitely.

In particular, the execution of P will never get stuck at a type error.

An important consequence of the above results is that they allow us to dis-
pense with the dynamic semantics for μFLEX — all we need is the dynamic
semantics for μFLARE! Intuitively, types specify a static property of a μFLEX
expression, not a dynamic one. So we should be able to express the dynamic
semantics of μFLEX in terms of a language (μFLARE) with no explicit type
information. We do this simply by applying type erasure to a given μFLEX
expression/program and then using the μFLARE SOS on the result. When it
comes to properties like preservation and progress for a μFLEX expression E , we
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can just use the preservation and progress results of μFLARE for �E�, relying
on the fact that the Static Correspondence Theorem guarantees that if E is well
typed with type T in μFLEX, then �E� is well typed with type T in μFLARE.

Henceforth, whenever we extend FLEX with a new explicitly typed construct,
we will define its dynamic semantics by type erasure to FLARE rather than by
extending the FLEX SOS.

Exercise 13.1 Consider the following theorem:

Theorem 13.6 (μFLEX/μFLARE Dynamic Correspondence)

If EX =
n
=⇒μFLEX E ′

X , then �EX � =
k
=⇒μFLARE �E ′

X �, where k ≤ n. Moreover, if EX

has type T in the empty type environment, then E ′
X , �EX �, and �E ′

X � all have
type T in the empty type environment.

a. Give a concrete example where the length k in the μFLARE transition path is strictly
less than the length n in the original μFLEX transition path.

b. Prove the theorem.

Exercise 13.2 Imagine that we had never defined an SOS for μFLEX. Using type
erasure in conjunction with the SOS for μFLARE, state and prove (1) a Preservation
Theorem for μFLEX and (2) a Progress Theorem for μFLEX. Use the Preservation
and Progress Theorems for μFLARE and the Static Correspondence Theorem in your
proofs.

13.3 Type Reconstruction for μFLARE

We are now ready to develop the technical machinery for performing type recon-
struction in μFLARE. We start by presenting the notion of a type substitution,
which we will use to represent the solution to a set of type constraints. Next, we
present unification, a method for solving type constraints. Then we develop an
interface for operations that collect and solve type-constraint sets and show that
this interface has multiple implementations. Finally, we present an algorithm
that uses the type-constraint set operations to reconstruct (where possible) the
types for μFLARE expressions and programs.

13.3.1 Type Substitutions

We represent the solution to a set of type constraints using an entity called a
type substitution or just plain substitution. A type substitution is a partial
function from type identifiers to types:

σ ∈ TypeSubst = TypeId ⇀ Type
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A type substitution with a finite domain of definition can be written as a set of
bindings between type identifiers and types. Here is a sample type substitution:

σ1 = {?a �→ int, ?b �→ ?d, ?c �→ (-> (?e bool) ?d)}

Because type substitutions are partial functions, the type identifiers on the left-
hand sides of the bindings must be distinct. Note that type identifiers may also
appear in the right-hand side of a binding, either by themselves or as components
of other types. Although the definition of type substitution allows bindings for
any type identifiers, in the type substitutions we use in type reconstruction,
the type identifiers are all generated by the type reconstruction process and by
convention begin with the symbol ?.

Technically, type substitutions are partial functions on type identifiers, but it
is natural to “lift” them to be total functions on types and type environments.
Applying a type substitution σ to a type T yields a copy of T in which all
occurrences of any τ ∈ dom(σ) have been replaced by (σ τ). We will abuse
notation and write (σ T ) for the result of applying σ to T . For example, suppose
that T1 is

T1 = (-> (?a ?c) (-> (?d ?f) ?b))

Then (σ1 T1 ) is

(-> (int (-> (?e bool) ?d)) (-> (?d ?f) ?d))

We can similarly lift application of a type substitution to type environments:
(σ TE ) is a type environment such that ((σ TE ) I ) = (σ (TE I )). E.g.:

(σ1 {x : (-> (?a) ?b), y : (-> (?c) ?d), z : (-> (?d) ?e)})
= {x : (-> (int) ?d), y : (-> ((-> (?e bool) ?d)) ?d), z : (-> (?d) ?e)}

When viewed as a total function from Type to Type, σ acts as the identity
on any type that does not contain any type identifiers in dom(σ). In particular,
if τ 
∈ dom(σ), then (σ τ) = τ if τ is interpreted as an element of Type. This
definition is subtle, because if τ is interpreted as an element of TypeId, then
(σ τ) = undefined, because in this case σ is a partial function from TypeId to
Type. The identity substitution, written σid , is the type substitution that,
as an element of TypeId ⇀ Type, is undefined on every type identifier — i.e.,
it has an empty set of bindings. However, when interpreted as an element of
Type→ Type, σid is indeed the identity function.

When type substitutions are viewed as elements of Type → Type (not as
elements of TypeId ⇀ Type), they can be composed. For example, if

σ2 = {?d �→ (-> (?f) ?g), ?e �→ symb}
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then

σ2 ◦ σ1 = {?a �→ int, ?b �→ (-> (?f) ?g), ?c �→ (-> (symb bool) (-> (?f) ?g)),
?d �→ (-> (?f) ?g), ?e �→ symb}

As with general functions, composition of type substitutions is not typically com-
mutative. For instance,

σ1 ◦ σ2 = {?a �→ int, ?b �→ ?d, ?c �→ (-> (?e bool) ?d),
?d �→ (-> (?f) ?g), ?e �→ symb}

The identity substitution σid is the identity element of the composition operator.
If a type T ′ is the result (σ T ) of applying a type substitution σ to another

type T , we say that T ′ is a substitution instance of T and that T can be in-
stantiated to T ′. For example, the following types are all substitution instances
of (-> (?s ?t) ?s):

(-> (int bool) int)

(-> ((-> (int) bool) ?t) (-> (int) bool))

(-> (?s symb) ?s)

(-> (?a ?b) ?a)

(-> (?t ?s) ?t)

(-> ((-> (?a ?b) ?c) (-> (?a) ?b)) (-> (?a ?b) ?c))

13.3.2 Unification

Suppose that we are given a type constraint that equates two types, each of which
may contain type identifiers. For example, we might be given Ta

.
= Tb , where

Ta = (-> (?a (-> (?b) ?b)) int)

Tb = (-> (bool ?c) ?b)

We would like to be able to “solve” such a type constraint. In algebra, solving an
equation with variables means finding a substitution for the variables that makes
both sides of the equation the same value or expression. The same is true for
type constraints: a solution to a type constraint T1

.
= T2 is a type substitution

σ such that (σ T1 ) ≈ (σ T2 ). In the above example, a solution to Ta
.
= Tb is

the following substitution:

σ = {?a �→ bool, ?b �→ int, ?c �→ (-> (int) int)}

We can verify that (σ Ta) = (σ Tb) = (-> (bool (-> (int) int)) int).
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Domains
σ ∈ TypeSubst = TypeId ⇀ Type

TC ∈ TypeConstraint = Type × Type

; T1
.
= T2 stands for an element 〈T1 ,T2 〉 of TypeConstraint

us ∈ UnifySoln = TypeSubst + Failure

Failure = {fail}

Unification Algorithm
failsoln : UnifySoln = (Failure�UnifySoln fail)

unify : TypeConstraint*→ UnifySoln = λTC ∗ . unifyLoop TC ∗ σid

unifyLoop : TypeConstraint*→ TypeSubst → UnifySoln
= λTC ∗ σ .

match TC ∗

� [ ] [] (TypeSubst�UnifySoln σ)
� (T ′ .

= T ) . TC ∗
rest

[] if T ′ ≈ T
then unifyLoop TC ∗

rest σ
else match T ′ .

= T
� (-> (T ′n

i=1) T ′
0)

.
= (-> (Tn

i=1) T0)

[] unifyLoop
(
[T ′

i

.
= Ti ]

n
i=0 @ TC ∗

rest

)
σ

� τ
.
= T [] if τ 
∈ FrTyIdsty [[T ]] ; occurs check

then let στ be {τ �→ T}
in unifyLoop (στ TC ∗

rest) (στ ◦ σ)
else failsoln end

� T
.
= τ [] ; handled just like the τ

.
= T case

� else failsoln
end

end
end

Figure 13.8 A unification algorithm that solves a sequence of type constraints.

A type substitution that makes the two types in a type constraint equivalent
is called a unifier for the two types. If a unifier exists, we say that the two types
can be unified and that the unifier is the result of the unification of the two
types. Not every pair of types can be unified; in the case where no unifier exists,
we say that unification fails. For instance, the type constraint int

.
= bool is

clearly unsolvable, as is (-> (?t) int)
.
= (-> (bool) ?t), so unification fails

in both of these cases. A trickier case is ?t
.
= (-> (int) ?t). Because μFLARE

types do not include recursive types, there is no finite type T such that {?t �→ T}
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is a unifier, so the constraint is unsolvable.1 By the same reasoning, any type
constraint of the form τ

.
= T where T 
= τ and τ ∈ FrTyIdsty [[T ]] is unsolvable.

In this case, unification is said to fail because of the test τ ∈ FrTyIdsty [[T ]], which
is called an occurs check.

In some cases there may be many solutions to a type constraint. For instance,
consider the following type constraint:

(-> (?a) ?b)
.
= (-> (?b) ?c)

This constraint can be solved by any unifier that binds ?a, ?b, and ?c to the
same type. Examples of such unifiers are:

σ1 = {?a �→ int, ?b �→ int, ?c �→ int}
σ2 = {?a �→ bool, ?b �→ bool, ?c �→ bool}
σ3 = {?a �→ ?c, ?b �→ ?c}
σ4 = {?a �→ ?b, ?c �→ ?b}
σ5 = {?a �→ ?d, ?b �→ ?d, ?c �→ ?d}

Intuitively, the substitutions σ3 , σ4 , and σ5 are more general than σ1 and
σ2 , because the latter can be obtained from the former by instantiating more
type identifiers. For instance, σ1 can be obtained from σ5 by instantiating ?d

to int. We shall say that σ′ is at least as general as σ (written σ′  σ) if
there exists an instantiation substitution σinst such that σinst ◦ σ′ = σ. It turns
out that if μFLARE types T1 and T2 have a unifier, then they have a most
general unifier σmgu such that σmgu  σ for every unifier σ of T1 and T2 . In
the above example, any unifier σT must map ?a, ?b, and ?c to the same type T .
σ5 is a most general unifier because it maps ?a, ?b, and ?c to ?d, and σ5 can be
instantiated to σT by mapping ?d to T . By the same reasoning, σ3 and σ4 are
most general unifiers as well.

Figure 13.8 presents a unification algorithm unify that solves a sequence of
type constraints [T ′

i

.
= Ti ]

n
i=1. If the constraints are solvable, unify returns

(TypeSubst � UnifySoln σsoln), where σsoln is a most general unifier for all the
type constraints. I.e., ∀n

i=1 . (σsoln T ′
i )

.
= (σsoln Ti ), and for all σ′ such that

∀n
i=1 . (σ′ T ′

i )
.
= (σ′ Ti), σsoln  σ′. If the constraints are not solvable, unify

returns failsoln = (Failure�UnifySoln fail).
The unification algorithm works by using a helper function unifyLoop to build

a solution substitution starting with the identity substitution σid . It processes
the sequence of type constraints one by one, updating the current solution substi-

1If μFLARE had recursive types, the type T = (trec s (-> (int) s)) would be
a solution. If infinite types were allowed, then the infinitely nested arrow type T =
(-> (int) (-> (int) (-> (int) . . . ))) would be a solution.
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tution so that it is a most general unifier of all type constraints processed so far.
If it processes all the type constraints without encountering a problem, it returns
the result of injecting the final solution substitution into UnifySoln. However,
it returns failsoln if it encounters an unsolvable constraint — i.e., a constraint
involving types with the following forms:

1. two base types that are not equal, such as int
.
= bool;

2. a base type and an arrow type, such as symb
.
= (-> (?a) ?b);

3. two arrow types with different numbers of argument types, such as the con-
straint (-> (?a) ?b)

.
= (-> (?c ?d) ?e);

4. a type identifier τ and a type T 
= τ in which τ is a free type identifier, such
as ?x

.
= (-> (int) ?x) (this case is the occurs check).

For a nonempty sequence of type constraints, unifyLoop processes the first
constraint T ′ .

= T by case analysis:

• If the two types are equivalent, unifyLoop simply processes the remaining con-
straints with the current solution substitution. In μFLARE, two types are
equivalent if and only if they are syntactically identical, but we phrase this
case in terms of type equivalence (≈) so that it will work if μFLARE is ex-
tended with more complicated types.

• If the constraint involves two arrow types with the same number of argument
types, then new type constraints involving the corresponding argument types
and result types are added to the sequence of unprocessed constraints that
unifyLoop must process.

• The most interesting case is when the constraint has the form τ
.
= T or T

.
= τ ,

and τ is not mentioned in T . (Note that constraints of the form τ
.
= τ have

already been handled by the T ′ ≈ T case.) In this case, the substitution
στ = τ �→ T is used (1) to “remember” the solution of τ by updating the
current substitution σ to στ ◦ σ and (2) to remove occurrences of τ in the
unprocessed constraints by applying στ to them. For the second purpose, we
assume that the application of type substitutions is lifted to sequences of type
constraints as follows:

(
σ [T ′

i

.
= Ti ]

n
i=1

)
= [(σ T ′

i )
.
= (σ Ti )]

n
i=1.

• In all other cases, the first type constraint is an unsolvable type constraint
having one of the forms enumerated earlier, and unification fails.
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unify [(-> (?a) (-> (?b) ?c))
.
= (-> (?d) ?e),

(-> (?a ?e) symb)
.
= (-> (?a (-> (?f) int)) ?a)]

= unifyLoop [(-> (?a) (-> (?b) ?c))
.
= (-> (?d) ?e),

(-> (?a ?e) symb)
.
= (-> (?a (-> (?f) int)) ?a)]

σid

= unifyLoop [?a
.
= ?d, (-> (?b) ?c)

.
= ?e,

(-> (?a ?e) symb)
.
= (-> (?a (-> (?f) int)) ?a)]

σid

= unifyLoop [(-> (?b) ?c)
.
= ?e,

(-> (?d ?e) symb)
.
= (-> (?d (-> (?f) int)) ?d)]

{?a �→ ?d}
= unifyLoop [(-> (?d (-> (?b) ?c)) symb)

.
= (-> (?d (-> (?f) int)) ?d)]

{?a �→ ?d, ?e �→ (-> (?b) ?c)}
= unifyLoop [?d

.
= ?d, (-> (?b) ?c)

.
= (-> (?f) int), symb

.
= ?d]

{?a �→ ?d, ?e �→ (-> (?b) ?c)}
= unifyLoop [(-> (?b) ?c)

.
= (-> (?f) int), symb

.
= ?d]

{?a �→ ?d, ?e �→ (-> (?b) ?c)}
= unifyLoop [?b

.
= ?f, ?c

.
= int, symb

.
= ?d]

{?a �→ ?d, ?e �→ (-> (?b) ?c)}
= unifyLoop [?c

.
= int, symb

.
= ?d]

{?a �→ ?d, ?e �→ (-> (?f) ?c), ?b �→ ?f}
= unifyLoop [symb

.
= ?d]

{?a �→ ?d, ?e �→ (-> (?f) int), ?b �→ ?f, ?c �→ int}
= unifyLoop [ ] σsoln , where σsoln = {?a �→ symb, ?e �→ (-> (?f) int),

?b �→ ?f, ?c �→ int, ?d �→ symb}
= (TypeSubst�UnifySoln σsoln)

Figure 13.9 A unification example.

Figure 13.9 presents an example of the unification algorithm on an initial
sequence containing two type constraints. You should verify that the final type
substitution is in fact a solution of the type constraints — i.e., (σsoln T ′

i ) =
(σsoln Ti ) for both type constraints T ′

i

.
= Ti in the initial sequence.

13.3.3 The Type-Constraint-Set Abstraction

The core of the type reconstruction algorithm is collecting and solving a set of
type constraints. The details of how the constraints are collected and when they



788 Chapter 13 Type Reconstruction

Abstract Domain

TCS ∈ TypeConstraintSet
An element of TypeConstraintSet represents a finite set whose elements are type
constraints from TypeConstraint. Different implementations of this abstraction
will use different definitions for TypeConstraintSet.

Operations

emptyTCS :TypeConstraintSet
The empty type-constraint set, abbreviated {}TCS .

failTCS :TypeConstraintSet
An unsolvable type-constraint set.

makeTCS :TypeConstraint*→ TypeConstraintSet
makeTCS [TC 1 , . . . ,TC n ], abbreviated {TC 1 , . . . ,TC n}TCS , returns a
type-constraint set whose elements are the type constraints TC 1 , . . . , TC n .

unionTCS :TypeConstraintSet→ TypeConstraintSet→ TypeConstraintSet
(unionTCS TCS1 TCS2 ), abbreviated TCS1 � TCS2 , returns a type-constraint
set containing the union of the type constraints in TCS1 and TCS2 .

solveTCS :TypeConstraintSet→ UnifySoln
If the type constraints of TCS are solvable, (solveTCS TCS ) returns
(TypeSubst�UnifySoln σmgu), where σmgu is a most general unifier for these type
constraints. If the type constraints of TCS are not solvable, (solveTCS TCS )
returns failsoln = (Failure�UnifySoln fail).

Figure 13.10 An abstract domain TypeConstraintSet and its associated operations.

are solved affect our understanding of the algorithm and the efficiency of its
implementation.

In order to abstract over these details, we present in Figure 13.10 an interface
to an abstract TypeConstraintSet set domain and its associated operations. We
will phrase the type reconstruction algorithm in terms of these abstract type-
constraint sets. Like a data abstraction in programming, this abstraction allows
us to separate how type-constraints sets are used from how they are implemented
and allows us to experiment with different implementations without changing the
description of the type reconstruction algorithm that uses them.

Each element of the TypeConstraintSet domain represents a finite set of type
constraints from the TypeConstraint domain. emptyTCS (abbreviated {}TCS ) is
the empty set of type constraints. failTCS is an unsolvable set of type constraints.
makeTCS converts a concrete sequence of type constraints to an abstract set of
these constraints. unionTCS takes the union of two type-constraint sets. solveTCS

solves all the type constraints in a type-constraint set.



13.3.3 The Type-Constraint-Set Abstraction 789

Domain
TCS ∈ TypeConstraintSet = TypeConstraint*

Operations
emptyTCS : TypeConstraintSet = [ ]TypeConstraint

failTCS : TypeConstraintSet = [int
.
= bool]TypeConstraint

makeTCS : TypeConstraint*→ TypeConstraintSet = λTC ∗ . TC ∗

unionTCS : TypeConstraintSet→ TypeConstraintSet→ TypeConstraintSet
= λTC ∗

1 TC ∗
2 . TC ∗

1 @ TC ∗
2

solveTCS : TypeConstraintSet→ UnifySoln = λTC ∗ . unify TC ∗

Figure 13.11 A lazy implementation of type-constraint sets.

There are many concrete implementations of the TypeConstraintSet abstrac-
tion that might be used in practice. A particularly simple implementation (Fig-
ure 13.11) represents an element of TypeConstraintSet as a sequence of type
constraints that might contain duplicate elements. In this representation,

• the empty type-constraint set is the empty sequence;

• the failure type-constraint set is a sequence with a single unsolvable constraint,
int

.
= bool;

• converting a sequence of type constraints to a type-constraint set is the identity
operation;

• forming the union of two type-constraint sets is accomplished by appending
two sequences; and

• a type-constraint set is solved simply by calling the unify function from Fig-
ure 13.8.

We call this a “lazy” implementation because solving the constraints is delayed
until the solveTCS function is called explicitly. There are many variants on this
implementation that differ in minor ways (e.g., by removing duplicate constraints
or organizing the constraints in a tree rather than a linear sequence), but this
suffices for our purposes.

In contrast, Figure 13.12 presents a very different implementation strategy.
In this approach, a solvable type-constraint set is represented as the type sub-
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Domain
TCS ∈ TypeConstraintSet = UnifySoln

Operations
emptyTCS : TypeConstraintSet = (TypeSubst�UnifySoln σid)

failTCS : TypeConstraintSet = failsoln

makeTCS : TypeConstraint*→ TypeConstraintSet = λTC ∗ . unify TC ∗

unionTCS : TypeConstraintSet→ TypeConstraintSet→ TypeConstraintSet
= λus1 us2 . match 〈us1 , us2 〉

� 〈(TypeSubst�UnifySoln σ1 ), (TypeSubst�UnifySoln σ2 )〉
[] unify ((substToTCSeq σ1 ) @ (substToTCSeq σ2 ))

� else failsoln end

substToTCSeq : TypeSubst → TypeConstraint* = λσ . [τ
.
= (σ τ)]τ∈dom(σ)

solveTCS : TypeConstraintSet→ UnifySoln = λus . us

Figure 13.12 An eager implementation of type-constraint sets.

stitution that results from solving the constraints in the set. In order to handle
unsolvable type-constraint sets, each type-constraint set is an element of the
UnifySoln domain, which is either a substitution (for solvable type-constraint
sets) or the fail token (for unsolvable type-constraint sets). We call this an
“eager” implementation because constraints are solved as soon as they are en-
countered. For example, {TC 1 , . . . ,TC n}TCS uses unification to solve the type
constraints TC 1 , . . . , TC n and TCS1 � TCS 2 uses unification to solve the type
constraints in the result of combining the two constraint sequences derived from
the type substitutions σ1 (from TCS1 ) and σ2 (from TCS2 ). The helper func-
tion substToTCSeq converts a type substitution to a sequence of type constraints.
The notation [τ

.
= (σ τ)]τ∈dom(σ) stands for a sequence of type constraints of the

form τ
.
= (σ τ) for each τ in dom(σ).

13.3.4 A Reconstruction Algorithm for μFLARE

Now that we have developed operations on type-constraint sets, we present a
type reconstruction algorithm for μFLARE in Figure 13.14. This algorithm is
expressed in terms of two reconstruction functions:

1. The expression reconstruction function, R, has the signature:

R :Exp→ TypeEnvironment → (Type× TypeConstraintSet)
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It performs type reconstruction on an expression E relative to a type envi-
ronment TE . It returns two results: (1) a type TE and (2) a set TCSE of
type constraints that were collected in the process of determining TE . If the
type-constraint set TCSE has a solution σE , then we say that Algorithm R
reconstructs the type (σE TE ) for E in TE , indicating that E is well typed
in TE . If the type-constraint set TCSE has no solution, then we say that Al-
gorithm R fails to reconstruct a type for E in TE , indicating that E is ill
typed in TE .

2. The program reconstruction function, Rpgm , has the signature:

Rpgm :Prog→ ReconAns

where ReconAns is a sum domain that is used to distinguish between the
success and failure cases of the algorithm:

RA ∈ ReconAns = ProgType + Failure
Failure = {fail}

If type reconstruction on the program succeeds, Rpgm returns an answer of
the form (ProgType �ReconAns PT ), where PT is the type of the program.
If no type can be reconstructed for the program, Rpgm returns the answer
(Failure�ReconAns fail), indicating that the type reconstruction process has
failed to find a type for the program.

The basic strategy of the algorithm is to process the nodes in the abstract
syntax tree of a program in a recursive fashion. At each node of the abstract
syntax tree, the algorithm takes as inputs (1) the node and (2) a type environment
passed down from above that describes the types of all identifiers bound at that
node. The algorithm produces as outputs two pieces of information for each
node: (1) the type of the node and (2) the set of type constraints collected for
the subtree rooted at the node.

Given the compositional, tree-recursive structure of R, we choose to define it
in Figure 13.14 as a deduction system with rules involving judgments of the form
R[[E ]] TE = 〈T ,TCS 〉. Such a judgment is pronounced “reconstructing the type
of expression E in type environment TE yields the type T and type-constraint
set TCS .” The rule for each leaf node of the abstract syntax tree is an axiom
in the deduction system. The rule for each non-leaf node is an inference rule
whose conclusion is a judgment for the node and whose premises are judgments
for the subnodes of the node. As expected in a compositional system, the type
and type-constraint set of a conclusion judgment for E are determined from the
types and type-constraint sets of premise judgments for the subexpressions of E .
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Domains
RA ∈ ReconAns = ProgType + Failure

Failure = {fail}

Type Reconstruction Function Signatures
Rpgm : Prog → ReconAns

R : Exp → TypeEnvironment → (Type × TypeConstraintSet)

Figure 13.13 Domains and function signatures for Figure 13.14

The rules for the reconstruction algorithm are structured very much like the
type rules for μFLARE presented in Figure 13.3. One key difference is that the
reconstruction rules “return” a type-constraint set at each node in addition to
“returning” a type. The other key difference is that the algorithm uses a fresh
type identifier for any type that is unknown and needs to be guessed. The [progR],
[→-introR], and [letrecR] rules all introduce fresh type identifiers to represent the
unknown types associated with the variables that they declare. These types are
communicated from the variable declaration to the variable references by storing
them in the type environment that is passed down the abstract syntax tree by the
downward phase of the recursive algorithm. The [errorR] rule introduces a fresh
type identifier that represents the type guessed for the error expression. The
[→-elimR] introduces a fresh type identifier τres that represents the type guessed
for the result of the application. This type identifier is used as the result type of
an arrow type whose argument types are the rand types, and this arrow type is
unified with the rator type via a type constraint. The [primR] rule is similar to
the [→-elimR] rule except that the operator type is found in the primitive type
environment TE prim .

The type constraints at every node are the result of taking the union of the
type constraints of its subnodes and adding any node-specific constraints. In a
well-typed expression, all leaf nodes have empty type-constraint sets; constraints
are added only at non-leaf nodes. In particular:

• The [ifR] rule constrains the type of the test expression to be bool and the
types of the then and else expressions to be equal.

• The [→-elimR] and [primR] rules constrain the rator/operator type to be an
arrow type mapping the rand types to a (freshly generated) result type.

• The [letrecR] rule constrains the types of the letrec-bound names to be the
same as their reconstructed types, thus “tying the recursive knot.”
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Domains and Function Signatures

See Figure 13.13.

Type Reconstruction Rules
R[[#u]] TE = 〈unit, {}TCS 〉 [unitR] R[[N ]] TE = 〈int, {}TCS 〉 [intR]

R[[B ]] TE = 〈bool, {}TCS 〉 [boolR] R[[(sym Y )]] TE = 〈symb, {}TCS 〉 [symbR]

R[[(error Y )]] TE = 〈τ , {}TCS 〉 where τ is fresh. [errorR]

R[[I ]] TE = 〈TE (I ), {}TCS 〉 where I ∈ dom(TE ) [varR]

R[[I ]] TE = 〈unit, failTCS 〉 where I 
∈ dom(TE ) [var-failR]

∀3
i=1 . (R[[Ei ]] TE = 〈Ti ,TCS i〉)

R[[(if E1 E2 E3)]] TE = 〈T2 ,
(⊎3

i=1 TCS i

)
� {T1

.
= bool,T2

.
= T3}TCS 〉

[ifR]

R[[Ebody ]] TE [Ii : τi ]
n
i=1 = 〈Tbody ,TCS body〉

R[[(abs (I n
i=1) Ebody)]] TE = 〈(-> (τn

i=1) Tbody),TCS body〉
[→-introR]

where τn
i=1 are fresh.

∀n
i=0 . (R[[Ei ]] TE = 〈Ti ,TCS i〉)

R[[(E0 En
i=1)]] TE = 〈τres , (

⊎n
i=0 TCS i) � {T0

.
= (-> (Tn

i=1) τres)}TCS 〉
[→-elimR]

where τres is fresh.

∀n
i=1 . (R[[Ei ]] TE = 〈Ti ,TCS i〉) R[[E0 ]] TE [Ii :Ti ]

n
i=1 = 〈T0 ,TCS0 〉

R[[(let ((Ii Ei)
n
i=1) E0)]] TE = 〈T0 ,

⊎n
i=0 TCS i〉

[letR]

∀n
i=0 .

(
R[[Ei ]] TE [Ij : τj ]

n
j=1 = 〈Ti ,TCS i〉

)
R[[(letrec ((Ii Ei)

n
i=1) E0)]] TE

= 〈T0 , (
⊎n

i=0 TCS i) � (
⊎n

i=1{τi
.
= Ti}TCS )〉

[letrecR]

where τn
i=1 are fresh.

R[[Oop ]] TEprim = 〈Top ,TCS0 〉 ∀n
i=1 . (R[[Ei ]] TE = 〈Ti ,TCS i〉)

R[[(prim Oop En
i=1)]] TE

= 〈τres , (
⊎n

i=0 TCS i) � {Top
.
= (-> (Tn

i=1) τres)}TCS 〉
[primR]

where τres is fresh.

R[[Ebody ]] {Ii : τi}n
i=1 = 〈Tbody ,TCS body〉

Rpgm [[(flarek (I n
i=1) Ebody)]] = RApgm

[progR]

where τn
i=1 are fresh

and RApgm =

⎧⎪⎨⎪⎩
(ProgType�ReconAns (σbody (=> (τn

i=1) Tbody))),

if solveTCS TCS body = (TypeSubst�UnifySoln σbody)

(Failure�ReconAns fail), otherwise

Figure 13.14 μFLARE type reconstruction algorithm expressed via deduction rules.
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It is important to understand how the fresh type identifiers introduced by
the type reconstruction algorithm “flow” through the nodes of an abstract syn-
tax tree. As already noted, the fresh type identifiers for program parameters,
abstraction parameters, and letrec-bound names are passed down the abstract
syntax tree via type environments. Type environments also pass down any fresh
type identifiers generated in the definition expressions associated with let-bound
names. The one place where fresh type identifiers flow from the type-environment
input to the type output is the [varR] rule. The [errorR], [→-elimR], and [primR]
rules introduce fresh type identifiers in the type output of a node. Fresh identi-
fiers in a type output may flow elsewhere in the program via the type environment
in the [letR] rule, or they may flow into the type and/or type-constraint set of a
parent node. Once fresh type identifiers appear in a type or type-constraint set,
they are effectively propagated up the abstract syntax tree in the upward phase
of the recursive algorithm.

When the type and constraint information percolates to the top of the pro-
gram, the algorithm has determined a type Tbody and type-constraint set TCS body

for the body expression Ebody of the program. At this point, the [progR] rule,
which defines the Rpgm function, is applied. It attempts to solve all of the type
constraints TCS body collected in the program body. If there is a solution sub-
stitution σbody for these constraints, the program is well typed with a program
type that is the result of applying σbody to (=> (τn

i=1) Tbody), where τn
i=1 are

the type identifiers guessed for the program parameters. If there is no solution
substitution, the algorithm indicates that reconstruction has failed.

It is convenient to express R and Rpgm in the deduction style, but it is not
necessary. Alternatively, we can define the R function via a set of clauses written
in the same metalanguage notation that we have used extensively to define most
functions on expression trees that we have studied. For example, in this style the
if clause for R would be written:

R[[(if Etest Ethen Eelse)]] TE =
let 〈Ttest ,TCS test〉 be R[[Etest ]] TE and

〈Tthen ,TCS then〉 be R[[Ethen ]] TE and
〈Telse ,TCS else〉 be R[[Eelse ]] TE

in 〈Tthen ,TCS test � TCS then � TCS else � {Ttest
.
= bool,Tthen

.
= Telse}TCS 〉

In the literature, type reconstruction algorithms are often presented in a more
imperative style in which type-constraint sets (or the substitutions that solve
them) are single-threaded through invocations of the reconstruction function. In
this style, the reconstruction function (we’ll call it R ′) takes a third argument:
a type-constraint set that includes all type constraints collected by the recon-
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struction process so far. (R ′[[E ]] TE TCS ) returns a pair of E ’s type and a
type-constraint set TCS ′ that augments TCS with any type constraints encoun-
tered in the reconstruction of E . Here is the if clause in this style:

R ′[[(if Etest Ethen Eelse)]] TE TCS0 =
let 〈Ttest ,TCS1 〉 be R ′[[Etest ]] TE TCS0

in let 〈Tthen ,TCS2 〉 be R ′[[Ethen ]] TE TCS1

in let 〈Telse ,TCS3 〉 be R ′[[Eelse ]] TE TCS2

in 〈Tthen ,TCS3 � {Ttest
.
= bool,Tthen

.
= Telse}TCS 〉

We choose to express the type reconstruction algorithm as a deduction system
because it has two advantages over these other approaches:

1. The similarity in structure between the μFLARE type rules and the μFLARE
type reconstruction algorithm highlights the relationship between these two
formal systems and facilitates proving properties of the type reconstruction
algorithm.

2. Deduction-style rules make it possible to present examples of the type recon-
struction algorithm in a style that resembles type derivations.

As an example of the second benefit, Figure 13.16 is a vertical-style presenta-
tion of the type reconstruction algorithm for the μFLARE program P ′

pow intro-
duced on page 773. The constraints collected by the algorithm for the program
body E ′

let are:

(-> (int int) int)
.
= (-> (?x int) ?*res)

(-> (int int) bool)
.
= (-> (?i ?n) ?>=res)

(-> (?x) ?*res)
.
= (-> (?i) ?dblres)

?>=res
.
= bool

?i
.
= ?loopres1

?loop
.
= (-> (?dblres) ?loopres1)

?loop
.
= (-> (int) ?loopres2)

?loop
.
= (-> (?i) ?i)

The solution to these constraints is a substitution with the following bindings:

?n �→ int

?x �→ int

?i �→ int

?*res �→ int

?>=res �→ bool

?dblres �→ int

?loopres1 �→ int

?loopres2 �→ int

?loop �→ (-> (int) int)

Applying this substitution to the program type (=> (?n) ?loopres2) obtained
from the algorithm yields the program type (=> (int) int). Note that the
nested box structure in the μFLARE type reconstruction derivation depicted
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Abbreviations
TE loop = {n : ?n, dbl : (-> (?x) ?*res), loop : ?loop}
P ′

pow = (flarek (n) E ′
let)

E ′
let = (let ((dbl E ′

dblabs)) E ′
recloop)

E ′
dblabs = (abs (x) (prim * x 2))

E ′
recloop = (letrec ((loop E ′

loopabs)) (loop 1))

E ′
loopabs = (abs (i) Eif )

Eif = (if (prim >= i n) i (loop (dbl i)))

TCS∗ = {(-> (int int) int)
.
= (-> (?x int) ?*res)}TCS

TCS>= = {(-> (int int) bool)
.
= (-> (?i ?n) ?>=res)}TCS

TCSdbl = {(-> (?x) ?*res)
.
= (-> (?i) ?dblres)}TCS

TCS loop1 = TCSdbl � {?loop .
= (-> (?dblres) ?loopres1)}TCS

TCS if = TCS>= � TCS loop1 � {?>=res .
= bool, ?i

.
= ?loopres1}TCS

TCS loop2 = {?loop .
= (-> (int) ?loopres2)}TCS

TCS recloop = TCS loop2 � TCS if � {?loop .
= (-> (?i) ?i)}TCS

Figure 13.15 Abbreviations for Figure 13.16.

in Figure 13.16 is exactly the same as that of the μFLARE type derivation for
the same program in Figure 13.5. This highlights the connection between type
derivations and the type reconstruction process in the μFLARE type system.

For any given expression E and type environment TE , Algorithm R always
returns a pair of a type T and a type-constraint set TCS . So in this sense it
always “succeeds.” But we say that Algorithm R reconstructs a type for E only
if TCS is solvable. For example, consider

R[[(if x 1 x)]] {} = 〈int,TCS if 〉

where TCS if = {?x .
= bool, ?x

.
= int}TCS . Since (solveTCS TCS if ) = failsoln,

we say that Algorithm R fails to reconstruct a type for E even though the type
component of the result is int.

Algorithm R finds a principal type — i.e., a most general type — of an
expression in a type environment. If R[[E ]] TE = 〈T ,TCS 〉, TCS is solvable,
and σmgu is a most general unifier of TCS , then the type TE = (σmgu T ) is
a principal type in the sense that any type T ′ that can be assigned to E in
(σmgu TE ) according to the type system in Figure 13.3 is a substitution instance
of TE . For example, consider reconstructing the type of the abstraction

Erevapp = (abs (x) (abs (f) (f x)))

in the empty type environment (Figure 13.17). R[[Erevapp ]] {} = 〈T ,TCS 〉, where
T = (-> (?x) (-> (?f) ?r)) and TCS = {?f .

= (-> (?x) ?r)}TCS . Define
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Type Reconstruction for P ′
pow

See abbreviations in Figure 13.15

R[[*]] TEprim = 〈(-> (int int) int), {}TCS 〉 [varR]

R[[x]] {n : ?n, x : ?x} = 〈?x, {}TCS 〉 [varR]

R[[2]] {n : ?n, x : ?x} = 〈int, {}TCS 〉 [intR]

R[[(prim * x 2)]] {n : ?n, x : ?x} = 〈?*res,TCS∗〉 [primR]

R[[(abs (x) (prim * x 2))]] {n : ?n} = 〈(-> (?x) ?*res),TCS∗〉 [→-introR]

R[[>=]] TEprim = 〈(-> (int int) bool), {}TCS 〉 [varR]

R[[i]] TE loop [i : ?i] = 〈?i, {}TCS 〉 [varR]

R[[n]] TE loop [i : ?i] = 〈?n, {}TCS 〉 [varR]

R[[(prim >= i n)]] TE loop [i : ?i] = 〈?>=res,TCS>=〉 [primR]

R[[i]] TE loop [i : ?i] = 〈?i, {}TCS 〉 [varR]

R[[loop]] TE loop [i : ?i] = 〈?loop, {}TCS 〉 [varR]

R[[dbl]] TE loop [i : ?i] = 〈(-> (?x) ?*res), {}TCS 〉 [varR]

R[[i]] TE loop [i : ?i] = 〈?i, {}TCS 〉 [varR]

R[[(dbl i)]] TE loop [i : ?i] = 〈?dblres,TCSdbl〉 [→-elimR]

R[[(loop (dbl i))]] TE loop [i : ?i] = 〈?loopres1,TCS loop1 〉 [→-elimR]

R[[(if (prim >= i n) i (loop (dbl i)))]] TE loop [i : ?i] = 〈?i,TCS if 〉 [ifR]

R[[(abs (i) Eif )]] TE loop = 〈(-> (?i) ?i),TCS if 〉 [→-introR]

R[[loop]] TE loop = 〈?loop, {}TCS 〉 [varR]

R[[1]] TE loop = 〈int, {}TCS 〉 [intR]

R[[(loop 1)]] TE loop = 〈?loopres2,TCS loop2 〉 [→-elimR]

R[[(letrec ((loop E ′
loopabs)) (loop 1))]] {n : ?n, dbl : (-> (?x) ?*res)}

= 〈?loopres2,TCS recloop〉 [letrecR]

R[[(let ((dbl E ′
dblabs)) E ′

recloop)]] {n : ?n} = 〈?loopres2,TCS recloop � TCS∗〉 [letR]

Rpgm [[(flarek (n) E ′
let)]] = (ProgType�ReconAns (=> (int) int)) [progR]

Figure 13.16 Type reconstruction for P ′
pow .
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Abbreviations
Erevapp = (abs (x) (abs (f) (f x)))

TCS = {?f .
= (-> (?x) ?r)}TCS

Type Reconstruction for Erevapp

R[[f]] {x : ?x, f : ?f} = 〈?f, {}TCS 〉 [varR]

R[[x]] {x : ?x, f : ?f} = 〈?x, {}TCS 〉 [varR]

R[[(f x)]] {x : ?x, f : ?f} = 〈?r,TCS 〉 [→-elimR]

R[[(abs (f) (f x))]] {x : ?x} = 〈(-> (?f) ?r),TCS〉 [→-introR]

R[[(abs (x) (abs (f) (f x)))]] {}= 〈(-> (?x) (-> (?f) ?r)),TCS 〉 [→-introR]

Figure 13.17 Type reconstruction for Erevapp .

σ = (solveTCS TCS ) = {?f �→ (-> (?x) ?r)}. Then the principal type of
Erevapp determined by R is

Trevapp = (σ T )

= ({?f �→ (-> (?x) ?r)} (-> (?x) (-> (?f) ?r)))

= (-> (?x) (-> ((-> (?x) ?r)) ?r))

Any type that can be assigned to Erevapp is a substitution instance of Trevapp .
For example, Erevapp can be assigned the type

(-> (int) (-> ((-> (int) bool)) bool))

which is the result of applying the type substitution {?x �→ int, ?r �→ bool} to
Trevapp , and it can be assigned the type

(-> ((-> (?y) ?z))

(-> ((-> ((-> (?y) ?z)) (-> (?w) symb)))

(-> (?w) symb)))

which is the result of applying {?x �→ (-> (?y) ?z), ?r �→ (-> (?w) symb)} to
Trevapp .

The following theorems (which are proved in the Web Supplement) formalize
the correctness of Algorithm R. The soundness theorem says that if Algorithm
R reconstructs a type for an expression relative to a type environment, then
the expression is well typed in (an instantiation of) that environment.2 The

2In Theorem 13.7, applying the substitution σ to the type environment TE is necessary
because TE might contain type identifiers that are resolved by the type reconstruction process.
E.g., suppose TE = {b : bool, x : ?t} and E = (if b x 0). In this case, σ = {?t �→ int}
and the judgment (σ TE) � E : (σ ?t) holds but the judgment TE � E : (σ ?t) does not hold.
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completeness theorem says that if an expression has type T in a type environment,
Algorithm R can reconstruct the type T for it.

Theorem 13.7 (Soundness of Algorithm R) Suppose R[[E ]] TE =
〈T ,TCS 〉. If σ is any solution of TCS, then (σ TE ) � E : (σ T ).

Theorem 13.8 (Completeness of Algorithm R) If TE � E :T then
R[[E ]]TE = 〈T ′,TCS 〉 where there is a solution σ of TCS such that (σ T ′)
= T.

The fact that Algorithm R finds a principal type follows from soundness and
completeness:

Theorem 13.9 (Principal Types for Algorithm R) Suppose that
R[[E ]] TE = 〈T ′,TCS 〉 and TCS is a solvable type-constraint set with
a most general unifier σmgu . Then TPT = (σmgu T ′) is a principal type
of E: That is, if (σmgu TE ) � E :T, then T = (σinst TPT ) for some
instantiation substitution σinst .

Proof: By the soundness of Algorithm R, (σmgu TE ) � E : (σmgu T ′) = TPT .
By the completeness of Algorithm R, (σmgu TE ) � E :T implies there is a so-
lution σ of TCS such that T = (σ T ′). Since σmgu is a most general uni-
fier of TCS , σ = σinst ◦ σmgu for some substitution σinst . So T = (σ T ′) =
((σinst ◦ σmgu) T ′) = (σinst (σmgu T ′)) = (σinst TPT ). �

Because the type reconstruction algorithm uses the abstract operations for
type-constraint sets from Section 13.3.3, it abstracts over the details of when the
constraints are solved. In a lazy implementation of type-constraint sets (Fig-
ure 13.11), the algorithm first collects constraints from the entire program and
then solves them all at once at the very end of the reconstruction process. Since
the lazy implementation will not “notice” if unsolvable constraints like int

.
=

bool are encountered during the constraint collection process, it may do much
more work than it has to in cases where the reconstruction process fails.

In an eager implementation of type-constraint sets (Figure 13.12), the al-
gorithm solves constraints whenever a new type-constraint set is created and
whenever two type-constraint sets are unioned. An eager implementation can be
designed to fail immediately if an unsolvable constraint is encountered. Because
all constraints encountered in the reconstruction process are eventually collected
into one big type-constraint set, a variant of the eager implementation that is pop-
ular in practice is to represent the substitution solving all the type constraints
collected so far as a global mutable data structure that is updated every time a
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new constraint is encountered. For example, this substitution can be represented
as a mutable table mapping the fresh type identifiers generated by the algorithm
to their current types in the global substitution.

Exercise 13.3

a. Construct a vertical-style μFLARE type reconstruction for the following program:

(flarek (i)

(let ((make-gt (abs (n) (abs (x) (prim > x n))))

(app5 (abs (f) (f 5)))

(flip (abs (g) (abs (a) (abs (b) ((g b) a))))))

(((flip app5) i) make-gt)))

As part of your answer, show the type substitution that is the solution of all the
constraints collected by the reconstruction algorithm.

b. Write a well-typed program in the explicitly typed μFLEX language whose type
erasure is the μFLARE program in part a.

Exercise 13.4 Thai Ping is excited when he realizes that the label and jump constructs
he added to μFLEX (see Exercise 11.8 on page 658) can be handled in μFLARE with-
out the need for any explicit type annotations. The expression and type grammars of
μFLARE can be extended as follows:

E ::= . . . | (label I E) | (jump E1 E2)

T ::= . . . | (controlpointof T)

a. Write μFLARE type rules for label and jump.

b. Using your type rules from part a, construct a type derivation for the expressions E1 ,
E2 , and E3 from Exercise 11.8, showing that they are well typed.

c. Write μFLARE type-reconstruction rules for label and jump.

Exercise 13.5 Type reconstruction can be extended to construct explicitly typed ver-
sions of implicitly typed expressions and programs.

a. Modify R so that it returns a third result: an explicitly typed μFLEX expression
EμFLEX whose type erasure is the μFLARE expression EμFLARE on which R was
called. If the type constraints collected by R are solvable, then EμFLEX should be
a well-typed expression. You may assume that applying a type substitution σ to
a μFLEX expression EμFLEX yields a μFLEX expression E ′

μFLEX in which every
occurrence of a type identifier τ in dom(σ) has been replaced by (σ τ).

b. Modify Rpgm so that in the case where it succeeds with a type it returns a second
result: an explicitly typed μFLEX program PμFLEX such that PμFLEX is well typed
and the type erasure of PμFLEX is the μFLARE program PμFLARE on which Rpgm

was called.
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13.4 Let Polymorphism

13.4.1 Motivation

The type system of μFLARE and the associated type reconstruction algorithm
are a big improvement over the explicit type system of μFLEX. All types in
μFLARE are implicit and can be automatically inferred, so programmers never
need to write any explicit types in their programs.

However, the μFLARE type system is still not as expressive as we would like
it to be. There are many μFLARE expressions that are intuitively well typed but
are treated as ill typed by the μFLARE type system. For example, reconsider
the following expression discussed on page 778:

Eid = (let ((id (abs (x) x)))

(if (id #t) 1 ((id id) 2)))

We might reasonably expect that type reconstruction should succeed on Eid , but
the μFLARE type reconstruction algorithm presented in Figure 13.14 fails on
this expression. It discovers that id has the type (-> (?x) ?x), which suggests
that id should have type (-> (T) T) for any type T . But it permits ?x to
be instantiated only once in the entire expression. Since ?x needs to be bool,
(-> (int) int), and int, respectively, for the three different references to id,
the constraints collected by the type reconstruction algorithm for this expression
are unsolvable.

The problem is that the μFLARE type system and its associated reconstruc-
tion algorithm are essentially monomorphic. A let definition expression like
(abs (x) x) is typed exactly once even though it may be used in different ways
in different contexts. We would prefer a way to derive a different type for a let

definition expression for each of its uses in the let body. That is, we would like
to get the effect of typing or reconstructing an expression in which each let def-
inition is substituted for its corresponding name in the let body. For example,
the μFLARE expression

E ′
id = (let ((id (abs (x) x)))

(if ((abs (x) x) #t) 1 (((abs (x) x) (abs (x) x)) 2)))

is well typed because a different type can be chosen for x in each of the three
copies of the abstraction (abs (x) x).

In the polymorphic language FLEX/SP from Section 12.2, this effect is
achieved without copying let definitions by giving them universal types that
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can be instantiated differently at each use. For example, here is a FLEX/SP
version of the identity example:

EidSP = (let ((id (pabs (t) (abs ((x t)) x))))

(if ((pcall id bool) #t)

1

((pcall id (-> (int) int)) (pcall id int)) 2)))

The polymorphism of FLEX/SP increases the expressive power of the typed
language, but it forces the programmer to explicitly declare and instantiate uni-
versal types. The burning question is: Can this polymorphic approach be adapted
to the implicitly typed μFLARE language? The answer is a qualified “yes”:
Some, but not all, of the power of universal polymorphism can be captured in
an implicitly typed language. The key idea is to associate each let-bound and
letrec-bound name with a type schema of the form (generic (τn

i=1) T).
This can be viewed as a weak form of the universal type (forall (τn

i=1) T).
Each time such a name is used, the generic-bound type identifiers τ1 , . . . , τn

can be instantiated with different types. This allows a let or letrec definition
to have a different type for each use of its associated name within the let or
letrec body, just as if the definition were substituted for each occurrence of the
name in the body. Since polymorphism in this approach is restricted to definition
expressions in a let or letrec expression, it is called let polymorphism.

As an example of let polymorphism, Figure 13.18 presents a vertical-style
type derivation showing that the identity example expression Eid is well typed in
the empty type environment. The derivation uses some new rules (subscripted
with LP, for Let Polymorphism) that will be presented in Section 13.4.2. In
deriving the type for the identity abstraction (abs (x) x), the μFLEX type
system allows any type to be used for x; we choose the type identifier ?x as the
type of x. Because the identity abstraction is a let definition, the μFLARELP

type system with let polymorphism generalizes its type to the type schema
(generic (?x) (-> (?x) ?x)) and extends the type environment with a bind-
ing of the name id to this type schema for type-checking the body of the let

expression. Each reference to id in the let body instantiates the type iden-
tifier ?x in a different way. In (id #t), ?x is instantiated to bool, so that
id has the type (-> (bool) bool). In ((id id) 2), the ?x for the first oc-
currence of id is instantiated to (-> (int) int), giving the first id the type
(-> ((-> (int) int)) (-> (int) int)), and the ?x for the second occurrence
of id is instantiated to int, giving the second id the type (-> (int) int). Be-
cause let polymorphism allows each of the three references to id to have a
different type, Eid is well typed with type int.
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Abbreviations
Eid = (let ((id (abs (x) x))) (if (id #t) 1 ((id id) 2)))

TE letbody = {id : (generic (?x) (-> (?x) ?x))}

Type Derivation TD ′
id for Eid

{x : ?x} � x : ?x [varLP ]

{} � (abs (x) x) : (-> (?x) ?x) [→-intro]

TE letbody � id : (-> (bool) bool) [genvarLP ]

TE letbody � #t : bool [bool]

TE letbody � (id #t) : bool [→-elim]

TE letbody � 1 : int [int]

TE letbody � id : (-> ((-> (int) int)) (-> (int) int)) [genvarLP ]

TE letbody � id : (-> (int) int) [genvarLP ]

TE letbody � (id id) : (-> (int) int) [→-elim]

TE letbody � 2 : int [int]

TE letbody � ((id id) 2) : int [→-elim]

TE letbody � (if (id #t) 1 ((id id) 2)) : int [if ]

{} � (let ((id (abs (x) x))) (if (id #t) 1 ((id id) 2))) : int [letLP ]

Figure 13.18 Type derivation for Eid in μFLARE with let polymorphism.

13.4.2 A μFLARE Type System with Let Polymorphism

Extending the μFLARE type system with let polymorphism requires only a few
modifications, which are presented in Figure 13.19. We use the name μFLARELP

to refer to μFLARE with let polymorphism to distinguish it from μFLARE
with the monomorphic type system. The new domain TypeSchema is the domain
of type schemas, which are possibly instantiatable types. These include generic
schemas of the form (generic (τn

i=1) T) introduced above. They also include
plain types of the form T , which can be viewed as an abbreviated way of writing
the trivial generic schema (generic () T).

Although type schemas include plain types, the Type domain is unchanged.
In particular, the generic construct cannot appear in a type. This is the key
way in which generic differs from the universal type constructor forall, which
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can appear in types.3 As we shall discuss later, this difference makes generic

less powerful than forall but makes type reconstruction possible.
To support let polymorphism, type environments are changed to bind value

identifiers to type schemas rather than to types. The [genvarLP ] type rule allows
each reference to an identifier I bound to (generic (τn

i=1) T) to be given a
type that is a substitution instance of T in which each type identifier τi is re-
placed by an arbitrary type Ti . The substitution ([Ti/τi ]

n
i=1)Tbody is effectively

an implicit projection that serves the same purpose as the explicit projection
(pcall I Tn

i=1) in an explicitly typed system (where I would be assumed to
have the type (forall (τn

i=1) Tbody)). The fact that each type Ti may be cho-
sen differently for each reference to I is the sole source of polymorphism in a type
system with let polymorphism.

The [varLP ] type rule says that if I is bound to a plain type T , then there is
no polymorphism and each reference to I has the same type T . This is consistent
with the view that T is just an abbreviation of (generic () T).

The only other modification for let polymorphism is changing the type rules
for let and letrec to introduce generic type schemas for the type Ti of each
definition expression Ei . In an explicitly typed system, this would correspond
to wrapping the definition expressions with pabs so that the bound identifiers
would have forall types. The key decision to make is which type identifiers ap-
pearing in Ti can be parameterized when wrapping Ti in a generic. In the type
derivation of Eid , the type (-> (?x) ?x) is abstracted into the type schema
(generic (?x) (-> (?x) ?x)). But in general it is not sound to simply pa-
rameterize over all type identifiers that appear in Ti . To see why, consider the
following variant of Eid :

Econst = (abs (c)

(let ((const (abs (x) c)))

(if (const #t) 1 ((const const) 2))))

In Econst , the identity abstraction id has been replaced by the constant ab-
straction const that always returns the abs-bound value c. The most general
type of (abs (x) c) is (-> (?x) ?c). If this is generalized to the type schema
(generic (?x ?c) (-> (?x) ?c)) and the type environment binds const to
this schema, there is a problem: ?c can be instantiated to a different type for each
reference to const, and the expression is determined to be well typed. But Econst

should not be well typed. The same value c is returned for both (const #t)

and (const const). In the first application, c must be a boolean, since it is

3Using the terminology from page 735, the μFLARE type system is predicative, in contrast
to the impredicative type system of FLEX/SP.
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New and Modified Domains
TS ∈ TypeSchema ::= T | (generic (τ∗) T)

TE ∈ TypeEnvironment = Ident ⇀ TypeSchema

New Type Functions
FrTyIdsTS : TypeSchema → P(TypeId)
FrTyIdsTS [[T ]] = FrTyIdsty [[T ]]
FrTyIdsTS [[(generic (τn

i=1) Tbody)]] = FrTyIdsty [[Tbody ]] − (∪n
i=1{τi})

FrTyIdsTE : TypeEnvironment → P(TypeId)
(FrTyIdsTE TE ) = ∪I∈dom(TE)FrTyIdsTS [[TE (I )]]

gen : Type → TypeEnvironment → TypeSchema
(gen T TE ) = (generic (τn

i=1) T),
where {τ1 , . . . , τn} = FrTyIdsty [[T ]] − (FrTyIdsTE TE )

Modified Type Rules
TE � I :T where TE (I ) = T [varLP ]

TE � I : ([Ti/τi ]
n
i=1)Tbody where TE (I ) = (generic (τn

i=1) Tbody) [genvarLP ]

∀n
i=1 . TE � Ei :Ti

TE [Ii : (gen Ti TE )]
n
i=1 � E0 :T0

TE � (let ((Ii Ei)
n
i=1) E0) :T0

[letLP ]

∀n
i=1 . TE [Ij :Tj ]

n
j=1 � Ei :Ti

TE [Ii : (gen Ti TE )]
n
i=1 � E0 :T0

TE � (letrec ((Ii Ei)
n
i=1) E0) :T0

[letrecLP ]

Figure 13.19 Modified domains and type rules for μFLARELP = μFLARE with
let polymorphism.

used in the test position of an if expression. In the second expression, c must
be a procedure that maps an integer to an integer, since it is applied to 2 and
must return an integer (to match the 1 returned in the other branch of the if

expression). Clearly, no value c can be both a boolean and a procedure.
The correct generalization of (-> (?x) ?c) in this example is the type schema

(generic (?x) (-> (?x) ?c)). It is safe to generalize the type identifier ?x for
each occurrence of const but is not safe to generalize the type identifier ?c. With
this generalization, Econst is ill typed, as it should be.

In general, how can we determine which type identifiers in a type T can be
generalized? The key is to disallow generalization for any free type identifier
in T that is mentioned in the type environment. It turns out that any free
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type identifier in the type environment is a type associated with an abs-bound
identifier. Since the value associated with an abs-bound identifier is generally
unknown to the type checker, each such free type identifier must be assumed to
represent the same type everywhere it is used, and so such type identifiers cannot
be generalized.

The gen function in Figure 13.19 generalizes a type relative to a type envi-
ronment. (gen T TE ) calculates which type identifiers in T can be generalized
relative to TE and returns a type schema parameterized over these type iden-
tifiers. The function FrTyIdsTE determines the free type identifiers in a type
environment by unioning the free type identifiers for each type schema in the
environment. The function FrTyIdsTS determines the free type identifiers in a
type schema by subtracting any generic-bound type identifiers from the free
type identifiers of the generalized type. For example:

(gen (-> (?x) ?c) {}) = (generic (?x ?c) (-> (?x) ?c))

(gen (-> (?x) ?c) {c : ?c}) = (generic (?x) (-> (?x) ?c))

(gen (-> (?x) ?c) {f : (-> (?c) ?x)}) = (generic () (-> (?x) ?c))

(gen (-> (?x) ?c) {g : (generic (?c) (-> (?c) ?x))})
= (generic (?c) (-> (?x) ?c))

The [letLP ] and [letrecLP ] rules in Figure 13.19 are modified versions of the
[let] and [letrec] rules from Figure 13.3 that use gen to determine the type schema
for each let and letrec definition. Note that the [letrecLP ] rule generalizes the
type of a definition expression only in the body of the letrec; the type of a
letrec-bound name is treated monomorphically within the letrec definition
expressions. This restriction is motivated by the fact that the typability of ex-
pressions involving general polymorphic recursion is known to be undecidable
[KTU93]. With this treatment of letrec, the expression

(letrec ((id (abs (x) x))

(inc (abs (y) (+ 1 (id y)))))

(if (id #t) (id 1) (inc 2)))

is ill typed even in the presence of let polymorphism. The application (id y)

forces the type of id to be (-> (int) int) rather than (-> (?x) ?x). Since
(-> (int) int) cannot be generalized to a nontrivial type schema, the applica-
tion (id #t) is necessarily ill typed.

The polymorphic type system of μFLARELP allows types to be derived for
many μFLARE programs that are ill typed in the basic monomorphic type sys-
tem of μFLARE. Nevertheless, it is still not powerful enough to derive types for
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the type erasures of all programs that are well typed using the universal types of
FLEX/SP. As a simple example, consider the following FLEX/SP abstraction:

EabsSP = (abs ((f (forall (t) (-> (t) t))))

(if ((pcall f bool) #t)

1

(((pcall f (-> (int) int)) (pcall f int)) 2)))

EabsSP is well typed in FLEX/SP, where it can be applied to arguments like the
following, all of which have type (forall (t) (-> (t) t)):

(pabs (t) (abs ((x t)) t))

(pabs (t) (abs ((x t)) (error wrong t)))

(pabs (t)

(abs ((x t))

(letrec ((loop (-> (t) t) (abs ((y t)) (loop y))))

(loop x))))

However, the type erasure of EabsSP ,4

EabsR = �EabsSP� = (abs (f) (if (f #t) 1 ((f f) 2)))

is not well typed in μFLARELP . The reason is that f is an abs-bound identifier
and, as such, is assumed to have a plain (i.e., nongeneralizable) type. Clearly f

has an arrow type, but there is no μFLARELP arrow type that is compatible
with an argument type bool and an argument type that is another arrow type.
So EabsR is ill typed. Indeed, any FLEX/SP expression that requires abstraction
parameters to be first-class polymorphic values — i.e., values with forall types
— has a type erasure that will be ill-typed in μFLARE for the same reason.

Sometimes an ill-typed μFLARELP expression can be rewritten to make it
well typed. E.g., (EabsR (abs (x) x)), which is ill typed in μFLARELP , can
be rewritten as Eid from page 778, which is well typed in μFLARELP . The
reason that this rewriting makes the expression well typed is that it provides the
type checker with more information. When type-checking EabsR, the type checker
has no information about f and must treat it monomorphically. But when type
checking Eid , the type checker knows that the definition of f is (abs (x) x),
which it can treat polymorphically because it is a let definition.

Expressions like EabsR are ill typed in μFLARELP because polymorphism is
provided only by type schemas, (generic (τn

i=1) T), which can appear in type
environments but cannot appear in types. Why not simply make the μFLARELP

4For type erasure on FLEX/SP expressions, we assume that �(pcall E Tn
i=1)� = �E� and

�(pabs (τn
i=1) E)� = �E�.
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type system more powerful by extending it with full-fledged universal types,
(forall (τn

i=1) T)? The reason is that typability in an implicitly typed system
with universal types is known to be undecidable [Wel99]. So type reconstruction
is not possible for such a system.

Developing a type system that supports both reconstruction and some form
of polymorphism requires weakening universal polymorphism in some way. The
type-schema strategy discussed here is a standard approach that limits universal
types by effectively allowing pabs only around let/letrec definition expressions
and allowing pcall only at references to let-bound and letrec-bound names
in the bodies of let and letrec expressions. Exploring other implicit type sys-
tems that support reconstruction along with other features (e.g., more powerful
polymorphism, subtyping, bounded quantification, existential types) is an area
of active research.

13.4.3 μFLARE Type Reconstruction with Let Polymorphism

Figure 13.20 shows the modifications to the μFLARE type reconstruction algo-
rithm (Figure 13.14 on page 793) that are needed to handle let polymorphism.
As in the μFLARELP type system, type environments are modified to map iden-
tifiers to type schemas. Nontrivial schemas are introduced in the reconstruction
of let and letrec expressions and are generalized at each variable reference by
replacing generic-bound type identifiers by fresh type identifiers. The rgen func-
tion is the type reconstruction analogue of the gen function from the μFLARELP

type system. It differs from gen in two ways:

1. In addition to taking a type T and a type environment TE , rgen takes an
additional argument: a type-constraint set TCS of the constraints collected
in reconstructing the type T . These constraints must be solved and applied
to both T and TE before the calculation of generalizable type identifiers can
be performed.

2. Unlike gen, which is a total function, rgen is a partial function. It is undefined
in the case where the type-constraint set TCS is unsolvable. Although this is
not explicit in the algorithm, we assume that type reconstruction fails in the
case where rgen is undefined.

The reason that type constraints must be solved before calculating which identi-
fiers can be generalized is that these constraints may relate fresh type identifiers
to each other and to free type identifiers in the type environment. For exam-
ple, consider the case in which (abs (f x) (f (if b c x))) is a let defini-
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Domains
TypeSchema and TypeEnvironment are defined as in Figure 13.19.

New Type Function
rgen : Type→ TypeEnvironment → TypeConstraintSet ⇀ TypeSchema

(rgen T TE TCS ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(generic (τ1 . . . τn) (σ T )),

if solveTCS TCS = (TypeSubst�UnifySoln σ)

and {τ1 , . . . , τn} = FrTyIdsty [[(σ T )]]
− (FrTyIdsTE (σ TE ))

undefined, otherwise

Modified Type Reconstruction Rules
R[[I ]] TE = 〈T , {}TCS 〉 where TE (I ) = T [varLPR]

R[[I ]] TE = 〈([τ ′
i/τi ]

n
i=1)Tbody , {}TCS 〉 [genvarLPR]

where TE (I ) = (generic (τn
i=1) Tbody) and τ ′

1 , . . . , τ ′
n are fresh.

R[[I ]] TE = 〈unit, failTCS 〉 where I 
∈ dom(TE ) [var-failLPR]

∀n
i=1 . (R[[Ei ]] TE = 〈Ti ,TCS i〉)

R[[E0 ]] TE [Ii : (rgen Ti TE TCS i)]
n
i=1 = 〈T0 ,TCS0 〉

R[[(let ((Ii Ei)
n
i=1) E0)]] TE = 〈T0 ,TCS0 � TCSdefns〉

[letLPR]

where TCSdefns =
⊎n

i=1TCS i

∀n
i=1 .

(
R[[Ei ]] TE [Ij : τj ]

n
j=1 = 〈Ti ,TCS i〉

)
R[[E0 ]] TE [Ii : (rgen Ti TE TCSdefns)]

n
i=1 = 〈T0 ,TCS0 〉

R[[(letrec ((Ii Ei)
n
i=1) E0)]] TE = 〈T0 ,TCS0 � TCSdefns〉

[letrecLPR]

where τn
i=1 are fresh and TCSdefns = (

⊎n
i=1 TCS i) � (

⊎n
i=1{τi

.
= Ti}TCS )

Figure 13.20 Modified type reconstruction rules for μFLARELP .

tion whose type is being reconstructed relative to a type environment TEabs =
{b : bool, c : ?c}. Type reconstruction (see Figure 13.21) yields the type Tabs

= (-> (?f ?x) ?fres), where ?f and ?x are the fresh type identifiers generated
for the parameters f and x and ?fres is the fresh type identifier generated for
the result of the application (f (if b x c)). Type reconstruction also yields
the type-constraint set

TCSapp = {bool .
= bool, ?c

.
= ?x, ?f

.
= (-> (?c) ?fres)}TCS

which has the solution

σabs = {?f �→ (-> (?x) ?fres), ?c �→ ?x}
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Abbreviations
Tabs = (-> (?f ?x) ?fres)

TCS if = {bool .
= bool, ?c

.
= ?x}TCS

TCSapp = TCS if � {?f .
= (-> (?c) ?fres)}TCS

Type Reconstruction

R[[f]] {b : bool, c : ?c, f : ?f, x : ?x} = 〈?f, {}TCS 〉 [varLPR]

R[[b]] {b : bool, c : ?c, f : ?f, x : ?x} = 〈bool, {}TCS 〉 [varLPR]

R[[c]] {b : bool, c : ?c, f : ?f, x : ?x} = 〈?c, {}TCS 〉 [varLPR]

R[[x]] {b : bool, c : ?c, f : ?f, x : ?x} = 〈?x, {}TCS 〉 [varLPR]

R[[(if b c x)]] {b : bool, c : ?c, f : ?f, x : ?x} = 〈?c,TCS if 〉 [ifR]

R[[(f (if b c x))]] {b : bool, c : ?c, f : ?f, x : ?x}
= 〈?fres,TCSapp〉 [→-elimR]

R[[(abs (f x) (f (if b c x)))]] {b : bool, c : ?c} = 〈Tabs ,TCSapp〉 [→-introR]

Figure 13.21 Type reconstruction for (abs (f x) (f (if b c x))) relative to the
type environment {b : bool, c : ?c}.

If σabs were not applied to Tabs and TE abs , then rgen would determine that ?f,
?x, and ?fres were the free type identifiers in Tabs not mentioned in TEabs and
would return the type schema

(generic (?f ?x ?fres) (-> (?f ?x) ?fres))

This type fails to take into account that ?f is not an independently choosable
type identifier but really depends on both the fresh type identifier ?fres and
the type identifier ?c from the type environment. But when (σabs Tabs) =
(-> ((-> (?x) ?fres) ?x) ?fres) and (σabs TE abs) = {b : bool, c : ?x} are
used, rgen determines that ?fres is the only free type identifier in (σabs Tabs)
that is not mentioned in TE abs , and it returns the correct type schema,

(generic (?fres) (-> ((-> (?x) ?fres) ?x) ?fres))

Note how σabs has replaced the free type identifier ?c in TE abs by ?x.
Figure 13.22 presents the type reconstruction of our running example Eid .

The letLPR rule generalizes the type (-> (?x) ?x) of (abs (x) x) to the type
schema (generic (?x) (-> (?x) ?x)), and this type schema is instantiated
with three fresh type identifiers (?x1, ?x2, and ?x3) at the three variable refer-
ences to id. The type-constraint set TCS if collected for Eid is
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Abbreviations
Eid = (let ((id (abs (x) x))) (if (id #t) 1 ((id id) 2)))

TE letbody = {id : (generic (?x) (-> (?x) ?x))}
TCS (id #t) = {(-> (?x1) ?x1)

.
= (-> (bool) ?res1)}TCS

TCS (id id) = {(-> (?x2) ?x2)
.
= (-> ((-> (?x3) ?x3)) ?res2)}TCS

TCS ((id id) 2) = TCS (id id) � {?res2
.
= (-> (int) ?res3)}TCS

TCS if = TCS (id #t) � TCS ((id id) 2) � {?res1
.
= bool, int

.
= ?res3}TCS

Type Reconstruction for Eid

R[[x]] {x : ?x} = 〈?x, {}TCS 〉 [varLPR]

R[[(abs (x) x)]] {} = 〈(-> (?x) ?x), {}TCS 〉 [→-introR]

R[[id]] TE letbody = 〈(-> (?x1) ?x1), {}TCS 〉 [genvarLPR]

R[[#t]] TE letbody = 〈bool, {}TCS 〉 [boolR]

R[[(id #t)]] TE letbody = 〈?res1,TCS (id #t)〉 [→-elimR]

R[[1]] TE letbody = 〈int, {}TCS 〉 [intR]

R[[id]] TE letbody = 〈(-> (?x2) ?x2), {}TCS 〉 [genvarLPR]

R[[id]] TE letbody = 〈(-> (?x3) ?x3), {}TCS 〉 [genvarLPR]

R[[(id id)]] TE letbody = 〈?res2,TCS (id id)〉 [→-elimR]

R[[2]] TE letbody = 〈int, {}TCS 〉 [intR]

R[[((id id) 2)]] TE letbody = 〈?res3,TCS ((id id) 2)〉 [→-elimR]

R[[(if (id #t) 1 ((id id) 2))]] TE letbody = 〈int,TCS if 〉 [ifR]

R[[(let ((id (abs (x) x))) (if (id #t) 1 ((id id) 2)))]] {}
= 〈int,TCS if 〉 [letLPR]

Figure 13.22 Type reconstruction for Eid in μFLARELP .

TCS if = {(-> (?x1) ?x1)
.
= (-> (bool) ?res1),

(-> (?x2) ?x2)
.
= (-> ((-> (?x3) ?x3)) ?res2),

?res2
.
= (-> (int) ?res3), ?res1

.
= bool, int

.
= ?res3}CS ,

and the solution to this type-constraint set is (TypeSubst�UnifySoln σif ), where

σif = {?x1 �→ bool, ?x2 �→ (-> (int) int), ?x3 �→ int

?res1 �→ bool, ?res2 �→ (-> (int) int), ?res3 �→ int}

Transforming each judgment R[[E ]]TE = 〈T ,TCS 〉 in Figure 13.22 to (σif TE ) �
E : (σif T ) yields the type derivation for Eid presented earlier (Figure 13.18 on
page 803).
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The approach to type reconstruction based on let polymorphism is some-
times called Hindley-Damas-Milner (HDM) type reconstruction, after its
inventors. This approach is widely recognized as a “sweet spot” in the design
space of type reconstruction systems and is used in many practical type recon-
struction systems, most notably those of ML and Haskell. Because it was first
implemented in ML, this approach is also known as ML-style type recon-
struction.

Exercise 13.6 For each of the following μFLARE expressions,

• if the expression is well typed, construct a vertical-style type derivation showing that
the expression is well typed in the μFLARELP type system;

• if the expression is ill typed, explain why, and show how to rewrite the expression so
that it has the same meaning but is well typed in the μFLARELP type system.

a. (abs (a b)

(let ((revapp (abs (x) (abs (f) (f x)))))

(let ((appa (revapp a))

(appb (revapp b)))

(if (and (appa (abs (w) (prim > w 0)))

(appb (abs (x) (prim not x))))

(appa (abs (y) (prim + y 1)))

(appb (abs (z) (if z 1 0)))))))

b. (abs (b y z)

((abs (f) (f z))

(if b (abs (w) w) (abs (x) y))))

c. (abs (b)

((abs (f) (f f))

(if b (abs (w) w) (abs (x) (abs (y) x)))))

d. (abs (i)

(letrec ((id (abs (x) x))

(compose (abs (f g) (abs (x) (f (g x)))))

(repeated (abs (n h)

(if (prim <= n 0)

id

(compose h (repeated (prim - n 1) h)))))

(incdbl (compose (abs (y) (prim + 1 y))

(abs (z) (prim * 2 z)))))

(if ((repeated i not) #t) i ((repeated i incdbl) i))))

e. (let ((compose (abs (f g) (abs (x) (f (g x)))))

(thrice (abs (f) (abs (x) (f (f (f x)))))))

(let ((nat (abs (g) ((g (abs (x) (prim + x 1))) 0))))

(prim + (nat (abs (h) (compose (thrice h) (thrice h))))

(prim + (nat (compose thrice thrice))

(nat (thrice thrice))))))
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Exercise 13.7 Consider the following definitions of Church pair operations in the FL
language:

(def church-pair (abs (a b) (abs (f) (f a b))))

(def church-fst (abs (p) (p (abs (x y) x))))

(def church-snd (abs (p) (p (abs (x y) y))))

Can these definitions be used in μFLARELP? Explain. Hint: Compare to Exercise 12.13
on page 737.

13.5 Extensions

13.5.1 The Full FLARE Language

The full FLARE language extends μFLARELP with immutable pairs, homoge-
neous immutable lists, and mutable cells (Figure 13.23). We will assume that full
FLARE is a CBV language. This allows us to treat begin as syntactic sugar and
cell and pair as primitive operators. In a CBN version of FLARE, we would
need to make begin, pair, and cell kernel constructs. Reducing the number of
kernel constructs makes the language easier to analyze. For example, fewer type
rules and type-reconstruction rules need to be specified when there are fewer ker-
nel constructs. Furthermore, FLARE is the foundation for the source language
for the transformation-based compiler we study in Chapter 17, and having fewer
kernel constructs simplifies the compiler by reducing the number of cases that
need to be handled by each transformation.

Since FLARE supports lists, it includes the list sugar from FL. Unlike in
FLEX, no explicit type is needed in the list sugar construct because it can be
inferred.

The dynamic semantics of FLARE can be obtained by modifying the CBN
μFLARE semantics in Figures 13.6 and 13.7 to be CBV and extending it to
handle state with cells (as in the SOS for FLICK defined in Figures 8.13 and 8.14)
as well as pairs and lists.

The static semantics of FLARE is summarized in Figure 13.24. FLARE
needs new type constructors to handle pairs (pairof), lists (listof), and cells
(cellof). Most type rules are inherited from μFLARELP . There are no special
type rules for pair, list, and cell operations; we assume that the primitive type
environment TEprim has been appropriately extended with generic type schemas
for these primitives. For example:

pair : (generic (?a ?b) (-> (?a ?b) (pairof ?a ?b)))

fst : (generic (?a ?b) (-> ((pairof ?a ?b)) ?a))

snd : (generic (?a ?b) (-> ((pairof ?a ?b)) ?b))
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Kernel Grammar
(as in μFLARE except where noted)
P ∈ Prog ::= (flarek (I ∗

formal) Ebody)

E ∈ Exp ::= L | I | (error Ymessage) | (if Etest Ethen Eelse)

| (prim Oprimop E∗
arg) | (abs (I ∗

formal) Ebody) | (Erator E∗
rand)

| (let ((Iname Edefn)
∗) Ebody) | (letrec ((Iname Edefn)

∗) Ebody)

L ∈ Lit ::= #u | B | N | (sym Y )

B ∈ BoolLit = {#t, #f} as in FL and μFLARE.

N ∈ IntLit = as in FL and μFLARE.

Y ∈ SymLit = as in FL and μFLARE.

O ∈ Primop ::= . . . μFLARE primitive operators . . .
| pair | fst | snd ; pair ops
| cons | car | cdr | null | null? ; list ops
| cell | ^ | := | cell=? ; mutable cell ops

Keyword = as in μFLARE.

SugarKeyword = SugarKeywordμFLARE ∪ {begin, list}
I ∈ Ident = SymLit − ({Y |Y begins with @} ∪Keyword ∪ SugarKeyword)

Syntactic Sugar
@O , cond, scand, scor, recur, and def as in FL (page 233).

(begin) �ds #u

(begin E) �ds E
(begin E1 E∗

rest) �ds (let ((_ E1)) (begin E∗
rest)),

where _ is a special identifier that can never be referenced

(list) �ds (prim null)

(list E1 E∗
rest) �ds (prim cons E1 (list E∗

rest))

(flare (I ∗
pgmFormal) EpgmBody (def Inamei

Edefni
)n

i=1)

{Assume procedure defs already desugared to (def I E)

by the def desugaring rule inherited from FL.}
�ds (flarek (I ∗

pgmFormal)

(letrec {Standard library bindings}
{None of these bindings are recursive, but new ones might be.}
((car (abs (x) (prim car x)))

(cons (abs (x y) (prim cons x y)))
... {Similar for other primitive operators.}

(true #t) (false #f) {Synonyms for literals.}
)

(letrec ((Inamei
Edefni

)n
i=1)

EpgmBody)))

Figure 13.23 Grammar and syntactic sugar for the full FLARE language.
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Domains
T ∈ Type ::= BT | τ | (-> (T ∗) Tresult) ; as in μFLARE

| (pairof Tfst Tsnd) | (listof T) | (cellof T) ; as in FLEX

BT ∈ BaseType = {unit, int, bool, symb} ; as in μFLARE

τ ∈ TypeId = SymLit − (BaseType ∪ {->, pairof, listof, cellof, generic})
PT ∈ ProgType ::= (=> (T ∗

arg) Tresult) ; as in μFLARE

TS ∈ TypeSchema ::= T | (generic (τ∗) T) ; as in μFLARELP

TE ∈ TypeEnvironment = Ident ⇀ TypeSchema ; as in μFLARELP

New Type Functions
gen is defined as in μFLARELP (Figure 13.19 on page 805).

genPure : Type → TypeEnvironment → Exp → TypeSchema

(genPure Tdefn TE Edefn) =

{
(gen Tdefn TE ) if Edefn is pure.

Tdefn otherwise

Type Rules
∀n

i=1 . TE � Ei :Ti

TE [Ii : (genPure Ti TE Ei)]
n
i=1 � E0 :T0

TE � (let ((Ii Ei)
n
i=1) E0) :T0

[let′LP ]

∀n
i=1 . TE [Ij :Tj ]

n
j=1 � Ei :Ti

TE [Ii : (genPure Ti TE Ei)]
n
i=1 � E0 :T0

TE � (letrec ((Ii Ei)
n
i=1) E0) :T0

[letrec′LP ]

All other type rules are the same as in μFLARELP .

Figure 13.24 Type system for the full FLARE language with let polymorphism.

Interestingly, the fact that FLARE has imperative features (mutable cells)
makes it necessary to modify the [letLP ] and [letrecLP ] rules from μFLARELP . In
particular, it is safe to generalize the type of a let or letrec definition expression
only if it is pure — i.e., evaluating it does not touch the store (see the discussion
of purity on page 428).

To see what can go wrong with impure definition expressions, we revisit the
EpolyCell example from page 735 (which we now view as a FLARE expression
rather than an FL expression):

EpolyCell = (let ((c (cell (null))))

(begin (:= c (cons 1 (null)))

(not (car (^ c)))))
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�pure L [lit-pure] �pure I [var-pure]

�pure (abs (I n
i=1) Ebody) [abs-pure] �pure (error Y ) [error-pure]

∀3
i=1 . (�pure Ei)

�pure (if E1 E2 E3)
[if-pure]

∀n
i=0 . (�pure Ei)

�pure (let ((Ii Ei)
n
i=1) E0)

[let-pure]

∀n
i=0 . (�pure Ei)

�pure (letrec ((Ii Ei)
n
i=1) E0)

[letrec-pure]

∀n
i=1 . (�pure Ei)

�pure (prim O En
i=1)

, where O 
∈ {cell, ^, :=} [prim-pure]

Figure 13.25 Deduction system to conservatively approximate the purity of FLARE
expressions.

With the [letLP ] rule from μFLARE, the cell type (cellof (listof ?t)) of
(cell (null)) can be generalized to (generic (?t) (cellof (listof ?t))),
which can be instantiated to (cellof (listof int)) for the reference of c in the
:= expression and instantiated to (cellof (listof bool)) for the reference of c
in the ^ expression. So the expression is well typed. But at run time, a dynamic
type error will be encountered when an attempt is made to apply not to the
integer 1!

The problem here is that the type system effectively copies the definition
expression (cell (null)) to the two variable references of c, and the expres-
sion is safe if these refer to different cells but not if they refer to the same cell.
It is safe to copy the definition expression, and therefore safe to generalize the
type of the definition expression, only when it is guaranteed that the expression
will not perform any side effects. The new [let′LP ] and [letrec′LP ] rules use the
new genPure function to restrict generalization to the cases where the definition
expression is pure — i.e., evaluating it does not “touch” the store (look up in-
formation in or modify the store in an observable way). genPure is like gen, but
takes an additional argument (the definition expression) in order to determine
when generalization can take place. With the purity restriction, the above cell

example is ill typed, because both references to c must have the same content
type, which cannot be both int and bool.

Purity is an undecidable property in general, but it can be conservatively
approximated. The deduction system in Figure 13.25 is a simple conservative
approximation of purity that formalizes the notion of syntactic value introduced
on page 428. If the judgment �pure E can be proven via the rules in Figure 13.25,
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then we can argue that E does not touch the store. Literals, variable references,
and error expressions clearly do not touch the store. An abstraction is always
pure regardless of the purity of its body; although invoking a procedure can touch
the store, creating a procedure does not touch it. An if expression is pure if all
of its subexpressions are pure. The same is true for let and letrec expressions.
Primitive applications are pure as long as the operand expressions are pure and
the primitive operation is not a cell operation that touches the store (i.e., one
of cell, ^, or :=). It is important to understand why certain expressions are
excluded from the deductive definition of purity:

• Primitive applications involving cell, :=, and ^ touch the store and so are
clearly impure.

• Procedure applications are considered impure because evaluating the body of
an invoked procedure might touch the store.

There are many ways in which this approximation of purity can be improved.
For example, if the body of a procedure is pure, then an application of the
procedure is also pure. In Chapter 16, we will see how some additional procedure
applications can be considered pure by using an effect system that tracks the
potential side effects of procedures.

The type reconstruction rules for FLARE are those of μFLARELP with
modifications analogous to those made in changing the μFLARELP type system
to the FLARE type system. These modifications are presented in Figure 13.26.
In the modified reconstruction rules for let and letrec, the rgen function is re-
placed by rgenPure, which takes one additional argument: a definition expression
to test for purity. Limiting let polymorphism to syntactic values is common in
ML dialects, where it is known as the value restriction [Wri95].

It would be straightforward to extend FLARE with certain additional fea-
tures, like immutable or mutable strings, immutable sequences, and mutable ar-
rays. To keep FLARE compact, we do not include these in the standard version
of the language, though we will sometimes consider variants of the language with
these features.

Other features — such as mutable variables, tuples, records, oneofs, and gen-
eral recursive sum-of-products data types — are more challenging to add to a
language that supports type reconstruction. We discuss these features in more
detail in the remainder of this chapter.
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New Type Functions

rgen is defined as in Figure 13.20.

rgenPure : Type→ TypeEnvironment → TypeConstraintSet→ Exp→ TypeSchema

(rgenPure Tdefn TE TCS Edefn) =

{
(rgen Tdefn TE TCS ) if Edefn is pure

Tdefn otherwise

Modified Type Reconstruction Rules

∀n
i=1 . (R[[Ei ]] TE = 〈Ti ,TCS i〉)

R[[E0 ]] TE [Ii : (rgenPure Ti TE TCS i Ei)]
n
i=1 = 〈T0 ,TCS0 〉

R[[(let ((Ii Ei)
n
i=1) E0)]] TE = 〈T0 ,TCS0 � TCSdefns〉

[let′LPR]

where TCSdefns =
⊎n

i=1TCS i

∀n
i=1 .

(
R[[Ei ]] TE [Ij : τj ]

n
j=1 = 〈Ti ,TCS i〉

)
R[[E0 ]] TE [Ii : (rgenPure Ti TE TCSdefns Ei)]

n
i=1 = 〈T0 ,TCS0 〉

R[[(letrec ((Ii Ei)
n
i=1) E0)]] TE = 〈T0 ,TCS0 � TCSdefns〉

[letrec′LPR]

where τn
i=1 are fresh and TCSdefns = (

⊎n
i=1 TCS i) � (

⊎n
i=1{τi

.
= Ti}TCS )

Figure 13.26 Type reconstruction rules for FLARE.

Exercise 13.8 For each of the following FLARE abstractions,

• if the abstraction is well typed, give the principal type that the type reconstruction
algorithm finds for the abstraction;

• if the abstraction is ill typed, explain why type reconstruction fails.

a. (abs (x f g) (pair (f x) (g x)))

b. (abs (x f g) (pair (f x) (g (f x))))

c. (abs (x f g) (pair (g (f x)) (f (g x))))

d. (abs (x f g) (pair (f x) (g x (f x))))

e. (abs (x f g) (pair (f x) (g (f x) (f (g x)))))

f. (abs (x f g) (pair (f x) (g x (f (g x)))))

Exercise 13.9 Assume that all of the definitions in Figure 13.27 are made in the same
FLARE program. Give the type schema reconstructed for each definition.

Exercise 13.10 FLARE can be extended with updatable sequences, which were dis-
cussed on page 545. Assume that the Type domain is extended with types of the form
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(def (swap-pair p)

(pair (snd p) (fst p)))

(def (swap-cells! c1 c2)

(let ((v (^ c1)))

(begin (:= c1 (^ c2))

(:= c2 v))))

(def (foldr binop nullval xs)

(if (null? xs)

nullval

(binop (car xs) (foldr binop nullval (cdr xs)))))

(def (map f xs)

(if (null? xs) xs (cons (f (car xs)) (map f (cdr xs)))))

(def (map-as-foldr f xs)

(foldr (abs (x ans) (cons (f x) ans)) (null) xs))

(def (map! f xs)

(if (null? xs)

#u

(begin (:= (car xs) (f (^ (car xs))))

(map! f (cdr xs)))))

(def (filter pred xs)

(cond ((null? xs) xs)

((pred (car xs)) (cons (car xs) (filter pred (cdr xs))))

(else (filter pred (cdr xs)))))

(def (forall? pred xs)

(scor (null? xs)

(scand (pred (car xs)) (forall? pred (cdr xs)))))

Figure 13.27 Some sample FLARE definitions.

(useqof T) that model the type of an updatable sequence. Give a FLARE type rule
and a FLARE type reconstruction rule for each of the following constructs:

(useq E∗)

(useq-get Eindex Euseq)

(useq-size Euseq)

(useq-update Eindex Eval Euseq)

(useq-insert Eindex Eval Euseq)

(useq-delete Eindex Euseq)
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13.5.2 Mutable Variables

FLARE can be extended with mutable variables that are changed via an assign-
ment construct, such as the set! construct in the FLAVAR language presented
in Section 8.4. This has two consequences:

1. Just as it is unsound to generalize the type of a let or letrec definition
expression that touches the store via mutable cell operations, it is unsound to
generalize the type of the expression when its associated name is assigned via
set! in its scope. In a version of FLARE with set!, it is necessary to modify
the genPure and rgenPure functions to prohibit such unsound generalizations.

2. In the presence of mutable variables, variable references are no longer necessar-
ily pure since they read information from a mutable store. The simplest way
to handle this is to change the definition of �pure so that a variable reference
I is no longer considered pure. A less crude approximation can be obtained
by tracking which variables are assigned and considering I to be pure if it is
never assigned.

These issues are explored in Exercise 13.11. To avoid these complications, we
do not include mutable variables in FLARE. There is no loss of expressive-
ness, because FLARE+{set!} can be automatically transformed to FLARE by
converting all variables that are mutated by set! into explicit cells. This trans-
formation, which is known as assignment conversion, is a stage (Section 17.5)
in the transformation-based compiler that we will study in Chapter 17.

Exercise 13.11 This exercise explores the consequences of extending FLARE with
mutable variables (via the set! construct).

a. Extend the type rules in Figure 13.24 and the type reconstruction rules in Figure 13.26
to handle the set! construct.

b. Consider the following FLARE+{set!} expression:

(let ((f (abs (x) x)))

(begin (set! f (abs (y) (prim + y 1)))

(if (f #t) 1 (f 2))))

Using this expression, show that the [let′LP ] type rule from Figure 13.24 is unsound
for FLARE+{set!}. That is, show that the expression is well typed even though it
encounters a dynamic type error.

c. Modify the [let′LP ] and [letrec′LP ] type rules from Figure 13.24 so that they are sound
for FLARE+{set!}. Your rules should prevent generalizing the type of any variable
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that is assigned via set!. You should modify the definition of genPure appropriately.
(Hint: add extra arguments). Assume that the definition of �pure is changed so that
a variable reference I is no longer considered pure. You may find the MutIds function
in Figure 17.10 on page 1020 helpful for determining which variables are assigned.

d. Show that the expression in part b is ill typed using your modified [let′LP ] rule from
part c.

e. Modify the [let′LPR] and [letrec′LPR] type reconstruction rules from Figure 13.26 so that
they are sound for FLARE+{set!}. You should modify the definition of rgenPure
appropriately.

f. Explain why the following expression is ill typed in FLARE+{set!}:
(let ((first (abs (xs) (prim car xs)))

(second (abs (ys) (prim car (prim cdr ys)))))

(abs (b)

(let ((g (if b first second)))

(pair (g (list 1 2)) (g (list #t #f))))))

g. Argue that the expression in part f is safe to evaluate even though it is ill typed.

h. It is possible to change the definition of purity to be more accurate so that the
expression in part f is well typed. In particular, a reference to a variable should be
considered pure if that variable is never assigned via set!. To track which variables
are never assigned, purity judgments can be changed to have the form IS �pure E
where IS ∈ P(Ident) is a set of identifiers known not to be assigned in a program.

i. Modify the purity rules in Figure 13.25 so they use the extended purity judg-
ments.

ii. Modify your definition of genPure and the let and letrec type rules from
part c so that they explicitly use the extended purity judgments to allow more
expressions to be well typed.

iii. Show that the expression in part f is well typed using your modified type system.

13.5.3 Products and Sums

Homogeneous products like strings and arrays are easy to include in a lan-
guage supporting type reconstruction because all components have the same
type. But heterogeneous products (records and tuples) are problematic because
the component-projection constructs provide only partial information about the
product type. Similarly, injection constructs for sums (e.g., the oneof-creation
construct one) provide only partial information about the sum type.

For example, the record-selection expression (select Ifield Ercd) implies that
Ercd denotes a record that has at least a field named I . The type of this field is
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constrained by the context of the select expression. But it doesn’t say anything
about the rest of the record. Consider the abstraction

(abs (r) (pair (+ 1 (select a r)) (not (select b r))))

(select a r) tells us that r’s type has the form (recordof . . . (a int) . . .),
and (select b r) tells us that it has the form (recordof . . . (b bool) . . .).
We could perhaps combine these pieces of information, but we are still left with
only a partial record type (recordof . . . (a int) (b bool) . . .).

There are several ways to address the problem of partial type information.
The most direct is to require each select expression to contain an explicit type,
e.g., to be of the form (select Ifield Ercd Trcd), where Trcd is the type of the
value of Ercd . In this approach, the record example from above might become:

(abs (r)

(pair (+ 1 (select a r (recordof (a int) (b bool) (c symb))))

(not (select b r (recordof (a int) (b bool) (c symb))))))

Although explicit types are not in the spirit of type reconstruction, they are
sometimes used to simplify the type reconstruction process.

Another way to address the problem of partial type information is to require
the user to declare a unique association between field names and record types.
In such a system, the type declaration

(def-type myrecord (recordof (a int) (b bool) (c symb)))

would not only define myrecord as a synonym for the specified record type, but
would also restrict the field names a, b, and c to be used only in records of type
myrecord. It would be an error to use these field names in any other record,
which can be a frustrating restriction. But then we would know that the E in
(select a E) must have type myrecord.5

The most general approach for reconstructing record types is to collect, and
eventually solve, constraints on record field types. The basic idea is simple: we
represent the constraints on a record type by a sequence of name/type bindings
(known as a row type) that may terminate in a unification variable (known as
a row variable). Here we give an example-based description of this approach
that glosses over many technical details. For a formal presentation of row types,
see the Web Supplement.

Consider the row type RT1 = [(b int), (d bool), $x]. This consists of the
bindings (b int) and (d bool) as well as the row variable $x,6 which provides a
kind of hook onto which future bindings can be hung. Unlike the unification vari-

5This is precisely the mechanism used in OCAML for reconstructing record types.
6Our convention is that row variable names start with the symbol $.
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ables we have seen so far, which stand for a single type, a row variable stands for
a sequence of name/type bindings. A row type ending in a row variable is said to
be incomplete, while one that does not is said to be complete. E.g., RT1 above
is incomplete, while RT2 = [(a symb), (b int), (c unit), (d bool), (e int)]
is a complete row type.

The unification algorithm from Figure 13.8 on page 784 can be modified to
unify row types. For example, unifying RT1 with RT2 yields a substitution in
which $x is the complete row type [(a symb), (c unit), (e int)]. And unifying
RT1 with the incomplete row type RT3 = [(a symb), (d bool), $y] yields a
substitution in which $x is the incomplete row type [(a symb), $z] and $y is
the incomplete row type [(b int), $z]. The fact that both new row types end
in the same row variable $z constrains RT1 and RT3 to be the same if further
unifications involving $x, $y, and $z are performed.

Using row types, it is easy to reconstruct the record and select constructs
in FLARE. For the expression (record (Ii Ei)

n
i=1), the type rule

∀n
i=1 . R[[Ei ]] TE = 〈Ti ,TCS i〉

R[[(record (Ii Ei)
n
i=1)]] TE

= 〈(recordof (Ii Ti)
n
i=1),

⊎n
i=1 TCS i〉

[recordof-introR]

reconstructs a recordof type with the complete row type [(Ii Ti)
n
i=1], where

each Ti is the type reconstructed for the corresponding record-field definition Ei .
For the expression (select I Ercd), the type rule

R[[Ercd ]] TE = 〈Trcd ,TCS rcd〉
R[[(select I Ercd)]] TE

= 〈τ ,TCS rcd � {Trcd
.
= (recordof (I τ) ρ)}TCS 〉

[recordof-elimR]

where τ is a fresh type identifier and ρ is a fresh row variable.

constrains the type Trcd reconstructed for the record expression Ercd to have a
recordof type with the incomplete row type [(I τ), ρ], where τ is a fresh type
identifier that stands for the type of the record field named I (and also the result
type of the select expression), and ρ is a fresh row variable that stands for all
the other record fields.

For example, consider the reconstruction of the FLARE expression

(let ((f (abs (r) (pair (* 2 (select c r)) (select d r)))))

(pair (f (record (c 1) (d #t)))

(f (record (b 3) (d #u) (c 4) (e (sym foo))))))

Processing (select c r) introduces the type constraint

?r
.
= (recordof (c ?c) $x)
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and processing (select d r) introduces the type constraint

?r
.
= (recordof (d ?d) $y)

where ?r is the type of the abstraction parameter r. The (* 2 . . .) expression
constrains ?c to have type int, but ?d remains unconstrained. The unification
process sketched above will determine that ?r is the type

(recordof (c int) (d ?d) $z)

so the abstraction in the example has type

(-> ((recordof (c int) (d ?d) $z))

(pairof int ?d))

Both the type identifier ?d and the row variable $z can be generalized,7 so f is
bound to the type schema

(generic (?d $z)

(-> ((recordof (c int) (d ?d) $z))

(pairof int ?d)))

This schema can be instantiated to match the type of the record argument in the
first call to f, (recordof (c int) (d bool)), by instantiating the type variable
?d to bool and the row variable $z to the empty row type, [ ]. The schema can
also be instantiated to match the type of the record argument in the second call
to f, (recordof (b int) (d unit) (c int) (e symb)), by instantiating ?d to
unit and $z to [(b int), (e symb)]. This example not only illustrates how row
types allow partial record-type information to be manipulated but also shows
how row types support a form of record polymorphism that resembles record
subtyping (see Section 12.1).

Row types can also be used to reconstruct tuple types. These can be recon-
structed by treating them as records with the distinguished labels #1, #2, #3, etc.
For example:

Tuple Type/Expression Corresponding Record Type/Expression
(prodof int bool symb) (recordof (#1 int) (#2 bool) (#3 symb))

(prod 17 #t (sym cat)) (record (#1 17) (#2 #t) (#3 (sym cat)))

(get 2 p) (select #2 p)

Row types can also be used to reconstruct sum types. Exercise 13.13 explores
how to reconstruct oneof types in FLARE.

7To yield this result, the FLARE generalization function rgen from Figure 13.20 on page 809
must be modified to handle free row variables in addition to free type variables.
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Exercise 13.12 Sam Antics wants to extend FLARE with heterogeneous positional
products like those manipulated via prod and get in Section 10.1.1. He thinks that row
types are too complicated for this purpose, but he bristles at the thought of supplying
a complete explicit product type in the get construct simply to aid type reconstruction.
Sam chooses a design between these two extreme design points based on the following
constructs for manipulating products:

E ::= . . . | (prod E∗) | (get Nindex Eprod Nsize)

As usual, (prod E1 . . . En) creates a product value, or tuple, with n components that
are the values of the expressions E1 , . . . , En , all of which may have different types. The
expression (get Nindex Eprod Nsize) extracts the element at index Nindex (1-based) from
the value of Eprod , which should be a tuple with Nsize components. The get expression
signals an error if Eprod does not denote a tuple, if N [[Nsize ]] ≤ 0, or if N [[Nindex ]] is not
in the range [1..N [[Nsize ]]].

The inclusion of Nsize in the get expression is Sam’s one concession for type recon-
struction. He claims that this provides enough information for the type reconstruction
process to succeed on tuple-manipulation programs that are intuitively well typed with-
out requiring the complex machinery of row types.

Sam also extends the type system with a prodof type constructor to describe the
types of tuples:

T ::= . . . | (prodof T ∗)

a. Give the FLARE type rules for prod and get in Sam’s system.

b. Give the FLARE type reconstruction rules for prod and get in Sam’s system.

c. Louis Reasoner studies Sam’s system and thinks he can improve it: “I don’t see
why the Nindex has to be an integer literal. Why not change the form of get to
(get Eindex Eprod Nsize)? Then the index could be computed!” Why is this a bad
idea?

d. After studying Sam’s design, Abby Stracksen suggests that he replace get by the
following construct:

(match-prod ((I1 . . . In) Eprod) Ebody) evaluates Eprod to a value, which should
be a tuple with n components, and then returns the value of Ebody evaluated in
the current environment extended with bindings of the names I1 , . . . , In to the
n component values of the tuple.8

i. Give the type rule for match-prod.

ii. Give the type reconstruction rule for match-prod.

iii. Which do you prefer: Sam’s get or Abby’s match-prod? Explain.

8This approach — extracting tuple components using a pattern for the whole tuple — is
used in OCAML for reconstructing tuple types.
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e. Thai Ping studies Sam’s design and observes that a version of FLARE with prod-
ucts can use the simpler construct (get Nindex Eprod) (i.e., with no size specification)
without requiring the full machinery of row types. “In addition to the complete prod-
uct types (prodof Tn

i=1),” notes Thai, “all you need is an incomplete product type
of the form (prodof Tn

i=1 TSV ), where TSV is a type-sequence variable that stands
for a sequence of types.” Flesh out Thai’s idea by (1) giving a type reconstruction
rule for the simpler get construct that uses incomplete product types and (2) describ-
ing how to change the unification algorithm to handle both complete and incomplete
product types.

Exercise 13.13 Suppose that FLARE with records and row types is further extended
to include oneofs (see Section 10.2):

E ∈ Exp ::= . . .
| (one Itag Epayload)

| (tagcase Edisc Ipayload (Itag Ebody)
∗ (else Eelse)

?)

T ∈ Type ::= . . .
| (oneof (Itag Tpayload)

∗) [CompleteOneofType]
| (oneof (Itag Tpayload)

∗ ρ) [IncompleteOneofType]

ρ ∈ RowId = {Y ∈ SymLit | Y begins with $}

Assume that the unification algorithm is modified to unify the row types of two oneof

types.

a. Write type reconstruction rules for: (1) the one expression; (2) a tagcase expression
without an else clause; and (3) a tagcase expression with an else clause.

b. Consider the following expression:

(let ((g (abs (bval h) (list (h (one i 17)) (h (one b bval))))))

(pair (g #t (abs (v) (tagcase v p (i p)

(b (if p 1 0)))))

(g (sym cat) (abs (w) (tagcase w q (i (prim = q 0))

(x #f)

(else #t))))))

Using your type reconstruction rules, what type schema is bound to the variable g?
How is this schema instantiated for each of the two calls to g?

13.5.4 Sum-of-products Data Types

Sum-of-products data with pattern matching (see Sections 10.3–10.5) are a pow-
erful way to describe and manipulate tree-structured data like lists, binary trees,
and abstract syntax trees. In the explicitly typed framework of FLEX, sum-of-
products data types can be cumbersome to use, because they generally involve
recursive types (Section 11.8.6), universal types (Section 12.2.2), and kinds (Sec-
tion 12.3.2). These features make it challenging to adapt approaches for desug-
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null : (generic (?t) {?t is element type}
(-> () (listof ?t)))

null~ : (generic (?r ?t) {?r is return type; ?t is element type}
(-> ((listof ?t) {type of datum to deconstruct}

(-> () ?r) {type of success continuation}
(-> () ?r)) {type of failure continuation}

?r)) {return type of deconstructor}
cons : (generic (?t) {?t is element type}

(-> (?t (listof ?t) (listof ?t))))

cons~ : (generic (?r ?t) {?r is return type; ?t is element type}
(-> ((listof ?t) {type of datum to deconstruct}

(-> (?t (listof ?t)) ?r) {type of success continuation}
(-> () ?r)) {type of failure continuation}

?r)) {return type of deconstructor}

Figure 13.28 The type schemas of the constructor and deconstructor procedures in-
troduced by the listof data-type definition.

aring data-type declarations in an explicitly typed language (see Section 12.2.3
and Exercises 12.20 and 12.25) to an implicitly typed one (see Exercise 13.16).
In this section, we will see how to hide these complexities in FLARE, thus mak-
ing sum-of-products data types and pattern matching convenient to use in an
implicitly typed framework.

We will define the dynamic semantics for sum-of-products data types in a sim-
ilar manner as before, by desugaring a data-type definition to define constructor
and deconstructor procedures. If that were all we did, however, the static se-
mantics — the type reconstruction needed for type checking — would be very
complex. We will avoid the complexity of reconstructing the constructor and
deconstructor types by putting their type information, which can be automati-
cally derived from the data-type definition, into the type environment. Then at
type-checking time, the types needn’t be reconstructed because they are found
in the extended type environment.

Consider a parameterized data-type declaration for lists:

(def-datatype (listof t)

(null)

(cons t (listof t)))

In our approach, the listof data-type definition introduces the constructor and
deconstructor type schemas in Figure 13.28 into the type environment. The type
schemas of the constructors null and cons are parameterized over the element



828 Chapter 13 Type Reconstruction

type ?t of the list being constructed. The type schemas of the deconstructors
null~ and cons~ are parameterized over two types: the return type ?r of the
deconstructor and the element type ?t of the list being deconstructed.

Handling the static semantics of data-type definitions by extending the type
environment with type schemas has numerous advantages over approaches (like
the one presented in Section 12.2.3) that explicitly specify or implicitly recon-
struct the types of the constructor and deconstructor procedures introduced by
desugaring data-type definitions.

• No universal types: Using generic types rather than forall types allows pa-
rameterized types while avoiding the machinery (pabs and pcall) for universal
types.

• No kinds, sum types, product types, or recursive types: Because the type
schemas implicitly treat listof as a new one-argument type constructor, there
is no need to provide an explicit definition of listof. This not only avoids the
description and kind machinery, but it also allows recursive sum-of-products
types to be defined without recursive types, sum types, or product types! Sum
types are handled implicitly by having multiple constructor/deconstructor pairs
for a data type (e.g., null/null~ and cons/cons~) that conceptually create
data-type instances with different tags. Product types are handled implicitly
by having constructors (like cons) that create a data-type instance from multi-
ple argument values and having deconstructors (like cons~) that extract these
values from the data-type instance. Recursive types are handled implicitly by
having constructors/deconstructors (like cons/cons~) that create a data-type
instance from and decompose a data-type instance into values that include
other instances of the same data type.

• No complex machinery for type reconstruction: The constructor/deconstructor
type schemas can be derived automatically from data-type definitions (see be-
low), so they need not be reconstructed from definitions of the constructor
and deconstructor procedures. Indeed, for the purposes of the static semantics
(type checking), the definitions of the constructor and deconstructor procedures
aren’t necessary, because the type schemas tell us all that we need to know
about them. For the dynamic semantics, we can simply use the desugaring-
based definitions of these procedures defined in Figure 10.21 on page 587 (where
we treat def-datatype like def-data).

• Simple pattern matching: Avoiding the explicit manipulation of types simplifies
pattern matching on data-type instances. Although deconstructors may be
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used explicitly in programs, they are usually used implicitly via the match

construct introduced in Section 10.5. For example, the definition

(def (sum xs)

(match xs

((null) 0)

((cons y ys) (+ y (sum ys)))))

desugars to9

(def sum

(abs (xs)

(null~ xs

(abs () 0)

(abs ()

(cons~ xs

(abs (y ys) (+ y (sum ys)))

(abs () (error no-match)))))))

Indeed, a version of FLARE supporting data-type definitions and the match

construct can be desugared exactly as in Figure 10.27 on page 603, except that
in the clause

DSpat [[L]] Idisc Esucc Ifail = (if (equal? Idisc L) Esucc (Ifail))

the generic equality procedure equal? must be replaced by an equality pro-
cedure equalL that is appropriate for the type of the literal L. For instance,
equal17 is =, equaltrue is bool=?, and equal ′foo ′ is sym=?. In contrast, desug-
aring match in a language with explicit universal types is more complex (see
Section 12.2.3 and Exercises 12.20 and 12.25).

The reason why sum-of-products data-type definitions are a good idea in
languages with type reconstruction is that they allow the user to declare key type
information that is otherwise difficult to reconstruct. The ease with which sum-
of-products data-type definitions and pattern matching can be integrated into
languages with type reconstruction explains why they are supported in many such
languages, including ML and Haskell, where they are popular programming
features. They also are an easy way to support sums and products without
complicated machinery, such as row types, for reconstructing the types of raw
oneofs and records.

9This is a simplified version of the result yielded by the match desugaring in Figure 10.27
on page 603. Note that in a statically typed language, it is possible to prove that the
(error no-match) expression in this example will never be executed, because any list value
xs will cause the success continuation of either the null~ or cons~ call to be invoked.
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Figure 13.29 summarizes the essential changes that need to be made to
FLARE to support data-type definitions and pattern matching. The syntax of
FLARE is modified to include top-level data-type definitions in kernel programs.
Each data-type definition DD has the form

(def-datatype (θtycon τ1 . . . τm)
(Iconstructor1

T1 ,1 . . . T1 ,n1
)

...
(Iconstructork

Tk ,1 . . . Tk ,nk
))

This definition declares θtycon as a new m-argument type constructor parame-
terized over the type identifiers τ1 , . . . , τm . The name θtycon is a type con-
structor identifier that must not be one of the standard type constructor names
(-> and cellof in FLARE and prodof, recordof, and oneof in extensions
to FLARE). The data-type definition also declares k constructor procedures
Iconstructor1 , . . ., Iconstructork , the ith of which constructs an instance of the data
type (θtycon τ1 . . . τm) out of ni components whose types are Ti ,1 , . . . , Ti ,ni

.
The component types may refer to the type parameter names τ1 , . . . , τm of the
type constructor.

We have already studied the data-type definition for lists. Here are data-type
definitions for pairs and binary trees:

(def-datatype (pairof s t)

(pair s t))

(def-datatype (treeof t)

(leaf)

(node (treeof t) t (treeof t)))

The pairof definition illustrates that a type constructor may have more than one
type parameter and may have only a single constructor. Data-type definitions
may even be mutually recursive; see Exercise 13.14.

The FLARE type domain is extended to include type-constructor applica-
tions of the form (θtycon T ∗

arg). E.g., (pairof (listof bool) (treeof bool))

is a nested type-constructor application. Pair and list types and operations are
excluded from the kernel language in this extension to FLARE, because they
can be defined by the programmer.

The only FLARE type reconstruction rule that needs to be modified to handle
data-type definitions is the [progR] rule. This rule uses the ⊕ operator to extend
the program-parameter type environment {I1 : τ1 , . . . , In : τn} with bindings for
constructor and deconstructor type schemas defined by the data-type definitions.
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Modified Syntax

P ∈ Prog ::= (flarek (I ∗
formal) DD∗ Ebody)

DD ∈ DatatypeDefinition ::= (def-datatype (θtycon τ∗
param)

(Iconstructor T ∗
component)

∗)

O ∈ Primop ::= . . . FLARE primitives except for pair and list operations . . .

T ∈ Type ::= . . . FLARE types except for pairof and listof types . . .
| (θtycon T ∗

arg) [TypeConstructorApp]

θ ∈ TyConId = SymLit − {->, cellof}
; subtract off other type constructors (e.g., prodof, recordof, oneof)
; in extensions to FLARE

New Syntactic Sugar
(match Edisc (PT E)∗) �ds DSmatch [[(match Edisc (PT E)∗)]]

where PT ∈ Pattern ::= L | I | _ | (I PT ∗)
and DSmatch is the pattern matching desugarer from Figure 10.27 on page 603

with the modification to equal? described in the text.

Extending Type Environments with Data-Type Declarations
TE ∈ TypeEnvironment = Ident ⇀ TypeSchema

The notation TE ⊕ DD denotes a type environment such that

(TE ⊕ DD)(I ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(generic (τm
j=1) (-> (Tn

h=1) (θtycon τm
j=1))),

if I = Ident Icon and DD = (def-datatype (θtycon τm
j=1)

. . . (Icon Tn
h=1) . . . )

(generic (τret τm
j=1) {τret is a fresh return type}

(-> ((θtycon τm
j=1) {type of datum to deconstruct}

(-> (Tn
h=1) τret) {type of success continuation}

(-> () τret)) {type of failure continuation}
τret)) {return type of deconstructor},

if I = Ident Icon��~
and DD = (def-datatype (θtycon τm

j=1)

. . . (Icon Tn
h=1) . . . )

TE (I ), otherwise

TE ⊕ [DD1 , . . . , DDn ] is an abbreviation for ((TE ⊕ DD1 ) ⊕ . . .) ⊕ DDn .

New Type Reconstruction Rule for Programs
R[[Ebody ]] {Ii : τi}n

i=1 ⊕ [DD1 , . . . ,DDk ] = 〈Tbody ,TCS body〉
Rpgm [[(flarek (I n

i=1) DDk
j=1 Ebody)]] = RApgm

[progR]

where τn
i=1 are fresh

and RApgm =

⎧⎪⎨⎪⎩
(ProgType�ReconAns (σbody (=> (τn

i=1) Tbody))),
if solveTCS TCS body = (TypeSubst�UnifySoln σbody)

(Failure�ReconAns fail), otherwise

Figure 13.29 The essence of data-type definitions and pattern matching in FLARE.
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pair : (generic (?s ?t) (-> (?s ?t) (pairof ?s ?t)))

pair~ : (generic (?r ?s ?t)
(-> ((pairof ?s ?t) (-> (?s ?t) ?r) (-> () ?r)) ?r))

leaf : (generic (?t) (-> () (treeof ?t)))

leaf~ : (generic (?r ?t)
(-> ((treeof ?t) (-> () ?r) (-> () ?r)) ?r))

node : (generic (?t) (-> ((treeof ?t) ?t (treeof ?t)) (treeof ?t)))

node~ : (generic (?r ?t)
(-> ((treeof ?t)

(-> ((treeof ?t) ?t (treeof ?t)) ?r)

(-> () ?r))

?r))

Figure 13.30 The type schemas of the constructor and deconstructor procedures in-
troduced by the pairof and treeof data-type definitions.

The notation TE ⊕ [DD1 , . . . , DDn ] is an abbreviation for ((TE ⊕ DD1 ) ⊕ . . .)
⊕ DDn , where the notation TE ⊕ DD denotes a type environment that extends
TE with type schemas for the constructors and deconstructors declared by DD .
For each constructor declaration (Icon Tn

i=1) in the definition of the data type
(θtycon τm

i=1), ⊕ adds two type schemas to the type environment:

1. A constructor type schema named Icon having the form

(generic (τm
j=1) (-> (Tn

h=1) (θtycon τm
j=1)))

which is parameterized over the m type identifiers of the declared data type
(θtycon τm

i=1).

2. A deconstructor type schema named Icon��~ having the form

(generic (τret τm
j=1)

(-> ((θtycon τm
j=1) {type of datum to deconstruct}

(-> (Tn
h=1) τret) {type of success continuation}

(-> () τret)) {type of failure continuation}
τret)) {return type of deconstructor}

which is parameterized over the return type τret of the deconstructor as well
as the m type identifiers of the data type (θtycon τm

i=1).

We have already seen examples of these type schemas for the listof data type.
Figure 13.30 shows the type schemas introduced by ⊕ for the pairof and treeof

data-type definitions.
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For simplicity, unparameterized data types are required to be written as ap-
plications of nullary type constructors. For instance, an integer list type can be
declared as

(def-datatype (intlist)

(inull)

(icons int intlist))

in which case the integer list type would be (intlist) (the application of a
nullary type constructor) and not intlist (which is a nullary type constructor,
not a type). Exercise 13.15 explores how to support the declarations of new types
in addition to new type constructors.

Exercise 13.14 Data-type definitions may be mutually recursive. For example, here
is a pair of mutually recursive data types defining a so-called rose tree — a tree with
element-bearing leaves whose nodes may have any number of children:

DDrosetree = (def-datatype (rtreeof t)

(rleaf t)

(rnode (rlistof t)))

DDroselist = (def-datatype (rlistof t)

(rnull)

(rcons (rtreeof t) (rlistof t)))

a. What are the bindings of the type environment {} ⊕ [DDrosetree , DDroselist ]?

b. Show that the following expression is well typed:

(rnode (rcons (rleaf 1)

(rcons (rnode (rcons (rleaf 2) (rnull)))

(rnull))))

c. Define a procedure rleaves that takes a rose tree as its single argument and returns
a list (a listof, not an rlistof) of all the leaves in the rose tree.

Exercise 13.15 Suppose that the syntax of data types is extended to allow the definition
of new types in addition to new type constructors:

DD ∈ DatatypeDefinition ::= . . . form for defining (θtycon τ∗
param) . . .

| (def-datatype τnew (Iconstructor T ∗
component)

∗
)

For example, an integer list type could now be declared as

(def-datatype intlist

(inull)

(icons int intlist))

which defines a new type (not type constructor) intlist. Describe how to modify the
⊕ operator to handle this new form of data-type declaration.
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Exercise 13.16 In this section, we have seen that FLARE can be extended with data-
type declarations by extending the type environment with appropriate type bindings for
their constructor and deconstructor procedures. In this exercise, we explore an alterna-
tive strategy: desugaring each data-type declaration into a recursive type and constructor
and deconstructor procedures that manipulate this type.

For example, a data-type declaration of the form

(def-datatype intlist

(inull)

(icons int intlist))

can introduce a recursive integer-list type,10

Tintlist = (trec intlist

(oneof (inull (prodof))

(icons (prodof int intlist))))

and also introduce the following constructor and deconstructor definitions:

(def (inull) (one inull (prod) Tintlist))

(def (inull~ val succ fail)

(tagcase val untagged (inull (succ)) (else (fail))))

(def (icons x1 x2) (one icons (prod x1 x2) Tintlist))

(def (icons~ val succ fail)

(tagcase val untagged

(icons (succ (get 1 untagged (prodof int Tintlist))

(get 2 untagged (prodof int Tintlist))))

(else (fail))))

In this desugaring, we assume that the oneof-creation construct one and the product-
selection construct get include explicit types to aid the type reconstruction process. Since
these explicit types are automatically introduced by the desugaring and not written by
the programmer, they do not make programming more cumbersome. We cannot omit
these explicit types and use row types (Section 13.5.3) instead for reconstructing the sum
and product types because the reconstruction algorithm we have presented is incapable
of reconstructing recursive types like Tintlist (see Exercise 13.17).

a. Write a transformation that desugars simple (unparameterized) data-type declara-
tions like intlist into FLARE constructor and deconstructor procedures.

b. Although unparameterized user-defined data types can be handled in FLARE via
desugaring, parameterized data types like (listof T),

(def-datatype (listof t)

(null)

(cons t (listof t)))

10To do this, we would need to augment the FLARE type domain with recursive types.
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are much more challenging to handle in a desugaring-based approach. What changes
would need to be made to the FLARE type system in order to adapt the desugaring-
based approach to data-type declarations from the explicitly typed FLEX/SPDK
language (see Exercise 12.25 on page 766) to the implicitly typed FLARE language?

Exercise 13.17 This exercise explores the problem of reconstructing recursive sum-of-
products types. Imagine a version of FLARE that uses row types to reconstruct oneof
types (see Exercise 13.13 on page 826). (This exercise also involves tuple types, but since
it uses only the prod operation and not the get operation, there is no need to use row
types for tuple-type reconstruction.) In this version of FLARE, consider the following
expression:

(let ((inull (abs () (one inull (prod))))

(icons (abs (i is) (one icons (prod i is)))))

(letrec ((down (abs (n)

(if (= n 0)

(inull)

(icons n (down (prim - n 1)))))))

(down 5)))

a. Assume that the type of the letrec expression is reconstructed with respect to a type
environment TE . What are the type schemas for inull and icons in TE?

b. Assume that the type of down in TE is (-> (?n) ?res) and that the type environ-
ment TE if = TE [n : ?n] is used to reconstruct the if expression Eif that is the body
of (abs (n) . . . ). Then R[[Eif ]] TE if = 〈Tif ,TCS if 〉. Suppose solveTCS TCS if =
(TypeSubst�UnifySoln σif ). What is T ′

if = (σif Tif )?

c. Reconstructing the type of the letrec expression introduces a type constraint that
equates the type of down and the type of (abs (n) . . . ):

(-> (?n) ?res)
.
= (-> (?n) T ′

if )

This constraint requires unifying ?res and T ′
if , but this unification fails. Why?

d. Describe a modification to the unification algorithm that would allow the unification
of ?res and T ′

if to succeed. What is the result of unifying these two types in your
modified algorithm?

Notes

The notion of reconstructing types for an implicitly typed language is due to
Curry and Hindley. See [Hin97] for a summary of the history of this notion and an
elegant formulation of type reconstruction in the context of the lambda calculus.
In the late 1970s, Milner rediscovered this notion [Mil78], refined it with Damas
[DM82], and made it a cornerstone of SML, a practical programming language
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[MTHM97, MT91b]. A nice presentation of the concepts and implementation of
HDM type reconstruction is [Car87]. Examples of other programming languages
with HDM type reconstruction include Miranda [Tur85], Haskell [HPW+92],
and FX [GJSO92]. For an overview of type reconstruction systems, see [Tiu90].

Unification is due to Robinson [Rob65]. For a survey on algorithms for and
uses of unification, see [Kni89].

The occurs check in our unification algorithm is standard in many type recon-
struction systems, but it is not mandatory. Indeed, removing the occurs check
gives rise to a form of cyclic unification capable of constructing recursive types
[CC91]. An example of a system using cyclic unification is described in [OJ97].

Using row variables to reconstruct record types was introduced by Wand
[Wan91]. An alternative approach to type inference for extensible records is pre-
sented in [Rém94]. Type inference of records using row variables can be used to
support object-oriented programming in a language with HDM type reconstruc-
tion, as demonstrated by OCAML’s object system [RV98].

Type reconstruction algorithms, such as Milner’s “bottom-up” Algorithm W
[Mil78, DM82] or its “top-down” variant, Algorithm M [LY98], are often ex-
pressed in terms of constructing appropriate type substitutions during a tree
walk of a program. The single-threaded nature of the substitutions in these al-
gorithms enables implementing them as global mappings from type variables to
types that are updated during the type reconstruction process [Car87].

Our Algorithm R separates the collection of type constraints from their solu-
tion as a type substitution. An extended treatment of the constraint-based ap-
proach to ML type reconstruction can be found in [PR05], which also includes a
discussion of row variables for the type reconstruction of records. We have chosen
to specify Algorithm R via deduction rules in order to highlight the relationship
between the algorithm and the underlying type system. Another presentation of
type reconstruction via deduction rules can be found in [Pie02].

An implicitly typed language has the principal type property if the typabil-
ity of an expression E in a type environment TE implies that there is a most
general type T for E that can be instantiated to any type of E in TE . HDM
has this property [DM82]. A stronger notion is the principal typing property:
the typabilty of an expression E in some type environment implies that there is
a most general typing (i.e., type derivation) concluding with TE � E :T that
can be instantiated to any typing of E . Principal typing is desirable for composi-
tional approaches to type reconstruction, but many implicitly typed systems with
principal types (such as HDM) do not have principal typings [Jim96, Wel02].

When HDM type reconstruction is used in the presence of imperative features,
care must be taken to ensure that type soundness is maintained. One approach,
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adopted in an early version of SML [MTH90], is to distinguish imperative type
variables for values that may be stored in cells from regular type variables, and
to limit the generalization of imperative type variables. The value restriction
approach, adopted in a later version of SML [MTHM97], restricts polymorphism
to syntactic values [Wri95]. This is a simple way to guarantee type soundness,
but prohibits certain imperative programming idioms that are well typed in other
approaches. It is possible to relax the value restriction without affecting type
soundness [Gar04].

The undecidability of type reconstruction in System F is a result due to
Wells [Wel99]. Numerous decidable reconstruction systems have been developed
for variants of System F in which programmers are required to supply explicit
type annotations for certain polymorphic types, e.g. [OG89, OL96, GR99, BR03,
Rém05, JVWS07].

Type reconstruction has been applied to dynamically typed languages in the
context of so-called soft typing systems [CF91, AWL94, CF98]. Such systems can
verify some (but not necessarily all) assertions about program phrases, such as
assertions that the operand values of a primitive operation have the correct type
at run time. When such assertions can be proven, the corresponding dynamic
checks can be eliminated to improve the efficiency of the program. For exam-
ple, experiments with a flow-based analysis system for eliminating run-time type
checks found that between 5 and 40 percent of program execution time was spent
performing checks that could be eliminated by the system [WJ98].

One drawback of many type-reconstruction systems is that when type mis-
matches arise during the constraint-solving process, it is often difficult for pro-
grammers to reason about which parts of their program are responsible for the
unsolvable constraints. For an overview of work in this area and a type-error
slicing technique for addressing the problem, see [HW04].
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Abstract Types

Come, Abstraction,
by Will out of Demonic Ambition,
carry me lightly into the regions of the immortal.

— Louise Glück, “The Winged Horse”

14.1 Data Abstraction

A cornerstone of modern programming methodology is the principle of data
abstraction, which states that programmers should be able to use data struc-
tures without understanding the details of how they are implemented. Data
abstraction is based on establishing a contract, also known as an Application
Programming Interface (API), or just interface, that specifies the abstract
behavior of all operations that manipulate a data structure without describing
the representation of the data structure or the algorithms used in the operations.

The contract serves as an abstraction barrier that separates the concerns of
the two parties that participate in a data abstraction. On one side of the barrier
is the implementer, who is responsible for implementing the operations so that
they satisfy the contract. On the other side of the barrier is the client, who is
blissfully unaware of the hidden implementation details and uses the operations
based purely on their advertised specifications in the contract. This arrangement
gives the implementer the flexibility to change the implementation at any time as
long as the contract is still satisfied. Such changes should not require the client to
modify any code.1 This separation of concerns is especially useful when large pro-
grams are being developed by multiple programmers, many of whom may never
communicate except via contracts. But it is even helpful in programs written by
a single person who plays the roles of implementer and client at different times
in the programming process.

1However, the client may need to recompile existing code in order to use a modified imple-
mentation.
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14.1.1 A Point Abstraction

As an extremely simple example of data abstraction, consider an abstraction
for points on a two-dimensional grid. The point abstraction is defined by the
following contract, which specifies an operation for creating a point from its two
coordinates and operations for extracting each coordinate:

(make-pt x y) creates a point whose x coordinate is the integer x and whose
y coordinate is the integer y.

(pt-x p) returns the x coordinate of the given point p.

(pt-y p) returns the y coordinate of the given point p.

An implementation of the point abstraction should satisfy the following axioms:

1. For any integers n1 and n2, (pt-x (make-pt n1 n2)) evaluates to n1.

2. For any integers n1 and n2, (pt-y (make-pt n1 n2)) evaluates to n2.

Even for this simple abstraction, there are a surprising number of possible
implementations. For concreteness, below we give two point implementations
in a version of the dynamically typed FL language that supports records. Our
convention will be to package up the operations of a data abstraction into a
record, but that is not essential.

(def pair-point-impl

(record (make-pt (abs (x y) (pair x y)))

(pt-x (abs (p) (fst p)))

(pt-y (abs (p) (snd p)))))

(def proc-point-impl

(record (make-pt (abs (x y) (abs (b) (if b x y))))

(pt-x (abs (p) (p #t)))

(pt-y (abs (p) (p #f)))))

In pair-point-impl, the two coordinates are stored in a pair. Alternatively,
we could have stored them in the opposite order or glued them together in a
different kind of product (record, sequence, list, etc.). In proc-point-impl, a
point is represented as a first-class procedure that “remembers” the coordinates
in its environment and uses a boolean argument to determine which coordinate
to return when called. Alternatively, some other key (such as a symbol) could be
used to select the coordinate.
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As a sample client of the point abstraction, consider the following proce-
dure, which, for a given point implementation, defines a coordinate-swapping
transpose procedure and a point->pair procedure that converts a point to a
concrete pair (regardless of its underlying representation) and uses these on the
abstract point (1, 2):

(def test-point-impl

(abs (point-impl)

(with-fields (make-pt pt-x pt-y) point-impl

(let ((transpose (abs (p) (make-pt (pt-y p) (pt-x p))))

(point->pair (abs (p) (pair (pt-x p) (pt-y p)))))

(point->pair (transpose (make-pt 1 2)))))))

The result of invoking test-point-impl on a valid point implementation should
be the concrete pair value 〈2, 1〉.

In this example, there is little reason to prefer one of the implementations over
the other. The pair implementation might be viewed as being more straightfor-
ward, requiring less memory space, or being more efficient because it requires
fewer procedure calls. However, judgments about efficiency are often tricky and
require a deep understanding of low-level implementation details. In more realis-
tic examples, such as abstractions for data structures like stacks, queues, priority
queues, sets, tables, databases, etc., one implementation might be preferred over
another because of asymptotically better running times or memory usage for
certain operations.

14.1.2 Procedural Abstraction Is Not Enough

Any language with procedural abstraction — i.e., the ability to capture common
patterns in expressions and statements with parameterized procedures — can be
used to implement data abstraction in the way illustrated in the point example.
However, in order for the full benefits of data abstraction to be realized, this
approach requires that the client never commit abstraction violations by using
knowledge of the representation of an abstract value to manipulate abstract values
concretely.

For instance, if points are represented as pairs, then the client might write
(fst p) rather than (pt-x p) to extract the x coordinate of a point p, or might
create a point “forgery” using (pair 1 2) in place of (make-pt 1 2). Although
these concrete manipulations will not cause errors, such abuses of the exposed
representation are dangerous because they are not guaranteed to work if the
implementation is changed. For example, (fst p) would lead to a run-time type
error if the implementation were changed to use a procedural representation for
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points, and would give the incorrect value if the implementation were changed to
put the y coordinate before the x coordinate in a pair.

Furthermore, many representations involve representation invariants that
are maintained by the abstract operations but which concrete manipulations
could violate. A representation invariant is a set of conceptual or actual predi-
cates that a representation satisfies and the implementation may depend on. For
instance, a string-collection implementation might store the strings in a sorted
array. Thus a sorted? predicate would be true for this representation. If the
client creates a forgery with an unsorted array, all bets are off concerning the
behavior of the abstract operations on this forgery.

Without an enforcement of the relationship between abstract values and their
operations, it is even possible to interchange values of different abstractions that
happen to have the same concrete representation. For instance, if an implemen-
tation of a rational-number abstraction represents a rational number as a pair
of two integers, then a rational number could be dissected with pt-x and pt-y,
assuming that points are also represented as pairs of integers.

Although our examples have been for a dynamically typed language, the same
problems occur in statically typed languages in which type equivalence is struc-
tural — i.e., two compound types are considered equivalent if their correspond-
ing components are equivalent, as in FLEX’s ≈ relation. Clearly, attempting to
achieve data abstraction using procedural abstraction alone is fraught with peril.
There must additionally be some sort of mechanism to guarantee that abstract
data is secure. We will call a language secure when barriers associated with
a data abstraction cannot be violated. Such a security mechanism must effec-
tively hide the representation of abstract data by making it impossible to create
or operate on abstract values with anything other than the appropriate abstract
operations.

In the remainder of this chapter, we explore techniques for making data ab-
stractions secure. In Section 14.2, we study how secure data abstractions can be
achieved dynamically using a lock and key mechanism. Then we explore vari-
ous ways to achieve such security statically using types: existential types (Sec-
tion 14.3), nonce types (Section 14.4), and static dependent types (Section 14.5).

Exercise 14.1 In languages with first-class procedures, one approach to hiding the rep-
resentations of data structures is to encapsulate them in message-passing objects. For
example, the two point-making procedures in Figure 14.1 encapsulate the pair represen-
tation and procedural representation, respectively. How secure is this approach to hiding
data abstraction representations? What kinds of abstraction violations are prevented by
this technique? What kinds of abstraction violations can still occur?
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(def (make-pair-point x y)

(let ((point (pair x y)))

(abs (msg) {return a message dispatcher}
(cond ((sym=? msg (sym pt-x)) (fst point))

((sym=? msg (sym pt-y)) (snd point))

(else (error unrecognized-message))))))

(def (make-proc-point x y)

(let ((point (abs (b) (if b x y))))

(abs (msg) {return a message dispatcher}
(cond ((sym=? msg (sym pt-x)) (point #t))

((sym=? msg (sym pt-y)) (point #f))

(else (error unrecognized-message))))))

Figure 14.1 Message-passing point implementations.

14.2 Dynamic Locks and Keys

The human heart has hidden treasures,
In secret kept, in silence sealed.

— Charlotte Brontë, “Evening Solace”

One approach for securely encapsulating a data-abstraction representation is to
make it inaccessible by “locking” abstract values with a “key” in such a way that
only the very same key can unlock a locked value to access the representation.
We explore a dynamic lock and key mechanism by extending FLIC with the
following primitive operators, which, as usual, are also assumed to be available
as standard library procedures:

(new-key) generates a unique, unforgeable key value.

(lock key value) creates a new kind of “locked value” that pairs key with
value in such a way that key cannot be extracted and value can be extracted
only by supplying key.

(unlock key locked) returns the value stored in locked if key matches the key
used to create locked. Otherwise, it signals an error.

We extend FLIC rather than FL because cells and a single-threaded store
simplify specifying the semantics of these constructs. Indeed, new-key, lock,
and unlock can all be implemented as user-defined procedures in FLIC (Fig-
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(def (new-key) (cell 0))

(def (lock key val)

(abs (key1)

(if (cell=? key key1)

val

(error wrong-key))))

(def (unlock key locked)

(locked key))

Figure 14.2 Implementation of a dynamic lock and key mechanism in FLIC.

(def pt-impl1

(let ((key (new-key)))

(let ((up (abs (x) (lock key x)))

(down (abs (x) (unlock key x))))

(record (make-pt (abs (x y) (up (pair x y))))

(pt-x (abs (p) (fst (down p))))

(pt-y (abs (p) (snd (down p))))))))

(def pt-impl2

(let ((key (new-key)))

(let ((up (abs (x) (lock key x)))

(down (abs (x) (unlock key x))))

(record (make-pt (abs (x y) (up (pair y x))))

(pt-x (abs (p) (snd (down p))))

(pt-y (abs (p) (fst (down p))))))))

Figure 14.3 Using the lock and key mechanism to hide point representations.

ure 14.2). The new-key procedure creates a new cell whose location is a unique
and unforgeable key; the value in the cell is arbitrary and can be ignored. The
lock procedure represents a locked value as a procedure that “remembers” the
given key and value and returns the value only if it is invoked on the original
key (as done in unlock). The procedural representation of locked values prevents
direct access to the key, and the value can be extracted only by supplying the
key, as desired.

Figure 14.3 shows how the lock and key mechanism can be used to securely
encapsulate two representations of points as pairs that differ only in the order of
the coordinates. The procedures up and down2 use lock and unlock to mediate

2The name up is intended to suggest raising a value from a low (concrete) level to a high
(abstract) level, while down suggests lowering the value between these levels.



14.2 Dynamic Locks and Keys 845

between the concrete pair values and the abstract point values. Because all op-
erators for a single implementation use the same key, the operators for pt-impl1
work together, as do those for pt-impl2. For example:

((select pt-x pt-impl1) ((select make-pt pt-impl1) 1 2)) −−−−FLIC→ 1
((select pt-y pt-impl2) ((select make-pt pt-impl2) 1 2)) −−−−FLIC→ 2

However, because different implementations use different keys, point values cre-
ated by one of the implementations cannot be dissected by operations of the
other. Furthermore, because the operators create and use locked values, neither
point implementation can be used with concrete pair operations. For example,
all of the following four expressions generate dynamic errors when evaluated:

((select pt-x pt-impl1) ((select make-pt pt-impl2) 1 2))

((select pt-y pt-impl2) ((select make-pt pt-impl1) 1 2))

(fst ((select make-pt pt-impl1) 1 2))

((select pt-y pt-impl2) (pair 1 2))

Some syntactic sugar can facilitate the definition of implementation records.
We introduce a cluster construct that abstracts over the pattern used in the
point implementations:

(cluster (I E)∗) �ds (let ((Ikey (new-key))) {Ikey fresh}
(let ((up (abs (x) (lock Ikey x)))

(down (abs (x) (unlock Ikey x))))

(recordrec (I E)∗)))

The up and down procedures implicitly introduced by the desugaring may be used
in any of the cluster bindings. Using recordrec in place of record allows for
mutually recursive operations. Here is the definition of pt-impl1 expressed using
the cluster notation:

(def pt-impl1

(cluster (make-pt (abs (x y) (up (pair x y))))

(pt-x (abs (p) (fst (down p))))

(pt-y (abs (p) (snd (down p))))))

Note that cluster creates a new data abstraction every time it is evaluated.
For instance, consider:

(def make-wrapper

(abs ()

(cluster (wrap (abs (x) (up x)))

(unwrap (abs (x) (down x))))))

(def wrapper1 (make-wrapper))

(def wrapper2 (make-wrapper))
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Evaluating ((select unwrap wrapper2) ((select wrap wrapper1) 17)) sig-
nals a dynamic error because the wrap procedure from wrapper1 and the unwrap
procedure from wrapper2 use different keys.

Exercise 14.2 Consider an integer-set abstraction that supports these operations:

(empty) creates an empty set of integers.

(insert int intset) returns the set that results from inserting int into the integer set
intset.

(member? int intset) returns true if int is a member of the integer set intset and false
otherwise.

a. Define a cluster list-intset-impl that represents an integer set as a list of integers
without duplicates, sorted from low to high.

b. Define a cluster pred-intset-impl that represents an integer set as a predicate — a
procedure that takes an integer and returns true if that integer is in the set represented
by the predicate and false otherwise.

c. Extend both list-intset-impl and pred-intset-impl to handle union, intersec-
tion, and difference operations on two integer sets.

d. Some representations have advantages over others for implementing particular oper-
ations. Show that (size intset) (which returns the number of elements in intset) is
easy to implement in the list-intset-impl cluster but impossible to implement in
the pred-intset-impl cluster (without changing the representation). Similarly, show
that (complement intset) (which returns the set of all integers not in intset) is easy to
implement in pred-intset-impl but impossible to implement in list-intset-impl.

Exercise 14.3

a. Extend the SOS for FLICK in Figures 8.13 and 8.14 to directly handle the primitives
new-key, lock, and unlock, without using cells. Assume that the syntactic domains
ExpSOS and ValueExp are extended with expressions of the form (*key* LC) to
represent keys and (*locked* LC V ) to represent locked values.

b. It is helpful to have the following additional primitives:

(key? thing) determines whether thing is a key value.

(key=? key1 key2) determines whether key1 is the same key value as key2. Signals
an error if either key1 or key2 is not a key value.

(locked? thing) determines whether thing is a locked value.

Extend your SOS to handle these primitives.

c. Can you extend the implementation in Figure 14.2 to handle the additional primitives?
Explain.
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Exercise 14.4 It is not always desirable to export every binding of a cluster in the
resulting record. For example, in the following implementation of a rational-number
cluster, the gcd procedure (which calculates the greatest common divisor of two numbers)
is intended to be an unexported local recursive procedure used by make-rat.

(def rat-impl

(cluster (make-rat (abs (x y)

(let ((g (gcd x y)))

(up (pair (/ x g) (/ y g))))))

(numer (abs (r) (fst (down r))))

(denom (abs (r) (snd (down r))))

(gcd (abs (a b) (if (= b 0) a (gcd b (% a b)))))))

In this case, we could make the definition of gcd local to make-rat, but this strategy does
not work if the local value is used in more than one binding in the cluster. Alternatively,
we can extend the cluster syntax to be (cluster (I ∗

exp) (I E)∗), where (I ∗
exp) is an

explicit list of exports — those bindings we wish to be included in the resulting record.
For instance, if we use (make-rat numer denom) as the export list in rat-impl, then
gcd would not appear in the resulting record. Modify the desugaring of cluster to
support explicit export lists.

Exercise 14.5 A dynamic lock and key mechanism can be added to statically typed
languages like the explicitly typed FLEX language and the implicitly typed FLARE
language.

a. Extend the type syntax and type rules of FLEX to handle new-key, lock, and
unlock.

b. We can add a cluster construct to FLEX using the syntax

(cluster Trep (Ii Ti Ei)
n
i=1)

where Trep is the concrete representation type of the data abstraction and Ti is the
type of Ei . Give a type rule for this explicitly typed cluster construct.

c. Why is it necessary to include Trep and the Ti in the explicitly typed cluster con-
struct? Would these be necessary in a cluster construct for FLARE?

14.3 Existential Types

The dynamic lock and key mechanism enforces data abstraction by signaling
a run-time error whenever an abstraction violation is encountered. The main
drawback of this approach is its dynamic nature. It would be desirable to have a
static mechanism that reports abstraction violations when the program is type-
checked. As usual, the constraints of computability prevent a static system from
detecting exactly those violations that would be caught by a dynamic lock and key
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mechanism. Nevertheless, by relinquishing some expressive power, it is possible
to design type systems that prevent abstraction violations via a static lock and
key mechanism known as an abstract type. In the next three sections, we shall
study three designs for abstract types.

Our first abstract type system is based on extending the explicitly typed
language FLEX/P3 with existential types. To motivate existential types, con-
sider the types of the pair-point-impl and proc-point-impl implementations
introduced in Section 14.1:

(def-type pair-point-impl-type

(recordof (make-pt (-> (int int) (pairof int int)))

(pt-x (-> ((pairof int int)) int))

(pt-y (-> ((pairof int int)) int))))

(def-type proc-point-impl-type

(recordof (make-pt (-> (int int) (-> (bool) int)))

(pt-x (-> ((-> (bool) int)) int))

(pt-y (-> ((-> (bool) int)) int))))

These two types are the same except for the concrete type used to represent an
abstract point value: (pairof int int) in the first case and (-> (bool) int)

in the second. We would like to be able to say that both implementations have the
same abstract type. Intuitively, we can do this by abstracting over the concrete
point type in the two implementation types.

Let’s call a value that implements an abstract type a package. To represent
the type of a package, we introduce a type construct (packofexist τabs Timpl) in
which the type identifier τabs is used to abstract over references to the concrete
representation type within the implementation type Timpl . For instance, here
is a packofexist type for the point example, in which the abstract type name
point stands for the concrete type used to represent a point in a particular
implementation.

(def-type pt-eface

(packofexist point

(recordof (make-pt (-> (int int) point))

(pt-x (-> (point) int))

(pt-y (-> (point) int)))))

We informally read the above (packofexist ...) type as “there exists a concrete
point representation type (call it point) such that there are make-pt, pt-x, and
pt-y procedures with the specified arrow types that manipulate values with this

3Recall that FLEX/P is FLEX/SP without subtyping. We use FLEX/P here because
subtyping is not relevant to the discussion.
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representation type.” Such a type is called an existential type because it posits
the existence of a type and indicates how it is used without saying anything about
its concrete representation.4 In the following discussion, we will often refer to this
particular existential type, so we have given it the name pt-eface, where eface

is short for existential interface.
A summary of existential types is presented in Figure 14.4. In the existential

type (packofexist τabs Timpl), the abstract type name τabs is a binding occur-
rence of a type identifier whose scope is the implementation type Timpl , which is
typically a recordof type describing the operations associated with the abstract
type. The particular name of the abstract type variable is irrelevant; as is in-
dicated by the [epackof-≈] type-equivalence rule, it can be consistently renamed
without changing the essence of the type. So the type

(packofexist q

(recordof (make-pt (-> (int int) q))

(pt-x (-> (q) int))

(pt-y (-> (q) int))))

is equivalent to the existential type using point above.
Values of existential type, which we shall call existential packages, are

created by the construct (packexist τabs Trep Eimpl). The type identifier τabs is
a type name that is used to hide the concrete representation type Trep within the
implementation expression Eimpl . For example, Figure 14.5 shows two existential
packages that implement the type contract specified by pt-eface. In the first
package, the abstract name point stands for the type of pair of integers, while
in the second package, it stands for the type of a procedure that maps a boolean
to an integer.

Like the dynamic cluster construct shown in Section 14.2, the packexist

construct implicitly introduces up and down procedures. However, here these
procedures have no interesting dynamic semantics; they behave like identity pro-
cedures. Instead, they are used by the type system to explicitly convert between
concrete and abstract types. This is formalized by the [epack] type rule in Fig-
ure 14.4, which specifies how different implementations can have the same existen-
tial type. The implementation expression Eimpl is checked in a type environment
where up converts from the concrete representation type Trep to the abstract type
name τabs and down converts from τabs to Trep .5 If type checking of a packexist

4In the literature, such types are often written with ∃ or exists just as ∀ and forall are
used for universal polymorphism. For example, a more standard syntax for the pt-eface type
is: ∃ point . {make-pt : int*int → point, pt-x : point → int, pt-y : point → int}.

5up and down are just one way to distinguish concrete and abstract types in an existential
type. Some alternative approaches are explored in Exercise 14.9.
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Syntax

E ::= . . . | (packexist τabs Trep Eimpl) | (unpackexist Epkg τty Iimpl Ebody)

T ::= . . . | (packofexist τabs Timpl)

Free Identifiers
FrIds[[(packexist τabs Trep Eimpl)]] = FrIds[[Eimpl ]]

FrIds[[(unpackexist Epkg τty Iimpl Ebody)]] = FrIds[[Epkg ]] ∪ (FrIds[[Ebody ]]− {Iimpl})
FrTyIdsty [[(packofexist τabs Timpl)]] = FrTyIdsty [[Timpl ]] − {τabs}
FrTyIdsexp [[(packexist τabs Trep Eimpl)]]

= FrTyIdsty [[Trep ]] ∪
(
FrTyIdsexp [[Eimpl ]]− {τabs}

)
FrTyIdsexp [[(unpackexist Epkg τty Iimpl Ebody)]]

= FrTyIdsexp [[Epkg ]] ∪
(
FrTyIdsexp [[Ebody ]]− {τty}

)
Dynamic Semantics (via Type Erasure)

�(packexist τabs Trep Eimpl)�
= (let ((up (abs (x) x)) (down (abs (x) x))) �Eimpl�))

�(unpackexist Epkg τty Iimpl Ebody)� = (let ((Iimpl �Epkg�)) �Ebody�)

Type Equivalence
[τ ′/τ ]T ≈ T ′

(packofexist τ T) ≈ (packofexist τ ′ T ′)
[epackof-≈]

Type Rules
TE [up : (-> (Trep) τabs), down : (-> (τabs) Trep)] � Eimpl :Timpl

TE � (packexist τabs Trep Eimpl) : (packofexist τabs Timpl)
[epack]

where τabs 
∈ ∪I∈FrIds[[Eimpl ]]

(
FrTyIdsty [[TE (I )]]

)
[import restriction]

TE � Epkg : (packofexist τabs Timpl)

TE [Iimpl : [τty/τabs ]Timpl ] � Ebody :Tbody

TE � (unpackexist Epkg τty Iimpl Ebody) :Tbody

[eunpack]

where τty 
∈ ∪I∈FrIds[[Ebody ]]

(
FrTyIdsty [[TE (I )]]

)
[import restriction]

τty 
∈ FrTyIdsty [[Tbody ]] [export restriction]

Figure 14.4 The essence of existential types in FLEX/P.

expression succeeds, we have a proof that there is at least one representation
for τabs (namely Trep) and one implementation using this representation (namely
Eimpl ) that has the implementation type Timpl . This knowledge is recorded with
the type (packofexist τabs Timpl), in which any implementation details related
to Trep and Eimpl have been purposely omitted.
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(def pair-point-epkg pt-eface

(packexist point (pairof int int)

(record (make-pt (abs ((x int) (y int)) (up (pair x y))))

(pt-x (abs ((p point)) (fst (down p))))

(pt-y (abs ((p point)) (snd (down p)))))))

(def proc-point-epkg pt-eface

(packexist point (-> (bool) int)

(record (make-pt (abs ((x int) (y int))

(up (abs ((b bool)) (if b x y)))))

(pt-x (abs ((p point)) ((down p) #t)))

(pt-y (abs ((p point)) ((down p) #f))))))

Figure 14.5 Two existential packages that implement pt-eface.

For example, in the pair-point-epkg example in Figure 14.5, the up pro-
cedure has type (-> ((pairof int int)) point) and the down procedure has
type (-> (point) (pairof int int)). We can use these types to show that

(abs ((x int) (y int)) (up (pair x y))) : (-> (int int) point)

(abs ((p point)) (fst (down p))) : (-> (point) int)

(abs ((p point)) (snd (down p))) : (-> (point) int)

and then use the [epack] rule to conclude that the packexist expression in the
pair-point-epkg definition has the existential type pt-eface. The same con-
clusion can be drawn in the proc-point-epkg example, where the up proce-
dure has type (-> ((-> (bool) int)) point) and the down procedure has type
(-> (point) (-> (bool) int)).

As indicated by the type erasure for packexist in Figure 14.4, the dynamic
meaning of a packexist expression is just the implementation expression in a con-
text where up and down are identity operations. So packexist does nothing inter-
esting in terms of its dynamic semantics. Its sole purpose is to package up an
implementation in such a way that the details of its representation type cannot
be seen outside the implementation in the static semantics.

The only way to use the underlying implementation of an existential package
Epkg (such as the record of point operations in a point package) is to use the
existential elimination construct, (unpackexist Epkg τty Iimpl Ebody). The type
erasure of this expression — (let ((Iimpl �Epkg�)) �Ebody�) — indicates that
the dynamic meaning of this expression is simply to give the name Iimpl to the
implementation in the scope of the body expression Ebody . The type name τty
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serves as a local name for the abstract type of the existential package that can
be used within Ebody .

As an example of unpackexist , consider the following procedure, which is a
typed version of the test-point-impl procedure presented on page 841.

(def test-point-epkg (-> (pt-eface) (pairof int int))

(abs ((point-epkg pt-eface))

(unpackexist point-epkg pt point-ops

(with point-ops

(let ((transpose (abs ((p pt))

(make-pt (pt-y p) (pt-x p))))

(point->pair (abs ((p pt))

(pair (pt-x p) (pt-y p)))))

(point->pair (transpose (make-pt 1 2))))))))

The point-epkg argument to test-point-epkg is any existential package with
type pt-eface. The unpackexist gives the local name pt to the abstract point
type and the local name point-ops to the implementation record containing the
make-pt, pt-x, and pt-y procedures. So the type of point-ops is:

(recordof (make-pt (-> (int int) pt))

(pt-x (-> (pt) int))

(pt-y (-> (pt) int)))

In the context of local bindings for these procedures (made available by with),
the local transpose and point->pair procedures are created. Each of these
takes a point as an argument and so must refer to the local abstract type name
pt for the abstract point type. Finally, test-point-epkg returns a pair of the
swapped coordinates for the abstract point (1,2).

In the [eunpack] type rule, it is assumed that the package expression Epkg has
type (packofexist τabs Timpl). The body expression Ebody is type-checked under
the assumption that Iimpl has as its type a version of Timpl in which the bound
name τabs has been replaced by the local abstract type name τty . For instance,
in the above unpackexist example, where pt is the local abstract type name, the
make-pt procedure has type (-> (int int) pt). The fact that the result type
is pt rather than point is essential for matching up the return type of transpose
and the declared argument type of point->pair.

Why is it necessary for unpackexist to introduce a new name τty (pt in our
example) for the abstract type name τabs (point in our example) in the existen-
tial type (packofexist τabs Timpl) of Epkg? Why not just use τabs itself? The
reason is that τabs is the binding occurrence of a name whose scope is only Timpl ,
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and so it has no meaning outside this scope. In particular, τabs is subject to
renaming within the packofexist type, so the notion of “the abstract type name
of a packofexist type” is ill defined.

Existential types support data abstractions whose security is enforced by the
type checker. In packexist , the type checker verifies that the concrete represen-
tation type is used internally within the implementation in a consistent way.
However, once the concrete representation type of an implementation is hidden
via packexist , there is no way for the type system to extract the concrete type
from a package. It forever remains hidden to clients of the package. In particular,
unpackexist provides no access to the concrete type of a package — it only allows
renaming the abstract type. Because clients can manipulate only the abstract
type and never the concrete type, they cannot violate the abstraction barrier
established by packexist .

In the [epack] rule, there is an import restriction on the abstract type name
τabs that prevents it from accidentally capturing a type identifier mentioned in
the type of a free variable in Eimpl . Here is an expression that would unsoundly
be declared well typed without this restriction:

Eunsound = (pabs (t)

(abs ((z t))

(packexist t int (+ 1 (down z)))))

The application (down z) applies the down procedure to a value z of arbi-
trary type t. But since down has type (-> (t) int), where t abstracts over
the concrete type int, this application (as well as Eunsound itself) would un-
soundly be declared well typed without the import restriction. For example,
((pcall Eunsound bool) #t) would be considered well typed even though it at-
tempts to add the integer 1 to the boolean #t. A similar import restriction is
also needed in the [eunpack] rule. The import restriction is not a serious issue
for programmers because it can be satisfied by automatically alpha-renaming a
program to give distinct names to logically distinct type identifiers.

In contrast, the export restriction τty 
∈ FrTyIdsty [[Tbody ]] in the [eunpack]
rule can be a serious impediment. This restriction says that the local abstract
type name τty is not allowed to escape the scope of the unpackexist expression by
appearing in the type Tbody of the body expression Ebody . A consequence is that
no value of the abstract type can escape from unpackexist in any way.

Without the export restriction, the [eunpack] rule would be unsound, as il-
lustrated by the following example:
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Eincompat = (let ((p (unpackexist proc-point-epkg t point-ops1

(with point-ops1 (make-pt 1 2))))

(f (unpackexist pair-point-epkg t point-ops2

(with point-ops2 pt-x))))

(f p))

The first unpackexist makes a procedural point whose type within the unpackexist

is the local abstract type t. This point escapes from the unpackexist and is let-
bound to the name p. The type of the point at this time is still t, which is an
unbound type identifier in this context. The second unpackexist unpackages a
pair point implementation and returns its pt-x operation, which is renamed f.
Since t is also used as the local abstract type in the second unpackexist , the
type of f is (-> (t) int), where t again is actually an unbound type variable.
Since f has type (-> (t) int) and p has type t, the application (f p) would
be well typed. But dynamically an attempt is being made to take the first
component of a procedural point, which should be a type error! This example
makes clear that although it is powerful to be able to locally name the abstract
type within unpackexist , the local type name has no meaning outside the scope
of the unpackexist and so cannot be allowed to escape.

The export restriction fundamentally limits the usefulness of existential types
in practice. Although the data and operations from different implementations
of an abstract type are clearly incompatible (as in Eincompat), there are many
situations where we would like the data and operations from two unpackings
of the same implementation to work together. For example, we would like the
following variant of Eincompat to be well typed, since it cannot encounter any
dynamic type error:

Ecompat = (let ((p (unpackexist pair-point-epkg t point-ops1

(with point-ops1 (make-pt 1 2))))

(f (unpackexist pair-point-epkg t point-ops2

(with point-ops2 pt-x))))

(f p))

However, the overly conservative export restriction has no way to determine that
both ts refer to the same abstract type in this case, so Ecompat is ill typed.

The export restriction also prohibits defining a make-transpose procedure
that takes a point package and returns a transpose procedure appropriate for
that package. The type of make-transpose would presumably be something
like (-> (pt-eface) (-> (τabs) τabs)), where τabs is the name of the abstract
type used by the given point package. But there is no way to refer to that
type except within unpackexist expressions inside the body of make-transpose,
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and that type cannot escape any such expressions to occur in the result type of
make-transpose.

In practice, there are a few ways to finesse the export type restriction. One
approach is to organize programs in such a way that large regions of the program
are within the body of unpackexist expressions that open up commonly used data
abstractions. Within these large regions, it is possible to freely manipulate values
of the abstract type. The problem with this approach is that it can make it more
difficult to take advantage of one of the key benefits of existential types: the
ability to abstract code over different implementations of the same abstract type
and choose implementations at run time based on dynamic conditions.

In cases where we really want to pass values that mention the abstract type
outside the scope of an unpackexist , we can program around the restriction by
packaging up such values together with their abstract type into a new existential
type. For example, Figure 14.6 shows how to define an extend-point-epkg pro-
cedure that can take any package with type pt-eface and return a new package
that has new operations and values in addition to the old ones. While this tech-
nique addresses the problem, it can be cumbersome, especially since all values
mentioning the same abstract type must always be put together into the same
package (or else later they could not be used with each other). Furthermore,
the components of the original package need to be repackaged to get the right
abstract type (and satisfy the import restriction).6

One paradigm in which the packaging overhead is not too onerous is a simple
form of object-oriented programming. Figure 14.7 shows how the pair and pro-
cedural point representations can be encapsulated as existential packages whose
implementations combine the state and methods of an object. As shown in the
figure, in this paradigm, it is possible to express a generic top-level transpose
method that operates on any value with type point-object. For example, the
following expression is well typed:

(let ((points (list point-object {explicit type of list elements}
(make-pair-point 1 2)

(make-proc-point 3 4))))

((pcall append point-object) {append two lists into one}
points

((pcall map point-object point-object) {map a function over a list}
transpose points)))

6This is an artifact of using up/down to convert between abstract and concrete types. Such
repackaging is not necessary in some other approaches; see Exercise 14.9.
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(def-type new-pt-eface

(packofexist point

(recordof (make-pt (-> (int int) point))

(pt-x (-> (point) int))

(pt-y (-> (point) int))

(transpose (-> (point) point))

(point->pair (-> (point) (pairof int int)))

(origin point))))

(def extend-point-epkg (-> (pt-eface) new-pt-eface)

(abs ((point-epkg pt-eface))

(unpackexist point-epkg pt point-ops

(with point-ops

(packexist newpt pt

(record (make-pt (abs ((x int) (y int)) (up (make-pt x y))))

(pt-x (abs ((p newpt)) (pt-x (down p))))

(pt-y (abs ((p newpt)) (pt-y (down p))))

(transpose (abs ((p newpt))

(up (make-pt (pt-y (down p))

(pt-x (down p))))))

(point->pair (abs ((p newpt))

(pair (pt-x (down p))

(pt-y (down p)))))

(origin (up (make-pt 0 0)))))))))

Figure 14.6 The extend-point-epkg procedure shows how values mentioning an ab-
stract type can be passed outside unpackexist as long as they are first packaged together
with their abstract type.

For simplicity, the existential type system considered here does not permit
parameterized abstract types, but it can be extended to do so. For instance, here
is an interface type for immutable stacks that is parameterized over the stack
component type t:

(def-type stack-eface

(forall (t)

(packofexist (stackof t)

(recordof (empty (-> () (stackof t)))

(empty? (-> ((stackof t)) bool))

(push (-> (t (stackof t)) (stackof t)))

(pop (-> ((stackof t)) (stackof t)))

(top (-> ((stackof t)) t))))))

Parameterized existential types are explored in Exercise 14.8.
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(def-type point-object

(packofexist point

(recordof

(state point)

(methods (recordof

(make-pt (-> (int int) point))

(pt-x (-> (point) int))

(pt-y (-> (point) int)))))))

(def make-pair-point (-> (int int) point-object)

(abs ((x int) (y int))

(packexist point (pairof int int)

(let ((make-pt (abs ((x int) (y int)) (up (pair x y)))))

(record

(state (make-pt x y))

(methods (record

(make-pt make-pt)

(pt-x (abs ((p point)) (fst (down p))))

(pt-y (abs ((p point)) (snd (down p)))))))))))

(def make-proc-point (-> (int int) point-object)

(abs ((x int) (y int))

(packexist point (-> (bool) int)

(let ((make-pt (abs ((x int) (y int))

(up (abs ((b bool)) (if b x y))))))

(record

(state (make-pt x y))

(methods (record

(make-pt make-pt)

(pt-x (abs ((p point)) ((down p) #t)))

(pt-y (abs ((p point)) ((down p) #f))))))))))

(def transpose (-> (point-object) point-object)

(abs ((pobj point-object))

(unpackexist pobj pt impl

(with impl

(with methods

(packexist newpt pt

(record

(state (up (make-pt (pt-y state) (pt-x state))))

(methods

(record

(make-pt (abs ((x int) (y int)) (up (make-pt x y))))

(pt-x (abs ((p newpt)) (pt-x (down p))))

(pt-y (abs ((p newpt)) (pt-y (down p)))))))))))))

Figure 14.7 Encoding two pair-object representations using existential types.
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Exercise 14.6 This exercise revisits the integer-set abstraction introduced in Exer-
cise 14.2 (Section 14.2).

a. Define an interface type intset-eface for integer sets supporting the operations
empty, insert, and member?.

b. Define an existential package list-intset-epkg implementing intset-eface that
represents integer sets as sorted integer lists without duplicates.

c. Define an existential package pred-intset-epkg implementing intset-eface that
represents integer sets as predicates.

d. Define a testing procedure test-intset that takes any implementation satisfying the
type intset-eface, creates a set s containing the integers 1 and 3, and returns a
three-element boolean list whose ith element (1-indexed) indicates whether s contains
the integer i.

Exercise 14.7

a. Illustrate the necessity of the import restriction for the [eunpack] rule by giving an
expression that would unsoundly be well typed without the restriction.

b. Alf Aaron Ames claims that the import restriction in the [epack] rule and the import
and export restrictions in the [eunpack] rule are all unnecessary if before type checking
the program is alpha-renamed to make all logically distinct type identifiers unique.
Is Alf correct? Use suitably modified versions of the unsoundness examples in this
section to support your answer.

Exercise 14.8

a. Extend the syntax and type rules of FLEX/P to handle parameterized existential
types like (stackof t), which appears in the stack-eface example above.

b. Define an implementation stack-list-epkg of immutable stacks that has the type
stack-eface and represents a stack as a list of elements ordered from the top down.

c. Define a procedure int-stack-test that tests a stack package by (1) defining a
swap procedure that swaps the top two elements of an integer stack; (2) defining
a stack->list procedure that converts an integer stack to an integer list; and (3)
returning the result of invoking stack->list on the result of calling swap on a stack
that contains the elements 1 and 2.

d. Design an interface mstack-eface for mutable stacks and repeat parts b and c for
mutable stacks.

Exercise 14.9 The packexist construct uses up and down procedures to explicitly convert
between a concrete representation type and an abstract type name. Here we explore
alternative ways to specify abstract versus concrete types in packexist . These alternatives
also work for the other variants of pack that we shall study in Sections 14.4 and 14.5.
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a. One alternative to using up and down is to extend packexist to have the form

(packexist τabs Trep Timpl Eimpl)

in which the implementation type Timpl is explicitly supplied. For example, here
is one way to express a pair implementation of points using this modified form of
packexist :

(packexist point (pairof int int)

(recordof (make-pt (-> (int int) point))

(pt-x (-> (point) int))

(pt-y (-> (point) int)))

(record (make-pt (abs ((x int) (y int)) (pair x y)))

(pt-x (abs ((p point)) (fst p)))

(pt-y (abs ((p (pairof int int))) (snd p))))))

Within Eimpl , the abstract type point and the concrete type (pairof int int) are
interconvertible.

Give a type rule for this form of packexist . Your rule should not introduce up and
down procedures. Use examples to justify the design of your rule.

b. An alternative to specifying Timpl in packexist is to require the programmer to use
explicit type ascriptions (via FLEX/P’s (the T E) construct) to convert concrete
to abstract types or vice versa. Explain, using examples.

c. Yet another way to convert between concrete and abstract types is to interpret the
def-datatype construct presented in Section 12.2.3 in a creative way. (The module
system in Chapter 15 follows this approach.) Each constructor can be viewed as
performing a conversion up to an abstract type and each deconstructor can be viewed
as performing a conversion down from this type. For example, here is a point-as-pair
existential package declared via an alternative syntax for packexist that replaces τabs
and Trep by a def-datatype declaration:

(packexist (def-datatype point (pt (pairof int int)))

(record (make-pt (abs ((x int) (y int)) (pt (pair x y))))

(pt-x (abs ((p point)) (match p ((pt (pair x _)) x))))

(pt-y (abs ((p point)) (match p ((pt (pair _ y)) y))))))

Give a type rule for this modified form of packexist .

d. Express the examples in Figure 14.6 and Figure 14.7 using the alternative approaches
to existential types introduced above.

14.4 Nonce Types

We have seen that existential types provide secure data abstractions in a typed
language, but the export restriction makes them impractical in many situations.
The export restriction is a consequence of the fact that the abstract type name in
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an existential type and the local abstract type names introduced by unpackexist

are not connected to each other or to the concrete type in any way. One way to
address this problem is by replacing the abstract type names by globally unique
type symbols that we call nonce types. We shall see that package types based
on nonce types are in many ways a more flexible approach to abstract types than
existential types, but suffer from problems of their own.

As an example, the type of one implementation of a point abstraction might
be the nonce package type

Tpoint-npkg = (packofnonce #1729

(recordof (make-pt (-> (int int) #1729))

(pt-x (-> (#1729) int))

(pt-y (-> (#1729) int))))

where #17297 is the notation for the globally unique nonce type for this particular
implementation. Another point-abstraction implementation would have the same
packofnonce type, except that a different unique nonce type (say #6821) for that
implementation would be substituted for each occurrence of #1729. Nonce types
ν ∈ NonceType are introduced automatically by the type checker and cannot be
written down directly by the programmer.

Whereas (packofexist τabs Timpl) is a binding construct declaring that the
type name τabs may be used in the scope of Timpl , (packofnonce νabs Timpl) is
not a binding construct. Rather, it effectively pairs the nonce type νabs with an
implementation type Timpl in such a way that the two components can be unbun-
dled by the elimination construct (unpacknonce). Like τabs , νabs serves to hide a
concrete representation type. But unlike τabs , which has no meaning outside the
scope of the packofexist , νabs names a particular concrete representation through-
out the entire program. It serves as a globally unique tag for guaranteeing that the
operations of a data abstraction are performed only on the appropriate abstract
values, regardless of how the operations and values are packaged and unpack-
aged. For example, a value of type #1729 is necessarily created by the make-pt

operation with type (-> (int int) #1729), and it is safe to operate on this
value with pt-x and pt-y operations having type (pt-x (-> (#1729) int)).
In contrast, these operations are incompatible with abstract values having nonce
type #6821.

The essence of the nonce-type approach to abstract data types in FLEX/P is
presented in Figure 14.8. The syntax for creating and eliminating nonce packages
(using packnonce and unpacknonce) is the same as that for existential packages (us-

7Nonce types are a new kind of primitive type distinct from type identifiers. We write nonce
types by prepending # to a sequence of digits.
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Syntax

E ::= . . . | (packnonce τabs Trep Eimpl) | (unpacknonce Epkg τty Iimpl Ebody)

NT ∈ NatLit = {0, 1, 2, . . .}
ν ∈ NonceType = {#��NT | NT ∈ NatLit}
τ ∈ TypeId = TypeIdFLEX/P − (NonceType ∪ {packofnonce})
T ::= . . . | ν | (packofnonce ν Timpl)

Free Identifiers
FrTyIdsty [[(packofnonce ν Timpl)]] = FrTyIdsty [[Timpl ]]

All clauses for FrIds and FrTyIdsexp are analogous to those for existential types in
Figure 14.4 on page 850.

Dynamic Semantics (via Type Erasure)

Same as for packexist/unpackexist in Figure 14.4 on page 850.

Type Equivalence

T ≈ T ′

(packofnonce ν T) ≈ (packofnonce ν T ′)
[npackof-≈]

Type Rules
TE [up : (-> (Trep) ν), down : (-> (ν) Trep)] � [ν/τabs ]Eimpl :Timpl

TE � (packnonce τabs Trep Eimpl) : (packofnonce ν Timpl)
[npack]

where ν is a fresh nonce type [freshness condition]
Trep does not contain any pabs-bound identifiers [rep restriction]

TE � Epkg : (packofnonce ν Timpl)

TE [Iimpl :Timpl ] � [ν/τty ]Ebody :Tbody

TE � (unpacknonce Epkg τty Iimpl Ebody) :Tbody

[nunpack]

Figure 14.8 The essence of nonce types in FLEX/P.

ing packexist and unpackexist). For example, here is an expression that describes
a pair implementation of a point abstraction as a nonce package:

Epair-point-npkg =
(packnonce point (pairof int int)

(record (make-pt (abs ((x int) (y int)) (up (pair x y))))

(pt-x (abs ((p point)) (fst (down p))))

(pt-y (abs ((p point)) (snd (down p))))))

The same expression described an existential package implementing points as
pairs (see Figure 14.5 on page 851); the difference is in the static semantics, not
the syntax or dynamic semantics.
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According to the [npack] type rule, Epair-point-npkg could have the packofnonce

type Tpoint-npkg given earlier. Each application of the [npack] rule introduces a
fresh nonce type ν (in this case, #1729) that is not used in any other application
of the [npack] rule. This nonce type replaces all occurrences of the programmer-
specified abstract type name τabs (in this case, point) in Eimpl . As in existential
types, up and down procedures are used to mediate between the concrete and
abstract types (but this can be accomplished in other ways; see Exercise 14.9 on
page 858). Note that the Type domain must be extended to include nonce types
ν ∈ NonceType, which are distinct from type identifiers. They are instead type
constants that are freshly generated, similar to Skolem constants used in logic.

The following expression is a use of the example package that is possible
with nonce packages but not with existential packages (because of the export
restriction, which prevents the transposed point from being returned):

Epair-point-test =
(let ((pair-point-npkg Epair-point-npkg))

(let ((transpose (unpacknonce pair-point-npkg t pair-point-ops

(with pair-point-ops

(abs ((p t))

(make-pt (pt-y p) (pt-x p))))))

(pt (unpacknonce pair-point-npkg t pair-point-ops

(with pair-point-ops

(make-pt 1 2)))))

(transpose pt)))

To see that Epair-point-test is well typed, note that the same nonce type, #1729, is
used within both occurrences of unpacknonce . By [nunpack], transpose has type
(-> (#1729) #1729) and pt has type #1729, so (transpose pt) (as well as
Epair-point-test) has type #1729. As shown by [nunpack], the type identifier τty in
unpacknonce allows the programmer to locally name the nonce type of Epkg , which
cannot be written down directly. There are no import or export restrictions in
[nunpack]. The substitution [ν/τty ]Ebody converts all local type identifiers into
nonce types that may safely enter and escape from unpacknonce because they
are globally unique type symbols that denote the same implementation in all
contexts.

Although [nunpack] has no restrictions, there are two restrictions in [npack].
The freshness condition requires that a different nonce type be used for each
occurrence of packnonce encountered in the type-checking process.8 The “rep

8The restriction requires careful attention in practice. One way to formalize it in the type
rules would be to modify the type rules to pass a nonce-type counter through the type-checking
process in a single-threaded fashion and increment the counter whenever [npack] is used. In
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restriction” prohibits the concrete representation type Trep from containing any
pabs-bound type identifiers. In the simple form of nonce packages that we are
studying, this restriction prevents a single nonce type from being implicitly pa-
rameterized over any types that are not known when type checking is performed
on the packnonce expression. For example, consider the following expression,
which would unsoundly be well typed without the restriction:

(let ((make-wrapper

(pabs (t)

(packnonce absty t

(record (wrap (abs ((x t)) (up x)))

(unwrap (abs ((y absty)) (down y))))))))

(let ((wrap-int (unpacknonce (pcall make-wrapper int) ity ircd

(select wrap ircd)))

(unwrap-bool (unpacknonce (pcall make-wrapper bool) bty brcd

(select unwrap brcd))))

(unwrap-bool (wrap-int 3))))

If #6821 is used as the nonce type in the packnonce expression, then wrap-int

has type (-> (int) #6821), unwrap-bool has type (-> (#6821) bool), and
(unwrap-bool (wrap-int 3)) has type bool even though it dynamically eval-
uates to the integer 3! The problem is that #6821 should not be a single nonce
type but some sort of nonce-type constructor that is parameterized over t.

The key advantage of nonce packages for expressing abstract types is that,
unlike existential packages, they have no export restriction. As illustrated by
Epair-point-test , values of and operations on the abstract type may escape from
unpacknonce expressions. Programmers do not have to rearrange their programs
or adopt an awkward programming style to prevent this from happening.

However, this advantage is offset by three major drawbacks that nonce pack-
ages suffer from as a mechanism for abstract types:

1. Difficulties with writing nonce types. The fact that nonce types cannot conve-
niently be written down directly by the programmer is problematic, especially
in an explicitly typed language. For example, in FLEX/P, the programmer
cannot write a top-level definition of the form

(def pair-point-npkg T Epair-point-npkg)

because there is no way to write down the concrete nonce type needed in T .
This is not just an issue of type syntax; the programmer does not know which

languages that allow separate analysis and compilation of modular units, nonce types could
include a unique identifier of the computer on which type checking was performed along with a
timestamp of the time when type checking took place.
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nonce type the type checker will generate when checking Epair-point-npkg . By
contrast, with existential types this is easy to express, as shown in Figure 14.5
on page 851.

One way to address this problem is to embed nonce packages in a language
with implicit types, where type reconstruction can infer nonce package types
that the programmer cannot express (see Exercise 14.14). This is the ap-
proach taken in SML, where the nonce-based abstype mechanism allows the
local declaration of abstract data types (independent of SML’s module sys-
tem). But in reconstructible languages, it is still sometimes necessary to write
down explicit types, and the inability to express nonce package types reduces
expressivity in these cases.

Another alternative is to require that the abstract type name τabs appearing
in (packnonce τabs Trep Eimpl) be a globally unique name that serves as a
concrete nonce type (see Exercise 14.12). This lets the programmer rather than
the type checker choose the abstract type name. In this case, the programmer
can write down the abstract type name and there is no need for the local
abstract type name in unpacknonce . There are serious modularity problems
with this approach, but it makes sense in restricted systems where all nonce
packages are created at top level (see Exercise 14.15). This is the approach to
abstract types taken in languages like Ada, Pascal, and Java, in which type
equivalence is determined by the declared name of a type (name equivalence)
rather than the structure of the type (structural equivalence). For example,
consider the following type declarations in Pascal:

type point = array [1..2] of integer;

rational = array [1..2] of integer;

The two types are structurally identical, but a value of type point cannot be
used where a rational is expected because the type names are different.

2. Difficulties abstracting over different implementations. As demonstrated by
the test-point-epkg example on page 852, it is possible to define procedures
that abstract over existential packages. However, even if there were a way
for programmers to write nonce types directly, the fact that nonce package
types mention particular nonce types makes it difficult to abstract over nonce
packages. For instance, what type Tnpkg can be given to the nonce package
argument in the following abstraction, which creates a transpose procedure
from any point implementation?
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Emake-transpose = (abs ((npkg Tnpkg))

(unpacknonce npkg t impl

(with impl

(abs ((p t))

(make-pt (pt-y p) (pt-x p))))))

Presumably, Tnpkg has the form

(packofnonce ν
(recordof (make-pt (-> (int int) ν))

(pt-x (-> (ν) int))

(pt-y (-> (ν) int))))

but then it will match at most one point implementation. What we really
want is to abstract over the nonce type so that (a suitably modified version
of) Emake-transpose has a type that is something like:

(forall (point)

(-> ((packofnonce point

(recordof (make-pt (-> (int int) point))

(pt-x (-> (point) int))

(pt-y (-> (point) int)))))

(-> (point) point)))

There are technical problems with this solution. First, a type of the form
(packofnonce point . . . ) is not allowed by the grammar, which permits only
a nonce type in the position of the first occurrence of point. So the type
grammar needs to be extended to allow type identifiers to fill this hole. Sec-
ond, we expect that a polymorphic value with type (forall (point) . . . )

can be projected onto any type, but here the only sensible types that can
be supplied for point are nonce types. So the forall-bound type identi-
fier in this case must somehow be restricted to range over nonce types. This
can be accomplished via bounded quantification (see Section 12.2.4) or by
annotating forall-bound type-identifier declarations with explicit kinds (see
Section 12.3.2). Thus, the problem of abstracting over nonce packages is not
insurmountable, but the solution is complicated.

3. Insufficient abstraction. Nonce packages are sound in the sense that a well-
typed program cannot encounter a run-time type error. In particular, they
prevent abstraction violations in which a procedure is treated as a pair, a
boolean as an integer, etc. However, there is still a form of abstraction vio-
lation that can occur with nonce packages. An example of this is shown in
Figure 14.9. The make-rat-impl procedure makes a rational number imple-
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(let ((make-rat-impl

(abs ((b bool))

(packnonce rat (pairof int int)

(record (make-rat (abs ((n int) (d int))

(up (if b (pair n d) (pair d n)))))

(numer (abs ((r rat))

(if b (fst (down r)) (snd (down r)))))

(denom (abs ((r rat))

(if b (snd (down r)) (fst (down r))))))))))

(let ((leftist-rat (make-rat-impl #t))

(rightist-rat (make-rat-impl #f)))

((unpacknonce rightist-rat rty rops (select numer rops))

((unpacknonce leftist-rat lty lops (select make-rat lops)) 1 2))))

Figure 14.9 A form of abstraction violation that can occur with nonce types.

mentation, which in all cases represents a rational number as a pair of integers.
However, it is abstracted over a boolean argument b that chooses one of two
representations. When b is #t, the numerator is the first, or left, element of
the pair and the denominator is the second, or right, element; we will call this
the “leftist representation.” When b is #f, a “rightist representation” is used,
in which the numerator is second (on the right) and the denominator is first
(on the left).

In the example, the numer procedure of the rightist representation is applied
to a leftist rational with numerator 1 and denominator 2. Since nonce types
are determined by static occurrences of packnonce and there is only one of
these in the example, the two dynamic invocations of make-rat-impl yield
implementations that use the same nonce type for rat. Thus, the application
is well typed and at run time will return the value 2.

Thus, the nonce package system allows different implementations of a data
abstraction to intermingle as long as they are represented via the same concrete
type. Although this might seem reasonable in some cases, we normally expect
an abstract type system to enforce the contract chosen by the designer of
an abstraction. Enforcing the contract (and not just ensuring compatible
representations) enables the abstraction and the clients to rely on important
invariants that, among other things, ensure correctness of programs.

Exercise 14.10

a. Would the expression in Figure 14.9 be well typed if all occurrences of packnonce and
unpacknonce were replaced by packexist and unpackexist? Explain.
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b. Below are three replacements for the body of the inner let in the example in Fig-
ure 14.9. For each replacement, indicate whether the whole example expression would
be well typed using (1) nonce packages and (2) existential packages. (Assume that
packnonce in the figure is changed to packexist for the existential case.) For each case,
discuss whether you think the type system does the “right thing” in that case.

i. ((unpack leftist-rat lty1 lops1 (select numer lops1))

((unpack leftist-rat lty2 lops2 (select make-rat lops2)) 1 2))

ii. (unpack leftist-rat lty lops

(unpack rightist-rat rty rops

((select numer lops) ((select make-rat rops) 1 2))))

iii. (unpack leftist-rat lty1 lops1

(unpack leftist-rat lty2 lops2

((select numer lops1) ((select make-rat lops2) 1 2))))

Exercise 14.11 As noted above, the inability to write down nonce types is incompatible
with top-level def declarations in FLEX/P, which require an explicit type to handle
potentially recursive definitions. Design a top-level definition mechanism for FLEX/P
that enables the declaration of nonrecursive global values. Illustrate how your mechanism
can be used to give the global name pair- point- npkg to Epair-point-npkg .

Exercise 14.12 If the abstract type name τabs in (packnonce τabs Trep Eimpl) were
required to be a globally unique name, then it could serve as a programmer-specified
nonce type. Assume that type identifiers are not automatically alpha-renamed before
type checking.

a. Give type rules for versions of packnonce and unpacknonce that are consistent with
this interpretation.

b. Describe how to modify the type-checking rules to verify the global uniqueness re-
quirement.

c. Discuss the advantages and disadvantages of this approach to nonce types. Is it a
good idea?

Exercise 14.13 Modify the syntax and type rules of FLEX/P to handle parameterized
nonce types. (Compare this to Exercise 14.8 in Section 14.3.)

Exercise 14.14 In this exercise, we consider existential and nonce types in the context
of type reconstruction by adding them to FLARE. You may assume a version of FLARE
that supports records whose types are reconstructed using the row-type mechanism de-
scribed in Section 13.5.3.

a. Nonce packages can be added to FLARE by extending it with nonce types and the
single expression (packnonce Eimpl).

i. Give a FLARE type rule for the modified version of packnonce .

ii. Describe how to extend the FLARE reconstruction algorithm to reconstruct the
modified packnonce .
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iii. The unpacknonce expression and packofnonce type are not necessary in FLARE.
Explain why.

b. Existential packages can be added to FLARE by extending it with the expressions
(packexist Eimpl) and (unpackexist Epkg Tpkg Iimpl Ebody) and the existential type
(packofexist τabs Timpl). In the modified unpackexist , the type Tpkg is the type of
the expression Epkg .

i. Give FLARE type rules for the modified packexist and unpackexist .

ii. Describe how to extend the FLARE reconstruction algorithm to reconstruct the
modified packexist and unpackexist forms. Explain how the export restriction is
checked.

iii. Explain why it is necessary for a simple reconstruction system to be explicitly
given the type Tpkg of the existential package expression Epkg . Why can’t it
reconstruct this package type?

c. What changes would need to be made above to handle existential and nonce packages
with parameterized types?

Exercise 14.15 Many languages support abstract types that can only be declared glob-
ally. Here we explore an abstract type mechanism introduced by a top-level declaration
def-cluster that is inspired by the cluster mechanism in CLU. For simplicity, we as-
sume that programs have the form

(program Ebody

(def-cluster Iimpl1 τabs1 Trep1 Eimpl1 )
...

(def-cluster Iimplk τabsk Trepk
Eimplk ))

where all Iimpl1 , . . . , Iimplk are distinct and all τabs1 , . . . , τabsk are distinct.

a. One interpretation of def-cluster is given by the following desugaring for program:

(let ((Iimpl1 (packexist τabs1 Trep1 Eimpl1 ))

...

(Iimplk (packexist τabsk Trepk
Eimplk )))

(unpackexist Iimpl1 τabs1 Iimpl1

...

(unpackexist Iimplk τabsk Iimplk

Ebody)))

Would the interpretation be any different if all occurrences of packexist and unpackexist

were replaced by packnonce and unpacknonce , respectively?

b. Give a direct type rule for the program construct with def-cluster declarations that
gives the same static semantics as the above desugaring.

c. An alternative desugaring for program is:
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(let ((Iimpl1 (packexist τabs1 Trep1 Eimpl1 )))

(unpackexist Iimpl1 τabs1 Iimpl1

...

(let ((Iimplk (packexist τabsk Trepk
Eimplk )))

(unpackexist Iimplk τabsk Iimplk

Ebody))))

What advantage does this desugaring have over the previous one? Give an example
where this desugaring would be preferred.

d. It is sometimes useful for top-level def-cluster declarations to be mutually recursive.
Write a simple example program that requires mutually recursive clusters, and give
a direct type rule for mutually recursive top-level def-cluster declarations.

e. Suppose that we want to be able to locally define a collection of clusters anywhere in
a program, as follows:

(let-clusters ((Iimpl τabs Trep Eimpl)
∗) Ebody)

Discuss the design issues involved in specifying the semantics of let-clusters.

14.5 Dependent Types

As we saw with existential packages, the inability to express “the type exported
by this package” makes many programs awkward to write. Nonce package types
provide a way to express this idea but suffer from other problems: they are
difficult to write down explicitly, are challenging to abstract over, and can allow
abstract types from different instances of the same syntactic package expression
to be confused.

We now study a third approach, which exhibits the best features of the other
two approaches but suffers from few of their drawbacks. The key idea is to
use a structured name to represent the abstract type associated with a package.
We introduce a new type construct (dtypeof Epkg) to mean “the abstract type
exported by the package denoted by Epkg .” The dtypeof construct is a safe way
to track the flow of the abstract type of a package outside the scope of an unpack

expression, so it solves the export restriction problem of existential packages.
Moreover, this construct can be written by programmers, so it does not suffer from
the unwritability problems of nonce types. Finally, we shall see that an abstract
type system based on dtypeof enables abstracting over different packages having
the same interface but prohibits the abstraction violations exhibited by nonce
packages.

A type that contains a value expression is called a dependent type, because
the type it represents depends in some sense on the value of the expression. The
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reader may be justifiably concerned about this unholy commingling of types and
values, especially with respect to static type checking. As we shall see, dependent
types raise some nettlesome issues that the language designer must address in
order to reap the benefits of their expressiveness.

14.5.1 A Dependent Package System

We now explore a simple package system that uses dependent types to express
abstract types. We shall use the term dependent package to refer to a package
in this system.

The point-manipulation example in Figure 14.10 highlights three key features
of the dependent package system:

1. Package types (packofdepend τabs Timpl) are like those in the existential sys-
tem. Because the abstract type is expressed via a programmer-writable type
identifier τabs rather than an unwritable nonce type, it is easy to define the
point interface (point-dface) and two point implementations satisfying this
interface (pair-point-dpkg and proc-point-dpkg). Modulo name changes
and the extended form for arrow types (discussed below), these three defini-
tions are identical to the ones given earlier for existential packages.

2. The construct (dtypeof Epkg) stands for the abstract type of the package
Epkg , allowing this type to be written outside the scope of an unpackdepend

that opens the package. For example, both pair-point-1 and pair-point-2

are given the type (dtypeof pair-point-dpkg), a programmer-writable type
that can be used to track the flow of the abstract type from the package
named pair-point-dpkg. In an existential package system, such top-level
point definitions are prohibited by the export restriction, because there is
no way to specify an abstract point type outside the scope of an unpackexist

expression. The nonce package system does allow abstract point types to leave
the scope of an unpacknonce expression, but there is no way for the programmer
to declare the type of these points, which would be unwritable nonce types.

In our dependent package system, a type is a dependent type if and only if
it contains at least one occurrence of dtypeof, because this is the only type
construct that may refer to values.

3. A procedure’s return type may depend on the values of its parameters, as
expressed in the parameterized arrow type9 (-> ((Ii Ti)

n
i=1) Tresult).

9In the literature, such types are commonly called dependent function types. In our termi-
nology, “dependent arrow (or procedure) type” is any arrow type that is also a dependent type,
regardless of whether the dependency arises from the use of the parameter names.
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(def-type point-dface

(packofdepend point

(recordof (make-pt (-> ((x int) (y int)) point))

(pt-x (-> ((p point)) int))

(pt-y (-> ((p point)) int)))))

(def pair-point-dpkg point-dface

(packdepend point (pairof int int)

(record (make-pt (abs ((x int) (y int)) (up (pair x y))))

(pt-x (abs ((p point)) (fst (down p))))

(pt-y (abs ((p point)) (snd (down p)))))))

(def proc-point-dpkg point-dface

(packdepend point (-> ((b bool)) int)

(record (make-pt (abs ((x int) (y int))

(up (abs ((b bool)) (if b x y)))))

(pt-x (abs ((p point)) ((down p) #t)))

(pt-y (abs ((p point)) ((down p) #f))))))

(def pair-point-1 (dtypeof pair-point-dpkg)

(unpackdepend pair-point-dpkg pt point-ops

(with point-ops (make-pt 1 2)))

(def make-transpose (-> ((point-dpkg point-dface))

(-> ((p (dtypeof point-dpkg)))

(dtypeof point-dpkg)))

(abs ((point-dpkg point-dface))

(unpackdepend point-dpkg pt point-ops

(with point-ops

(abs ((p pt))

(make-pt (pt-y p) (pt-x p)))))))

(def pair-point-2 (dtypeof pair-point-dpkg)

((make-transpose pair-point-dpkg) pair-point-1))

Figure 14.10 Point manipulation in the dependent package system.

An arrow type is now a binding construct in which the formal parameter
names I1 , . . . , In stand for the actual argument values to which the procedure
will be applied. Tresult may contain dependent types of the form (dtypeof E)

where E references these names. For example, in the type of make-transpose,

(-> ((point-dpkg point-dface))

(-> ((p (dtypeof point-dpkg)))

(dtypeof point-dpkg)))
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the two occurrences of (dtypeof point-dpkg) in the inner arrow type refer
to the formal parameter name point-dpkg of the outer arrow type. This type
says that the result of calling make-transpose on a dependent point package
is a procedure that maps an abstract point from that package to another
abstract point from the same package. In contrast, we have seen that the type
of make-transpose is inexpressible with existential packages because of the
export restriction and is complex to express with nonce packages.

The syntax, dynamic semantics, and static semantics of dependent packages
are summarized in Figures 14.11–14.13. There is syntactic sugar (Figure 14.11)
for writing arrow types in the traditional way (without explicit formal parameter
names) in the common case where the result type does not refer to the parameter
names. Because types may contain expressions (in the (dtypeof Epkg) type),
computing the free identifiers in an expression must be extended to analyze em-
bedded types. Figure 14.11 extends FrIds (now called FrIdsexp for clarity) to do
this and introduces a new function, FrIdsty , that determines the free value iden-
tifiers of a type. Since expressions contain types and types contain expressions,
these functions are mutually recursive.

Figure 14.12 shows the new type-equivalence rules. The [→-≈] rule allows
alpha-renaming of the formal parameter names in an arrow type, so the par-
ticular parameter names (such as the ones chosen by the -> desugaring) are
irrelevant. As in packofexist , the type identifier τabs in packofdepend may be
alpha-renamed ([dpackof-≈]). This makes it easy to abstract over renamed ver-
sions of the same packofdepend type — something that is very messy in the nonce
package system. The most interesting type-equivalence rule in the dependent
package system is [dtypeof-≈]. This is discussed later, on page 877. For now,
assume that E1 ≈depends E2 means E1 = E2 .

The type rules in Figure 14.13 are the heart of the dependent package system.
They use a restricted form of type environment (discussed later, on page 879) in
which names for any new bindings must not conflict with names already in the
environment. The [dpack] rule is exactly like the [epack] rule in the existential
package system except for explicit parameter names in the arrow types for up

and down. In contrast, the [dunpack] rule is more similar to the [nunpack] rule in
the nonce package system, because the dependent type (dtypeof Epkg), which
plays the role of a nonce type, is substituted for the local type name τty in the
body Ebody of the unpackdepend expression. In addition, it is substituted for the
abstract type τabs in the packofdepend body type Timpl . For example, in the
definition of pair-point-1, the expression (with point-ops (make-pt 1 2))

is type-checked in an environment in which point-ops has the type
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Syntax

E ::= . . . FLEX/P expressions . . .
| (packdepend τabs Trep Eimpl) | (unpackdepend Epkg τty Iimpl Ebody)

T ::= . . . FLEX/P types except (-> (T ∗) T) . . .
| (packofdepend τabs Timpl) [PackageType]
| (dtypeof Epkg) [DependentTypeExtraction]
| (-> ((IargName Targ)

∗) Tresult) [ParameterizedArrowType]

New Syntactic Sugar

(-> (Tn
i=1) T0) �ds (-> ((Ii Ti)

n
i=1) T0), where I n

i=1 are fresh

Free Identifiers
FrIdsexp : Exp → P(Ident)

FrIdsexp [[I ]] = {I }
FrIdsexp [[(abs ((Ii Ti)

n
i=1) Ebody)]]

= (∪n
i=1FrIdsty [[Ti ]]) ∪ (FrIdsexp [[Ebody ]]− ∪n

i=1 {Ii})
FrIdsexp [[(let ((Ii Ei)

n
i=1) E0)]]

= (∪n
i=1FrIdsexp [[Ei ]]) ∪ (FrIdsexp [[E0 ]]− ∪n

i=1 {Ii})
FrIdsexp [[(letrec ((Ii Ti Ei)

n
i=1) E0)]]

= ((∪n
i=1FrIdsty [[Ti ]]) ∪ (∪n

i=0FrIds[[Ei ]])) − ∪n
i=1{Ii}

FrIdsexp [[(packexist τabs Trep Eimpl)]] = FrIdsty [[Trep ]] ∪ FrIdsexp [[Eimpl ]]

FrIdsexp [[(unpackexist Epkg τty Iimpl Ebody)]]
= FrIdsexp [[Epkg ]] ∪ (FrIdsexp [[Ebody ]]− {Iimpl})

FrIdsexp [[E ]] = (∪n
i=1FrIdsexp [[Ei ]]) ∪

(
∪k

j=1FrIdsty [[Tj ]]
)

for all other expressions E ,
where En

i=1 are the immediate component expressions appearing in E
and T k

j=1 are the immediate component types appearing in E .

FrIdsty : Type→ P(Ident)

FrIdsty [[(-> ((Ii Ti)
n
i=1) T0)]] = (∪n

i=1FrIdsty [[Ti ]]) ∪ (FrIdsty [[T0 ]]− ∪n
i=1 {Ii})

FrIdsty [[(dtypeof E)]] = FrIdsexp [[E ]]

FrIdsty [[T ]] = ∪n
i=1FrIdsty [[Ti ]] for all other types T ,

where Tn
i=1 are the immediate component types appearing in T .

FrTyIdsty : Type → P(TypeId)

FrTyIdsty [[(-> ((Ii Ti)
n
i=1) T0)]] = ∪n

i=0FrTyIdsty [[Ti ]]

FrTyIdsty [[(dtypeof Epkg)]] = FrTyIdsexp [[Epkg ]]

FrTyIdsty [[(packofdepend τabs Timpl)]] = FrTyIdsty [[Timpl ]] − {τabs}

FrTyIdsexp :Exp→ P(TypeId) is defined as for existential types in Figure 14.4 on
page 850.

Figure 14.11 The essence of dependent packages in FLEX/P, Part 1.
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Dynamic Semantics (via Type Erasure)
Same as for packexist/unpackexist in Figure 14.4 on page 850.

Type Equivalence
∀n

i=1 . (Ti ≈ T ′
i ) [I ′

i /Ii ]
n
i=1T0 ≈ T ′

0

(-> ((Ii Ti)
n
i=1) T0) ≈ (-> ((I ′

i T ′
i)

n
i=1) T ′

0)
[→-≈]

where ∀n
i=1 . (I ′

i 
∈ FrIdsty [[T0 ]])

[τ ′/τ ]T ≈ T ′

(packofdepend τ T) ≈ (packofdepend τ ′ T ′)
[dpackof-≈]

E1 ≈depends E2

(dtypeof E1) ≈ (dtypeof E2)
[dtypeof-≈]

where ≈depends is discussed in Section 14.5.2.

Figure 14.12 The essence of dependent packages in FLEX/P, Part 2.

(recordof (make-pt (-> ((x int) (y int)) (dtypeof pair-point-dpkg)))

(pt-x (-> ((p (dtypeof pair-point-dpkg))) int))

(pt-y (-> ((p (dtypeof pair-point-dpkg))) int)))

So the type of (make-pt 1 2) and of the with expression is the dependent type
(dtypeof pair-point-dpkg). There is no export restriction, so this dependent
type is allowed to leave the scope of the unpackdepend expression.

As with existential packages, [dpack] and [dunpack] have an import restriction
that prevents the local name of the abstraction from capturing an existing type
name. As before, this restriction can be satisfied by automatically alpha-renaming
programs to make all logically distinct type identifiers unique. The [dunpack] rule
(as well as many of the other type rules) has an additional purity restriction that
we will discuss in more detail later, on page 880.

The [→-intro] rule is like the standard one (Figure 11.7 on page 644) except
that it remembers the formal parameter names in the resulting arrow type. It
is essential to declare these names in the arrow type so they can be referenced
in dependent types that occur in the result type. For example, we have seen
that the result type of make-transpose contains dependent types that refer to
the parameter name point-dpkg. These dependent types are introduced by the
unpackdepend expression that unpacks the point-dpkg parameter in the body of
the make-transpose abstraction.

The [→-elim] rule modifies the standard rule (Figure 11.7 on page 644) by per-
forming a substitution [Ei/Ii ]

n
i=1 of the operand expressions for the formal param-

eters in the result type T0 of the rator’s arrow type. In the dependent package sys-
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Type Environments

TE ∈ TypeEnvironment = Ident ⇀ Type

As usual, the notation TE [I1 :T1 , . . . , In :Tn ] indicates the type environment
that results from extending TE with the given type assignments. As before, the
identifiers I1 , . . . , In must be distinct. Unlike before, we further require that
dom(TE ) and ∪n

i=1{Ii} must be disjoint; see page 879 for a discussion of this
requirement.

Type Rules
TE [up : (-> ((x Trep)) τabs), down : (-> ((x τabs)) Trep)] �

Eimpl :Timpl

TE � (packdepend τabs Trep Eimpl) : (packofdepend τabs Timpl)

[dpack]

where τabs 
∈ ∪I∈FrIds[[Eimpl ]]

(
FrTyIdsty [[TE (I )]]

)
[import restriction]

TE � Epkg : (packofdepend τabs Timpl)

TE [Iimpl : [(dtypeof Epkg)/τabs ] Timpl ] �
[(dtypeof Epkg)/τty ] Ebody :Tbody

TE � (unpackdepend Epkg τty Iimpl Ebody) :Tbody

[dunpack]

where τty 
∈ ∪I∈FrIds[[Ebody ]]

(
FrTyIdsty [[TE (I )]]

)
[import restriction]

Epkg is pure [purity restriction]

TE [Ii :Ti ]
n
i=1 � E :T

TE � (abs ((Ii Ti)
n
i=1) E) : (-> ((Ii Ti)

n
i=1) T)

[→-intro]

TE � Erator : (-> ((Ii Ti)
n
i=1) T0) ∀n

i=1 . (TE � Ei :Ti)
TE � (Erator En

i=1) : [Ei/Ii ]
n
i=1T0

[→-elim]

where ∀n
i=1 . Ei is pure if (Ii ∈ FrIdsty [[T0 ]]) [purity restriction]

∀n
i=1 . (TE � Ei :Ti) TE [Ii :Ti ]

n
i=1 � E0 :T0

TE � (let ((Ii Ei)
n
i=1) E0) : [Ei/Ii ]

n
i=1T0

[let]

where ∀n
i=1 . Ei is pure if (Ii ∈ FrIdsty [[T0 ]]) [purity restriction]

∀n
i=0 . (TE [Ii :Ti ]

n
i=1 � Ei :Ti)

TE � (letrec ((Ii Ti Ei)
n
i=1) E0) : [E ′

i/Ii ]
n
i=1T0

[letrec]

where ∀n
i=1 .

(
E ′

i = (letrec ((Ij Tj Ej)
n
j=1) Ii)

)
∀n

i=1 . E ′
i is pure if (Ii ∈ FrIdsty [[T0 ]]) [purity restriction]

TE � Ercd : (recordof (Ii Ti)
n
i=1) TE [Ii :Ti ]

n
i=1 � Ebody :Tbody

TE � (with Ercd Ebody) : [(select Ii Ercd)/Ii ]
n
i=1Tbody

[with]

where Ercd is pure if (∪n
i=1{Ii} ∩ FrIdsty [[Tbody ]]) 
= {} [purity restriction]

All other type rules are as in FLEX/P.

Figure 14.13 The essence of dependent packages in FLEX/P, Part 3.
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tem, such substitutions are critical for tracking the flow of abstract types through
a program. For example, when a procedure with the type of make-transpose
is called on any package (call it Epoint-pkg) satisfying the point-dface interface,
the result has the type

(-> ((p (dtypeof Epoint-pkg))) (dtypeof Epoint-pkg))

in which the operand expression Epoint-pkg has been substituted for the parameter
name point-dpkg. We can now see why the definition of pair-point-2 is well
typed. The type of the application (make-transpose pair-point-dpkg) is

(-> ((p (dtypeof pair-point-dpkg))) (dtypeof pair-point-dpkg))

Since pair-point-1 has the type (dtypeof pair-point-dpkg), the applica-
tion ((make-transpose pair-point-dpkg) pair-point-1) also has the type
(dtypeof pair-point-dpkg).

In a dependent type system, substitutions similar to those performed in
[→-elim] must be performed in the type rule for any construct that declares value
identifiers. Now that types refer to values, any time a value escapes the scope of
a value identifier, that identifier must be replaced with an appropriate expression
if it occurs free in the value’s type. If this were not done, dependent types could
contain free value identifiers that would be meaningless in the same way that
abstract type identifiers exported by unpackexist are meaningless. For example,
in the [let] type rule, free references to let-bound identifiers are replaced by the
corresponding definition expressions in the result type of a let expression. The
[letrec] rule is more complex because the definition expressions are in the scope
of all the letrec-bound identifiers and must be wrapped in a letrec expression
to maintain the scoping of these identifiers. In the [with] rule, each reference to
a field Ii of the record Ercd in the result type is replaced by the record selection
expression (select Ii Ercd).

It is instructive to revisit the rational-number example from Figure 14.9 on
page 866 in the context of dependent types. Consider the following expressions:

((unpackdepend rightist-rat rty rops (select numer rops))

((unpackdepend leftist-rat lty lops (select make-rat lops))

1 2))

((unpackdepend leftist-rat lty1 lops1 (select numer lops1))

((unpackdepend leftist-rat lty2 lops2 (select make-rat lops2))

1 2))

With dependent types, the first expression is ill typed because an attempt is
made to apply a procedure of type (-> ((r (dtypeof rightist-rat))) int)

to a value of type (dtypeof leftist-rat). However, the second expression is
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well typed since the procedure parameter and the argument point both have type
(dtypeof leftist-rat). So dependent types are able to catch the abstraction
violation in the first expression while permitting operations and values of the same
abstract type to interoperate outside of unpackdepend in the second expression.
In contrast, neither expression is well typed with existential packages (because
of the export restriction), and both expressions are well typed with nonce types
(which cannot distinguish different instantiations of a packnonce expression).

14.5.2 Design Issues with Dependent Types

Dependent types are clearly very powerful. However, care must be taken to ensure
that a dependent type system is sound. Moreover, programmers typically expect
that a statically typed language will respect the phase distinction: the well-
typedness of their programs will be verified in a first (terminating) type-checking
phase that runs to completion before the second (possibly nonterminating) run-
time execution phase begins [Car88a, HMM90].

In this section, we shall explore several design dimensions in systems with
dependent types. We shall also see that minor tweaks to the type rules and type-
equivalence rules can have dramatic consequences in terms of which programs
are considered well typed. We shall also see that in some designs for dependent
types the type-checking and execution phases are interleaved and type-checking
may not terminate.

Type Equivalence of Dependent Types

Perhaps the most important design dimension is equivalence on dependent types:
When is (dtypeof E1) considered equivalent to (dtypeof E2)? How this ques-
tion is answered has a significant impact on the properties of the language.

One option is to treat types as first-class run-time entities and dependent
packages as pairs 〈Trep ,Vimpl 〉 of a type Trep and an implementation value Vimpl

that uses Trep as the concrete representation type for the abstract type of the
package. Such pairs are known as strong sums,10 because the type component
serves as a tag that can be used for dynamic dispatch. In this interpretation,
(dtypeof Epkg) extracts the representation type Trep from the pair 〈Trep ,Vimpl 〉
denoted by Epkg . So (dtypeof E1) is equivalent to (dtypeof E2) if their rep-
resentation types are type-equivalent. Since type checking and evaluation are
inextricably intertwined in this design, there is no phase distinction. Further-
more, abstraction is surrendered by making representation types transparent.

10In contrast, existential packages are sometimes called weak sums.
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The Pebble language [BL84] took this approach and used a lock and key mech-
anism (similar to that described in Section 14.2) to support data abstraction.

Another option is to consider (dtypeof E1) to be the same as (dtypeof E2)

if the expressions E1 and E2 are “equivalent” for a suitable notion of equivalence.
This is the approach taken in the [dtypeof-≈] rule in Figure 14.12, which is
parameterized over a notion of equivalence (≈depends) that is not defined in the
figure. There are two broad approaches to defining ≈depends :

• Value equivalence: At one end of the spectrum, we can interpret two expres-
sions to be the same under ≈depends if they denote the same package in the
usual dynamic semantics of expressions. In the general case, this implies that
type checking may require expression evaluation. As with strong sums, type
checking in this approach may not terminate and may need to be performed
at run time. Even worse, determining if two package values are the same in
general requires comparing procedures for equality, which is uncomputable! In
practice, some computable conservative approximation for procedure equality
must be used. Such an approximation must necessarily distinguish some proce-
dures that are denotationally equivalent. A common technique is to associate
a unique identifier with each run-time procedure value and to say that two
procedures are equal only if they have the same identifier.

• Static equivalence: In order to preserve the phase distinction and static type
checking (with no run-time requirements and a guarantee that type checking
terminates), we desire a definition of ≈depends that is statically computable.
The easiest solution is to say that two dtypeof types are equal if their body
expressions are textually identical, and this simple solution is the one that we
adopt for our dependent package system.

However, any conservative approximation of expression equivalence will fail to
treat as equivalent certain dependent types that the programmer knows to be
equivalent. For example, all of the following dependent types are intuitively
equivalent, but will be considered distinct according to our “textually identical”
criterion:

(dtypeof pkg1)

(dtypeof (if #t pkg1 pkg2))

(dtypeof (let ((pkg pkg1)) pkg))

(dtypeof (fst (pair pkg1 pkg2)))
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There are other choices for ≈depends besides textual identity. We could, for ex-
ample, allow the expressions in equivalent dtypeofs to admit alpha-renaming.
We could allow certain simple evaluation steps or substitution steps to take
place. As long as the equivalence is statically computable and ensures that
expressions that denote different values are not equal, the system is sound. We
refer to any such system as a static dependent type (SDT) system.

Soundness

For a dependent type system to be sound, we need to guarantee that a value
that uses a type exported from one package cannot masquerade as a value of
some other type — e.g., a point from proc-point-dpkg cannot be passed to an
operation from pair-point-dpkg.

One aspect of soundness is preventing a subtle form of name capture that can
occur when substitutions are performed in a dependent type system. Consider
the following example:

(let ((trans (make-transpose pair-point-dpkg))

(pair-point-dpkg proc-point-dpkg))

(trans (unpackdepend pair-point-dpkg point pt-ops

(with pt-ops

(make-pt 1 2)))))

If this expression is type-checked in a naive way, it will be considered well typed
because trans has type

(-> ((p (dtypeof pair-point-dpkg))) (dtypeof pair-point-dpkg))

and the unpackdepend expression has type (dtypeof pair-point-dpkg). But
the occurrences of pair-point-dpkg in the type of trans refer to the exter-
nal definition of pair-point-dpkg while the occurrence of pair-point-dpkg in
the type of the unpackdepend expression refers to the let-bound definition of
pair-point-dpkg, which really denotes proc-point-dpkg. The application of
trans must be treated as ill typed in a sound type system.

One way to prevent this form of name capture is to add an appropriate side
condition to the type rule of every construct that declares value identifiers. In our
system, we have taken the simpler approach of restricting type environments (see
Figure 14.13) so that a name already appearing in a type environment cannot
locally be rebound. In this approach, the above expression is ill typed because
pair-point-dpkg is already bound in the enclosing type environment. The re-
striction that a name cannot be shadowed in an inner scope might seem strin-
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gent, but in practice it can be satisfied by automatically alpha-renaming expres-
sion identifiers in a program so that all logically distinct variables are uniquely
named.11 As mentioned previously, alpha-renaming of type (rather than expres-
sion) identifiers is useful for implementing the import restriction in the [dpack]
and [dunpack] type rules.

A second aspect of soundness is that in a dependent type (dtypeof Epkg),
the expression Epkg must be pure — i.e., it must not vary with state. This is true
whether a language uses value equivalence or static equivalence to determine type
equivalence. In a language with mutation, the same syntactic expression might
have different meanings at different times. This purity property is important
because it guarantees that different occurrences of (dtypeof Epkg) in the same
naming context denote the same abstract type.

As an example of what can go wrong in the presence of side effects, consider
the following expression:

(let ((c (cell pair-point-pkg)))

(let ((q (unpackdepend (^ c) pt ops

((select make-pt ops) 1 2))))

(begin (:= c proc-point-pkg)

((unpackdepend (^ c) pt ops

(select pt-x ops)) q))))

When cell c contains pair-point-pkg, the pair point q is created and has type
(dtypeof (^ c)). Then c is modified to contain proc-point-pkg, and the
procedural point operation pt-x (with type (-> (p (dtypeof (^ c))) int))
is applied to q. It should be an abstraction violation to apply the procedural
point operation pt-x to a pair point, but the type system encounters no error,
because the argument type of pt-x and the type of q are both (dtypeof (^ c)).
The type system does not track the fact that (^ c) refers to different packages
at different times.

We address this problem by qualifying the type rules with purity restric-
tions that guarantee that every dependent type generated by the type system (as
opposed to being written by the programmer) contains a pure expression. In the

11Alpha-renaming can sometimes be performed in a separate pass that precedes type checking.
But this is not possible in languages with constructs that extend the current scope with bindings
from a structure with named components, such as FLEX’s with construct for records, or the
open construct for opening modules in the FLEX/M language presented in Section 15.2. For
such constructs, the type of the record/module is needed to determine the scope of names, so
alpha-renaming in such constructs must be delayed until type-checking time. Renaming need be
performed only on references to the named components in bodies of the with/open constructs,
not within the records/modules on the named components themselves.
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[dunpack] rule, which introduces all dependent types that are generated by the
type system, the purity restriction requires that Epkg be pure in (dtypeof Epkg).
The purity restrictions in the other type rules guarantee that the body of a de-
pendent type remains a pure expression when substitutions are performed on it.
Exercise 14.19 shows that the type system is sound even if the programmer writes
dependent types containing impure expressions.

Of course, it is undecidable to know when an expression is pure. A sim-
ple conservative approximation is to require that Epkg be a syntactic value, a
notion introduced in Section 8.3.6 (page 428) and used in polymorphic types
(Section 12.2, page 734) and in the type reconstruction system of FLARE (Sec-
tion 13.5.1, page 816). However, we will see in Chapter 15 that this approximation
prohibits many expressions we would like to write. A better alternative is to use
an effect system (see Chapter 16) to conservatively approximate pure expressions.

The issue of tracking side effects can be quite subtle if an abstract type system
with dependent types allows packages to be loaded from an external file system,
which is a mutable storage medium. This issue is explored in Section 15.6.

Substitutions

Another design dimension involves the details of where substitutions are per-
formed in the type rules. In the [dunpack] rule, substitutions are performed “on
the way in” — i.e., on types and expressions appearing in the rule premises. In
rules for other binding constructs, substitutions are performed “on the way out”
— i.e., on the result type in the rule conclusion. In any of these rules, it is possible
to change where substitutions are performed. This can affect which expressions
are considered well typed.

For example, consider the following expression:

Eleftist =
(let ((leftist1 (make-rat-impl #t))

(leftist2 (make-rat-impl #t)))

((unpackdepend leftist1 lty1 lops1 (select numer lops1))

((unpackdepend leftist2 lty2 lops2 (select make-rat lops2))

1 2)))

Intuitively, this expression is type safe because leftist1 and leftist2 both
refer to the same package. But using the [let] type rule, the expression is ill
typed because a procedure of type (-> ((r (dtypeof leftist1))) int) is ap-
plied to a value of type (dtypeof leftist2). The problem is that the substi-
tution that shows that both leftist1 and leftist2 are the same expression,
(make-rat-impl #t), is performed on the way out rather than on the way in.
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Performing substitutions on the way in often enables more dependent types
to be considered equal. For example, consider the following variant of the [let]
rule, which performs substitutions on the way into let expressions rather than
on the way out:

∀n
i=1 . (TE � Ei :Ti) TE � [Ei/Ii ]

n
i=1E0 :T0

TE � (let ((Ii Ei)
n
i=1) E0) :T0

[let ′]

where ∀n
i=1 . Ei is pure if (Ii ∈ FrIdsexp [[E0 ]]) [purity restriction]

If [let ′] is used in place of [let], Eleftist is well typed, because a procedure with
type (-> ((r (dtypeof (make-rat-impl #t)))) int) is applied to a value
with type (dtypeof (make-rat-impl #t)).

From this example, it seems that [let ′] is a “better” type rule than [let]. Why
do we use the latter rather than the former as the default type rule for let? The
reason is that the purity restriction for [let ′] is much more stringent than the one
for [let]. The [let ′] rule will not work when any definition expression whose name
is used in the body performs a side effect. But we need some way to name the
result of evaluating an impure expression, and let is the most convenient way to
do this, so we stick with the original [let] rule. Alternatively, we could adopt a
more sophisticated version of the [let ′] rule that substitutes only those definitions
that are pure on the way into the rule.

It is also worth noting that the default [let] rule nicely handles cases in which a
package is computed by an impure expression. For example, suppose that Eimpure

is an impure expression that returns a package. For instance, it might choose a
package based on the value of a mutable counter or by reading input from the
user. Then we can still have expressions of the form

(let ((pkg Eimpure)) Ebody)

where Ebody manipulates the value pkg of a particular evaluation of Eimpure . In
the type checking of Ebody , any dependent types mentioning the package value
will use the pure identifier pkg rather than the impure Eimpure . There will be a
problem only if there is an attempt to return a dependent type mentioning pkg

outside the scope of the let. The purity restriction of the [let] rule prevents this
from happening. Thus, in this case the system gracefully degrades to what is
essentially the export rule from existential packages.

Why does the [dunpack] rule perform substitutions on the way in rather than
the way out? As suggested by our study of the [let ′] rule, this allows certain
expressions to be treated as well typed that would not otherwise be well typed.
There are issues involving impure expressions similar to those we saw with [let ′],
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but the fact that let can be used to give a pure name to any impure expression
lets us have our cake and eat it too. This is explored in Exercise 14.17.

Bundling Abstract Types

A final dimension involves how abstract types are bundled up into and extracted
from packages. In the system we have studied so far, dependent packages have
a single abstract type that is extracted via dtypeof; but more generally, a de-
pendent package can have several abstract type components. These are typically
named and extracted in a record-like fashion. For example, in a system in which
packages can export multiple abstractions, we could write (dselect I Epkg) to
select named types from a package Epkg just as we select named values from
records. We will use dselect rather than dtypeof in the FLEX/M module
system presented in Chapter 15.

Exercise 14.16 Dependent types permit code to be abstracted over particular imple-
mentations of a data abstraction. The type rules of this section require that such abstrac-
tions be curried by the programmer because of the scoping of parameter names in arrow
types. The make-transpose procedure studied above is an example of such currying. In
its type,

(-> ((point-dpkg point-dface))

(-> ((p (dtypeof point-dpkg)))

(dtypeof point-dpkg))),

the argument type of the transposition procedure refers to point-dpkg.
Suppose that we want to modify the type rules for a dependently typed language

to implicitly curry multiple parameters — i.e., to allow the types of later parameters
to refer to the names of earlier parameters. For example, in the modified system, an
uncurried form of make-transpose could have the type

(def-type uncurried-make-transpose-type

(-> ((point-dpkg point-dface) (p (dtypeof point-dpkg)))

(dtypeof point-dpkg)))

a. Modify the definition of the abs clause of FrIdsexp to handle implicit currying.

b. Curiously, the [→-intro] rule does not need to change to support implicitly curried
parameters.12 The [→-elim] rule, however, must change. Write a new [→-elim] rule
that supports procedure parameter types that refer to previous parameters. E.g.,
a procedure with type uncurried-make-transpose-type must be applied to two
arguments where the type of the second argument depends on the value of the first.

12In a system with kinds (see Section 12.3.2), the [→-intro] rule would change because we
would need the scope to be explicit to verify that dependent types are well formed.
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Exercise 14.17 Thai Ping suggests the following alternative [dunpack ′] type rule that
does dependent type substitutions on the way out of unpackdepend rather than on the
way in.

TE � Epkg : (packofdepend τabs Timpl)

TE [Iimpl : [τty/τabs ]Timpl ] � Ebody :Tbody

TE � (unpackdepend Epkg τty Iimpl Ebody) : [(dtypeof Epkg)/τty ]Tbody

[dunpack ′]

where τty �∈ ∪I∈FrIds[[Ebody ]]

`
FrTyIdsty [[TE (I )]]

´
[import restriction]

Epkg is pure if (τty ∈ FrTyIdsty [[Tbody ]]) [purity restriction]

Unlike [dunpack], the [dunpack ′] rule is more similar to the unpacking rule for existential
packages than nonce packages.

a. Using dependent packages, redo part b of Exercise 14.10 in Section 14.4 using (1) the
original [dunpack] rule and (2) Thai’s [dunpack ′] rule. Which rule do you think is
better and why?

b. Thai claims that [dunpack ′] is better than [dunpack] in some situations where Epkg

contains side effects. Write an expression that is well typed with [dunpack ′] but not
[dunpack].

c. For any expression that is well typed with [dunpack ′] but not [dunpack], it is possible
to make the expression well typed using [dunpack] by naming Epkg with a let. Show
this in the context of your expression from the previous part.

Exercise 14.18 Ben Bitdiddle looks at the type rules in Figure 14.13 and your solutions
to Exercises 14.16 and 14.17 and complains that all the substitutions make him dizzy.
He suggests leaving them all out except for those in the [→-elim] rule. Under what
assumptions is his idea sound? Write a type-safe program that type-checks under the
given rules but does not type-check under Ben’s.

Exercise 14.19 In all dependent types (dtypeof Epkg) generated by the type system
for a well-typed program, Epkg is guaranteed to be a pure, well-typed expression that
denotes a dependent package. But the programmer can write nonsensical explicit depen-
dent types in which Epkg is impure, does not denote a package, or is ill typed.

a. Show that an expression containing nonsensical dependent types can still be well
typed.

b. Argue that well-typed programs containing nonsensical dependent types are still
sound.

c. Describe modifications to the type system that would prevent the programmer from
writing nonsensical dependent types.
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Notes

Abstract types and modules (the subject of the following chapter) are intimately
related: both are linguistic mechanisms to support modularity in software sys-
tems. Data abstraction is a software engineering methodology in which programs
are decomposed into software modules, each implementing one or more related
data structures and their associated operations [Par71, Par72]. For example,
data abstraction was the guiding principle of the design of CLU [L+79, LSAS77,
LZ74, LZ75], whose cluster mechanism provides a way to specify abstract types.
CLU’s clusters were also the unit of program decomposition (modules). A CLU
program uses free references to cluster names in order to refer to the carrier of an
abstract type. Thus CLU’s type names are similar to nonce types, except that,
because only one implementation of a cluster is allowed in any given program,
the names are programmer-friendly.

The remainder of this section will focus on the underlying abstraction mech-
anisms related to this chapter. For more on data abstraction in module systems,
see the notes at the end of Chapter 15 on page 940.

Reynolds observed that user-defined types and procedural data structures
are complementary mechanisms for data abstraction [Rey75]. With user-defined
types, the type system hides the data representation shared by a set of opera-
tions. Procedural data abstraction (like the message-passing points in Figure 14.1
on page 843) hides the data representation in the environments of one or more
procedures. The decentralized nature of procedural data abstractions allows dif-
ferent procedures to use different representations for the same abstraction but
prohibits optimizations based on the representation. Cook expands on this idea
in [Coo91], where he equates procedural data abstraction with object-oriented
programming.

Morris showed how to use scoping and first-class procedures to provide data
abstraction via a dynamic lock and key mechanism [Mor73]. Morris referred to
sealing and unsealing an object.

Existential types are due to John Mitchell and Gordon Plotkin [MP84], and
there is a nice discussion in [Mit96, pp. 679–685]. [CW85] discusses existential
types and compares existential types to data abstraction in Ada.

Interestingly, existential types do not actually add any power to a language
with universal polymorphism, because any program written using existential
types can be rewritten to an equivalent program using universal polymorphism
([Mit96, p. 701], [Pie02, Section 24.3]).
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Nonce types express the idea that each instantiation of an abstract type has a
unique name. A language may simply stamp each abstract type implementation
with such a unique identifier and use this for testing type equality. This im-
plementation strategy was formalized in the notion of type generativity in SML
[MTH90]. See [Ler96] for a good discussion of type generativity.

[Mac86] uses the inability to refer to the type implemented by a value of exis-
tential type, i.e., the lack of a witness operator, to motivate the use of dependent
types for this purpose. Luca Cardelli’s Quest language [Car89] employed first-
class existential types and dependent type names to solve this problem. Quest’s
dependent type expressions were limited to structured identifiers, i.e., sequences
of one or more identifiers separated by dots (such as m.t) to simplify type com-
parison and to overcome issues of side effects.

In [Car88a], Cardelli discusses the phase distinction. He describes how to take
a dependent type system and reestablish a phase distinction by using kinds and
restricting dependent types. For more on the phase distinction, see [HMM90].
The central issue of type equivalence in a dependent type system is discussed in
[AH05], especially pages 53–54.

The static dependent type system presented here is based on [SG90]. The
dependent arrow types above are often referred to as Π types in the literature
(see, for example, [Mac86] and [Mit96, Chapter 9]).

The introduction of abstraction over types leads to the question of whether
the language design uses kinds (sorts, etc.) to specify the well-formedness of
types. If not, then the question arises whether type : type. This is attractive in
a language with dependent types, because then the ordinary mechanism of proce-
dure abstraction can be used to express dependent functions. But there are some
drawbacks. Girard showed that logics with type : type are inconsistent [Gir71].
[MR86] demonstrated that such type systems are nonnormalizing and suffer from
other difficulties. See [Car86] for a summary of these issues in a language with
type : type. [HH86] demonstrates that even without the type : type axiom, a
language with impredicative strong existential types is logically inconsistent.

The programming language Pebble [BL84, LB88], on the other hand, took
exactly this approach and included a completely general system of dependent
types. Pebble included strong existential types (also known as strong sums)
and dependent types that could contain any value. Type checking in Pebble
could fail to terminate if values in dependent types looped. Interestingly, Pebble
does not actually protect against changes in abstract type implementation, and
so it uses a lock and key (they call them passwords) mechanism to guard the
representation of abstract types. They choose this over a generative mechanism
such as that used in ML.
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Cayenne [Aug98] is another language with a general system of dependent
types in which type checking may not terminate.

For a somewhat different of view in which a type is its operation set, see
the programming language Russell [BDD80]. Russell included syntactic con-
straints that guaranteed that certain expressions were pure. Russell also in-
cluded a notion of dependent type.

The notion of dependent types is quite general, and its study goes far beyond
the constrained use we have made of it here. The idea of completing all the pos-
sible sorts of abstraction mechanism (mapping values to values, types to values,
types to types, and values to types) is neatly summarized by Barendregt’s lambda
cube [Bar91]. See [Pie02, Section 30.5] for a nice summary of the general notion
of dependent type with examples. [AH05] is an extensive treatment of dependent
types and their associated type rules and kind rules.

A classic example of a generalized notion of dependent type is the use of
an array with integer bounds. In such a language, an array-type constructor
would construct a type from an element type and an integer array size. A de-
pendent procedure to sum the elements of an array would take an integer size
and an array whose type included that size; the type of the procedure’s second
parameter depends on the value of the first parameter. General dependent types
increase the expressiveness of a language’s type system and permit many useful
static checks, such as array bounds checking and ensuring that operations are not
performed on empty lists. These benefits have little to do with abstract types.
Of course, the challenge of such systems is, as above, striking a balance among
expressiveness, decidability, and complexity. Examples of such systems include
the work on Dependent ML (DML) [XP98, Xi99a, XP99, Xi99b, Xi01, Xi07],
whose type system solves systems of constraints on dependent type expressions.
[CX05] describes the Applied Type System (ATS) framework for formalizing and
designing advanced type systems. This extends a simple constraint solver with
the capacity to accept programmer-supplied proofs of complex constraints.





15

Modules

Many the voices, one great music,
Part of me and part of you.

— Marty Haugen, “One Ohana”

15.1 An Overview of Modules and Linking

It is desirable to decompose a program, especially a large one, into modular
components that can be separately written, compiled, tested, and debugged.
Such components are typically called modules but are also known as packages,
structures, units, and classes.1 Ideally, each individual module is described by
an interface that specifies the components required by the module from the
rest of the program (the imports) and the components supplied by the module
to the rest of the program (the exports). Interfaces often list the names and
types of imported and exported values along with informal English descriptions
of these values. Such interfaces make it possible for programmers to implement
a module without having to know the implementation details of other modules.
They also make it possible for a compiler to check for type consistency within a
single module.

Modules support software engineering by bundling up items of related func-
tionality that can be used (and reused) by other program components. Typically,
modules are record-like entities that have both type and value components. Like
records, modules support nonhierarchical scoping and name control (see Sec-
tion 7.2.3).

Modules often provide the means of expressing abstract types (Chapter 14) in
addition to being a mechanism for decomposing a program into parts. Abstract
types allow a language to support and enforce a separation of the concerns of a
module’s implementer and its user (or client), and are therefore central to pro-
gram modularity. The key differences between the modules discussed here and

1In many languages, such as C, files serve as de facto modules, but in general the relationship
between source files and program modules can be more complex.
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the packages we studied in Sections 14.3–14.5 are that (1) a single module can
define bindings for multiple abstract types and values and (2) there is an expec-
tation that modules can be written and compiled separately and later combined
to form a whole program.

The process of combining modules to form a whole program is called linking.
The specification for how to combine the modules to form a program is written
in a linking language. Linking is typically performed in a distinct link time
phase that is performed after all the individual modules are compiled (compile
time) but before the entire program is executed (run time).

A crude form of linking involves hard-wiring the file names for imported mod-
ules within the source code for a given module. In more flexible approaches, a
module is parameterized over names for the imported modules and the linking
language specifies the actual modules to be used for the parameters. A good
linking language should check that the interface types of the actual module ar-
guments are consistent with those of the formal module parameters, a feature
that is especially important in modern systems with dynamically loaded mod-
ules. In this case, the linking language is effectively a simply typed programming
language.

Often, a linking language simply lists the modules to be combined. For ex-
ample, the object files of a C program are linked by supplying a list of file
names to the compiler/linker. A linking language can be made more powerful by
adding other programming language features that allow more computation to be
performed during the linking process. For instance, it is useful to have a function-
like entity, known as a functor, that takes modules as arguments and/or returns
a module as a result. Functors can express parameterized modules, such as a
binary-search-tree module abstracted over a type that admits a total ordering.

The desire to make linking languages more expressive is often in tension with
the desire to guarantee that (1) the linking process terminates and (2) mere mor-
tals can reliably understand and use the sophisticated types that often accompany
more expressive linking languages. An extreme design point is to make the linking
language the same as the base language used to express the modules themselves.
Such first-class module systems are powerful, because arbitrary modules can
be created at run time and the decision of which module to import can be based
on dynamic conditions. Functors need not be special: they are ordinary proce-
dures that happen to operate on modules. These systems blur the distinction
between compile time, link time, and run time,2 and for any Turing-complete

2In fact, modern program environments include dynamically loaded shared code, even though
they typically do not support first-class modules. Java includes a very flexible dynamic class
loader.
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base language, the compilation process (including type checking) and/or linking
process may not terminate.

To address these problems, linking is usually specified in a different language
from the base language — a language that is suitably restricted to guarantee
that a terminating linking phase follows a terminating compilation phase and
precedes the program execution phase. In such second-class module systems,
modules are not first-class values that can be manipulated in the base language.
It is still possible to have an expressive functor mechanism in such a system that
is separate from the base language’s notion of function. Ada’s generic packages,
CLU’s parameterized clusters, and functors in many ML dialects are examples
of such a mechanism.

In the rest of this chapter, we present a first-class module system that will
serve as a vehicle for studying various dimensions of module-system design. Our
relatively simple module system combines in an interesting way several key ideas
that we have explored so far: static dependent types, sum-of-products data types
and pattern matching, universal types, and subtyping. By no means a full-fledged
system, it nevertheless achieves three goals essential to any module system:

• separate compilation of independently written program components that can
then be linked together in a type-safe way;

• a means of expressing abstract types; and

• namespace control for values and types.

A production system would benefit from other features, such as modules with
bindings for concrete (i.e., nonabstract) types, modules with macro specifications
for syntactic extensions, and more flexible relationships between interfaces and
modules. Section 15.7 discusses limitations of the system we present.

15.2 An Introduction to FLEX/M

We explore the design of a first-class module system in the context of FLEX/M,
an extension of the explicitly typed FLEX/SP language from Section 12.2.2,
which supports subtyping and universal polymorphism. FLEX/M adds the fol-
lowing features to FLEX/SP:

• static dependent types that guarantee a phase distinction between type check-
ing and program execution (though not between linking and execution);
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• module definitions that allow multiple abstract type constructor definitions and
value definitions per module (the dependent package system in Section 14.5
allows only one abstract type per package);

• a dselect construct that selects type constructor components from module
expressions (this generalizes the dtypeof construct in the dependent package
system);

• sum-of-products data-type definitions for defining abstract-type constructors
like pairof, listof, and treeof (the dependent package system supports the
expression of abstract types but not abstract-type constructors);

• data-type constructor and deconstructor procedures that mediate between con-
crete and abstract views of data and thus play the role of the up and down

procedures in the dependent package system;

• an implicit projection feature that allows omitting many explicit projections
(pcall) of polymorphic values;

• pattern matching to simplify data-type deconstruction; and

• the ability to load first-class modules from a file system.

Though all widely used languages have second-class modules, we have chosen to
explore a first-class system for two reasons:

1. It combines several features discussed in the book into a system of considerable
power and flexibility (the dependent package system seen in Section 14.5, poly-
morphism, subtyping, and sum-of-products data types with pattern match-
ing).

2. It forces us to address issues of dynamic linking, particularly its impact on
type safety. All widely used programming systems support dynamic linking
and loading, i.e., the interleaving of code linking and loading with program
execution. For example, Java’s run-time system (and users of the Java class
loader facilities) must deal with many of the same issues we encounter when
we describe module loading in Section 15.6.

Figure 15.1 presents the new expression and type syntax that FLEX/M adds
to FLEX/SP. We will first explain these new constructs using informal English
descriptions and examples. We will formally define their static semantics in
Section 15.4 and their dynamic semantics in Section 15.5. Figure 15.2 presents
the new syntactic sugar constructs.
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Modified Syntax

P ∈ Prog ::= (flex/Mk ((Ifml TfmlTy)
∗) Ebody)

E ∈ Exp ::= . . . FLEX/SP expressions except letrec . . .
| (module DD∗ VD∗) [ModuleCreate]
| (open Emod Ebody) [ModuleOpen]
| (load YfileName TfileTy) [LoadFromFile]

O ∈ Primop ::= . . . FLEX/SP primitives except pair and list operators . . .

ExpKwd = KeywordFLEX/SP ∪ {load, match, module, mselect, open}
I ∈ Ident = IdentFLEX/SP − (ExpKwd ∪ TypeKwd ∪ TyConId)

DD ∈ DatatypeDefinition ::= (def-datatype AT absTy (Iconstructor T ∗
compTy)

∗)

VD ∈ ValueDefinition ::= (def Iname TdefTy Edef )

T ∈ Type ::= . . . FLEX/SP types except pairof, listof, trec, and tletrec . . .
| υ [UnificationVariable]
| (-> ((IargName Targ)

∗) Tresult) [ParameterizedArrowType]
| (moduleof (AT ∗

absTy) (Iname TdefTy)
∗) [ModuleType]

| (TC tycon T ∗
arg) [TyConApp]

AT ∈ AbstractType ::= (θtycon τ∗
param)

TC ∈ TypeConstructor ::= θtycon [TyConName]
| (dselect θtycon Emod) [DependentTyConSelection]

υ ∈ UnificationVar = {Y | Y begins with ?} ; for implicit projection
; (Section 15.4.5)

θ ∈ TyConId = {Y | Y ends with of} − TypeKwd

TypeKwd = BaseTypeFLEX/SP ∪ {->, cellof, moduleof, oneof,
prodof, recordof, seqof}

τ ∈ TypeId = SymLit − (TypeKwd ∪UnificationVar ∪ TyConId)

Figure 15.1 Modified syntax for FLEX/M, an extension to FLEX/SP with first-class
modules.

A module is a record-like entity created by the module construct. It has
two kinds of components: (1) abstract type components declared using the
def-datatype declaration similar to the one in Section 13.5.4 and (2) value
components declared using the def declaration, which includes an explicit type
TdefnType for the definition expression Edefn . Some module systems (such as those
of SML, OCAML, and FX-91) allow both concrete and abstract type defini-
tions in modules. Although FLEX/M could be extended to support concrete
type definitions, they are omitted for simplicity.
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New Syntactic Sugar

(-> (Tn
i=1) T0) �ds (-> ((Ii Ti)

n
i=1) T0), where I n

i=1 are fresh

(mselect I Emod) �ds (open Emod I )

(letrec ((Ii Ti Ei)
n
i=1) Ebody) �ds (open (module (def Ii Ti Ei)

n
i=1) Ebody)

(match Edisc (PT E)∗) where PT ∈ Pattern ::= L | I | _ | (I PT ∗)

The desugaring for match is explained in Section 15.4.6.

(flex/M ((Ih Th)
m
h=1) Ebody (def-type τi Ti)

n
i=1 DDp

j=1 VDq
k=1)

�ds (flex/Mk ((Ih Th)
m
h=1)

(open (load standard-library.flxm TstandardLib)

{Assume standard-library.flxm contains a module with}
{standard bindings and TstandardLib is the type of this module.}

(let-type* ((τi Ti)
n
i=1) {Type definitions from program}

(open (module DDp
j=1 VDq

k=1)

Ebody))))

Figure 15.2 New syntactic sugar for FLEX/M, an extension to FLEX/SP with first-
class modules.

In a module expression, all value-component names and the names of all con-
structor and deconstructor procedures introduced by the data-type declarations
are required to be distinct. The scope of all these names is all the Edefn expres-
sions within the value definitions, so these definitions are mutually recursive.

As an example of a module expression, consider ElistModule in Figure 15.3,
which implements a module defining the unary type constructor listof and its
associated operations. The listof type constructor is declared by

(def-datatype (listof t)

(null)

(cons t (listof t)))

which also implicitly defines constructor and deconstructor procedures with the
types given in Figure 15.4.3 These types are similar to those introduced for
FLARE’s def-datatype in Section 13.5.4, except that in the explicitly typed
FLEX/M language, polymorphism is expressed via forall types rather than

3Like the dependent package system of Section 14.5, FLEX/M has dependent types, so it
supports parameterized arrow types (-> ((Ii Ti)

n
i=1) T0) that allow procedure result types to

depend on the values of the procedure’s arguments. However, when there is no such dependency,
we write the sugar form (-> (Tn

i=1) T0), which does not require explicit parameter names.
For example, all arrow types in Figures 15.3 and 15.4 are sugared.
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ElistModule =
(module

(def-datatype (listof t)

(null)

(cons t (listof t)))

(def null? (forall (t) (-> ((listof t)) bool))

(pabs (t)

(abs ((xs (listof t)))

(match xs

((null) #t)

((cons _ _) #f)))))

(def car (forall (t) (-> ((listof t)) t))

(pabs (t)

(abs ((xs (listof t)))

(match xs

((null) (error car-of-empty-list t))

((cons a _) a)))))

(def cdr (forall (t) (-> ((listof t)) (listof t)))

(pabs (t)

(abs ((xs (listof t)))

(match xs

((null) (error cdr-of-empty-list (listof t)))

((cons _ d) d)))))

)

Figure 15.3 A module expression ElistModule that has type TlistModule .

generic types.4 Although FLEX/M data-type declarations only allow the defi-
nition of type constructors, it is an easy extension to have them define types as
well (see Exercise 13.15). ElistModule also explicitly defines the predicate proce-
dure null? and the selector procedures car and cdr. These have polymorphic
types introduced via the pabs construct that can be explicitly eliminated using
the pcall construct (see Section 12.2.2).

4Another difference is that type-constructor names in FLEX/M are required to end in
of (e.g., listof, pairof, tableof) and cannot be the same as type-constructor keywords
(e.g., ->, moduleof, cellof). Expression identifiers must exclude all type-constructor names
and keywords so that the sugar form (-> (Tn

i=1) T0) for parameterized arrow types of
the form (-> ((Ii Ti)

n
i=1) T0) is unambiguous. Without these restrictions, examples like

(-> ((foo int)) bool) would be ambiguous; (foo int) could be either an explicit parameter
name and type (Ii Ti) in a parameterized arrow type or a type Ti =(TC T ) in the sugared
form of an arrow type that is an application of a unary type constructor.
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null : (forall (t) {t is the list element type}
(-> () (listof t)))

null~ : (forall (r t) {r is the return type; t is the list element type}
(-> ((listof t) {type of datum to deconstruct}

(-> () r) {type of success continuation}
(-> () r)) {type of failure continuation}
r)) {return type of deconstructor}

cons : (forall (t) {t is the list element type}
(-> (t (listof t)) (listof t)))

cons~ : (forall (r t) {r is the return type; t is the list element type}
(-> ((listof t) {type of datum to deconstruct}

(-> (t (listof t)) r) {type of success continuation}
(-> () r)) {type of failure continuation}
r)) {return type of deconstructor}

Figure 15.4 Types of the constructor and deconstructor procedures introduced by the
def-datatype declaration in ElistModule .

Since it is cumbersome to eliminate forall types using the explicit projec-
tion construct pcall, FLEX/M includes an implicit projection feature that
allows many pcalls to be omitted. In particular, if the result of projecting a
polymorphic value is a procedure that is applied directly to arguments, and it is
possible to determine the type of the procedure’s result unambiguously from the
types of the arguments, then the pcall may be omitted.

We formalize implicit projection in Section 15.4.5, but will use it liberally in
the examples of this section. For instance, here is a version of a map procedure
with explicit projections:

(def map (forall (s t) (-> ((-> (s) t) (listof s)) (listof t)))

(pabs (s t)

(abs ((f (-> (s) t)) (xs (listof s)))

((pcall cons~ s) xs

(abs ((y s) (ys (listof s)))

((pcall cons t) (f y)

((pcall map s t) f ys)))

(abs () ((pcall null t)))))))

From the type (-> (s) t) of f and the type (listof s) of ys, it is easy
to determine that the recursive call to map must be projected onto s and t

and must return a result of type (listof t). So implicit projection allows
((pcall map s t) f ys) to be simplified to (map f ys). Similar reasoning al-
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lows the (pcall cons t) to be simplified to cons and the (pcall cons~ s) to
be simplified to cons~. However, the type (listof t) for the null application
cannot be determined from its (nonexistent) arguments, so explicit projection is
still required in this case. With implicit projection, the map abstraction can be
simplified to

(pabs (s t)

(abs ((f (-> (s) t)) (xs (listof s)))

(cons~ xs

(abs ((y s) (ys (listof s)))

(cons (f y) (map f ys)))

(abs () ((pcall null t)))))))

Explicit deconstructor applications can be hidden using the pattern matching
construct presented in Section 10.5. Using match (as well as implicit projection),
the map abstraction can be further simplified to

(pabs (s t)

(abs ((f (-> (s) t)) (xs (listof s)))

(match xs

((cons y ys) (cons (f y) (map f ys)))

((null) ((pcall null t))))))

The match construct can be desugared by a process similar to the one described
in Figure 10.27 on page 603, except that the desugaring functions must take ad-
ditional arguments bearing type information needed to deduce explicit types re-
quired by FLEX/M. This typed match desugaring is discussed in Section 15.4.6.

The type of a module, also known as its signature, is a moduleof type that
lists the abstract type constructors of a module and the types of each of the
named value components. Each type constructor has a parameter list whose
purpose is to document the number of parameters. In a well-formed moduleof

type, all type-constructor names must be distinct and all value-component names
must be distinct.

As an example of a moduleof type, Figure 15.5 presents the type TlistModule

of ElistModule . In the abstract type (listof t) at the beginning of the moduleof

type, listof is a binding occurrence of a type-constructor name, and all other
occurrences of listof in the moduleof type refer to this binding occurrence.
In contrast, the t in (listof t) is just a dummy name indicating that the
listof constructor takes one argument. It does not have to be the same as the
element type used in any of the forall types. Similar comments hold for the
def-datatype declaration (listof t) in ElistModule .

Because the listof type constructor and list operations can be specified in a
user-defined module, these are not kernel constructs in FLEX/M. Similarly, the
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pairof type constructor and pair operations are not kernel FLEX/M constructs
(see Exercise 15.1). All recursive types in FLEX/M are specified via data-
type declarations, so there is no need for the trec or tletrec constructs from
Section 11.8.6.

The named type and value components of the module denoted by Emod are
made available to a client expression Ebody via (open Emod Ebody), which is the
module analogue of with for typed records (see Section 11.8.1). For example,
if list-module is a name for the module ElistModule from Figure 15.3, then an
integer-list doubling procedure can be expressed as

EdblProc = (open list-module

(letrec ((dbl (abs ((xs (listof int)))

(match xs

((null) ((pcall null int)))

((cons y ys)

(cons (* 2 y) (dbl ys)))))))

dbl))

Opening list-module makes the listof type constructor and its associated
constructors and deconstructors available for use in the dbl abstraction.

A single value named I can be selected from a module Emod via the construct
(mselect I Emod), which is just syntactic sugar for (open Emod I). In many
languages, this module selection is expressed via the dot notation Emod.I .

A type constructor named θ can be selected from a module Emod via the con-
struct (dselect θ Emod), which is written in many languages as Emod.θ. This
is a dependent type constructor, because it depends on the value expression
Emod . Dependent type constructors naturally arise in the context of open ex-
pressions. For instance, what is the type of EdblProc in the open example above?
Intuitively, it has the type (-> ((listof int)) (listof int)); but this type
is exported out of (open list-module . . . ), where the listof type constructor
is not defined. To handle this situation, we use a dependent type constructor to
give a type to EdblProc:

EdblProc : (-> (((dselect listof list-module) int))

((dselect listof list-module) int))

For example, this type allows the type system to show that the application

(EdblProc (open list-module

(cons 17 ((pcall null int)))))

is well typed, because the list has type ((dselect listof list-module) int),
which matches the argument type of the procedure. (Note the use of implicit
projection for cons.)
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TlistModule =
(moduleof

((listof t))

(null (forall (t) (-> () (listof t))))

(null~ (forall (r t) (-> ((listof t) (-> () r) (-> () r)) r)))

(cons (forall (t) (-> (t (listof t)) (listof t))))

(cons~ (forall (r t)

(-> ((listof t) (-> (t (listof t)) r) (-> () r)) r)))

(null? (forall (t) (-> ((listof t)) bool)))

(car (forall (t) (-> ((listof t)) t)))

(cdr (forall (t) (-> ((listof t)) (listof t))))

)

Figure 15.5 The type TlistModule of a list module.

FLEX/M’s dselect construct is a generalization of dtypeof from the depen-
dent package system studied in Section 14.5. Whereas (dtypeof Epkg) stands
for the single abstract type of the package Epkg , (dselect θ Emod) stands for
one of possibly several named abstract type constructors in the module Emod . A
FLEX/M type is a dependent type if and only if it contains at least one occur-
rence of dselect, because this is the only type construct that may refer to values.
FLEX/M uses a conservative syntactic notion of type equivalence for dependent
types to guarantee that they can be statically checked. This notion, which is like
the one presented for the dependent package system in Section 14.5.2, is discussed
further in Section 15.4.

The (load Y T) construct loads a separately compiled expression of type
T from the file named Y in an external file storage system. Although any pure
FLEX/M expression may be compiled into a file, modules and functors are the
typical unit of compilation. For example, if ElistModule has been compiled to the
file list.flxm, then the expression (load list.flxm TlistModule) is equivalent
to the expression (the TlistModule ElistModule). The type specified in the load

expression serves as an interface for the compiled expression that (in some ap-
proaches) allows type-checking the load expression without having the contents
of the file, a feature important for separate compilation. Section 15.6 explores in
detail the design and implementation challenges associated with load.

FLEX/M modules are first-class, so they can be named, passed to procedures
as arguments, returned from procedures as results, and stored in data structures,
including other modules. The expression in Figure 15.6 illustrates all of these
features. The mod-of-mods module has two component modules: list-module,
which defines the listof type constructor and its associated operations, and
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(let ((mod-of-mods

(module

(def list-module TlistModule ElistModule)

(def pair-module TpairModule EpairModule)))

{assume EpairModule has type TpairModule (see Exercise 15.1)}
(make-polymod

(abs ((mm (moduleof ()

(list-module TlistModule)

(pair-module TpairModule))))

(open mm

(open list-module

(open pair-module

(module

(def-datatype (polyof)

(poly (listof (pairof int int))))

(def empty (-> () (polyof))

(abs ()

(poly ((pcall null (pairof int int))))))

(def add-point (-> (int int (polyof)) (polyof))

(abs ((x int) (y int) (p (polyof)))

(match p

((poly points)

(poly (cons (pair x y) points))))))

))))))

(make-polymod mod-of-mods))

Figure 15.6 A FLEX/M expression illustrating the first-class properties of modules.

pair-module, which defines the pairof type constructor and its associated op-
erations. The make-polymod procedure takes any module with list and pair
submodules and returns a new module in which polygons having abstract type
(polyof) are represented as lists of integer pairs.

A procedure like make-polymod that takes modules as arguments and/or re-
turns a module as a result is traditionally known as a functor. The ability to
express functors as regular procedure enables FLEX/M to be used as the linking
language for its own module system. This stands in contrast to languages like
SML and OCAML, in which functors are distinct from procedures and module
linking is expressed in a separate module language distinct from the core language
that is used to express computation.
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TenvModule = (moduleof ((envof t))

(empty (forall (t) (-> () (envof t))))

{Creates an environment with no name/value bindings.}
(bind (forall (t) (-> (symb t (envof t)) (envof t))))

{Extends an environment with a new name/value binding,
shadowing any existing binding with the given name.}

(lookup (forall (t) (-> (symb (envof t)) t)))

{Returns the value bound to name in an environment, or
generates an unbound error if there is no such binding.}

)

Figure 15.7 The signature for an environment module.

15.3 Module Examples: Environments and Tables

Before delving into the technical details of the FLEX/M module system, we
present some examples involving the implementation of modules for environment
and table data structures. These examples illustrate the abstract nature of mod-
ule type constructors, information hiding in modules, and parameterized modules
and linking.

Figure 15.7 presents the signature for a module that implements environ-
ments like those used for specifying denotational semantics and type checking.
Abstractly, a value of type (envof t) is an environment that contains bindings
of symbolic names to values of type t. Such environments can be manipulated
with the polymorphic empty, bind, and lookup procedures.

Figure 15.8 shows examples of expressions abstracted over an environment
module. EenvTest takes an environment module and uses it to build some simple
environments binding names to integers, then looks up values in these environ-
ments. EenvSwap takes an environment and uses it to construct a polymorphic
procedure that swaps the values bound to two names in an environment. Both
expressions use FLEX/M’s the construct to indicate the type of the abstraction.
Note that EenvSwap requires a parameterized arrow type to model the dependency
of the envof type constructor on the parameter named envmod. Also note that
implicit projection makes these expressions much more concise than they would
otherwise be.

We now describe two very different ways to implement the environment mod-
ule. Figure 15.9 presents an implementation that represents an environment as
a list of entries, where each entry pairs a name (a symbol) with a value. The
polymorphic empty procedure creates an empty list of entries. The polymorphic
bind procedure prepends a new entry binding a name to a value onto the envi-
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EenvTest =
(the (-> (TenvModule) int)

(abs ((envmod TenvModule))

(open envmod

(let ((e0 ((pcall empty int)))) {e0 = {}}
(let ((e1 (bind (sym a) 1 e0))) {e1 = {a �→ 1}}

(let ((e2 (bind (sym b) 2 e1))) {e2 = {a �→ 1, b �→ 2}}
(let ((e3 (bind (sym a) 3 e2))) {e3 = {a �→ 3, b �→ 2}}

(+ (* 1000 (lookup (sym a) e3))

(+ (* 100 (lookup (sym b) e3))

(+ (* 10 (lookup (sym a) e2))

(lookup (sym b) e2)))) {Result is 3212}
)))))))

EenvSwap =
(the (-> ((envmod TenvModule))

(forall (t)

(-> (symb symb ((dselect envof envmod) t))

((dselect envof envmod) t))))

(abs ((envmod TenvModule))

(open envmod

(pabs (t)

(abs ((s1 symb) (s2 symb) (env (envof t)))

(let ((v1 (lookup s1 env))

(v2 (lookup s2 env)))

(bind s1 v2 (bind s2 v1 env))))))))

Figure 15.8 Some expressions abstracted over an environment module.

ronment’s list of entries. The polymorphic lookup procedure uses a local loop
procedure to find an entry with the given name, and then returns the value from
this entry (or generates an unbound error if no such entry is found).

In these three procedures, the list-env constructor converts the concrete list
type (listof (entryof t)) to the abstract type (envof t) and the list-env~
deconstructor (implicitly used in the match construct) converts the abstract en-
vironment type to the concrete list type. It would be a type error to use a list as
an environment or vice versa. In this way, constructor and deconstructor proce-
dures in FLEX/M serve the roles of the up and down procedures for converting
between concrete and abstract types in Sections 14.2–14.5.

A signature Topen that describes all bindings of the module value of the
open expression Eopen within ElistEnvModule is shown in Figure 15.10. This sig-
nature contains a type constructor (entryof t) and four procedures (entry,
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ElistEnvModule = (the TenvModule Eopen),

where Eopen =
(open list-module

(module

(def-datatype (entryof t)

(entry symb t))

(def-datatype (envof t)

(list-env (listof (entryof t))))

(def empty (forall (t) (-> () (envof t)))

(pabs (t)

(abs () (list-env ((pcall null (entryof t)))))))

(def bind (forall (t) (-> (symb t (envof t)) (envof t)))

(pabs (t)

(abs ((name symb) (val t) (env (envof t)))

(match env

((list-env entries)

(list-env (cons (entry name val) entries)))))))

(def lookup (forall (t) (-> (symb (envof t)) t))

(pabs (t)

(abs ((name symb) (env (envof t)))

(match env

((list-env entries)

(letrec ((loop (-> ((listof (entryof t))) t)

(abs ((ents (listof (entryof t))))

(match ents

((null) (error unbound t))

((cons (entry n v) rest)

(if (sym=? name n) v (loop rest)))))))

(loop entries)))))))

))

Figure 15.9 An environment module that represents environments as lists of bindings.
Assume that list-module is a name for the module ElistModule from Figure 15.3.

entry~, list-env, and list-env~) that do not appear in the simpler signature
TenvModule . These names expose aspects of the environment implementation that
are irrelevant to clients of the environment module (like EenvTest and EenvSwap)
and should remain hidden behind an abstraction barrier. A client should only
be able to form an environment using empty and bind and to look up names
in an environment using lookup. If the client has access to the entryof type
constructor and the constructor/deconstructor procedures, the client can access
information that should not be revealed, such as whether there are older bindings
for a given name that are shadowed by newer ones.
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Topen =
(moduleof ((entryof t) (envof t))

(entry (forall (t) (-> (symb t) (entryof t))))

(entry~ (forall (r t)

(-> ((entryof t) (-> (symb t) r) (-> () r)) r)))

(list-env (forall (t)

(-> (((dselect listof list-module) (entryof t)))

(envof t))))

(list-env~ (forall (r t)

(-> ((envof t)

(-> (((dselect listof list-module) (entryof t)))

r)

(-> () r))

r)))

(empty (forall (t) (-> () (envof t))))

(bind (forall (t) (-> (symb t (envof t)) (envof t))))

(lookup (forall (t) (-> (symb (envof t)) t)))

)

Figure 15.10 A signature describing all bindings of the module value of the open

expression Eopen within ElistEnvModule .

FLEX/M uses explicit subtyping conversions expressed via the the construct
to enforce this kind of information hiding. There is a subtyping relation on
module signatures similar to the subtyping relation on record types: signature
T1 is a subtype of signature T2 if T1 has at least the type constructor and value
names that T2 has, and the types of the shared value names in T1 are subtypes
of the corresponding types in T2 . (We shall formalize FLEX/M subtyping in
Section 15.4.3.) If T1 is a subtype of T2 and expression E1 has type T1 , then
the expression (the T2 E1) declares that the value of the the expression has
type T2 . With modules, the can be used to hide local module bindings that
should not be exported. For example, since Topen is a subtype of TenvModule ,
the expression (the TenvModule Eopen) is a well-typed expression that hides the
implementation-dependent components of Eopen and can be used wherever a value
of type TenvModule is expected. Because FLEX/M requires explicit subtyping
conversions, neither abstraction in Figure 15.8 can be applied directly to Eopen ,
but both abstractions can be applied to ElistEnvModule = (the TenvModule Eopen).

A very different implementation of the environment module is presented in
Figure 15.11. In this implementation, environments are represented as procedures
that map symbols to values. The conversion (the TenvModule . . . ) hides the con-
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EprocEnvModule =
(the TenvModule

(module

(def-datatype (envof t)

(proc-env (-> (symb) t)))

(def empty (forall (t) (-> () (envof t)))

(pabs (t)

(abs ()

(proc-env (abs ((n symb)) (error unbound t))))))

(def bind (forall (t) (-> (symb t (envof t)) (envof t)))

(pabs (t)

(abs ((name symb) (val t) (env (envof t)))

(proc-env (abs ((n symb))

(if (sym=? n name)

val

(lookup n env)))))))

(def lookup (forall (t) (-> (symb (envof t)) t))

(pabs (t)

(abs ((name symb) (env (envof t)))

(match env

((proc-env proc) (proc name))))))

))

Figure 15.11 An environment module that represents environments as procedures
from symbols to values.

structor/deconstructor procedures proc-env/proc-env~, effectively erecting an
abstraction barrier that makes it impossible to treat symbol-to-value procedures
as environments or vice versa. Like ElistEnvModule , EprocEnvModule can be used
wherever a value of type TenvModule is expected.

Static dependent types even allow using both environment modules in the
same program. For example, the following expression picks an environment mod-
ule based on a boolean b, uses this module to construct an environment env, and
then uses EenvSwap to create another environment from env.

(let ((em (if b ElistEnvModule EprocEnvModule)))

(let ((env (open em

(bind (sym c) 4

(bind (sym d) 5

((pcall empty int)))))))

((pcall (EenvSwap em) int) (sym c) (sym d) env)))
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Using the type rules presented in Section 15.4, we can show that env has type
((dselect envof em) int) and that (pcall (EenvSwap em) int) has type

(-> (symb symb ((dselect envof em) int)) ((dselect envof em) int))

so the procedure application that is the body of the inner let has type ((dselect
envof em) int). Indeed, the whole expression is well typed with type

((dselect envof (if b ElistEnvModule EprocEnvModule)) int)

where the let-bound name em has been replaced by its definition in accordance
with the type rules for the static dependent type system.

In contrast, here is a similar expression that is ill typed because it attempts
to use the operations of one environment module on an environment constructed
from another module:

(let ((env (open ElistEnvModule

(bind (sym c) 4

(bind (sym d) 5

((pcall empty int)))))))

((pcall (EenvSwap EprocEnvModule) int) (sym c) (sym d) env))

Here, env has type ((dselect envof ElistEnvModule) int) and (pcall (EenvSwap

EprocEnvModule) int) has type

(-> (symb symb ((dselect envof EprocEnvModule) int))

((dselect envof EprocEnvModule) int))

Because the type of env is not equivalent to the type of the third argument of
the arrow type, the procedure application is ill typed.

The utility of functors (i.e., parameterized modules) becomes clear when gen-
eralizing environments to immutable tables, data structures that maintain bind-
ings of keys of one type to values of another type.5 An environment is a specialized
table in which the keys are required to be symbols. Figure 15.12 presents the
type TmakeTableModule of a functor for creating a table module. This is a depen-
dent arrow type whose argument is a key module key-mod specifying a key type,
(keyof) (an application of the nullary type constructor keyof), and an equality
procedure key=? on elements of this type. The return type is a generalization of
the environment signature (Figure 15.7) to a table signature in which the type
symb is abstracted over by a more general key type ((dselect keyof key-mod))

that depends on the parameter key-mod.

5Tables often support additional operations, such as the ability to delete a binding from the
table and the ability to list all keys in the table. For simplicity, we ignore these additional
operations.
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TmakeTableModule =
(-> ((key-mod (moduleof ((keyof))

(key=? (-> ((keyof) (keyof)) bool)))))

(moduleof ((tableof t))

(empty (forall (t) (-> () (tableof t))))

{Creates a table with no key/value bindings.}
(bind (forall (t) (-> (((dselect keyof key-mod)) t (tableof t))

(tableof t))))

{Extends a table with a new key/value binding.}
(lookup (forall (t) (-> (((dselect keyof key-mod)) (tableof t))

t)))

{Returns the value bound to key in a table, or}
{generates an unbound error if there is no such binding.}

))

EmakeTableModule =
(the TmakeTableModule

(abs ((key-mod (moduleof ((keyof))

(key=? (-> ((keyof) (keyof)) bool)))))
. . . a copy of Eopen from Figure 15.9 in which

(1) envof is replaced by tableof and
(2) sym=? is replaced by (open key-mod key=?) . . . ))

EsymKeyMod = (module

(def-datatype (keyof)

(sym->key symb))

(def key=? (-> ((keyof) (keyof)) bool)

(abs ((k1 (keyof)) (k2 (keyof)))

(match k1

((sym->key s1)

(match k2

((sym->key s2) (sym=? s1 s2))))))))

EenvTableTest =
(let ((sym-key-mod EsymKeyMod))

(let ((env-table-mod (EmakeTableModule sym-key-mod)))

(open sym-key-mod

(open env-table-mod

(let ((env (bind (sym->key (sym a)) 1

(bind (sym->key (sym b)) 2

((pcall empty int))))))

(+ (* 10 (lookup (sym->key (sym a)) env))

(lookup (sym->key (sym b)) env)))))))

Figure 15.12 EmakeTableModule is a table-module functor that can be instantiated to
an environment module that requires converting symbols to the abstract key type.
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T ′
makeTableModule =
(forall (key)

(-> ((-> (key key) bool))

(moduleof ((tableof t))

(empty (forall (t) (-> () (tableof t))))

(bind (forall (t) (-> (key t (tableof t)) (tableof t))))

(lookup (forall (t) (-> (key (tableof t)) t)))

)))

E ′
makeTableModule =
(the T ′

makeTableModule

(pabs (key)

(abs ((key=? (-> (key key) bool)))
. . . a copy of Eopen from Figure 15.9 in which

(1) envof is replaced by tableof and
(2) sym=? is replaced by key=? . . . )))

E ′
envTableTest =
(let ((env-table-mod ((pcall E ′

makeTableModule symb) sym=?)))

(open env-table-mod

(let ((env (bind (sym a) 1

(bind (sym b) 2

((pcall empty int))))))

(+ (* 10 (lookup (sym a) env))

(lookup (sym b) env)))))

Figure 15.13 E ′
makeTableModule is a table-module functor that can be instantiated to

an environment module that uses raw symbols as keys.

EmakeTableModule in Figure 15.12 is a functor with type TmakeTableModule . It is
a parameterized version of the Eopen implementation for environments as lists
from Figure 15.9 in which (1) every occurrence of envof is replaced by tableof

and (2) the single occurrence of sym=? in lookup is replaced by the more general
key=? procedure from the key-mod argument of the functor.

We can create an environment-like module by applying the EmakeTableModule

functor to a module that defines symbolic keys, as in the EenvTableTest expression
in Figure 15.12. In this example, sym-key-mod is a module that implements the
abstract (keyof) type as a symbol, and applying the EmakeTableModule functor to
this module yields the env-table-mod module. Because (keyof) is an abstract
type, it is necessary to use sym->key from sym-key-mod to convert concrete
symbols to abstract keys in the resulting module. For example, with bind and
lookup, it is necessary to use (sym->key (sym a)) rather than (sym a) as a key.
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The conversion between symbols and keys in this example is cumbersome. It
would be preferable for environments instantiated from tables to use raw symbols
as keys. Can we do this in FLEX/M? Yes, but in a way that is at odds with
modularity. The functor E ′

makeTableModule in Figure 15.13 separates the key type
(now called key) and key equality predicate and abstracts over them separately.
Using this new functor, the EenvTableTest test expression from Figure 15.12 can
be rewritten as E ′

envTableTest in Figure 15.13. In this example, env-table-mod is
created by first projecting E ′

makeTableModule on the type symb and then applying
the resulting procedure to the symbol-equality procedure, sym=?. Because the
key type is not abstract in this example, raw symbols can be used as keys in
bind and lookup, just as in the hand-crafted environment examples we studied
earlier.

Although E ′
makeTableModule is in some ways a more convenient functor than

EmakeTableModule , it has a cost in terms of modularity: it separates the key type
and the key-equality predicate, which are no longer glued together in a module.
In FLEX/M, there is no way to achieve this result with a module. This is a con-
sequence of our design choice that all type bindings of module signatures must be
abstract, which in turn requires some means of converting between concrete rep-
resentation types (like symb) and abstract types (like (keyof)). In Section 15.7.2,
we shall discuss a feature of the SML module system that allows the key type
and key-equality predicate to be combined in a single module without requiring
such conversions.

Exercise 15.1 Pairs are not kernel constructs in FLEX/M because they can be specified
in a user-defined module.

a. Define a moduleof type TpairModule describing a module that defines the pairof type
constructor, the pair constructor, the pair~ deconstructor, and the selectors fst and
snd.

b. Define a module expression EpairModuleSOP having type TpairModule in which a pair
is represented as a sum-of-products datum created via a constructor introduced by
def-datatype.

c. Define a module expression EpairModuleChurch having type TpairModule in which a pair
is represented as a Church pair (see Section 6.6.4).

d. Define an abstraction EmakeSwap that takes any module m of type TpairModule and
returns a swapping procedure that takes any pair p constructed by m and returns a
new pair q whose components are the swapped components of p. What is the type of
EmakeSwap?



910 Chapter 15 Modules

Exercise 15.2 Here is a FLEX/M signature for an immutable stack abstraction:

TstackMod =
(moduleof ((stackof t))

(empty (forall (t) (-> () (stackof t)))) {create an empty stack}
(empty? (forall (t) (-> ((stackof t)) bool))) {check if stack is empty}
(push (forall (t)

(-> (t (stackof t)) (stackof t)))) {push element onto stack}
(pop (forall (r t) {r is result type; t is stack element type}

(-> ((stackof t) {stack to decompose into top and rest}
(-> (t (stackof t)) r) {success continuation}
(-> () r)) {failure continuation}

r)))) {result}

a. Write a FLEX/M expression EstackMod1 with type TstackMod that implements stacks
via a data-type definition with constructors empty and push.

b. Write a FLEX/M expression EstackMod2 with type TstackMod that implements stacks
as lists. You will still need a data-type declaration to create constructor/deconstructor
procedures that convert between stacks and lists.

c. Suppose that T ′
stackMod is just like TstackMod , except that it includes a type binding

for a stack-reversal procedure as well:

(reverse (forall (t) (-> ((stackof t)) (stackof t))))

Write a FLEX/M functor EmakeReverseStack with type (-> (TstackMod) T ′
stackMod)

that takes any stack implementation and returns an implementation with a new
reverse procedure that reverses the elements of a stack.

15.4 Static Semantics of FLEX/M Modules

15.4.1 Scoping

FLEX/M has two new binding constructs: moduleof and module. The moduleof
construct declares type-constructor names whose scope is the types of the value
components. For example, in

(moduleof ((treeof s))

(a (moduleof ((pairof s t))

(c (pairof (treeof int) (treeof symb)))))

(b (pairof int (treeof bool))))

the pairof in the type of b is a free type-constructor name because it does not
appear within the scope of a moduleof declaring pairof. In contrast, the pairof
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in the type of c and all occurrences of treeof are bound by surrounding moduleof
declarations. It is assumed that FrTyconIdsty calculates the free type-constructor
names of a type.

The module construct declares both type-constructor names and value names,
including the names of constructor and deconstructor procedures. The scope of
the type-constructor names is all types that appear within the module expression,
including types within the constructor specifications of data-type declarations.
The scope of the value names is the set of definition expressions that are the
right-hand sides of value definitions, including expressions that appear in dselect

types within these definition expressions. The type-constructor and value names
of a module may also be used in the body of any open expression in which the
module is opened, so there is a nonhierarchical aspect to the scope of names
declared in a module as well.

15.4.2 Type Equivalence

Type equivalence for FLEX/M is defined by extending the type-equivalence rules
for FLEX/SP with the rules in Figure 15.14.

Two moduleof types are equivalent if their abstract-type specifications and
value-component types are equivalent, modulo permutation. The type identifiers
τn

i=1 in an abstract-type specification (θ τn
i=1) are dummy names and only their

number matters (for indicating the number of parameters). Thus, two abstract-
type specifications are equivalent if they have the same type-constructor name
and the same number of dummy parameters.

Two type-constructor applications are equivalent if their type constructors
are equivalent (via ≈tc), both have the same number of type arguments, and
corresponding type arguments are equivalent. Two type constructors are equiva-
lent if they are the same type constructor name θ or the result of using dselect

to select the same type-constructor name from equivalent (via ≈depends) module
expressions. To maintain the phase distinction between type checking and pro-
gram execution, we require static dependent types — i.e., it must be possible
to determine ≈depends at type-checking time. The simplest definition of ≈depends

satisfying this requirement is syntactic equality, but, as discussed on page 878,
more sophisticated definitions can also be used.

The type-equivalence rule for arrow types is the [→-≈] rule from Figure 14.12
on page 874, which allows consistent renaming of the parameter names in param-
eterized arrow types.
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15.4.3 Subtyping

Subtyping for FLEX/M is defined by extending the subtype rules for FLEX/SP
with the rules in Figure 15.15. The [moduleof-�] rule is similar to the [recordof-
�] rule in Figure 12.2 on page 703 except for two differences. Suppose Tmod and
T ′

mod are moduleof types and Tmod �T ′
mod :

1. The set of abstract types in Tmod may be a superset of the abstract types in
T ′

mod , allowing a supertype to hide type constructors from a subtype.

2. All free type-constructor names in T ′
mod must also be free in Tmod . This re-

striction prevents accidental name capture of type constructors. For example,
consider the following moduleof types:

Tmod1 = (moduleof ((xof s) (yof t))

(a (xof (yof int)))

(b (yof (zof bool)))

(c (wof symb)))

Tmod2 = (moduleof ((yof t))

(a (xof (yof int))))

Tmod3 = (moduleof ((yof t))

(b (yof (zof bool))))

Tmod1 and Tmod2 both have components named a with type (xof (yof int)),
but the xof in Tmod1 refers to the type constructor xof exported by Tmod1

while the xof in Tmod2 refers to some externally declared type constructor.
Since FrTyconIdsty [[Tmod2 ]] = {xof} 
⊆ {wof, zof} = FrTyconIdsty [[Tmod1 ]],
the variable-capture restriction prevents Tmod1 from being a subtype of Tmod2 .
In contrast, Tmod1 is a subtype of Tmod3 because (1) the components named b

have the same type (yof (zof bool)), (2) the type constructor yof is bound
in both Tmod1 and Tmod3 , and (3) the type constructor zof is free in both
Tmod1 and Tmod3 (and so is assumed to refer to the same externally declared
type constructor).

The [→-�] rule modifies the usual subtyping rule on arrow types to allow the
renaming of parameters in FLEX/M’s parameterized arrow types.

15.4.4 Type Rules

To simplify the type rules for FLEX/M, we will embed some machinery in the
specification of type environments (see Figure 15.16). As usual, type environ-
ments are partial functions from identifiers to types. In order to prevent name
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Type Equivalence

∀m
j=1 . ∃h ∈ [1..m] .

(
AT h ≈at AT ′

j

)
∀n

k=1 . ∃i ∈ [1..n] . ((Ii = I ′
k ) ∧ (Ti ≈ T ′

k ))
(moduleof (ATm

h=1) (Ii Ti)
n
i=1)

≈ (moduleof (AT ′m
j=1) (I ′

k T ′
k)

n
k=1)

[moduleof-≈]

TC ≈tc TC ′ ∀n
i=1 . (Ti ≈ T ′

i )
(TC Tn

i=1) ≈ (TC ′ T ′n
i=1)

[tyconapp-≈]

The [→-≈] rule is the same as in Figure 14.12 on page 874. All other FLEX/M
type-equivalence rules are specified in Section 11.8 and in Figure 12.9 on page 731.

Abstract-Type Equivalence

(θ τn
i=1) ≈at (θ τ ′n

i=1) [≈at ]

Type-Constructor Equivalence

θ ≈tc θ [id-≈tc ]

Emod ≈depends E ′
mod

(dselect θ Emod) ≈tc (dselect θ E ′
mod)

[dselect-≈tc ]

where ≈depends is any statically determinable equivalence on expression values (this
is textual equality by default, but may be more sophisticated — see page 878).

Figure 15.14 New type-equivalence rules for FLEX/M, which inherits all the type-
equivalence rules except for [→-≈] from FLEX/SP.

∀p
j=1 . ∃h ∈ [1..m] .

(
AT h ≈at AT ′

j

)
∀q

k=1 . ∃i ∈ [1..n] . ((Ii = I ′
k ) ∧ (Ti � T ′

k ))
(moduleof (ATm

h=1) (Ii Ti)
n
i=1)

� (moduleof (AT ′p
j=1) (I ′

k T ′
k)

q
k=1)

[moduleof-�]

where FrTyconIdsty [[(moduleof (AT ′p
j=1) (I ′

k T ′
k)

q
k=1)]]

⊆ FrTyconIdsty [[(moduleof (ATm
h=1) (Ii Ti)

n
i=1)]]

∀n
i=1 . (T ′

i � Ti) [I ′
i /Ii ]

n
i=1Tbody �T ′

body

(-> ((Ii Ti)
n
i=1) Tbody)� (-> ((I ′

i T ′
i )

n
i=1) T ′

body)
[→-�]

where ∀n
i=1 . (I ′

i 
∈ FrIdsty [[Tbody ]])

All other FLEX/M subtype rules are specified in Figure 12.2 on page 703 and in
Figure 12.9 on page 731.

Figure 15.15 New subtyping rules for FLEX/M, which inherits all the subtyping
rules except for [→-�] from FLEX/SP.
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Type Environments

TE ∈ TypeEnvironment = Ident ⇀ Type

As with dependent packages (Figure 14.13), extending a type environment via
TE [I1 :T1 , . . . , In :Tn ] requires both that the identifiers I1 , . . . , In must be
distinct and, further, that dom(TE ) and ∪n

i=1{Ii} must be disjoint; see page 879
for a discussion of this requirement.

The notation TE ⊕ DD is the same as that defined for FLARE in Figure 13.29 on
page 831 except that (1) all occurrences of generic should be replaced by forall

and (2) the type (forall () T) of every constructor procedure for a nullary type
constructor should be replaced by T .

TE ⊕ [DD1 , . . ., DDn ] is an abbreviation for ((TE ⊕ DD1 ) ⊕ . . .) ⊕ DDn .

Figure 15.16 Type environments for FLEX/M.

capture that can make a static dependent type system unsound (see page 879),
FLEX/M’s type environments do not permit rebinding an identifier. Automati-
cally alpha-renaming expression identifiers satisfies this restriction with no impact
on the programmer.

The notation TE ⊕ DD stands for the type environment that results from ex-
tending TE with type bindings for the constructor and deconstructor procedures
declared by the data-type declaration DD . For example, given the declaration

DD listof = (def-datatype (listof t)

(null)

(cons t (listof t)))

TE ⊕ DD denotes the result of extending TE with the type bindings in Fig-
ure 15.4 on page 896. As noted in Figure 15.16, the FLEX/M ⊕ operator has
essentially the same definition as the FLARE ⊕ operator except for two changes.
The first change (replacing generic by forall) is necessary because FLEX/M,
unlike FLARE, is an explicitly typed language with explicit universal types. The
second change (replacing (forall () T) by T ) is an optimization that elimi-
nates unnecessary type quantification for nullary type constructors (which are
isomorphic to types). The notation TE ⊕ [DD1 , . . ., DDn ] is shorthand for
((TE ⊕ DD1 ) ⊕ . . .) ⊕ DDn .

Figure 15.17 presents the new and modified type rules for FLEX/M (except
for the type rule for load, which is discussed in Section 15.6).

The [moduleof-intro] rule specifies the moduleof type for a module expression.
The abstract-type specification (θi τi ,1 . . . τi ,ki) for each data-type declaration
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DD i is simply recorded in the moduleof type. The identifier/type bindings of
the moduleof type come from two sources:

1. The type bindings for the constructor and deconstructor procedures are de-
duced from the data-type declarations. The type environment TEDD = {} ⊕
[DD1 , . . ., DDm ] contains exactly these constructor and deconstructor bind-
ings. The notation (I TEDD(I ))I∈dom(TEDD ) stands for the result of converting
all the bindings I :T of TEDD into a sequence of s-expression bindings of the
form (I T).

2. Each value-component definition (def I T E) gives rise to a type binding
(I T).

The rule also verifies that for each definition (def I Tdefn Edefn), the expression
Edefn has type Tdefn . Since Edefn may refer to the constructor and deconstructor
procedures introduced by the data-type declarations, the type environment used
for this verification process must include the bindings in TE ⊕ [DD1 , . . ., DDm ].
Because value definitions are mutually recursive, the type environment must also
include bindings for all the value definitions. In this respect, the [moduleof-intro]
rule is like the [letrec] rule we have seen in other typed dialects of FL. This is why
the module construct supplants letrec in FLEX/M; the latter can be expressed
as sugar in terms of the former (see Figure 15.2 on page 894).

Since constructors create values with the abstract type and deconstructors
decompose values with the abstract type, they play the role of up and down in
the type rule for packdepend in the dependent package system (Figure 14.13 on
page 875). Since the constructor/deconstructor mechanism is already present in
FLEX/M for creating recursive sum-of-products data types, using it to perform
conversions between concrete and abstract types avoids the need to develop a
separate mechanism for this purpose. Hiding the concrete structure of sum-of-
products data does have some drawbacks, however. For instance, it prevents the
definition of a default structural equality test on sum-of-products data instances
and a default way to display such instances in textual form. Equality procedures,
pretty-printing procedures, etc., must be defined by the programmer for each
representation of an abstract type.

The [moduleof-elim] rule specifies type checking for the (open Emod Ebody)

construct. Like the [record-with] rule for opening records in FLEX (Figure 11.18
on page 678), it extends the type environment with type bindings for all value
components of the module when checking the type of Ebody . Like the [with] rule
for opening records in a dependent package system (Figure 14.13 on page 875), it
must perform substitutions on the body type (i.e., substituting (open Emod I)
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for each value name I from Emod ) to properly track dependencies in the dependent
type system.

The [moduleof-elim] rule is also similar to the [dunpack] rule for dependent
packages (Figure 14.13 on page 875) in that it substitutes a dependent type con-
structor (dselect θ Emod) for each occurrence of an abstract-type constructor
θ in the body expression Ebody and in the types of the value components in the
type environment. As discussed on pages 881–883, such substitutions enhance
dependent-type equivalence.

The [moduleof-elim] rule has a purity restriction that guarantees that the
substitutions performed in the rule are sound. As in the [dunpack] rule in the
dependent package system, dependent types of the form (dselect θ Emod) that
are introduced by substituting for θ on the way into the rule require that Emod

be pure. As in the [with] rule in the dependent package system, substituting
(open Emod I) for each value name I in the result type Tbody on the way out
of the rule also requires that Emod be pure. The easiest way to satisfy these
requirements is to dictate that Emod satisfies a syntactic purity test similar to
the one defined for FLARE in Figure 13.25 on page 816. Although simple to
state, this restriction is overly conservative because it doesn’t specially handle
the case where no relevant substitutions are performed on the way into or out
of the rule (in which case Emod need not be pure). Additionally, as discussed
on page 938, this restriction also has a fundamental drawback in the presence of
parameterized modules.

The [moduleof-intro] and [moduleof-elim] rules also have an import restriction
like the rules for existential and dependent packages (see Figures 14.4 and 14.13),
and for exactly the same reason: Local type-constructor bindings must not be
allowed to capture references to type constructors with the same name in an outer
scope. As before, alpha-renaming of type constructors will solve this problem.

FLEX/M does not have implicit subtyping via FLEX/SP’s [inclusion] rule:

TE � E :T ′ T ′�T
TE � E :T

[inclusion]

Instead, all subtyping in FLEX/M must be specified explicitly using the, ac-
cording to the following type rule:

TE � E :T ′ T ′�T
TE � (the T E) :T

[the-inclusion]

Requiring explicit conversions for all subtyping ensures that every FLEX/M
expression has a unique type (up to alpha-renaming of arrow type parameters
and forall-bound type identifiers).



15.4.4 Type Rules 917

Type Rules

∀n
j=1 . (TE ⊕ [DD1 , . . . ,DDm ]) [Ih :Th ]

n
h=1 � Ej :Tj

TE �(module DDm
i=1 (def Ij Tj Ej)

n
j=1)

: (moduleof ((θi τi,1 . . . τi,ki
)m

i=1)

(I TEDD(I ))I∈dom(TEDD) (Ij Tj)
n
j=1)

[moduleof-intro]

where ∀m
i=1 . (DD i = (def-datatype (θi τi,1 . . . τi,ki

) . . . ))
TEDD = {} ⊕ [DD1 , . . ., DDm ]
∀m

i=1 . θi 
∈
(
∪n

j=1

(
∪I∈FrIdsexp [[Ej ]]

(
FrTyconIdsty [[TE (I )]]

)))
[import restriction]

TE � Emod : (moduleof ((θi . . . )n
i=1) (Ij Tj)

m
j=1)

TE [Ij : (dsub Tj )]
m
j=1 � (dsub Ebody) :Tbody

TE � (open Emod Ebody) : [(open Emod Ij)/Ij ]
m
j=1Tbody

[moduleof-elim]

where (dsub X) = [(dselect θi Emod)/θi ]
n
i=1X [dependent-type introduction]

Emod is pure [purity restriction]
∀n

i=1 . θi 
∈
(
∪I∈FrIdsexp [[Ebody ]]

(
FrTyconIdsty [[TE (I )]]

))
[import restriction]

TE � E :T T �T ′

TE � (the T ′ E) :T ′ [the-inclusion]

Various type rules for the load construct are discussed in Section 15.6. The [→-
intro], [→-elim], and [let] rules for FLEX/M are the same as those for the de-
pendent package system in Figure 14.13 on page 875. All the other type rules for
FLEX/M are inherited from FLEX/SP, except for the [inclusion] rule in Fig-
ure 12.1 on page 703; implicit subtyping is not supported in FLEX/M, where all
subtyping is by explicit conversion using the [the-inclusion] rule defined above.

Figure 15.17 Type rules for FLEX/M.

As seen in the examples of Section 15.3, an important use of subtyping in
FLEX/M is for hiding module components. In particular, subtyping gives the
programmer fine-grained control over how values of abstract type are constructed
and deconstructed. If the constructors for an abstract type are hidden in a mod-
ule, clients cannot create forgeries that possibly violate representation invariants.
If the deconstructors for an abstract type are hidden, then clients cannot directly
manipulate the concrete representation of an abstract value.

Exercise 15.3

a. Determining free value/type/type-constructor identifiers and performing substitu-
tions in FLEX/M cannot generally be done until type-checking time. Explain why.
Hint: Focus on the open construct.
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To model the dependency of free-identifier and substitution functions on types, we extend
their signatures to include a type environment. For example:

FrIdsexp : Exp → TypeEnvironment → P(Ident)

FrIdsty : Type → TypeEnvironment → P(Ident)

FrIdstycon : TypeConstructor → TypeEnvironment → P(Ident)

Similar changes are made for FrTyIdsexp , FrTyIdsty , and FrTyIdstycon(which return an
element of P(TypeId)) and for FrTyconIdsexp , FrTyconIdsty , and FrTyconIdstycon(which
return an element of P(TyConId)).

b. Write clauses for all the free-identifier functions mentioned above to handle the new
FLEX/M expressions, types, and type constructors presented in Figure 15.1.

c. Several FLEX/M type rules involve checking for free variables and performing sub-
stitutions. Since type checking depends on these operations, but these operations
themselves depend on type checking, there is a question of whether the operations
are well defined. For each such type rule, justify that the operations are well defined.

Exercise 15.4 What is the type of the make-polymod procedure in Figure 15.6 on
page 900?

15.4.5 Implicit Projection

In an explicitly typed polymorphic language, it is a hassle for programmers to
project polymorphic values (i.e., values with forall types) onto explicit type
arguments using pcall, especially since these projections are “obvious” in many
cases. Using the type reconstruction machinery from Chapter 13 to solve local
type constraints, it is possible to automatically deduce the type arguments to
pcall in many common cases, thus relieving the programmer from writing many
pcalls. We call this feature implicit projection. Java uses a form of implicit
projection for generic methods.

FLEX/M supports implicit projection in the common case where a polymor-
phic procedure is being applied to argument expressions, and the type arguments
of pcall can be deduced from the types of the argument expressions. We will
explain how implicit projection works in the context of the following example:

Eimplicit = (pabs (u)

(abs ((x u))

(let ((g (pabs (v)

(abs ((f (-> (u) v)))

(pair x f)))))

(g (abs ((z u)) #t)))))
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We assume that pair has the type (forall (s t) (-> (s t) (pairof s t))).
Without implicit projection, Eimplicit is ill typed because pair and g are applied
directly as procedures without first using pcall to eliminate their forall types.

The key idea of implicit projection is to eliminate forall types by projecting
them onto unification variables, thus replacing forall-bound variables by unifica-
tion variables, and then use type reconstruction to locally solve type constraints
involving these unification variables.6 For example, in (pair x f), projecting
the type of pair on the unification variables ?a and ?b yields the arrow type
(-> (?a ?b) (pairof ?a ?b)). By unifying ?a and ?b with the actual argu-
ment types u (of x) and (-> (u) v) (of f), we see that the result of the pair

application in this case has the type (pairof u (-> (u) v)). Based on this, we
determine that g has type

Tg = (forall (v)

(-> ((-> (u) v))

(pairof u (-> (u) v)))))

Similarly, projecting Tg on the unification variable ?c yields the arrow type
(-> ((-> (u) ?c)) (pairof u (-> (u) ?c))). Unifying (-> (u) ?c) with
the type (-> (u) bool) of (abs ((z u)) #t) binds ?c to bool, so we deduce
that the result of the g application has type (pairof u (-> (u) bool)).

This example underscores the importance of distinguishing pabs-bound and
forall-bound variables (e.g., s, t, u, and v) from the unification variables (e.g.,
?a, ?b, and ?c) used by the unification process. In particular, pabs-bound and
forall-bound variables must be treated as constants that unify only with them-
selves. E.g., if (abs ((z u)) #t) were changed to (abs ((z int)) #t), the
type (-> (u) ?c) should not unify with (-> (int) bool) (by somehow bind-
ing u to int). The (pabs (u) . . .) in Eimplicit abstracts over any type u, so u

cannot be equated with a particular type (like int) within the body of this pabs.
The implicit projection process is formalized by the [implicit-projection] rule

in Figure 15.18, which is a modified version of the [→-elim] rule from Figure 14.13
on page 875. In this rule, the rator of the application is a polymorphic proce-
dure with type (forall (τm

j=i) (-> ((Ii Ti)
n
i=1) T0)) that is not explicitly

projected via pcall. The rule uses a type-reconstruction process that attempts
to deduce bindings for the type identifiers τm

j=i that will make the parameter

6The machinery for implicit projection distinguishes two classes of type names: (1) unification
variables υ ∈ UnificationVar (names that begin with ?) and (2) type identifiers τ ∈ TypeId
(names that do not begin with ?). This distinction wasn’t necessary in Chapter 13, where all
type names were unification variables. However, in FLEX/M it is necessary to distinguish the
pabs-bound and forall-bound type names (i.e., type identifiers) that appear in explicit types
from the unification variables used by the type reconstruction process for implicit projection.
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types Tn
i=1 match the rand types T ′n

i=1. If this process succeeds (the solvabil-
ity restriction is satisfied), the type of the application is the body type T0 with
(1) any references to the τm

j=i replaced by the corresponding deduced types and
(2) any references to the argument names I n

i=1 replaced by the corresponding
rand expressions (as in the [→-elim] rule).

In the [implicit-projection] rule, type reconstruction is performed by substi-
tuting fresh unification variables υm

j=i for the forall-bound type identifiers τm
j=i

before solving the type constraints between the declared parameter types Tn
i=1

and the actual argument types T ′n
i=1. If unification succeeds with a type substi-

tution σ, the same substitution of unification variables for type identifiers must
be performed on the result type T0 before applying σ.

The unification algorithm presented in Figure 13.8 on page 784 must be
changed to produce substitutions that map unification variables (rather than
type identifiers) to types. The unification algorithm must also be extended to
handle other FLEX/M types, including type-constructor applications, moduleof
types, and forall types. These are straightforward except for the case of uni-
fying two forall types. In this case, the two forall types must have the
same number of parameters. We normalize the parameter names (and avoid
name capture issues) by substituting the same sequence of fresh type identi-
fiers for both type-parameter sequences, and then attempt to unify the bod-
ies of the forall types. E.g., to unify (forall (a b) (-> (a bool) b)) and
(forall (s t) (-> (s ?x) t)), we replace [a, b] and [s, t] by fresh type iden-
tifiers, say [t.173, t.174], and then unify the types (-> (t.173 bool) t.174)

and (-> (t.173 ?x) t.174), which yields the substitution {?x �→ bool}.
The [implicit-projection] rule includes a capture restriction that prevents the

variable-capture of arrow-type parameter names I n
i=1 that happen to also appear

in dependent types within Tn
i=1 or T ′n

i=1. As usual, such capture could also be
avoided by suitably alpha-renaming the program.

Like the [→-elim] rule, the [implicit-projection] rule has a purity restriction
requiring the purity of any rand expression Ei denoted by an arrow-type param-
eter name Ii mentioned within a dependent type in the procedure body type T0 .
Because of the variable-capture restriction, the substitution σ cannot introduce
any of the names I n

i=1 into T ′
0 = σ ([υj/τj ]

m
j=1T0 ); so Ii∈FrIdsty [[T0 ]] if and only

if Ii∈FrIdsty [[T ′
0 ]].

The [implicit-projection] rule has a locality restriction requiring that no unifi-
cation variables remain after the substitution σ is performed on the result type.7

This forces the collection and solution of all type constraints to occur within the

7Assume that FrUniVarsty returns the unification variables that appear in a type.
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TE � Erator : (forall (τm
j=i) (-> ((Ii Ti)

n
i=1) T0))

∀n
i=1 . (TE � Ei :T ′

i )
TE � (Erator En

i=1) : [Ei/Ii ]
n
i=1T

′
0

[implicit-projection]

where (∪n
i=1{Ii}) ∩ (∪n

i=1 (FrIdsty [[Ti ]] ∪ FrIdsty [[T ′
i ]])) = {}

[capture restriction]
υm

j=1 are fresh unification variables
solveTCS

⊎n
i=1{[υj/τj ]

m
j=1Ti

.
= T ′

i }TCS

= (TypeSubst�UnifySoln σ) [solvability restriction]
T ′

0 = σ
(
[υj/τj ]

m
j=1T0

)
FrUniVarsty [[T ′

0 ]] = {} [locality restriction]
∀n

i=1 . Ei is pure if (Ii ∈ FrIdsty [[T0 ]]). [purity restriction]

Figure 15.18 A type rule for implicit projection in FLEX/M.

[implicit-projection] rule, so that other FLEX/M type rules do not need to be
modified to pass around type-constraint sets. A consequence of this restriction is
that there are cases where implicit projection fails. For instance, in the applica-
tion (null), the return type would be (listof ?t), where ?t is an unresolved
unification variable. In normal type reconstruction, this could be resolved by the
context in which (null) is used, but the locality restriction prevents this, forcing
explicit projection to be used instead.

It is possible to extend implicit projection to handle cases like (null) if we
change the other type rules to collect and propagate type constraints and solve the
type constraints only for top-level programs/modules. But we must ensure that
the SDT-related substitutions performed by various type rules are performed
in all types that appear in the type-constraint sets. Since this would further
complicate already complex type rules, we have chosen the simpler approach for
FLEX/M.

You may be able to imagine other cases in which implicit projection would
be useful and can be implemented. However, no matter how clever we are with
implicit projections, we can’t eliminate explicit projections entirely, because of
the undecidability of type reconstruction for the second-order lambda calculus.

15.4.6 Typed Pattern Matching

The FLEX/M match construct has the same syntax as the match construct for
FLIC+{def-data} used in Section 10.5 and also in FLARE+{def-datatype}
in Section 13.5.4. However, FLEX/M cannot simply use the desugaring for
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match presented in Figure 10.27 on page 603 because the desugaring will have to
generate type information that is not apparent in the match syntax.

For example, consider the following procedure for determining if all elements
in an integer list are positive:

(def all-pos? (-> ((listof int)) bool)

(abs ((xs (listof int)))

(match xs

((null) #t)

((cons y ys) (and (> y 0) (all-pos? ys))))))

The desugaring process must transform the match expression in the body of this
procedure to an expression like

((pcall null~ bool int)

xs

(abs () #t)

(abs ()

((pcall cons~ bool int)

xs

(abs ((y int) (ys (listof int)))

(and (> y 0) (all-pos? ys)))

(abs () (error no-match bool)))))

To create the success continuation for cons~, the process must determine that y
has type int and ys has type (listof int). To create the failure continuation
for cons~, the process must determine that the error construct has type bool.
The process must also determine the projection types bool and int for null~

and cons~, but these could be deduced by implicit projection after the type
information in the success and failure continuations has been determined.

Rather than requiring the programmer to somehow specify the missing ex-
plicit types in the match construct, we instead modify the match desugaring to
automatically deduce the correct explicit types. This approach, which was briefly
discussed on page 742 and explored in Exercises 12.20 and 12.25, is based on the
following observations. In a well-typed match expression, we know the type Tdisc

of the discriminant, the type Tret of the whole match expression, and the type
of any constructor mentioned in a constructor pattern. This type information is
needed in two key spots of the typed match desugaring:

1. When the typed version of the clause-processing function DSclauses runs out
of clauses, the no-match error must be annotated with the explicit type
Tret . In the all-pos? example, Tret is bool, so the error expression is
(error no-match bool).
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2. When the typed version of the pattern-processing function DSpat encounters a
constructor pattern (Iconstr PTm

j=1), the well-typedness of the match expression
guarantees that the discriminant type Tdisc has the form (θ Tn

i=1) and the
constructor Iconstr has a type of the form

(forall (τn
i=1) (-> (T ′m

j=1) (θ τn
i=1)))

From this information, we deduce that the explicit projection for the polymor-
phic deconstructor is (pcall Iconstr��~ Tret Tn

i=1). In the all-pos? exam-
ple, Tret is bool and Tdisc is (listof int), so both null~ and cons~ must
be projected on the types bool and int.

We also deduce that the argument types of the success continuation should be
the result of substituting the types Tn

i=1 for the forall-bound type identifiers
τn

i=1 in the constructor argument types T ′m
j=1. E.g., since cons has type

(forall (t) (-> (t (listof t)) (listof t)))

when deconstructing a discriminant with type (listof int), the success con-
tinuation for the pattern (cons y ys) should have the form

(abs ((y [int/t]t) (ys [int/t](listof t))) . . . )

= (abs ((y int) (ys (listof int))) . . . )

In our approach, the match desugaring needs to know the type of the discrimi-
nant expression and the type of the whole match expression. Since the desugaring
phase precedes the type-checking phase in FLEX/M, the match desugaring can-
not be performed in the usual desugaring phase. So we perform the expansion of
match in a separate match-expansion phase that follows type checking (though it
is also possible to perform the match desugaring simultaneously with type check-
ing). This implies that we need a type rule for type-checking match. We also need
to modify the desugaring functions from Figure 10.27 on page 603 to take extra
arguments with type information and use this information as sketched above. A
complete description of the match type rule and the typed versions of the match

desugaring functions can be found in the Web Supplement.

15.5 Dynamic Semantics of FLEX/M Modules

We now consider the dynamic semantics of FLEX/M module constructs except
for load, whose dynamic semantics is discussed in Section 15.6. As shown in
Figure 15.19, the dynamic semantics of these constructs can be defined via a
type-erasure function that maps well-typed FLEX/M expressions to expressions
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Dynamic Semantics (via Type Erasure)

erase : ExpFLEX/M → TypeEnvironment → ExpFLIC+{def-data}

(�E�TE abbreviates (erase E TE ))

�(module DDm
i=1 (def Ij Tj Ej)

n
j=1)�TE

= (recordrec (Iddk
Eddk

)
p
k=1 (Ij �Ej �TE ′

)n
j=1)

where DSdef [[�DD1 �DD ]] @ · · · @DSdef [[�DDm�DD ]] = [(def Iddk
Eddk

)
p
k=1]

using the DSdef function from Figure 10.21 on page 587
and TE ′ = TE [Ij :Tj ]

n
j=1

�(open Emod Ebody)�TE = (with-fields (I n
j=1) �Emod�TE �Ebody�TE ′

),
where typeof 〈Emod ,TE 〉 = (moduleof (ATm

i=1) (Ij Tj)
n
j=1)

and TE ′ = TE [Ij :Tj ]
n
j=1

See Section 15.6 for the dynamic semantics of load.

eraseDD : DatatypeDefinition→ DefFLIC+{def-data}

(�DD�DD abbreviates (eraseDD DD))

�(def-datatype (θtycon τm
i=1) (Iconstructorj

Tj ,1 . . . Tj ,kj
)n

j=1)�DD

= (def-data Itycon (Iconstructorj
x1 . . . xkj

)n
j=1),

where Itycon is a FLIC expression identifier with the same name as θtycon .

Figure 15.19 Dynamic semantics for FLEX/M expressed via type erasure.

in FLIC+{def-data}, a version of the dynamically typed FLIC language that
supports records, oneofs, and sum-of-products data declarations. The type era-
sure of a FLEX/M expression E , written �E�TE , is performed relative to a type
environment TE in which E is well typed. As we shall see, this type-environment
argument is needed for the type erasure of open expressions.

A module expression behaves like a record that has bindings for the construc-
tor and deconstructor procedures introduced by the data-type declarations in
addition to the value bindings declared by the module. All value names declared
by the module (including constructor and deconstructor names) are bound in a
single mutually recursive scope, as indicated by the use of recordrec (defined in
Figure 7.17 on page 355) in the module type erasure. The constructor and decon-
structor procedures for a FLEX/M data-type declaration DD are obtained by
using �DD�DD (defined at the bottom of Figure 15.19) to erase a data-type defi-
nition to a corresponding def-data declaration in FLIC+{def-data}, and then
using the DSdef function from Figure 10.21 on page 587 to map this def-data

declaration to a sequence of procedure definitions for the constructors and de-
constructors.
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(open Emod Ebody) evaluates Ebody relative to the current environment ex-
tended with bindings for all the components of the record denoted by Emod . The
environment extension is expressed using the with-fields construct defined in
Figure 7.17 on page 355. In a dynamically typed language, such a construct
requires an explicit list of names to be extracted from the record. The type-
environment argument to the type erasure function is used to find the moduleof

type of Emod , from which the names required by with-fields can be determined.

15.6 Loading Modules

The load construct supports the development and construction of large programs
by allowing separately developed program modules to refer to one another. Load-
ing files in a system with first-class modules and dependent types represents a
fascinating design challenge that reinforces the relationships between static and
dynamic semantics, between dependent types and side effects, and between the
programming language itself and the external programming environment. Many
of the challenges and tradeoffs we examine apply equally to apparently simpler
and more conventional systems, such as Java.

First, we must establish the unit of separate compilation and loading. We
insist that the unit of compilation be a single pure FLEX/M expression that has
no free identifiers apart from references to the standard library, i.e., an expression
whose value does not depend on the store and whose type does not depend on
the context into which it is loaded. Although this expression may have any type,
typically it will denote a module or functor. The requirement that the expression
be pure is important for guaranteeing that load expressions themselves are pure
and so can be used in conjunction with dselect. For example, if the list module
discussed earlier has been compiled to the file listmod.flxm, then we can write
(dselect listof (load listmod.flxm TlistModule)).

The compilation process performs type checking on a source expression EY

and stores some compiled representation of this expression in the compiled file
named Y . To describe a source-level dynamic semantics of the compiled expres-
sion, we assume it is possible to extract EY from the compiled file using the
notation fileExp(Y )8 even though a practical system will typically not store the
source expression. To describe the static semantics of the compiled expression, we

8fileExp(Y ) stands for the source expression associated with the code currently in the file
named Y . It is undefined if the file system does not currently have a file named Y . Note that
fileExp cannot be a function because it depends on the time-changing state of the file system,
which is not an explicit argument.
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assume it is possible to extract from the compiled file the type TY that the com-
piler determined for EY using the notation fileType(Y ). Some practical systems,
e.g., Java, do store type information in compiled files.

At a certain level, loading a compiled file Y is not terribly complex — the
static and dynamic semantics of the loaded file are the static and dynamic se-
mantics of the source expression fileExp(Y ). But there are three issues that
complicate matters:

1. File-Type Coherence: File systems are mutable, so the contents of a file, and
therefore its type, may change over time. References to file contents must be
carefully integrated into any statically typed language, which cannot abide
expressions whose type changes over time.

2. File-Value Coherence: Some systems require that loading a file with a given
name always have the same value throughout the execution of a program. A
system based on static dependent types needs this for type soundness, because
statically computed type constructors of the form (dselect θ (load Y T))

would be ill defined otherwise. This issue is not unique to SDT-based systems,
however. For example, any reference to a Java class might cause the class file
to be loaded, and all such references must refer to the same class object.9

3. Type Soundness: There are two distinct types associated with file loading: the
static type Tload that the client expects from the expression (load Y Tload)

and the dynamic type fileType(Y ) of the expression fileExp(Y ) loaded from
the file Y . We expect that (load Y Tload) should behave like the expression
(the Tload fileExp(Y )). Because of the subtyping performed by the, type
soundness requires that fileType(Y ) must be a subtype of Tload at run time.
We will discuss two strategies for ensuring the type soundness of load:

(a) checking that fileType(Y ) is a subtype of Tload at load time;

(b) checking that fileType(Y ) is a subtype of Tload at compile time, and
guaranteeing that the type of the file Y does not change between compile
time and load time.

We will see that the issue of file-type coherence complicates the second strat-
egy. We will then discuss the issue of file-value coherence, which is largely
independent of the type soundness discussion.

9In addition to type soundness issues similar to those in SDT-based systems, Java must also
address potential side effects in class initialization code that is executed when a class is loaded.
To guarantee that this code is executed at most once, a class file is loaded only at the first
dynamic reference. Subsequent references use a class object cached from the first load.
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Static Semantics
TE � (load Y Tload) :Tload [loadLTstat ]

Dynamic Semantics

(load Y Tload) � if fileType(Y )�Tload then fileExp(Y )

else (error load-type-mismatch Tload) end

[loadLTdyn ]

Figure 15.20 Semantics of load based on load-time type comparison.

15.6.1 Type Soundness of load via a Load-Time Check

Perhaps the simplest strategy for guaranteeing type soundness is to check at load
time that the type supplied by the loaded file is a subtype of the type expected
by the client of the load expression (Figure 15.20). In this strategy, the type-
checking rule for (load Y Tload) is trivial: the type checker simply accepts that
Tload is the type of the loaded file and leaves verification of this fact to the run-
time system. This dynamic test is expressed by the test fileType(Y )�Tload

in the operational semantics rewrite rule for the load expression. If the test
succeeds, the load expression has the same semantics as the source expression
fileExp(Y ) associated with the file. If the test fails, the load expression produces
an error indicating a load-time type mismatch.10

Load-time checking is easy to understand and facilitates separate compilation.
The file Y mentioned in a client’s load expression need not even exist when the
client is compiled, so program files can be written and compiled (and recompiled)
in any order.

However, the load-time checking strategy has two key disadvantages. First,
there is time overhead associated with extracting the type fileType(Y ) from the
compiled file and comparing it with the type Tload of the load expression.11 The
second disadvantage is more philosophical in nature: performing a dynamic type
check is fundamentally at odds with the discipline of static type checking! Since
the goal of static type checking is to eliminate dynamic type errors, it is disturbing
that load can encounter a load-type-mismatch error.

On the other hand, as we shall see, it is difficult to statically guarantee type
safety in a time-changing file storage medium, so we may be willing to treat
dynamic type errors associated with file loading as acceptable. After all, since
it is also necessary to check when loading a file that a file with the given name

10For simplicity, the operational semantics is assumed to be specified in terms of source-level
expressions. In practice, loading a compiled file would execute compiled code whose behavior
should be the same as the source-level behavior.

11There is also a space overhead for storing type information in the compiled file, but almost
all the strategies we discuss require this overhead.
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exists, it does not seem unreasonable to check that a file with the given name is
type-compatible with the executing program.

15.6.2 Type Soundness of load via a Compile-Time Check

A second strategy for ensuring the type soundness of load is to check at compile
time that the type supplied by the file Y to be loaded is a subtype of the type
expected by the client of the load expression (Figure 15.21). But there’s a
problem: the type of file Y may change between the time the client is compiled
(when the type comparison is performed) and the time when the client is run
(when file Y is loaded). There are two solutions to this problem:

1. Prevent the type of file Y from changing between compile time and run time.
For example, the compiler can effectively load the file at compile time by
textually including the contents of file Y at the point of the load, as with
C’s #include file-inclusion declaration. (Other techniques for guaranteeing
the immutability of file Y ’s type are explored in the Web Supplement.) This
approach promises true static type checking. Since no change is allowed that
would undermine the validity of the type equivalence proven at compile-time,
this equivalence is guaranteed at load time, and there is no need for any load-
time type checks.

2. Check that the type of file Y has not changed between compile time and run
time. The code emitted by the compiler for (load Y Tload) can include a
proxy for file Y ’s type (such as a unique file identifier, a version number, or
a fingerprint of the file’s content or type) that can be used to verify at load
time that the type has not changed since compile time. This is really a hybrid
strategy, since it implies some sort of load-time check in addition to the type
check performed at compile time. This check can be much more efficient than
the full load-time type check implied by the [loadLTdyn ] rule.

For example, Java uses this hybrid strategy to load class files. Consider
compiling a Java class B that manipulates instances of class A. The Java
compiler uses the compile-time implementation of class A to determine the
argument and result types for methods from class A, so these do not need to
be explicitly specified by the programmer.12 However, when class B is loaded
(potentially on a different machine having a different file system than the one
on which it was compiled), the Java class loader must find an implementation
of class A and verify that this implementation satisfies the requirements on A

discovered when compiling B.

12Java programmers can specify method types explicitly via so-called interface types, but
they are not required to do this.
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Static Semantics
TE std � fileExp(Y ) :TY TY �Tload

TE � (load Y Tload) :Tload
[loadCTstat ]

where TE std has bindings for all names in the standard library.

Dynamic Semantics

(load Y Tload) � fileExp(Y ) [loadCTdyn ]
where the type fileType(Y ) of file Y has not changed

since type-checking time, as discussed in the text.

Figure 15.21 Semantics of load based on compile-time type comparison.

An important problem with any approach based on a compile-time type check
for the loaded file is that it potentially puts cumbersome constraints on program
development. If file B loads file A, then it is necessary to write and compile
A before compiling B so that the type of the code in A can be available when
type-checking B. Any change to A suggests the need to recompile B. In essence,
the load statements in a set of program files induces a load dependency graph
that constrains the compilation sequence. In particular, the dependencies must be
acyclic if there is to be a well-defined compilation order. Thus, these dependencies
are incompatible with the goal of separate compilation, and they prohibit modules
that load each other recursively.

However, in FLEX/M, this problem is far less severe than it might otherwise
seem because of the presence of first-class modules. A functorization technique
can be used to reestablish separate compilation for strategies based on a compile-
time type check for the loaded file. Any module that loads other modules can
be transformed into a functor that performs no loads but instead takes the mod-
ules that would have been loaded as arguments. In the functorization strategy,
functors can be supplied with their argument modules in a single top-level mod-
ule that performs all loading and linking. For example, if the source code for a
use-stack.flxm file is

(open (load stack.flxm TstackModule) Ebody)

then we create a program use-stack-functor.flxm whose source code is

(abs ((stack-module TstackModule))

(open stack-module Ebody))

Whereas compile-time checks would require stack.flxm to be compiled before
use-stack.flxm, the functor expression can be compiled before stack.flxm is
compiled or even written. The stack-module compilation can be delayed until it
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actually becomes necessary to run the original program, which is accomplished
in the following expression:

((load use-stack-functor.flxm (-> (TstackModule) Tbody))

(load stack.flxm TstackModule))

Functorization can even be used to compile modules that have recursive depen-
dencies — as long as the programmer is familiar with the Y operator (see Exer-
cise 15.5).

15.6.3 Referential Transparency of load for File-Value Coherence

The rules in Figures 15.20 and 15.21 do not address the file-value coherence
issue mentioned earlier. The soundness of our SDT-based type system depends
critically on the referential transparency of load expressions. That is, every time
a (load Y Tload) expression is encountered during the execution of a program,
it must evaluate to the same value, not just have the same type. To see what can
go wrong if this assumption is violated, consider the following rational-number
example:

TratMod = (moduleof ((ratof))

(make-rat (-> (int int) (ratof)))

(numer (-> ((ratof)) int))

(denom (-> ((ratof)) int)))

EratTest = ((open (load ratFile TratMod) denom)

(open (load ratFile TratMod) (make-rat 3 4)))

TdselectRat = ((dselect ratof (load ratFile TratMod)))

In FLEX/M, the expression EratTest is well typed because the first open expres-
sion has type (-> (TdselectRat) int) and the second open expression has type
TdselectRat . However, since the file system is mutable and external to FLEX/M
program execution, it is possible that between the evaluation of the two open

expressions, a programmer changes the contents of ratFile to be a new mod-
ule that has the same type TratMod but uses a new representation for rational
numbers that is incompatible with the previous one (e.g., rational numbers are
represented as procedures rather than as pairs). In this case, no error would be
detected by the load-time type check in the [loadLTdyn ] rule, but a dynamic type
error will occur when the denom procedure from the first representation is applied
to a rational number created by make-rat from the second representation.

In the Web Supplement we discuss some techniques for guaranteeing the ref-
erential transparency of load expressions.
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TA = (moduleof () (f (-> (int) int)))

TB = (moduleof () (g (-> (int) int)))

EA = (module (def f (-> (int) int)

(abs ((x int))

(if (= x 0)

0

((open (load B.flxm TB) g) (- x 1))))))

EB = (module (def g (-> (int) int)

(abs ((y int))

(if (= y 0)

1

(+ ((open (load A.flxm TA) f) (- y 1))

(g (- y 1)))))))

EC = (let ((amod (load A.flxm TA))

(bmod (load B.flxm TB)))

(+ (open amod (f 3)) (open bmod (g 3))))

Figure 15.22 Types and expressions illustrating modules that load each other recur-
sively. Assume that expression EA is compiled to the file A.flxm and EB is compiled to
the file B.flxm.

Exercise 15.5 The types and expressions in Figure 15.22 illustrate how FLEX/M
modules can load each other recursively. Assume that expression EA is compiled to the
file A.flxm and EB is compiled to the file B.flxm.

a. In a system that uses a load-time type check for loaded files (Figure 15.20), show that
expressions EA, EB , and EC are all well typed and that EC does not encounter a
load-type-mismatch error when executed. Is there any constraint on the order in
which EA and EB are compiled?

b. Consider a system that uses a compile-time type check for loaded files (Figure 15.21),
e.g., by using compile-time file inclusion or a load-time check of a file version number.

i. Explain why it is impossible to successfully compile EA and EB .

ii. Using a modified version of the functorization technique, show that it is possible
to transform EA, EB , and EC into E ′

A, E ′
B , and E ′

C such that (1) E ′
A and E ′

B

can be compiled in any order before E ′
C is type-checked and executed and (2)

executing E ′
C will return the desired result. Hint: It may help to review the

Y operator from page 303. E ′
A and E ′

B should not be modules that directly
load modules from particular files; instead, each should be a functor parame-
terized over a module-returning thunk and should reference another module by
dethunking this parameter. The loading of the compiled files for E ′

A and E ′
B

should take place in E ′
C , which is also responsible for constructing the thunks

expected by E ′
A and E ′

B and “tying the knot” of recursion.
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15.7 Discussion

Unifying the programming and linking languages via load and first-class modules
is very powerful. As illustrated above, the creation, instantiation, and linking of
parameterized modules are easily accomplished with ordinary procedures and
application. It is also possible to conditionally choose which modules to load at
run time, as in the following procedure:

(abs ((data Tdata))

(open (if (sparse? data)

(load sparse-matrix-module.flxm TmatrixModule)

(load dense-matrix-module.flxm TmatrixModule))

. . . code performing matrix manipulations on data . . .))

The ability to use arbitrary computation when linking program components per-
mits idioms that are not expressible in most linking languages. Although this sys-
tem guarantees static type checking during a separate compilation phase, linking
is not a separate phase from computation, and may not terminate.

Although powerful, the simple module facility described here has several
shortcomings, which are described in the remainder of this section.

15.7.1 Scoping Limitations

In a FLEX/M module value-component definition (def I T E), the scope of
the name I includes the expressions of all other def declarations in the module
but not their types. This makes it easy to define mutually recursive procedures,
but prevents the type of one component from depending on the value of another
component. To see why one might want to do this, consider the following example,
in which the definition of the make-point procedure opens the pair-mod module:

Eillegal = (module ()

(def pair-mod (moduleof ((pairof s t))

(pair (forall (s t)

(-> (s t) (pairof s t))))

. . . )

(module (def-datatype (pairof s t) (pair s t))))

(def make-point (-> (int int)

((dselect pairof pair-mod) int int))

(open pair-mod

(abs ((x int) (y int))

(pair x y)))))
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The declared type of make-point is consistent with the type of the expression
(open pair-mod . . . ). However, this type uses the name pair-mod, which by
the scoping rules for module is not in scope within TmakePoint . So the FLEX/M
scoping restriction prohibits us from writing this module expression.

The scoping restriction is a consequence of our design choice that def declara-
tions in a module should be mutually recursive with respect to their expressions
but should not be in the scope of their types. This choice was made to simplify
the [moduleof-elim] type rule.

Alternatively, we could have decided that def declarations should be sequen-
tial, in which case the scope of a name defined by such a declaration would include
the expressions and types of subsequent definitions. In this alternative approach,
Eillegal would be a well-typed expression. However, there are drawbacks to this
approach: (1) such a system would need a separate letrec expression (it would
no longer be sugar for opening a module); (2) defining mutually recursive pro-
cedures in a module would be more cumbersome; and (3) the scoping and type
rules for module would be more complex.

15.7.2 Lack of Transparent and Translucent Types

In FLEX/M, every type constructor is opaque in the sense that its implemen-
tation is abstract and can never be seen outside the module in which it is defined.
The only way to manipulate an element whose type mentions an abstract type
constructor is to use the type-converting capabilities of its associated constructor
and deconstructor procedures.

In a full-fledged module system, it is also desirable for modules and signatures
to have named type components that are specified by transparent type defini-
tions, whose concrete implementations are visible to any client of the module
or its signature. For example, a signature for a module of function transfor-
mations might include transparent definitions like intfun for (-> (int) int)

and transform for (-> (intfun) intfun). Like the let-type sugar in FLEX,
transparent definitions allow clients to use a short name like transform in place
of the complex type (-> ((-> (intfun) intfun)) (-> (intfun) intfun)) it
abbreviates (and to which it is type-equivalent). Because the scope of transparent
definitions typically includes the rest of the signature or module in which they
appear, such abbreviations also help the implementer to significantly simplify the
types mentioned later in these constructs.

Although FLEX/M does not support transparent type definitions, it would
be easy to add them; we omitted them to simplify the module system. Indeed,
the design of FLEX/M is inspired by FX-91, a language whose module system
supports both opaque and transparent type definitions.
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In FX-91, transparent and opaque type definitions are two distinct categories;
once a type name is defined, its category cannot change. The SML module sys-
tem uses a more flexible approach to type definitions that has important practical
benefits. In an SML module, a type name may either be transparent (defined
to be synonymous with a type) or opaque (having no type definition). Unlike
FLEX/M’s opaque types, which are always abstract, SML’s opaque types are
translucent in the sense that they can later be refined to partially or fully trans-
parent types by a unification-like process called signature matching [HL94].
For instance, if a module type component initially specified as type r is matched
against a signature with the definition type r = s -> t, then it acquires the lat-
ter definition. If later s is refined to int and t is refined to bool, it is as if the
original specification were expanded to type r = int -> bool.

Signature matching facilitates expressing functors that can propagate con-
crete type information. Let’s revisit the table-module functor from Figure 15.12
on page 907, which is parameterized over a key module having (1) a key type and
(2) an equality procedure on elements of this type. In FLEX/M (as in FX-91),
the fact that the key type must be abstract requires that cumbersome conversions
be used between the concrete key type (such as symb) and the abstract key type
in a table module that results from invoking the functor. When the table-module
functor example is expressed in SML (see the Web Supplement for details), sig-
nature matching allows the concrete key type to be used directly in the bind and
lookup procedures of the resulting table module.

With translucency, an opaque type definition in a module is not necessarily
abstract; it is simply unknown, and may later be refined. Some additional mech-
anism must be used to specify abstract types. In SML, this is done by sealing
a signature, which prevents the signature-matching process from further refining
any opaque type names mentioned in the signature. So abstract types in modules
can be specified by module signatures (the approach taken in SML) rather than
by using procedures that convert between the concrete and abstract types (the
approach taken in FLEX/M and FX-91).

Although translucency has significant benefits, formalizing it requires addi-
tional technical machinery beyond the scope of this book. For a high-level dis-
cussion of translucency, consult [HP05]; for a technical overview, see [HL94].

15.7.3 The Coherence Problem

In FLEX/M, it is difficult to express type relationships that must hold among
modules, such as the submodules of a module or the module arguments of a
functor. This is known as the coherence problem [HP05].



15.7.3 The Coherence Problem 935

For example, consider a simple two-stage compiler that parses a string into
an abstract syntax tree (AST) and then generates output code for the AST. For
simplicity, we assume the output code is also represented as a string. Suppose
that there are parser and code generator modules with the following types, in
which (astof) is the AST type:

TparserMod = (moduleof ((astof))

(parse (-> (string) (astof))))

TgeneratorMod = (moduleof ((astof))

(codegen (-> ((astof)) string)))

Then we might expect to be able to write a functor that creates a compiler by
composing a parser module and a code generator module:

EmakeCompiler = (abs ((parser TparserMod) (generator TgeneratorMod))

(abs ((pgm string)) {compilation procedure}
((open generator codegen)

((open parser parse) pgm))))

However, such a functor is ill typed! (open parser parse) has type

(-> (string) ((dselect astof parser)))

but (open generator codegen) has type

(-> (((dselect astof generator))) string)

Because the variable references parser and generator are not syntactically iden-
tical, the body of the functor fails to type-check.

The problem here is that there is no guarantee that the two modules use
the same implementation of astof. If they do use different implementations,
then it is not safe for the generator to use an AST created by the parser. So
the type checker is correctly reporting a potential problem. Indeed, because all
FLEX/M type constructors are opaque, two modules that happen to have the
same abstract type constructor names can never have interoperable data values
whose types mention these constructors.

However, there are situations where the programmer knows that the same
AST implementation is shared by the parser and code generator. How can the
programmer convey this sharing knowledge to the type checker so that the com-
pilation functor will type check?

One approach, known as sharing by construction, is to reorganize the
program to make the sharing explicit. For example, we can remove the parse

and codegen procedures from modules and instead abstract them over an AST
module described by a suitable type TastMod :
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TmakeParser = (-> ((ast1 TastMod))

(-> (string) ((dselect astof ast1))))

TmakeGenerator = (-> ((ast2 TastMod))

(-> (((dselect astof ast2))) string))

Then we can write a procedure that combines these abstracted procedures:

E ′
makeCompiler = (abs ((make-parser TmakeParser)

(make-generator TmakeGenerator)

(ast3 TastMod))

(let ((parser (make-parser ast3))

(codegen (make-generator ast3)))

(abs ((pgm string)) {compilation procedure}
(codegen (parser pgm)))))

In addition to taking arguments with types TmakeParser and TmakeGenerator , this
procedure also takes an AST module ast3 that it uses to create both the parser
and codegen procedures, thus ensuring they share the same AST implementation.
According to the type rule for procedure application in a dependent type system,
parser = (make-parser ast3) has type

(-> (string) ((dselect astof ast3)))

and codegen = (make-generator ast3) has type

(-> (((dselect astof ast3))) string)

so these two functions can interoperate as desired.
Although sharing by construction solves the coherence problem, it requires

reorganizing the program to get the right plumbing for the sharing information.
Along the way, it may be necessary to break abstraction/module boundaries to
expose the units of sharing. For instance, in the compiler example, it is necessary
to move the the parse and codegen procedures out of modules with different (as
far as the type checker is concerned) astof type constructors and instead param-
eterize them over an AST module with this constructor. The reorganization is
not so bad in this example, but in an example of realistic complexity it can lead
to a plumbing nightmare.

An alternative solution to the coherence problem, known as sharing by spec-
ification, is to allow sharing declarations that indicate relationships that hold
between modules mentioned in a type. This is the approach taken in the SML
module system. For example, an SML functor for combining a parser module
Parser with a code generator module Generator can specify that both modules
must use the same AST type ast via the following sharing declaration:
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sharing type Parser.ast = Generator.ast

Applications of the functor are well typed only when this sharing constraint is
satisfied by the argument modules. As hinted at by this example, the sharing-by-
specification approach to the coherence problem is more elegant than the sharing-
by-construction approach. It allows sharing to be specified by adding declarations
to a program without changing its plumbing or exposing implementation details
that should remain hidden; e.g., specifying that Parser and Generator have the
same ast type in SML does not divulge how they share the type. Thus, sharing
by specification would seem to scale more readily to large programs (see [HP05]).

In SML, the sharing-by-specification approach depends on translucent type
definitions, which FLEX/M does not support. There is thus no straightforward
way to add this feature to FLEX/M.

15.7.4 Purity Issues

The FLEX/M module system requires that certain expressions be pure — i.e.,
they cannot allocate, read, or write any store locations. In particular:

• an argument expression of a dependent procedure application must be pure if
the associated parameter name appears in the result type of the application;

• a definition expression of a let expression must be pure if its name appears in
the result type of the body expression;

• the expression denoting the module opened by open must be pure;

• the expression compiled to yield a loadable file must be pure.

These restrictions guarantee that any expression Emod appearing in a dependent
type constructor (dselect θ Emod) is pure. Since all occurrences of a pure
module expression Emod in the same environment denote the same module value,
all occurrences of (dselect θ Emod) in the same environment denote the same
abstract-type constructor.

These purity restrictions can get in the way of practical programming, where
it may be necessary for certain module expressions to perform side effects. For
example, if each instance of a mutable-table data structure is represented as a
module, then an expression EnewTable that creates a new table will allocate one
or more locations in the store. There are workarounds for these situations in
FLEX/M. For example, thunking EnewTable allows it to be compiled and loaded;
every invocation of this thunk creates a new table. Although EnewTable cannot be
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opened directly, it is possible to open a table instance that has been named via
let because names are pure:

(let ((tbl EnewTable))

(open tbl . . .)

For similar reasons, many module systems have immutable module names and
require type components to be selected from names (or a path of identifiers, like
library.trees.bst) rather than from arbitrary module expressions.

A simple way to determine expression purity is to use the syntactic purity
test defined in Figure 13.25 on page 816. However, in the presence of param-
eterized modules, there is a fundamental problem with using this crude test to
conservatively approximate which module expressions do not touch the store. To
see this, consider the following example, which uses some expressions from the
table-module example in Figure 15.12 on page 907:

Eescape = (let ((sym-key-mod EsymKeyMod))

(let ((env-table-mod (EmakeTableModule sym-key-mod)))

(open sym-key-mod

(open env-table-mod

(bind (sym->key (sym a)) 1

((pcall empty int)))))))

In this case, the type of the bind application and both open expressions is

((dselect tableof env-table-mod) int)

Because of the substitutions performed on the way out of the [let] rule, the inner
let would have the type

((dselect tableof (EmakeTableModule sym-key-mod)) int)

and the outer let would have the type

((dselect tableof (EmakeTableModule EsymKeyMode)) int)

The problem with the last two types is that both module expressions in the
dselects are applications and therefore are not pure according to the syntactic
purity test. Even though both applications do not touch the store and so are
actually pure, the conservative syntactic test causes type checking to fail. This
sort of failure will occur whenever an attempt is made to export a type containing
an abstract type from a parameterized module outside the scope of an application
of the functor creating that module.

We have seen that a syntactic purity test imposes a kind of export restriction
on abstract values, thereby reducing the power of the module system. This prob-
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lem can be mitigated somewhat by using let to introduce names for applications,
as in the let binding of env-table-mod, without which the inner open expression
would be ill typed (because (EmakeTableModule sym-key-mod) is not syntactically
pure). But let only locally increases the scope in which subexpressions are well
typed and cannot remove what is effectively the same export restriction that
plagues existential package systems.

Another way to address this problem is to define a class of functors — so-
called applicative functors — whose application is necessarily pure. These
stand in contrast to generative functors, whose application may be impure.
Although different occurrences of the same generative-functor application might
denote different modules, different occurrences of the same applicative functor
application must denote the same module. OCAML’s functors are applicative
whereas SML’s functors are generative.

What we really need is a more accurate way to determine the purity of an
expression. This is the subject of the next chapter.

Exercise 15.6 Assume that EstackMod1 , EstackMod2 , and EmakeReverseStack are the solu-
tions to the parts of Exercise 15.2 on page 909. (You do not have to solve that exercise
to do this one.) Consider the following FLEX/M expression context:

Etest = (let ((sm1 EstackMod1)

(sm2 EstackMod2)

(make-reverse-stack EmakeReverseStack))

(let ((rsm1 (make-reverse-stack sm1))

(rsm2 (make-reverse-stack sm2)))

�))

For each of the following expressions, indicate whether the result of filling the hole in
Etest with the expression is well typed in FLEX/M. Explain your answers.

a. (open sm1 ((pcall push int) 1 ((pcall empty int))))

b. ((pcall (open sm1 push) int) 1 ((pcall (open sm1 empty) int)))

c. ((pcall (open sm1 push) int) 1 ((pcall (open sm2 empty) int)))

d. (open rsm1 ((pcall push int) 1 ((pcall empty int))))

e. (open rsm1 ((pcall empty? int) ((pcall empty int))))

f. ((pcall (open rsm1 empty?) int) ((pcall (open rsm1 empty) int)))

g. ((pcall (open rsm1 empty?) int) ((pcall (open rsm2 empty) int)))

h. ((pcall (open rsm1 empty?) int) ((pcall (open sm1 empty) int)))
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Notes

As mentioned in Section 14.5.2, the design of module systems is intimately re-
lated to the notion of abstract type. The interested reader should look there for
additional notes related specifically to abstract types.

The module system presented in this chapter is based on the FX-91 module
system [GJSO92], which supported first-class modules, static dependent types,
type and effect inference, explicit and implicit polymorphism, and transparent
and opaque bindings for types and descriptions of higher kind. FX-91 also sup-
ported constructors for abstract sum-of-products types and a pattern-matching
facility. Implicit projection was introduced in FX-87 [GJLS87].

[HP05] discusses important issues in module design. [Mit96, pp. 692–701]
shows how to formalize a module/abstract data-type system with functors using
product and sum types. Sum types can be used to describe dependent types.
This section ends with a theoretical discussion of the tradeoff between expressive
power and static type checking.

In software engineering, there is traditionally a strong correspondence be-
tween the unit of program modularity (from the point of view of the program-
mer) and compilation units (from the point of view of the compiler and linker)
[Ler94]. These ideas are essentially the same in our module system, as they were
in Modula-2 [Wir85], CLU, and many other languages.

The CLU language tied program modules to the notion of abstract data
types: every program module, called a cluster, defines a single, perhaps parame-
terized, type and its associated operations. The programmer specifies abstraction
boundaries by using the cvt keyword to mark conversions between the abstract
type and its representation. CLU also has a mechanism for importing a cluster
and requiring that it support particular operations. For example, one can require
that the type of an object inserted into a generic hash table support a comparison
operation. This is essentially a kind of bounded quantification on module types.

The ML language has served as the foundation for several sophisticated
module systems. The original ML module system, due to David MacQueen
[Mac84, Mac88], was based on a second-class module language that was well
integrated with the base language and supported type reconstruction. [Mit96]
describes the ML module system in some detail. Dependent types were used to
express modular structure [Mac86]. [Ler95] investigates an SML-based module
system that eliminates the need for generative types (with their attendant op-
erational character) by using applicative functors that always return compatible
abstract types when applied to equivalent arguments. [CHP99] investigated how
to add recursive module dependencies into the ML module system while main-
taining static type checking and ensuring that the linking process terminates.
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[CHD02] attempts to build a type theory that encompasses nearly all the above
work. Moscow ML [RRS00] has first-class, recursive structures and higher-order
functors.

Unfortunately, the initial ML module system did not readily support separate
compilation. [Rus98] (especially Chapter 6) places the blame for this problem on
the choice of compilation unit and proposes a coding style that permits separate
compilation in most cases. [Rus98] then goes on to explore the problem of ML’s
lack of syntactic interfaces for some modules.

Putting type declarations into a language with type reconstruction can lead
to some surprising results. For example, it is easy to make type checking un-
decidable. To see how inferable and noninferable types can be combined in a
decidable type system, see James O’Toole’s work in [OG89].

The Cayenne language [Aug98] uses dependent types and record types to
implement program modules. In Cayenne as in Pebble [BL84] (which treats
types as first-class, run-time entities), type checking may fail to terminate. Early
attempts to understand the ML module system were based on models with de-
pendent types. [HMM90] showed how to develop such a model in order to enforce
a phase distinction between compile time and run time.

The problems of loading modules are instances of problems related to per-
sistence in type-safe languages. [CM85], for example, discusses the need for
identifications, which are unique handles for objects. [Har86] discusses many of
these issues (including the need for persistent type information associated with
a module) in the context of the ML module system. All of these problems arise
in object-oriented languages like Java, which dynamically loads class definitions
and does substantial run-time checking [GJS96] (which can result in exceptions
due to linking errors). For more general information about linking, see [Lev00].

A somewhat different approach to abstraction is based on how things work
in the physical world. Simulation languages, such as Simula 67 [DMN70], sought
to make it convenient to represent objects in the world with state and behavior.
This approach led to the modern notion of object-oriented programming, in which
abstraction is achieved by encapsulating state and behavior within objects and
classes.

Simulation work also motivated various approaches to concurrent program-
ming, notably the actor model developed by Carl Hewitt and others [HBS73,
Hew77]. An actor is a stateful process that can respond to and send messages.
C. A. R. Hoare’s communicating sequential processes (CSP) [Hoa85] took a simi-
lar approach, which was used as the basis for the occam [occ95] module system.
An occam module is a process definition that may be instantiated multiple times
and is accessed only via its designated input and output channels.





16

Effects Describe Program
Behavior

Nothing exists from whose nature some effect does not follow.

— Benedict Spinoza, Ethics, I, proposition 36

16.1 Types, Effects, and Regions: What, How, and
Where

We have seen that types are a powerful tool for reasoning about higher-order
procedures (Chapter 6), naming (Chapter 7), and data (Chapter 10). Yet types
do not help us reason in detail about the behavior of programs exhibiting state
(Chapter 8), control (Chapter 9), or concurrency.1 An effect system is a formal
system for reasoning about many of the state, control, concurrency, and storage
issues that arise in practical programs. An effect system produces a concise
description of the observable actions of an expression, and this description is
called the effect of the expression. Example effects include writing into a region
of the store or jumping to a nonlocal label. Just as a type describes what an
expression computes, an effect describes how an expression computes.

In this chapter, we introduce effect systems and explore their applications.
As we shall see, effects describe a wide variety of properties of a program that are
useful to programmers, compiler writers, language designers, and even to users
of applications concerned about the security of those applications. Effect sys-
tems provide improvements to documentation, safety, and execution efficiency.
Documentation and safety improvements include better understanding of code
behavior, such as determining how modules developed by others may modify
state, perform or be the target of nonlocal jumps, or use other system resources
(e.g., the file system, the display console, the network). Efficiency improvements

1Consult the Web Supplement for this book for material on concurrency.
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come from increased opportunities for optimization, including better expression
scheduling and storage management. For example, expressions without store
dependencies can be reordered or executed in parallel as long as any data depen-
dencies are preserved.

To make effect systems more precise and more useful, we introduce the no-
tion of regions that describe where effects are performed. In our effect system,
every object in the store resides in a single region, and the type of the object
is extended to describe its region. We can think of regions as colors (red, blue,
green, etc.), as distinct memory banks (bank 1, bank 2, bank 3, etc.), or even
as machines or network domains (mit.edu, wellesley.edu, etc.). Regions are
logical locations, and may or may not correspond to physical storage locations
in a given implementation. For example, control points can be associated with
regions that represent locations in code as opposed to regions in the store.

When two objects are in distinct regions, mutating one of the objects cannot
cause changes to the other object. This is a consequence of our invariant that an
object is only in a single region. Thus, regions can be used to prove that object
references do not alias one another. Aliasing occurs when two distinct references
refer to the same object. Aliasing can inhibit important compiler optimizations
such as common subexpression elimination, code motion, dead code elimination,
and caching the values of mutable objects in registers.

In this chapter, we discuss a system with both effects and regions, but it is
possible to have effects without regions and regions without effects. However,
there is little reason to decouple effects and regions. In the absence of regions,
an effect system has only a limited repertoire of broad effects and is too coarse
to be useful. In the absence of an effect system, a region system alone cannot
deduce when a particular region is accessed or when it becomes inaccessible.

To produce an accurate accounting of effects we include three key changes to
our type system. First, the type of every mutable object includes the object’s
region. Second, we account for the effect of executing a procedure in the type of
the procedure as a latent effect that is realized when the procedure is called.
Latent effects communicate the effects of a procedure from the point of the pro-
cedure’s definition to its points of use. Third, we introduce the idea of effect and
region polymorphism to permit procedures to have effects that depend on their
input parameters.

An effect system not only must produce valuable information, but program-
mers must also find it easy to use. We achieve this goal by reconstructing effects
and regions without programmer declarations or assistance. Early experiments
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with effect systems2 showed that programmers had a difficult time composing
appropriate effect declarations, and thus an effect reconstruction algorithm is
necessary for practical effect systems. Since procedure types include effects, ef-
fect reconstruction naturally depends upon type reconstruction and vice versa.
In this chapter, we demonstrate how to reconstruct both types and effects simul-
taneously and fully automatically in the FLARE language from Chapter 13.

In our study of effects, we first focus on store effects that describe the
creation, observation, and mutation of store-based state. We then discuss how
effect systems can be used to analyze a wide variety of behaviors that include
control transfers, lifetime-based storage management, concurrency, exceptions,
program execution time, and the security of mobile code.

16.2 A Language with a Simple Effect System

We study effects in the context of FLARE/E, which extends the implicitly
typed FLARE language (from Chapter 13) with store effects. The expres-
sions of FLARE/E are exactly the same as those of FLARE, but the types of
FLARE/E include effect and region information, and the type rules of FLARE
must be modified to manipulate this information appropriately. We begin by dis-
cussing the structure of FLARE/E types, effects, and regions. We then present
type/effect rules for FLARE/E, show how type and effect information can be
automatically reconstructed for a type/effect system with these rules, and de-
scribe a way to hide local effects from the surrounding program. We conclude
this section by discussing how an effect-based purity test is superior to a syntactic
purity test for generalizing types but requires a considerably more complex type
reconstruction algorithm.

In this section, we use store effects for concreteness, but the concepts, rules,
and algorithms we introduce for FLARE/E generalize to a broad class of effects.

16.2.1 Types, Effects, and Regions

Recall that FLARE has the store operations cell (allocate and initialize a cell
in the store), ^ (read the content of a cell), and := (write the content of a
cell). The FLARE/E effect system summarizes how these operations are used
in an expression. For example, the expression (cell 5) creates a mutable cell
containing an integer in an abstract region of the store that we arbitrarily call

2For example, with the FX-87 language of [GJLS87].
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r1. In FLARE/E, the type of a cell includes its region as well as the type of its
content, so the type of this cell is (cellof int r1). Moreover, every FLARE/E
expression has an effect as well as a type. The effect of (cell 5) is (init r1),
which indicates that it allocates and initializes a cell in region r1.3 We use the
notation E :T !F to indicate that expression E has type T and effect F .4 So
we can summarize the type and effect of (cell 5) as follows:

(cell 5) : (cellof int r1) ! (init r1)

As another example, consider the expression

Eboolcell = (let ((b (cell #f))) (begin (:= b #t) (^ b)))

Here are the types and effects of three subexpressions of this expression:

(cell #f) : (cellof bool r2) ! (init r2)

(:= b #t) : unit ! (write r2)

(^ b) : bool ! (read r2)

These assume that r2 is the region for the new cell created by (cell #f).
(:= b #t) performs a write effect on this region and (^ b) performs a read

effect on the region. The type and effect of Eboolcell combine this information:

Eboolcell : bool ! (maxeff (init r2) (write r2) (read r2))

where maxeff is the means of combining all the effects performed within an
expression.

The structure of types, effects, and regions in FLARE/E is summarized
in Figure 16.1. The simplest effects, or base effects, are either effect variables
(typically introduced by type schemas or the type reconstruction process) or have
the form (FCR R), where FCR is an effect constructor (init for cell, read for
^, and write for :=), and R is the name of a region. The effect constructors
and base effects can easily be extended to model effects other than store effects.
Effects are combined with maxeff, which glues together any number of effects.
So any effect expression is essentially a “maxeff tree” — a tree of maxeff nodes
whose leaves are base effects.

3In FLARE/E, there is only one effect constructor, init, for both allocation and initializa-
tion, because there is no way to allocate an uninitialized cell. Separate allocation and initial-
ization effects could be used in a language in which these operations are distinct.

4We will see in Section 16.2.2 that this notation is part of a type/effect judgment that in
general requires a type environment. For now, we use this notation informally and omit the
type environment.
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The FLARE/E effect system does not keep track of the ordering of effects
or the number of times a particular effect is used, so an effect is treated as a set
of base effects. We formalize this by defining the meaning of an effect expression
(using the function F defined in Figure 16.1) as the set of base effects that are its
leaves when it is viewed as a maxeff tree. The effect-equivalence relation (≈e) and
subeffect relation (�e) are both defined in terms of this set-based interpretation.
For example, we can say that Eboolcell has the effect

F ′
boolcell = (maxeff (maxeff (read r2) (write r2))

(maxeff (read r2) (init r2)))

because Eboolcell has effect Fboolcell = (maxeff (init r2) (write r2) (read r2))

and Fboolcell ≈e F ′
boolcell :

F [[Fboolcell ]] = {(init r2), (read r2), (write r2)} = F [[F ′
boolcell ]]

The notion of pure expressions (expressions that do not touch the store)
arose in our discussion of referential transparency (Section 8.3.6) as well as in
type reconstruction for FLARE in the presence of state (Section 13.5.1). To
model such expressions, we treat the effect expression pure as syntactic sugar for
(maxeff), which denotes an empty set of effects.

Under the effect-equivalence relation ≈e, maxeff induces what is known as
an ACUI algebra because it has the following four properties (stated for the
simple case in which maxeff combines exactly two effects):

Associative (A): (maxeff F1 (maxeff F2 F3))
≈e (maxeff (maxeff F1 F2) F3)

Commutative (C): (maxeff F1 F2) ≈e (maxeff F2 F1)

Unitary (U): (maxeff F pure) ≈e F
Idempotent (I): (maxeff F F) ≈e F

This just says that maxeff behaves like a set-union operator on effects when they
are viewed as sets of base effects. Henceforth, we will implicitly treat effects as
sets of base effects without explicitly invoking F or ≈e.

FLARE/E procedure types (-> (Tn
i=1) Flatent Tresult) include an effect

Flatent , known as the latent effect of the procedure type. This describes the
actions performed when the procedure is called. For example, consider:

Einc-c! = (let ((c (cell 0)))

(let ((inc-c! (abs ()

(begin (:= c (+ 1 (^ c)))

(^ c)))))

(pair (inc-c!) (inc-c!))))
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Here are the types and effects of four key subexpressions of Einc-c!:

(cell 0) : (cellof int r3) ! (init r3)

(begin . . . ) : int ! (maxeff (read r3) (write r3))

(abs () . . . ) : (-> ()

(maxeff (read r3)

(write r3))

int) ! pure

(inc-c!) : int ! (maxeff (read r3) (write r3))

We assume that cell c is allocated in region r3. The begin expression in the
body of the abstraction reads and writes cell c, so it has effect

Fbegin = (maxeff (read r3) (write r3))

Evaluating the abstraction (abs () . . . ) simply creates the inc-c! procedure
and does not evaluate its body; since evaluating the abstraction does not touch
the store, the abstraction is pure. However, each application of inc-c! evaluates
the begin expression in its body and so has the effect Fbegin . To communicate
this effect from the body of the procedure definition to the point of procedure
application, the effect Fbegin is incorporated into the type of the procedure inc-c!
as its latent effect. The type and effect of Einc-c! are:

Einc-c! : (pairof int int) ! (maxeff (init r3) (read r3) (write r3))

The only nontrivial type-equivalence rule in FLARE/E is [→-≈] (see Fig-
ure 16.1), which says that two procedure types are equivalent iff their argument
and result types are equivalent and their latent effects are equivalent — i.e., they
denote the same set of base effects. For example:

(-> () (maxeff (read r3) (write r3)) int)

≈ (-> () (maxeff (read r3) (maxeff (write r3) (read r3))) int)

Henceforth, we implicitly consider two types to be the same as long as any cor-
responding procedure types they mention have equivalent latent effects.

Procedures in FLARE/E can be polymorphic over effects and regions as well
as types. Consider the following example:

Etwice = (let ((bools (cell (list #t #f)))

(ints (cell (list 1 2 3)))

(dup! (abs (c)

(begin (:= c (cons (car (^ c)) (^ c)))

(^ c))))

(apply-twice (abs (f x) (begin (f x) (f x)))))

(pair (apply-twice dup! bools) (apply-twice dup! ints)))
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Syntax

BT ∈ BaseType = {unit, int, bool, symb} ; as in FLARE.

TCR ∈ TypeConstructor = {->, pairof, listof, cellof}
FCR ∈ EffectConstructor = {init, read, write}

δ ∈ DescId = SymLit − (BaseType ∪ TypeConstructor ∪ EffectConstructor
∪ {maxeff, generic})

T ∈ Type ::= δ | BT | (-> (T ∗) F T)

| (pairof T T) | (listof T) | (cellof T R)

BF ∈ BaseEffect ::= δ | (FCR R)

F ∈ Effect ::= BF | (maxeff F ∗)

R ∈ Region ::= δ

D ∈ Desc ::= T | F | R

TS ∈ TypeSchema ::= T | (generic (δ∗) T)

BFS ∈ BaseEffectSet = P(BaseEffect)

Syntactic Sugar
pure �ds (maxeff)

Denotation of Effect Expressions

F : Effect → BaseEffectSet

F [[BF ]] = {BF}
F [[(maxeff Fn

i=1)]] = ∪n
i=1F [[Fi ]]

Effect Equivalence
F1 ≈e F2 where F [[F1 ]] = F [[F2 ]] [≈e]

Subeffects
F1 �e F2 where F [[F1 ]] ⊆ F [[F2 ]] [�e]

(The notation F2 "e F1 means F1 �e F2 )

Type Equivalence
∀n

i=0 . (Ti ≈ T ′
i ) F ≈e F ′

(-> (Tn
i=1) F T0) ≈ (-> (T ′n

i=1) F ′ T ′
0)

[→-≈]

All other type-equivalence rules for FLARE/E are straightforward.

Figure 16.1 FLARE/E types, effects, and regions.
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The dup! procedure takes a cell c containing a list, modifies it to contain a list
with the first element duplicated, and returns the new list. For maximum utility,
the dup! procedure should have a polymorphic type that abstracts over (1) the
type ?t of the elements in the list in the cell c and (2) the region ?r of the cell c.
Here is a type schema for dup! with the desired degree of polymorphism:

(generic (?t ?r) {?t is type of list elements}
{?r is region of cell}

(-> ((cellof (listof ?t) ?r)) {type of the argument c}
(maxeff (read ?r) (write ?r)) {latent effect of dup!}
(listof ?t))) {type of result of dup!}

The apply-twice procedure is polymorphic in the input type of f, the output
type of f, and the latent effect of f:

(generic (?t1 ?t2 ?e) {?t1 is input type of f}
{?t2 is output type of f}
{?e is latent effect of f}

(-> ((-> (?t1) ?e ?t2) {type of f}
?t1) {type of x}

?e {latent effect of apply-twice, inherited from f}
?t2)) {type of result of apply-twice}

In this case, the latent effect ?e of the argument procedure f is inherited by
apply-twice. If we assume that the bools cell is allocated in region r4 and the
ints cell is allocated in region r5, then we have the following instantiations for
the generic-bound variables in the two applications of apply-twice:

Variable (apply-twice dup! bools) (apply-twice dup! ints)

?t bool int

?r r4 r5

?t1 (cellof (listof bool) r4) (cellof (listof int) r5)

?t2 (listof bool) (listof int)

?e (maxeff (read r4) (write r4)) (maxeff (read r5) (write r5))

So the type and effect of Etwice are:

Etwice : (pairof (listof bool) (listof int))

! (maxeff (init r4) (read r4) (write r4)

(init r5) (read r5) (write r5))

Types, effects, and regions together are descriptions — they describe pro-
gram expressions. We saw descriptions earlier, in Section 12.3.1, where they were
used to specify the structure of type constructors. Here, effects and regions are
new kinds of descriptions for describing program behavior. In FLARE/E, a de-
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scription identifier δ can name any description and supersedes FLARE’s type
identifier τ , which can name only types. This allows us to treat descriptions uni-
formly in type schemas (as illustrated above) and allows us to define notations for
substitution and unification uniformly with types, effects, and regions. This uni-
formity simplifies our presentation, but can lead to ill-formed descriptions (e.g.,
a type appearing in a position where an effect is expected, or vice versa). Such
ill-formed descriptions can be avoided by using a simple kind system as discussed
in Section 12.3.2 (see Exercise 16.3).

16.2.2 Type and Effect Rules

An effect system is a set of rules for assigning effects to program expressions.
Figures 16.2 and 16.3 present a type and effect system that assigns both a type
and an effect to every FLARE/E expression. The system is based on type/effect
judgments of the form

TE � E :T !F

This is pronounced “expression E has type T and effect F in type environment
TE .” As in FLARE, the type environments in this system map identifiers to type
schemas. The type/effect rules in Figure 16.3 are similar to the type rules for
the full FLARE language presented in Figures 13.3 (page 775), 13.19 (page 805),
and 13.24 (page 815), except that they determine the effects of expressions in
addition to their types.

Literals, variable references, errors, and abstractions are all pure because their
evaluation does not touch the store and so can have no store effect. Variable ref-
erences would not be pure if FLARE/E included mutable variables (set!). The
[genvar] rule allows substitution of arbitrary descriptions (types, effects, regions)
for the generic-bound description variables in a type schema. Substituting the
wrong kind of description (e.g., substituting a type for a description variable used
as an effect) would lead to an ill-formed type expression. But this is not prob-
lematic, because descriptions in the [genvar] rule must be “guessed” correctly to
show that an expression is well typed. The formal parameters of generic can be
annotated with kind information to guarantee that all types resulting from this
substitution are well formed (see Exercise 16.3).

The rules for all compound expressions (except abstractions) use maxeff to
combine the effects of all subexpressions and include them in the effect of the
whole expression. The [→-intro] and [→-elim] rules communicate effect informa-
tion from the point of procedure definition to the point of procedure application.
The [→-intro] rule includes the effect of an abstraction’s body as the latent ef-
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Domains
TE ∈ TypeEnvironment = Ident ⇀ TypeSchema

Other type and effect domains are defined in Figure 16.1.

Type Functions
egen : Type → TypeEnvironment → TypeSchema

(egen T TE ) = (generic (δn
i=1) T),

where {δ1 , . . . , δn} = FrDescIdsty [[T ]] − (FrDescIdstyenv TE )

egenPureSP : Type → TypeEnvironment → Exp → TypeSchema

(egenPureSP Tdefn TE E ) =

⎧⎨⎩
(egen Tdefn TE ) if �pure E , where �pure is defined

in Figure 13.25 on page 816

Tdefn otherwise

Figure 16.2 Type/effect rules for FLARE/E, Part 1.

fect in the procedure type of the abstraction, and the [→-elim] rule includes the
latent effect of a procedure type in the effect of a procedure application. Latent
effects are also propagated by the [prim] rule to handle the fact that the types
of cell operators must now carry nontrivial latent effects. Operator types in the
primitive type environment TE prim must now carry latent effects, which are pure
except for the cell operators. For example:

cell : (generic (?t ?r) (-> (?t) (init ?r) (cellof ?t ?r)))

^ : (generic (?t ?r) (-> ((cellof ?t ?r)) (read ?r) ?t))

:= : (generic (?t ?r) (-> ((cellof ?t ?r) ?t) (write ?r) unit))

+ : (-> (int int) pure int)

cons : (generic (?t) (-> (?t (listof ?t)) pure (listof ?t)))

The [letSP ] and [letrecSP ] rules for FLARE/E are similar to the [let′LP ] and
[letrec′LP ] rules for FLARE (Figure 13.24 on page 815). One difference is that
egenPureSP is defined in terms of egen, which generalizes over all free description
variables (not just type variables) in the type T that do not appear in the type
environment TE . We assume that the FrDescIdsty function returns the free type,
effect, and region variables in a type and the FrDescIdstyenv function returns all of
the free type, effect, and region variables in a type environment. The definitions
of these functions are left as an exercise (Exercise 16.2).

The SP subscript, which stands for “syntactic purity,” emphasizes that these
rules and functions use the same syntactic test for expression purity that is used
in FLARE. This seems crazy — why not use the effect system itself to deter-
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Type/Effect Rules

TE � #u : unit !pure [unit] TE � N : int ! pure [int] TE � B : bool !pure [bool]

TE � (sym Y ) : symb ! pure [symb] TE � (error Y ) :T ! pure [error]

TE � I :T ! pure where TE (I ) = T [var]

TE � I : ([Di/δi ]
n
i=1)Tbody ! pure where TE (I ) = (generic (δn

i=1) Tbody) [genvar]

TE � Etest : bool !Ftest TE � Ethen :T !Fthen TE � Eelse :T !Felse

TE � (if Etest Ethen Eelse) :T ! (maxeff Ftest Fthen Felse)
[if ]

TE [Ii :Ti ]
n
i=1 � Ebody :Tbody !Fbody

TE � (abs (I n
i=1) Ebody) : (-> (Tn

i=1) Fbody Tbody) ! pure
[→-intro]

TE � E0 : (-> (Tn
i=1) Flatent Tres) !F0 ∀n

i=1 . (TE � Ei :Ti !Fi)
TE � (E0 En

i=1) :Tres ! (maxeff Flatent Fn
i=0)

[→-elim]

TEprim � O : (-> (Tn
i=1) Flatent Tres) ! pure ∀n

i=1 . (TE � Ei :Ti !Fi)
TE � (prim O En

i=1) :Tres ! (maxeff Flatent Fn
i=1)

[prim]

∀n
i=1 . (TE � Ei :Ti !Fi)

TE [Ii : (egenPureSP Ti TE Ei)]
n
i=1 � E0 :T0 !F0

TE � (let ((Ii Ei)
n
i=1) E0) :T0 ! (maxeff Fn

i=0)

[letSP ]

∀n
i=1 .

(
TE [Ij :Tj ]

n
j=1 � Ei :Ti !Fi

)
TE [Ii : (egenPureSP Ti TE Ei)]

n
i=1 � E0 :T0 !F0

TE � (letrec ((Ii Ei)
n
i=1) E0) :T0 ! (maxeff Fn

i=0)

[letrecSP ]

TE � E :T !F
TE � E :T !F ′ , where F �e F ′ [does]

{Ii :Ti}n
i=1 � Ebody :Tbody !Fbody

�prog (flarek (I n
i=1) Ebody) : (-> (Tn

i=1) Fbody Tbody) ! pure
[prog ]

Figure 16.3 Type/effect rules for FLARE/E, Part 2.

mine purity? The reason is that an effect-based test for purity complicates the
reconstruction of types and effects and the relationship between FLARE/E and
FLARE. This is explored in more detail in Section 16.2.5.

Because our use of effect equivalence and type equivalence in FLARE/E type
derivations is implicit, the type and effect system does not include an explicit type
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rule for type equivalence (e.g., the [type-≈] rule in Figure 11.20 on page 680).
For example, consider the following FLARE/E type/effect derivation:

...
TE � E1 : (-> (int) (maxeff (read r1) (write r2)) bool) ! pure

...
TE � E2 : int ! (maxeff (read r1) (read r2))

TE � (E1 E2) : bool !(maxeff (read r1) (read r2) (write r2)) [→-elim]

This is valid because the effect

(maxeff (maxeff (read r1) (write r2)) pure (maxeff (read r1) (read r2)))

specified by the [→-elim] rule can be simplified to the following effect using im-
plicit effect equivalence:

(maxeff (read r1) (read r2) (write r2))

The effect of an expression determined by our type and effect system is a
conservative approximation of the actions performed by the expression at run
time. Combining the effects of subexpressions with maxeff can lead to ef-
fects that overestimate the actual actions performed. For example, suppose
that Epure has effect pure, Eread has effect (read r6), and Ewrite has effect
(write r6). Then (if #t Epure Eread) has effect (read r6) even though it
does not touch the store at run time, and the conditional (if b Eread Ewrite)

has effect (maxeff (read r6) (write r6)) even though only one of its branches
is taken at run time.

It is possible to inflate the effect of an expression via the [does] rule, which
allows an expression with effect F to be given effect F ′ as long as F is a subeffect of
F ′. In order to derive a type and effect for an expression, it is sometimes necessary
to use the [does] rule to get the latent effects embedded in two procedure types
to be the same. Consider the expression

Eifproc = (if b (abs () Eread) (abs () Ewrite))

relative to a type environment TE in which b has type bool, Eread has type T
and effect (read r6), and Ewrite has type T and effect (write r6). Without
using the [does] rule, we can show:

TE � (abs () Eread) : (-> () (read r6) T) ! pure

TE � (abs () Ewrite) : (-> () (write r6) T) ! pure
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The [if ] rule requires that the types of the two branch expressions be the same,
but in this case the procedure types are not the same because their effects dif-
fer. To show that Eifproc is well typed, it is necessary to use the [does] rule to
give the effect Frw = (maxeff (read r6) (write r6)) to the bodies of both
procedures, resulting in the following derivation:

TE � b : bool !pure [var]

...
TE � Eread :T ! (read r6)

TE � Eread :T !Frw [does]

TE � (abs () Eread) : (-> () Frw T) ! pure [→-intro]

...
TE � Ewrite :T ! (write r6)

TE � Ewrite :T !Frw [does]

TE � (abs () Ewrite) : (-> () Frw T) ! pure [→-intro]

TE � (if b (abs () Eread) (abs () Ewrite)) : (-> () Frw T) ! pure [if ]

In the above example, the [does] rule is used to artificially inflate the ef-
fects of procedure bodies before forming procedure types so that the procedure
types (and, specifically, their latent effect components) will be identical else-
where in the type derivation. This is the key way in which the [does] rule is
used in practice. The FLARE/E type system does not support any form of
subtyping, so that there is no direct way to show that a procedure with type
(-> (int) (maxeff (read r) (write r)) int) can be used in place of one
with type (-> (int) (maxeff (init r) (read r) (write r)) int). How-
ever, as illustrated above, the [does] rule can be used in conjunction with the
[→-intro] rule to inflate the base effects in the latent effect of a procedure when
it is created.

The [does] rule permits an expression to take on many possible effects. We
shall see below (on page 962 in Section 16.2.3) that there is a well-defined, indeed
practically computable, notion of least effect. Henceforth, when we refer to the
effect of an expression, we mean the smallest effect that can be proven by our
rules. When we discuss effect reconstruction (Section 16.2.3), we will show how
to automatically calculate the smallest effect allowed by the rules.

How is the FLARE/E type and effect system related to the FLARE type
system studied earlier? It has exactly the same typing power as FLARE — a
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program is typable in FLARE if and only if it is typable in FLARE/E. This
relationship is a consequence of the following theorem, which uses the notations
�T �eT and �TE�eTE (see Exercise 16.4) to stand for the result of erasing effect and
region information from the FLARE/E type T and FLARE/E type environ-
ment TE :

Theorem 16.1 TE ′ � E :T ′ in the FLARE type system if and only if
there exists a FLARE/E type environment TE, a FLARE/E type T, and
an effect F such that �TE�eTE = TE ′, �T �eT = T ′, and TE � E :T !F
in the FLARE/E type/effect system.

Proving that TE � E :T !F implies TE ′ � E :T ′ is easily done by showing
that erasing all effect information in the FLARE/E type/effect derivation yields
a FLARE type derivation (see Exercise 16.5). The other direction (TE ′ � E :T ′

implies TE � E :T !F ) is proven by showing that the judgments and procedure
types in a FLARE type derivation can always be extended with effect information
to yield a FLARE/E type/effect derivation (Exercise 16.6).

Exercise 16.1 Consider the following program:

(flarek (b)

(let ((c (prim cell 2)))

(let ((one (abs (x) 1))

(get (abs (y) (prim ^ y)))

(setc! (abs (z) (let ((_ (prim := c z))) z))))

((abs (appc)

((if b setc! one) (prim + (appc get) (appc one))))

(abs (f) (f c))))))

a. Give a type derivation showing that the above program is well typed in the FLARE/E
type system. You will need to use the [does] rule to inflate some latent effects in
procedure types, but use the minimal latent effect possible.

b. How would your answer to part a change if the subexpression

((abs (appc) . . . ) (abs (f) (f c)))

were changed to

(let ((appc (abs (f) (f c)))) . . . )?

Exercise 16.2 Define the following functions for determining the free description iden-
tifiers of various domains:

FrDescIdsreg :Region → P(DescId)
FrDescIdseff :Effect → P(DescId)
FrDescIdsty :Type → P(DescId)

FrDescIdstysch :TypeSchema → P(DescId)
FrDescIdstyenv :TypeEnvironment → P(DescId)
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Exercise 16.3 Intuitively, each description identifier that is a formal parameter in a
FLARE/E generic expression denotes one of a type, an effect, or a region. For example,
in the type schema

(generic (?a ?b ?c)

(-> ((-> (?a) ?b ?a) (cellof ?a ?c))

(maxeff ?b (read ?c) (write ?c))

?a))

?a denotes a type, ?b denotes an effect, and ?c denotes a region. This intuition can
be formalized using a simple kind system (cf. Section 12.3.2) based on the following
domains:

K ∈ Kind ::= type | effect | region

DK ∈ DescIdKind ::= (δ K)

TS ∈ TypeSchema ::= T | (generic (DK ∗) T)

The TypeSchema domain has been changed so that every formal parameter declared by
generic has an explicit kind. In the modified system, the example type schema above
would be rewritten to have the form

(generic ((?a type) (?b effect) (?c region)) . . . )

We say that a type schema with explicitly kinded parameters is well kinded if each
reference to the parameter in the body of the type schema is consistent with its kind.
For example, the type schema above (with explicit kinds) is well kinded. However, the
schema

(generic ((?d type) (?e region))

(-> (?d) pure (cellof ?e ?d)))

is not well kinded because region ?e is used as a type and the second occurrence of type
?d is used as region.

a. Develop a formal deduction system for determining the well-kindedness of a type
schema with explicitly kinded parameters.

b. Define variants of each of the functions in Exercise 16.2 that return an element of
P(DescIdKind) (in which each description identifier is paired with its kind) rather
than an element of P(DescId).

c. Modify the definition of the egen function in Figure 16.2 to use the functions from
part b to return a type schema with explicitly kinded parameters. Under what simple
conditions is the type schema guaranteed to be well kinded? Explain.

d. Modify the [genvar] rule to guarantee that only descriptions of the appropriate kind
are substituted for generic-bound description parameters in the body of the type
schema. Argue that the type resulting from these substitutions is always well formed.
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Exercise 16.4 Define the following effect-erasure functions for FLARE/E types, type
schemas, and type environments:

effectErasety :TypeFLARE/E → TypeFLARE

effectErasetysch :TypeSchemaFLARE/E → TypeSchemaFLARE

effectErasetyenv :TypeEnvironmentFLARE/E → TypeEnvironmentFLARE

The notations �T�eT , �TS�eTS , and �TE�eTE abbreviate (respectively) (effectErasety T ),
(effectErasetysch TS ), and (effectErasetyenv TE ). Each function should erase all effect
and region information from the FLARE/E entity to yield the FLARE entity. In the
definition of effectErasetysch , it is helpful (but not absolutely necessary) to assume that
it is possible to determine the kind of each generic parameter (see Exercise 16.3).

Exercise 16.5 The notion of effect erasure from Exercise 16.4 can be extended to
type/effect judgments and type/effect derivations in FLARE/E as follows:

effectErasejudge : TypeJudgmentFLARE/E → TypeJudgmentFLARE

The notation �TJ �e
TJ abbreviates (effectErasejudge TJ ).

�TE �FLARE/E E :T !F�e
TJ = �TE�e

TE �FLARE E : �T�e
T

effectErasederiv : TypeDerivationFLARE/E → TypeDerivationFLARE

The notation �TD�e
TD abbreviates (effectErasederiv TD).&

TD
[does]

TE �FLARE/E E :T !F ′

’e

TD

= �TD�e
TD

&
TD1 . . . TDn

TJ

’e

TD

=
�TD1 �

e
TD . . . �TDn�

e
TD

�TJ�e
TJ

, for all other type derivations.

Prove that effectErasederiv is a well-defined function. That is, if TD is a FLARE/E type
derivation, then �TD�eTD is a legal FLARE type derivation according to the type rules
of FLARE. Your proof should be by induction on the structure of a type derivation TD
and by case analysis on the type rule used in the root node of the type derivation tree.
The well-definedness of effectErasederiv proves that TE �FLARE/E E :T !F implies
�TE�eTE �FLARE E : �T �eT in Theorem 16.1.

Exercise 16.6 This exercise sketches a proof of the forward direction of Theorem 16.1
(i.e., that any FLARE type derivation can be annotated with appropriate effect informa-
tion to yield a FLARE/E type/effect derivation) and asks you to work out the details.
A simple approach is to assume that all cells are allocated in a single region (call it δreg),
in which case the maximal effect is

Fmax = (maxeff (init δreg) (read δreg) (write δreg))

Then any FLARE type derivation can be transformed to a FLARE/E type/effect
derivation by:
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• changing every FLARE cell type (cellof T) to the FLARE/E cell type
(cellof T δreg);

• changing every nonprimitive FLARE arrow type (-> (Tn
i=1) T0) to the FLARE/E

arrow type (-> (Tn
i=1) Fmax T0);

• using the [does] rule to inflate the effect of every procedure body to Fmax before the
[→-intro] rule is applied; and

• introducing and propagating effects as required by the FLARE/E analogues of the
FLARE type rules.

a. Based on the above sketch, formally define a transformation

T D :TypeDerivationFLARE → TypeDerivationFLARE/E

that transforms a valid FLARE type derivation for a well-typed expression into a
valid FLARE/E type/effect derivation for the same expression.

b. Suppose that TD is a FLARE type derivation for the type judgment TE ′ � E :T ′.
Then (T D TD) is a FLARE/E type/effect derivation for the type/effect judgment
TE � E :T !F . Show that �TE�eTE = TE ′ and �T�eT = T ′. This completes the
proof of Theorem 16.1.

16.2.3 Reconstructing Types and Effects: Algorithm Z

Effect-Constraint Sets

We can adapt the FLARE type reconstruction algorithm (Algorithm R) from
Section 13.3 to reconstruct effects as well as types. Recall that R has the signature

R : Exp→ TypeEnvironment → (Type× TypeConstraintSet)

and is expressed via deductive-style rules involving judgments of the form

R[[E ]] TE = 〈T ,TCS 〉

Elements TCS ∈ TypeConstraintSet are abstract sets of type-equality constraints
that are collected and solved by the algorithm. The extended algorithm, which
we call Algorithm Z (Figures 16.4, 16.6, 16.8, and 16.9), has the signature

Z : Exp → TypeEnvironment
→ (Type× TypeConstraintSet× Effect× EffectConstraintSet)

and is expressed via deductive-style rules involving judgments of the form

Z[[E ]] TE = 〈T ,TCS ,F ,FCS 〉
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Domains
FC ∈ EffectConstraint = DescId × Effect

; (>= δ F) stands for an element 〈δ,F 〉 of EffectConstraint

FCS ∈ EffectConstraintSet = FC ∗

; Define dom(FCS ) =
⋃
{δ | (>= δ F) ∈ FCS}

σ ∈ DescSubst = DescId ⇀ Desc

us ∈ UnifySoln = DescSubst + Failure

Other type and effect domains are defined in Figure 16.1.

Functions
solveFCS : EffectConstraintSet→ DescSubst
= λFCS . fixDescSubst

(
λσ .

(
λδFCS . (σ (maxeff δ Fn

i=1)(>= δ Fi)∈FCS )
))

where ⊥DescSubst = λδFCS . pure
and λδFCS . dbody stands for λδ . if δ ∈ dom(FCS ) then dbody

else undefined end

solveTCS :TypeConstraintSet→ UnifySoln is defined as in Figure 13.12 on page 790,
where it is assumed that unify is modified in a straightforward way to handle the
unification of listof types, pairof types, cellof types, and -> types with latent
effects (which are guaranteed to be effect variables). A successful unification now
results in an element of DescSubst rather than TypeSubst because nontype descrip-
tion variables are encountered in the unification of cellof types (in which region
variables are unified) and -> types (in which effect variables are unified).

Figure 16.4 Domains and functions for the FLARE/E type and effect reconstruction
algorithm.

In addition to returning the type T and type-constraint set TCS of an expression
E relative to a type environment TE , Algorithm Z returns:

1. The effect F of the expression.

2. A collection FCS ∈ EffectConstraintSet of effect inequality constraints having
the form (>= δ F). Such a constraint means that the effect F ′ denoted by
the effect variable δ must be at least as large as F — i.e., F ′"e F .

What are the effect inequality constraints for? As mentioned in the discussion
of the [does] rule beginning on page 954, the most challenging problem encoun-
tered when constructing a type/effect derivation in FLARE/E is guaranteeing
that the latent effects of procedure types are identical in all situations where the
rules require that two procedure types be the same. The purpose of the effect-
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constraint sets generated by Algorithm Z is to solve this problem. An effect
constraint (>= δlat Fbody) is generated by Algorithm Z when a derivation in the
implicit type/effect system would use the [does] rule to inflate the effect of a
procedure body from Fbody to δlat = F ′

body in conjunction with an application of
the [→-intro] rule:

TE [Ii :Ti ]
n
i=1 � Ebody :Tbody !Fbody

[does]
TE [Ii :Ti ]

n
i=1 � Ebody :Tbody !F ′

body
[→-intro]

TE � (abs (I n
i=1) Ebody) : (-> (Tn

i=1) F ′
body Tbody) ! pure

The extent to which Fbody needs to be inflated by the [does] rule depends on how
the procedure type introduced by the [→-intro] rule flows through the rest of the
type/effect derivation and is compared to other procedure types. Algorithm Z
addresses this problem by introducing the description variable δlat to stand for
F ′

body and by generating an effect inequality constraint (>= δlat Fbody) that must
later be solved. The type and effect reconstruction system handles the above
derivation pattern by a single application of the [→-introZ ] rule:

Z[[Ebody ]] TE [Ii : δi ]
n
i=1 = 〈Tbody ,TCS body ,Fbody ,FCS body〉

[→-introZ ]
Z[[(abs (I n

i=1) Ebody)]] TE = 〈(-> (δn
i=1) δlat Tbody), TCS body ,

pure, (>= δlat Fbody) . FCS body〉

This is like the [→-introR] type reconstruction rule for FLARE except that:
(1) it introduces the description variables δn

i=1 for the parameters instead of type
variables; (2) it specifies that abstractions have a pure effect; and (3) it adds the
effect constraint (>= δlat Fbody) to whatever effect constraints were generated in
reconstructing the type and effect of Ebody .

For a reason explained later, an effect-constraint set is concretely represented
as a sequence of effect constraints. So (FC . FCS ) is the result of inserting the
effect constraint FC into the effect-constraint set FCS , FCS1 @ FCS 2 is the
union of effect-constraint sets FCS1 and FCS 2 , and @n

i=1FCS i is the union of
the n effect-constraint sets FCS 1 , . . . , FCSn . We still use the set notation FC ∈
FCS to indicate that effect constraint FC is an element of the effect-constraint set
FCS . We define dom(FCS ) as the set of effect variables δ appearing in constraints
of the form (>= δ F) within FCS .

A solution to an effect-constraint set FCS is a substitution σ ∈ DescSubst
= DescId ⇀ Desc such that dom(σ) = dom(FCS ) and (σ δ)"e (σ F ) for every
effect constraint (>= δ F) in FCS . Although the formal signature of a solution
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Fi = (init r7)

Fr = (read r7)

Fw = (write r7)

Fmax = (maxeff Fi Fr Fw)

FCS ex = [(>= δ1 pure),
(>= δ2 (maxeff δ1 Fi)),
(>= δ3 (maxeff δ2 Fr)),
(>= δ4 (maxeff δ2 Fw)),
(>= δ4 δ5),
(>= δ5 (maxeff δ3 δ4))]

Figure 16.5 FCS ex is an example of an effect-constraint set.

substitution is DescId ⇀ Desc, the signature is really DescId ⇀ Effect since all
the description variables being solved denote effects.5

There are infinitely many solutions for any effect-constraint set. For example,
consider the effect-constraint set FCS ex in Figure 16.5. Below are four solutions
to FCS ex :

σ (σ δ1 ) (σ δ2 ) (σ δ3 ) (σ δ4 ) (σ δ5 )
σex1

pure Fi (maxeff Fi Fr) Fmax Fmax

σex2
Fi Fi (maxeff Fi Fr) Fmax Fmax

σex3
Fr (maxeff Fi Fr) (maxeff Fi Fr) Fmax Fmax

σex4
Fmax Fmax Fmax Fmax Fmax

There are also infinitely many solutions of the form σexF parameterized by F ∈
Effect that map every effect variable in FCS ex to (maxeff F Fmax).

Since the Effect domain is a pointed CPO (see Sections 5.2.2 and 5.2.3) under
the �e ordering, the domain DescId ⇀ Effect is also a pointed CPO, and so there
is a well-defined notion of a least solution to an effect-constraint set. The structure
of the CPO and the existence of a least solution depend critically on the ACUI
nature of effect combination via maxeff.

The iterative approach to finding least fixed points from Section 5.2.5 can be
used to calculate the least solution to an effect-constraint set FCS . We start with
an approximation σ0 that maps each effect variable δ in dom(FCS ) to pure. For
each step j, we define a better approximation σj that maps each δ in dom(FCS ) to
an effect that combines (σj−1 δ) with (σj−1 Fi ) for each F such that (>= δ F)

is in FCS . (σj δ) is guaranteed to be at least as big as (σj−1 δ), and so in this

5An effect constraint also typically contains description variables denoting regions, but these
will not be in dom(σ) for a solution substitution σ.



16.2.3 Reconstructing Types and Effects: Algorithm Z 963

sense is a “better” approximation. Since there are finitely many effect variables
δ ∈ dom(FCS ) and since (σj δ) always denotes some combination of the finite
number of base effects mentioned in FCS , the iteration is guaranteed to converge
to a fixed point in a finite number of steps.

For example, this process finds the least solution to FCS ex in three steps (the
fourth step verifies that σ3 is a solution):

j (σj δ1 ) (σj δ2 ) (σj δ3 ) (σj δ4 ) (σj δ5 )
0 pure pure pure pure pure

1 pure Fi Fr Fw pure

2 pure Fi (maxeff Fi Fr) (maxeff Fi Fw) (maxeff Fr Fw)

3 pure Fi (maxeff Fi Fr) Fmax Fmax

4 pure Fi (maxeff Fi Fr) Fmax Fmax

The definition of the solveFCS function in Figure 16.4 formalizes this strategy
for finding the least solution to an effect-constraint set. Let

λδFCS . effect-expression

stand for a partial function that denotes the value of effect-expression when δ ∈
dom(FCS ) and is otherwise undefined. The least solution of an effect-constraint
set FCS is the least fixed point of a series of solutions starting with the bot-
tom solution ⊥DescSubst = λδFCS . pure. An approximate solution σ is trans-
formed to a better solution σ′ by mapping each effect variable δ ∈ dom(FCS )
to (σ (maxeff δ F1 . . . Fn)), where {F1 , . . . ,Fn} is the set of all effects Fi

appearing in constraints of the form (>= δ Fi) in FCS . Since

(σ′ δ) = (σ (maxeff δ F1 . . . Fn))
= (maxeff (σ δ) (σ F1 ) . . . (σ Fn))

clearly (σ δ)�e (σ′ δ) for each δ mentioned in FCS , so the transformation is
monotonic. By the argument given above, each chain of solutions is finite,
so monotonicity is sufficient to guarantee the existence of a least solution for
fixDescSubst.

Simple Type/Effect Reconstruction Rules

The Algorithm Z type/effect reconstruction rules for most expressions are pre-
sented in Figure 16.6. The rules for literals, errors, and nongeneric variable
references are similar to the FLARE type reconstruction rules, but additionally
specify a pure effect and an empty effect-constraint set. The [→-introZ ] rule has
already been discussed above. The [ifZ ], [→-elimZ ], [primZ ] rules are similar to
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Function Signature for Type/Effect Reconstruction of Expressions

Z : Exp → TypeEnvironment
→ (Type× TypeConstraintSet× Effect× EffectConstraintSet)

Type/Effect Reconstruction Rules for Expressions

Z[[#u]] TE = 〈unit, {}TCS , pure, [ ]FC 〉 [unitZ ]
[boolR], [intR], and [symbR] are similar

Z[[(error Y )]] TE = 〈δ, {}TCS , pure, [ ]FC 〉 where δ is fresh. [errorZ ]

Z[[I ]] TE = 〈T , {}TCS , pure, [ ]FC 〉 where TE (I ) = T [varZ ]

Z[[I ]] TE = 〈unit, failTCS , pure, [ ]FC 〉 where I 
∈ dom(TE ) [var-failZ ]

∀3
i=1 . (Z[[Ei ]] TE = 〈Ti ,TCS i ,Fi ,FCS i〉)

Z[[(if E1 E2 E3)]] TE = 〈T2 ,
(⊎3

i=1 TCS i

)
� {T1

.
= bool,T2

.
= T3}TCS ,

(maxeff F 3
i=1), @3

i=1FCS i〉
[ifZ ]

Z[[Ebody ]] TE [Ii : δi ]
n
i=1 = 〈Tbody ,TCS body ,Fbody ,FCS body〉

Z[[(abs (I n
i=1) Ebody)]] TE = 〈(-> (δn

i=1) δlat Tbody), TCS body ,
pure, (>= δlat Fbody) . FCS body〉

[→-introZ ]

where δn
i=1 and δlatent are fresh

∀n
i=0 . (Z[[Ei ]] TE = 〈Ti ,TCS i ,Fi ,FCS i〉)

Z[[(E0 En
i=1)]] TE

= 〈δres , (
⊎n

i=0 TCS i) � {T0
.
= (-> (Tn

i=1) δlat δres)}TCS ,
(maxeff Fn

i=0 δlat), @n
i=0FCS i〉

[→-elimZ ]

where δlat and δres are fresh

Z[[Oop ]] TEprim = 〈Top ,TCS0 , pure, [ ]FC 〉
∀n

i=1 . (Z[[Ei ]] TE = 〈Ti ,TCS i ,Fi ,FCS i〉)
Z[[(prim Oop En

i=1)]] TE
= 〈δres , (

⊎n
i=0 TCS i) � {Top

.
= (-> (Tn

i=1) δlat δres)}TCS ,
(maxeff Fn

i=1 δlat), @n
i=1FCS i〉

[primZ ]

where δlat and δres are fresh

Figure 16.6 The FLARE/E type/effect reconstruction algorithm for simple expres-
sions expressed via deduction rules. For let polymorphism see Figure 16.8.

their FLARE type reconstruction counterparts except that they (1) combine the
effects of all subexpressions (and the latent effect of the applied procedure in the
case of [→-elimZ ] and [primZ ]) and (2) they combine the effect-constraint sets of
all subexpressions.
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Z[[b]] TE = 〈bool, {}TCS , pure, [ ]FC 〉 [varZ ]

...

Z[[Eread ]] TE = 〈Tread ,TCS read , (read δrreg),FCS read〉
Z[[(abs () Eread)]] TE = 〈(-> () δreff Tread), TCS read , pure,

(>= δreff (read δrreg)) . FCS read 〉 [→-introZ ]

...

Z[[Ewrite ]] TE = 〈Twrite ,TCSwrite , (write δwreg),FCSwrite〉
Z[[(abs () Ewrite)]] TE = 〈(-> () δweff Twrite), TCSwrite , pure,

(>= δweff (write δwreg)) . FCSwrite〉 [→-introZ ]

Z[[(if b (abs () Eread) (abs () Ewrite))]] TE
= 〈(-> () δread Tread),

TCS read � TCSwrite

� {bool .
= bool, (-> () δreff Tread)

.
= (-> () δweff Twrite)}TCS ,

pure,
((>= δreff (read δrreg)) . FCS read )

@ ((>= δweff (write δwreg)) . FCSwrite) 〉 [ifZ ]

Figure 16.7 Type/effect reconstruction corresponding to the type/effect derivation of
Eifproc on page 955.

As an example, Figure 16.7 shows the fragment of the type/effect derivation
for Eifproc from page 955 expressed in the reconstruction system. Distinct effect
variables δreff and δweff are introduced as the latent effects for (abs () Eread)

and (abs () Ewrite), respectively, but these are forced to be the same by the
type constraint

(-> () δreff Tread)
.
= (-> () δweff Twrite)

We assume that the unification algorithm used by the type-constraint set solver
solveTCS is extended to unify the latent effects of two procedure types and the
regions of two cellof types. The extension is straightforward, because both of
these are guaranteed to be description variables: all procedure types generated
by the [→-introZ ] rule have latent effects that are description variables and all
regions are description variables. Modifying the algorithm to unify arbitrary
effects would be significantly more complicated, because the algorithm would
need to generate a set of effect constraints in addition to a solution substitution
(see [JG91] for details).
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Algebraic Type Schemas for Let Polymorphism

A key difference between Algorithm Z and Algorithm R is how let polymor-
phism is handled. Recall that Algorithm R uses type schemas of the form
(generic (τn

i=1) T) to permit a type identifier to be instantiated to differ-
ent types in different contexts. For example, the identity function (abs (x) x)

can be used on any type of input. When it is let-bound to an identifier, it has
the type schema (generic (?t) (-> (?t) ?t)). The job of a type schema is
to describe all of the possible types of an identifier by determining type variables
that can be generalized.

In the implicit type/effect system of FLARE/E, type schemas were elabo-
rated with effect and region variables. Reconstructing effects and regions requires
us to extend type schemas further to carry along a set of constraints on the effects
and regions they describe. In Algorithm Z, generic type schemas (Figure 16.8)
are modified to have the form (generic (δ∗) T (FCS)), where FCS contains
effect constraints that may involve the effect and region variables in δ∗.

We call a type schema that includes an effect-constraint set an algebraic
type schema [JG91]. The fact that effect-constraint sets appear within algebraic
type schemas that have an s-expression representation is the reason that we have
chosen to represent effect constraints using the s-expression notation (>= δ F)

and to represent effect-constraint sets as sequences of such constraints.
As a simple example, consider the algebraic type schema that the primitive

type environment TE prim assigns to the cell assignment operation (:=):

(generic (?t ?e ?r)

(-> ((cellof ?t ?r)) ?e unit) {type}
((>= ?e (write ?r))) {effect constraints}

This type schema has three parts: (1) the description variables (?t ?e ?r) de-
scribe the type, effect, and region variables that can be generalized in the type
schema; (2) the procedure type (-> ((cellof ?t ?r)) ?e unit) describes the
cell assignment operation and notes that its application has effect ?e; and (3)
the effect-constraint set ((>= ?e (write ?r))) describes the constraints on the
effect variable ?e. In this case, the assignment operation can have any effect as
long as it is larger than (write ?r), where ?r specifies the region in which the
cell is allocated.

A swap procedure that swaps the contents of two cells would have the following
algebraic type schema:

TS swap = (generic (?t ?e ?r1 ?r2)

(-> ((cellof ?t ?r1) (cellof ?t ?r2)) ?e unit)

((>= ?e (maxeff (read ?r1) (write ?r1)

(read ?r2) (write ?r2)))))
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Domains
ATS ∈ AlgebraicTypeSchema ::= T | (generic (δ∗) T (FCS))

TE ∈ TypeEnvironment = Ident ⇀ AlgebraicTypeSchema

Type Functions
zgen : Type → TypeEnvironment → TypeConstraintSet

→ EffectConstraintSet ⇀ AlgebraicTypeSchema

(zgen T TE TCS FCS )

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(generic (δ1 . . . δn) (σ T ) ((σ FCS ))),

if solveTCS TCS = (TypeSubst�UnifySoln σ)

and {δ1 , . . . , δn} = (FrDescIdsty [[(σ T )]] ∪ FrDescIdsFCS [[(σ FCS )]])
− (FrDescIdstyenv (σ TE ))

undefined, otherwise

zgenPureSP : Type → TypeEnvironment → TypeConstraintSet
→ EffectConstraintSet→ Exp ⇀ AlgebraicTypeSchema

(zgenPureSP Tdefn TE TCS FCS E)

=

{
(zgen Tdefn TE TCS FCS ) if �pure E (defined in Figure 13.25 on page 816)

Tdefn otherwise

Type/Effect Reconstruction Rules

Z[[I ]] TE = 〈([δ′i/δi ]
n
i=1)Tbody , {}TCS , pure, ([δ′i/δi ]

n
i=1)FCS body〉 [genvarZ ]

where TE (I ) = (generic (δn
i=1) Tbody (FCS body))

δ′ni=1 are fresh

∀n
i=1 . (Z[[Ei ]] TE = 〈Ti ,TCS i ,Fi ,FCS i〉)

Z[[E0 ]] TE [Ii : (zgenPureSP Ti TE TCS i FCS i Ei)]
n
i=1

= 〈T0 ,TCS0 ,F0 ,FCS0 〉
Z[[(let ((Ii Ei)

n
i=1) E0)]] TE

= 〈T0 ,TCS0 � TCSdefns , (maxeff Fn
i=0), @

n
i=0FCS i〉

[letSPZ ]

where TCSdefns =
⊎n

i=1TCS i

∀n
i=1 .

(
Z[[Ei ]] TE [Ij : δj ]

n
j=1 = 〈Ti ,TCS i ,Fi ,FCS i〉

)
Z[[E0 ]] TE [Ii : (zgenPureSP Ti TE TCSdefns FCSdefns Ei)]

n
i=1

= 〈T0 ,TCS0 ,F0 ,FCS0 〉
Z[[(letrec ((Ii Ei)

n
i=1) E0)]] TE

= 〈T0 ,TCS0 � TCSdefns , (maxeff Fn
i=0), @

n
i=0FCS i〉

[letrecSPZ ]

where δn
i=1 are fresh

TCSdefns = (
⊎n

i=1 TCS i) � (
⊎n

i=1{δi
.
= Ti}TCS )

FCSdefns = @n
i=1FCS i

Figure 16.8 FLARE/E type/effect reconstruction for let polymorphism.
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The effect-constraint set in this algebraic type schema constrains the latent effect
of the swap procedure type to include read and write effects for the regions of
both cells.

As in FLARE type reconstruction, the type/effect reconstruction system in-
troduces type schemas in the rules for let and letrec expressions. Algebraic
type schemas are created by the zgenPureSP and zgen functions defined in Fig-
ure 16.8. These are similar to the rgenPure and rgen functions used in FLARE
type reconstruction (as defined in Figure 13.26 on page 818), except that:

• zgenPureSP takes an additional argument, an effect-constraint set, and returns
an algebraic type schema rather than a regular type schema. The purity of
the expression argument determines whether generalization takes place, and
the effect-constraint set is passed along to zgen. zgenPureSP employs the same
syntactic purity test used in Algorithm R and the FLARE/E type/effect sys-
tem; see Section 16.2.5 for a discussion of an alternative purity test.

• zgen takes one additional argument, an effect-constraint set, which it incorpo-
rates into the algebraic type schema. Note that the schema generalizes over
free description variables in the effect constraints (as well as in the type) that
are not mentioned in the type environment.

As in rgen, the type constraints in zgen must be solved before generalization
can take place. Why not solve the effect constraints as well? Because effect con-
straints involve inequalities rather than equalities, they can only be solved glob-
ally, not locally. E.g., knowing that ?e is larger than (read r1) and (write r2)

does not allow us to conclude that ?e = (maxeff (read r1) (write r2)), since
there may be other constraints on ?e elsewhere in the program that force it to
encompass more effects. So the solution of effect inequality constraints must be
delayed until all effect constraints in the whole program have been collected (see
the [progZ ] rule in Figure 16.9, which is discussed later). In contrast, type equal-
ity constraints can be solved eagerly as well as lazily. This is why algebraic type
schemas must carry effect constraints but not type constraints.

When the type environment assigns an algebraic type schema to a variable,
the [genvarZ ] rule instantiates the parameters of the type schema with fresh de-
scription variables. Because different description variables are chosen for different
occurences of the variable, the definitions associated with the variables may be
used polymorphically. Although the variable reference itself is pure, its effect-
constraint set includes instantiated versions of the algebraic type schema’s effect
constraints. For example, suppose that cell x is an integer cell allocated in region
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Domains for Type/Effect Reconstruction of Programs

RA ∈ ReconAns = Type + Failure
Failure = {fail}

Function Signature for Type/Effect Reconstruction of Programs

Zpgm : Prog→ ReconAns

Type/Effect Reconstruction Rules for Programs

Z[[E ]] {Ii : δi}n
i=1 = 〈T ,TCS ,F ,FCS 〉

Zpgm [[(flarek (I1 . . . In) E)]] = RApgm
[progZ ]

where δn
i=1 are fresh

RApgm =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(ProgType�ReconAns (σFCS (σTCS (=> (δn

i=1) F T)))),

if solveTCS TCS = (TypeSubst�UnifySoln σTCS )

and solveFCS (σTCS FCS ) = σFCS

(Failure�ReconAns fail), otherwise

Figure 16.9 The FLARE/E type/effect reconstruction algorithm for programs ex-
pressed via a deduction rule.

rx and and cell y is an integer cell allocated in region ry. Then the reconstruction
of (swap x y) would yield an effect-constraint set equivalent to

((>= e1 (maxeff (read rx) (write rx) (read ry) (write ry))))

(where e1 is the fresh description variable substituted for ?e). The reconstruction
of (swap x x) would yield an effect-constraint set equivalent to

((>= e2 (maxeff (read rx) (write rx))))

Instantiating the effect-constraint set of the algebraic type schema in the [genvar]
rule is consistent with the view that referencing an expression variable bound by
a let or letrec to a pure expression E is equivalent to replacing the variable
reference by E .

Reconstructing Programs

At the level of a whole program, the [progZ ] rule in Figure 16.9 models the result
of successful type/effect reconstruction as a program type whose

• parameter types are the types of the program parameters;

• result type is the type of the program body; and

• latent effect is the effect of the program body.
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This program type is constructed via

(σFCS (σTCS (=> (δn
i=1) Fbody Tbody)))

where

• δn
i=1 are the description variables generated for the types of the program pa-

rameters.

• Fbody is the effect reconstructed for the program body, Ebody .

• Tbody is the type reconstructed for Ebody .

• σTCS is the description substitution that is the solution of the type constraints
TCS body collected in the reconstruction of Ebody .

• σFCS is the description substitution solveFCS (σTCS FCS body) that is the global
solution of all the effect constraints FCS body collected in the reconstruction of
Ebody . Before solveFCS is called, the substitution σTCS must be applied to
each constraint in FCS body to incorporate information gleaned from unifying
latent effect variables in procedure types and region variables in cell types. For
a similar reason, σFCS is applied to the program type after σTCS has been
applied. Note that the application of σFCS resolves effect variables not only in
Fbody but also in the latent effects of any procedure types that occur in Tbody .

Algorithm Z has the Power of FLARE/E

Algorithm Z succeeds if the type constraints and effect constraints collected for
the program body are solvable. We have seen from the discussion of solveFCS

on page 963 that the effect constraints are always solvable, so reconstruction
succeeds if and only if the type constraints are solvable.

The following theorems say that Algorithm Z is sound and complete for the
FLARE/E implicit type/effect system in Figure 16.3 on page 953:

Theorem 16.2 (Soundness of Algorithm Z) Suppose Z[[E ]] TE =
〈T ,TCS ,F ,FCS 〉. If σTCS is any solution of TCS, σFCS is any solution
of (σTCS FCS ), and σ = σFCS ◦ σTCS , then (σ TE ) � E : (σ T ) ! (σ F ).

Theorem 16.3 (Completeness of Algorithm Z) If TE � E :T !F
then Z[[E ]] TE = 〈T ′,TCS ,F ′,FCS 〉 where there are solutions σTCS of
TCS and σFCS of (σTCS FCS ) such that ((σFCS ◦ σTCS ) T ′) = T and
((σFCS ◦ σTCS ) F ′) = F.
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In both of these theorems, σTCS may be less general than the most general unifier
calculated by (solveTCS TCS ) and σFCS may be greater than the least solution
calculated by (solveFCS (σTCS FCS )). In both theorems, it is necessary to apply
the composition σFCS ◦ σTCS to both types and effects rather than just applying
σTCS to types and σFCS to effects. For types, σFCS may be needed to resolve
latent effect variables in procedure types that were determined when solving the
effect constraints in FCS . For effects, σTCS may be needed to resolve effect and
region variables that were unified as part of solving the type constraints in TCS .

Together, the soundness and completeness theorems for Algorithm Z imply a
principality result similar to the one shown for Algorithm R: Any type that can
be assigned to an expression in FLARE/E is a substitution instance of the type
found by Algorithm Z, and any effect that can be assigned to an expression in
FLARE/E is a substitution instance of the effect Algorithm Z.

Since FLARE expressions are typable in the FLARE/E implicit type/effect
system if and only if they are typable in the FLARE implicit type system (by
Theorem 16.1 on page 956) and expressions are typable in the FLARE implicit
type system if and only if their type can be reconstructed by Algorithm R (by
Theorems 13.7 and 13.8 on page 799), a consequence of Theorems 16.2 and 16.3
is that Algorithm Z and Algorithm R succeed on exactly the same set of FLARE
expressions and programs.

Exercise 16.7

a. Write a FLARE/E abstraction Eswapabs that swaps the contents of its two cell argu-
ments.

b. Show the derivation for (Z[[Eswapabs ]] {}), the type/effect reconstruction of Eswapabs

in the empty type environment.

c. Use zgenPure to create an algebraic type schema for Eswapabs , supplying the type and
effect information from part b as arguments.

d. Is your algebraic type schema from part c equivalent to TS swap defined on page 966?
Explain any discrepancies.

Exercise 16.8 Construct an Algorithm Z type/effect derivation for the following pro-
gram:

(flarek (a b)

(let ((mapcell (abs (c f)

(let ((v (prim ^ c)))

(let ((_ (prim := c (f v))))

v)))))

(mapcell a (abs (x) (mapcell b (abs (y) x))))))
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Exercise 16.9 Give type/effect reconstruction derivations for the programs in part a
and part b of Exercise 16.1 on page 956.

Exercise 16.10 Write a FLARE/E program whose type/effect reconstruction uses an
algebraic type schema whose effect-constraint set has more than one constraint. Show
this by giving the type/effect reconstruction derivation for your program.

Exercise 16.11 Modify the FLARE/E implicit type/effect system and Algorithm Z to
handle mutable variables (via the set! construct). Begin by studying Exercise 13.11 on
page 820 to get a sense for the issues involved in this extension. In particular, references
to variables modified by set! are no longer pure — they have a read effect! Your system
should distinguish variables modified by set! from those that are not; references to the
latter can still be considered pure.

16.2.4 Effect Masking Hides Unobservable Effects

We now explore some variations on the FLARE/E type/effect system. The first
involves effect masking, which allows effects to be deleted from an expression
when they cannot be observed from outside of the expression. For example,
consider the following procedure, which sums the elements of a list of integers:

Esumabs = (abs (ints)

(let ((sum (cell 0)))

(letrec ((loop (abs (ns)

(if (null? ns)

(^ sum)

(begin (:= sum (+ (^ sum)

(car ns)))

(loop (cdr ns)))))))

(loop ints))))

Suppose that the cell named sum is in region rs. According to the effect rules
we have studied thus far, the latent effect of the type for this procedure is

(maxeff (init rs) (read rs) (write rs))

Intuitively, however, the sum cell is completely internal to the summation proce-
dure and cannot be observed outside the procedure. There is no experiment that
a client can perform to determine whether or not the summation procedure uses
cells in its implementation.

We can use the type/effect system to prove that the effects within the summa-
tion procedure are unobservable outside the procedure. We do this by showing
that no cell in region rs can be referenced outside the let expression that is
the body of the procedure. Region rs does not appear in the type (int) of the
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TE � E :T !F
TE � E :T !F ′ [effect-masking ]

where F ′�e F
∀BF ∈ (F [[F ]]−F [[F ′]]) .

(∀δ ∈ FrDescIdseff [[BF ]] .
((δ 
∈ FrDescIdsty [[T ]]) [export restriction]
∧ (∀I ∈ FrIds[[E ]] . (δ 
∈ FrDescIdsty [[TE (I )]]))))) [import restriction]

Figure 16.10 An effect-masking rule for FLARE/E.

procedure body, nor does it appear in the type environment in the types of the
free variables used in the procedure body (ints, cell, ^, :=, +, null?, car,
cdr). This shows that region rs is inaccessible outside the procedure body, and
so cannot be observed by any client of the procedure.

We can add effect masking to FLARE/E by extending the type/effect rules
with the [effect-masking ] rule in Figure 16.10. This rule says that any base effect
BF can be deleted from the effect of an expression E as long as it is purely local
to E — i.e., it cannot be observed elsewhere in the program. BF is local to E
if no effect and region variable δ appearing in it is mentioned in the type of any
free variable used by E (the import restriction) or can escape to the rest of the
program in the type of E (the export restriction). In some sense, the [effect-
masking ] rule is the opposite of the [does] rule, since it allows deflating the effect
of an expression as opposed to inflating it.

In the case of the list summation procedure, the [effect-masking ] rule formal-
izes our above reasoning about effect observability. It allows the let expression
to be assigned the pure effect, making the latent effect of the procedure type for
Esumabs pure as well.

Note that the [effect-masking ] rule does not allow any effects to be deleted
from the letrec expression in the list summation procedure. Although rs does
not appear in the type (int) of this expression, it does appear in the type
(cellof int rs) of the free variable sum used in the expression.

Effect masking is an important tool for encapsulation. The [effect-masking ]
rule can detect that certain expressions, while internally impure, are in fact ex-
ternally pure. It thus permits impure expressions to be included in otherwise
stateless functional programs; expressions can take advantage of local side ef-
fects for efficiency without losing their referential transparency. As we will see in
Section 16.3.1, it also allows effects that denote control transfers to be masked,
indicating that an expression may perform internal control transfers that are not
observable outside of the expression.
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If the [effect-masking ] rule is so important, why didn’t we include it as a
rule in the FLARE/E type/effect system presented in Figure 16.3 on page 953?
The reason is that it complicates the story of type reconstruction. The effects
computed by the solveFCS function in Algorithm Z are the least effects for the
type/effect system presented in Figure 16.3. But they are no longer the least
effects when the [effect-masking ] rule is added, since this rule allows even smaller
effects. For example, Algorithm Z would determine that the effect of the let

expression that is the body of Esumabs includes init, read, and write effects for
the region rs in which the sum cell is allocated, but we have seen that these can
be eliminated by the [effect-masking ] rule.

Exercise 16.12 Consider the following FLARE expression:

(abs (a)

(let ((b (cell 1)))

(snd (let ((_ (:= a (^ b)))

(c (cell 2))

(d (cell 3)))

(let ((_ (:= c (^ e)))) {e is a free variable}
(pair c d))))))

a. Construct a FLARE/E type/effect derivation for this expression that does not use
the [effect-masking ] rule. Assume that each cell is allocated in a separate region.

b. Construct a FLARE/E type/effect derivation for this expression that uses the [effect-
masking ] rule to find the smallest allowable effect for each subexpression.

16.2.5 Effect-based Purity for Generalization

It may be surprising that the egenPureSP function for type generalization in the
FLARE/E type rules (Figure 16.2 on page 952) determines expression purity
using a syntactic test rather than using the effect system itself. Here we explore
an alternative type/effect system FLARE/EEP that determines purity via an
effect-based test rather than a syntactic test. (The EP subscript stands for
“effect purity.”)

The key difference between FLARE/EEP and FLARE/E is the new func-
tion egenPureEP in Figure 16.11. Like egenPureSP , egenPureEP uses its third
argument to determine the purity (and thus the generalizability) of an expres-
sion. However, egenPureEP ’s third argument is an effect determined from the
effect system, whereas egenPureSP ’s is an expression whose effect is determined
by a separate syntactic deduction system. The [letEP ] and [letrecEP ] rules employ
effect-based purity by passing appropriate effects to egenPureEP .
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New Type Function
egenPureEP : Type→ TypeEnvironment → Effect → TypeSchema

(egenPureEP Tdefn TE F ) =

{
(egen Tdefn TE ) if F ≈e pure

Tdefn otherwise

Modified Type/Effect Rules

∀n
i=1 . (TE � Ei :Ti !Fi)

TE [Ii : (egenPureEP Ti TE Fi)]
n
i=1 � E0 :T0 !F0

TE � (let ((Ii Ei)
n
i=1) E0) :T0 ! (maxeff Fn

i=0)

[letEP ]

∀n
i=1 .

(
TE [Ij :Tj ]

n
j=1 � Ei :Ti !Fi

)
TE [Ii : (egenPureEP Ti TE Fi)]

n
i=1 � E0 :T0 !F0

TE � (letrec ((Ii Ei)
n
i=1) E0) :T0 ! (maxeff Fn

i=0)

[letrecEP ]

Figure 16.11 Modified type/effect rules for FLARE/EEP , a system that uses the
effect system itself rather than syntactic tests to determine purity.

The FLARE/EEP type system is more powerful than the FLARE and
FLARE/E systems: every expression typable in FLARE and FLARE/E is
typable in FLARE/EEP , but there are expressions typable in FLARE/EEP

that are not typable in FLARE or FLARE/E. Consider the expression:

EcurriedPair = (let ((cp (abs (x) (abs (y) (prim pair x y)))))

(let ((cp1 (cp 1)))

(prim pair (cp1 #u) (cp1 #t))))

This expression is not well typed in FLARE. According to the syntactic defini-
tion of purity in Figure 13.25 on page 816, the application (cp 1) is considered
impure, so the type of cp1 cannot be generalized to a polymorphic type and
must be a monomorphic type of the form (-> (Ty) (pairof int Ty)). Since
(cp1 #u) requires Ty to be unit and (cp1 #t) requires Ty to be bool, no
FLARE typing is possible. Similar reasoning shows that EcurriedPair is not well
typed in FLARE/E.

In contrast, EcurriedPair is well typed in FLARE/EEP , as shown by the
type/effect derivation in Figure 16.12. The key difference is that the effect system
can deduce that the application (cp 1) is pure, and this allows the type of cp1
to be generalized in FLARE/EEP . The extra typing power of FLARE/EEP

derives from using the more precise purity test of the effect system itself in place
of the crude syntactic purity test used in FLARE and FLARE/E.
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Abbreviations
EcurriedPair = (let ((cp Eabs1))

(let ((cp1 (cp 1)))

(prim pair (cp1 #u) (cp1 #t))))
Eabs1 = (abs (x) Eabs2)

Eabs2 = (abs (y) (prim pair x y))

TE1 = {cp : (generic (?x ?y)

(-> (?x) pure (-> (?y) pure (pairof ?x ?y))))}
TE2 = TE1 [cp1 : (generic (?y) (-> (?y) pure (pairof int ?y)))]
Tiu = (pairof int unit)

Tib = (pairof int bool)

Type/Effect Derivation

TEprim � pair : (-> (?x ?y) pure (pairof ?x ?y)) ! pure [genvar]

{x : ?x, y : ?y} � x : ?x ! pure [var]

{x : ?x, y : ?y} � y : ?y ! pure [var]

{x : ?x, y : ?y} � (prim pair x y) : (pairof ?x ?y) ! pure [prim]

{x : ?x} � Eabs2 : (-> (?y) pure (pairof ?x ?y)) ! pure [→-intro]

{} � Eabs1 : (-> (?x) pure (-> (?y) pure (pairof ?x ?y))) ! pure [→-intro]

TE1 � cp : (-> (int) pure
(-> (?y) pure (pairof int ?y))) ! pure

[genvar]

TE1 � 1 : int ! pure [int]

TE1 � (cp 1) : (-> (?y) pure (pairof int ?y)) ! pure [→-elim]

TEprim � pair : (-> (Tiu Tib) pure (pairof Tiu Tib)) ! pure [genvar]

TE2 � cp1 : (-> (unit) pure (pairof int unit)) !pure [genvar]

TE2 � #u : unit !pure [unit]

TE2 � (cp1 #u) : (pairof int unit) ! pure [→-elim]

TE2 � cp1 : (-> (bool) pure (pairof int bool)) !pure [genvar]

TE2 � #t : bool !pure [bool]

TE2 � (cp1 #t) : (pairof int bool) ! pure [→-elim]

TE2 � (prim pair (cp1 #u) (cp1 #t)) : (pairof Tiu Tib) ! pure [prim]

TE1 � (let ((cp1 (cp 1)))

(prim pair (cp1 #u) (cp1 #t))) : (pairof Tiu Tib) ! pure

[let]

{} � EcurriedPair : (pairof Tiu Tib) ! pure [let]

Figure 16.12 Type/effect derivation for EcurriedPair in FLARE/EEP .
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Given the apparent advantages of effect-based purity over syntactic purity,
why did we adopt syntactic purity as the default in the FLARE/E type/effect
system? The reason is that effect-based purity greatly complicates type recon-
struction. With syntactic purity, the decision to generalize types in the [letSPZ ]
and [letrecSPZ ] type reconstruction rules is independent of solving the effect con-
straints collected during reconstruction. With effect-based purity, type general-
ization may depend on the result of solving effect constraints. This introduces
a fundamental dependency problem: the decision to generalize must be made
when processing let and letrec expressions, but the effect constraints cannot
be solved until the whole program body has been processed. One way to address
this dependency problem is via backtracking (see Exercise 16.16).

Exercise 16.13 Show that the FLARE/EEP type/effect system can be made even
more powerful by extending it with the [effect-masking ] rule in Figure 16.10 on page 973.
That is, give an expression that is typable in FLARE/EEP + [effect-masking ] that is
not typable in FLARE/EEP .

Exercise 16.14 Thai Ping suggests the following subtyping rule for FLARE/E proce-
dure types:

∀n
i=1 . (Ti � T ′

i ) T ′
body �Tbody F ′ �e F

(-> (T ′n
1=1) F ′ T ′

body)� (-> (Tn
i=1) F Tbody)

[→-�]

a. Suppose that the FLARE/EEP type system were extended with Thai’s rule as well
as with a version of the [inclusion] type rule in Figure 12.1 on page 703. Give an
example of an expression that is well typed in the extended system that is not well
typed in the original one.

b. Suppose that the FLARE/E type system were extended with Thai’s rule as well as
the [inclusion] type rule. Are there any expressions that are well typed in the extended
system but not well typed in the original one? Either give such an expression or show
that the two systems are equivalent in terms of typing power.

Exercise 16.15 Bud Lojack thinks that a small modification to Algorithm Z can make
it sound and complete for FLARE/EEP , the version of the FLARE/E type system
using effect-based purity. He modifies the reconstruction rules for let and letrec to use
a new zgenPureEP function that performs an effect-based purity test (Figure 16.13).

Excitedly, Bud shows his modifications to Thai Ping. But Thai bursts Bud’s bubble
when he observes, “Your modified rules are just another way of reconstructing types and
effects for FLARE/E, not for FLARE/EEP . The problem is that the purity test in
zgenPureEP involves effect expressions containing effect variables that may eventually
be shown to be pure but are conservatively assumed to be impure when the purity test
is performed.”
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Show that Thai is right by fleshing out the following two steps, which show that
replacing the [letSPZ ]/[letrecSPZ ] rules by the [letEPZ ]/[letrecEPZ ] rules does not change
which expressions can be reconstructed by Algorithm Z.

a. Prove the following lemma:

Lemma 16.4 In Bud’s modified Algorithm Z, suppose that Z[[E ]] TE =
〈T ,TCS ,F ,FCS 〉 and (solveTCS TCS ) = (TypeSubst�UnifySoln σTCS ).
Then (σTCS F ) ≈e pure if and only if (�pure E ) according to the deduction
system for �pure defined in Figure 13.25 on page 816.

Hint: What is the form of every latent effect in a procedure type generated by Algo-
rithm Z? What does this imply about the purity of procedure applications?

b. Using Lemma 16.4, show that in any type/effect derivation from Bud’s modified
Algorithm Z, any instances of the [letEPZ ] and [letrecEPZ ] rules can be replaced by
the [letSPZ ] and [letrecSPZ ] rules without changing the validity of the derivation.

Exercise 16.16 Bud Lojack’s version of Algorithm Z (see Exercise 16.15) fails to recon-
struct the types and effects of some expressions that are well typed in the FLARE/EEP

type/effect system because it doesn’t “know” the purity of certain effect variables that
eventually turn out to be pure. This drawback can be addressed by aggressively assum-
ing that all effect variables are pure unless there is evidence otherwise, and backtracking
in any case where the assumption is later proven to be false.

a. Design and implement a backtracking version of Bud’s modified Algorithm Z based
on this idea.

b. Show that your modified version of Algorithm Z can successfully reconstruct the type
and effect of the expression EcurriedPair defined on page 975.

16.3 Using Effects to Analyze Program Behavior

Thus far we have considered a system for calculating only store effects. Store ef-
fects are especially useful for guiding compiler optimizations like parallelization,
common subexpression elimination, dead code elimination, and code hoisting (see
Section 17.6). We now explore other kinds of effects and show how effect informa-
tion can be used to reason about program behavior and guide the implementation
of programs.

16.3.1 Control Transfers

Effects can be used to analyze control transfers, such as those expressed via the
label and jump constructs studied in Section 9.4. Recall that (label Icp Ebody)

evaluates Ebody in an environment where Icp names the control point correspond-
ing to the continuation of the label expression, and (jump Ecp Eval) jumps to
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New Type Function
zgenPureEP : Type → TypeEnvironment → TypeConstraintSet

→ EffectConstraintSet→ Effect ⇀ AlgebraicTypeSchema

(zgenPureEP Tdefn TE TCS FCS F )

=

⎧⎪⎨⎪⎩
(zgen Tdefn TE TCS FCS ) ,

if solveTCS TCS = (TypeSubst�UnifySoln σ) and (σ F ) ≈e pure

Tdefn , otherwise

Modified Type/Effect Reconstruction Rules

∀n
i=1 . (Z[[Ei ]] TE = 〈Ti ,TCS i ,Fi ,FCS i〉)

Z[[E0 ]] TE [Ii : (zgenPureEP Ti TE TCS i FCS i Fi)]
n
i=i

= 〈T0 ,TCS0 ,F0 ,FCS0 〉
Z[[(let ((Ii Ei)

n
i=1) E0)]] TE

= 〈T0 ,TCS0 � TCSdefns , (maxeff Fn
i=0), @

n
i=0FCS i〉

[letEPZ ]

where TCSdefns =
⊎n

i=1TCS i

∀n
i=1 .

(
Z[[Ei ]] TE [Ij : δj ]

n
j=1 = 〈Ti ,TCS i ,Fi ,FCS i〉

)
Z[[E0 ]] TE [Ii : (zgenPureEP Ti TE TCSdefns FCSdefns Fi)]

n
i=i

= 〈T0 ,TCS0 ,F0 ,FCS0 〉
Z[[(letrec ((Ii Ei)

n
i=1) E0)]] TE

= 〈T0 ,TCS0 � TCSdefns , (maxeff Fn
i=0), @

n
i=0FCS i〉

[letrecEPZ ]

where δn
i=1 are fresh

TCSdefns = (
⊎n

i=1 TCS i) � (
⊎n

i=1{δi
.
= Ti}TCS )

FCSdefns = @n
i=1FCS i

Figure 16.13 Bud Lojack’s modified type/effect reconstruction rules for let and
letrec in Algorithm Z (Exercise 16.15).

the control point denoted by Ecp with the value of Eval . Here is a simple example
in a version of FLARE/E extended with these two constructs:

Eproc1 = (abs (x y)

(+ 1 (label exit

(* 2 (if (< y 0) (jump exit y) x)))))

In Eproc1 , label gives the name exit to the control point that returns the value
of the label expression. If y is negative, the jump to exit returns y as the
value of the label expression, and Eproc1 returns one more than the value of y.
Otherwise, no jump is performed, the value of the label expression is double
the value of x, and Eproc1 returns one more than double the value of x. (See
Section 9.4 for more examples of nonlocal exits.)

The control behavior of label and jump can be modeled by introducing a
new type and two new effect constructors:
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TE [Icp : (controlpointof Tbody R)] � Ebody :Tbody !Fbody

TE � (label Icp Ebody) :Tbody ! (maxeff (comefrom R) Fbody)
[cp-intro]

TE � Ecp : (controlpointof Tval R) !Fcp

TE � Eval :Tval !Fval

TE � (jump Ecp Eval) :Tany ! (maxeff (goto R) Fcp Fval)

[cp-elim]

Figure 16.14 Type/effect rules for label and jump.

T ∈ Type ::= . . . | (controlpointof T R)

FCR ∈ EffectConstructor = . . . ∪ {goto, comefrom}

The type (controlpointof T R) describes a control point in region R that
expects to receive a value of type T . An expression has effect (goto R) if
it might jump to a control point in R, and it has effect (comefrom R)6 if it
creates a control point in R that could be the target of a jump. Although regions
represent areas of memory in store effects, they represent sets of control points
in control effects, and can have other meanings for other kinds of effects.

The FLARE/E type/effect system can be extended to handle control effects
with the two rules in Figure 16.14. In the [cp-intro] rule, (label Icp Ebody)

introduces a control point with type (controlpointof Tbody R) into the type
environment in which Ebody is type-checked. The type of the label expression
must be the same whether Ebody returns normally (without encountering a jump)
or a jump is performed to the named control point. This constrains the received
value type in the controlpointof type to be the same as the type Tbody of
Ebody . The effect of the label expression includes (comefrom R) to indicate
that it introduces a control point in region R.

The [cp-elim] rule requires that in (jump Ecp Eval) the type of Ecp must
be (controlpointof Tval R), where the received value type Tval must match
the type of the supplied value Eval . The effect of a jump expression includes
(goto R) to model its control-point-jumping behavior. The jump expression has
an unconstrained type, Tany , that is determined by the context in which it is
used. For example, in

(* 2 (if (< y 0) (jump exit y) x))

the jump expression has type int to match the type of x. But in

(* 2 (if (scor (< y 0) (jump exit x)) y x))

6The effect name comefrom is a play on the name goto, and was inspired by a spoof article
[Cla73] on a COME FROM statement dual to a GOTO statement.
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the jump expression must have type bool because it appears in a context that
requires a boolean value.

Returning to our example,

Eproc1 = (abs (x y)

(+ 1 (label exit

(* 2 (if (< y 0) (jump exit y) x)))))

exit has type (controlpointof int cp1), where cp1 is a control region. The
expression (jump exit y) has type int and effect (goto cp1). The label ex-
pression has type int and an effect, (maxeff (comefrom cp1) (goto cp1)),
describing that it establishes a control point in region cp1 that is the target of
jump that may be performed in its body.

In this simple example, the control effects (comefrom cp1) and (goto cp1)

are completely local to the label expression. So a system that supports effect
masking (Section 16.2.4) can delete them from the effect of the label expression
and the latent effect of the abstraction, making these effects pure. This high-
lights that effect masking works for all effects, including control effects and store
effects. When a control effect in region R can be masked from expression E ,
it means that no part of the program outside E will be subject to unexpected
control transfers with respect to the continuation associated with R. Effect mask-
ing of control effects is powerful because it allows module implementers to use
control transfers internally, while allowing clients of the modules to insist that
these internal control transfers not alter the clients’ control flow. In a system
using explicit types and effects at module boundaries, a client can guarantee this
invariant by ensuring that it does not call module procedures with control effects.

As an example where control effects cannot be deleted, consider:

Eproc2 = (label exit

(abs (y)

(if (= y 0)

(jump exit (abs (z) z))

(+ 1 y))))

In this example, evaluating the label expression returns the procedure created
by (abs (y) . . . ) without peforming any jumps. This procedure behaves like
an incrementing procedure when called on a nonzero argument. But applying it
to 0 has the bizarre effect of returning from the label expression a second time
with the identity procedure instead!

What are the types in this example? Let’s assume that the control point for
exit is in region cp2. Then (abs (y) . . .) must have type

Tproc2 = (-> (int) (goto cp2) int)
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because it takes an integer y, returns an integer (+ 1 y), and may jump to exit.
The type of exit must be (controlpointof Tproc2 cp2), because the [cp-intro]
rule requires the received value type of the control point to be the same as the
body type. The type of (abs (z) z) must also be Tproc2 , because the [cp-elim]
rule requires the received value type of the control point to match the type of
the value supplied to jump. Finally, the label expression has type Tproc2 and
effect (comefrom cp2), which does not include a goto effect because no jump can
be performed by evaluating the label expression. Because cp2 appears in the
type Tproc2 of Eproc2 , the (comefrom cp2) effect cannot be deleted from Eproc2

via effect masking. This effect tracks the fact that the procedure resulting from
Eproc2 can jump back into Eproc2 if it is called with the argument 0. Since the
impurity of Eproc2 is externally observable (see Exercise 16.17), the control effect
cannot be deleted.

Exercise 16.17

a. Assuming Eproc2 is the expression studied above, what is the value of the following
expression?

(let ((g Eproc2) (h Eproc2))

(list (g 1) (h 1) (h 0)))

b. Based on your answer to part a, argue that Eproc2 cannot be a pure expression.

Exercise 16.18 Extend the Algorithm Z type/effect reconstruction rules to handle
label and jump.

Exercise 16.19 Control effects can be used to describe the behavior of the procedure
cwcc (see Section 9.4.4).

a. Give a type schema for cwcc that is as general as possible.

b. Show how your type schema for cwcc can be instantiated in the following FLARE/E
expressions:

i. E ′
proc1 =

(abs (x y)

(+ 1 (cwcc (abs (exit)

(* 2 (if (< y 0) (exit y) x))))))

ii. E ′
proc2 =

(cwcc (abs (exit)

(abs (y)

(if (= y 0)

(exit (abs (z) z))

(+ 1 y)))))
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c. Consider the following FLARE/E abstraction:

E ′
proc3 = (abs (x y)

(+ 1 (cwcc (abs (exit)

(* 2 (if (scor (< y 0) (exit x)) (exit y) x))))))

i. Explain why E ′
proc3 is ill typed in FLARE/E.

ii. In an explicitly typed dialect of FLARE/E with universal (i.e., forall) types,
(1) give a type for cwcc and (2) write a well-typed version of E ′

proc3 with appro-
priate explicit type annotations.

iii. Convert E ′
proc3 to a well-typed FLARE/E abstraction that uses label and jump

instead of cwcc.

iv. What feature of the label and jump type/effect rules makes the well-typedness
of your converted abstraction possible?

v. Show that your converted abstraction can be given a pure latent effect in a
version of FLARE/E with the [effect-masking ] rule.

16.3.2 Dynamic Variables

In a dynamically scoped language (see Section 7.2.1), dynamically bound vari-
ables (i.e., the free variables of a procedure) take their meaning from where the
procedure is called rather than where it is defined. References to dynamically
bound variables can be tracked by an effect system in which (1) the effect of
an expression is the set of dynamically bound variables it might reference and
(2) procedure types are extended to have the form

(-> (T ∗
arg) ((Idyn Tdyn)

∗) Tresult)

Each binding (Idyn Tdyn) serves both as a kind of latent effect (each name Idyn is
a dynamically bound variable that may be referenced wherever the procedure is
called) and as a way to check (using Tdyn) that the dynamically bound variable
is used with the right type at every invocation of the procedure.

This sketch for how effects can be used to give types to dynamic variables is
fleshed out in Exercise 16.20.

Exercise 16.20 Dinah McScoop likes both dynamic scoping and explicit types, so she
creates a new language, DIFLEX, that includes both! The syntax of DIFLEX is like
FLEX, except for the definition and type of procedures, which have been modified as
follows:

E ∈ Exp ::= . . . | (abs ((Ifml Tfml)
∗) ((Idyn Tdyn)

∗) Ebody)

T ∈ Type ::= . . . | (-> (T ∗
arg) ((Idyn Tdyn)

∗) Tresult)



984 Chapter 16 Effects Describe Program Behavior

In abs, the first list of identifiers and types, ((Ifml Tfml)
∗), specifies the formal param-

eters of the procedure and their types. The second list, ((Idyn Tdyn)
∗), specifies the

names and types of the dynamically bound identifiers (all non-parameter identifiers) that
appear in Ebody . Procedure types include the names and types of dynamically bound
identifiers in addition to the usual parameter type list and result type. As usual, in
a procedure application, the procedure’s parameter types must match the types of the
actual arguments. Because DIFLEX is dynamically scoped, the types of the dynami-
cally bound identifiers in the procedure type must match the types of these identifiers
wherever the procedure is called, not where it is defined.

For example, the following expression is well typed in Dinah’s language because the
dynamically bound variable x is a boolean where procedure p is called (the fact that x

is an integer where p is created is irrelevant):

(let ((x 1))

(let ((p (abs ((y int)) ((x bool)) (if x y 0))))

(let ((x #t))

(p 1)))) {This expression evaluates to 1}

In contrast, the following expression is ill typed:

(let ((x #t))

(let ((p (abs ((y int)) ((x bool)) (if x y 0))))

(let ((x 1))

(p 1)))) {x is not a boolean in this call to p}

Dinah realizes that uses of dynamic variables can be tracked by an effect system.
Dinah extends the FLEX typing framework to employ type/use judgments of the form

TE � E :T & IS

which means “in type environment TE , E has type T and may use identifiers from the
set IS .” Assume IS ∈ IdSet = P(Ident). For example, Dinah’s type/use rule for variable
references is:

TE � I :TE(I ) & {I } [var]

Dinah provides the following examples of type/use judgments for her system:

{x : int} � (prim + 1 x) : int & {x}

{} � (let ((x 1)) (prim + 1 x)) : int & {}

{x : bool, y : int} � (if x y 0) : int & {x, y}

{x : int} � (abs ((y int)) ((x bool)) (if x y 0))

: (-> (int) ((x bool)) int) & {}

{x : bool, p : (-> (int) ((x bool)) int)} � (p 1) : int & {p, x}

In the final type judgment, note that the identifier set for (p 1) includes x because the
procedure p has a dynamic reference to x.

a. Write type/use rules for the following constructs: let, abs, and procedure application.
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b. Briefly argue that your type/use rules guarantee that in a well-typed program, an
identifier can never be unbound or used with an incorrect type.

c. Dinah’s friend Thai Ping observes that the following DIFLEX expression is ill typed:

(abs ((b bool)) ()

(let ((f (abs ((x int)) ((c int)) (prim + x c)))

(g (abs ((y int)) ((d int)) (prim * y d))))

(let ((c 1) (d 2))

((if b f g) 3))))

i. Explain why this expression is ill typed.

ii. Thai suggests that expressions like this can be made well typed by extending
the type/usage rules for DIFLEX with a type-inclusion rule (see Figure 12.1
on page 703). Define an appropriate notion of subtyping for DIFLEX’s proce-
dure types, and show how Thai’s example is well-typed in the presence of type
inclusion.

d. Based on ideas from the DIFLEX language and type system, develop an explic-
itly typed version of the DYNALEX language (Exercise 7.25 on page 349) named
DYNAFLEX. Describe the syntax and type system of DYNAFLEX. Hint: Since
DYNAFLEX has two namespaces — a static one and a dynamic one — the type
system needs two type environments.

16.3.3 Exceptions

Recall from Section 9.6 that exception-handling mechanisms specify how to deal
with abnormal conditions in a program. A type/effect system can be used to track
the exceptions that might be raised when evaluating an expression. One way to do
this in FLARE/E is to use new base effects with the form (raises Itag Tinfo)

to indicate that an expression raises an exception with tag Itag and informa-
tion of type Tinfo . If an expression E handles an exception with tag Itag , the
(raises Itag Tinfo) effect can be removed from the effect set of E . Exercise 16.21
explores a specialized effect system that tracks only exceptions and not other ef-
fects.

Java is an example of an explicitly typed language with an effect system
for exceptions. It tracks a subset of exceptions known as checked exceptions. If
a checked exception is thrown (Java’s terminology for raising an exception) in
the body of a method, then it must either be explicitly handled by a try/catch
statement or explicitly listed in a throws clause of the method specification. For
example, a Java method that displays the first n characters of a text file might
have the following specification:

public static void readFirst (n:int, filename:string)

throws FileNotFoundException, EOFException;
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The throws clause indicates that the readFirst method may not handle the case
where there is no file named filename (in which case a FileNotFoundException

is thrown) and might attempt to read past the end of a file (in which case an
EOFException7 is thrown). The throws clause serves as an explicit latent excep-
tion effect for the method. Any method invoking readFirst in its body must
either handle the exceptions it throws or explicitly declare them in its own throws

clause.

Exercise 16.21 Bud Lojack wants to add exceptions with termination semantics to
FLARE. He extends the FLARE expression and type syntax as follows:

E ∈ Exp ::= . . . | (raise Itag Einfo) | (handle Itag Ehandler Ebody)

T ∈ Type ::= . . . | (handlerof Tinfo)

The dynamic semantics of the raise and handle constructs is described in Section 9.6.
Bud’s new type (handlerof Tinfo) stands for an exception handler that processes ex-
ception information with type Tinfo . In Bud’s new type rules, the handlerof type is
used to communicate type information from the point of the raise to the point of the
handle:

TE � Ehandler : (-> (Tinfo) Tbody)

TE [Itag : (handlerof Tinfo)] � Ebody :Tbody

TE � (handle Itag Ehandler Ebody) :Tbody

[handle]

TE � Itag : (handlerof Tinfo) TE � Einfo :Tinfo

TE � (raise Itag Einfo) :Traise
[raise]

Note that because raise never returns in termination semantics, the type Traise of a
raise expression (like the type of an error expression) can be any type required by the
surrounding context.

Bud proudly shows his new rules to type guru Thai Ping, who is unimpressed. “Your
rules make the type system unsound!” exclaims Thai. “You’ve assumed that exception
handlers are statically bound when they’re actually dynamically bound.”

a. Explain what Thai means. In particular, provide expressions Eouter and Einner such
that the following expression is well typed according to Bud’s rules, but generates a
dynamic type error:

(handle an-exn Eouter

(let ((f (abs () (raise an-exn 17))))

(handle an-exn Einner

(f))))

Thai observes that raising an exception Itag with a value of type Tinfo is similar
to referencing a dynamic variable named Itag bound to a handler procedure with type
(-> (Tinfo) Tresult), where Tresult can be different for different handlers associated with

7EOF stands for “End Of File.”
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Itag . Since dynamic variables can be typed using an effect system (see Exercise 16.20),
Thai aims to develop a similar effect system for typing exceptions. Thai’s system is based
on “effects” from the following domain:

ES ∈ ExceptionSpec = Ident ⇀ Type

An exception specification ES is a partial function mapping the name of an exception
that can be raised to the type of the information value with which it is raised. For
example, representing a partial function as a set of bindings, the exception specification
{bounds �→ int, wrong �→ bool} indicates that the bounds exception is raised with an
integer and the wrong exception is raised with a boolean. Two exception specifications
can be combined via ⊕ or #, which require that they agree on names for which they are
both defined:

ES1 ⊕ ES2 =

8>>>>><
>>>>>:

λI . if I ∈ dom(ES1 ) then (ES1 I )
else if I ∈ dom(ES2 ) then (ES2 I ) else undefined end

end,

if I ∈ (dom(ES1 ) ∩ dom(ES2 )) implies (ES1 I ) ≈ (ES2 I )

undefined, otherwise

ES1 � ES2 =

8>><
>>:

λI . if (I ∈ dom(ES1 )) ∧ (I �∈ dom(ES2 )) then (ES1 I )
else undefined end,

if I ∈ (dom(ES1 ) ∩ dom(ES2 )) implies (ES1 I ) ≈ (ES2 I )

undefined, otherwise

In Thai’s type/exception system, judgments have the form

TE � E :T # ES

which means “in type environment TE , expression E has type T and may raise exceptions
as specified by ES .” For example, the judgment

TE � Etest : bool # {x �→ int, y �→ symb}

indicates that if Etest returns normally, its value will be a boolean, but that evaluation of
Etest could raise the exception x with an integer value or the exception y with a symbol
value. Thai’s system guarantees that no other exceptions can be raised by Etest . Thai’s
system also uses exception masking to remove exceptions from judgments when it is
clear that they will be handled. E.g., the exception specification of

TE � (handle x (abs (z) (> z 0)) Etest) : bool # {y �→ symb}

does not include x �→ int from Etest because the exception named x has been handled by
the handle expression.

Thai eliminates Bud’s handlerof from the FLARE type system and instead changes
procedure types to carry a latent exception specification describing exceptions that might
be raised when the procedure is applied :
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T ∈ Type ::= . . . FLARE types except for -> . . . | (-> (T ∗
arg) ES lat Tres)

Here are two of the type/exception rules from Thai’s system:

TE � N : int # {} [int]

TE � E1 : bool # ES 1 TE � E2 :T # ES 2 TE � E3 :T # ES3

TE � (if E1 E2 E3) :T # ES1 ⊕ ES 2 ⊕ ES3
[if ]

Thai seeks your help in fleshing out other parts of his type/exception system:

b. Give the type/exception rules for abs, procedure application, raise, and handle.

c. Give a type/exception derivation for the following expression, which should be well
typed according to your rules:

(abs (n m)

(handle e (abs (a) (not a))

(let ((f (abs (x) (if (prim < x 0) (raise e x) (prim + x n)))))

(prim < 0 (if (handle e (abs (y) (prim > y n))

(prim = m (f n)))

(handle e (abs (z) (if (prim = z n) (raise e #f) z))

(prim * 2 (f m)))

(handle e (raise e #t)

(raise e (raise e (sym beardly)))))))))

d. Describe how to extend Thai’s type/exception system so that it tracks errors generated
by the error construct as well as exceptions.

e. Discuss the technical challenges that need to be addressed in order to modify Algo-
rithm Z to automatically reconstruct types and exception specifications for Thai’s
system (FLARE+{raise, handle}). For simplicity, ignore all store effects and fo-
cus solely on tracking exception specifications. What do constraints on exception
specifications look like? Can they always be solved?

16.3.4 Execution Cost Analysis

It is sometimes helpful to have an estimate for the cost of evaluating an ex-
pression. A cost might measure abstract units of time or other resources (e.g.,
memory space, database accesses, network bandwidth) required to evaluate the
expression. An effect system can estimate the cost of evaluating an expression
by (1) associating a cost effect with each expression and (2) extending procedure
types to have a latent cost effect that is accounted for every time a procedure
is called. Exercise 16.22 explores a simple cost system based on this idea. For
practical cost systems, it must be possible to express costs that depend on the
size of data structures (e.g., the length of a list or dimensions of a matrix) [RG94].

Cost systems can be helpful for parallel scheduling; two noninterfering ex-
pressions should be scheduled for parallel execution only if their execution times
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are large enough to outweigh the overheads of the mechanism for parallelism.
Cost systems also provide a simple way to conservatively determine which ex-
pressions must terminate and which might not. Cost systems can even be used
to approximate the complexity of an algorithm [DJG92].

Exercise 16.22 In order to estimate the running time of FLARE programs, Sam Antics
wants to develop a set of static rules that assign every expression a cost as well as a
type. The cost of an expression is a conservative estimate of how long the expression will
take to evaluate.

Sam develops a type/cost system for Discount, a variant of FLARE in which
procedure types carry latent cost information:

T ∈ Type ::= . . . FLARE types except for -> . . . | (-> (T ∗
arg) Clat Tres)

C ∈ Cost ::= NT | loop | (sumc C ∗) | (maxc C ∗)

NT ∈ NatLit ::= 0 | 1 | 2 | . . .

For example, the Discount type (-> (int int) 5 bool) is the type of a procedure
that takes two integers, returns a boolean result, and costs at most 5 abstract time units
every time it is called.

Sam formulates a cost analysis in Discount via type/cost judgments of the form

TE � E :T $ C

which means “in type environment TE , expression E has type T and cost C .” For
example, here are Sam’s type/cost rules for integers and (nongeneric) variable references:

TE � N : int $ 1 [int]

TE � I :TE(I ) $ 1 [var]

That is, Sam assigns both integers and variable references a cost of 1 abstract time unit.
In addition, Sam specifies the following costs for some other Discount expressions:

• The cost of an abs expression is 2.

• The cost of an if expression is 1 more than the cost of the predicate expression plus
the maximum of the costs of the two branch expressions.

• The cost of an n-argument procedure application is the sum of the cost of the operator
expression, the cost of each operand expression, the latent cost of the operator, and n.

• The cost of an n-argument primitive application is the sum of the cost of each operand
expression, the latent cost of the primitive operator (as specified in the primitive type
environment TEprim), and n. Here are some example types of primitive operators:

TE prim(+)= (-> (int int) 1 int)

TE prim(>)= (-> (int int) 1 bool)
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Here are some example judgments that hold in Sam’s system:

{a : int} � (prim + a 7) : int $ 5

{a : int, b : int} � (prim > (prim + a 7) b) : bool $ 9

{a : int} � (abs (x) (prim > x a)) : (-> (int) 5 bool) $ 2

{a : int, gt : (-> (int) 5 bool)} � (gt 17) : bool $ 8

{a : int, b : int, gt : (-> (int) 5 bool)} � (if (gt b) (prim + b 1) 0) : int $ 14

The abstract cost loop is assigned to expressions that may diverge. For example,
the expression

Ehang = (letrec ((hang (abs () (hang)))) (hang))

is assigned cost loop in Discount. Because it is undecidable whether an arbitrary
expression will diverge, it is impossible to have a type/cost system in which exactly
the diverging expressions have cost loop. So Sam settles for a system that makes a
conservative approximation: every program that diverges will be assigned cost loop, but
some programs that do not diverge will also be assigned loop.

The cost constructs (sumc C1 . . . Cn) and (maxc C1 . . . Cn) are used for denot-
ing, respectively, the sum and maximum of the costs C1 . . . Cn , which may include
nonnumeric costs like loop and cost identifiers (see part d). Sam’s system ensures that
sumc and maxc satisfy sensible cost-equivalence axioms, such as:

(sumc NT 1 NT 2) ≈c NT 3 , where N [[NT 3 ]] = N [[NT 1 ]] +Nat N [[NT 2 ]]

(sumc loop NT) ≈c (sumc NT loop) ≈c (sumc loop loop) ≈c loop

(maxc NT 1 NT 2) ≈c NT 3 , where N [[NT 3 ]] = (max N [[NT 1 ]] N [[NT 2 ]])

(maxc loop NT) ≈c (maxc NT loop) ≈c (maxc loop loop) ≈c loop

In Sam’s system, such cost equivalences can implicitly be used wherever costs are men-
tioned.

a. Give type/cost rules for abs, procedure application, primitive application, and if.

b. Sam wants the following Discount expression to be well typed:

Eif = (if b

(abs (x) (prim + x x))

(abs (y) (prim + (prim + y y) y)))

But the types of the two branches, (-> (int) 5 int) and (-> (int) 9 int), are
procedure types differing in their latent costs, which causes this expression to be ill
typed. To fix this problem, define (1) a sensible cost-comparison relation ≤c (2) a
notion of subtyping in Discount and (3) a type/cost inclusion rule for Discount
(a variant of the [inclusion] rule in Figure 12.1 on page 703). Show that Eif is well
typed with your extensions.
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c. Define type/cost rules for monomorphic versions of let and letrec. Show why Ehang

must be assigned cost loop using your rules.

d. Define type/cost rules for polymorphic versions of let and letrec and a rule for
referencing a variable whose type is a generic type schema. You may assume that the
Cost domain is extended to include description variables δ ∈ DescId that can stand
for costs. Using your rules, give a type/cost derivation showing that the following
expression is well typed:

(let ((app5 (abs (f) (f 5))))

(if (app5 (abs (x) (prim > x 0)))

(app5 (abs (y) y))

(app5 (abs (z) (prim + z 1)))))

e. Discuss the technical challenges that need to be addressed in order to modify Algo-
rithm Z to automatically reconstruct types and costs for Discount. For simplicity,
ignore all store effects and focus solely on calculating costs. What do cost constraints
look like? Can they always be solved?

f. In Sam’s Discount type/cost system, every recursive procedure has latent cost loop.
Since Discount uses recursion to express iteration, all iterations are conservatively
assigned the infinite cost loop. While this is sound, it is not very useful. For example,
it would be nice for an iteration summing the integers from 1 to n to have a finite cost
that depends on n. Design a simple iteration construct that would allow assigning
finite costs to some iterations, and discuss the technical issues that arise in the context
of your construct.

16.3.5 Storage Deallocation and Lifetime Analysis

In implementations of languages like FLARE/E, it is often difficult to determine
statically when a cell can no longer be referenced. For this reason, cells are
typically allocated in a dynamically managed storage area called the heap, where
they are reclaimed dynamically by a garbage collector (see Chapter 18).

However, an effect system with regions enables a framework for the static
allocation and deallocation of memory. The following expression illustrates the
key idea:

(let ((my-cell (cell 1)) {assume this cell is in region rm}
(your-cell (cell 2))) {assume this cell is in region ry}

(pair (^ my-cell) (abs () (^ your-cell))))

The region rm for my-cell is completely local to the let expression and can be
deleted from the effect of the let expression. This means that the allocation
and all uses of my-cell occur within the let expression, so my-cell may be
deallocated when the let expression is exited. In contrast, the region ry for
your-cell appears in the type (pairof int (-> () (read ry) int)) of the
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TE � E :T !F
TE � (letregion R E) :T !F ′ [letregion]

where F [[F ′]] = {BF | ((BF ∈ F [[F ]]) ∧ (R 
∈ FrDescIdseff [[BF ]]))}
R 
∈ FrDescIdsty [[T ]] [export restriction]
∀I ∈ FrIds[[E ]] . (R 
∈ FrDescIdsty [[TE (I )]]) [import restriction]
∀BF ∈ F [[F ′]] . (BF 
= (comefrom R′)) [control restriction]

Figure 16.15 The type/effect rule for region-based storage management.

let expression, indicating that your-cell must outlive the let expression. But
if ry does not “escape” some enclosing expression E , it may be deallocated when
E is exited.

Region-based static storage management can be formalized by extending the
expressions of FLARE/E with a binding construct (letregion R E) that de-
clares the region named R in the scope of the body expression E . In the dynamic
semantics, this construct creates a new segment of memory named R in which
cells may be allocated, evaluates E to a value V , and then deallocates the entire
segment R before returning V . So memory is organized as a stack of segments
such that entering letregion pushes a new segment onto the stack and exiting
letregion pops its segment off the stack. We also replace the cell primitive by
the kernel construct (cell E R), in which the region name R explicitly indicates
in which segment the cell should be allocated. We assume that letregion is used
only to declare cell regions and that other regions, such as regions representing
control points in control effects, are handled as before.

Using the region name R in the cell construct is sound only if (1) it is in the
lexical scope of a letregion expression declaring R and (2) the cell cannot outlive
(i.e., escape from the scope of) the letregion expression declaring R. Condi-
tion 1 can be expressed by requiring that a program body contain no free cell re-
gion names — i.e., all cell regions mentioned in the program body must be bound
by an enclosing letregion. Condition 2 is expressed by the [letregion] type/effect
rule in Figure 16.15. This is a specialized version of the [effect-masking ] rule in
Figure 16.10 on page 973 guaranteeing that it is safe to deallocate the memory
segment created by (letregion R E) once the evaluation of E is complete.
The effect F ′ of (letregion R E) contains all base effects in the effect F of E
except for those that mention R. As in the [effect-masking ] rule, the export and
import restrictions of the [letregion] rule guarantee that R is only used locally
and may safely be excluded from F ′.

In a system without control transfers, the export and import restrictions are
enough to justify that it is safe to deallocate the memory segment named by R,
since no cell allocated in R can be referenced again upon termination of the
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letregion expression. However, in the presence of control effects, an additional
control restriction is necessary to guarantee that the rest of the program can
never jump back into the letregion expression. If such a jump were to occur,
the memory segment associated with R might be accessed after the termination
of the letregion expression, and so deallocation of this segment would be unsafe.
This possibility can be precluded by requiring that the letregion expression not
have a comefrom effect, and thus cannot be the target of any control transfers.

The above cell example can be transformed to use letregion as follows:

(letregion rm

(let ((my-cell (cell 1 rm))

(your-cell (cell 2 ry))) {ry is free here but is presumably}
{bound by an enclosing letregion.}

(pair (^ my-cell) (abs () (^ your-cell)))))

This expression is well typed, so it is safe to deallocate the region rm containing
my-cell upon exiting (letregion rm . . . ). Although only one cell is allocated
in a region in this example, in general arbitrarily many cells may be allocated
in a single region. But an attempt to allocate your-cell in rm in this example
would make the letregion expression ill typed because the export restriction
would be violated. It is necessary to allocate your-cell in a separate region ry

that is declared by some other letregion expression syntactically enclosing this
one. In the worst case, ry might be declared by a top-level letregion that wraps
the entire program body.

We have focused on the region-based storage management of cells, but any
type of value — e.g., pairs, lists, procedures, and even integers and booleans —
can be associated with regions of memory. In FLARE/E, all these values are
immutable and so they have no effects observable by the programmer. However,
even immutable values must be stored somewhere, and regions are useful for
managing the storage of such values. In this context, effects and regions can
be used to perform a static lifetime analysis that determines where in the
program a value created at one point can still be “alive.”8 This is necessary for
determining when the storage associated with the value can be deallocated. The
lifetime analysis of immutable values is explored in Exercise 16.24.

A practical region-based storage management system requires a way to auto-
matically determine the placement of letregion declarations and annotate cell
expressions with region information while maintaining the well-typedness of a
program. A crude approach is to wrap all letregions around the program body,
but a more useful (and challenging!) goal is to make the scope of every letregion

8A closely related analysis is an escape analysis that determines which values can escape
the scope in which they were declared.
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as small as possible. Procedures that can be polymorphic in regions are helpful
for shrinking the scope of letregions; see Exercise 16.23.

One such region-based storage management system has been designed and
implemented by Tofte and Talpin [TT97]. They developed and proved correct an
algorithm for translating an implicitly typed functional language into a language
with explicit letregion expressions, region annotations, and region-polymorphic
procedures. Their system handles integers, procedures, and immutable pairs, all
of which are allocated in regions, but it can easily be extended to mutable data
as well.

Exercise 16.23

a. The following is a FLARE/E program in which the two cell expressions have been
annotated with explicit regions. Add explicit letregion expressions declaring r1

and r2 so that (1) the resulting expression is well typed and (2) the scope of each
letregion expression is as small as possible:

(flarek (a b)

(let ((f (abs (x)

(let ((p (cell (prim - x 1) r1))

(q (cell (prim + x 1) r2)))

(prim pair (prim ^ p) q)))))

(let ((s (prim fst (f a)))

(t (prim snd (f b))))

(prim + s (prim ^ t)))))

b. Sketch an algorithm for adding letregion declarations and explicit cell regions to
a well-typed FLARE/E expression E so that (1) the resulting expression E ′ is well
typed and (2) the scope of each letregion expression in E ′ is as small as possible.
You may assume that you are given the complete type derivation for E .

c. Polly Morwicz observes that tighter letregion scopes can often be obtained if some
procedures are region-polymorphic. For example, using the pabs and pcall constructs
from Figure 12.9 on page 731, she modifies the procedure f in the program from part
a to abstract over region r2:

(flarek (a b)

(let ((f (pabs (r2)

(abs (x)

(let ((p (cell (prim - x 1) r1))

(q (cell (prim + x 1) r2)))

(prim pair (prim ^ p) q))))))

(let ((s (prim fst ((pcall f r3) a)))

(t (prim snd ((pcall f r4) b))))

(prim + s (prim ^ t)))))

Add explicit letregion expressions to Polly’s modified expression, striving to make
all letregion scopes as small as possible.
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Exercise 16.24 Thai Ping wants to use regions and effects to perform lifetime analysis
and storage management for pairs and other immutable values in FLARE/E. He begins
by modifying the type grammar of FLARE/E to extend a pairof type to include the
region where it is stored:

T ∈ Type ::= . . . all types except (pairof T T) . . . | (pairof T T R)

He also extends the effect grammar to include a new access effect constructor:

FCR ∈ EffectConstructor = . . . ∪ {access}

Thai explains that the effect (access R) is a lifetime effect used both for allocating
an immutable pair value in region R and for extracting its components.

a. Write the type schemas for pair and fst in the primitive type environment used by
the FLARE/E implicit type/effect system.

b. Explain how access effects and the [letregion] rule can be used to aggressively deal-
locate pair p in the following expression:

(let ((g (abs (a b)

(let ((p (prim pair a b)))

(prim pair (prim snd p) (prim fst p))))))

(g 1 2))

The FLARE/E pair primitive does not take explicit regions, but you may assume
that the scope of the region R declared by (letregion R E) includes any pairof

types and access effects that appear in the type derivation of E .

c. access effects are used for the lifetime analysis of immutable values and should not
affect the purity of expressions. For example, the expressions (prim pair 1 2) and
(prim fst p) both have effects of the form (access R), but should still be consid-
ered pure since they do not have store effects or control effects that could cause them
to interfere with other expressions. Describe how to modify the FLARE/E notion
of purity to handle lifetime effects.

d. FLARE/E lists and procedures can also be modified to support a region-based life-
time analysis similar to the one Thai developed for pairs. Describe all the changes
that need to be made to the FLARE/E syntax and type rules to accomplish this.

16.3.6 Control Flow Analysis

In function-oriented languages, a control flow analysis tracks the flow of higher-
order procedures in a program.9 Each abstraction in a program can be annotated
with a distinct label, just as each cell expression can be associated with a
region name. Then every procedure type can be annotated with the set of labels

9Although traditionally used to track the flow of procedure values, the same analysis can
easily be extended to track the flow of any kind of value.
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describing the abstractions that could be the source of that type. Although these
labels are not effects, such an analysis can be accomplished using the machinery
of an effect system.

Consider the following FLARE expression, in which each abstraction has
been annotated with an explicit integer label:

(let ((inc (abs 1 (x) (+ x 1)))

(dbl (abs 2 (y) (* y 2)))

(app3 (abs 3 (f) (f 3)))

(app4 (abs 4 (g) (g 4))))

(list (app3 inc) (app4 inc) (app4 dbl)))

The annotated type of inc would be (-> (int) {1} int) and that of dbl would
be (-> (int) {2} int). A type/label system can determine that the argument
g to app4 has type (-> (int) {1, 2} int) (because it might be either the inc or
dbl procedure) while the argument f to app3 has type (-> (int) {1} int) (be-
cause it can only be the inc procedure). Knowing which procedures reach which
call sites can guide program optimizations. For example, if only one procedure
reaches a call site, the call can be replaced by an inlined version of the proce-
dure’s body. Information from a control flow analysis is particularly important
for choosing procedure representations in a compiler (see Section 17.10.2).

A control flow analysis is simpler than the lifetime analysis discussed in Sec-
tion 16.3.5. In lifetime analysis, the latent effect in a procedure type describes all
values that might be referenced when the procedure is called (see Exercise 16.24).
In a control flow analysis, the annotation on a procedure type just describes which
source abstractions might flow to the expression with that type. Consult [NNH98]
for an extensive discussion of control flow analysis and how it can be expressed
in an effect system.

16.3.7 Concurrent Behavior

Thus far we have studied only sequential programs, in which execution can be
visualized as the progress of a single control token that moves through the pro-
gram, performing each operation it encounters along the way. The path taken by
the control token is known as a control thread. This single thread of control can
be viewed as a time line along which all operations performed by the computa-
tion are arranged in a total order. For example, a computation that sequentially
performs the operations A, B, C, and D can be depicted as the following total
order, where X → Y means that X is performed before Y :

→ A→ B → C → D →
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In a concurrent program, multiple control threads may be active at the
same time, allowing the time relationship between operations to be a partial
order rather than a total order. Here is a sample partial order that declares that
A precedes B along one control thread and C precedes D along another control
thread, but does not otherwise constrain the operation order:

→ fork join→��

��

A→ B

C → D

��

��

The diagram introduces two new nodes labeled fork and join. The purpose of
these nodes is to split and merge control threads so that a computation has a
distinguished starting edge and a distinguished ending edge. A control token
reaching a fork node splits into two subtokens on the output edges of the node.
When tokens are on both input edges of a join node, they merge into a single
token on the output node. If only one input edge to a join has a token, it cannot
move forward until the other edge contains a token. Any node like join that
forces one control token to wait for another is said to synchronize them. There
are many linguistic mechansisms for specifying concurrency and synchronization,
some of which are described in the Web Supplement to this book.

Suppose that on any step of a multithreaded computation, only one control
token is allowed to move.10 Then a particular execution of a concurrent program
is associated with the sequence of its observable actions, which we shall call an
interleaving. The behavior of the concurrent program is the set of all possible
interleavings that can be exhibited by the program. For example, assuming that
all operations (except for fork and join) are observable, then the behavior of the
branching diagram above is:

{ABCD, ACBD, ACDB, CABD, CADB, CDAB}

The behavior of a concurrent program may be the empty set (no interleavings are
possible), a singleton set (exactly one interleaving is possible), or a set with more
than one element (many interleavings are possible). A concurrent program with
more than one interleaving exhibits nondeterministic behavior. Although sequen-
tial programs can exhibit nondeterminism,11 nondeterminism is most commonly
associated with concurrent programs.

10There are concurrent models in which multiple control tokens can move in a single step, but
we shall not consider these.

11For example, a purely sequential language can exhibit nondeterminism if operand ex-
pressions in procedure applications may be evaluated in any order or if it supports an
(either E1 E2) construct that returns the value of one of E1 or E2 .
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In some models of concurrency, concurrently executing threads can communi-
cate by having one thread send a value to another thread over a channel to which
they share access. Communication establishes a timing constraint between the
threads: a value sent over a channel cannot be received by the receiving thread
until it has been sent by the sending thread.

We can extend FLARE/E to be a channel-based concurrent language by
adding the following four constructs:

(channel) : Create and return a new channel.

(send! Echan Eval) : First evaluate Echan to the channel value Vchan , then
evaluate Eval to the value Vval , and then send Vval over the channel Vchan . It
is an error if Vchan is not a channel.

(receive! Echan) : Evaluate Echan to the channel value Vchan and then return
the next value received from the channel Vchan . It is an error if Vchan is not
a channel.

(cobegin E1 . . . En) : Evaluate each of E1 . . . En in a separate thread and
return the value of En .

For example, here is a procedure that uses three channels to communicate between
three threads:

Econcabs = (abs (x)

(let ((a (channel)) (b (channel)) (c (channel)))

(cobegin (send! c (+ 1 (receive! a)))

(send! c (* 2 (receive! b)))

(begin (send! a (- x 3))

(send! b (/ x 4))

(+ (receive! c) (receive! c))))))

Since + is commutative, the order in which the values are received from chan-
nel c by the third thread does not affect the value returned by the procedure.
But the returned value would depend on the order if the + were replaced by a
noncommutative operator like -.

An effect system can be used to analyze the communication behavior of a
channel-based concurrent program. If we interpret a region R as denoting an
abstract channel, then we can model sending a value over channel R with an
effect (out R) and model the receipt of a value from this channel with an effect
(in R). In a simple communication-effect system (such as the one described in
[JG89b]), in and out effects can be tracked just like the store and control effects



16.3.8 Mobile Code Security 999

studied earlier. Such a system can determine that an expression communicates
on certain channels, but the ACUI nature of the maxeff effect combiner makes it
impossible to determine any ordering on these communications. E.g., if channels
a, b, and c in the above example are in regions ra, rb, and rc, respectively, then
the body of Econcabs has the effect

(maxeff (in ra) (in rb) (in rc) (out ra) (out rb) (out rc))

which does not indicate the relative order of the communication actions or the
number of times they are performed. However, the information is sufficient to
show that the communication effects are completely local to the procedure body
and so can be deleted by effect masking.

In more sophisticated communication-effect systems (such as the one de-
scribed in [ANN97]), the ordering of communication effects is modeled by spec-
ifying the sequential and parallel composition of effects. For example, in such a
system, the effect of the cobegin expression in Econcabs might be:

(par (seq (in ra) (out rc))

(seq (in rb) (out rc))

(seq (out ra) (out rb) (in rc) (in rc)))

where seq is used to combine effects for sequential execution and par is used
to combine effects for parallel execution. This shows the ordering of channel
operations in each thread and the fact that the third thread receives two val-
ues from the channel in region rc. Such a specification resembles the kinds of
specifications used in process algebra frameworks like Communicating Sequential
Processes (CSP) [Hoa85] and the Calculus of Communicating Systems (CCS)
[Mil89].

16.3.8 Mobile Code Security

In modern computer systems, it is often desirable for applications on a local com-
puter to automatically download and execute mobile code from remote Internet
sites. But this is a dangerous prospect, since executing arbitrary mobile code
might destroy or steal local information or use the local computer’s resources for
nefarious purposes like sending spam email, attacking Web servers, or spreading
viruses.

One application of effects is to provide mobile code security by labeling prim-
itive operations with latent effects that describe their actions. For example, all
procedures that write on the local computer’s disk could carry a write-disk

latent effect. Other latent effects could be assigned to display and networking
procedures. These effects create a verifiable, succinct summary of the actions of
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imported mobile code. These effects can be presented to a security checker —
which might involve a user dialogue box — that accepts or rejects mobile code
on the basis of its effects.

Since mobile code is downloaded and executed on the fly, any security analysis
performed by the local computer must be relatively quick in order to be practical.
Although some properties can efficiently be deduced by analyzing the downloaded
code from scratch, other important properties are too expensive for the local
computer to reconstruct. For example, for arbitrary low-level code, it is difficult
to prove memory safety properties like the following: (1) no variable is accessed
until it is initialized; (2) no out-of-bounds access is made to an array; and (3) there
is no dereference of a pointer to a deallocated memory block.12 This problem can
be addressed by requiring the code producer to include explicit type and effect
annotations in the mobile code that are sufficient to allow the code consumer to
rapidly verify security properties. For example, the types might encode a proof
that no array access is out of bounds, and a simple type-checking procedure by the
code consumer could verify this proof. Generating the appropriate annotations
might be expensive for the producer, but the consumer can use type and effect
rules to quickly verify that the annotations are valid.

This is an example of a technique called proof-carrying code [NL98, AF00],
in which mobile code carries a representation of proofs of various properties in
addition to the executable code. It is used for properties that are difficult for the
consumer to determine from raw low-level code, but are easy for the consumer to
verify if the producer of the low-level code (which presumably has access to more
information, in the form of the high-level source program) provides a proof.

Notes

Effect systems were introduced by Lucassen and Gifford in [Luc87, LG88], which
outlined the need for a new kind of static analysis for describing program be-
havior. Early experiments with the design and use of effect systems were per-
formed in the context of the FX-87 programming language [GJLS87], an explic-
itly typed language including effects and regions. Later versions of FX incor-
porated region and effect inference [JG91]. Effects were used to guide standard
compiler optimizations (e.g., common subexpression elimination, dead code elim-
ination, and code hoisting) as well as to find opportunities for parallel evaluation
[Luc87, HG88]. We explore effect-based code optimization in Section 17.6.2.

12See Chapter 18 for a discussion of memory allocation and deallocation.
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The first polymorphic type/effect reconstruction system was presented in
[JG91]. The improved reconstruction systems in [TJ92, TJ94a] guaranteed prin-
cipal types and minimal effects. Our Algorithm Z incorporates two key features
of the improved systems in a derivation-style reconstruction algorithm: It (1) al-
lows subeffecting via the [does] rule to compute minimal effects and (2) requires
the latent type of a procedure type to be a description variable, which simplifies
the unification of procedure types and the solution of effect constraints. Without
the second feature, it would be necessary to modify the unification algorithm to
produce effect-equality constraints between the latent effects of two unified pro-
cedure types and to extend the effect-constraint solver to handle such equality
constraints.

A wide variety of effect systems have been developed, including systems for
cost accounting [DJG92, RG94, CW00], control effects [JG89a], and communica-
tion effects [JG89b]. The FX-91 programming language [GJSO92] included all
of these features. Other examples of effect systems include control flow analysis
[TJ94b], region-based memory management [TT97], behavior analysis for concur-
rency [ANN97], atomicity effects for concurrency, [FQ03], register usage analysis
[Aga97, AM03], and trace effects for verifying program safety properties [SSH08].
As noted in Section 16.3.3, Java has a simple effect system for tracking excep-
tions that can be thrown by a method [GJS96]. Monadic systems for expressing
state can be extended with an effect system [Wad98].

For a detailed introduction to effect systems and a summary of work done in
this area, see [TJ94a], [NNH98, Chapter 5], and [ANN99].
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17

Compilation

Bless thee, Bottom! bless thee! thou art translated.

— William Shakespeare, A Midsummer Night’s Dream, act 2, scene 1

17.1 Why Do We Study Compilation?

Compilation is the process of translating a high-level program into instructions
that can be directly executed by a low-level machine, such as a microprocessor or a
simple virtual machine. Our goal in this chapter is to use compilation to further
our understanding of advanced programming language features, including the
practical implications of language design choices. To be a good designer or user
of programming languages, one must know not only how a computer carries out
the instructions of a program (including how data are represented) but also the
techniques by which a high-level program is converted into something that runs
on an actual computer. In this chapter, we will show the relationship between
the semantic tools developed earlier in the book and the practice of translating
high-level language features to executable code.

Our approach to compilation is different from the approach taken in most
compiler texts. We assume that the input program has already been parsed and
is syntactically correct, thus ignoring issues of lexical analysis and parsing that
are important in real compilers. We also assume that type and effect checking
are performed by the reconstruction techniques we have already studied. Our
focus will be a series of source-to-source program transformations that implement
complex high-level naming, state, and control features by making them explicit
in an FL-like intermediate compilation language. A key benefit of our approach
is that it dispenses with traditional special-purpose compilation machinery like
symbol tables, invocation frames, stacks, and basic blocks. These notions are
uniformly represented as patterns in the structure of the intermediate code. The
result of compilation will be a program in a restricted subset of the intermediate
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language that can be viewed as instructions for a simple virtual register machine.
In this way we avoid details of code generation that are important when targeting
a real microprocessor. Throughout the compilation process, efficiency will take a
back seat to clarity, modularity, expressiveness, and demonstrable correctness.

The notion of compilation by source-to-source transformation has a rich his-
tory. Beginning with Guy Steele’s Rabbit compiler ([Ste78]), there is a long
line of research compilers based on this approach. (See the notes at the end of
this chapter for more details.) In homage to Rabbit, we will call our compiler
Tortoise.

We study compilation for the following reasons:

• We can review many of the language features presented earlier in this book
in a new light. By showing how programs can be transformed into low-level
machine code, we arrive at a more concrete understanding of these features.

• We present some simple ways to implement language features by translation.
These techniques can be useful in everyday programming, especially if your
programming language doesn’t support the features that you need.

• We will see how complex translations can be composed out of many simple
passes. Although in practice these passes might be merged, we will discuss
them separately for conceptual clarity.

• We will see that the inefficiencies that crop up in the compiler are a good
motivation for studying static semantics. These inefficiencies can be addressed
by a combination of two methods:

• Developing smarter translation techniques that exploit information known
at compile time.

• Restricting source languages to make them more amenable to static analysis
techniques.

For example, we’ll see (in Section 18.2.2) that dynamically typed languages im-
ply a run-time overhead that can be reduced by clever techniques or eliminated
by requiring the language to be statically typable.

We begin with an overview of the transformation-based architecture of Tor-
toise (Section 17.2). We then discuss the details of each transformation in turn
(Sections 17.3–17.12).
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17.2 Tortoise Architecture

17.2.1 Overview of Tortoise

The Tortoise compiler is organized into ten transformations that incrementally
massage a source language program into code resembling register machine code
(Figure 17.1). The input and output of each transformation are programs written
either in dialects of FLARE or in dialects of an FL-like intermediate language
named FIL that is defined later. The output of the compiler is a program in
FILreg , a dialect of FIL whose constructs can be viewed as instructions for a
low-level register machine. We review FLARE in this section and present the
dialects of FIL later as they are needed.

We will see that dialects of FL (including FLARE) can be powerful interme-
diate languages for compilation. Many low-level machine details find a surpris-
ingly convenient expression in FL-like languages. Some advantages of structuring
our compiler as a series of source-to-source transformations on dialects of FL are:

• All the intermediate languages are closely related to FL, a language whose
semantics we already understand well.

• When intermediate languages are closely related, compiler writers are more
likely to develop modular stages and experiment with their ordering.

• The result of every transformation stage is executable source code in a dialect
of FL. This facilitates reading and testing the transformation results using an
interpreter (or compiler) for the dialect. Because the dialects are so similar,
their interpreters are closely related. Indeed, modulo the verification of certain
syntactic constraints, a single interpreter can be used for most of the dialects.

Each compiler transformation expects its input program to satisfy certain pre-
conditions and produces output code that satisfies certain postconditions. These
conditions will be stated explicitly in the formal specification of each transforma-
tion. They will help us understand the purpose of each transformation, and why
the compiler is sound. A compiler is sound when it produces low-level code that
faithfully implements the formal semantics of the compiler’s source language. We
will not formally prove the soundness of any of the transformations because such
proofs can be very complex. Indeed, soundness proofs for some of these transfor-
mations have been the basis for Ph.D. dissertations! However, we will informally
argue that the transformations are sound.
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FLARE/V��
Desugaring��

Globalization��
Assignment Conversion��

FLARE��
Type/Effect Reconstruction��

FLARE��
Translation��

FIL��
Renaming��

CPS Conversion��
FILcps��

Closure Conversion��
Lifting��
FILlift��

Register Allocation��
FILreg

Figure 17.1 Organization of the Tortoise compiler. The initial transformations
translate the FLARE/V source program to a FLARE program. This is translated
into the FIL intermediate language and is then gradually transformed into a form that
resembles register machine code.
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Tortoise implements each transformation as a separate pass for clarity of
presentation and to allow for experimentation. Although we will apply the trans-
formations in a particular order in this chapter, other orders are possible. Our
descriptions of the transformations will explore some alternative implementations
and point out how different design choices affect the efficiency and semantics of
the resulting code. We generally opt for simplicity over efficiency in our presen-
tation.

17.2.2 The Compiler Source Language: FLARE/V

The source language of the Tortoise compiler is FLARE/V, a version of the
FLARE language presented in Chapter 13 extended with mutable variables (us-
ing the set! construct from the FLAVAR language presented in Section 8.4).
We include mutable variables in the source language because they are a standard
feature in many languages and we wish to show how they can be automatically
transformed into mutable cells (via the assignment conversion transformation in
Section 17.5).

FLARE/V is a stateful, call-by-value, statically scoped, function-oriented,
and statically typed language with type reconstruction that supports mutable
cells, mutable variables, pairs, and homogeneous immutable lists. For conve-
nience, the complete syntax of FLARE/V is presented in Figures 17.2 and 17.3.
This is the same as the presentation of FLARE in Figure 13.23 on page 814 ex-
cept that (1) FLARE/V includes mutable variables via the set! construct and
(2) the desugaring of a full-language program into a kernel program does not in-
troduce bindings for standard identifiers like the names of primitive operations.1

All primitive names (such as *, >, and cons) may still be used as free identi-
fiers in a FLARE/V program, where they denote global procedures performing
the associated primitive operations, but this is implemented by the globalization
transformation presented in Section 17.4 rather than via desugaring. As before,
(prim * E1 E2) may be written as (* E1 E2) in almost any context. We say
“almost any” because these names can be assigned and locally rebound like any
other names. For example, the program

(flare (x y)

(let ((- +))

(begin (set! / *) (- (/ x x) (/ y y)))))

calculates the sum of the squares of x and y.

1For simplicity, we reuse the program keywords flare and flarek for FLARE/V rather
than introducing new ones.
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Kernel Grammar
P ∈ Prog ::= (flarek (I ∗

formal) Ebody)

E ∈ Exp ::= L | I | (error Ymessage) | (if Etest Ethen Eelse) |
| (set! Ivar Eval) | (prim Oprimop E∗

arg)

| (abs (I ∗
formal) Ebody) | (Erator E∗

rand)

| (let ((Iname Edefn)
∗) Ebody) | (letrec ((Iname Edefn)

∗) Ebody)

L ∈ Lit ::= #u | B | N | (sym Y )

B ∈ BoolLit = {#t, #f} as in FL.

N ∈ IntLit = as in FL and FLARE.

Y ∈ SymLit = as in FL and FLARE.

O ∈ Primop ::= + | - | * | / | % ; arithmetic ops
| <= | < | = | != | > | >= | bool=? | sym=? ; relational ops
| not | and | or ; logical ops
| pair | fst | snd ; pair ops
| cons | car | cdr | null | null? ; list ops
| cell | ^ | := | cell=? ; mutable cell ops

Keyword = {abs, error, flarek, if, let, letrec, prim, set!, sym}
SugarKeyword = {begin, cond, def, flare, list, recur, scand, scor}}

I ∈ Ident = SymLit − ({Y |Y begins with @} ∪Keyword ∪ SugarKeyword)

Figure 17.2 Kernel grammar for the FLARE/V language.

Figure 17.4 presents a contrived but compact FLARE/V program that il-
lustrates many features of the language, such as numbers, booleans, lists, locally
defined recursive procedures, higher-order procedures, tail and nontail procedure
calls (see Section 17.9.1 for a discussion of tail versus nontail calls), and mutable
variables. We will use it as a running example throughout the rest of this chapter.

The revmap procedure takes a procedure f and a list elts of elements and
returns a new list that is the reversal of the list obtained by applying f to each
element of elts. The accumulation of the new list ans is performed by a local
iterative loop procedure that is defined using the recur sugar, which abbreviates
the declaration and invocation of a recursive procedure. The loop procedure per-
forms an iteration in a single state variable xs denoting the unprocessed elements
of elts. Although ans could easily be made a second argument to loop, here
it is defined externally to loop and updated via set! to illustrate the use of a
mutable variable.

The example program takes two integer arguments, a and b, and returns a
list of the two booleans ((7 · a) > b) and (a > b). For example, on the inputs 6
and 17, the program returns the list �true, false �.
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Syntactic Sugar

(@Oprimop En
i=1) �ds (prim Oprimop En

i=1)

(cond (else Edefault)) �ds Edefault

(cond (Etest1 Ethen1
) (Etesti Etheni

)n
i=2 (else Edefault))

�ds (if Etest1 Ethen1
(cond (Etesti Etheni

)n
i=2 (else Edefault)))

(scand) �ds #t

(scand Econjunct E∗
rest) �ds (if Econjunct (scand E∗

rest) #f)

(scor) �ds #f

(scor Edisjunct E∗
rest) �ds (if Edisjunct #t (scor E∗

rest))

(recur Iproc ((Ii Ei)
n
i=1) Ebody)

�ds (letrec ((Iproc (abs (I n
i=1) Ebody))) (Iproc En

i=1))

(begin) �ds #u

(begin E) �ds E
(begin E1 E∗

rest) �ds (let ((_ E1)) (begin E∗
rest)),

where _ is a special identifier that can never be referenced

(list) �ds (prim null)

(list E1 E∗
rest) �ds (prim cons E1 (list E∗

rest))

(def (IprocName I ∗
procFormal) EprocBody)

�ds (def IprocName (abs (I ∗
procFormal) EprocBody))

(flare (I ∗
pgmFormal) EpgmBody (def Inamei

Edefni
)n

i=1)

{Assume procedure defs already desugared to (def I E) by the previous rule.}
�ds (flarek (I ∗

pgmFormal)

{Compiler handles standard identifiers via globalization, not desugaring.}
(letrec ((Inamei

Edefni
)n

i=1) EpgmBody))

Figure 17.3 Syntactic sugar for the FLARE/V language.

(flare (a b)

(let ((revmap (abs (f elts)

(let ((ans (null)))

(recur loop ((xs elts))

(if (null? xs)

ans

(begin (set! ans (cons (f (car xs)) ans))

(loop (cdr xs)))))))))

(revmap (abs (x) (> x b)) (list a (* a 7)))))

Figure 17.4 revmap program.
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tf ∈ TransformFLARE/V = ExpFLARE/V → ExpFLARE/V

mapsubFLARE/V : ExpFLARE/V → TransformFLARE/V → ExpFLARE/V

mapsubFLARE/V [[L]] tf = L

mapsubFLARE/V [[I ]] tf = I

mapsubFLARE/V [[(error Ymsg)]] tf = (error Ymsg)

mapsubFLARE/V [[(if Etest Ethen Eelse)]] tf

= (if (tf Etest ) (tf Ethen) (tf Eelse))

mapsubFLARE/V [[(set! Ivar Eval)]] tf = (set! Ivar (tf Eval ))

mapsubFLARE/V [[(abs (I n
i=1) Ebody)]] tf = (abs (I n

i=1) (tf Ebody))

mapsubFLARE/V [[(Erator En
i=1)]] tf = ((tf Erator ) (tf Ei)

n
i=1)

mapsubFLARE/V [[(prim O En
i=1)]] tf = (prim O (tf Ei)

n
i=1)

mapsubFLARE/V [[(let ((Ii Ei)
n
i=1) Ebody)]] tf

= (let ((Ii (tf Ei))
n
i=1) (tf Ebody))

mapsubFLARE/V [[(letrec ((Ii Ei)
n
i=1) Ebody)]] tf

= (letrec ((Ii (tf Ei))
n
i=1) (tf Ebody))

Figure 17.5 The mapsubFLARE/V function simplifies the specification of purely struc-
tural transformations.

17.2.3 Purely Structural Transformations

Most of the FLARE/V and FIL program transformations that we shall study can
be described by functions that traverse the abstract syntax tree of the program
and transform some of the tree nodes but leave most of the nodes unchanged.
We will say that a transformation is purely structural for a given kind of tree
node if the result of applying it to that node results in the same kind of node, in
which each child node is a transformed version of the corresponding child of the
original node.

We formalize this notion for FLARE/V via the mapsubFLARE/V function de-
fined in Figure 17.5. This function returns a copy of the given FLARE expression
whose immediate subexpressions have been transformed by a given transforma-
tion tf . A FLARE transformation is purely structural for a given kind of node
if its action on that node can be written as an application of mapsubFLARE/V .

As an example of mapsubFLARE/V , consider a transformation T that rewrites
every occurrence of (if (prim not E1) E2 E3) to (if E1 E3 E2). The fact
that T is purely structural on all but if nodes is expressed via a single invocation
of mapsubFLARE/V in the following definition:
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subexpsFLARE/V : ExpFLARE/V → Exp∗
FLARE/V

subexpsFLARE/V [[L]] = [ ]

subexpsFLARE/V [[I ]] = [ ]

subexpsFLARE/V [[(error Ymsg)]] = [ ]

subexpsFLARE/V [[(if Etest Ethen Eelse)]] = [Etest ,Ethen ,Eelse ]

subexpsFLARE/V [[(set! Ivar Eval)]] = [Eval ]

subexpsFLARE/V [[(abs (I n
i=1) Ebody)]] = [Ebody ]

subexpsFLARE/V [[(Erator En
i=1)]] = [Erator ,E1 , . . . ,En ]

subexpsFLARE/V [[(prim O En
i=1)]] = [E1 , . . . ,En ]

subexpsFLARE/V [[(let ((Ii Ei)
n
i=1) Ebody)]] = [E1 , . . . ,En ,Ebody ]

subexpsFLARE/V [[(letrec ((Ii Ei)
n
i=1) Ebody)]] = [E1 , . . . ,En ,Ebody ]

Figure 17.6 The subexpsFLARE/V function returns a sequence of all immediate subex-
pressions of a given FLARE/V expression.

T : ExpFLARE/V → ExpFLARE/V

T [[(if (prim not E1) E2 E3)]] = (if (T [[E1 ]]) (T [[E3 ]]) (T [[E2 ]]))

T [[E ]] = mapsubFLARE/V [[E ]] T , for all other expressions E

When manipulating expressions, it is sometimes helpful to extract from an
expression a collection of its immediate subexpressions. Figure 17.6 defines a
subexpsFLARE/V function that returns a sequence of all child expressions of a
given FLARE/V expression.

17.3 Transformation 1: Desugaring

The first pass of the Tortoise compiler performs desugaring, converting the con-
venient syntax of FLARE/V into a simpler kernel subset of the language. The
advantage of having the first transformation desugar the program is that sub-
sequent analyses and transforms are simpler to write and prove correct because
there are fewer syntactic forms to consider. Additionally, subsequent transforma-
tions also do not require modification if the language is extended by introducing
new syntactic shorthands.

We will provide preconditions and postconditions for each of the Tortoise
transformations. In the case of desugaring, these are:
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Preconditions: The input to the desugaring transformation is a well-
formed full FLARE/V program.

Postconditions: The output of the desugaring transformation is a well-
formed kernel FLARE/V program.

We will say that a program is well formed in a language when it satisfies the
grammar of the language — i.e., it does not contain any syntactic errors.

There is an additional postcondition that we expect for desugaring (and all
other transformations we study): The output program should have the same be-
havior as the input program. This is a fundamental property of each compilation
stage that we will not explicitly state in every postcondition. One consequence
of this property is that if the input program never encounters a dynamic type
error, then neither does the output program. For dialects of FLARE, we can use
a notion of well-typedness to conservatively approximate which programs never
encounter a dynamic type error. (Although we have not formally described a
type system for full FLARE/V, it is possible to define one by extending the
type system of kernel FLARE with type rules for set! and all the syntactic
sugar constructs.) We expect that Tortoise stages transforming programs in
these dialects should preserve well-typedness.

The desugaring process for FLARE/V is similar to the rewriting approach
to desugaring summarized in Figures 6.6 and 6.7 on pages 232 and 233, so we
will not repeat the details of the transformation process here. Figure 17.7 shows
the result of desugaring the revmap example introduced in Figure 17.4. The
(recur loop . . .) desugars into a letrec, the begin desugars into a let that
binds the special variable _ (which we assume is never referenced), and the list

desugars into a null-terminated nested sequence of conses.

17.4 Transformation 2: Globalization

In general, a program unit being compiled may contain free identifiers that refer-
ence externally defined values in standard libraries or other program units. Such
free identifiers must somehow be resolved via a name resolution process be-
fore they are referenced during program execution. Depending on the nature of
the free identifiers, name resolution can take place during compilation, during a
linking phase that takes place after compilation but before execution (see Sec-
tion 15.1), or during the execution of the program unit. In cases where name
resolution takes place after compilation, the compiler may still require some in-
formation about the free identifiers, such as their types, even though their values
may be unknown.
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(flarek (a b)

(let ((revmap

(abs (f elts)

(let ((ans (null)))

(letrec ((loop

(abs (xs)

(if (null? xs)

ans

(let ((_ (set! ans

(cons (f (car xs)) ans))))

(loop (cdr xs)))))))

(loop elts))))))

(revmap (abs (x) (> x b))

(prim cons a (prim cons (* a 7) (prim null))))))

Figure 17.7 revmap program after desugaring.

In the Tortoise compiler, we consider a very simple form of compile-time
linking that resolves free references to standard identifiers like +, <, and cons.
We will call this linking stage globalization because it determines the mean-
ings of global variables defined by the language. Globalization has the following
specification:

Preconditions: The input to the globalization transformation is a well-
formed kernel FLARE/V program.

Postconditions: The output of the globalization transformation is a well-
formed kernel FLARE/V program that is closed — i.e., it contains no
free identifiers.

Removing free identifiers from a program at an early stage simplifies later trans-
formations, which do not need to treat them as a special case. If the input
program contains unresolvable free identifiers, the globalization stage should fail.

The Wrapping Strategy

A simple approach to globalization in FLARE/V is to wrap the body of the
program in a let that associates each standard identifier used in the program
with an appropriate abstraction (see the function GW in Figure 17.8, which
does globalization by wrapping). This wrapping strategy is a variant of the
approach we have used thus far to handle standard identifiers when desugaring
programs in the dialects of FL we have studied. The difference is that the
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GW : ProgFLARE/V ⇀ ProgFLARE/V

GW[[(flarek (I n
i=1) Ebody)]] = (flarek (I n

i=1) (wrap[[Ebody ]] (FrIds[[Ebody ]])))

wrap : ExpFLARE/V → P(IdentFLARE/V ) ⇀ ExpFLARE/V

wrap[[E ]] {} = E

wrap[[E ]] {I1 , . . . , In} = (let ((Ii ABS[[Ii ]])
n
i=1) E), where n ≥ 1.

ABS : IdentFLARE/V ⇀ ExpFLARE/V

ABS[[O ]] = (abs (I n
i=1) (prim O I n

i=1))

where I n
i=1 are fresh and TEprim(O) = (-> (Tn

i=1) Tres)

or TEprim(O) = (generic (τm
j=1) (-> (Tn

i=1) Tres))

ABS[[I ]] = undefined, where I 
∈ PrimopFLARE/V

Figure 17.8 The wrapping approach to globalization.

wrapping strategy used here includes bindings for only the standard identifiers
actually used in the program rather than all those that are supported by the
language. For example, the wrapping strategy transforms the program

(flarek (x y) (+ (* x x) (* y y)))

into

(flarek (x y)

(let ((+ (abs (v.0 v.1) (prim + v.0 v.1)))

(* (abs (v.2 v.3) (prim * v.2 v.3))))

(+ (* x x) (* y y))))

We assume that identifiers ending in a period followed by a number (such as v.0
and v.1) are names that are freshly generated during the compilation process.

Constructing an abstraction for a primitive operator (viaABS) requires know-
ing the number of arguments that it takes. In FLARE/V, this can be determined
from the type of the primitive operator name in the primitive type environment,
TE prim . ABS is a partial function because it is undefined for identifiers that are
not the names of primitive operators. wrap is also a partial function because it is
undefined if any invocation of ABS in its definition is undefined. Similarly, GW
is undefined if the invocation of wrap in its definition is undefined; this is how
the failure of the globalization transformation is modeled in the case where a free
identifier in the program is not the name of a primitive operator. The wrapping
strategy can be extended to handle standard identifiers that are not the names
of primitive operators (see Exercise 17.2).
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The Inlining Strategy

A drawback of the wrapping strategy is that global procedures are invoked via
the generic procedure-calling mechanism rather than the mechanism for invoking
primitive operators (prim). We will see in later stages of the compiler that the
latter is handled far more efficiently than the former. This suggests an alterna-
tive approach in which calls to global procedures are transformed into primitive
applications. Replacing a procedure call by an instantiated version of its body is
known as inlining, so we shall call this the inlining strategy for globalization.
Using the inlining strategy, the sum-of-squares program is transformed into:

(flarek (x y) (prim + (prim * x x) (prim * y y)))

There are three situations that need to be handled carefully in the inlining
strategy for globalization:

1. A reference to a global procedure can be converted to an instance of prim

only if it occurs in the rator position of a procedure application. References
in other positions must be handled either by wrapping or by converting them
to abstractions. Consider the expression

(cons + (cons * (null)))

which makes a list of two procedures. The occurrences of cons and null can
be transformed into prims, but the + and * cannot be. They can, however, be
turned into abstractions containing prims:

(prim cons (abs (v.0 v.1) (prim + v.0 v.1))

(prim cons (abs (v.2 v.3) (prim * v.2 v.3))

(prim null)))

Alternatively, we can “lift” the abstractions for + and * to the top of the
enclosing program and name them, as in the wrapping approach.

2. In languages like FLARE/V, where local identifiers may have the same name
as global standard identifiers for primitive operators, care must be taken to
distinguish references to global and local identifiers.2 For example, in the
program (flare (x) (let ((+ *)) (- (+ 2 x) 3))), the invocation of +
in (+ 2 x) cannot be inlined, but the invocation of - can be:

(flare (x)

(let ((+ (abs (v.0 v.1) (prim * v.0 v.1))))

(prim - (+ 2 x) 3)))

2Many programming languages avoid this and related problems by treating primitive operator
names as reserved keywords that may not be used as identifiers in declarations or assignments.
This allows compiler writers to inline all primitives.
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3. In FLARE/V, the values associated with global primitive identifier names
can be modified by set!. For example, consider

(flarek (x y)

(* (+ x (let ((_ (set! + -))) y))

(+ x y)))

in which the first occurrence of + denotes addition and the second occurrence
denotes subtraction. It would clearly be incorrect to replace the second occur-
rence by an inlined addition primitive. Correctly inlining addition for the first
occurrence and subtraction for the second occurrence is possible in this case,
but can be justified only by a sophisticated effect analysis. A simple conser-
vative way to address this problem in the inlining strategy is to use wrapping
rather than inlining for any global name that is mutated somewhere in the
program. For the above example, this yields:

(flarek (x y)

(let ((+ (abs (v.2 v.3) (prim + v.2 v.3))))

(prim * (+ x (let ((_ (set! + (abs (v.0 v.1)

(prim - v.0 v.1)))))

y))

(+ x y))))

All of the above issues are handled by the definition of the inlining approach
to globalization in Figure 17.9. The GIprog function uses MutIdsprog (defined in
Figure 17.10) to determine the mutated free identifiers of a program — i.e., the
free identifiers that are targets of assignments — and wraps the program body
in abstractions for these. All other free identifiers should name primitives that
may be inlined in call positions or expanded to abstractions (via ABS from Fig-
ure 17.8) in other positions. The identifier-set argument to GIexp keeps track
of the unmutated free identifiers in the program that have not been locally re-
declared. Again, the undefined cases of partial functions are used to model the
situations in which globalization fails.

Figure 17.11 shows our revmap example after the globalization stage using
the inlining strategy. In this case, all references to free identifiers have been con-
verted to primitive applications. In this and subsequent examples, we “resugar”
primitive applications (prim O . . . ) to (@O . . . ) to make the code more con-
cise.

Exercise 17.1 What is the result of globalizing the following program using (1) the
wrapping strategy and (2) the inlining strategy?

(flare (* /) (+ (let ((+ *)) (- + 1))

(let ((* -)) (* / 2))))
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IS ∈ IdSet = P(IdentFLARE/V )

GIprog : ProgFLARE/V ⇀ ProgFLARE/V

GIprog [[P ]] = (flarek (I n
i=1) (wrap[[GIexp [[Ebody ]] ISunmuts ]] ISmuts))

where P = (flarek (I n
i=1) Ebody),

ISmuts = MutIdsprog [[P ]], ISunmuts = (FrIds[[P ]]) − ISmuts ,
wrap is defined in Figure 17.8, and MutIdsprog is defined in Figure 17.10

GIexp : ExpFLARE/V → IdSet ⇀ ExpFLARE/V

GIexp [[(Irator En
i=1)]] IS

= if Irator ∈ IS
then if Irator ∈ PrimopFLARE/V then (prim Irator (GIexp [[Ei ]] IS )n

i=1)

else undefined end
else (Irator (GIexp [[Ei ]] IS )n

i=1) end

GIexp [[I ]] IS = if I ∈ IS then ABS[[I ]] else I end
where ABS is defined in Figure 17.8

GIexp [[(abs (I n
i=1) Ebody)]] IS = (abs (I n

i=1) (GIexp [[Ebody ]] (IS − ∪n
i=1 {Ii})))

GIexp [[(let ((Ii Ei)
n
i=1) Ebody)]] IS

= (let ((Ii (GIexp [[Ei ]] IS ))n
i=1) (GIexp [[Ebody ]] (IS − ∪n

i=1 –Ii˝)))

GIexp [[(letrec ((Ii Ei)
n
i=1) Ebody)]] IS

= (letrec ((Ii
(
GIexp [[Ei ]] IS ′

)
)n

i=1)
(
GIexp [[Ebody ]] IS ′

)
)

where IS ′ = IS − ∪n
i=1{Ii}

GIexp [[E ]] IS = mapsubFLARE/V [[E ]] (λEsub . GIexp [[Esub ]] IS ), otherwise.

Figure 17.9 The inlining approach to globalization.

Exercise 17.2 The globalization strategies described in this section assume that all
standard identifiers name primitive procedures, but a standard library typically contains
other kinds of entities. Describe how to extend globalization (both the wrapping and
inlining strategies) to handle standard identifiers that name (1) literal values (e.g., true
standing for #t) and (2) nonprimitive procedures (e.g., length and map from the FL
standard library). Keep in mind that the nonprimitive procedures might be recursive or
even mutually recursive.

17.5 Transformation 3: Assignment Conversion

Assignment conversion removes all mutable variables from a program by
converting them to mutable cells. We will say that the resulting program is
assignment-free because it contains no occurrences of the set! construct.
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MutIdsprog : ProgFLARE/V → P(IdentFLARE/V )

MutIdsprog [[(flarek (I n
i=1) Ebody)]] = MutIds[[Ebody ]] − ∪n

i=1{Ii}

MutIds : ExpFLARE/V → P(IdentFLARE/V )

MutIds[[(set! I E)]] = {I } ∪ MutIds[[E ]]

MutIds[[(abs (I n
i=1) Ebody)]] = MutIds[[Ebody ]] − ∪n

i=1{Ii}
MutIds[[(let ((Ii Ei)

n
i=1) Ebody)]]

= (∪n
i=1MutIds[[Ei ]]) ∪ (MutIds[[Ebody ]]− ∪n

i=1 {Ii})
MutIds[[(letrec((Ii Ei)

n
i=1) Ebody)]]

= ((∪n
i=1MutIds[[Ei ]]) ∪MutIds[[Ebody ]]) − ∪n

i=1{Ii}
MutIds[[E ]] = ∪E ′∈subexps[[E ]] MutIds[[E ′]], otherwise,

(Since literals, variable references, and error expressions have
no subexpressions, they have no mutated free identifiers.)

Figure 17.10 Mutated free identifiers of FLARE/V expressions and programs.

Assignment conversion makes all mutable storage explicit and simplifies later
passes by making all variable bindings immutable. After assignment conversion,
all variables denote values rather than implicit cells containing values. A vari-
able may be bound to an explicit cell value whose content varies with time, but
the explicit cell value bound to the variable cannot change. As we will see later
in the closure conversion stage (Section 17.10), assignment conversion is impor-
tant because it allows environments to be treated as immutable data structures
that can be freely shared and copied without concerns about side effects. In our
compiler, assignment conversion precedes type and effect reconstruction because
reconstruction is simpler in a language without mutable variables (FLARE) than
one with them (FLARE/V). Additionally, in a language without mutable vari-
ables, all variable references are guaranteed to be pure, which enhances let-style
polymorphism.

A straightforward approach to assignment conversion is to make an explicit
cell for every variable in a given program. For example, the factorial program

(flarek (x)

(let ((ans 1))

(letrec ((loop (abs (n)

(if (@= n 0)

ans

(let ((_ (set! ans (@* n ans))))

(loop (@- n 1)))))))

(loop x))))
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(flare (a b)

(let ((revmap

(abs (f elts)

(let ((ans (@null)))

(letrec

((loop (abs (xs)

(if (@null? xs)

ans

(let ((_ (set! ans

(@cons (f (@car xs)) ans))))

(loop (@cdr xs)))))))

(loop elts))))))

(revmap (abs (x) (@> x b)) (@cons a (@cons (@* a 7) (@null))))))

Figure 17.11 revmap example after globalization using inlining.

can be assignment-converted to

(flarek (x)

(let ((x (@cell x)))

(let ((ans (@cell 1)))

(letrec ((loop

(@cell (abs (n)

(let ((n (@cell n)))

(if (@= (@^ n) 0)

(@^ ans)

(let ((_ (@:= ans (@* (@^ n)

(@^ ans)))))

((@^ loop) (@- (@^ n) 1)))))))))

((@^ loop) (@^ x))))))

In the converted program, each of the variables in the original program (x, ans,
loop, n) is bound to an explicit cell. Each variable reference I in the original
program is converted to a cell reference (@^ I), and each variable assignment
(set! I E) in the original program is converted to a cell assignment of the
form (@:= I E ′), where E ′ is the converted E .

The code generated by the naive approach to assignment conversion can con-
tain many unnecessary cell allocations, references, and assignments. A cleverer
strategy is to make explicit cells only for those variables that are mutated in the
program. Determining exactly which variables are mutated when a program ex-
ecutes is undecidable. We employ a simple conservative syntactic approximation
that defines a variable to be mutated if it is assigned within its scope. In the
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factorial example, the alternative strategy yields the following program, in which
only the ans variable is converted to a cell:

(flarek (x)

(let ((ans (@cell 1)))

(letrec ((loop (abs (n)

(if (@= n 0)

(@^ ans)

(let ((_ (@:= ans (@* n (@^ ans)))))

(loop (@- n 1)))))))

(loop x))))

The improved approach to assignment conversion is formalized in Figure 17.12.
The ACprog function wraps the transformed body of a FLARE/V program in
a let that binds each mutated program parameter (that is, each mutated free
identifier in the body) to a cell. The free identifiers syntactically assigned within
an expression are determined by the MutIds function defined in Figure 17.10.

Expressions are transformed by the ACexp function, whose second argument is
the set of in-scope identifiers naming variables that have been transformed to cells.
Processing of variable references transforms such identifiers to cell references;
variable assignments are transformed to cell assignments.

The only other nontrivial cases for ACexp are the binding constructs abs,
let, and letrec. All of these cases use the partition function to partition the
identifiers declared by these constructs into two sets: the mutated identifiers
ISM that are assigned somewhere in the given expressions, and the unmutated
identifiers ISU that are not assigned. In each of these cases, any subexpression
in the scope of the declared identifiers is processed by ACexp with an identifier
set that includes ISM but excludes ISU . The exclusion is necessary to prevent
the conversion of local unmutated variables that have the same name as external
mutated variables. For example,

(flarek (x) (let ((_ (set! x (@* x 2))))

((abs (x) x) x)))

is converted to

(flarek (x)

(let ((x (@cell x)))

(let ((_ (@:= x (@* (@^ x) 2))))

((abs (x) x) (@^ x)))))

Even though the program parameter x is converted to a cell, the x in the abstrac-
tion body is not.
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IS ∈ IdSet = P(IdentFLARE/V )

ACprog : ProgFLARE/V → ProgFLARE

Preconditions: The input to ACprog is a well-formed, closed, kernel FLARE/V
program.

Postconditions: The output of ACprog is a well-formed, closed, assignment-free,
kernel FLARE program.

ACprog [[(flarek (I n
i=1) Ebody)]]

= (flarek (I n
i=1) (wrap-cells ISmuts (ACexp [[Ebody ]] ISmuts)))

where ISmuts = MutIds[[Ebody ]] and MutIds is defined in Figure 17.10.

ACexp : ExpFLARE/V → IdSet → ExpFLARE

ACexp [[I ]] IS = if I ∈ IS then (@^ I ) else I end

ACexp [[(set! I E)]] IS = (@:= I (ACexp [[E ]] IS ))

ACexp [[(abs (I n
i=1) Ebody)]] IS

= let 〈ISM , ISU 〉 be (partition {I1 , . . . , In} [Ebody ])
in (abs (I n

i=1) (wrap-cells ISM (ACexp [[Ebody ]] ((IS ∪ ISM )− ISU ))))

ACexp [[(let ((Ii Ei)
n
i=1) Ebody)]] IS

= let 〈ISM , ISU 〉 be (partition {I1 , . . . , In} [Ebody ])
in (let ((Ii (maybe-cell Ii ISM (ACexp [[Ei ]] IS )))n

i=1)

(ACexp [[Ebody ]] ((IS ∪ ISM )− ISU )))

ACexp [[(letrec ((Ii Ei)
n
i=1) Ebody)]] IS

= let 〈ISM , ISU 〉 be (partition {I1 , . . . , In} [E1 , . . . ,En ,Ebody ])
in (letrec ((Ii

(
maybe-cell Ii ISM

(
ACexp [[Ei ]] IS ′

))
)n

i=1)(
ACexp [[Ebody ]] IS ′

)
),

where IS ′ = ((IS ∪ ISM )− ISU )

ACexp [[E ]] IS = mapsubFLARE/V [[E ]] (λEsub .ACexp [[Esub ]] IS ), otherwise.

wrap-cells : IdSet → ExpFLARE → ExpFLARE

wrap-cells {} E = E

wrap-cells {I1 . . . In} E = (let ((Ii (@cell Ii))
n
i=1) E), where n ≥ 1.

partition : IdSet → ExpFLARE/V * → (IdSet× IdSet)

partition IS [E1 . . .En ] = let ISM be ∪k
i=1(MutIds[[Ei ]]) in 〈IS ∩ ISM , IS − ISM 〉

maybe-cell : Ident → IdSet → ExpFLARE/V

maybe-cell I IS E = if I ∈ IS then (@cell E) else E end

Figure 17.12 An assignment-conversion transformation that converts only those vari-
ables that are syntactically assigned in the program.
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Abstractions are processed like programs in that the transformed abstraction
body is wrapped in a let that binds each mutated identifier to a cell. This pre-
serves the call-by-value semantics of FLARE, since an assignment to the formal
parameter of an abstraction is transformed to a cell assignment that modifies
the content of a cell that is allocated locally within the abstraction. The trans-
formation can be modified to instead implement a call-by-reference semantics
(see page 436), in which a formal parameter assignment is transformed to an
assignment of a cell passed into the abstraction from the point of application
(Exercise 17.5).

In processing let and letrec, maybe-cell is used to wrap the binding ex-
pressions for mutated identifiers in applications of the cell primitive. These
two forms are processed similarly except for scoping differences in their declared
names.

Figure 17.13 shows our revmap example after the assignment-conversion stage.
The only variable assigned in the input program is ans, and this is converted to
a cell.

Intuitively, consistently converting a mutated variable along with its refer-
ences and assignments into explicit cell operations should not change the observ-
able behavior of a program. So we expect that assignment conversion should
preserve both the type safety and the meaning of a program. However, formally
proving such intuitions can be challenging. See [WS97] for a proof that a version
of assignment conversion for Scheme is a meaning-preserving transformation.

Exercise 17.3 Show the result of assignment-converting the following programs using
ACprog :

(flarek (a b c)

(let ((_ (set! a (@+ a c))))

(abs (a d)

(let ((_ (set! c (@* a b))))

(set! d (@+ c d))))))

(flarek (x)

(letrec ((f (abs (y) (@pair y (g (@- y 1)))))

(g (abs (z)

(let ((_ (set! g (abs (w) w))))

(f z)))))

(f x)))

Exercise 17.4 Can assignment conversion be performed before globalization? Explain.

Exercise 17.5 Suppose that FLARE/V had a call-by-reference semantics rather than
a call-by-value semantics for mutable variables (see Section 8.4). Modify the definition
of assignment conversion so that it implements call-by-reference semantics. (Compare to
Exercise 8.22 on page 439.)
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(flare (a b)

(let ((revmap

(abs (f elts)

(let ((ans (@cell (@null))))

(letrec

((loop (abs (xs)

(if (@null? xs)

(@^ ans)

(let ((_ (@:= ans (@cons (f (@car xs))

(@^ ans)))))

(loop (@cdr xs)))))))

(loop elts))))))

(revmap (abs (x) (@> x b)) (@cons a (@cons (@* a 7) (@null))))))

Figure 17.13 revmap program after assignment conversion.

Exercise 17.6 A straightforward implementation of the ACprog and ACexp functions in
Figure 17.12 is inefficient because (1) it traverses the AST of every declaration node at
least twice: once to determine the free mutated identifiers, and once to transform the
node; and (2) it may recalculate the free mutated identifiers for the same expression many
times. Describe how to modify the assignment-conversion algorithm so that it works in
a single traversal of the program AST and calculates the free mutated identifiers only
once at every node. Note: You may need to modify the information stored in the nodes
of a FLARE/V AST.

17.6 Transformation 4: Type/Effect Reconstruction

The fourth stage of the Tortoise compiler is type and effect reconstruction.
Only well-typed FLARE programs are allowed to proceed through the rest of
the compiler. The details of how types and effects are reconstructed were de-
scribed earlier, in Section 16.2.3. Note that assignment conversion must precede
this stage because type and effect reconstruction was defined for the FLARE
language, which does not include set!.

Preconditions: The input to type/effect reconstruction is a well-formed,
closed kernel FLARE program that is assignment-free.

Postconditions: The output of type/effect reconstruction is a valid, closed
kernel FLARE program that is assignment-free. We will use the term
valid to describe a program or expression that is well formed and is
guaranteed not to encounter a dynamic type error.
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17.6.1 Propagating Type and Effect Information

Although neither FLARE nor FIL (the intermediate language to be used from
the next compilation stage on) has explicit types or effects, this does not mean
that the type and effect information generated by the FLARE type/effect re-
construction phase is thrown away. This information can be passed through the
compiler stages via a separate channel, where it is appropriately transformed
by each pass. In an actual implementation, this information might be stored in
abstract syntax tree nodes for FLARE and FIL expressions, in symbol tables
mapping variable names to their types, or in explicit type/effect derivation trees.
We assume that this type and effect information is available for later stages, where
it can be used to guide the compilation process. Similarly, the results from other
static analyses, such as flow information [NNH98, DWM+01], could be computed
at this stage and passed along to other compiler stages.

An alternative approach used in many modern research compilers is to use
so-called typed intermediate languages (TILs) that carry explicit type infor-
mation (possibly including effect, flow, and other analysis information) through
all stages of the compiler. In these systems, program transformations effectively
transform type derivations of programs. The fact that each program manipu-
lated by a TIL-based compiler is well typed has several advantages. The compiler
can avoid generating code to check for run-time type errors, because these are
provably impossible. The explicit type information carried by a TIL can be in-
spected to guide compilation (e.g., determining clever representations for certain
types) and to implement run-time operations (such as tag-free garbage collec-
tion and checking safety properties of dynamically linked code). It also serves as
an important tool for debugging a compiler implementation: if the output of a
transformation doesn’t type-check, the transformation must have a bug.

The reason that we do not use TILs in our presentation is to keep our com-
piler simple. TILs typically require a sophisticated type system with universal
and existential types. Specifying each compiler stage becomes more complicated
because it transforms not only expressions but their types. The explicit type
information is often larger than the code it describes, which makes it impracti-
cal to show the result of compilation of even relatively simple expressions. See
[MWCG99] for a presentation of using TILs to translate a high-level language all
the way down into a typed assembly language.

17.6.2 Effect-based Code Optimization

The effect information reconstructed for a FLARE program is important for
enabling many standard code optimizations performed by a compiler. We now
discuss some of these in the context of the Tortoise compiler.
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Many program transformations require knowledge about expression interfer-
ence (see Section 8.3.6). In our system, two expressions interfere if they both
write to the same region or if one has a read effect on a region the other has
an init or write effect on. A pure expression does not interfere with any other
expression because it does not depend on the store in any way. For example, if
two expressions interfere, it is unsafe to reorder them relative to each other, since
this could change the order of operations on the store locations manipulated by
both expressions. But if two expressions do not interfere, then it may be possible
to reorder them, execute them in parallel, or perform other improvements.

As a simple example of how effects can enable code optimizations, we demon-
strate how the following FLARE abstraction can be improved if certain effect
information is known.

(abs (n)

(letrec ((loop (abs (i)

(if (@= i 0)

(@^ x)

(begin (h (f i) (g i))

(@:= x (k (g (f i))))

(@:= x (h (g i) (k n)))

(loop (@- i 1)))))))

(loop n)))

Assume that this abstraction appears in a scope where x is a cell in region rx

and f, g, h, and k are procedures with the following latent effects:

Procedure Latent Effect
f (read rx)

g (maxeff (read ry) (write ry))

h (maxeff (read rz) (write rz))

k pure

Since the latent effects of f and g do not overlap, (f i) and (g i) do not
interfere, and may be executed in parallel. This means that in a computer
with multiple processing units, the expressions can be executed at the same time
on different processing units. This is an improvement because it allows (f i)

and (g i) to be executed in the maximum of the execution times for the two
expressions rather than the sum of their times.3 If FLARE is extended with a
letpar binding construct whose binding definition expressions are executed in
parallel, then the begin expression in our example can be transformed to:

3In practice, there is often an additional overhead associated with parallel execution; the
individual execution times must be big enough to justify this overhead.
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(letpar ((a (f i)) (b (g i)))

(begin (h a b)

(@:= x (k (g (f i))))

(@:= x (h (g i) (k n)))

(loop (@- i 1))))

Extending FLARE with mutable arrays, each of which has an associated region,
would further expand opportunities for parallelism. For example, given two arrays
in distinct regions, loops to sum their elements could be executed in parallel.

If an expression occurs more than once and it does not interfere with itself or
any intervening expressions, then the result of the first occurrence can be named
and the name can be used for the subsequent occurrences. This is known as
common subexpression elimination. For example, the only effect of (f i)

is (read rx), so it does not interfere with the invocations of f, g, and h (none of
which has a (write rx) effect) that appear before the second occurrence. Since
the first occurrence of (f i) already has the name a, the second occurrence of
(f i) can be replaced by a:

(letpar ((a (f i)) (b (g i)))

(begin (h a b)

(@:= x (k (g a))) {(f i) replaced by a}
(@:= x (h (g i) (k n)))

(loop (@- i 1))))

Although (g i) also appears twice, its second occurrence cannot be eliminated
because it interferes with the first occurrence as well as with (g a). Because g

both reads and writes region ry, the second (g i) may have a different value
than the first one.

When an expression does not contribute to a program in its value or its
effect, it may be removed via a process known as dead code elimination. For
example, the second assignment expression, (@:= x (h (g i) (k n))), does not
read rx before writing it, so the first assignment to x, in (@:= x (k (g a))), is
unnecessary. This leaves (k (g a)), which cannot be entirely eliminated because
(g a) writes to region ry, which is read later by (g i). But the invocation of k
can be eliminated because it is pure and its result is not used:

(letpar ((a (f i)) (b (g i)))

(begin (h a b)

(g a) {assignment to x and call to k eliminated}
(@:= x (h (g i) (k n)))

(loop (@- i 1))))
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It might seem unlikely that a programmer would ever write dead code, but it
occurs in practice for a variety of reasons. For example, the assumptions in place
when the code is originally written may no longer hold when the code is later
modified. In our example, perhaps g and/or h initially had a latent (read rx)

effect justifying the first assignment to x, but the procedures were later changed to
remove this effect, and the programmer neglected to remove the first assignment
to x. Perhaps the dead code was not written by a human but was created by an
automatic program generator or was the result of transforming another program.
Generators and transformers can be simpler to build when they are allowed to
produce code that contains inefficiencies (such as common subexpressions and
dead code) that are cleaned up by later optimization phases.

When an expression in the body of a procedure or loop is guaranteed to have
the same value for every invocation of the procedure or loop, it may be lifted out
of the body via a transformation called code hoisting. In our example, since
k is a pure procedure and n is an immutable variable defined outside the loop

procedure, the invocation (k n) in the body of loop always has the same value.
We can hoist it outside the definition of loop so that it is calculated only once
rather than for every invocation of loop:

(abs (n)

(let ((c (k n))) {(k n) has been hoisted outside loop}
(letrec ((loop (abs (i)

(if (@= i 0)

(@^ x)

(letpar ((a (f i)) (b (g i)))

(begin (h a b)

(g a)

(@:= x (h (g i) c)) {c replaces (k n)}
(loop (@- i 1))))))))

(loop n))))

Note that if the k in (k n) were replaced by f or g, the expression could not
be hoisted. The loop body writes to regions (rx and ry) that are read by these
procedures, so (f n) and (g n) are not guaranteed to be loop-invariant.

In each of the optimizations we have mentioned, effect information is critical
for justifying the optimization. Without any effect information, we would need
to conservatively assume that all invocations of f, g, h, and k are impure and
interfere with each other and with the assignments to x. With these conservative
assumptions, none of the optimizations we performed on our example would be
permissible!
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17.7 Transformation 5: Translation

In this transformation, a kernel FLARE program is translated into the FIL
intermediate language. All subsequent transformations are performed on FIL
programs. We first present the FIL language and then describe how to transform
FLARE to FIL.

17.7.1 The Compiler Intermediate Language: FIL

The intermediate language of the main stages of our transformation-based com-
piler uses a language that we call FIL, for Functional Intermediate Language.
Like FLARE, FIL is a stateful, call-by-value, statically scoped, function-oriented
language. However, FIL is simpler than FLARE in two important ways:

1. FIL supports fewer features than FLARE. It does not have a recursion con-
struct (letrec) or an assignment construct (set!), and it represents both
cells and pairs with a single form of mutable product. So specifying FIL
transformations requires fewer cases than FLARE transformations.

2. Unlike FLARE, FIL does not have a formal type system and does not sup-
port type reconstruction. Although all of the remaining transformations can
be expressed in a typed framework, the type systems and transformations
are rather complex to describe. Specifying these transformations in FIL is
much simpler. However, we will not completely disregard type and effect in-
formation. As discussed later (page 1035), we will assume that certain type
and effect information is preserved by FIL programs, but will not formally
describe how this is accomplished.

The Syntax of FIL

The syntax of FIL is specified in Figure 17.14. FIL is similar to many of the
stateful variants of FL that we have studied. Some notable features of FIL are:

• As in FLARE, multiargument abstractions and applications are hardwired into
the kernel rather than being treated as syntactic sugar, and the abstraction
keyword is abs. Unlike in FLARE, FIL applications have an explicit app

keyword.

• As in FLARE, multibinding let expressions are considered kernel expressions
rather than sugar for applications of explicit abstractions.
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Kernel Grammar
P ∈ ProgFIL ::= (fil (I ∗

formal) Ebody)

E ∈ ExpFIL ::= L | I | (error Ymessage)

| (if Etest Ethen Eelse) | (prim Oprimop E∗
arg)

| (abs (I ∗
formal) Ebody) | (app Erator E∗

rand)

| (let ((Iname Edefn)
∗) Ebody)

L ∈ LitFIL ::= #u | B | N | (sym Y )

B ∈ BoolLit = {#t, #f} as in FLARE/V.

N ∈ IntLit = as in FLARE/V.

J ∈ PosLit = {1, 2, 3, . . .}
Y ∈ SymLit = as in FLARE/V.

O ∈ PrimopFIL ::= + | - | * | / | % ; arithmetic ops
| <= | < | = | != | > | >= bool=? | sym=? ; relational ops
| not | and | or ; logical ops
| cons | car | cdr | null | null? ; list ops
| mprod | (mget J) | (mset! J) | mprod=? ; mut. prod. ops
| . . . other primitives will be added as needed . . .

KeywordFIL = {abs, app, error, fil, if, let, let*, prim, sym}
I ∈ IdentFIL = SymLit − ({Y | Y begins with @} ∪KeywordFIL)

Syntactic Sugar
(@mget J Emprod) �ds (prim (mget J) Emprod)

(@mset! J Emprod Enew) �ds (prim (mset! J) Emprod Enew)

(@Oop En
i=1) �ds (prim Oop En

i=1), where Oop 
∈{(mget J), (mset! J)}
(let* () Ebody) �ds Ebody

(let* ((I1 E1) (Irest Erest)
∗) Ebody)

�ds (let ((I1 E1)) (let* ((Irest Erest)
∗) Ebody))

Figure 17.14 Syntax of FIL, the Tortoise compiler intermediate language.

• Unlike FLARE/V, FIL does not have mutable variables (i.e., no set!). But
FIL does have mutable products (also known as mutable tuples), which are
created via mprod, whose component slots are accessed via mget and changed
via mset!, and which are tested for equality (i.e., same location in the store)
via mprod=?. We treat mget and mset! as “indexed primitives” (mget Jindex)

and (mset! Jindex) in which the primitive operator includes the index Jindex

of the manipulated component slot. If we wrote (prim mget Eindex Emp),
this would imply that the index could be calculated by an arbitrary expression
Eindex when in fact it must be a positive integer literal Jindex . So we instead
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write (prim (mget Jindex) Emp) (and similarly for mset!). Treating mget and
mset! as primitives rather than as kernel constructs simplifies the definition of
several transformations.

• Unlike FLARE, FIL does not include cells and pairs; both are implemented
as mutable products.4

• Unlike FLARE, FIL does not have any explicit kernel expression form (such
as letrec) for recursive definitions. It is assumed that the “knot-tying” of
recursion is instead performed by setting the components of mutable products.
This is the approach taken in the translation from FLARE to FIL.

• Other data include integers, booleans, symbols, and immutable lists, all of
which are in FLARE.

• Unlike FLARE, FIL does not support globally bound standard identifiers for
procedures like +, <, and cons. This means that all valid FIL programs must
be closed (i.e., have no free variables).

To improve the readability of FIL programs, we will use the syntactic sugar
specified in Figure 17.14. The @ notation is a more concise way of writing prim-
itive applications. E.g., (@+ 1 2) abbreviates (prim + 1 2) and (@mget 1 t)

abbreviates (prim (mget 1) t). The let* construct abbreviates a sequence of
nested single-binding let expressions. Throughout the rest of this chapter, we
will “resugar” expressions using these abbreviations in all code examples to make
them more readable.

The readability of FIL programs is further enhanced if we assume that the
syntactic simplifications in Figure 17.15 are performed when FIL ASTs are con-
structed. These simplifications automatically remove some of the silly ineffi-
ciencies that can be introduced by transformations. In transformation-based
compilers, such simplifications are typically performed via a separate simplify-
ing transformation, which may be called several times in the compilation process.
However, building the simplifications into the AST constructors is an easy way to
guarantee that the inefficient forms are never constructed in the first place. The
conciseness and readability of the FIL examples in this chapter is due in large
part to these simplifications. Putting all the simplifications in one place means
that individual transformations do not need to implement any simplifications, so
this also simplifies the specification of transformations.

4To model the immutability of pairs, Tortoise could be extended with immutable products.
We have chosen to have only a single kind of product, for simplicity.
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(let () Ebody) −simp−−−→ Ebody [empty-let]

(app (abs (I n
i=1) Ebody) En

i=1)−
simp−−−→ (let ((Ii Ei)

n
i=1) Ebody) [implicit-let]

(abs (I n
i=1) (app Erator I n

i=1)) −
simp−−−→ Erator [eta]

where Erator is a variable or abstraction
and FrIds[[Erator ]] ∩{I1 , . . . , In} = {}

(let ((I I ′)) Ebody) −simp−−−→ [I ′/I ]Ebody [copy-prop]

Figure 17.15 Simplifications performed when constructing FIL ASTs.

The [empty-let] rule removes trivial instances of let. This rule eliminates the
need for special cases (like the cases in the wrap function in Figure 17.8 and the
wrap-cells function in Figure 17.12) in FIL transformations that might introduce
an empty let.

The [implicit-let] rule treats an application of an explicit abs as a let expres-
sion. The [eta] rule performs eta reduction on an abstraction. The requirement
that Erator be a variable or abstraction is a simple syntactic constraint guarantee-
ing that Erator is pure. If Erator is impure, the simplification is unsafe because it
could change the order of side effects in (and thus the meaning of) the program.
For example, it is safe to simplify (abs (a b) (app f a b)) to f, but it is not
safe to simplify

(abs (a b)

(app (let ((_ (@mset! 1 c (@* 2 (@mget 1 c))))) f)

a b))

to (let ((_ (@mset! 1 c (@* 2 (@mget 1 c))))) f) because the latter per-
forms the mset! once rather than every time the procedure is called. Also, an
abs cannot be eliminated by [eta] if Erator mentions one of its formal parameters,
as in (abs (a) (app (abs (b) (@+ a b)) a)).

The [copy-prop] rule performs a copy propagation simplification that is an
important optimization in traditional compilers. This simplification removes a
let that simply introduces one variable to rename the value of another. Recall
that [I ′/I ]E denotes the capture-free substitution of I ′ for I in E , renaming
bound variables as necessary to prevent variable capture. In a language with
mutable variables, the [copy-prop] simplification can be unsafe in the presence of
assignments involving I or I ′ (see Exercise 17.7). However, this is not an issue
in FIL because it does not have mutable variables.
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The [empty-let], [implicit-let], and [copy-prop] simplifications are easy to per-
form in any context. The [eta] rule requires information about the free identifiers
of subexpressions. It can be efficiently performed in practice if each AST node is
annotated with its free identifiers.

If the simplification rules in Figure 17.15 can be performed in any order, there
is a problem. The rules are not confluent, so applying the rules in different orders
can lead to different results. For example, consider the expression

Eambig = (app (abs (I ) (app Irator I )) E)

where I 
= Irator . Here are two simplifications involving Eambig :

Eambig −simp−−−→ (let ((I E)) (app Irator I )) = Elet (via [implicit-let] on outer app)

Eambig −simp−−−→ (app Irator E) = Eapp (via [eta] on abs)

If E is not an identifier (in which case Elet can simplify to Eapp by applying
the [copy-prop] rule), there is no way to simplify Elet and Eapp to the same
expression. It is possible to restore confluence by adding another simplification
rule, but this has undesirable consequences for other stages of our compiler (see
Exercise 17.8). Instead, we avoid ambiguity by requiring that the simplification
rules be applied in a bottom-up fashion. That is, a simplification rule can be
applied to an expression only if no simplification rules can be applied to any of its
subexpressions. Using this bottom-up strategy, Eambig unambiguously simplifies
to Eapp (assuming E cannot be simplified further); the [implicit-let] rule cannot
be applied to the outer app because its rator can be simplified.

Finally, we assume the existence of functions mapsubFIL and subexpsFIL that
are analogous to the mapsubFLARE/V and subexpsFLARE/V functions defined in
Figures 17.5 and 17.6 (Section 17.2.3).

Exercise 17.7 Although the [copy-prop] rule is always safe in FIL (which does not have
mutable variables), it is not always safe in a language with mutable variables, such as
FLARE. Consider the following FLARE program skeleton:

(flare (a)

(let ((f Efun))

(let ((b a)) Ebody)))

For each of the following scenarios, develop an example in which applying the [copy-prop]
simplification rule to (let ((b a)) Ebody) is unsafe:

a. Ebody contains an assignment to a (but not b).

b. Ebody contains an assignment to b (but not a).

c. Ebody contains no assignments to a or b, but Efun contains an assignment to a.
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Exercise 17.8

a. Show that the simplification system in Figure 17.15 can be made confluent by adding
the following rule:

(let ((Ii Ei)
n
i=1) (app Erator I n

i=1)) −simp−−−→ (app Erator En
i=1) [eta-let]

where Erator is a variable or abstraction
and FrIds[[Erator ]] ∩{I1 , . . . , In} = {}

b. Unfortunately, the [eta-let] rule is problematic for dialects of FIL used in later stages
of the compiler. For example, the kernel grammar in Figure 17.22 on page 1046
describes FILcps , a restricted subset of FIL that is the result of the CPS conversion
stage of the compiler. Show that applying the [eta-let] rule to a FILcps expression
can yield an expression that is not in FILcps .

c. Modify the [eta-let] rule so that it always simplifies FILcps expressions to FILcps

expressions. Is the simplification system with your modified [eta-let] rule confluent?

The Semantics of FIL

FIL is a statically scoped, call-by-value language. Since FIL is stateful, the order
of expression evaluation matters: the subexpressions of an app, arguments of a
prim, and definition expressions of a let are evaluated from left to right. All
FIL constructs have been studied before, so we will not repeat their dynamic
semantics here.

In the interests of pedagogical simplicity, our FIL intermediate language does
not have a formal type system. The FLARE program that is the input to
the Translation stage is well typed, so it is necessarily valid (see page 1025) —
i.e., it cannot encounter a dynamic type error. Intuitively, we expect that the
Translation stage preserves behavior, so the program resulting from this stage
should be valid as well. But we do not have a formal type system to prove this
fact. We will assume that each subsequent compiler stage also preserves validity.

We would need a very sophisticated type system to show formally that well-
typedness is preserved by the FIL transformations. Moreover, since the types
in such a system could not all be reconstructed, many FIL expressions would
have to be annotated with explicit types. If FIL had explicit types, it would
be necessary for the compiler stages to transform these types as well as the
expressions. (This could be done using a typed intermediate language — see
page 1026.) Not only would this make the stages more difficult to specify, but
the types for many sample programs would become so large that they would
be nearly impossible to read. To justify the preservation of well-typedness, we
would have to argue that each stage essentially transforms not just programs but
valid type derivations of programs. Clearly, focusing on types in FIL would make
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the intermediate language more complex and would be at odds with our goal of
making the compiler conceptually simple.

Although FIL has no formal type system, we will still assume that the stages
of the Tortoise compiler do not introduce any dynamic type errors. Since the
input to the Translation stage is well typed, we will assume that the program
resulting from Translation and every subsequent stage cannot encounter any dy-
namic type errors. In later stages, we will use this assumption to avoid handling
certain cases. E.g., when processing (if E1 0 (@+ E2 E3)), there is no ques-
tion that E1 denotes a boolean value and E2 and E3 denote integers. There is
no need to handle cases where these expressions might have other types.

17.7.2 Translating FLARE to FIL

The translation from FLARE to FIL is performed by the T prog and T exp func-
tions presented in Figure 17.16. Because the source and target languages are so
similar, the translation has the flavor of a transformation that is purely struc-
tural except that (1) T prog changes the program keyword from flarek to fil; (2)
T exp adds app to applications; (3) T exp transforms each letrec into a let that
binds each variable to a cell (represented as a one-slot mutable product); and
(4) T exp translates FLARE cell and immutable pair operations to FIL mutable
product operations. We do not give the details of the other cases because they
are straightforward. Note that we cannot use the mapsubFLARE/V or mapsubFIL

functions to formally specify these cases because these functions transform an
expression in a language (FLARE/V or FIL) to another expression in the same
language. But T exp translates a FLARE expression to a FIL expression.

The translation of letrec effectively performs three conceptually distinct
transformations in one pass: (1) the following letrec desugaring from FLAVAR,

(letrec ((I1 E1) . . . (In En)) Ebody)

�ds (let ((I1 #u) . . . (In #u))

(begin (set! I1 E1) . . . (set! In En) Ebody))

(2) the assignment conversion of the mutable variables I1 , . . . , In to cells; and (3)
the translation of these cells into single-slot mutable products. These steps could
have been performed in three separate compiler stages, but we have combined
them to reduce the number of stages. Note that the first step cannot be performed
as a FLARE/V-to-FLARE/V transformation because it does not preserve well-
typedness: A variable holding #u cannot be assigned the value of an arbitrary
definition expression. It is possible, but messy and inefficient, to rephrase the
desugaring in a type-safe way using lists or oneofs (see Exercise 17.9). This is
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T prog : ProgFLARE → ProgFIL

Preconditions: The input to T prog is a valid, closed, assignment-free, kernel
FLARE program

Postconditions: The output of T prog is a valid kernel FIL program.

T prog[[(flarek (I n
i=1) Ebody)]] = (fil (I n

i=1) (T exp[[Ebody ]]))

T exp : ExpFLARE → ExpFIL

T exp[[(Erator En
i=1)]] = (app T exp[[Erator ]] (T exp[[Ei ]])

n
i=1)

T exp[[(letrec ((Ii Ei)
n
i=1) Ebody)]]

= (let ((Ii (prim mprod #u))n
i=1)

(let* (( (prim (mset! 1) Ii (msubst T exp[[Ei ]])))
n
i=1)

(msubst T exp[[Ebody ]]))),
where (msubst E ) = ([(prim (mget 1) Ii)/Ii ]

n
i=1)E

T exp[[(prim cell E1)]] = (prim mprod T exp[[E1 ]])

T exp[[(prim ^ Ecell)]] = (prim (mget 1) T exp[[Ecell ]])

T exp[[(prim := Ecell Enew)]] = (prim (mset! 1) T exp[[Ecell ]] T exp[[Enew ]])

T exp[[(prim cell=? E1 E2)]] = (prim mprod=? T exp[[E1 ]] T exp[[E2 ]])

T exp[[(prim pair E1 E2)]] = (prim mprod T exp[[E1 ]] T exp[[E2 ]])

T exp[[(prim fst Epair)]] = (prim (mget 1) T exp[[Epair ]])

T exp[[(prim snd Epair)]] = (prim (mget 2) T exp[[Epair ]])

All other cases of T exp are purely structural.

Figure 17.16 Translating FLARE to FIL.

the first of several cases we will encounter of a transformation that is simpler to
express without the constraints of a formal type system, which is the main reason
we use FIL rather than variants of FLARE or FLEX in the remainder of the
compiler.

The precondition for T prog requires a closed FLARE program. This simplifies
the transformation by making it unnecessary to translate global free identifiers
like + and cons. We assume that such free identifiers have already been eliminated
by performing globalization. The postcondition does not explicitly mention a
closed program because all valid FIL programs are necessarily closed.

Figure 17.17 shows our revmap example after the translation stage. In this
and subsequent code presentations, we shall “resugar” a nested sequence of let
expressions into a let* expression and use the @ abbreviation for primops to
improve the readability of the code. Note how ans and loop are treated similarly
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in the example: ans was converted from a mutable variable to a mutable cell by
the assignment-conversion stage, while loop was converted to a mutable cell by
the letrec-handling code of the translation stage. After translation, both cells
are represented as single-slot mutable products.

Exercise 17.9 Consider the language FLAREsum that is just like FLARE except that
it supports oneofs (see Section 10.2) via the following syntax:

E ::= ...

| (one Itag Epayload) [OneofIntro]

| (tagcase Edisc Ipayload (Itag Ebody)
∗ (else Eelse)

?) [OneofElim]

Assume that the FLAREsum type reconstruction algorithm is “smart enough” to de-
termine the type of the one construct without any explicit type annotations (see Exer-
cise 13.13).

a. Using oneofs, write a version of the FLAVAR letrec desugaring for FLAREsum that
preserves well-typedness. The key idea is to transform each letrec-bound variable
into a mutable cell that holds a oneof that is either (1) the unit value or (2) the
value of the corresponding definition expression. Argue that the expression that is
the result of the desugaring is indeed well typed.

b. After studying your solution to part a, Abby Stracksen remarks, “You can write a
type-safe desugaring of letrec in regular FLARE, without oneofs, using empty and
nonempty lists.” Show what Abby means by writing a type-safe desugaring of letrec
in FLARE.

Exercise 17.10 Consider the language FILsum that is just like FIL except:

• it does not have the boolean literals #t and #f;

• it has no if expressions;

• it does not have the list operators cons, car, cdr, null, or null?;

• it supports oneofs (see Section 10.2) via the same syntax used in Exercise 17.9.

Show how to translate FLARE boolean literals, if expressions, and list operations into
FILsum .

17.8 Transformation 6: Renaming

A program fragment is uniquely named if no two logically distinct variables
appearing in the fragment have the same name. For example, the following two
expressions have the same structure and meaning, but the second is uniquely
named while the first is not:
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(fil (a b)

(let ((revmap

(abs (f elts)

(let* ((ans (@mprod (@null)))

(loop (@mprod #u))

(_ (@mset! 1 loop

(abs (xs)

(if (@null? xs)

(@mget 1 ans)

(let ((_ (@mset 1 ans

(@cons (app f (@car xs))

(@mget 1 ans)))))

(app (@mget 1 loop) (@cdr xs))))))))

(app (@mget 1 loop) elts)))))

(app revmap

(abs (x) (@> x b))

(@cons a (@cons (@* a 7) (@null))))))

Figure 17.17 revmap program after translation.

((abs (x) (x w)) (abs (x) (let ((x (* x 2))) (+ x 1))))

((abs (x) (x w)) (abs (y) (let ((z (* y 2))) (+ z 1))))

Some of the subsequent program transformations we will study require that pro-
grams are uniquely named to avoid problems with variable capture or otherwise
simplify the transformation. Here we describe a renaming transformation whose
output program is a uniquely named version of the input program.

The renaming transformation is presented in Figure 17.18. In this transfor-
mation, every bound identifier in the program is replaced by a fresh identifier.
Fresh names are introduced in all declaration constructs: the fil program con-
struct and abs and let expressions. Renaming environments in the domain
RenEnv are used to associate these fresh names with the original names and
communicate the renamings to all variable references. Renaming is a purely
structural transformation for all other nodes.

As in many other transformations, we gloss over the mechanism for generating
fresh identifiers. This mechanism can be formally specified and implemented by
threading some sort of name-generation state through the transformation. For
example, this state could be a natural number that is initially 0 and is incremented
every time a fresh name is generated. The fresh name can combine the original
name and the number in some fashion. In our examples, we assume that renamed
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Renaming Environments
re ∈ RenEnv = Ident → Ident

rbind : Ident → Ident → RenEnv→ RenEnv
= λIold Inew re . λIkey . if Ikey = Iold then Inew else (re Ikey) end

(rbind Iold Inew re) is abbreviated as [Iold �→Inew ]re; this notation associates
to the right. I.e., [I1 �→I ′

1 ][I2 �→I ′
2 ]re = [I1 �→I ′

1 ]([I2 �→ I ′
2 ]re)

Renaming Transformation
Rprog : ProgFIL → ProgFIL

Preconditions: The input to Rprog is a valid kernel FIL program.

Postconditions: The output of Rprog is a valid and uniquely named kernel FIL
program.

Rprog[[(fil (I n
i=1) Ebody)]]

= (fil (I ′n
i=1) (Rexp[[Ebody ]] ([I1 �→ I ′

1 ] . . . [In �→ I ′
n ] (λI . I )))),

where I ′n
i=1 are fresh.

Rexp : ExpFIL → RenEnv→ ExpFIL

Rexp[[I ]] re = (re I )

Rexp[[(abs (I n
i=1) Ebody)]] re

= (abs (I ′n
i=1) (Rexp[[Ebody ]] ([I1 �→ I ′

1 ] . . . [In �→ I ′
n ]re))), where I ′n

i=1 are fresh.

Rexp[[(let ((Ii Ei)
n
i=1) Ebody)]] re

= (let ((I ′
i (Rexp[[Ei ]] re))n

i=1)

(Rexp[[Ebody ]] ([I1 �→ I ′
1 ] . . . [In �→ I ′

n ]re))), where I ′n
i=1 are fresh.

Rexp[[E ]] re = mapsubFIL[[E ]] (λEsub .Rexp[[Esub ]] re), otherwise.

Figure 17.18 Renaming transformation.

identifiers have the form prefix.number, where prefix is the original identifier,
number is the current name-generator state value, and “.” is a special character
that may appear in compiler-generated names but not in user-specified names.5

Later compiler stages may rename generated names from previous stages; we
assume that only the prefix of the old generated name is used as the prefix for
the new generated name. For example, x can be renamed to x.17, and x.17 can
be renamed to x.42 (not x.17.42). Figure 17.19 shows our running example
after the renaming stage.

Exercise 17.11 What changes need to be made to Rexp to handle the FILsum language
(see Exercise 17.10)?

5prefix is not really necessary, since number itself is unique. But maintaining the original
names helps human readers track variables through the compiler transformations.
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(fil (a.0 b.1)

(let ((revmap.2

(abs (f.3 elts.4)

(let* ((ans.5 (@mprod (@null)))

(loop.6 (@mprod #u))

(_ (@mset! 1 loop.6

(abs (xs.7)

(if (@null? xs.7)

(@mget 1 ans.5)

(let ((_ (@mset! 1 ans.5

(@cons (app f.3 (@car xs.7))

(@mget 1 ans.5)))))

(app (@mget 1 loop.6) (@cdr xs.7))))))))

(app (@mget 1 loop.6) elts.4)))))

(app revmap.2

(abs (x.8) (@> x.8 b.1))

(@cons a.0 (@cons (@* a.0 7) (@null))))))

Figure 17.19 revmap program after renaming.

Exercise 17.12 This exercise explores ways to formalize the generation of fresh names
in the renaming transformation. Assume that rename is a function that renames vari-
ables according to the conventions described above. E.g., (rename x 17) = x.17 and
(rename x.17 42) = x.42.

a. Suppose that the signature of Rexp is changed to accept and return a natural number
that represents the state of the fresh name generator:

Rexp : ExpFIL → RenEnv → Nat → (ExpFIL × Nat)

Give modified definitions of Rprog and Rexp in which rename is used to generate all
fresh names uniquely. Define any auxiliary functions you find helpful.

b. An alternative way to thread the name-generation state through the renaming trans-
formation is to use continuations. Suppose the signature ofRexp is changed as follows:

Rexp : ExpFIL → RenEnv → RenameCont → Nat → ExpFIL

RenameCont is a renaming continuation defined as follows:

rc ∈ RenameCont = ExpFIL → Nat → ExpFIL

Give modified definitions of Rprog and Rexp in which rename is used to generate all
fresh names uniquely. Define any auxiliary functions you find helpful.

c. The mapsubFIL function cannot be used in the above two parts because it does not
thread the name-generation state through the processing of subexpressions. Develop
modified versions of mapsubFIL that would handle the purely structural cases in the
above parts.
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17.9 Transformation 7: CPS Conversion

Did he ever return, no he never returned
And his fate is still unlearned

— Bess Hawes and Jacqueline Steiner, “Charley on the MTA”

In Chapter 9, we saw that continuations are a powerful mathematical tool for
modeling sophisticated control features like nonlocal exits, unrestricted jumps,
coroutines, backtracking, and exceptions. Section 9.2 showed how such features
can be simulated in any language supporting first-class procedures. The key idea
in these simulations is to represent a possible future of the current computation as
an explicit procedure, called a continuation. The continuation takes as its single
parameter the value of the current computation. When invoked, the continuation
proceeds with the rest of the computation. In these simulations, procedures no
longer return to their caller when invoked. Rather, they are transformed so that
they take one or more explicit continuations as arguments and invoke one of these
continuations on their result instead of returning the result. A program in which
every procedure invokes an explicit continuation parameter in place of returning
is said to be written in continuation-passing style (CPS).

As an example of CPS, consider the FIL expression Esos in Figure 17.20. It
defines a squaring procedure sqr and a sum-of-squares procedure sos and applies
the latter to 3 and 4. E cps

sos is the result of transforming Esos into CPS form. In
E cps

sos , each of the two procedures sqr and sos has been extended with a contin-
uation parameter, which by our convention will come last in the parameter list
and begin with the letter k. The sqrcps procedure invokes its continuation ksqr

on the square of its input. The soscps procedure first calls sqrcps on a with a
continuation that names the result asqr. This continuation then calls sqrcps on
b with a second continuation that names the second result bsqr. Finally, soscps

invokes its continuation ksos on the sum of these two results. The initial call
(sos 3 4) must also be converted. We assume that klet* names a continua-
tion that proceeds with the rest of the computation given the value of the let*

expression.
The process of transforming a program into CPS form is called CPS conver-

sion. Here we shall study CPS conversion as a stage in the Tortoise compiler.
Whereas globalization makes explicit the meaning of standard identifiers, and
assignment conversion makes explicit the implicit cells of mutable variables, CPS
conversion makes explicit all control flow in a program. In addition to trans-
forming every procedure to use an explicit continuation, our compiler’s CPS
transformation also makes explicit the order in which primitive operations are
executed.
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Esos = (let* ((sqr (abs (x) (@* x x)))

(sos (abs (a b) (@+ (app sqr a) (app sqr b)))))

(app sos 3 4))

E cps
sos = (let* ((sqrcps (abs (x ksqr) (app ksqr (@* x x))))

(soscps (abs (a b ksos)

(app sqrcps a

(abs (asqr)

(app sqrcps b

(abs (bsqr)

(app ksos (@+ asqr bsqr)))))))))

(app soscps 3 4 klet*))

Figure 17.20 E cps
sos is a CPS version of Esos .

Performing CPS conversion as a compiler stage has several benefits:

• Procedure-calling mechanism: A compiler must implement the mechanism for
calling a procedure, which specifies: how arguments and control are passed
from the caller to the procedure when it is called; how the procedure’s result
value and control are passed from the procedure back to the caller when the
procedure returns; and how values needed by the caller after the procedure call
are preserved during the procedure’s execution.

Continuations are an explicit representation of the stack of procedure-call in-
vocation frames used in traditional compilers to implement the call/return
mechanism of procedures. In CPS-converted code, a continuation (such as
(abs (asqr) . . .) above) corresponds to a pair of (1) an invocation frame
that saves variables needed after the call (i.e., the free variables of the con-
tinuation, which are b and ksos in the case of (abs (asqr) . . . )) and (2) a
return address (i.e., a specification of the code to be executed after the call).
Since CPS procedures never return, every procedure call in a CPS-converted
program can be viewed as an assembly code jump that passes arguments. In
particular, invoking a continuation corresponds in assembly code to jumping
to a return address with a return value in a distinguished return register.

• Code linearization: CPS conversion makes explicit the order in which subex-
pressions are evaluated, yielding code that linearizes basic computation steps
in a way similar to assembly code. For example, the body of soscps makes
it clear that the square of a is calculated before the square of b. We shall
see that our CPS transformation also linearizes nested primitive applications.
For instance, CPS-converting the expression (@* (@+ c d) (@- c 1)) yields
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code in which it is clear that the addition is performed first, followed by the
subtraction, and then the multiplication.

• Sophisticated control features: Representing control explicitly in the form of
continuations facilitates the implementation of advanced control features (such
as nonlocal exits, exceptions, and backtracking) that can be challenging to
implement in traditional stack-based approaches.

• Uniformity : Representing control features via procedures keeps intermediate
program representations simple and flexible. Moreover, any optimizations that
improve procedures will work on continuations as well. But this uniformity
also has a drawback: because of the liberal use of procedures, the efficiency
of procedure calls in CPS code is of the utmost importance, making certain
optimizations almost mandatory.

We present the Tortoise CPS transformation in four stages. The struc-
ture of the CPS code produced by the CPS transformation is formalized in Sec-
tion 17.9.1. A straightforward approach to CPS conversion that is easy to un-
derstand but leads to intolerable inefficiencies in the converted code is described
in Section 17.9.2. Section 17.9.3 presents a more complex but considerably more
efficient CPS transformation that is used in Tortoise. Finally, we consider the
CPS conversion of advanced control constructs in Section 17.9.4.

17.9.1 The Structure of Tortoise CPS Code

All procedure applications can be classified according to their relationship to the
innermost enclosing procedure declaration (or program). A procedure applica-
tion is a tail call if its implicit continuation is the same as that of its enclosing
procedure. In other words, no computational work is done between the termina-
tion of the inner tail call and the termination of its enclosing procedure. These
two events can be viewed as happening simultaneously. All other procedure ap-
plications are nontail calls. These are characterized by pending computations
that must take place between the termination of the nontail call and the termi-
nation of a call to its enclosing procedure. The notion of a tail call is important
in CPS conversion because every procedure call in CPS code must be a tail call.
Otherwise, it would have to return to perform a pending computation.

As concrete examples of tail versus nontail calls, consider the FIL abstractions
in Figure 17.21.

• In Eabs1 , the call to g is a tail call because a call to Eabs1 returns a value v
when g returns v . But both calls to f are nontail calls because the results of
these calls must be passed to g before Eabs1 returns.



17.9.1 The Structure of Tortoise CPS Code 1045

Eabs1 = (abs (f g x) (app g (app f x) (app f (@+ x 1))))

Eabs2 = (abs (p q r s y)

(let ((a (app p (app q y))))

(app r a (app s a))))

Eabs3 = (abs (filter pred base zs)

(if (@null? zs)

(app base zs)

(if (app pred (@car zs))

(@cons (@car zs) (app filter pred base (@cdr zs)))

(app filter pred base (@cdr zs)))))

Figure 17.21 Sample abstractions for understanding tail versus nontail calls.

• In Eabs2 , only the call to r is a tail call. The results of the calls to p, q, and s

must be further processed before Eabs2 returns.

• In Eabs3 , there are two tail calls: the call to base, and the second call to filter.
The result of the first call to filter must be processed by @cons before Eabs3

returns, so this is a nontail call. The result of pred must be checked by the if,
so this is a nontail call as well. In this example, we see that (1) a procedure
body may have multiple tail calls and (2) the same procedure can be invoked
in both tail calls and nontail calls within the same expression.

Tail and nontail calls can be characterized syntactically. The FIL expres-
sion contexts in which tail calls can appear are defined by TC in the following
grammar:

TC ∈ TailCallContext ::= �

| (if Etest TC E)

| (if Etest E TC)
| (let ((I E)∗) TC)
| (abs (I ∗) TC)

In FIL, an application expression Eapp = (app E E ∗) is a tail call if and only
if the enclosing program can be expressed in the form (fil (I ∗) TC{Eapp}) —
i.e., as the result of filling a tail context in the program body with Eapp . Any
application that does not appear in a tail context is a nontail call. In particular,
applications occurring in (but not wrapped by abs in) if tests, let definition
expressions, and app and prim arguments are nontail calls.
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P ∈ Progcps ::= (fil (I ∗
formal) Ebody)

E ∈ Expcps ::= (app Irator V ∗
rand) | (if Vtest Ethen Eelse)

| (let ((Iname LEdefn)) Ebody) | (error Ymessage)

V ∈ ValueExpcps ::= L | I

LE ∈ LetableExpcps ::= L | (abs (I ∗
formal) Ebody) | (prim Oprimop V ∗

arg)

L ∈ Lit = as in full FIL

Y ∈ SymLit = as in full FIL

O ∈ Primop = as in full FIL

I ∈ Ident = as in full FIL

Figure 17.22 Kernel grammar for FILcps , the subset of FIL in CPS form. The result
of CPS conversion is a FILcps program.

Understanding tail calls is essential for studying the structure of Tortoise
CPS code, which is defined by the grammar for FILcps , a restricted dialect of FIL
presented in Figure 17.22. The FILcps grammar requires specialized component
expressions for many constructs that can have arbitrary component expressions
in FIL: the rator of an app must be an identifier; the rands of an app, arguments
of a prim, and test of an if must be literals or identifiers; and the definition
expression of a let must be a literal, abstraction, or primitive application. As
explained below, these restrictions guarantee that all FILcps procedure calls are
tail calls, that all procedure calls and primitive applications are linearized, and
that FILcps code resembles assembly code in many ways:

• The definition of Expcps in FILcps guarantees that app expressions appear
precisely in the tail contexts TC discussed above. So every call in a FILcps

program is guaranteed to be a tail call. In a continuation-based denotational
semantics (see Section 9.3) of a FILcps program, the expression continuation
k for every app expression is exactly the same: the top-level continuation of
the program. We say that procedure calls in a CPS program “never return”
because no procedure call establishes a new control point to which a value
can be returned. This explains why calls in a CPS program can be viewed as
assembly-language jumps (that happen to additionally pass arguments).

• Operands of app and prim must be literals or variables, so one application
(of a procedure or a primitive) may not be nested within another. The test
subexpression of an if must also be a literal or variable. The definition subex-
pression of a let can only be one of a restricted number of simple “letable
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expressions” that does not include apps, ifs, or other lets. These restrictions
impose the straight-line nature of assembly code on the bodies of FIL abstrac-
tions and programs, which must be elements of Expcps . The only violation of
the straight-line property is the if expression, which has an element of Expcps

for each branch. This branching code would need to be linearized elsewhere in
order to generate assembly language (see Exercise 17.16 on page 1056).

• The grammar effectively requires specifying the order of evaluation of primitive
applications by forcing the result of every primitive application to be named
by a let. So the CPS transformation of an expression containing nested prim-
itive applications uses a sequence of nested single-binding let expressions to
introduce names for the intermediate results returned by the primitives. For
example, CPS-converting the expression

(@+ (@- 0 (@* b b)) (@* 4 (@* a c)))

in the context of an initial continuation ktop.0 yields:6

(let* ((t.3 (@* b b))

(t.2 (@- 0 t.3))

(t.5 (@* a c))

(t.4 (@* 4 t.5))

(t.1 (@+ t.2 t.4)))

(app ktop.0 t.1)))

The let-bound names represent abstract registers in assembly code. Mapping
these abstract registers to the actual registers of a real machine (a process
known as register allocation — see Section 17.12) must be performed by a
later compilation stage.

• The operator of an app must be an identifier. In classical CPS conversion,
the operator of an app may be an abstraction as well. However, we require
that all abstractions be named in a let binding so that certain properties of
the FILcps structure are preserved by later Tortoise transformations. In
particular, the subsequent closure-conversion stage will transform abstractions
into applications of the mprod primitive. Such applications cannot appear in
the context of CPS values V , but can appear in “letable expressions” LE .

• Every execution path through an abstraction or program body Ebody must
end in either an app or an error. The Expcps grammar does not include
literals, identifiers, and abstractions, because these would allow procedures and

6The particular let-bound names used are irrelevant. Here and below, we show the results
of CPS conversion using our implementation of the transformation described in Section 17.9.3.
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(let* ((sqrFILcps (abs (x ksqr)

(let ((t1 (@* x x)))

(app ksqr t1))))

(sosFILcps (abs (a b ksos)

(let ((k1 (abs (asqr)

(let ((k2 (abs (bsqr)

(let ((t2 (@+ asqr bsqr)))

(app ksos t2)))))

(app sqrFILcps b k2)))))

(app sqrFILcps a k1)))))

(app sosFILcps 3 4 klet*))

Figure 17.23 A CPS version of Esos expressed in FILcps .

programs to return values. But FILcps procedures and programs never return,
so the last action in procedure or program body must be to call a procedure
or signal an error. Moreover, apps and errors can appear only as the final
expressions executed in such bodies — they cannot appear in let definitions,
procedure or primitive operands, or if tests. Modulo the branching allowed by
if, program and abstraction bodies in FILcps are similar in structure to basic
blocks in traditional compilers. A basic block is a sequence of statements such
that the only control transfers into the block are at the beginning and the only
control transfers out of the block are at the end.

The fact that ValueExpcps does not include abstractions or primitive appli-
cations means that E cps

sos in Figure 17.20 is not a legal FILcps expression. A
FILcps version of the Esos expression is presented in Figure 17.23. To sat-
isfy the syntactic constraints of FILcps , let-bound names must be introduced
to name abstractions (the continuations k1 and k2) and the results of primitive
applications (t1 and t2). Note that some calls (to sqrFILcps and sosFILcps) are
to transformed versions of procedures in the original Esos expression. These cor-
respond to the jump-to-subroutine idiom in assembly code. The other calls (to
ksqr and ksos) are to continuation procedures introduced by CPS conversion.
These model the return-from-subroutine idiom in assembly code.

We will assume that the grammar for FILcps in Figure 17.22 describes the
structure of CPS code after the standard FIL simplifications in Figure 17.15
have been performed. The CPS conversion functions we study below some-
times generate expressions that are illegal according to the FILcps grammar
before such simplifications are performed. However, in all these cases, simpli-



17.9.2 A Simple CPS Transformation 1049

fication yields a legal FILcps expression. For example, CPS conversion might
generate (let ((a.2 b.1)) (app k.0 a.2)), which is not a FILcps expression
because the variable reference b.1 is not an element of the domain Letable-
Expcps . However, applying the [copy-prop] simplification to this expression yields
(app k.0 b.1), which is indeed a FILcps expression.

The next two sections present two different CPS transforms, each of which
converts every procedure call in the program into a tail call:

Preconditions: The input to CPS conversion is a valid, uniquely named
kernel FIL program.

Postconditions: The output of CPS conversion is a valid, uniquely named
kernel FILcps program.

17.9.2 A Simple CPS Transformation

The first transformation we will examine, SCPS (for Simple CPS conversion), is
easier to explain, but generates code that is much less efficient than that produced
by the second transformation.

The SCPS transformation is defined in Figure 17.24. SCPSexp transforms
any given expression E to an abstraction (abs (Ik) E ′) that expects as its ar-
gument Ik an explicit continuation for E and eventually calls this continuation
on the value of E within E ′. This explicit continuation is immediately invoked to
pass along (or “return”) the values of literals, identifiers, and abstractions. Each
abstraction is transformed to take as a new additional final parameter a contin-
uation Ikcall that is passed as the explicit continuation to its transformed body.
Because the grammar of FILcps does not allow abstractions to appear directly
as app arguments, it is also necessary to name the transformed abstraction in a
let using a fresh identifier Iabs .

In the transformation of an app expression (app E0 E1 . . . En), explicit
continuations specify that the rator E0 and rands E1 . . . En are evaluated in
left-to-right order before the invocation takes place. The fresh variables I0 . . . In
are introduced to name the values of the subexpressions. Since every procedure
has been transformed to expect an explicit continuation as its final argument,
the transformed app must supply its continuation Ik as the final rand. The let

transformation is similar, except that the let-bound names are used in place
of fresh names for naming the values of the definition expressions. The unique
naming requirement on input programs to SCPS guarantees that no variable
capture can take place in the let transformation (see Exercise 17.15).
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The transformation of prim expressions is similar to that for app and let.
The syntactic constraints of FILcps require that a fresh variable (here named
Ians) be introduced to name the result of a prim expression before passing it to
the continuation.

In a transformed if expression, a fresh name Itest names the result of the
test expression and the same continuation Ik is supplied to both transformed
branches. This is the only place in SCPS where the explicit continuation Ik is
referenced more than once in the transformed expression. The transformed error

construct is the only place where the continuation is never referenced. All other
constructs use Ik in a linear fashion — i.e., they reference it exactly once. This
makes intuitive sense for regular control flow, which has only one possible “path”
out of every expression other than if and error. Even in the if case, only one
branch can be taken in a dynamic execution even though the continuation is
mentioned twice. In Section 17.9.4 we will see how CPS conversion exposes the
nonlinear nature of some sophisticated control features.

FIL programs are converted to CPS form by SCPSprog , which adds an addi-
tional parameter Iktop that is an explicit top-level continuation for the program.
It is assumed that the mechanism for program invocation will supply an appro-
priate procedure for this argument. For example, an operating system might
construct a top-level continuation that displays the result of the program on the
standard output stream or in a window within a graphical user interface.

The clauses for SCPSexp contain numerous instances of the pattern

(app (SCPSexp [[E1 ]]) E2)

where E2 is an abstraction or variable reference. But SCPSexp is guaranteed to
return an abs expression, and the FILcps grammar does not allow any subexpres-
sion of an app to be an abs. Doesn’t this yield an illegal FILcps expression? The
result of SCPSexp would be illegal were it not for the [implicit-let] simplification,
which transforms every app of the form

(app (abs (Ik) E ′
1) E2)

to the expression

(let ((Ik E2)) E ′
1)

Since the grammar for letable expressions LE permits definition expressions that
are abstractions, the result of SCPSexp is guaranteed to be a legal FILcps ex-
pression when E2 is an abstraction. When E2 is a variable, the [copy-prop]
simplification will also be performed, eliminating the let expression.
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SCPSprog : ProgFIL → Progcps

SCPSprog [[(fil (I n
i=1) Ebody)]] = (fil (I n

i=1 Iktop) ; Iktop fresh
(app (SCPSexp [[Ebody ]]) Iktop))

SCPSexp : ExpFIL → Expcps

SCPSexp [[L]] = (abs (Ik) (app Ik L)) ; Ik fresh

SCPSexp [[I ]] = (abs (Ik) (app Ik I )) ; Ik fresh

SCPSexp [[(abs (I n
i=1) Ebody)]] = (abs (Ik) ; Ik fresh

(let ((Iabs ; Iabs fresh
(abs (I n

i=1 Ikcall) ; Ikcall fresh
(app (SCPSexp [[Ebody ]]) Ikcall))))

(app Ik Iabs)))

SCPSexp [[(app En
i=0)]] = (abs (Ik) ; Ik fresh

(app (SCPSexp [[E0 ]])
(abs (I0) ; I0 fresh

...
(app (SCPSexp [[En ]])

(abs (In) ; In fresh
(app I n

i=0 Ik))) . . . )))

SCPSexp [[(let ((Ii Ei)
n
i=1) Ebody)]]

= (abs (Ik) ; Ik fresh
(app (SCPSexp [[E1 ]])

(abs (I1)...
(app (SCPSexp [[En ]])

(abs (In) (app (SCPSexp [[Ebody ]]) Ik))) . . . )))

SCPSexp [[(prim O En
i=1)]]

= (abs (Ik) ; Ik fresh
(app (SCPSexp [[E1 ]])

(abs (I1) ; I1 fresh
...

(app (SCPSexp [[En ]])
(abs (In) ; In fresh
(let ((Ians (prim O I n

i=1))) ; Ians fresh
(app Ik Ians)))) . . . )))

SCPSexp [[(if Etest Ethen Eelse)]]
= (abs (Ik) ; Ik fresh

(app (SCPSexp [[Etest ]])
(abs (Itest) ; Itest fresh

(if Itest
(app (SCPSexp [[Ethen ]]) Ik)
(app (SCPSexp [[Eelse ]]) Ik)))))

SCPSexp [[(error Ymsg)]] = (abs (Ik) (error Ymsg)) ; Ik fresh

Figure 17.24 A simple CPS transformation.
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As a simple example of SCPS, consider the CPS conversion of the incre-
menting program Pinc = (fil (a) (@+ a 1)). Before any simplifications are
performed, SCPSprog [[Pinc]] yields

(fil (a ktop.0)

(app (abs (k.2)

(app (abs (k.6) (app k.6 a))

(abs (t.3)

(app (abs (k.5) (app k.5 1))

(abs (t.4)

(let ((t.1 (@+ t.3 t.4)))

(app k.2 t.1)))))))

ktop.0))

Three applications of [implicit-let] simplify this code to

(fil (a ktop.0)

(let ((k.2 ktop.0))

(let ((k.6 (abs (t.3)

(let ((k.5 (abs (t.4)

(let ((t.1 (@+ t.3 t.4)))

(app k.2 t.1)))))

(app k.5 1)))))

(app k.6 a))))

A single [copy-prop] replaces k.2 by ktop.0 to yield the final result P ′
inc :

(fil (a ktop.0)

(let ((k.6 (abs (t.3)

(let ((k.5 (abs (t.4)

(let ((t.1 (@+ t.3 t.4)))

(app ktop.0 t.1)))))

(app k.5 1)))))

(app k.6 a)))

P ′
inc is a legal FILcps program — go ahead and check! Its convoluted nature

makes it a bit tricky to read. Here is one way to read this program:

The program is given an input a and top-level continuation ktop.0. First
evaluate a and pass its value to continuation k.6, which gives it the name
t.3. Then evaluate 1 and pass it to continuation k.5, which gives it the
name t.4. Next, calculate the sum of t.3 and t.4 and name the result
t.1. Finally, return this answer as the result of the program by invoking
ktop.0 on t.1.

This is a lot of work to increment a number! Even though the [implicit-let]
and [copy-prop] rules have simplified the program, it could still be simpler: the
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continuations k.5 and k.6 merely rename the values of a and 1 to t.3 and t.4,
which is unnecessary.

In larger programs, the extent of these undesirable inefficiencies becomes more
apparent. For example, Figure 17.25 shows the result of using SCPS to trans-
form a numerical program Pquad with several nested subexpressions. Try to read
the transformed program as we did with P ′

inc . Along the way you will notice
numerous unnecessary continuations and renamings. The result of performing
SCPS on our revmap example is so large that it would require several pages to
display. The desugared revmap program has an abstract syntax tree with 46
nodes; transforming it with SCPSprog yields a result with 314 nodes. And this is
after simplification — the unsimplified transformed program has 406 nodes!

Can anything be done to automatically eliminate the inefficiencies intro-
duced by SCPS? Yes! It is possible to define additional simplification rules
that will make the CPS-converted code much more reasonable. For example,
in (let ((I Edefn)) Ebody), if Edefn is a literal or abstraction, it is possible to
replace the let by the substitution of Edefn for I in Ebody . This simplification is
traditionally called constant propagation and (when followed by [implicit-let])
is called inlining for abstractions. For example, two applications of inlining on
P ′

inc yield

(fil (a ktop.0)

(let ((t.3 a))

(let ((t.4 1))

(let ((t.1 (@+ t.3 t.4)))

(app ktop.0 t.1)))))

and then copy propagation and constant propagation simplify the program to

(fil (a ktop.0)

(let ((t.1 (@+ a 1)))

(app ktop.0 t.1)))

Performing these additional simplifications on P ′
quad in Figure 17.25 gives the

following much improved CPS code:

(fil (a b c ktop.0)

(let* ((t.20 (@* b b))

(t.16 (@- 0 t.20))

(t.9 (@* a c))

(t.5 (@* 4 t.9))

(t.1 (@* t.16 t.5)))

(app ktop.0 t.1)))

These examples underscore the inefficiency of the code generated by SCPS.
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Why don’t we just modify FIL to include the constant propagation and in-
lining simplifications? Constant propagation of literals is not problematic,7 but
inlining is a delicate transformation. In FILcps , it is legal to copy an abstraction
only to certain positions (such as the rator of an app, where it can be removed
by [implicit-let]). When a named abstraction is used more than once in the body
of a let, copying the abstraction multiple times makes the program bigger. Un-
restricted inlining can lead to code bloat, a dramatic increase in the size of
a program. In the presence of recursive procedures, special care must often be
taken to avoid infinitely unwinding a recursive definition. Since we insist that
FIL simplifications be straightforward to implement, we do not include inlining
as a simplification. Inlining issues are further explored in Exercise 17.17.

Does that mean we are stuck with an inefficient CPS transformation? No!
In the next section, we study a cleverer approach to CPS conversion that avoids
generating unnecessary code in the first place.

Exercise 17.13 Consider the FIL program P = (fil (x y) (@* (@+ x y) (@- x y))).

a. Show the result P1 generated by SCPSprog [[P ]] without performing any simplifica-
tions.

b. Show the result P2 of simplifying P1 using the standard FIL simplifications (including
[implicit-let] and [copy-prop]).

c. Show the result P3 of further simplifying P2 using inlining in addition to the standard
FIL simplifications.

Exercise 17.14

a. Suppose that begin, scand, scor, and cond (from FLARE/V) were kernel FIL
constructs. Give the SCPSexp clauses for these four constructs.

b. Suppose that FILcps were extended to include mutable variables by adding the as-
signment construct (set! I E) as an element of LE . Give the SCPSexp clause for
set!.

Exercise 17.15

a. Give a concrete example of how variable capture can take place in the let clause of
SCPSexp if the initial program is not uniquely named.

b. Modify the let clause of SCPSexp so that it works properly even if the initial program
is not uniquely named.

7Nevertheless, we do not include constant propagation in our list of standard simplifications
because we don’t want constants to be copied when we get to the register-allocation stage of
our compiler.
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Pquad = (fil (a b c) (@+ (@- 0 (@* b b)) (@* 4 (@* a c))))

SCPSprog [[Pquad ]] = P ′
quad ,

where P ′
quad =

(fil (a b c ktop.0)

(let* ((k.17

(abs (t.3)

(let* ((k.6

(abs (t.4)

(let ((t.1 (@+ t.3 t.4)))

(app ktop.0 t.1))))

(k.15

(abs (t.7)

(let* ((k.10 (abs (t.8)

(let ((t.5 (@* t.7 t.8)))

(app k.6 t.5))))

(k.14

(abs (t.11)

(let ((k.13

(abs (t.12)

(let ((t.9 (@* t.11 t.12)))

(app k.10 t.9)))))

(app k.13 c)))))

(app k.14 a)))))

(app k.15 4))))

(k.26

(abs (t.18)

(let* ((k.21 (abs (t.19)

(let ((t.16 (@- t.18 t.19)))

(app k.17 t.16))))

(k.25 (abs (t.22)

(let ((k.24 (abs (t.23)

(let ((t.20 (@* t.22 t.23)))

(app k.21 t.20)))))

(app k.24 b)))))

(app k.25 b)))))

(app k.26 0)))

Figure 17.25 Simple CPS conversion of a numeric program.
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Exercise 17.16 Control branches in linear assembly language code are usually pro-
vided via branch instructions that perform a jump if a certain condition holds but “drop
through” to the next instruction if the condition does not hold. We can model assembly-
style branch instructions in FILcps by restricting if expressions to the form

(if Vtest (app Vrator V ∗
rand) Eelse)

which immediately performs a subroutine jump (via app) if the test is true and otherwise
drops through to Eelse . Modify the SCPSexp clause for if so that all transformed ifs
have this restricted form.

Exercise 17.17 This exercise explores procedure inlining. Consider the following [copy-
abs] simplification rule, where AB ranges over FIL abstractions:

(let ((I AB)) Ebody) −simp−−−→ [AB/I ]Ebody [copy-abs]

Together, [copy-abs] and the standard FIL [implicit-let] and [copy-prop] rules implement
a form of procedure inlining. For example

(let ((inc (abs (x) (@+ x 1))))

(@* (app inc a) (app inc b)))

can be simplified via [copy-abs] to

(@* (app (abs (x) (@+ x 1)) a)

(app (abs (x) (@+ x 1)) b))

Two applications of [implicit-let] give

(@* (let ((x a)) (@+ x 1))

(let ((x b)) (@+ x 1)))

and two applications of [copy-prop] yield the inlined code

(@* (@+ a 1) (@+ b 1))

a. Use inlining to remove all calls to sqr in the following FIL expression. How many
multiplications does the resulting expression contain?

(let ((sqr (abs (x) (@* x x))))

(app sqr (app sqr (app sqr a))))

b. Use inlining to remove all calls to sqr, quad, and oct in the following FIL expression.
How many multiplications does the resulting expression contain?

(let* ((sqr (abs (x) (@* x x)))

(quad (abs (y) (@* (app sqr y) (app sqr y))))

(oct (abs (z) (@* (app quad z) (app quad z)))))

(@* (app oct a) (app oct b)))

c. What happens if inlining is used to simplify the following FIL expression?

(let ((f (abs (g) (app g g))))

(app f f))

d. Can expressions like the one in part c ever arise in the compilation of a FLARE/V
program? Explain.
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e. Using only standard FIL simplifications, the result of SCPSprog is guaranteed to
be uniquely named if the input is uniquely named. This property does not hold in
the presence of inlining. Write an example program Pnun such that the result of
simplifying SCPSprog [[Pnun ]] via inlining is not uniquely named. Hint: Where can
duplication occur in a CPS-converted program?

f. Inlining multiple copies of an abstraction can lead to code bloat. Develop an example
FIL program Pbloat where performing inlining on the result of SCPSprog [[Pbloat ]] yields
a larger transformed program rather than a smaller one. Hint: Where can duplication
occur in a CPS-converted program?

Exercise 17.18 Emil P. Mentor wants to modify the CPS transformation to add a
little bit of profiling information. Specifically, the modified CPS transformation should
produce code that keeps a count of user procedure (not continuation) applications. Users
will be able to access this information with the new construct (app-count), which is
added to the grammar of kernel FILcps expressions:

E ∈ Exp ::= . . . | (app-count)

Emil gives the following example (where he uses the notation 〈x, y〉 normally used for
pair values to represent mutable products with two components):

(let ((f (abs (x) (prim mprod x (app-count))))

(id (abs (y) y))

(twice (abs (g) (abs (z) (app g (app g z))))))

(prim mprod (app f (app-count))

(prim mprod (app id (app f (app id (app-count))))

(app f (app (app (app twice twice) id)

(app-count))))))

−−−FIL→ 〈〈0 , 1 〉, 〈〈1 , 3 〉, 〈4 , 16 〉〉〉

In the modified SCPS transformation, all procedures (including continuations) should
take as an extra argument the number of user procedure applications made so far. For
example, here are Emil’s new SCPS clauses for program, literals, and conditionals:

SCPSprog [[(fil (I n
i=1) Ebody)]]

= (fil (I n
i=1 Iktop) ; Iktop fresh

(app (SCPSexp [[Ebody ]]) 0 Iktop))

SCPSexp [[L]] = (abs (In Ik) ; In (app count) and Ik (continuation) fresh
(app Ik In L))

SCPSexp [[(if Etest Ethen Eelse)]]
= (abs (In0 Ik) ; In0 and Ik fresh

(app (SCPSexp [[Etest ]])
In0

(abs (In1 Itest) ; In1 and Itest fresh
(if Itest

(app (SCPSexp [[Ethen ]]) In1 Ik)
(app (SCPSexp [[Eelse ]]) In1 Ik)))))

Write the modified SCPS clauses for abs, app, let, and app-count.
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17.9.3 A More Efficient CPS Transformation

Reconsider the result of SCPS on the program (fil (a) (@+ a 1)):

(fil (a ktop.0)

(let ((k.6 (abs (t.3)

(let ((k.5 (abs (t.4)

(let ((t.1 (@+ t.3 t.4)))

(app ktop.0 t.1)))))

(app k.5 1)))))

(app k.6 a)))

The inefficient code we eliminated by inlining in the last section is shown in gray.
Our goal in developing a more efficient CPS transformation is to perform these
simplifications as part of CPS conversion itself rather than waiting to do them
later. Instead of eliminating unsightly gray code as an afterthought, we want to
avoid generating it in the first place!

Our approach is based on a diabolically simple shift of perspective: we view
the gray code as part of the metalanguage specification of the transformation
rather than as part of the FIL code being transformed. If we change the gray
FIL lets, abss, and apps to metalanguage lets, λs, and applications, our example
becomes:

(fil (a ktop.0)

let k6 be (λV3 .
let k5 be (λV4 .

(let ((t.1 (@+ V3 V4)))

(app ktop.0 t.1)))
in (k5 1))

in (k6 a))

To enhance readability, we will keep the metalanguage notation in gray and the
FILcps code in black teletype font. Note that k5 and k6 name metalanguage
functions whose parameters (V3 and V4 ) must be pieces of FILcps syntax — in
particular, FILcps value expressions (i.e., literals and variable references). Indeed,
k5 is applied to the FILcps literal 1 and k6 is applied to the FILcps identifier a.
The result of evaluating the gray metalanguage expressions in our example yields

(fil (a ktop.0)

(let ((t.1 (@+ a 1)))

(app ktop.0 t.1)))

which is exactly the simplified result we want!
We have taken computation that would have been performed when executing

the code generated by CPS conversion and instead performed it when the code
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is generated. The output of CPS conversion can now be viewed as code that
is executed in two stages: the gray code is the code that can be executed as
part of CPS conversion, while the black code is the residual code that can only
be executed later at run time. This notion of staged computation is the key
idea of an approach to optimization known as partial evaluation. The goal
of partial evaluation is to evaluate at compile time all static expressions — i.e.,
those expressions that do not depend on information known only at run time —
and leave behind a residual dynamic program that is executed at run time. In
our case, the static expressions are the gray metalanguage code that is executed
“for free” as part of CPS conversion, and the dynamic expressions are the black
FILcps code.

Our improved approach to CPS conversion will make heavy use of gray ab-
stractions of the form (λV . . . . ) that map FILcps value expressions (i.e., literals
and variable references) to other FILcps expressions. Because these abstractions
play the role of continuations at the metalanguage level, we call them metacon-
tinuations. In the above example, k5 and k6 are examples of metacontinuations.

A metacontinuation can be viewed as a metalanguage representation of a
special kind of context: a FILcps expression with named holes that can be filled
only with FILcps value expressions. Such contexts may contain more than one
hole, but a hole with a given name can appear only once. For example, here
are metacontinuations that will arise in the CPS conversion of the incrementing
program:

Context Notation Metalanguage Notation

(app ktop.0 �1) λV1 . (app ktop.0 V1)

(let ((t.1 (@+ �3 �4)))
(app ktop.0 t.1))

λV4 . (let ((t.1 (@+ V3 V4))) ; V3 is free
(app ktop.0 t.1))

(let ((t.1 (@+ �3 1)))
(app ktop.0 t.1))

λV3 . (let ((t.1 (@+ V3 1)))
(app ktop.0 t.1))

Figures 17.26 and 17.27 present an efficient version of CPS conversion that is
based on the notions of staged computation and metacontinuations. We call this
transformation MCPS (for metaCPS conversion). The metavariable m ranges
over metacontinuations in the domain MetaCont , which consists of functions that
map FILcps value expressions to FILcps expressions.

The MCPS functions in Figures 17.26 and 17.27 are similar to the SCPS
functions in Figure 17.24 (page 1051). Indeed, except for the let and if clauses,
the MCPS clauses can be derived automatically from the SCPS clauses by the
following transformation process:



1060 Chapter 17 Compilation

Domain
m ∈ MetaCont = ValueExpcps → Expcps

Conversion Functions
mc→exp : MetaCont→ Expcps = (λm . (abs (Itemp) (m Itemp))) ; Itemp fresh

id→mc : Ident → MetaCont = (λI . (λV . (app I V )))

MetaCPS Program Transformation

MCPSprog : ProgFIL → Progcps

MCPSprog [[(fil (I n
i=1) Ebody)]] = (fil (I n

i=1 Iktop) ; Iktop fresh
(MCPSexp [[Ebody ]] (id→mc Iktop)))

Figure 17.26 An efficient CPS transformation based on metacontinuations, Part 1.

• Transform every continuation-accepting FILcps abstraction (abs (Ik) . . . )

into a metacontinuation-accepting metalanguage abstraction (λm . . . . ).

• Transform every FILcps application (app Ik V ) in which Ik denotes a con-
tinuation to a metacall (i.e., metalanguage function call) of the form (m V ),
where m is the metacontinuation that corresponds to Ik . This makes sense
because the metacontinuation m is a metalanguage function that expects a
value expression V as its argument.

• Transform every FILcps application (app (SCPSexp [[E ]]) (abs (I) . . . )) to
a metacall (MCPSexp [[E ]] (λV . . . . )). This transforms every FILcps con-
tinuation of the form (abs (I) . . . ) into a metacontinuation of the form
(λV . . . . ), thus providing the metacontinuation-accepting function returned
by MCPSexp [[E ]] with the metacontinuation it expects.

• Transform every FILcps application (app (SCPSexp [[E ]]) Ik) in which Ik has
not already been transformed to m to a metacall (MCPSexp [[E ]] (id→mc Ik )),
where id→mc converts a FILcps identifier Ik denoting an unknown continuation
to a metacontinuation (λV . (app Ik V )). This conversion is necessary to
provide the metacontinuation-accepting function returned by MCPSexp [[E ]]
with the metacontinuation it expects.

• Transform every FILcps application (app I n
i=0 Ik) in which I0 , . . . , In are the

bound variables of continuations and Ik denotes the continuation bound by an
SCPSexp clause to (let ((I ′k (mc→exp m))) (app V n

i=0 I ′k)), where

• I ′k is a fresh name;

• V0 , . . . , Vn are the bound variables of the metacontinuations that correspond
to the continuations binding I0 , . . . , In ;
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MetaCPS Expression Transformation

MCPSexp : ExpFIL → MetaCont→ Expcps

MCPSexp [[L]] = (λm . (m L))

MCPSexp [[I ]] = (λm . (m I ))

MCPSexp [[(abs (I n
i=1) Ebody)]]

= (λm . (let ((Iabs ; Iabs fresh
(abs (I n

i=1 Ikcall) ; Ikcall fresh
(MCPSexp [[Ebody ]] (id→mc Ikcall)))))

(m Iabs)))

MCPSexp [[(app En
i=0)]]

= (λm . (MCPSexp [[E0 ]]
(λV0 .

...

(MCPSexp [[En ]]
(λVn . (let ((Ik (mc→exp m))) ; Ik fresh

(app V n
i=0 Ik)))) . . . )))

MCPSexp [[(let ((Ii Ei)
n
i=1) Ebody)]]

= (λm . (MCPSexp [[E1 ]]
(λV1 .

...

(MCPSexp [[En ]]
(λVn . (let* ((Ii Vi)

n
i=1)

(MCPSexp [[Ebody ]] m)))) . . . )))

MCPSexp [[(prim O En
i=1)]]

= (λm . (MCPSexp [[E1 ]]
(λV1 .

...

(MCPSexp [[En ]]
(λVn . (let ((Ians (prim O V n

i=1))) ; Ians fresh
(m Ians)))) . . . )))

MCPSexp [[(if Etest Ethen Eelse)]]
= (λm . (MCPSexp [[Etest ]]

(λVtest . (let ((Ikif (mc→exp m))) ; Ikif fresh
(if Vtest

(MCPSexp [[Ethen ]] (id→mc Ikif ))
(MCPSexp [[Eelse ]] (id→mc Ikif )))))))

MCPSexp [[(error Ymsg)]] = (λm . (error Ymsg))

Figure 17.27 An efficient CPS transformation based on metacontinuations, Part 2.
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• m is the metacontinuation variable bound by the MCPSexp clause corre-
sponding to the SCPSexp clause that binds the continuation variable Ik ;
and

• mc→exp is a function that converts a metacontinuation m to a FILcps con-
tinuation (abs (I) (m I )). For example:

(mc→exp (λV3 . (let ((t.1 (@+ V3 1))) (app ktop.0 t.1))))
= (abs (t.2) (let ((t.1 (@+ t.2 1))) (app ktop.0 t.1)))

In this case, there is no metacontinuation-accepting function to process the
metacontinuation m, so mc→exp is necessary to convert the gray m into a
black residual FILcps abstraction. The FILcps grammar forces this abstraction
to be named, which is the purpose of the (let ((I ′k . . . )) . . . ).

The MCPS clauses for let and if are based on the above transformations,
but also contain some special-purpose code. The let clause contains additional
code to construct a residual let* expression binding the original let-bound iden-
tifiers. To avoid potential duplication involving the metacontinuation m, the if

clause gives the name Ikif to a residual version of m and uses (id→mc Ikif ) in
place of m for the two branches.

The key benefit of the metacontinuation approach to CPS conversion is that
many beta reductions that would be left as residual run-time code in the simple
approach are performed at compile time. The MCPS functions are carefully
designed so that every metacontinuation-accepting function (λm . . . . ) that
arises in the conversion process is applied to a metacontinuation of the form
(λVformal . M ), where M is a metalanguage expression denoting a FILcps ex-
pression. Observe that in each (λm . M ′) that appears in the MCPS definition,
the metacontinuation m is referenced at most once in M ′. If m is referenced
zero times in M ′, then the metacall ((λm . M ′) (λVformal . M )) simply reduces
to M ′. If m is referenced once in M ′, then M ′ can be written as M{m}, where
M is a one-holed metalanguage expression context. By the usual metalanguage
beta-reduction rule, each metacall of the form

((λm . M{m}) (λVformal . M ))

can be reduced to

M{(λVformal . M )}

In the case where m is applied to a value expression within M ′, the metacall

((λm . M{(m Vactual )}) (λVformal . M ))

reduces to

M{[Vactual/Vformal ]M }



17.9.3 A More Efficient CPS Transformation 1063

via two beta reductions. Since MCPSexp [[Vactual ]] = (λm . (m Vactual )), meta-
calls of the form

(MCPSexp [[Vactual ]] (λVformal . M ))

are special cases of this pattern that can be reduced to

[Vactual/Vformal ]M

The fact that m is referenced at most once in every function that accepts a
metacontinuation guarantees that reducing a metacall makes the metalanguage
expression smaller, and so the metacall reduction process eventually terminates.
At this point, no gray code remains since all metacalls have been eliminated and
there is no way other than a metacall to include gray code in an element of Expcps .
So all that remains is a black residual FILcps program. Another consequence of
the fact that m is referenced at most once in every metacontinuation-accepting
function is that there is no specter of duplication-induced code bloat that haunts
more general inlining optimizations. Using mc→exp to convert m to a FILcps

abstraction named Ikif in the if clause of MCPSexp is essential for avoiding code
duplication.

We illustrate compile-time beta reductions in Figure 17.28, which shows the
CPS conversion of the expression (app f (@* x (if (app g y) 2 3))) rela-
tive to an initial continuation named k. The example illustrates how MCPS
effectively turns the input expression “inside out.” In the input expression, the
call to f is the outermost call, and (app g y) is the innermost call. But in the
CPS-converted result, the call to g is the outermost call and the call to f is nested
deep inside. This reorganization is necessary to make explicit the order in which
operations are performed:

1. first, g is applied to y;

2. then the result t.5 of the g application is tested by if;

3. the test determines which of 2 or 3 will be named t.3 and multiplied by x;

4. then f is invoked on the result t.1 of the multiplication;

5. finally, the result of the f application is supplied to the continuation k.

Variables such as t.1, t.3, t.5 can be viewed as registers that hold the results
of intermediate computations.
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The example assumes that (mc→exp (id→mc k)) can be simplified to k.8 To
see why, observe that

(mc→exp (id→mc k))
= ((λm . (abs (Itemp) (m Itemp))) (λV . (app k V )))
= (abs (Itemp) ((λV . (app k V )) Itemp))
= (abs (Itemp) (app k Itemp))

The final expression can be simplified to k by the [eta] rule. This eta reduction
eliminates an abstraction in cases where the CPS transformation would have
generated a trivial continuation that simply passed its argument along to an-
other continuation with no additional processing. This simplification is some-
times called the tail-call optimization because it guarantees that tail calls in
the source program require no additional control storage in the compiled pro-
gram. In particular, there is no need to push an invocation frame corresponding
to a trivial continuation onto the procedure-call stack. This allows tail calls to
compile to assembly code jumps that pass arguments.

A language is said to be properly tail recursive if implementations are
required to compile source tail calls into jumps. Our FIL mini-language is prop-
erly tail recursive, as is the real language Scheme. Such languages can leave out
iteration constructs (like while and for loops) and still express the constant-
control-space iterative computations specified by such constructs using recursive
procedures that invoke themselves via tail calls.

Figure 17.29 shows the result of using MCPS to CPS-convert our revmap ex-
ample. Observe that the output of CPS conversion looks much closer to assembly
language code than the input (Figure 17.19 on page 1041). You should study the
code to convince yourself that this program has the same behavior as the orig-
inal program. CPS conversion has introduced only one nontrivial continuation
abstraction: k.41 names the continuation of the call to f (now called f.3) in the
body of the loop. Each input abstraction has been extended with a final argu-
ment naming its continuation: revmap (which has been renamed to abs.10) takes
continuation argument k.20; the looping procedure (abs.25) takes continuation
argument k.29; and the greater-than-b procedure (abs.11) takes continuation
k.18. Note that the looping procedure (which is not only named abs.25 but is
also named t.26 and t.37 when it is extracted from the first slot of the muta-
ble product t.23) is always invoked with the same continuation as the enclosing
abstraction (k.20 when it is named t.26 and k.29 when it is named t.37). So
it requires only constant control space and is thus truly iterative like loops in
traditional languages.

8Subsequently, (let ((t.0 k)) (app V1 V2 t.0)) is simplified to (app V1 V2 k) by an
application of [copy-prop].
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(MCPSexp [[(app f (@* x (if (app g y) 2 3)))]] (id→mc k))

= ((λm . (MCPSexp [[f]] (λV1 . (MCPSexp [[(@* x (if (app g y) 2 3))]]
(λV2 . (let ((t.0 (mc→exp m)))

(app V1 V2 t.0)))))))
(id→mc k))

= (MCPSexp [[f]] (λV1 . (MCPSexp [[(@* x (if (app g y) 2 3))]]
(λV2 . (let ((t.0 (mc→exp (id→mc k))))

(app V1 V2 t.0))))))

= (MCPSexp [[(@* x (if (app g y) 2 3))]] (λV2 . (app f V2 k)))

= ((λm . (MCPSexp [[x]]
(λV3 . (MCPSexp [[(if (app g y) 2 3)]]

(λV4 . (let ((t.1 (@* V3 V4))) (m t.1)))))))
(λV2 . (app f V2 k)))

= (MCPSexp [[x]]
(λV3 . (MCPSexp [[(if (app g y) 2 3)]]

(λV4 . (let ((t.1 (@* V3 V4))) (app f t.1 k))))))

= (MCPSexp [[(if (app g y) 2 3)]]
(λV4 . (let ((t.1 (@* x V4))) (app f t.1 k))))

= ((λm . (MCPSexp [[(app g y)]]
(λV5 . (let ((kif.2 (mc→exp m)))

(if V5 (MCPSexp [[2]] (id→mc kif.2))
(MCPSexp [[3]] (id→mc kif.2)))))))

(λV4 . (let ((t.1 (@* x V4))) (app f t.1 k))))

= (MCPSexp [[(app g y)]]
(λV5 . (let ((kif.2 (abs (t.3)

(let ((t.1 (@* x t.3))) (app f t.1 k)))))

(if V5 (MCPSexp [[2]] (λV6 . (app kif.2 V6)))
(MCPSexp [[3]] (λV7 . (app kif.2 V7)))))))

= ((λm . (MCPSexp [[g]]
(λV8 . (MCPSexp [[y]]

(λV9 . (let ((t.4 (mc→exp m))) (app V8 V9 t.4)))))))
(λV5 . (let ((kif.2 (abs (t.3)

(let ((t.1 (@* x t.3))) (app f t.1 k)))))

(if V5 (app kif.2 2) (app kif.2 3)))))

= (let ((t.4 (abs (t.5) ; (abs (t.5) . . . ) = (mc→exp (λV5 . . . . ))
(let ((kif.2 (abs (t.3)

(let ((t.1 (@* x t.3))) (app f t.1 k)))))

(if t.5 (app kif.2 2) (app kif.2 3))))))

(app g y t.4)) ; substituted g for V8 and y for V9 in (app V8 V9 t.4)

Figure 17.28 An example of CPS conversion using metacontinuations.
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Note that the looping procedure (abs.25) is the only nontrivial value ever
stored in the first slot of the mutable product named t.23, so that all refer-
ences to this slot (i.e., the values named by t.26 and t.37) denote the looping
procedure. In the case of t.26, this fact can be automatically discovered by a
simple peephole optimization (a local code optimization that transforms small
sequences of instructions) on let* bindings:

(let* (. . . (I1 (@mset! J Improd V )) (I2 (@mget J Improd)) . . .) Ebody)

−simp−−−→ (let* (. . . (I1 (@mset! J Improd V )) (I2 V ) . . . ) Ebody)

In conjunction with the [copy-prop] simplification, this peephole optimization can
justify simplifying

(let* ( . . . (t.24 (@mset! 1 t.23 abs.25)) (t.26 (@mget 1 t.23)))

(app t.26 elts.4 k.20))

to

(let* ( . . . (t.24 (@mset! 1 t.23 abs.25)))

(app abs.25 elts.4 k.20))

in the CPS-converted revmap code. A much more sophisticated analysis would
be necessary to determine that t.37 denotes the looping procedure. However,
even this knowledge cannot be used to replace t.37 by abs.25 because abs.25

is a let-bound variable whose scope does not include the body of the abstraction
(abs (xs.7 k.29) . . . ).

The conciseness of the code in Figure 17.29 is a combination of the simplifica-
tions performed by reducing metacalls at compile time and the standard FILcps

simplifications. To underscore the importance of the latter, Figure 17.30 shows
the result ofMCPS before any FILcps simplifications are performed. Nine appli-
cations of the [copy-prop] rule and four applications of the [eta] rule are used to
simplify the code in Figure 17.30 to the code in Figure 17.29. In addition to mak-
ing the code shorter, these simplifications are essential for performing the tail-call
optimization. For example, the call (app t.37 t.38 k.40) in Figure 17.30 uses
the trivial continuation k.40 = (abs (t.39) (app kif.30 t.39)), which itself
uses the trivial continuation kif.30 = (abs (t.43) (app k.29 t.43)). This
call is transformed to the new call (app t.37 t.38 k.29) by using two appli-
cations of the [eta] rule (simplifying (abs (t.43) (app k.29 t.43)) to k.29

and (abs (t.39) (app kif.30 t.39)) to kif.30) and two applications of the
[copy-prop] rule (replacing kif.30 and k.40 by k.29).

A drawback of the [copy-prop] simplifications is that they rename some of
the identifiers from the input, making it harder for programmers to compare the
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(fil (a.0 b.1 ktop.9)

(let* ((abs.10

(abs (f.3 elts.4 k.20)

(let* ((t.22 (@null))

(t.21 (@mprod t.22))

(t.23 (@mprod #u))

(abs.25

(abs (xs.7 k.29)

(let ((t.31 (@null? xs.7)))

(if t.31

(let ((t.42 (@mget 1 t.21)))

(app k.29 t.42))

(let* ((t.34 (@car xs.7))

(k.41

(abs (t.35)

(let* ((t.36 (@mget 1 t.21))

(t.33 (@cons t.35 t.36))

(t.32 (@mset! 1 t.21 t.33))

(t.37 (@mget 1 t.23))

(t.38 (@cdr xs.7)))

(app t.37 t.38 k.29)))))

(app f.3 t.34 k.41))))))

(t.24 (@mset! 1 t.23 abs.25))

(t.26 (@mget 1 t.23)))

(app t.26 elts.4 k.20))))

(abs.11 (abs (x.8 k.18)

(let ((t.19 (@> x.8 b.1)))

(app k.18 t.19))))

(t.14 (@* a.0 7))

(t.15 (@null))

(t.13 (@cons t.14 t.15))

(t.12 (@cons a.0 t.13)))

(app abs.10 abs.11 t.12 ktop.9)))

Figure 17.29 revmap program after metaCPS conversion (with simplifications).

input and output of CPS conversion. In the revmap example, [copy-prop] changes
ans.5 to t.21 and loop.6 to t.23 and also replaces two occurrences of _ (by
t.32 and t.24). Since techniques to avoid such renamings are complex, and the
particular names used don’t affect the correctness of the resulting code, we opt
to accept such renamings without complaint.
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(fil (a.0 b.1 ktop.9)

(let* ((abs.10

(abs (f.3 elts.4 k.20)

(let* ((t.22 (@null))

(t.21 (@mprod t.22))

(ans.5 t.21)

(t.23 (@mprod #u))

(loop.6 t.23)

(abs.25

(abs (xs.7 k.29)

(let* ((kif.30 (abs (t.43) (app k.29 t.43)))

(t.31 (@null? xs.7)))

(if t.31

(let ((t.42 (@mget 1 ans.5)))

(app kif.30 t.42))

(let* ((t.34 (@car xs.7))

(k.41

(abs (t.35)

(let* ((t.36 (@mget 1 ans.5))

(t.33 (@cons t.35 t.36))

(t.32 (@mset! 1 ans.5 t.33))

(_ t.32)

(t.37 (@mget 1 loop.6))

(t.38 (@cdr xs.7))

(k.40 (abs (t.39)

(app kif.30 t.39))))

(app t.37 t.38 k.40)))))

(app f.3 t.34 k.41))))))

(t.24 (@mset! 1 loop.6 abs.25))

(_ t.24)

(t.26 (@mget 1 loop.6))

(k.28 (abs (t.27) (app k.20 t.27))))

(app t.26 elts.4 k.28))))

(revmap.2 abs.10)

(abs.11 (abs (x.8 k.18)

(let ((t.19 (@> x.8 b.1)))

(app k.18 t.19))))

(t.14 (@* a.0 7))

(t.15 (@null))

(t.13 (@cons t.14 t.15))

(t.12 (@cons a.0 t.13))

(k.17 (abs (t.16) (app ktop.9 t.16))))

(app revmap.2 abs.11 t.12 k.17)))

Figure 17.30 revmap program after metaCPS conversion (without simplifications).
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Exercise 17.19 Use MCPSexp to CPS-convert the following FIL expressions relative
to an initial metacontinuation (id→mc k).

a. (abs (f) (@+ 1 (app f 2)))

b. (abs (g x) (@+ 1 (app g (@* 2 x))))

c. (abs (f g h x) (app f (app g x) (app h x)))

d. (abs (f) (@* (if (app f 1) 2 3) (if (app f 4) 5 6)))

Exercise 17.20 Use MCPSprog to CPS-convert the following FIL programs:

a. The program Pquad from Figure 17.25 (page 1055).

b. (fil (x)

(let ((fact (@mprod #u))

(_ (@mset! 1 fact

(abs (n)

(if (@= n 0)

1

(@* n (app (@mget 1 fact) (@- n 1))))))))

(app (@mget 1 fact) x)))

c. (fil (x)

(let ((fib (@mprod #u))

(_ (@mset! 1 fib

(abs (n)

(if (@<= n 1)

n

(@+ (app (@mget 1 fib) (@- n 1))

(app (@mget 1 fib) (@- n 2))))))))

(app (@mget 1 fib) x)))

Exercise 17.21 Do Exercise 17.14 part a (page 1054), giving MCPSexp clauses instead
of SCPSexp clauses.

Exercise 17.22 The unique naming prerequisite on programs is essential for the cor-
rectness ofMCPSprog . To demonstrate this, show that the output ofMCPSprog [[Pmnun ]]
has a different behavior from Pmnun , where Pmnun is:

(fil (a b) (@+ (let ((a (@* b b))) a) a))

Exercise 17.23 Suppose that both FIL and FILcps were extended to include mutable
variables by adding the assignment construct (set! I E) as an element of E for FIL
and (set! I V ) as an element of LE for FILcps .

a. Give the MCPSexp clause for set!.
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MCPSexp [[(label IctrlPt Ebody)]] =
(λm . (let ((IctrlPt (mc→exp m)))

(MCPSexp [[Ebody ]] (id→mc IctrlPt))))

MCPSexp [[(jump EctrlPt Eval)]] =
(λm . (MCPSexp [[EctrlPt ]]

(λVctrlPt . (MCPSexp [[Eval ]]
(λVval . (app VctrlPt Vval))))))

Figure 17.31 CPS conversion of the label and jump constructs.

b. Show the result of using MCPSexp to convert the following program Pset!:

(fil (a b)

(let ((_ (set! a (set! b (@+ a b)))))

(@mprod a b)))

c. In the Tortoise compiler, assignment conversion is performed before CPS conversion.
Show the result of MCPSprog [[ACprog [[Pset!]]]].

d. It is possible to perform assignment conversion after CPS conversion. Show the result
of ACprog [[MCPSprog [[Pset!]]]]. Is the result a valid FILcps program?

e. Describe how to modify assignment conversion to guarantee that if its input is a valid
FILcps program then its output is also a valid FILcps program.

17.9.4 CPS-Converting Control Constructs

A key benefit of CPS conversion is that it enables seemingly complex control
constructs to be compiled simply. The continuations made explicit by CPS con-
version can be manipulated to implement the advanced control features studied
in Chapter 9, such as nonlocal jumps, exception handling, coroutines, and back-
tracking.

For example, Figure 17.31 gives the MCPSexp clauses for the label and
jump constructs presented in Section 9.4. The expression (label IctrlPt Ebody)

is translated to a let expression that evaluates the translation of Ebody in a
context where IctrlPt names a FIL abstraction,

(mc→exp m) = (abs (I ) (m I ))

that is an explicit representation of the current continuation. The metacontinu-
ation for converting Ebody ,

(id→mc IctrlPt) = (λV . (app IctrlPt V ))
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is equivalent to m but avoids code bloat by referring to the name IctrlPt rather
than duplicating the code it names (see Exercise 17.25). (jump EctrlPt Eval) is
translated to an expression that simply applies the continuation value of EctrlPt

to the value of Eval .
Figure 17.32 shows that CPS-converting the FIL expression

(@+ 1 (label exit (@* 2 (if b 3 (jump exit 4)))))

relative to the initial continuation k yields the FILcps expression

(let* ((exit (abs (t.2) (let ((t.1 (@+ 1 t.2))) (app k t.1))))

(k.4 (abs (t.5) (let ((t.3 (@* 2 t.5))) (app exit t.3)))))

(if b (app k.4 3) (app exit 4)))

The label-bound name exit names the abstraction

(abs (t.2) (let ((t.1 (@+ 1 t.2))) (app k t.1)))

which is a continuation representing the evaluation context (app k (@+ 1 �))

in which the label expression is encountered. The identifier k.4 names the
abstraction

(abs (t.5) (let ((t.3 (@* 2 t.5))) (app exit t.3)))

which is the normal continuation representing the evaluation context

(@+ 1 (label exit (@* 2 �)))

in which the if expression appears. This continuation eventually invokes the
exit continuation to return a value from the label expression in which the
(@* 2 . . . ) appears. The 3 in the then arm of the if translates to (app k.4 3),
which passes 3 to the normal continuation k.4. The (jump exit 4) in the else
arm of the if translates to (app exit 4); in this case, the normal continuation
k.4 is ignored because the body of the metalanguage abstraction (λm . . . . ) that
is the result of translating (jump exit 4) never mentions the metacontinuation
m that corresponds to the normal continuation. The fact that different contin-
uations are taken from the two if branches underscores the nonlinear nature of
nonlocal exits. Naming a continuation with label allows it to be copied and used
to replace the normal continuation elsewhere in the program.

If the normal continuation replaced by a jump is not mentioned elsewhere, it
will not appear in the CPS-converted code. For example, if the if expression
in Figure 17.32 were replaced by (jump exit 3), the result of CPS conversion
would be

(let ((exit (abs (t.2) (let ((t.1 (@+ 1 t.2))) (app k t.1)))))

(app exit 3))

Note that the continuation corresponding to the context (app exit (@* 2 �))

is eliminated because the clause for jump never uses its metacontinuation m.
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Exercise 17.24 Use MCPSexp to CPS-convert the following FIL+{label, jump} ex-
pressions relative to an initial metacontinuation (id→mc k):

a. (@+ 1 (label a (@* 2 (label b (@- (jump b 3) (jump a 4))))))

b. (@+ 1 (label a (@* 2 (label b (@- (jump a 3) (jump b 4))))))

c. (label exit

(abs (y)

(if (@= y 0)

(jump exit (abs (z) z))

(@+ 1 y))))

d. (abs (ints)

(label return

(let* ((product (@mprod #u))

(_ (@mset! 1 product

(abs (ns)

(if (@null? ns)

1

(if (@= (@car ns) 0)

(jump return 0)

(@* (@car ns)

(app (@mget 1 product) (@cdr ns)))))))))

(app (@mget 1 product) ints))))

Exercise 17.25 Bud Lojack suggests that (id→mc IctrlPt) be replaced by m in the
MCPSexp clause for label. Discuss the ramifications of Bud’s change. For example,
how would Bud’s CPS conversions of the following examples differ from the conversions
shown above?

(@+ 1 (label exit (@* 2 (if b 3 (jump exit 4)))))

(@+ 1 (label exit (@* 2 (jump exit 3))))

Exercise 17.26 Suppose that the FIL kernel is extended with the cwcc feature intro-
duced in Section 9.4.4:

E ∈ Exp ::= . . . | (cwcc Ereceiver)

a. Write an SCPSexp clause for cwcc.

b. Write an MCPSexp clause for cwcc. Be careful to avoid code duplication.

Exercise 17.27 Sam Antics wants to explore the implementation of dynamically scoped
exceptions with termination semantics (see Section 9.6). He extends FIL with two new
constructs:

E ∈ Exp ::= . . . | (throw Einfo) | (catch Ehandler Ebody)
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(MCPSexp [[(@+ 1 (label exit (@* 2 (if b 3 (jump exit 4)))))]] (id→mc k))

= ((λm . (MCPSexp [[1]]
(λV1 . (MCPSexp [[(label exit (@* 2 (if b 3 (jump exit 4))))]]

(λV2 . (let ((t.1 (@+ V1 V2))) (m t.1)))))))
(λV3 . (app k V3)))

= (MCPSexp [[(label exit (@* 2 (if b 3 (jump exit 4))))]]
(λV2 . (let ((t.1 (@+ 1 V2))) (app k t.1))))

= ((λm . (let ((exit (mc→exp m)))
(MCPSexp [[(@* 2 (if b 3 (jump exit 4)))]] (id→mc exit))))

(λV2 . (let ((t.1 (@+ 1 V2))) (app k t.1))))

= (let ((exit (abs (t.2) (let ((t.1 (@+ 1 t.2))) (app k t.1)))))

(MCPSexp [[(@* 2 (if b 3 (jump exit 4)))]]
(λV4 . (app exit V4))))

= (let ((exit (abs (t.2) (let ((t.1 (@+ 1 t.2))) (app k t.1)))))

((λm . (MCPSexp [[2]]
(λV5 . (MCPSexp [[(if b 3 (jump exit 4))]]

(λV6 . (let ((t.3 (@* V5 V6))) (m t.3)))))))
(λV4 . (app exit V4))))

= (let ((exit (abs (t.2) (let ((t.1 (@+ 1 t.2))) (app k t.1)))))

(MCPSexp [[(if b 3 (jump exit 4))]]
(λV6 . (let ((t.3 (@* 2 V6))) (app exit t.3)))))

= (let ((exit (abs (t.2) (let ((t.1 (@+ 1 t.2))) (app k t.1)))))

((λm . (MCPSexp [[b]]
(λV7 . (let ((k.4 (mc→exp m)))

(if V7

(MCPSexp [[3]] (id→mc k.4))
(MCPSexp [[(jump exit 4)]] (id→mc k.4)))))))

(λV6 . (let ((t.3 (@* 2 V6))) (app exit t.3)))))

= (let* ((exit (abs (t.2) (let ((t.1 (@+ 1 t.2))) (app k t.1))))

(k.4 (abs (t.5) (let ((t.3 (@* 2 t.5))) (app exit t.3)))))

(if b

(app k.4 3)

((λm . (MCPSexp [[exit]] ; m not used in this metacontinuation body
(λV8 . (MCPSexp [[4]] (λV9 . (app V8 V9))))))

(id→mc k.4))))

= (let* ((exit (abs (t.2) (let ((t.1 (@+ 1 t.2))) (app k t.1))))

(k.4 (abs (t.5) (let ((t.3 (@* 2 t.5))) (app exit t.3)))))

(if b (app k.4 3) (app exit 4)))

Figure 17.32 An example of CPS-converting label and jump using metacontinuations.
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Sam’s throw and catch constructs are simplified versions of the raise and handle

constructs from Section 9.6. Exception tags are unnecessary because there is only one
possible kind of exception:

(throw Einfo) evaluates Einfo to a value Vinfo and transfers control with information
Vinfo to the nearest dynamically enclosing catch handler. It is an error if there is no
dynamically enclosing catch handler.

(catch Ehandler Ebody) first evaluates Ehandler to a unary exception-handling proce-
dure Vhandler . (It is an error if Ehandler does not denote a procedure.) Then Ebody

is evaluated. If no exception is thrown in the evaluation of Ebody , its value is the
value of the catch expression. If an exception with information Vinfo is thrown and
not handled within Ebody , the value of the catch expression is the result of applying
Vhandler to Vinfo .

Sam gives the following examples of his constructs in action:

Ecatchabs = (abs (n)

(catch (abs (x) (@+ x 1))

(let ((f (abs (y) (if (@> y n) y (throw y)))))

(@- (f 5) (catch (abs (z) (@* 2 z)) (f 3))))))

(app Ecatchabs 0) −−−FIL→ 2 {5 - 3 = 2}

(app Ecatchabs 4) −−−FIL→ −1 {5 - (2*3) = -1}

(app Ecatchabs 8) −−−FIL→ 6 {5 + 1 = 6}

a. Sam modifies the standard SCPS conversion clauses to translate every expression
into a procedure taking two continuations: an exception continuation and a normal
continuation. Sam’s SCPS conversion clauses for programs, literals, and conditionals
are:

SCPSprog [[(fil (I n
i=1) Ebody)]]

= (fil (I n
i=1 Ikntop) ; Ikntop fresh

(let ((Iketop (abs (Iinfo) ; Iketop and Iinfo fresh
(error uncaught-exception))))

(app (SCPSexp [[Ebody ]]) Iketop Ikntop)))

SCPSexp [[L]] = (abs (Ike Ikn) ; Ike (exception cont.) and Ikn (normal cont.) fresh
(app Ikn L))

SCPSexp [[(if Etest Ethen Eelse)]]
= (abs (Ike Ikn) ; Ike and Ikn fresh

(app (SCPSexp [[Etest ]])
Ike
(abs (Itest) ; Itest fresh
(if Itest

(app (SCPSexp [[Ethen ]]) Ike Ikn)
(app (SCPSexp [[Eelse ]]) Ike Ikn)))))

Write the SCPSexp clauses for abs, app, throw, and catch.
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b. For MCPS, Sam modifies MCPSexp to take an additional argument (an identifier
naming the current exception continuation) before the metacontinuation argument.
For example:

MCPSprog [[(fil (I n
i=1) Ebody)]]

= (fil (I n
i=1 Ikntop) ; Ikntop fresh

(let ((Iketop (abs (Iinfo) ; Iketop and Iinfo fresh
(error uncaught-exception))))

(MCPSexp [[Ebody ]] Iketop (id→mc Ikntop))))

MCPSexp : ExpFIL → Ident → MetaCont → Expcps

MCPSexp [[L]] = (λIke m . (m L))

MCPSexp [[(if Etest Ethen Eelse)]]
= (λIke m . (MCPSexp [[Etest ]] Ike

(λVtest . (let ((Ikif (mc→exp m))) ; Ikif fresh
(if Vtest

(MCPSexp [[Ethen ]] Ike (id→mc Ikif ))
(MCPSexp [[Eelse ]] Ike (id→mc Ikif )))))))

Write the MCPSexp clauses for abs, app, throw, and catch.

c. Based on the metaCPS conversion of FIL+{throw, catch} explain how to perform
metaCPS conversion for FIL+{raise, handle}.

17.10 Transformation 8: Closure Conversion

In a block-structured language, code can refer to variables declared outside the
current block (i.e., in an outer procedure or class declaration). As we have seen
in Chapters 6–7, the meaning of such free variable references is often explained
in terms of environments. Traditional interpreters and compilers have special-
purpose machinery to manage environments.

The Tortoise compiler avoids such machinery by making all environments
explicit in the intermediate language. Each procedure is transformed into an
abstract pair of code and environment, where the code explicitly accesses the en-
vironment to retrieve values formerly referenced by free variables. The resulting
abstract pair is known as a closure because its code component is closed—i.e.,
it contains no free variables. The process of transforming all procedures into
closures is traditionally called closure conversion. Because it makes all envi-
ronments explicit, environment conversion is another name for this transfor-
mation.

Closure conversion transforms a program that may contain higher-order pro-
cedures into one that contains only first-order procedures: rather than passing
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a procedure as a parameter or returning one as a result, a transformed program
passes or returns a closure data structure. This technique is not only useful as a
compiler transformation, but programmers may also apply it manually to simu-
late higher-order procedures in languages that support only first-order procedures
(such as C, Pascal, and Ada) or objects with methods (such as SmallTalk,
Java, C++, and C#). All one needs is a way to embed a procedure value (or a
reference to a procedure) in a data structure (or object).

In the Tortoise compiler, closure conversion has the following specification:

Preconditions: The input to closure conversion is a valid kernel FIL pro-
gram.

Postconditions: The output of closure conversion is a valid kernel FIL
program in which all abstractions are closed.

Other properties: If the input program is in FILcps , so is the output
program.

In the Tortoise compiler, the closure conversion stage follows the renaming
and CPS conversion stages, but closure conversion can be performed on any FIL
program, even ones that are not uniquely named or in FILcps . The reason that
Tortoise performs closure conversion after CPS conversion is so that closure
conversion will be performed on the continuation procedures introduced by CPS
conversion as well as on the user-defined procedures already in the program. The
Tortoise closure conversion specification requires that any FILcps program will
be tranformed to another FILcps program, so the output of the closure conversion
stage of the compiler is guaranteed to be in FILcps .

There are numerous approaches to closure conversion that differ in their rep-
resentations of environments and closures. We shall focus on one class of repre-
sentations, flat closures, and then briefly discuss some alternatives.

17.10.1 Flat Closures

Consider the following example:

(let ((linear (abs (a b)

(abs (x)

(@+ (@* a x) b)))))

(let ((f (app linear 4 5))

(g (app linear 6 7)))

(@+ (app f 8) (app g 9))))
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Given a and b, the linear procedure returns a procedural representation of a
line with slope a and y-intercept b. The f and g procedures represent two such
lines, each of which is associated with the abstraction (abs (x) . . . ), which has
free variables a and b. In the case of f, these variables have the bindings 4 and
5, respectively, while for g they have the bindings 6 and 7.

We will convert this example by hand and then develop an automatic closure
conversion transformation. One way to represent f and g as closed procedures is
shown below:

(let ((fgcode (abs (env x)

(let ((a (@mget 1 env))

(b (@mget 2 env)))

(@+ (@* a x) b))))

(fenv (@mprod 4 5))

(genv (@mprod 6 7)))

(let ((fclopair (@mprod fgcode fenv))

(gclopair (@mprod fgcode genv)))

(@+ (app (@mget 1 fclopair) (@mget 2 fclopair) 8)

(app (@mget 1 gclopair) (@mget 2 gclopair) 9))))

In this approach, the two procedures share the same code component, fgcode ,
which takes an explicit environment argument env in addition to the original
argument x. The env argument is assumed to be a tuple (product) whose two
components are the values of the former free variables a and b. These values
are extracted from the environment and given their former names in a wrapper
around the body expression (@+ (@* a x) b). Note that fgcode has no free
variables and so is a closed procedure. The environments fenv and genv are tuples
holding the free variable values. The closures fclopair and gclopair are formed
by making explicit code/environment pairs, each combining the shared code
component with a specific environment for the closure. To handle the change in
procedure representation, each call of the form (app f E) must be transformed
to (app (@mget 1 fclopair) (@mget 2 fclopair) E) (and similarly for g) in order
to pass the environment component as the first argument to the code component.

Closure conversion can be viewed as an exercise in abstract data type imple-
mentation. The abstraction being considered is the procedure, whose interface
has two operations: abs, which creates procedures, and app, which applies pro-
cedures. The goal of closure conversion is to find an implementation of this
interface that behaves the same, but in which procedure creation requires no free
variables. As in traditional data structure problems, we’re keen to design correct
implementations that are as efficient as possible.
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(let ((linear

(@mprod {this closure (clo.1) has only a code component}
(abs (clo.1 a b) {the parameter clo.1 is not referenced}
(@mprod {this closure (clo.2) has code + vars {a, b}}

(abs (clo.2 x)

(let ((a (@mget 2 clo.2))

(b (@mget 3 clo.2)))

(@+ (@* a x) b)))

a b)) {vars used by clo.2 = {a, b}}
))) {clo.1 has no vars}

(let ((f (app (@mget 1 linear) linear 4 5))

(g (app (@mget 1 linear) linear 6 7)))

(@+ (app (@mget 1 f) f 8)

(app (@mget 1 g) g 9))))

Figure 17.33 Result of closure-converting the linear example.

For example, a more efficient approach to using explicit code/environment
pairs is to collect the code and free variable values into a single tuple, as shown
below:

(let ((fg′code (abs (clo x)

(let ((a (@mget 2 clo))

(b (@mget 3 clo)))

(@+ (@* a x) b)))))

(let ((fclo (@mprod fg′code 4 5))

(gclo (@mprod fg′code 6 7)))

(@+ (app (@mget 1 fclo) fclo 8)

(app (@mget 1 gclo) gclo 9))))

This approach, known as closure-passing style, avoids creating a separate en-
vironment tuple every time a closure is created, and avoids extracting this tuple
from the code/environment pair every time the closure is invoked.

If we systematically use closure-passing style to transform every abstraction
and application site in the original linear example, we get the result shown in
Figure 17.33. The inner abs has been transformed into a tuple that combines
fgcode with the values of the free variables a and b from the outer abs. For
consistency, the outer abs has also been transformed; its tuple has only a code
component since the original abs has no free variables. By convention, we will
refer to a closure tuple by the name of the first argument of its code component.
In this example, the code comments refer to the outer closure tuple as clo.1 and
the inner closure tuple as clo.2.
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Figure 17.34 shows an example involving nested open procedures and un-
referenced variables. In the unconverted clotest, the outermost abstraction,
(abs (c d) . . .), is closed; the middle abstraction, (abs (r s t) . . .), has
c as its only free variable (d is never used); and the innermost abstraction,
(abs (y) . . .), has {c, r, t} as its free variables (d and s are never used). In
the converted clotest, each abstraction has been transformed into a tuple that
combines a closed code component with all the free variables of the original
abstraction. The resulting tuples are called flat closures because all the envi-
ronment information has been condensed into a single tuple that does not reflect
any of the original nesting structure. Note that unreferenced variables from an
enclosing scope are ignored. For example, the innermost body does not reference
d and s, so these variables are not extracted from clo.3 and are not included in
the innermost closure tuple.

A formal specification of the flat closure conversion transformation is pre-
sented in Figure 17.35. The transformation is specified via the CLexp function
on FIL expressions. The only nontrivial cases for CLexp are abs and app. CLexp

converts an abs to a tuple containing a closed code component and all the free
variables of the abstraction. The code component is derived from the original
abs by adding a closure argument Iclo and extracting the free variables from this
argument in a wrapper around the body. The order of the free variables is irrele-
vant as long as it is consistent between tuple creation and projection. An app is
converted to another app that applies the code component of the converted rator
closure to the closure and the converted operands.

Certain parts of the CLexp definition are written in a somewhat unnatural way
to guarantee that an input expression in FILcps will be translated to an output
expression in FILcps . This is the purpose of the separate clause for converting
an abs that occurs in a let binding and of the let* bindings in the app and
abs conversions. We will ignore these details in our informal examples of closure
conversion.

Note that the unique naming property is not preserved by CLexp . The names
Ifvi declared in the body of the closed abstraction stand for variables that are
logically distinct from variables with the same names in the mprod application
that creates the closure tuple.

Figure 17.36 shows the revmap example after closure conversion. In addi-
tion to transforming procedures present in the original code in Figure 17.4 on
page 1011 (clo.56 is revmap, clo.52 is loop, and clo.60 is the greater-than-b
procedure), closure conversion also transforms the continuation procedures intro-
duced by CPS conversion (clo.48 is the continuation for the f call—compare
Figure 17.29 on page 1067). The free variables in converted continuations corre-
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Unconverted Expression
(let ((clotest

(abs (c d)

(abs (r s t)

(abs (y)

(@+ (@/ (@* r y) t) (@- r c)))))))

(let ((p (app clotest 4 5)))

(let ((q1 (app p 6 7 8))

(q2 (app p 9 10 11)))

(@+ (app q1 12) (app q2 13)))))

Converted Expression
(let ((clotest

(@mprod {this closure (clo.1) has only a code component}
(abs (clo.1 c d) {the parameter clo.1 is never referenced}

(@mprod {this closure (clo.2) has code + var {c}}
(abs (clo.2 r s t)

(let ((c (@mget 2 clo.2)))

(@mprod {this closure (clo.3) has code + vars {c, r, t}}
(abs (clo.3 y)

(let ((c (@mget 2 clo.3))

(r (@mget 3 clo.3))

(t (@mget 4 clo.3)))

(@+ (@/ (@* r y) t) (@- r c))))

c r t))) {vars used by clo.3 = {c, r, t}}
c)) {vars used by clo.2 = {c}}

))) {clo.1 has no vars}
(let ((p (app (@mget 1 clotest) clotest 4 5)))

(let ((q1 (app (@mget 1 p) p 6 7 8))

(q2 (app (@mget 1 p) p 9 10 11)))

(@+ (app (@mget 1 q1) q1 12) (app (@mget 1 q2) q2 13)))))

Figure 17.34 Flat closure conversion on an example with nested open procedures.

spond to the caller-saved register values that a traditional implementation would
save on the stack during a subroutine call that returns to the control point rep-
resented by the continuation. In the Tortoise compiler, this saving behavior is
automatically implemented by performing closure conversion after CPS conver-
sion, but the saved values are stored in the continuation closure rather than on
an explicit stack. For example, continuation closure clo.48 includes the values
needed by the loop after a call to f: the cell t.21 resulting from the assignment



17.10.1 Flat Closures 1081

CLexp : ExpFIL → ExpFIL

CLexp [[(abs (I n
i=1) Ebody)]]

= let {Ifv1
, . . . , Ifvk

} be FrIds[[(abs (I n
i=1) Ebody)]]

; assume an appropriate definition of FrIds for FIL
in (@mprod (abs (Iclo I n

i=1) ; Iclo fresh
(let* ((Ifvj

(@mget j + 1 Iclo))
k
j=1); N [[n]] = n for n ∈ Nat

CLexp [[Ebody ]]))
Ifv1

. . . Ifvk
)

CLexp [[(let ((Iabs (abs (I n
i=1) Eabsbody))) Eletbody)]]

; special case of abs conversion that preserves FILcps

= let (@mprod Ecode Ifv1
. . . Ifvk

) be CLexp [[(abs (I n
i=1) Eabsbody)]]

in (let* ((Icode Ecode) ; Icode fresh
(Iabs (@mprod Icode Ifv1

. . . Ifvk
)))

CLexp [[Eletbody ]])

CLexp [[(app Erator En
i=1)]]

= (let* ((Iclo CLexp [[Erator ]]) ; Iclo fresh
(Icode (@mget 1 Iclo))) ; Icode fresh

(app Icode Iclo CLexp [[Ei ]]
n
i=1))

CLexp [[E ]] = mapsubFIL[[E ]] CLexp , otherwise.

Figure 17.35 The flat closure conversion transformation CLexp .

conversion of ans, the cell holding the looping procedure t.23, the loop state
variable xs.7, and the end-of-loop continuation k.29.

In Figure 17.36, we assume that the top-level continuation ktop.9 supplied by
the operating system is consistent with the calling convention used by the closure-
converted code. I.e., ktop.9 must be a closure tuple whose first slot contains an
abstraction with two parameters: (1) the closure tuple and (2) the argument
expected by the system’s unary continuation procedure. Alternatively, for the
case where closure conversion is known to follow CPS conversion, we could define
a special program-level closure conversion function CLprog that assumes that the
final argument in the input FILcps program is an unconverted unary continuation
procedure (see Exercise 17.30).

In order to work properly, CLexp requires that the input expression contain
no assignments (set!). This is necessarily true in FIL, which does not support
set!, but would be an issue in extensions to FIL that include set! (e.g., see
Exercises 17.14 and 17.23 in Sections 17.9.2 and 17.9.3). The reason for this
restriction is that the copying of free variable values by CLexp in the abs clause
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does not preserve the semantics of mutable variables. Consider the following
example of a nullary procedure that increments a counter every time it is called
in FIL+{set!}:

(let ((count 0))

(abs ()

(let* ((new-count (@+ count 1))

(_ (set! count new-count)))

new-count)))

Closure-converting this example yields:

(let ((count 0))

(@mprod (abs (clo)

(let* ((count (@mget 2 clo)))

(let* ((new-count (@+ count 1))

(_ (set! count new-count)))

new-count)))

count))

The set! in the transformed code changes the local variable count within the ab-
straction, which is always initially bound to the value 0. So the closure-converted
procedure always returns 1, which is not the correct behavior. Performing as-
signment conversion before closure conversion fixes this problem, since count will
then name a sharable mutable cell rather than a number, and the set! will be
transformed to an mset! on this cell.

The interaction between mutable variables and closure conversion arises in
practice in Java. Java’s anonymous inner classes allow the programmer to cre-
ate an instance of an unnamed class (the inner class) within the method of another
class (the outer class). Because it is possible for the inner class instance to refer to
parameters and local variables of the enclosing method, the inner class instance
is effectively a closure over these variables. For example, Figure 17.37 shows
how an inner class can be used to express the linear example from page 1076 in
Java. The IntFun interface is a specification for a class providing an app method
that takes a single integer argument and returns an integer result. The linear

method of the Linear class takes integers a and b and returns an instance of an
anonymous class satisfying the IntFun specification whose app method maps an
argument x to the result (a*x)+b. This instance corresponds to the first-class
procedure (abs (x) (+ (* a x) b)) in FIL. Java requires any enclosing local
variables mentioned in the inner class (a and b in this example) to be declared
immutable (using the keyword final). This restriction allows the Java compiler
to copy the values of these variables into instance variables of the anonymous in-
ner class instance rather than attempting to share the locations of these variables
(which would require some form of assignment conversion).
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(fil (a.0 b.1 ktop.9)
(let* ((code.57 {code of clo.56}

(abs (clo.56 f.3 elts.4 k.20)
(let* ((t.22 (@null))

(t.21 (@mprod t.22))
(t.23 (@mprod #u))
(code.53 {code of clo.52}
(abs (clo.52 xs.7 k.29)
(let* ((t.21 (@mget 2 clo.52))

(t.23 (@mget 3 clo.52))
(f.3 (@mget 4 clo.52))
(t.31 (@null? xs.7)))

(if t.31
(let* ((t.42 (@mget 1 t.21))

(code.44 (@mget 1 k.29)))
(app code.44 k.29 t.42))

(let* ((t.34 (@car xs.7))
(code.49 {code of clo.48}
(abs (clo.48 t.35)
(let* ((t.21 (@mget 2 clo.48))

(t.23 (@mget 3 clo.48))
(xs.7 (@mget 4 clo.48))
(k.29 (@mget 5 clo.48))
(t.36 (@mget 1 t.21))
(t.33 (@cons t.35 t.36))
(t.32 (@mset! 1 t.21 t.33))
(t.37 (@mget 1 t.23))
(t.38 (@cdr xs.7))
(code.46 (@mget 1 t.37)))

(app code.46 t.37 t.38 k.29))))
(k.41
(@mprod code.49 t.21 t.23 xs.7 k.29)) {clo.48}
(code.50 (@mget 1 f.3)))

(app code.50 f.3 t.34 k.41))))))
(abs.25 (@mprod code.53 t.21 t.23 f.3)) {clo.52}
(t.24 (@mset! 1 t.23 abs.25))
(t.26 (@mget 1 t.23))
(code.54 (@mget 1 t.26)))

(app code.54 t.26 elts.4 k.20))))
(abs.10 (@mprod code.57)) {clo.56}
(code.61 (abs (clo.60 x.8 k.18) {code of clo.60}

(let* ((b.1 (@mget 2 clo.60))
(t.19 (@> x.8 b.1))
(code.58 (@mget 1 k.18)))

(app code.58 k.18 t.19))))
(abs.11 (@mprod code.61 b.1)) {clo.60}
(t.14 (@* a.0 7))
(t.15 (@null))
(t.13 (@cons t.14 t.15))
(t.12 (@cons a.0 t.13))
(code.62 (@mget 1 abs.10)))

(app code.62 abs.10 abs.11 t.12 ktop.9)))

Figure 17.36 revmap program after closure conversion.
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Exercise 17.28

a. A function f is idempotent iff (f (f x)) = (f x) for all x ∈ dom(f ). CLexp is not
idempotent. Explain why. Can any closure conversion transformation be idempotent?

b. In the abs clause for CLexp , suppose FrIds[[(abs (I n
i=1) Ebody)]] is replaced by the

set of all variables in scope at that point. Is this a meaning-preserving change? What
are the advantages and disadvantages of such a change?

c. In a FIL-based compiler, CLexp must necessarily be performed after an assignment
conversion pass. Could we perform it before a renaming pass? A globalization pass?
A CPS-conversion pass? Explain.

Exercise 17.29 In the abs clause, the CLexp function uses a wrapping strategy to
wrap the body of the original abs in a let* that extracts and names each free variable
value in the closure. An alternative substitution strategy is to replace each free
reference in the original abs by a closure access. Here is a modified version of the clo.2

code component from Figure 17.33 that uses the substitution strategy:

(abs (clo.2 x) (@+ (@* (@mget 2 clo.2) x) (@mget 3 clo.2)))

Neither strategy is best in all situations. Describe situations in which the wrapping
strategy is superior and in which the substitution strategy is superior. State all of the
assumptions of your argument.

Exercise 17.30

a. Define a program-level closure conversion function CLprog that expects a FILcps pro-
gram:

CLprog : Progcps → Progcps

In both the input and output programs, the final program argument Iktop is expected
to be the top-level unary continuation procedure. CLprog must handle Iktop specially so
that it is applied directly to its single argument rather than via the closure application
convention. It is not necessary to modify CLexp .

b. Show the result of using your CLprog function to closure-convert the following program:

(fil (a b ktop)

(let ((add-a (abs (x k)

(let ((t (@+ x a)))

(app k t)))))

(if b (app add-a a ktop) (app ktop a))))

Exercise 17.31 Using anonymous inner classes, complete the following translation of
the clotest example from Figure 17.34 into Java by filling in the hole in the following
code with a single Java expression:



17.10.2 Variations on Flat Closure Conversion 1085

interface IntFun { public int app (int x); }

public class Linear {

public static IntFun linear (final int a, final int b) {

return new IntFun() { public int app (int x) {return (a*x)+b;} };

}

public static int example () {

IntFun f = linear(4,5);

IntFun g = linear(6,7);

return f.app(8) + g.app(9);

}

}

Figure 17.37 Using anonymous inner classes to express the linear example from
page 1076 in Java.

interface IntFun1 { public int app (int x); }

interface IntFun2 { public IntFun3 app (int x, int y); }

interface IntFun3 { public IntFun1 app (int x, int y, int z); }

public class Clotest {

public static int example () {

IntFun2 clotest = �;

IntFun3 p = clotest.app(4,5);

IntFun1 q1 = p.app(6,7,8);

IntFun1 q2 = p.app(9,10,11);

return q1.app(12) + q2.app(13);

}

}

17.10.2 Variations on Flat Closure Conversion

Now we consider several variations on flat closure conversion. We begin with
an optimization to CLexp . Why does CLexp transform an already closed abs

into a closure tuple? This strategy simplifies the transformation by enabling all
procedure applications to be transformed uniformly to “expect” such a tuple.
But it is also possible to use nonuniform transformations on abstractions and
applications as long as the correct behavior is maintained. Given a control
flow analysis (see page 995) that indicates which procedures flow to which call
sites (application expressions that use the procedures in their rator positions),
we can do a better job via so-called selective closure conversion [WS94].
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(let ((linear

(abs (a b) {this closed abstraction is not transformed}
(@mprod {this is the closure tuple for an open abstraction}
(abs (clo.2 x)

(let* ((a (@mget 2 clo.2))

(b (@mget 3 clo.2)))

(@+ (@* a x) b)))

a b)))) {free vars of clo.2}
(let ((f (app linear 4 5)) {this application is not transformed}

(g (app linear 6 7))) {this application is not transformed}
(@+ (app (@mget 1 f) f 8)

(app (@mget 1 g) g 9))))

Figure 17.38 Result of selective closure conversion in the linear example.

In this approach, originally closed procedures that flow only to call sites where
only originally closed procedures are called are left unchanged by the closure
conversion process, as are their call sites. This avoids unnecessary tuple creation
and projection. The result of selective closure conversion for the linear example
is presented in Figure 17.38 (compare Figure 17.33 on page 1078). Because
the linear procedure is closed, its abstraction and the calls to linear are not
transformed. But the procedure returned by invoking linear has free variables
(a and b), and so must be converted to a closure tuple.

In selective closure conversion, a closed procedure pclosed cannot be optimized
when it is called at the same call site s as an open procedure popen in the original
program. The call site must be transformed to expect for its rator a closure tuple
for popen, and so pclosed must also be represented as a closure tuple since it flows
to the rator position of s. This representation constraint can similarly force other
closed procedures that share call sites with pclosed to be converted, leading to a
contagious phenomenon called representation pollution [DWM+01].

In the following example, although f is closed, selective closure conversion
must still convert f to a closure tuple because it flows to the same call site
(app (if b f g) 3) as the open procedure g:

Epolluted = (abs (b c)

(let ((f (abs (x) (@+ x 1)))

(g (let ((a (if b 4 5)))

(abs (y) (@+ (@* a y) c)))))

(@+ (app f 2)

(app (if b f g) 3))))
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Representation pollution can sometimes be avoided by duplicating a closed pro-
cedure and using different representations for the two copies. For instance, if
we split f in Epolluted into two copies, then the copy that flows to the call site
(app f 2) need not be converted to a tuple in the closure-converted code:

(abs (b c) {assume the outer abstraction need not be converted to a tuple}
(let ((f1 (abs (x) (@+ x 1))) {this copy is not converted to a tuple}

(f2 (@mprod (abs (clo.1 x) (@+ x 1))))

{this copy is converted to a tuple}
(g (let ((a (if b 4 5)))

(@mprod (abs (clo.2 y) {this must be converted to a tuple}
(let ((a (@mget 1 clo.2))

(c (@mget 2 clo.2)))

(@+ (@* a y) c)))

a c))))

(@+ (app f1 2) {this is an unconverted call site}
(let ((clo.3 (if b f2 g))) {this is a converted call site}

(app (@mget 1 clo.3) clo.3 3)))))

When closed and open procedures flow to the same call site (e.g., f2 and g

above), we can force the closed procedure to have the same representation as the
open one (i.e., a closure tuple). Another way to handle heterogeneous procedure
representations is to affix tags to procedures to indicate their representation. Call
sites where different representations flow together perform a dynamic dispatch
on the tagged value. For example, using the oneof notation introduced in Sec-
tion 10.2, we can use code to tag a closed procedure and closure to tag a closure
tuple, as in the following conversion of Epolluted :

(abs (b c) {assume the outer abstraction need not be converted to a tuple}
(let ((f1 (abs (x) (@+ x 1))) {this copy is not converted to a tuple}

(f2 (one code (abs (x) (@+ x 1)))) {tagged as a closed procedure}
(g (let ((a (if b 4 5)))

(one closure {tagged as a closure}
(@mprod (abs (clo y)

(let ((a (@mget 2 clo))

(c (@mget 3 clo)))

(@+ (@* a y) c)))

a c)))))

(@+ (app f1 2) {this is an unconverted call site}
(app-generic (if b f2 g) 3))))

Here, (app-generic Erator En
i=1) is assumed to desugar to

(let ((Ii Ei)
n
i=1) ; I n

i=1 are fresh
(tagcase Erator Irator

(code (app Irator I n
i=1))

(closure (app (@mget 1 Irator) Irator I n
i=1))))
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This tagging strategy is not necessarily a good idea. Analyzing and converting
programs to handle tags is complex, and the overhead of tag manipulation can
offset the gains made by reducing representation pollution [DWM+01].

In an extreme version of the tagging strategy, all procedures that flow to a
given call site are viewed as members of a sum-of-products data type. Each el-
ement in this data type is a tagged environment tuple. The tag indicates which
abstraction created the procedure, and the environment tuple holds the free vari-
able values of the procedure. A procedure call can then be converted to a dis-
patch on the environment tag that calls an associated closed procedure. Using
this strategy on Epolluted yields

(abs (b c)

(let ((fcode (abs (x) (@+ x 1))) {code for f}
(fenv (one abs1 (@mprod))) {tagged environment for f}
(gcode (abs (y a c) (@+ (@* a y) c))) {code for g}
(genv (let ((a (if b 4 5)))

(one abs2 (@mprod a c))))) {tagged environment for g}
(@+ (app fcode 2)

(app-env (if b fenv genv) 3))))

where (app-env Eenv Erand) is an abbreviation for

(let ((Irand Erand))

(tagcase Eenv Ienv

(abs1 (app fcode Irand))

(abs2 (app gcode Irand (@mget 1 Ienv) (@mget 2 Ienv)))))

The procedure call overhead in the dispatch can often be reduced by an inlining
process that replaces some calls by appropriately rewritten copies of their bodies.
E.g., app-env could be rewritten as

(let ((Irand E1))

(tagcase Eenv Ienv

(abs1 (@+ Irand 1))

(abs2 (@+ (@* (@mget 1 Ienv) Irand) (@mget 2 Ienv)))))

This example uses only a single app-env procedure, but in the worst case a
different environment application procedure might be needed at every call site.

This environment-tagging strategy is known as defunctionalization [Rey72]
because it removes all higher-order functions from a program. Defunctionaliza-
tion is an important closure conversion technique for languages (such as Ada
and Pascal) in which function pointers cannot be stored in data structures —
a feature required in all the previous techniques we have studied. Some draw-
backs of defunctionalization are that it requires the whole program (it cannot be
performed on individual modules) and that environment application procedures
like app-env might need to dispatch on all abstractions in the entire program. In
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practice, type and control flow information can be used to significantly narrow
the set of abstractions that need to be considered at a given call site, making de-
functionalization a surprisingly efficient approach to closure conversion [CJW00].

A closure need not carry with it the value of a free variable if that variable
is available in all contexts where the closure is invoked. This observation is
the key idea behind so-called lightweight closure conversion [WS94, SW97],
which can decrease the number of free variables in a procedure by adding extra
arguments to the procedure if those arguments are always dynamically available
at all call sites for the procedure. In our example, the lightweight optimization
is realized by rewriting the Epolluted as follows before performing other closure
conversion techniques:

(abs (b c)

(let ((f (abs (x c) (@+ x 1))) {(3) By 2, need param c here.}
(g (let ((a (if b 4 5)))

(abs (y c) (@+ (@* a y) c))))) {(1) Add c as param.}
(@+ (app f 2 c) {(4) By 3, must add c as an arg here, too.}

(app (if b f g) 3 c)))) {(2) By 1, need arg c here.}

Since g’s free variable c is available at the one site where g is called, we should
be able to pass it as an argument at the site rather than storing it in the closure
for g. But representation constraints also force us to add c as an argument to
f, since f shares a call site with g. If f were called in some context outside the
scope of c, this fact would invalidate the proposed optimization. This example
only hints at the sophistication of the analysis required to perform lightweight
closure conversion in practice.

Exercise 17.32 Consider the following FIL abstraction Eabs :

(abs (b)

(let ((f (abs (x) (@+ x 1)))

(g (abs (y) (@* y 2)))

(h (abs (a) (abs (z) (@/ z a))))

(p (abs (r) (app r 3))))

(@+ (app (if b f g) 4)

(@* (app p (app h 5)) (app p (app h 6))))))

a. Show the result of applying flat closure conversion to Eabs .

b. The transformation can be improved if we use selective closure conversion instead.
Show the result of selective closure conversion on Eabs .

c. Suppose we replace (app h 6) by g in Eabs to give E ′
abs . Then selective closure

conversion on E ′
abs does not yield an improvement over regular closure conversion on

E ′
abs Explain why.

d. Describe a simple meaning-preserving change to E ′
abs after which selective closure

conversion will be an improvement over regular closure conversion.
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Exercise 17.33 Using the flat closure conversion techniques presented so far, translate
the following FIL program into C, Java, and Pascal. The program has the property
that equality, remainder, division, and subtraction operations are performed only when
p is called, not when q is called. Your translated programs should also have this property

(fil (n)

(let* ((p (abs (w)

(if (@= 0 w)

(abs (x) x)

(if (@= 0 (@% w 2))

(let ((p1 (p (@/ w 2))))

(abs (y) (@* 2 (app p1 y))))

(let ((p2 (p (@- w 1))))

(abs (z) (@+ 1 (app p2 z)))))))))

(let ((q (app p n)))

(@+ (app q 1) (app q n)))))

17.10.3 Linked Environments

Thus far we have assumed that all free variable values of a procedure are stored
in a single flat environment or closure. This strategy minimizes the information
carried in a particular closure. However, it is often the case that a free variable is
referenced by several closures. Setting aside a slot for (a pointer to) the value of
this variable in several closures/environments increases the space requirements of
the program. For example, in the flat clotest example of Figure 17.34, closures
p, q1, and q2 all contain a slot for the value of free variable c.

An alternative approach is to structure closures to enhance sharing and re-
duce copying. In a code/environment model, a high degree of sharing is achieved
when every call site bundles the environment of the called procedure (the parent
environment) together with the argument values to create the environment for
the body of the called procedure. In this approach, each closed abstraction takes
a single argument, its environment, and all variables are accessed through this
environment. This is called a linked environment approach because environ-
ments are represented as chains of linked components called frames.

Figure 17.39 shows this approach for the clotest example. Note that the
first slot of environment frames env1, env2, and env3 contains (a pointer to)
its parent frame. Variables declared by the closest enclosing abs are accessed
directly from the current frame, but variables declared in outer abstractions
require one or more indirections through parent frames. For instance, in the
body of the innermost abs, variable y, which is the first argument of the cur-
rent frame, env3, is accessed via (@mget 2 env3); the variable r, which is the
first argument one frame back, is accessed via (@mget 2 (@mget 1 env3)); and
the variable c, which is the first argument two frames back, is accessed via
(@mget 2 (@mget 1 (@mget 1 env3))).
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(let ((clotest

(@mprod

(abs (env1) {env1 = 〈env0, c, d〉}
(@mprod

(abs (env2) {env2 = 〈env1, r, s, t〉}
(@mprod

(abs (env3) {env3 = 〈env2, y〉}
(@+ (@/ (@* (@mget 2 (@mget 1 env3)) {get r}

(@mget 2 env3)) {get y}
(@mget 4 (@mget 1 env3))) {get t}

(@- (@mget 2 (@mget 1 env3)) {get r}
(@mget 2 (@mget 1 (@mget 1 env3)))))) {get c}

env2))

env1))

(@mprod)))) {This is env0 = the empty environment}
(let ((p (app (@mget 1 clotest) (@mprod (@mget 2 clotest) 4 5))))

(let ((q1 (app (@mget 1 p) (@mprod (@mget 2 p) 6 7 8)))

(q2 (app (@mget 1 p) (@mprod (@mget 2 p) 9 10 11))))

(@+ (app (@mget 1 q1) (@mprod (@mget 2 q1) 12))

(app (@mget 1 q2) (@mprod (@mget 2 q2) 13))))))

Figure 17.39 A version of the clotest example with linked environments.

In general, each variable has a lexical address 〈back , over〉, where back
indicates how many frames back the variable is located and over indicates its
position in the resulting frame. A variable with lexical address 〈b, o〉9 is translated
to (@mget o (@mgetb 1 e)), where e is the current lexical environment frame
and (@mgetb 1 e) stands for the b-fold composition of the first projection starting
with e. Traditional compilers often use such lexical addresses to locate variables
on a stack, where so-called static links are used to model chains of frames stored
on the stack. Linked environments are also commonly used in interpreters for
block-structured languages. For example, the environment model interpreter in
[ASS96] represents procedures as closures whose environments are linked frames.

Figure 17.40 depicts the shared environment structure in the clotest example
with linked environments. Note how the environment of p is shared as the parent
environment of q1’s environment and q2’s environment. In contrast with the
flat environment case, p, q1, and q2 all share the same slot holding c, so less slot
space is needed for c. Another advantage of sharing is that the linked environment
approach to closure conversion can support set! directly without the need for
assignment conversion (see Exercise 17.35).

9Assume that back indices b start at 0 and over indices o start at 2.
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However, there are several downsides to linked environments. First, variable
access is slower than for flat closures because of the indirections through parent
environment links. Second, environment slots hold values (such as d and s) that
are never referenced, so space is wasted on these slots. A final subtle point is
that shared slots can hold onto values longer than they are actually needed by a
program, leading to space leaks in the storage manager (see Section 18.1). Some
of these points and some alternative linked strategies are explored in the exercises.

Exercise 17.34

a. In the context of closure-converting the following FIL expression, discuss the issues
involved in converting let expressions in the linked environment approach described
above:

(abs (a)

(let ((b (@+ a 1))

(c (@* a a)))

(let ((f (abs (d) (@+ a (@* c d)))))

(@mprod (app f b) (app f c)))))

let-bound names (such as b and f) that do not appear as the free variables of an
abstraction should not be put in environment frames.

b. Formally define a closure conversion transformation on FIL expressions that imple-
ments the linked environment approach. Do not worry about preserving the CPS
form of input programs.

Exercise 17.35 Use the linked environment approach to closure-convert the following
FIL+{set!} expression. A set! in the input expression should be converted to an mset!

on an environment tuple in the converted expression.

(let ((r (abs (x)

(abs (y)

(let ((z (@+ x y)))

(let ((_ (set! x z)))

z))))))

(let ((s1 (app r 1))

(s2 (app r 2)))

(@mprod (app s1 3) (app s2 4) (app s1 5))))

Exercise 17.36 The linked environment approach illustrated by the code in Figure 17.39
constructs a mutable tuple representing an environment frame at every call site. An alter-
native approach, which we shall call the code/linked-env representation, is to construct
new linked environment frames only when building the closure tuple. This way, the pro-
cedure calling convention looks exactly like that for code/environment pairs; the only
difference from the code/environment approach studied earlier is that the environments
are not flat but are composed of linked frames.
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clotest:
•

(abs (env1) . . .)

p:
4 5
c d

(abs (env2) . . .)

q1:
6 7 8
r s t

q2:
9 10 11
r s t

(abs (env3) . . .)
12
y

(abs (env3) . . .)
13
y

Figure 17.40 Depiction of the links in the linked clotest example.

a. Show the code/linked-env approach for the clotest example by fleshing out the hole
in the following code:

(let ((clotest �))

(let ((p (app (@mget 1 clotest) (@mget 2 clotest) 4 5)))

(let ((q1 (app (@mget 1 p) (@mget 2 p) 6 7 8))

(q2 (app (@mget 1 p) (@mget 2 p) 9 10 11)))

(@+ (app (@mget 1 q1) (@mget 2 q1) 12)

(app (@mget 1 q2) (@mget 2 q2) 13)))))

b. Compare the code/linked-env approach with the linked environment approach dis-
cussed in the text on the following points: number of tuples created, efficiency of
accessing variables, omitting variables from environment frames, converting let ex-
pressions, and handling set!.

c. Formally define a closure conversion transformation on FIL expressions that imple-
ments the code/linked-env strategy. Do not worry about preserving the CPS form of
input programs.



1094 Chapter 17 Compilation

17.11 Transformation 9: Lifting

Programmers nest procedures when an inner procedure needs to use variables
that are declared in an outer procedure. The free variables in such an inner
procedure are bound by the outer procedure. We have seen that closure con-
version eliminates free variables in every procedure. However, because it leaves
abstractions in place, it does not eliminate procedure nesting.

A procedure is global when it is declared at top level — i.e., in the out-
ermost scope of a program. Lifting (also called lambda lifting10) is the pro-
cess of eliminating procedure nesting by collecting all procedure abstractions and
declaring them as global procedures. All procedure abstractions must be closed
before lifting is performed — otherwise, lifting them to top level would break
the fundamental connection between free variable references and their associated
declarations. Once all of the procedures in a program are declared at top level,
each one can be compiled into straight-line code (modulo branches for any if

expressions in its body) and given a global name.11 In the analogy with assembly
code, such a name corresponds to an assembly code label for the first instruction
in the subroutine corresponding to the procedure.

In the Tortoise compiler, the result of the lifting phase is a program in
FILlift (Figure 17.41), a variant of the FILcps language. The key difference
between FILlift and FILcps is that abstractions may appear only at the top level
of a program in new declaration constructs having the form (def S AB), where
AB is an abstraction and S is special kind of identifier called a subroutine
name. Each subroutine name subr0, subr1, subr2, . . . is the concatenation of
the name subr and a natural number literal. For n ∈ Nat , we use both subrn

and subr��n to stand for the result of concatenating the name subr with the
digits of the numeral for n. E.g., subr17 = subr��17 = subr17. The definition
of Proglift requires that subr0 be used for the first subroutine, subr1 be used
for the second subroutine, etc. This requirement makes it possible to refer to
procedures by number rather than by name. Every subroutine name is a legal
identifier and so may be used as a variable reference elsewhere in a program. As in

10In the literature on compiling functional programming languages (e.g., [Joh85, Pey87]),
“lambda lifting” often refers to a process that not only lifts all functions to top level, but
also serves as a closure conversion transformation in which closures are represented as partially
applied curried functions.

11It is possible to compile a procedure with nested internal procedures directly to assembly
code by placing unconditional branch instructions around the code for the internal procedures.
Avoiding unnecessary unconditional branches is important for modern processors with instruc-
tion caches, instruction prefetching, and pipelined architectures.



17.11 Transformation 9: Lifting 1095

P ∈ Proglift ::= (fil (I ∗
formal) Ebody (def subri AB i)

n
i=0)

AB ∈ Abstractionlift ::= (abs (I ∗
formal) Ebody)

E ∈ Explift ::= (app Irator V ∗
rand) | (if Vtest Ethen Eelse)

| (let ((Iname LEdefn)) Ebody) | (error Ymessage)

V ∈ ValueExplift ::= L | I

LE ∈ LetableExplift ::= L | (prim Oprimop V ∗
arg)

L ∈ Lit = as in full FIL

Y ∈ SymLit = as in full FIL

O ∈ Primop = as in full FIL

Keywordlift = {abs, app, def, error, fil, if, let, let*, prim, sym}
I ∈ Identlift = SymLit −

(
{Y | Y begins with @} ∪Keywordlift

)
NT ∈ NatLit = {0, 1, 2, . . .}

S ∈ Subr = identifiers of the form subr��n ; subrn is shorthand for subr��n

; For n ∈ Nat, the notation I ��n stands for the identifier that
; results from concatenating the characters of the name I with
; the digit characters of the numeral in NatLit that denotes n.

Figure 17.41 Grammar for FILlift , the result of the Tortoise lifting stage.

other FL-like languages we have studied, the names declared by def have global
scope — they may be referenced in all expressions in the program, including the
bodies of all def declarations.

The Tortoise lifting transformation LIprog has the following specification:

Preconditions: The input to LIprog is a valid kernel FILcps program in
which every abstraction is closed.

Postconditions: The output of LIprog is a program in which every ab-
straction is globally defined via def at the top level of a program, as
specified in the FILlift grammar in Figure 17.41. The free identifiers in
each abstraction must be a subset of the subroutine names bound by
defs in the program.

Although abstractions are required to be closed before lifting, abstractions after
lifting are not necessarily closed. This is because each nested abstraction is re-
placed by a def-bound subroutine name that is necessarily free in the immediately
enclosing abstraction. But the def-bound subroutine names are the only names
that can be free in the abstractions that result from the lifting transformation.



1096 Chapter 17 Compilation

Here is a sketch of the algorithm employed by LIprog for a program containing
n abstractions:

1. Associate with each abstraction AB i (0 ≤ i ≤ n) in the program the subrou-
tine name subri .

2. Replace the abstraction AB i in the program by a reference to its associated
name, subri .

3. Return a program of the form

(fil (I ∗
fml) E ′

body (def subr0 AB ′
0) . . . (def subrn AB ′

n))

where AB ′
0 , . . ., AB ′

n are the transformed versions of all the abstractions AB0 ,
. . ., ABn in the original program, and E ′

body is the transformed body.

For example, Figure 17.42 shows the revmap example after lambda lifting.
subr0 is the code for the revmap procedure, subr1 is the code for the loop

procedure, subr2 is the code for the continuation of the call to f within the body
of the loop procedure, and subr3 is the code for the greater-than-b procedure.
The example shows how replacing each abstraction with its unique subroutine
name can introduce free variables into otherwise closed abstractions. For instance,
the body of the abstraction named subr0 contains a reference to subr1 and the
body of the abstraction named subr1 contains a reference to subr2.

In the revmap example, code.62 always denotes the subroutine named subr0,
code.46 and code.54 always denote subr1, code.58 always denotes subr2, and
code.50 always denotes subr3. In all these cases, it would be safe to replace
these code references (and eliminate their associated (mget 1) operations) by the
subroutine names. In assembly code, this optimization corresponds to replacing
an indirect jump to a subroutine by a direct jump. It is possible for the compiler
to perform this optimization automatically, but a sophisticated analysis that
tracks control-flow and store-effect information would be required to determine
when the optimization can be safely applied.

Exercise 17.37 Formally define the LIprog function sketched above. You will also need
to define appropriate functions on other FILcps syntactic domains. For simplicity, you
may assume that fresh subroutine names are generated in the order subr0, subr1, . . .;
i.e., you need not thread a subroutine name counter through your functions.
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(fil (a.0 b.1 ktop.9)

(let* ((abs.10 (@mprod subr0))

(abs.11 (@mprod subr3 b.1))

(t.14 (@* a.0 7))

(t.15 (@null))

(t.13 (@cons t.14 t.15))

(t.12 (@cons a.0 t.13))

(code.62 (@mget 1 abs.10)))

(app code.62 abs.10 abs.11 t.12 ktop.9))

(def subr0 (abs (clo.56 f.3 elts.4 k.20)

(let* ((t.22 (@null))

(t.21 (@mprod t.22))

(t.23 (@mprod #u))

(abs.25 (@mprod subr1 t.21 t.23 f.3))

(t.24 (@mset! 1 t.23 abs.25))

(t.26 (@mget 1 t.23))

(code.54 (@mget 1 t.26)))

(app code.54 t.26 elts.4 k.20))))

(def subr1 (abs (clo.52 xs.7 k.29)

(let* ((t.21 (@mget 2 clo.52))

(t.23 (@mget 3 clo.52))

(f.3 (@mget 4 clo.52))

(t.31 (@null? xs.7)))

(if t.31

(let* ((t.42 (@mget 1 t.21))

(code.44 (@mget 1 k.29)))

(app code.44 k.29 t.42))

(let* ((t.34 (@car xs.7))

(k.41 (@mprod subr2 t.21 t.23 xs.7 k.29))

(code.50 (@mget 1 f.3)))

(app code.50 f.3 t.34 k.41))))))

(def subr2 (abs (clo.48 t.35)

(let* ((t.21 (@mget 2 clo.48))

(t.23 (@mget 3 clo.48))

(xs.7 (@mget 4 clo.48))

(k.29 (@mget 5 clo.48))

(t.36 (@mget 1 t.21))

(t.33 (@cons t.35 t.36))

(t.32 (@mset! 1 t.21 t.33))

(t.37 (@mget 1 t.23))

(t.38 (@cdr xs.7))

(code.46 (@mget 1 t.37)))

(app code.46 t.37 t.38 k.29))))

(def subr3 (abs (clo.60 x.8 k.18)

(let* ((b.1 (@mget 2 clo.60))

(t.19 (@> x.8 b.1))

(code.58 (@mget 1 k.18)))

(app code.58 k.18 t.19)))))

Figure 17.42 revmap program after lambda lifting.
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17.12 Transformation 10: Register Allocation

The goal of the Tortoise compiler is to translate high-level programs to code
that can be executed on a register machine. A register machine provides two
kinds of storage locations for values: a small number of registers with fast access
times and a large number of memory locations with slow access times. It typically
has instructions for loading values into registers from memory, storing values from
registers to memory, and performing operations whose arguments and results are
in registers.

The code generated by the Lifting stage of the Tortoise compiler resembles
assembly code for a register machine except for its handling of variable names.
Intuitively, each identifier in a FILlift program that is not a subroutine name
can be viewed as an abstract register. Because fresh identifiers are introduced
by many transformations, there is no bound on the number of abstract registers
that a program may use. But any register machine executing the program em-
ploys a relatively small number of actual registers. The process of mapping the
abstract registers of a program to the actual registers of a register machine is
known as register allocation. Register allocation makes the storage locations
represented by variable names explicit. Tortoise also uses registers to pass pro-
cedure arguments, so register allocation makes the argument-passing mechanism
explicit.

We will study a simple approach to register allocation in the context of trans-
forming FILlift to FILreg , the target language of the Tortoise compiler. In
Section 17.12.1, we describe FILreg and explain how to view it as the instruction
set for a register machine. We then describe how to convert FILlift to FILreg in
Sections 17.12.2–17.12.5.

17.12.1 The FILreg Language

FILreg (Figure 17.43) is a language that is designed to be viewed in two very
different ways:

1. FILreg is basically a restricted subset of FILlift . A FILreg program can be
executed like any other FILlift program.

2. FILreg is the instruction set for a simple register machine. This machine,
FRM, is discussed in Section 18.2.

Remarkably, FILreg programs have the same behavior whether we view them
as FILlift programs or as register machine programs. This section summarizes
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the features of the syntax of FILreg and describes how to view FILreg programs
and expressions in terms of the underlying register machine operations they are
intended to represent. Later (Section 18.2) we will sketch how FILreg programs
are executed on the FRM register machine. (A full description of FRM program
execution can be found in the Web Supplement.)

The general identifiers of FILlift have been replaced by a restricted domain
Identreg containing only (1) subroutine names S (as in FILlift) and (2) register
names R (new in FILreg). Each register name r0, r1, r2, . . . is the concatenation
of the name r and a numeral for a natural number between 0 and nmax , where
nmax + 1 is the number nreg of registers in the machine. For n ∈ Nat , we use rn

to stand for r��n.
In FILreg , the formal parameter sequences of programs and abstractions and

the operand sequences of applications must be prefixes RS of the register se-
quence [r0, r1, r2, . . . , rnmax ]. That is, abstractions and applications must have
the following form:

Number of
params/rands

Abstraction Application

0 (abs () E) (app I )
1 (abs (r0) E) (app I r0)

2 (abs (r0 r1) E) (app I r0 r1)

3 (abs (r0 r1 r2) E) (app I r0 r1 r2)
...

...
...

These restricted forms represent a decision to pass program and procedure argu-
ments in specific registers: the first argument is always passed in register r0, the
second argument is always passed in register r1, etc. An abstraction definition
(def S (abs (RS) E)) represents the entry point to a subroutine; an appli-
cation (app S RS) represents a direct jump to the subroutine labeled S ; and
an application of the form (app R RS) is an indirect jump to the subroutine
whose label (address) is stored in register R. From the register machine’s point
of view, the formal parameter names and argument names are superfluous: The
arguments are in the registers and both the caller and the callee know how many
arguments there are. The names appear in the syntax so that we can continue
to interpret our code from the FIL perspective as well.

In FILreg , all if tests must be register names. (if R Ethen Eelse) is thus an
instruction that tests the content of register R and continues with the instructions
in Ethen if R contains true and with the instructions in Eelse if R contains false.

The FILreg expression (error Ymsg) terminates program execution in an
error state that includes the error message Ymsg . The new (halt NT R) ex-
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pression terminates program execution with a return code specified by NT ; for
some return codes, the result of the program is the value in register R. This ex-
pression is used in the register-machine implementation of FILreg (see the Web
Supplement for details).

The FILreg expression (let ((Rdst LE)) E) loads the value of LE into
the destination register Rdst and then proceeds with the instructions in E . The
nature of this load depends on the structure of the letable expression LE :

• The case where LE is a literal corresponds to loading the literal value into Rdst .

• The case where LE is a primitive application (prim Oop R∗
src) corresponds to

code that performs an operation on the contents of the source registers R∗
src and

stores the result in the destination register Rdst . Note that the operand regis-
ters of primitive applications, unlike those of procedure applications, needn’t be
a specific sequence, because register machines let you specify arbitrary registers
for primitive operations.

• The case where LE is an application (prim copy Rsrc) of the new primitive
operator copy, which acts as an identity, represents code that copies the content
of register Rsrc to the register Rdst . This cannot be accomplished by just having
a register Rsrc as the letable expression, because the [copy-prop] rule will always
eliminate a let expression of the form (let ((R1 R2)) E) by substituting
R2 for R1 in E .

• The case where LE is the new letable expression (addr S) represents a load
of a subroutine address into Rdst . This cannot be accomplished by just using a
subroutine name S as the letable expression, because the [copy-prop] rule will
always eliminate a let expression of the form (let ((R S)) E) by substi-
tuting S for R in E . This case is slightly different from the copy case above:
addr, which acts like the identity on subroutine names, cannot be a primitive
operator, because all prim operands must be register names, and S is not a
register name.

Registers are used to store values that are needed later in the computation.
Sometimes the number of values needed by the rest of the computation exceeds
the number of registers. In this case, the extra values must be stored in the
register machine’s memory, a process known as spilling. The spget and spset!

primitives are used for spilling. They are explained in Section 17.12.5.
To model the simplicity of register operations and facilitate spilling, all FILreg

primitive operators take zero, one, or two arguments. The one primitive in pre-
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Kernel Grammar
P ∈ Progreg ::= (fil (RS formals) Ebody (def subri AB i)

n
i=0)

AB ∈ Abstractionreg ::= (abs (RS formals) Ebody)

E ∈ Expreg ::= (app Irator RS rands) | (if Rtest Ethen Eelse)

| (let ((Rdst LEdefn)) Ebody)

| (error Ymessage) | (halt NT returnCode Rresult)

I ∈ Identreg ::= R | S

LE ∈ LetableExpreg ::= L | (addr S) | (prim Oprimop R∗
src)

L ∈ Lit = as in full FIL

Y ∈ SymLit = as in full FIL

O ∈ Primopreg ::= . . . FIL primops except mprod . . .
| copy ; register copy
| (mnew NT) ; mutable tuple allocation
| (spget NT) | (spset! NT) ; spill get and set

NT ∈ NatLit = {0, 1, 2, . . .}
R ∈ Reg = {r0, r1, . . . , rnmax

} ; rn is shorthand for r��n

RS ∈ RegSeq = any prefix of [r0, r1, . . . , rnmax
] ; nmax + 1 = nreg

S ∈ Subr = identifiers of the form subr��n ; subrn is shorthand for subr��n

; For n ∈ Nat, the notation I ��n stands for the identifier that
; results from concatenating the characters of the name I with
; the digit characters of the numeral in NatLit that denotes n.

New Syntactic Sugar
(@mnew NT) �ds (prim (mnew NT))

(@spget NT) �ds (prim (spget NT))

(@spset! NT R) �ds (prim (spset! NT) R)

Figure 17.43 Grammar for FILreg , the result of the register allocation transformation
and the language of FRM, the virtual register machine discussed in Section 18.2.

vious FIL dialects that took an arbitrary number of arguments — mprod — is
replaced by a combination of the new primitive operator (mnew NT) (which cre-
ates a mutable tuple with N [[NT ]] slots) and a sequence of mset! operations for
filling the slots. For example, the FILlift expression

(let ((Improd (@mprod S Iarg1 17))) Ebody)

can be expressed in FILreg as follows (where Rtemp , Rmprod , and Rarg1 are three
distinct registers):
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(let* ((Rmprod (@mnew 3))

(Rtemp (addr S))
(Rtemp (@mset! 1 Rmprod Rtemp))

(Rtemp (@mset! 2 Rmprod Rarg1)) {assume Rarg1 corresponds to Iarg1}
(Rtemp 17)

(Rtemp (@mset! 3 Rmprod Rtemp)))

E ′
body) {the translation of Ebody , in which Rmprod corresponds to Improd}

Because the operands of a primitive application must be register names, the
integer literal 17 and the subroutine label (addr S) must be stored in temporary
registers before they can be used in applications of the primitive operator mset!.

17.12.2 A Register Allocation Algorithm

The Tortoise register allocation transformation RAprog has the following spec-
ification:

Preconditions: The input to RAprog is a valid kernel FILlift program in
which the only free identifiers of any abstraction are subroutine names.

Postconditions: The output of RAprog is a valid kernel FILreg program in
which the only free identifiers of any abstraction are subroutine names.

Register allocation is largely the process of renaming fil-bound, abs-bound, and
let-bound identifiers in FILlift to the register names r0, . . . , rnmax in FILreg .
In Tortoise, register allocation must also ensure that the resulting program re-
spects the other syntactic restrictions of FILreg by naming literals and subroutine
names and expanding each mprod into mnew followed by a sequence of mset!s.

Register allocation has been studied intensively, and it is the subject of many
elegant and efficient algorithms. (The notes at the end of this chapter provide
some references.) Tortoise uses a simple register allocation algorithm that is
not particularly efficient but is easy to describe. The algorithm has three phases:

1. The expansion phase takes a FILlift program, ensures that all literals and
subroutine names are bound to identifiers in a let before they are used, and
converts instances of mprod into sequences of mnew and mset!s. The output is
in a language called FILregId , a version of FILreg in which R ∈ Reg is redefined
to be any nonsubroutine identifier and RS ∈ RegSeq is redefined to be any
sequence of nonsubroutine identifiers.
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Domains
Proglift = as defined in Figure 17.41

ProgregId = programs in FILregId , a version of FILreg in which
nonsubroutine identifiers are used in place of registers

Progreg∞ = programs in FILreg∞, a version of FILreg

supporting an unbounded number of registers

Progreg = as defined in Figure 17.43

Register Allocation Functions

EX prog : Proglift → ProgregId ; described in Section 17.12.3

RCprog : ProgregId → Progreg∞ ; described in Section 17.12.4

SPprog : Progreg∞ → Progreg ; described in Section 17.12.5

RAprog : Proglift → Progreg

RAprog [[P ]] = SPprog [[RCprog [[EX prog [[P ]]]]]]

Figure 17.44 The Tortoise register allocation transformation RAprog is the com-
position of the expansion transformation EX prog , the register conversion transformation
RCprog , and the spilling transformation SPprog .

2. The register conversion phase takes a FILregId program, renames all non-
subroutine identifiers to be register names, and ensures that all formal param-
eter sequences and operand sequences of procedure applications are prefixes of
[r0, r1, r2, . . . ]. It introduces appropriate register moves (via the copy primi-
tive) to satisfy this requirement. The output is in a language called FILreg∞,
a version of FILreg in which R ∈ Reg is redefined to include an unbounded
number of register names of the form rn . This phase greedily reuses register
names in an attempt to reduce the number of registers needed by the program,
but that number may still exceed the fixed number nreg of registers provided
by the register machine.

3. The spilling phase guarantees that only nreg registers are used in the final
code by moving the contents of some registers to memory if necessary.

Figure 17.44 shows how these three phases are composed to implement the register
allocation function RAprog . In the following three sections, we sketch each of
these phases by providing an English description of how they work along with
some examples. The formal details of each phase are fleshed out in the Web
Supplement.
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17.12.3 The Expansion Phase

The expansion phase of the Tortoise register allocator converts FILlift programs
to FILregId programs by performing two transformations:

1. It introduces let-bound names for all literals and subroutine names that ap-
pear in if tests and in the operands of procedure and primitive applications.

2. It expands each primitive application of mprod into a primitive application
of mnew to allocate the mutable tuple followed by a sequence of primitive
applications of mset! to fill the slots of the new tuple.

Figure 17.45 illustrates the expansion phase on the body of the revmap pro-
gram after the Lifting stage. Both mprods in the input are expanded to the
mnew/mset! idiom, and new lets are introduced to name the literals and sub-
routine names in the input.

17.12.4 The Register Conversion Phase

The register conversion phase of the Tortoise register allocator converts FILregId

programs to FILreg∞ programs by performing three transformations:

1. It converts every formal parameter sequence I n
i=0 of the program or its ab-

stractions to an ordered register sequence rn
i=0.

2. It renames every let-bound name to a register name.

3. It guarantees that the operand sequence I n
i=0 of every app expression is an

ordered register sequence rn
i=0.

We will illustrate each of these transformations in the context of register-
converting the following abstraction:

AB0 = (abs (clo.7 x.8 k.9)

(let* ((t.10 (@mget 2 clo.7))

(t.11 (@mget 3 clo.7))

(t.12 (@* x.8 x.8))

(t.13 (@* t.11 t.12))

(t.14 (@+ x.8 t.12))

(code.15 (@mget 1 t.10)))

(app code.15 t.10 t.14 t.13 t.11 k.9)))

The first transformation renames the formal parameters clo.7, x.8, and k.9

to r0, r1, and r2, respectively:
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Body of Lifted revmap Before Expansion Phase

(let* ((abs.10 (@mprod subr0))

(abs.11 (@mprod subr3 b.1))

(t.14 (@* a.0 7))

(t.15 (@null))

(t.13 (@cons t.14 t.15))

(t.12 (@cons a.0 t.13))

(code.62 (@mget 1 abs.10)))

(app code.62 abs.10 abs.11 t.12 ktop.9))

Body of revmap After Expansion Phase

(let* ((abs.10 (@mnew 1))

(t.79 (addr subr0))

(t.78 (@mset! 1 abs.10 t.79))

(abs.11 (@mnew 2))

(t.82 (addr subr3))

(t.80 (@mset! 1 abs.11 t.82))

(t.81 (@mset! 2 abs.11 b.1))

(t.83 7)

(t.14 (@* a.0 t.83))

(t.15 (@null))

(t.13 (@cons t.14 t.15))

(t.12 (@cons a.0 t.13))

(code.62 (@mget 1 abs.10)))

(app code.62 abs.10 abs.11 t.12 ktop.9))

Figure 17.45 Illustration of the expansion phase on the body of the lifted revmap

program.

AB1 = (abs (r0 r1 r2)

(let* ((t.10 (@mget 2 r0))

(t.11 (@mget 3 r0))

(t.12 (@* r1 r1))

(t.13 (@* t.11 t.12))

(t.14 (@+ r1 t.12))

(code.15 (@mget 1 t.10)))

(app code.15 t.10 t.14 t.13 t.11 r2)))

We assume that there are enough registers to handle the longest formal parameter
sequence. The later spilling phase will handle the case where this assumption is
false.

The second transformation renames each identifier I declared in a let ex-
pression to a register name R that does not appear free in the body of the let
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expression. Although it would be safe to use any nonfree register name, the algo-
rithm chooses the “least” one according to the order ri ≤ rj if and only if i ≤ j.
This greedy strategy attempts to reduce register usage by reusing low-numbered
registers whose values are no longer needed. For example, renaming let-bound
identifiers transforms AB1 to

AB2 =
(abs (r0 r1 r2)

(let* ((r3 (@mget 2 r0)) {r0,r1,r2 used later, so use r3 for t.10}
(r0 (@mget 3 r0)) {r0=clo.7 not used later, so reuse r0 for t.11}
(r4 (@* r1 r1)) {r0–r3 used later, so use r4 for t.12}
(r5 (@* r0 r4)) {r0–r4 used later, so use r5 for t.13}
(r1 (@+ r1 r4)) {r1=x.8 not used later, so reuse r1 for t.14}
(r4 (@mget 1 r3))) {r4=t.12 not used later, so reuse r4 for code.15}

(app r4 r3 r1 r5 r0 r2)))

Note how r0, r1 and r4 are reused when they are no longer mentioned in the
rest of the computation.

After the first two transformations are performed, the program satisfies the
grammar of FILreg∞ except for app expressions (app Irator Rn−1

i=0 ). Although the
first two transformations guarantee that all app operands are registers, they are
not necessarily the sequence rn−1

i=0 required by the FILreg∞ grammar. This form
can be achieved by a register shuffling process that uses a sequence of copy
applications to move the contents of the registers in the source operand sequence
Rn−1

i=0 to the corresponding registers in the destination operand sequence rn−1
i=0 .

For example, (app subr5 r2 r0) can be transformed to

(let* ((r1 (@copy r0))

(r0 (@copy r2)))

(app subr5 r0 r1))

A simple but very inefficient implementation of shuffling would first copy the
n operands to n fresh registers not mentioned in

(
∪n−1

i=0 {ri}
)
∪

(
∪n−1

i=0 {Ri}
)
∪

{Irator}, and then copy the operands from the fresh registers to rn−1
i=0 . This is

expensive both in the number of additional registers used (n) and the number of
copy operations performed (2n). Using more registers also increases the need for
spilling.

We now sketch a register shuffling algorithm that uses at most two registers
in addition to the ones already mentioned in the source and destination register
sets. (See the Web Supplement for full details.) The register shuffling algorithm
begins by testing whether the operator of the app is a register in the difference of
the destination and source register sets. If so, it must be renamed to a name not
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in the union of these sets to avoid blocking later copy operations. This is the first
additional register that the algorithm may use. For example, in the application
(app r4 r3 r1 r5 r0 r2) of AB2 , the operator r4 is a destination register not
mentioned in the source registers, and so is renamed to the least register not
appearing in either set (r6):

(let ((r6 (@copy r4)))

(app r6 r3 r1 r5 r0 r2))

The rest of the register shuffling algorithm transforms a FILregId application
Eapp = (app Irator Rn−1

i=0 ) to a FILreg∞ expression of the form

(let* ((R′
dstj

(@copy R′
srcj

))k
j=1)

(app I ′
rator rn−1

i=0 ))

that has the same meaning as Eapp . This transformation is guided by a register
dependence graph (RDG) that keeps track of the copy operations that still
need to be performed. An RDG is a set of edges, where each edge is a pair of reg-
ister names, written Rdst ��� Rsrc, that associates a destination register Rdst

with a source register Rsrc. Such an edge indicates that the value in Rsrc must
be moved into Rdst , and so corresponds to the let binding (Rdst (@copy Rsrc)).
The direction of the arrow indicates that the final content of the Rdst depends
on the current content of Rsrc. For the application (app r6 r3 r1 r5 r0 r2),
this graph can be depicted as

r4 ��� r2 ��� r5 r0 ��� r3

There is no edge involving r1 because it is already in the correct position. There
are two connected components in this graph: the acyclic component involving
r4, r2, and r5, and the cyclic component involving r0 and r3.

The copy associated with the edge rdst ��� rsrc can be performed only if
the destination register rdst will not be the source of a later copy operation —
i.e., only if there is no edge of the form R ��� rdst in the RDG. Another way
of phrasing this condition is that the number of directed edges going into vertex
rdst (its in-degree) must be 0. We will call an edge rdst ��� rsrc a root edge
of an RDG if the in-degree of rdst is 0. A root edge appears as an initial edge of
an acyclic component of the RDG.

The fundamental strategy of the register shuffling algorithm is to find a root
edge EGroot = rdst ��� rsrc in the RDG (there may be more than one) and per-
form its corresponding copy operation via the let binding (rdst (@copy rsrc)).
The shuffling process then continues after removing EGroot from the RDG be-
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cause rdst now contains its final value. For example, processing the first two root

edges in the RDG r4 ��� r2 ��� r5 r0 ��� r3 for (app r6 r3 r1 r5 r0 r2)

yields

(let* ((r4 (@copy r2)) {move r2 to r4 in (app r6 r3 r1 r5 r0 r2)}
(r2 (@copy r5))) {move r5 to r2 in (app r6 r3 r1 r5 r0 r4)}

(app r6 r3 r1 r2 r0 r4))

When processing root edge rdst ��� rsrc, if the operator is named rsrc, it is
necessary to rename it to rdst . This does not happen in our example.

The RDG for the residual application (app r6 r3 r1 r2 r0 r4) is the cyclic

graph r0 ��� r3, which contains no root edge. To handle this situation, a tem-
porary register Rtemp is used to break one of the cycles, converting it to an acyclic
component. An arbitrary edge EGarb = rdst ��� rsrc is chosen from one of the
cyclic components, and the content of rsrc is stored in Rtemp by the let binding
(Rtemp (@copy rsrc)). Replacing EGarb in the RDG by rdst ��� Rtemp yields
an acyclic component rsrc ��� . . . ��� rdst ��� Rtemp that allows the root-edge-
finding strategy of the algorithm to proceed. The temporary register Rtemp can
be the least register that is different from Irator and is not a member of the final
destination registers. In the case where an RDG contains multiple cyclic com-
ponents, a single temporary register can be used to break all of the components.
This is the second of the two registers that may be required to perform the regis-
ter shuffling. (The first additional register was used for potentially renaming the
operator of an application.)

In our example, suppose the edge r0 ��� r3 is chosen to break the cycle

r0 ��� r3. Since r0 through r4 are reserved for the final operands and the
operator is r6, r5 is chosen as the temporary register. The residual application
(app r6 r3 r1 r2 r0 r4) is now transformed to

(let* ((r5 (@copy r3))) {break cycle in (app r6 r3 r1 r2 r0 r4) with r5}
(app r6 r5 r1 r2 r0 r4))

where the new RDG r3 ��� r0 ��� r5 consists of a single acyclic component.
Processing the remaining two edges leads to two more let bindings:

(let* ((r3 (@copy r0)) {move r0 to r3 in (app r6 r5 r1 r2 r0 r4)}
(r0 (@copy r5))) {move r5 to r0 in (app r6 r5 r1 r2 r3 r4)}

(app r6 r0 r1 r2 r3 r4))
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So the final abstraction AB3 that results from applying our register shuffling
algorithm to AB2 is:

AB3 = (abs (r0 r1 r2)

(let* ((r3 (@mget 2 r0))

(r0 (@mget 3 r0))

(r4 (@* r1 r1))

(r5 (@* r0 r4))

(r1 (@+ r1 r4))

(r4 (@mget 1 r3))

(r6 (@copy r4))

(r4 (@copy r2))

(r2 (@copy r5))

(r5 (@copy r3))

(r3 (@copy r0))

(r0 (@copy r5)))

(app r6 r0 r1 r2 r3 r4)))

Applying the expansion and register conversion phases to the revmap example
yields the FILreg∞ program in Figure 17.46. Such a program is clearly very
close to register machine language; it leaves very little to the imagination! The
program uses eight registers (r0 through r7), so no spilling is required as long as
the number of machine registers nreg is at least eight.

Although our algorithm is simple and tends to use a small number of registers,
it can use more registers and/or perform more copy operations than necessary.
For example, here is a register-converted version of AB0 that uses only five
registers and one copy operation:

(abs (r0 r1 r2)

(let* ((r4 (@copy r2)) {moving r2 to r4 right away frees up r2.}
(r3 (@mget 3 r0))

(r0 (@mget 2 r0)) {this @mget moved later so r0 free for result.}
(r5 (@* r1 r1))

(r2 (@* r3 r5))

(r1 (@+ r1 r5))

(r5 (@mget 1 r0)))

(app r5 r0 r1 r2 r3 r4)))

This version avoids many copy operations by (1) storing results in registers chosen
according to their operand position in the app expression and (2) reordering the
(@mget 2 r0) and (@mget 3 r0) bindings so that the result of (@mget 2 r0)

can be stored directly in r0.
Code using fewer registers or register moves (i.e., copy operations) than our

algorithm can be obtained with other register allocation algorithms from the
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(fil (r0 r1 r2)
(let* ((r3 (@mnew 1))

(r4 (addr subr0))
(r4 (@mset! 1 r3 r4))
(r4 (@mnew 2))
(r5 (addr subr3))
(r5 (@mset! 1 r4 r5))
(r1 (@mset! 2 r4 r1))
(r1 7)
(r1 (@* r0 r1))
(r5 (@null))
(r1 (@cons r1 r5))
(r0 (@cons r0 r1))
(r1 (@mget 1 r3))
(r5 (@copy r1))
(r1 (@copy r4))
(r4 (@copy r3))
(r3 (@copy r2))
(r2 (@copy r0))
(r0 (@copy r4)))

(app r5 r0 r1 r2 r3))
(def subr0
(abs (r0 r1 r2 r3)
(let* ((r0 (@null))

(r4 (@mnew 1))
(r0 (@mset! 1 r4 r0))
(r0 (@mnew 1))
(r5 #u)
(r5 (@mset! 1 r0 r5))
(r5 (@mnew 4))
(r6 (addr subr1))
(r6 (@mset! 1 r5 r6))
(r4 (@mset! 2 r5 r4))
(r4 (@mset! 3 r5 r0))
(r1 (@mset! 4 r5 r1))
(r1 (@mset! 1 r0 r5))
(r0 (@mget 1 r0))
(r1 (@mget 1 r0))
(r4 (@copy r1))
(r1 (@copy r2))
(r2 (@copy r3)))

(app r4 r0 r1 r2))))
{continued in right column}

{continued from left column}
(def subr1

(abs (r0 r1 r2)
(let* ((r3 (@mget 2 r0))

(r4 (@mget 3 r0))
(r0 (@mget 4 r0))
(r5 (@null? r1)))

(if r5
(let* ((r0 (@mget 1 r3))

(r1 (@mget 1 r2))
(r3 (@copy r1))
(r1 (@copy r0))
(r0 (@copy r2)))

(app r3 r0 r1))
(let* ((r5 (@car r1))

(r6 (@mnew 5))
(r7 (addr subr2))
(r7 (@mset! 1 r6 r7))
(r3 (@mset! 2 r6 r3))
(r3 (@mset! 3 r6 r4))
(r1 (@mset! 4 r6 r1))
(r1 (@mset! 5 r6 r2))
(r1 (@mget 1 r0))
(r3 (@copy r1))
(r1 (@copy r5))
(r2 (@copy r6)))

(app r3 r0 r1 r2))))))
(def subr2

(abs (r0 r1)
(let* ((r2 (@mget 2 r0))

(r3 (@mget 3 r0))
(r4 (@mget 4 r0))
(r0 (@mget 5 r0))
(r5 (@mget 1 r2))
(r1 (@cons r1 r5))
(r1 (@mset! 1 r2 r1))
(r1 (@mget 1 r3))
(r2 (@cdr r4))
(r3 (@mget 1 r1))
(r4 (@copy r1))
(r1 (@copy r2))
(r2 (@copy r0))
(r0 (@copy r4)))

(app r3 r0 r1 r2))))
(def subr3

(abs (r0 r1 r2)
(let* ((r0 (@mget 2 r0))

(r0 (@> r1 r0))
(r1 (@mget 1 r2))
(r3 (@copy r1))
(r1 (@copy r0))
(r0 (@copy r2)))

(app r3 r0 r1)))))

Figure 17.46 revmap program after expansion and register conversion.
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literature. Many of these are based on a classic register-coloring algorithm that
uses registers to “color” an interference graph whose vertices are abstract register
names and whose edges connect vertices that cannot be the same actual register
[CAC+81, Cha82]. These algorithms can be adapted to pass procedure arguments
in registers, as required by our approach.

The assumption that all n-argument procedures take their arguments in reg-
isters rn−1

i=0 simplifies our algorithm, but is too restrictive. Algorithms for in-
terprocedural register allocation (e.g., [BWD95]) can reduce the number of
copy operations by using different argument registers for different procedures. For
example, before register shuffling is performed, the top-level call to the revmap

procedure is transformed to (app r1 r3 r4 r0 r2). Since this is the only call
to revmap in the program, the register shuffling operations that transform the
operand sequence [r3, r4, r0, r2] to [r0, r1, r2, r3] can be eliminated if the sub-
routine corresponding to the revmap procedure (subr0) is simply modified to
expect its arguments in the unshuffled registers:

(def subr0 (abs (r3 r4 r0 r2) . . . ))

Of course, in order to use specialized argument registers for a particular proce-
dure, the compiler must have access to its definition and all its calls.

Exercise 17.38

a. Write a six-operand application (app Irator R5
i=0) whose RDG has two cyclic com-

ponents, one acyclic component, and one vertex with in-degree 2.

b. Show the result of using the register shuffling algorithm described in the text on your
example.

Exercise 17.39 For an application with n operands, what is the number of copy oper-
ations needed by the register shuffling algorithm described in the text in the best case?
In the worst case? Write a six-operand application (app Irator R5

i=0) that requires the
worst-case number of copies.

Exercise 17.40

a. Consider the following abstraction ABa :

(abs (clo.0 a.1 b.2 k.3)

(let* ((t.4 (@mget 2 clo.0))

(t.5 (@mget 3 clo.0))

(t.6 (@- a.1 t.4))

(t.7 (@/ b.2 t.4))

(code.8 (@mget 1 t.5)))

(app code.8 t.5 t.6 t.7 k.3)))

What is the result of register-converting this abstraction using the algorithm described
in the text?
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b. Consider the abstraction ABb obtained from ABa by changing the application ex-
pression to

(app code.8 t.5 t.4 t.6 t.7 k.3) {new argument t.4 added before t.6}

What is the result of register-converting ABb?

c. Consider the abstraction ABc obtained from ABb by changing the application ex-
pression to

(app code.8 t.5 t.4 t.4 t.6 t.7 k.3) {second t.4 added before t.6}

What is the result of register-converting ABc?

d. The results of part b and part c use more registers and copy operations than necessary.
Show this by register-converting ABb and ABc to FILreg∞ abstractions by hand to
use both the minimal number of registers and the minimal number of copy operations.
You may reorder let bindings and interleave copy bindings with the existing let

bindings as long as you do not change the meaning of the abstractions.

17.12.5 The Spilling Phase

A FILreg∞ register is live if its current value may be accessed from the register
later in the computation. When the number of live FILreg∞ registers exceeds
the number nreg of registers in the machine, some of the register values must be
stored elsewhere in memory. The process of moving values that would otherwise
be stored in registers to memory is called spilling.

In the Tortoise compiler, we use the name spill memory for the area of
memory used to store spilled values. We treat spill memory like a zero-indexed
mutable array of slots manipulated via two FILreg primitive operations:

• (prim (spset! NT) R) stores the content of R in the slot at index N [[NT ]]
in spill memory and returns #u. This is abbreviated (@spset! NT R).

• (prim (spget NT)) returns the value stored in the slot at index N [[NT ]] in
spill memory. This is abbreviated (@spget NT).

Tortoise uses a simple spilling algorithm that assumes nreg ≥ 2. Given a
FILreg∞ program P , the algorithm first determines the largest register rtop used
in P . If top < nreg , then P is already a FILreg program, so it is returned. But
if top ≥ nreg , then all references to registers of the form ri such that i ≥ nreg

must be eliminated to convert the program to FILreg . This is accomplished by
dedicating the top two registers, rsp = r(nreg−2 ) and r(sp+1 ) = r(nreg−1 ), to the
spilling process and storing the content of every register rj as follows:

• If j < sp, the content of rj continues to be stored in register rj .
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• If j ≥ sp, the content of rj is stored in slot (j − sp) of spill memory. In this
case we say that rj is a spilled register.

We assume that spill memory is large enough to hold the values of all spilled
registers.

The spilling phase performs the following spill conversion transformations on
the FILreg∞ program, which are illustrated in Figure 17.47.

• The program formal parameter sequence, all abstraction formal parameter se-
quences, and all application operand sequences are truncated to contain no
register larger than r(sp−1 ). This is because we pass the first sp arguments
in registers and any arguments beyond this in spill memory. We assume that
the program-invoking mechanism of the operating system “knows” that any
arguments beyond those mentioned in the program formal parameters must be
passed in spill memory.

• A let expression (let ((Rdst LE)) Ebody) in which rdst is a spilled register
is converted to

(let* ((rsp LE ′)

(r(sp+1) (@spset! dst− sp rsp)))

E ′
body)

where LE ′ is the spill-converted version of LE , E ′
body is the spill-converted

version of Ebody , and dst− sp is a natural number literal NT such that N [[NT ]]
= (dst − sp). This takes the value that would have been stored in rdst and
instead (1) stores it in the dedicated register rsp and (2) uses spset! to move
it from rsp to spill memory at index (dst−sp). Storing the unit value resulting
from spset! in r(sp+1 ) rather than in rsp allows the value in rsp to be used
later in improved versions of the spilling algorithm.

• Any reference to a spilled register rsrc that appears as a conditional test, as an
operator of a procedure application, or as the first argument of a primitive ap-
plication is converted to a reference to rsp in a context where rsp is let-bound
to (@spget src− sp). This takes the value that would have been retrieved
directly from rsrc, and instead (1) uses spget to retrieve it from spill memory
at index (src− sp), (2) stores it in the dedicated register rsp , and (3) retrieves
it from rsp . Similarly, any reference to a spilled register rsrc that appears
as the second argument of a primitive application is converted to a reference
to r(sp+1 ) in a context where r(sp+1 ) is let-bound to (@spget src− sp). A
spilled register in the second argument position is stored in a different register
than one in the first position to handle the case where both argument registers
are spilled registers.
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In the spilling example in Figure 17.47, where sp = 2, the formal parameter
registers r2, r3, and r4 of the abstraction are stored in spill memory and are
accessed via (@spget 0), (@spget 1), and (@spget 2), respectively. The global
spill conversion transformation guarantees that any invocation of this (or any
other) five-parameter subroutine will use spset! to store the third, fourth, and
fifth operands in spill memory locations 0, 1, and 2 before control is passed to the
subroutine. The example illustrates this parameter spilling for subroutine calls in
the application of the six-parameter subroutine stored in r1. The converted code
uses spset! to store the value of parameters r2 and r5 in spill memory locations
0 and 3. No explicit spset!s are needed for spilling r3 and r4 to locations 1 and
2 because these values were already placed in spill memory by the caller of the
converted abstraction and are not changed in its body.

Our simple spilling algorithm can generate code with some obvious inefficien-
cies. For example, if sp = 2, it transforms

(let* ((r2 (@* r4 r4))

(r3 (@< r1 r2)))

(if r3 (app r1 r0) (error wrong)))

to

(let* ((r2 (@spget 2)) {move content of spilled r4 into r2}
(r3 (@spget 2)) {move content of spilled r4 into r3}
(r2 (@* r2 r3)) {calculate spilled r4 times spilled r4}
(r3 (@spset! 0 r2)) {store content of spilled r2 into memory}
(r2 (@spget 0)) {move content of spilled r2 into r2}
(r2 (@< r1 r2)) {calculate r1 less than spilled r2}
(r3 (@spset! 1 r2)) {move content of spilled r3 into memory}
(r2 (@spget 1))) {move content of spilled r3 into r2}

(if r2 (app r1 r0) (error wrong)))

when the following much simpler code would work:

(let* ((r2 (@spget 2)) {move content of spilled r4 into r2}
(r2 (@* r2 r2)) {use r2 for both args and for result; no need to}

{ spill r2 to memory since only used in next binding}
(r3 (@< r1 r2))){use r2 directly and store result directly in r3; no need}

{ to spill r3 to memory since only used in if test}
(if r3 (app r1 r0) (error wrong))) {use r3 directly}

The Web Supplement explores these inefficiencies and how they can be elim-
inated. Some of the simplifications can be made by a peephole optimization
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Abstraction before Spilling
(abs (r0 r1 r2 r3 r4)

(let* ((r5 (@< r4 r2))

(r0 (@+ r0 r4)))

(if r5

(app r3 r0 r1 r2)

(let ((r2 (@* r0 r0)))

(app r1 r0 r1 r2 r3 r4 r5))))

Abstraction after Spilling (where sp = 2)
(abs (r0 r1) {truncate formal parameters}
(let* ((r2 (@spget 2)) {move content of spilled r4 into r2}

(r3 (@spget 0)) {move content of spilled r2 into r3}
(r2 (@< r2 r3)) {calculate spilled r4 less than spilled r2}
(r3 (@spset! 3 r2)) {store content of spilled r5 into memory}
(r3 (@spget 2)) {move content of spilled r4 into r3}
(r0 (@+ r0 r3)) {use r3 for spilled r4}
(r2 (@spget 3))) {move content of spilled r5 into r2}

(if r2 {use r2 for spilled r5}
(let ((r2 (@spget 1))) {move content of spilled r3 into r2}
(app r2 r0 r1)) {use r2 for spilled r3 and truncate operands}

(let* ((r2 (@* r0 r0)) {calculate content of spilled r2}
(r3 (@spset! 0 r2))) {store content of spilled r2 into memory}

(app r1 r0 r1))))) {truncate operands}

Figure 17.47 A spilling example.

phase that performs local transformations on the result of the spilling phase.
Other improvements require modifying the spilling algorithm itself.

Any approach to spilling based purely on an index threshold is rather crude.12

It would be better to estimate the frequency of register usage and spill the less
frequently used registers.

12But index thresholds for spilling have an interesting precedent. All machines in the IBM
360 line executed uniform machine code assuming the same number of virtual registers. Since
hardware registers were expensive, cheaper machines in the line used a small number of hardware
registers for the low-numbered virtual registers and main memory locations for high-numbered
virtual registers. These machines employed a threshold-based spilling mechanism implemented
in hardware!
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Notes

The literature on traditional compiler technology is vast. A classic text is the
“Dragon book” [ASU86]. More modern treatments are provided by Cooper and
Torczon [CT03] and by Appel’s textbooks [App98b, App98a, AP02]. Compre-
hensive coverage of advanced compilation topics, especially optimizations, can
be found in Muchnick’s text [Muc97]. Inlining is a particularly important but
subtle optimization — see especially [CHT91, ASG97, DC00, JM02]. Issues in
functional-language compilation are considered by Peyton Jones in [Pey87].

Compiling programs via transformations on an intermediate, lambda calculus-
based language was pioneered in the Scheme community through a series of com-
pilers that started with Steele’s Rabbit [Ste78] and was followed by many others
[Roz84, KKR+86, Cli84, KH89, FL92, CH94]. An extreme version of this idea is
the nanopass compiler for Scheme, which is composed of fifty simple transforma-
tion stages [SWD04]. The idea (embodied in FILreg) that the final intermediate-
language program can also be interpreted directly as a register-machine program
is due to Kelsey [Kel89, KH89]. He showed that realistic compiler features like
register allocation, instruction selection, and stack-based allocation could be mod-
eled in such a framework and demonstrated that the transformational technique
was viable for compiling traditional languages like Pascal and Basic.

The next major innovation along these lines was developing transformation-
oriented compilers based on explicitly typed intermediate languages (e.g., [Mor95,
TMC+96, Pey96, PM97, Sha97, BKR98, TO98, MWCG99, FKR+00, CJW00,
DWM+01]. The type information guides program analyses and transformations,
supports run-time operations such as garbage collection, and is an important
debugging aid in the compiler development process. In [TMC+96], Tarditi and
others explored how to express classical optimizations within a typed intermediate
language framework. In some compilers (e.g., [MWCG99]) type information is
carried all the way through to a typed assembly language, where types can be
used to verify certain safety properties of the code. The notion that untrusted
low-level code should carry information that allows safety properties to be verified
is the main idea behind proof-carrying code [NL98, AF00].

Early transformation-based compilers typically included a stage converting
the program to CPS form. The view that procedure calls can be viewed as
jumps that pass arguments was championed by Steele, who observed that a stack
discipline in compilation is not implied by the procedure-call mechanism but
rather by the evaluation of nested subexpressions [SS76, Ste77].
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The TortoiseMCPS transformation is based on a study of CPS conversion
by Danvy and Filinski [DF92]. They distinguish so-called static continuations
(what we call “metacontinuations”) from dynamic continuations and used these
notions to derive an efficient form of CPS conversion from the simple but ineffi-
cient definition. Appel studied the use of continuations for compiler optimizations
in [App92].

In [FSDF93], Flanagan et al. argued that explicit CPS form was not neces-
sary for such optimizations. They showed that transformations performed on
CPS code could be expressed directly in a non-CPS form they called A-normal
form. Although modern transformation-based compilers tend to use something
like A-normal form, we adopted a CPS form in the Tortoise compiler. It is an
important illustration of the theme of making implicit structures explicit, and it
simplifies the compilation of complex control constructs like nonlocal exits, excep-
tions, and backtracking. The observation that these constructs use continuations
in a nonlinear way is discussed in [Baw93].

Closure conversion is an important stage in a transformation-based compiler.
Johnsson’s lambda-lifting transformation [Joh85] lifts abstractions to top level
after they have been extended with initial parameters for free variables. It uses
curried functions that are partially applied to these initial parameters to repre-
sent closures. This closure representation is standard in compilers for combinator
reduction machines [Hug82, Pey87]. The Tortoise lifting stage also lifts closed
abstractions to top level, but uses a different representation for closures: the
closure-passing style invented by Appel and Jim in [AJ88]. Defunctionalization
(a notion due to Reynolds [Rey72]) has been used as the basis for closure con-
version in some ML compilers [TO98, CJW00]. Selective and lightweight closure
conversion were studied by Steckler and Wand [WS94, SW97]. The notion of
representation pollution was studied by Dimock et al. [DWM+01] in a compiler
that chooses the representation of a closure depending on how it is used in a pro-
gram. Sophisticated closure conversion systems rely on a control flow analysis to
determine how procedures are used in a program. In [NNH98], Nielson, Nielson,
and Hankin provide excellent coverage of control flow analysis and other program
analyses.

[BCT94] summarizes work on register allocation and spilling. The classic
approach to register allocation and spilling involves graph-coloring algorithms
[CAC+81, Cha82]. See [BWD95] for one approach to managing registers across
procedure calls.
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Garbage Collection

Be you the mean hombre that’s a-hankerin’ for a heap of trouble, stranger?
Well, be ya?

— Yosemite Sam, in “Hare Trigger”

18.1 Why Garbage Collection?

Programming without some form of automatic memory management is dangerous
and may lead to run-time type errors. Here is why: A programmer forced to
manage memory manually may inadvertently release a block of memory for reuse,
yet retain the ability to access the block by holding on to a pointer to the block
(a so-called dangling pointer). When this memory block is reused by the
system, the value in it will be accessible by two independent pointers, perhaps
even under two independent types (the type expected by the logically invalid
pointer and that expected by the new pointer). Modifying the value via one
pointer will unexpectedly cause the value accessible via the other to be changed
as well, leading to insidious bugs that are notoriously difficult to catch. The
program is incorrect, and in some cases, type safety can be lost!1

Thus a critical run-time service in type-safe programming language implemen-
tations is the safe allocation and deallocation of memory for compound values
such as tuples, arrays, lists, and oneofs. Such values are stored in units called
blocks in a region of memory called the heap. As described in Chapter 17,
the Tortoise complier generates FILreg code for a simple register machine that
uses the primitive operator mnew to allocate a mutable product value and the
primitives mget and mset! to manipulate the contents of such products. The job
of this chapter is to demonstrate how to implement primitives like these.

This chapter describes a safe storage management system based on a tech-
nique for automatic heap deallocation called garbage collection. The implementa-

1The same problem arises in languages that do not do array bounds checking, a deficiency
exploited by countless security attacks.
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tions of almost all type-safe languages (e.g., Java, C#, Lisp, SmallTalk, ML,
Haskell) use garbage collection. In a system with manual heap deallocation,
where programmers must explicitly declare when heap blocks may be reused, it
is possible for a sophisticated type checker that models the state of memory to
guarantee that there are no dangling pointers [ZX05]. But any such type system
necessarily limits expressiveness by rejecting some programs that are actually
safe. In contrast, garbage collection guarantees value integrity and type safety
without limiting expressiveness.

Garbage collection (GC) is a process that identifies memory blocks that
will not be used again and makes their storage available for reuse. A heap block
is live in a program state if it will be accessed later in the program execution, and
otherwise the block is dead. It is not in general possible to prove which blocks
are live in a program state, and thus a garbage collector must identify and reuse
only blocks that it can prove are dead. The engineering challenge is to design a
garbage collector that efficiently preserves live memory blocks and a minimum of
dead blocks.

Garbage collection also reduces memory leaks that arise when a programmer
does not deallocate dead blocks so they can be used for something else. Memory
leaks can cause a program to abort with an out-of-memory error that could have
been avoided if the dead blocks were reused. It is in fact common for long-running
programs to crash because of slow memory leaks that exhaust available storage.
Memory leaks are notoriously difficult to find and fix, especially in a large and
complex program like an operating system. Garbage collectors can also exhibit
memory leaks, but they are better equipped than human beings to reason about
block liveness, and typically do a better job of efficiently reclaiming dead blocks.

In manual deallocation systems, the programmer is caught between two dan-
gers: Deallocating blocks too early creates dangling pointers, whereas deallocat-
ing them too late causes memory leaks. Yet it is often difficult, if not impossible,
for the programmer to know when a heap-allocated data structure can no longer
be accessed by the program. For example, consider a graphics application in
which two-dimensional points are represented as pairs of x and y coordinates and
lines are represented as pairs of points. A single point might be shared by many
lines. When a line is deleted by the application, it may be safe to deallocate the
pair associated with the line, but it is not safe to deallocate the pairs associated
with the line’s endpoints, since these might be shared by other lines. Without
explicitly tracking how many lines a point participates in, the programmer has no
idea when to deallocate a point in such a system. In contrast, because a garbage
collector “knows” the exact pointer wiring structure for heap blocks in memory,
it can determine properties that are difficult for a programmer to keep track of,
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such as how many references there are to a particular point. If the answer is 0,
the point may be reclaimed.

Manual deallocation also complicates the implementation of data structures
and data abstractions. When a compound data structure becomes dead, many of
its components become dead as well. The programmer must carefully free all dead
components (often recursively) before freeing the storage for the compound struc-
ture itself. Manual deallocation complicates data abstractions because allocation
and deallocation responsibilities must become part of the interface. Implementers
of an abstraction must often provide a mechanism for deallocating abstract data
structures. C++ provides this functionality for objects via a destructor func-
tion that is called whenever the storage for the object is deallocated. A destructor
function typically deallocates storage for components of the object. But the prob-
lem is more complex still: Only the client of the data abstraction knows when
abstract data values and many of the components used to create them are dead;
but only the implementer knows the actual structure of abstract values, includ-
ing their components, data-sharing properties, and invariants. Choreographing
allocations and deallocations for even relatively simple and common abstractions,
such as generic linked lists, can prove extremely complex and error-prone.

In the mid-1990s garbage collection came into the mainstream when the im-
plementers of the first widely adopted type-safe programming language, Java,
chose to use garbage collection for their implementation of safe storage. Although
garbage collection has a rich history in languages like Lisp and SmallTalk, until
recently it was considered too inefficient to support in mainstream programming
languages like C, Pascal, and Ada, which opted for manual storage dealloca-
tion instead. (In fact, the Ada specification allows implementations to perform
garbage collection but does not require it: Programmers are effectively required
to manually deallocate storage in the many implementations that do not support
garbage collection.) Java’s type safety was sufficient inducement for program-
mers to accept a system that uses garbage collection.

The remainder of this chapter explores garbage collection in the context of
FRM, the FIL Register Machine that executes the FILreg code generated by
the Tortoise compiler presented in the previous chapter. FRM allocates heap
blocks for mutable tuples, list nodes, and symbols, and garbage collection will
allow reuse of such blocks when it determines that they will never be accessed
again. Section 18.2 presents the relevant details of FRM, especially how com-
pound values are laid out in memory. Section 18.3 discusses approximations for
block liveness. Section 18.4 lays out a complete design for an FRM garbage collec-
tor. Section 18.5 sketches some other approaches to garbage collection, including
a conservative GC technique that can be used for languages that traditionally
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rely on manual deallocation. Garbage collection is a dynamic approach to auto-
matic heap deallocation; Section 18.6 briefly discusses some static approaches to
automatic heap deallocation.

To keep our discussions at a high level, we will explain implementation issues
and algorithms using a combination of English and pictures. A complete meta-
language formalization of FRM and several heap management strategies can be
found in the Web Supplement.

18.2 FRM: The FIL Register Machine

In order to explain heap management strategies for FRM, we first need to give an
overview of the FRM architecture and explain how FRM values are represented.

18.2.1 The FRM Architecture

The fundamental unit of information is the binary digit, commonly called a bit.
A bit can be one of two values, 0 or 1. Every FRM value is encoded as a
single word, which is a fixed-size sequence of bits. A value that is too big to
fit into a single word (such as a mutable tuple, nonempty list node, or symbol)
is represented as a single address word (or pointer) that is the address of a
block of words in the heap.

Uniformly representing all values in a single-sized word datum greatly simpli-
fies many aspects of the FRM implementation. For example, a word-sized register
can hold any value, the ith component of any heap block can be stored in its ith
word, and polymorphic functions require no special implementation techniques.
Many practical language implementations use nonuniform value sizes (e.g., single-
precision floating point numbers requiring one word and double-precision floating
point numbers requiring two words) for efficiency reasons, but they would create
needless complexity here.

The state of a program running on FRM has four components:

1. The current FILreg expression E being executed. As noted in Section 17.12.1,
each FILreg expression can be viewed as a register machine instruction whose
execution updates the state of the machine and specifies the next instruc-
tion. (See the Web Supplement for an SOS that specifies the action of each
FILreg expression as an FRM instruction.) This component corresponds to
the program counter, the address of the currently executing instruction, in
traditional architectures. An FRM program executes until it terminates with
a halt or error expression.
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2. The subroutine memory S, where the definitions of all the program’s sub-
routines are stored. This is the code segment in a traditional architecture.
Rather than worry about the address of the start of a subroutine in memory,
we will simply refer to each subroutine by an integer index. That is, subrou-
tine i stands for Ebody in the definition (def subrn (abs (RS) Ebody)) in
the FILreg program being executed. As observed on page 1099, FRM can
ignore the register parameters in an abstraction, because the actual argument
values are passed in the registers of the machine.

3. The register memoryR, where the contents of the FRM registers are stored.
As in FILreg , we assume that there are nreg registers. Each register holds one
word. The notation R[n] stands for the word stored in register rn .

4. The heap memory H, where the contents of memory blocks are stored. We
assume that the heap is a part of main memory, an arrayM of words indexed
by addresses that are natural numbers. The notation M[naddr ] denotes the
word stored at address naddr inM. Some of the main memory may be reserved
for purposes other than the heap, such as a program’s subroutine and/or spill
memory.2 We assume that the portion of main memory reserved for the heap
uses indices in the range [0.. (nsize − 1)], where nsize is the number of words
reserved for the heap.

18.2.2 FRM Descriptors

We have seen that all FRM values are single words, where some words are point-
ers to blocks of words in the heap. We will now explore how to represent words
and blocks on a typical register machine. This allows us to discuss some of
the low-level representation choices that are important in programming language
implementations.

A word is represented as an n-tuple of bits. We can define FRM for a ma-
chine of any word size, but for concreteness we shall assume that all words con-
sist of 32 bits. Suppose B ranges over bits. Then we abbreviate the word tuple
〈B1 ,B2 ,. . .,B31 ,B32 〉 by the juxtaposition B1B2 · · ·B31B32 of its bits. The nota-
tion Bn represents n consecutive copies of B . For example, 020101018 stands for
the word that has 20 0s followed by 1010 followed by eight 1s.

There are standard ways to represent natural numbers and signed integers
using bits, and standard ways to perform arithmetic on these representations.
For more information, consult the Web Supplement.

2The FRM SOS in the Web Supplement shows how to handle spill memory, which we ignore
here.
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Each FRM value can be represented as a single 32-bit word, which we shall
call its descriptor. A value is said to be unboxed when all information about
the value fits into the descriptor, in which case its descriptor is said to be im-
mediate. A value is said to be boxed when some of its information is stored in
a heap block, in which case its descriptor contains the address of the block and
is said to be nonimmediate. We assume that word addresses are specified by
30 bits. This is consistent with the word-alignment restrictions in many 32-bit
architectures.3

Descriptors with Type Tags

Each FRM value is encoded as a single word with an unambiguous representation.
This unambiguous representation encodes both the type of the value and the value
itself. Thus, we can examine the FRM value stored in a register and decode its
type and value without additional information. Such explicit type information is
necessary for descriptor representations in a dynamically typed language, where
it is necessary to check the type of a value at run time. Such type information can
also be helpful in a statically typed language, where it can be used by run-time
processes (such as garbage collectors, debuggers, and value displayers) to parse
memory into values.

The left-hand column of Figure 18.1 shows the way we have chosen to encode
type and value information in a descriptor. A descriptor is divided into a type
tag — the lower-order bits that specify the type of the value — and the value
representation — the remaining bits that distinguish values of a given type.
In this particular representation, the lowest-order bit is 0 for immediate values
and 1 for nonimmediate values. Since nonimmediate values have only 30 bits of
address information, the next-to-last bit is arbitrary; we assume that it is 0. So
all pointers have a 30-bit address followed by the type tag 01. For immediate
values, the next-to-last bit distinguishes integers (0) from nonintegers (1). This
leaves 30 bits of information to represent a signed integer. For simplicity, we will
assume that FRM supports only 30-bit signed integers in this representation. It
is possible to represent integers with more bits if we box them in a heap block.4

The third-to-last bit distinguishes subroutine indices (for which this bit is 0) from
other values (for which this bit is 1). This leaves 29 bits available to express the
subroutine index itself (as an unsigned integer). Two additional type bits are
used to distinguish the remaining four types of immediate values: unit (00), null

3In many 32-bit architectures, a 32-bit address word specifies a byte address. But data one
word wide must be aligned to a word boundary, i.e., its address must have 00 as its lowermost
bits. So the information content of a word address is limited to its upper 30 bits.

4This technique can be used to represent arbitrary-sized integers, known as bignums.



18.2.2 FRM Descriptors 1125

Descriptor with type tags Value Descriptor with GC tags only

[30-bit signed integer] 00 integer [31-bit signed integer] 0

[29-bit subroutine index] 010 subroutine [31-bit subroutine index] 0

027 00110 unit 031 0

027 01110 null 031 0

0260 10110 false 0300 0

0261 10110 true 0301 0

019 [8-bit ASCII code] 11110 character 023 [8-bit ASCII code] 0

[30-bit address] 01 pointer [30-bit address] 01

Figure 18.1 Two layouts for FRM descriptors: one with full type tags and one with
garbage collection (GC) tags.

list (01), boolean (10), and character5 (11). The unit and null list types have
only one value each, so the remaining 27 bits are arbitrary; we assume they are
all 0. The boolean type has two values, which are distinguished by the 27th bit:
0 for false and 1 for true. In a character descriptor, the remaining 27 bits can
be used to encode the particular character — e.g., as an 8-bit ASCII code or a
16-bit unicode representation.

From the perspective of encoding words as bits, the placement and content of
the type tags are arbitrary. For example, we could have put the type tags in the
leftmost bits rather than the rightmost bits, and we could have made the integer
type tag 01 and the pointer type tag 00. However, the particular choices made
for type tags in Figure 18.1 have practical benefits on real architectures:

• Using a rightmost tag of 00 for integers simplifies integer arithmetic. Each
30-bit signed integer i is represented by a word that denotes 4i . Addition,

5Although FIL does not have character literals, FRM uses character values to represent
symbols as boxed values whose components are characters.
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subtraction, and remainder can be performed on these descriptors simply us-
ing the standard 32-bit arithmetic operations without using any other bit-level
operations, because these operations preserve the rightmost 00 bits. Multipli-
cation and division take slightly more work: one of the multiplication operands
must be shifted right (arithmetically) by two bits to eliminate its 00 tag before
performing the multiplication; and the result of division must be shifted left
by two bits to add the 00 tag. Arithmetic would require more work if leftmost
tags were used or a rightmost tag other than 00 were used (see Exercise 18.1).

• Using a nonzero rightmost tag for pointers is efficient on most architectures
via an offset addressing mode, which allows direct access to memory at a fixed
offset (a small signed integer) from a 32-bit byte address stored in a register or
memory location. An address with a 01 pointer tag can effectively be converted
into a word-aligned byte address by specifying a −1 offset.

Exercise 18.1 Assuming the following alternative placement and/or content of type
tags, describe how to perform (1) integer arithmetic (+, −, ×, ÷, and %) and (2) accesses
for memory addresses.

a. Type tags are the rightmost two bits of a descriptor, 11 is the integer type tag, and
00 is the pointer type tag.

b. Type tags are the leftmost two bits of a descriptor, 00 is the integer type tag, and 01

is the pointer type tag.

c. Type tags are the leftmost two bits of a descriptor, 01 is the integer type tag, and 00

is the pointer type tag.

Descriptors with Garbage Collection (GC) Tags

In the run-time system for a statically typed language, descriptors need not carry
complete type information, because dynamic type checking is unnecessary. This
is true for FILreg programs that are produced by the Tortoise compiler.

However, it is still helpful for descriptors to carry information that aids other
run-time services, like garbage collection. As we shall see later, a garbage collector
needs to distinguish between pointers and nonpointers. This can be accomplished
with a one-bit GC tag. The right-hand column of Figure 18.1 shows a descriptor
layout that uses the low-order bit as the GC tag. A 0 indicates a nonpointer, a 1

indicates a pointer. Since pointers have only 30 bits of address information, we
will use a two-bit 01 tag for pointers, reserving the 11 tag for for header words
in heap blocks (see Section 18.2.3).

The choice of the placement and values of the GC tags is guided by the
same logic used for type tags. Using a rightmost 0 bit for immediate descriptors
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naddr Encoding of nslots (optional) type 11 ; header word

naddr + 1 W1 ; content of slot 1

naddr + 2 W2 ; content of slot 2

...
...

naddr + nslots Wnslots
; content of slot nslots

Figure 18.2 The layout of a heap block with contents W1 , . . . , Wnslots
at word address

naddr .

simplifies integer arithmetic, and the 01 pointer tag can be processed at little or
no cost by offset addressing. This layout yields an extra bit of integer precision.
Note that because immediate descriptors do not include distinguishing type bits,
many different values can have the same bit pattern. For example, the bit pattern
032 is used for the integer 0, the unit value, the null list, the boolean false, and
the character whose ASCII code is 0.

Tagless Descriptors

Implementations can support garbage collection without using GC tags in de-
scriptors. In these tag-free GC systems (Section 18.5.2), descriptors need not
carry any type or GC tags, so all bits can be used for the value representa-
tion. For example, a 32-bit descriptor can encode a 32-bit integer or a 32-bit
byte address. Tagless descriptors are essential in conservative GC systems (Sec-
tion 18.5.3) for languages like C/C++ and Pascal, which cannot tolerate GC
bits in their descriptors.

18.2.3 FRM Blocks

FRM blocks are allocated from the heap, an area of main memory that is indexed
by 30-bit addresses. An FRM block is described by a single word FRM descriptor
that includes its 30-bit address. This address naddr points to the header word
of the FRM block, which is followed in memory by a variable number of slots,
each of which can hold a single word (Figure 18.2). The header word at address
naddr indicates the size of the block in words (excluding the header word itself)
and possibly the type of the block. To aid in parsing the heap into blocks, header
words have a two-bit tag of 11, which distinguishes them from immediate and
nonimmediate descriptors (see Figure 18.1). This tag is not strictly necessary,
but convenient. The words at addresses [(naddr + 1) .. (naddr + nslots)] are the
descriptors for the contents of the nslots slots of the block.
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Header with type and size Header Type Header with size only

[28-bit size] 0011 mutable tuple [30-bit size] 11

02610 0111 list node (size 2) 02810 11

[28-bit size] 1011 symbol [30-bit size] 11

[28-bit size] 1111 closure [30-bit size] 11

Figure 18.3 Two layouts for FRM header words: one with size and type information
and one with size information only.

For a statically typed language with garbage collection (the right-hand column
of Figure 18.3), the type of every block is statically known, but the garbage
collector needs to know the size of each block. The first 30 bits of the header are
used to encode this size.

For a dynamically typed language, the header may encode type information in
addition to size information. The choices in the left-hand column of Figure 18.3
indicate that there are four types of FILreg values represented as blocks: mutable
tuples (created by mnew), nonempty list nodes, symbols, and closures.6 The types
of these four values can be distinguished by two type bits in addition to the 11

header tag. More type bits would be needed if FILreg were extended to support
additional compound values, such as strings and arrays.

For example, here are two heap block representations for the result of com-
piling and executing the FLARE/V expression (@pair #t 42):

Block with type info Block with GC info

02610 0011 mutable tuple header 02810 11

0261 10110 true 0301 0

024101010 00 42 025101010 0

In this block representation, accessing or changing slot i (1-indexed) of a block at
30-bit address naddr with nslots slots simply manipulates the location at address

6Although closures are represented as mutable tuples in FILreg , it is helpful to distinguish
the types of closure tuples from the types of other mutable tuples. In a compiler that maintains
implicit type annotations for all expressions, closure types would be introduced by the closure
conversion stage.
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naddr + i in main memory. In the case where the block size is not known at
compile time (e.g., for an array of unknown size) it is first necessary to check at
run time that 0 < i ≤ nslots , where nslots is determined from the header word at
address naddr . Failure to pass this check leads to an out-of-bounds index error.
But for data whose size is known statically (e.g., FIL’s mutable products), no
dynamic index check is necessary.

The simple heap-block layout depicted in Figure 18.2 does not make efficient
use of space for heap-allocated products with a small, statically known number
of components (in FILreg , list nodes and tuples/closures with a small number of
components). Using a header word to encode the size (and possibly type) of these
products has a high space overhead. One way to avoid the header word in these
cases is to encode the size/type of the block in the pointer to the block rather than
in the block itself. For example, reserving three right-hand bits of the pointer
next to the 01 tag for this purpose would allow distinguishing eight size/type
possibilities, one of which would indicate the standard block-with-header but the
other seven of which would indicate headerless blocks. In addition to eliminating
the header word for small blocks, this technique allows the type of a block in a
dynamically typed system to be tested without a potentially expensive memory
access. An obvious drawback of this approach is that the extra size/type bits
reduce the range of the address space that can be expressed with the remaining
address bits. Moreover, extra bit-diddling is required to turn these modified
pointers into recognizable memory addresses.

Size/type information can be encoded in the pointer without these drawbacks
using the Big Bag of Pages (BIBOP) scheme. This is based on decomposing
memory into pages by viewing the higher-order bits of a word address as a
page address and the lower-order bits of a word address as a location within a
particular page. In BIBOP, all blocks allocated on a page must have the same
size/type information. In the simplest incarnation of BIBOP, each type of object
is stored in its own single (large) page. In this case, the page address is the block
type tag. It is also possible to decompose memory into many smaller pages and
store the size/type information in a table indexed by the page address. BIBOP
saves space by effectively using a single header per page rather than per block.

There are other inefficiencies that can be addressed with clever block layouts.
For example, the straightforward way to represent an n-character symbol or
string as a block is to have a header word with size/type information followed
by n character words. But using a 32-bit word to represent a single 8-bit ASCII
character or 16-bit unicode character is wasteful of space. It is possible to employ
packed representations in which 4 ASCII characters or 2 unicode characters
are stored in a 32-bit word within a block.
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Exercise 18.2 C. Hacker doesn’t like reserving a bit of every FRM descriptor for a
GC tag because then it isn’t possible to have full 32-bit integers. Observing that every
descriptor is either in the heap or in a register, he proposes an alternative way to store
GC tags:

• In a heap block, the header word is followed by one or more GC-tag words that
precede the content words of the block and store the GC tags of these content words.
For example, the ith bit (1-indexed) of the first GC-tag word is the GC tag of the ith
content word, where 1 ≤ i ≤ 32; the ith bit of the second GC-tag word is the GC tag
of the (32 + i)th content word; and so on.

• For every 32 registers, a 32-bit GC-tag register is reserved to store the GC tags of the
register contents.

a. Describe the benefits and drawbacks of C. Hacker’s idea.

b. If FRM were extended to include homogeneous arrays, what would be an efficient
way to extend C. Hacker’s approach to store the GC tags for the array components?

18.3 A Block Is Dead if It Is Unreachable

A storage system may reuse any dead block. Recall that a heap block is live in
an FRM state if it will be accessed later in the program execution and is dead
if it will not be accessed later. Unfortunately, this property is uncomputable in
general, since there is no way to prove whether a program will or will not use
a pointer to an arbitrary memory block. Therefore, a garbage collector must
approximate liveness by reusing only provably dead blocks.

A sound garbage collector may classify a dead block as live, but not vice versa.
The worst sound approximation is that all blocks are live, in which case GC
degenerates to a simple heap manager that allocates blocks but never deallocates
them, an approach viable for programs with small storage needs but not suitable
for serious programming.

Intuitively, a block is dead if it cannot be reached by following a chain of
pointers from the data values currently accessible to the program. Since there is
no way the program can access the block, it is provably dead. (This assumes that
programs cannot generate new pointers themselves by, for example, performing
arbitrary pointer arithmetic.) As we shall see, there are different algorithms for
determining which blocks are reachable.

GC algorithms are evaluated over many dimensions: the accuracy of their
identification of live and dead blocks, how much time and space they require,
whether they maintain locality (i.e., keep blocks that refer to each other close
together in memory), whether they can be performed in a separate thread from
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the executing program, and how long a pause may be needed to perform GC.
Real-time computer systems often cannot tolerate long GC-induced pauses, and
thus require incremental GC algorithms that perform only a small amount of
work every time the garbage collector is invoked.

18.3.1 Reference Counting

One day a student came to Moon and said: “I understand how to make a
better garbage collector. We must keep a reference count of the pointers to
each cons.” Moon patiently told the student the following story:

“One day a student came to Moon and said: ‘I understand how
to make a better garbage collector...’ ”

— MIT AI Koan about David Moon, attributed to Danny Hillis

There are two basic techniques for approximating the liveness of a block. The first
is reference counting, in which each block has associated with it a reference
count that indicates the number of pointers pointing to the block. When the
reference count falls to zero, the block is provably dead and can be immediately
reclaimed, e.g., by inserting it into a free list of blocks used for allocation.

Reference counting is conceptually simple and is easy to adapt to an incremen-
tal algorithm suitable for real-time systems. However, it suffers from numerous
drawbacks. The run-time system executing a program must carefully increment
a block’s reference count whenever a pointer to it is copied and decrement its
reference count whenever a register or memory slot containing a pointer to it is
overwritten, and the time overhead for this bookkeeping can be substantial. Stor-
age must be set aside for the reference counts; e.g., a certain number of bits in the
block header word can be reserved for this purpose. When reference counts are
modeled by a fixed number of bits, the maximal count must be treated as “infin-
ity” — incrementing or decrementing this count must yield the same count, and
blocks with this count can never be reclaimed even when they are actually dead.
Dead cyclic structures can never be deallocated by reference counting alone, since
each element in the structure has at least one pointer to it.

Like any heap manager that maintains a free list of blocks (regardless of
whether it uses manual or automatic deallocation), reference-counting garbage
collectors can suffer from memory fragmentation, where unallocated storage
consists of many small blocks, none of which are contiguous. This happens when
the heap manager reuses the storage of a deallocated block, but needs only part
of it. Although a fragmented memory may contain a large amount of unallocated
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storage, the largest block that can be allocated may be small, causing programs to
abort prematurely because of out-of-memory errors. Fragmentation can be fixed
by memory compaction, a process that moves all live blocks to the beginning of
memory to yield a single large unallocated block. Compaction requires rewiring
pointers and may change the contents of registers as well as the contents of heap
blocks. We shall study a form of compaction in the context of the stop-and-copy
garbage collection algorithm presented in Section 18.4.

Reference counting is used in practice in the allocation and deallocation of disk
blocks in Unix-like operating systems (including Linux). File deletion actually
just removes a pointer, or hard link, and the operating system eventually collects
all blocks with zero reference counts. Users are not permitted to make hard links
to a directory in these systems, because this can create unreclaimable, cyclic
structures on disk.

18.3.2 Memory Tracing

The second basic technique for approximating the liveness of a block is memory
tracing, in which a block is considered live if it can be reached by a sequence of
pointer-following steps from a root set of descriptors. In FRM, the root set for
any machine state consists of the set of live registers (i.e., the registers that are
mentioned in the current expression).7 In a given machine state, any block that
is not reachable from the root set can not be accessed in a future state and thus
is dead and may be safely collected as garbage. If we imagine that pointers to
heap blocks are strings connecting physical boxes, then tracing-based GC may
be viewed as a process in which the root-set descriptors are anchored down while
a vacuum cleaner is applied to the heap. Any blocks that are not connected by
some sequence of strings to the root set are untethered and will be sucked up by
the vacuum cleaner. Memory tracing is a better approximation to reachability
than reference counting, because it classifies cyclic structures unreachable from
the root set as garbage. Memory tracing can also collect blocks that a reference
counting scheme with fixed-size counts would render uncollectible with a count
of “infinity.”

Tracing-based GC imposes two requirements on a language implementation.
In order to traverse all reachable blocks, it must be possible at run time to (1) dis-
tinguish block pointers from nonpointers (to know which descriptors to follow)

7The root set also includes spill memory, which we are ignoring here (but see the Web Sup-
plement for details). In language implementations with a run-time stack of procedure invocation
frames, all descriptors in the stack are also in the root set. FRM does not have a run-time stack;
instead, stack frames are encoded as heap-based continuation closures.
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and (2) determine the size of a block (in order to process its components). In
the FRM implementation we have discussed, the GC tag of a descriptor satisfies
requirement 1, and the size information in a block header word satisfies require-
ment 2. But there are other ways to satisfy these requirements. For example, the
discussion starting on page 1129 shows ways to encode size information in the
pointer word itself, and Exercise 18.4 on page 1138 explores how a single header
bit per word can be used to encode the size of a heap block without a header
word. Some systems specially mark blocks containing no pointers so that GC
does not have to examine the components of such a block.

18.4 Stop-and-copy GC

Memory tracing is the basis for a wide variety of GC strategies, including a
relatively simple and effective one known as stop-and-copy. The essential idea
is familiar to anyone who has moved from one dwelling to another: put everything
you want to keep into a moving van, and anything not on the van at the end is
garbage. Stop-and-copy garbage collection reclaims memory by copying all live
data to a new area of memory and declaring everything left in the old memory
space to be garbage. We will first sketch the stop-and-copy algorithm and then
describe the details for FRM below.

To distinguish new and old memory spaces, a heap memory of size nsize is
divided into two equal-sized areas called semispaces: a lower semispace covering
addresses in the range [0.. ((nsize ÷ 2) − 1)] and an upper semispace covering
addresses in the range [(nsize ÷ 2) .. (nsize − 1)].8 At any time, one semispace is
active and the other is inactive.

The active semispace is used for all allocations, using the simplest possi-
ble strategy: Allocations start at the beginning (or symmetrically the end) of
the active semispace, and each successive allocation request is satisfied with the
memory block after the last one allocated. This continues until there is an alloca-
tion request for more memory than remains in the active semispace. The inactive
semispace is like a field lying fallow; it contains no live blocks and is not used for
allocation.

When a request is made to allocate a block that cannot fit at the top of the
active space, the program is stopped and the garbage collector is invoked. At this
point, the active semispace is called from-space and the inactive semispace is
called to-space. Garbage collection begins by copying the root set (the contents
of the registers) to the bottom of to-space. It then enters a copy phase in which

8For simplicity, assume that nsize is even.
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it copies into to-space all blocks in from-space that are reachable from the root
set. It must preserve the pointer relationships between blocks, so that the graph
structure of the copied blocks is isomorphic to the original one. It must also
update any pointers in the root set to point to the appropriate copied blocks in
to-space.

Once the copy phase is complete, all live blocks are in to-space, and the
algorithm installs the updated root-set descriptors in the machine state (because
all pointers have moved to to-space). At this point, the semispaces are flipped:
to-space becomes the new active semispace and from-space becomes the new
inactive semispace. An attempt is now made to retry the failed allocation request
in the new active space: if it succeeds, the program continues normally; otherwise,
program execution fails with an out-of-memory error.

A Stop-and-copy GC for FRM

Implementing the allocation strategy above requires only a free pointer nfree ,
which points to the first free word in the active semispace. If the lower semispace
is active first, nfree is initially 0, and the semispace is completely full when nfree =
(nsize ÷ 2).

If the addresses of the active semispace are in the range [nlo ..nhi ], then the free
pointer partitions the active semispace into two parts: allocated blocks stored in
the address range [nlo .. (nfree − 1)] and free memory available for future allocation
in the address range [nfree ..nhi ].

A request to allocate an n-slot block is handled as follows:

1. Calculate n ′
free = nfree + n + 1 (the 1 accounts for the header word).

2. If there is enough room to allocate the block (i.e., if n ′
free ≤ nhi + 1):

(a) store a header word for size n in slot M[nfree ];

(b) save the value of nfree as nresult ;

(c) update the free pointer nfree to n ′
free ; and

(d) indicate that allocation has succeeded and that nresult is the address of
the newly allocated block.

If there is not enough room to perform the allocation, then do a garbage
collection (see below) and attempt the allocation again. If it fails a second
time, then fail with an out-of-memory error.

In FRM, the copy-phase algorithm is an iteration in three state variables:
(1) a scan pointer nscan that keeps track of the blocks that need to be copied
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Initial State

nscan

nfree

to-space

R[0 ]
...

R[nmax ]

unallocated

Intermediate State

nscan

nfree

to-space

scanned

unscanned

unallocated

Final State

nscan =nfree

to-space

R′[0 ]
...

R′[nmax ]
...

unallocated

Figure 18.4 Depictions of initial, intermediate, and final states of the copy phase
iteration in the stop-and-copy garbage collection algorithm.

from from-space to to-space; (2) a free pointer nfree used to allocate storage in
to-space for blocks being copied from from-space; and (3) the main memory M
whose heap component is partitioned into from-space and to-space. Figure 18.4
shows initial, intermediate, and final states of the copy phase. The copy phase
begins by installing the root set (the contents of all the registers)9 into the first
nreg = nmax + 1 slots of to-space, setting nscan to point to the first slot of the
root set, and setting nfree to point to the first slot after the root set.

If to-space spans the memory addresses [nlo ..nhi ], then every step of the copy-
phase iteration maintains the following invariant:

nlo ≤ nscan ≤ nfree ≤ nhi + 1 (18.1)

Indeed, the nscan and nfree pointers partition to-space into three regions:

• The bottom region of to-space, occupying the address range [nlo .. (nscan − 1)],
is the scanned region, which contains words that have been successfully pro-
cessed by the copy phase, so that pointers in the scanned region point to blocks
in to-space.

• The middle region of to-space, occupying the address range [nscan .. (nfree − 1)],
is the unscanned region, which contains words still to be processed by the
copy phase. This region effectively serves as a first-in first-out queue of words
to be processed by the copy phase; when a word at the bottom of this region
is processed, new words may be added to the top of this region.

9For simplicity, the algorithm includes all registers in the root set. A more precise tracing-
based approximation to block liveness would be achieved by including only the live registers
— i.e., those registers actually mentioned in the current expression of the FRM state. See
Exercise 18.3.
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• The top region of to-space, occupying the address range [nfree ..nhi ], is the
unallocated region into which blocks from from-space will be copied.

Two additional invariants hold at each step of the copy-phase iteration:

Pointers in the scanned region point to blocks in to-space (18.2)

Pointers in the unscanned region point to blocks in from-space (18.3)

The copy-phase invariants hold in the initial state of the copy phase iteration:
invariant (18.1) clearly holds; the scanned region is initially empty, so invariant
(18.2) trivially holds; and the unscanned region initially contains the root set,
whose pointers all point to from-space, so invariant (18.3) holds.

Each step of the copy phase is described by one of the pictorial rewrite rules
in Figure 18.5. Each rule processes the word at nscan , increments nscan to yield
n ′

scan , and updates nfree to yield n ′
free . The rules are distinguished by the type of

the first element (the element at nscan) in the queue of unscanned words. If this
word is a nonpointer — i.e, it is an immediate descriptor or a header word — then
the iteration simply skips it and moves on to the next word in the queue. If the
descriptor is a pointer word, by invariant (18.3) it must specify an address nfrom

of a from-space block. The first time the copy phase visits the block, it copies the
contents of the block (including its header word) into to-space starting at address
nfree and updates the free pointer accordingly; since all pointers in the block refer
to from-space, invariant (18.3) is preserved for the next iteration. It also changes
the descriptor at nscan to point to the new to-space address (nfree) rather than
the old from-space address (nfrom), thus preserving invariant (18.2) for the next
iteration. Finally, it replaces the header word of the original from-space block
with its forwarding address, the new to-space address (nfree) of the block, to
indicate that the block has already been moved to to-space. If the copy phase
encounters a from-space block with a forwarding address nfwd (distinguishable
from a block header by having a tag of 01 instead of 11), it means that the block
has already been copied to to-space, and it is only necessary to convert the block
pointer to its forwarding address (in order to preserve invariant (18.2)).

The copy phase eventually processes all block pointers that can be reached
from the root set, thus performing a memory trace that approximates liveness by
reachability from the root set. Because new blocks are copied to the end of the
queue in the unscanned region, blocks are traversed in a breadth-first manner.
The copy phase ends when the unscanned region queue becomes empty — i.e.,
when the scan pointer catches up to the free pointer. At this point, all objects
reachable from the root set have been copied from from-space to to-space, and
invariant (18.2) guarantees that all pointer descriptors in to-space now point into
to-space.
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Figure 18.5 A pictorial description of the stop-and-copy garbage collection algorithm.
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At the termination of the copy phase, the updated register contents in the first
nreg slots of to-space are copied back into the registers, yielding the new register
memory R′. Additionally, a semispace flip is performed by making to-space the
new active semispace. Subsequent allocations then take place starting at nfree in
this new active semispace.

The stop-and-copy algorithm has several nice properties. Unlike reference
counting, it can collect cyclic garbage. Stop-and-copy GC compacts live blocks
at the bottom of to-space; this avoids memory fragmentation and simplifies block
allocation. The time to perform a stop-and-copy GC is proportional to the total
size of reachable blocks, so if most of from-space is garbage, very little work is
needed to perform a stop-and-copy GC.

However, stop-and-copy has some serious drawbacks as well. Reserving half of
heap memory for the inactive semispace wastes a large chunk of potential storage
space. The breadth-first nature of the memory trace performed by stop-and-copy
does not preserve the locality of blocks, which can seriously degrade memory
performance. The block movement of the copy phase causes significantly more
memory traffic than in-place approaches like reference counting and the mark-
sweep strategy discussed below.

Exercise 18.3 The stop-and-copy GC algorithm presented above has a root set that
includes the contents of all registers. However, if a dead register (one that is not in the
free variables of the currently executing expression) contains a pointer to a block, then
this block will be treated as live by any tracing-based GC algorithm, even though it may
be provably dead. Because of this, GC may not collect as much garbage as it could.
Fix this problem by making a simple change to the GC algorithm that prevents it from
following pointers stored in dead registers.

Exercise 18.4 In a system that requires only GC information (not types), Ben Bitdiddle
thinks that encoding the size of a block in a header word wastes too much space. He
observes that it is possible to dispense with all block header words if an additional bit
(which he calls the header bit) is reserved in every descriptor to indicate whether it is
the first word of a block in the heap. So two tag bits are necessary in every descriptor:
the header bit and the GC tag. Here is one possible tag encoding:

00 immediate descriptor that is not the first word in a heap block
10 immediate descriptor that is the first word in a heap block
01 nonimmediate descriptor that is not the first word in a heap block
11 nonimmediate descriptor that is the first word in a heap block

The header bit should be 1 only for descriptors stored in the first word of a block in the
heap. Any other descriptor (including those stored in registers) should have a header bit
of 0.
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a. Modify the stop-and-copy GC algorithm to work with Ben’s representation.

b. What are the advantages and drawbacks of Ben’s approach?

Exercise 18.5 Suppose that the first 20 words of main memoryM in an executing FRM
program have the contents shown below. (Assume the FRM GC-tag-only descriptor and
size-only block representations presented in Sections 18.2.2 and 18.2.3 are being used.
The number to the left of each slot is its address. In each slot, a bracketed decimal integer
followed by tag bits stands for the binary representation of the integer concatenated with
the tag bits.)

0 [5]01 5 [1]11 10 [3]11 15 [2]01
1 [5]0 6 [10]01 11 [3]0 16 [7]01
2 [2]11 7 [2]11 12 [5]01 17 [2]11
3 [7]01 8 [2]0 13 [14]01 18 [10]01
4 [2]01 9 [2]01 14 [2]11 19 [5]01

Suppose that the program uses only the first two registers (i.e., nreg = 2), where R[0 ]
= [17]01 and R[1 ] = [14]01, and the program does not spill any registers. Finally,
suppose that the currently executing FILreg expression has the form

(let* ((r0 0) {Set register 0 to 0}
(r0 (@mnew NT))) {Set register 0 to the address of a new block with NT slots}

Erest)

where FrIds[[Erest ]] = {r0, r1} (i.e., it refers to both registers).

a. Draw a box-and-pointer diagram depicting the two registers and all the heap blocks
in M. You should draw a register as a one-slot box. You should draw a heap block
with n content slots as an n-slot box. A slot containing an immediate value should
show that value. A slot containing an address should be the source of an arrow that
points at the box representing the heap block at that address.

b. Based on your diagram in part a, indicate which heap blocks are live and which are
dead when the mnew primitive is executed.

c. Assume that heap memory has 40 slots (so that the first 20 fill one semispace).
Show the contents of heap memory after performing the stop-and-copy GC algorithm
initiated when the mnew primitive is executed. What is the largest value of NT for
which the program will not encounter an out-of-memory error?

Exercise 18.6 Ben Bitdiddle has been hired by the Analog Equipment Corporation to
consult on a memory management problem. Analog uses Balsa, a programming language
in which heap storage is explicitly managed by programmers using the following two
expression constructs:
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(malloc E): If the value of E is a positive integer n, returns a pointer to a block of
storage that is n+1 words long. The first word of the returned block is a size header;
the other n words are uninitialized. An out-of-memory error is generated if there is
insufficient storage to allocate a block of the requested size. An error is generated if
the value of E is not a positive integer.

(free E): If the value of E is a pointer to a block of storage, deallocates the storage
of that block (allowing it to be reused by malloc) and returns unit . Otherwise, an
error is generated.

Analog is having problems with a very large Balsa application (dubbed The Titanic
by the development staff) that eventually either mysteriously crashes or runs out of heap
space. Ben suspects that the programmers who wrote the application are not properly
deallocating storage.

In order to debug Analog’s problem, Ben decides to implement a standard stop-and-
copy garbage collector for Balsa. He modifies malloc and free to keep track of the
total amount of “busy” storage — malloc increments a global *busy* counter with the
number of words in the block it creates and free decrements the *busy* counter by the
number of words in the block it frees. In Ben’s system, free just decrements the *busy*

counter and does not actually free any storage. Instead, when storage is exhausted, the
garbage collector runs and copies live storage from the old active semispace into the new
one.

a. Let live be the number of words copied during a garbage collection and busy be the
value of the *busy* counter at the time of the garbage collection. In each of the
following situations encountered while executing a Balsa program in Ben’s system
with garbage collection, describe the implications for executing the same program in
the original system without garbage collection:

i. live < busy

ii. live > busy

iii. live = busy

b. How can Ben modify his garbage collector to detect dangling pointers?

c. Ben tests his garbage collector on another very large AEC program called The Brit-
tanic.10 The program uses malloc and free for explicit memory management and
works fine with one megabyte of available memory. Ben installs enough extra mem-
ory to support two semispaces, each of which has one megabyte of storage beyond
the space needed for the garbage collector itself. Ben turns on the garbage collector,
and, full of hope, runs the program. To his surprise, The Brittanic encounters an
out-of-memory error.

i. How can you explain this behavior?

ii. How can Ben fix the problem?

10The Brittanic (1914–1916) was an identical sister ship of the Titanic.
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18.5 Garbage Collection Variants

Stop-and-copy is just one of many approaches to garbage collection. Here we
review some other approaches.

18.5.1 Mark-sweep GC

Another popular tracing-based GC algorithm is mark-sweep, an approach to
GC that takes place in two phases. First, the mark phase traverses memory
from the root set, marking each reachable block along the way (e.g., by setting a
mark bit associated with each block it visits). Then the sweep phase linearly
scans through memory and collects all unmarked blocks into a free list. The
mark-sweep collector is invoked whenever an allocation request is made and the
free list does not have a big enough block.

Mark-sweep has several benefits compared to stop-and-copy. Unlike stop-and-
copy, which uses only half of heap memory for allocating blocks, mark-sweep can
allocate blocks in all of heap memory. Like reference counting, mark-sweep is an
in-place algorithm that does not move blocks, and so it can be used in situations
(such as conservative GC, discussed later) where blocks cannot be moved. In-
placeness also helps to preserve block locality and reduce memory traffic during
GC. But in-placeness has a big downside as well — it implies using a free list for
allocation, which leads to memory fragmentation.

There are other drawbacks to mark-sweep. There is space overhead for the
mark bits and time overhead for manipulating them. There is also space overhead
for controlling the mark-phase traversal, although this can be eliminated using
the clever pointer-reversal technique described in [SW67]. Finally, the sweep
phase takes time proportional to the size of the heap rather than to the size of
live memory. In contrast, stop-and-copy GC takes time proportional to the size
of live memory.

18.5.2 Tag-free GC

A GC algorithm is said to be tag-free if GC descriptors do not require tags. For
a statically typed language, it is possible to implement a tag-free GC that can
also eliminate header words for blocks whose sizes are statically known. The basic
idea is to design the implementation so that the garbage collector is provided with
(or can find) run-time type information for every word in the root set. This type
information can be used as a “map” that guides GC by distinguishing pointers
from nonpointers and indicating the sizes of blocks whose size is statically known.
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(Size-bearing header words are still necessary for blocks whose size is known only
dynamically, such as arrays.)

For example, a descriptor with type (prodof int bool (listof int)) is a
pointer to a block with three slots, the first two of which are nonpointers, but the
third of which (if nonnull) is a pointer to a two-slot block with one nonpointer and
one pointer. Because it has compact descriptions for complex specifications (e.g.,
(listof int) describes the layout of integer lists of any length), such a type
“map” generally requires far less storage than that needed to explicitly annotate
every word and block with GC information. But tag-free GC complicates the
compiler (which must supply type information to the run-time system), the run-
time system (which must preserve the type information), and the GC algorithm
(which must find and follow the type “map”).

18.5.3 Conservative GC

In a tracing-based GC, it is never sound to treat a pointer as a nonpointer, since
this could result in classifying a live block as dead. However, it is sound to treat
some nonpointers as pointers. For example, in a system where words do not
carry GC tags, if an integer in a register happens to have the same bit pattern
as a pointer to a heap block, it’s OK to consider that block reachable; the only
downside is that this block may now cause a memory leak. But if the probability
of misinterpreting an integer as a block pointer is low, then this sort of memory
leak may not be any worse than leaks due to other liveness approximations.

This is the key idea behind a tag-free approach known as conservative GC
[BW88], which can be used for garbage collection in implementations of lan-
guages (e.g., C/C++ and Pascal) that cannot tolerate GC tags in their word
representations. There are clever techniques for efficiently determining whether
an arbitrary word is a possible heap-block address and, if so, for determining
the size of the block. Conservative GC must use an in-place algorithm (like
mark-sweep) to collect dead blocks because there is no reliable way to distin-
guish integers from pointers when performing the pointer rewiring required by
copying techniques. Empirically, conservative GC appears to work well in many
situations, and it is the only GC technique available for many languages.

18.5.4 Other Variations

There are many other variations on the garbage collection approaches that we
have discussed. Based on the observation that most blocks in some systems
are short-lived, so-called generational collectors partition the heap into re-
gions based on block lifetimes; recently allocated blocks are put in regions where
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collection is performed frequently, and older blocks migrate to regions where col-
lection is performed less frequently. There are numerous incremental versions of
many approaches that reduce the length of GC pauses or bound them so that GC
can be used in real-time systems. There are also many concurrent GC algorithms
that can run in a thread separate from the one(s) used for program execution;
the challenging problem these algorithms must address is how to handle the fact
that some threads are changing the graph of blocks while GC is being performed
in a separate thread. Even more challenging is performing garbage collection
in distributed environments, where memory is distributed over processing nodes
connected by a communication network with an arbitrary topology.

In practice, choosing a garbage collector depends critically on numerous de-
tails, such as the typical lifetimes of blocks of particular sizes, the tolerance for
memory leaks, the frequency of cyclic data, the acceptability of GC pauses, the
necessity of keeping blocks in place, the importance of memory locality, the cost
of memory traffic, and various other issues involving time and space resources.
Finding a good heap manager can require implementing several solutions, com-
paring them empirically, and fine-tuning the one that performs best in typical
situations. Sometimes it is a good idea to combine several of the strategies we have
discussed. For example, a system might require certain blocks to be deallocated
manually and use reference counts to automatically deallocate other blocks, rely-
ing on a periodic stop-and-copy GC to compact and collect cyclic garbage from
the reference-counted storage.

Exercise 18.7 This exercise continues the scenario started in Exercise 18.5 on page 1139.

a. Assume that heap memory has just 20 slots, containing the values shown in Exer-
cise 18.5. Show the contents of heap memory after performing the mark-sweep GC
algorithm initiated when the mnew primitive is executed. Assume that one bit of each
header word is reserved for the mark bit and that reclaimed blocks are stored in a free
list that is used for allocation. Assume that the free list is stored in a special register
Rfree initially containing 0 (denoting the empty list) and that a block of size nslots is
added to the free list by first setting the first content slot of the block to contain the
content of Rfree and then setting Rfree to the address of the block. What is the largest
value of NT for which the program will not encounter an out-of-memory error?

b. Again assume that heap memory has just 20 slots and that memory is allocated from
a free list as described in part a (where Rfree is initially the empty list). Assume
that a reference-counting garbage collector is used, where 3 bits of each header word
are reserved for a reference count. Show the contents of heap memory and Rfree (1)
after performing the instruction that sets R0 to 0 and (2) after performing the mnew

primitive. What is the largest value of NT for which the program will not encounter
an out-of-memory error?
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Exercise 18.8 Consider the following FLARE/V program P :

(flare (n)

(recur loop ((p (pair 0 0)))

(let ((s (snd p)))

(if (= s n)

(fst p)

(loop (pair s (+ s 1)))))))

a. Explain what this program does.

b. Suppose that P is compiled by Tortoise and executed in a version of FRM using
a simple heap manager that allocates blocks but never deallocates them. On the ith
iteration of the loop, how many pair blocks are live and how many are dead?

c. Suppose that we extend FLARE/V and FIL with a manual deallocation construct
(free E). If E denotes a compound value, then free indicates that the heap block
representing this value may be reclaimed; otherwise free generates an error. Modify
P to a program P ′ that uses free in such a way that it will not abort with an out-of-
memory error for any natural number input when executed using a heap of reasonable
size.

d. Remark on the suitability of each of the following approaches to garbage collection
for executing P : (1) stop-and-copy; (2) mark-sweep; and (3) reference counting.

e. Suppose that P is translated to C, where pair is replaced by a call to malloc, C’s
memory allocator, and loop is replaced by a while loop. What, if any, garbage
collection techniques can prevent the program from running out of memory?

18.6 Static Approaches to Automatic Deallocation

We have studied dynamic approaches to automatic deallocation, but there are
static approaches as well.

In a language implementation with a run-time stack of frames that store in-
formation (e.g., arguments, local variables, return addresses) associated with pro-
cedure invocations, popping a frame on procedure exit can reclaim a large chunk
of storage with low cost (resetting the stack pointer). Languages like C/C++,
Pascal, and Ada permit (indeed, encourage) the programmer to allocate data
blocks on the stack by declaring compound values that are local to a procedure;
these are implicitly deallocated when the procedure returns. Pascal and Ada
do not allow creating pointers to stack-allocated data that can outlive the stack
frame for the procedure invocation in which they were allocated, so stack deal-
location cannot give rise to dangling pointers in these languages. In contrast, C
and C++ do allow pointers to stack-allocated data to outlive the stack frame
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in which they were allocated, providing yet another way to generate dangling
pointers in these languages.

An alternative approach is to rely on a system that statically determines (e.g.,
using the lifetime analysis in Section 16.3.5) which blocks can safely be allocated
on the stack. For example, in the Tortoise compiler, such a system would
be able to determine automatically that all closures for continuation procedures
introduced by the CPS stage can be stack-allocated — an expected result, since
they correspond to traditional stack frames.11

The region-based approach to memory management sketched in Section 16.3.5
generalizes this idea by statically allocating each program value within a partic-
ular region of a stack of abstract regions associated with an automatically placed
let-region construct. This allows an entire region to be deallocated when the
let-region that introduced it is exited.

Notes

A wealth of information about modern garbage collection techniques can be found
in the surveys [Wil92] and [Jon99]. Earlier work is surveyed in [Coh81].

Mark-sweep collection was invented by McCarthy in the first version of Lisp
[McC60]. The idea of copying garbage collection originated with Minsky [Min63],
who wrote live data to disk and read it back into main memory. Fenichel and
Yochelson developed a two-semispace algorithm for list memory in which live list
nodes were scanned recursively [FY69]. The recursion implies extra storage for
a recursion stack, but this can be eliminated by the pointer-reversal technique
described in [SW67]. The iterative scanning algorithm we describe, which uses
constant control space for scanning, is due to Cheney [Che70]. There are incre-
mental versions of this algorithm that can limit the duration of a GC pause (e.g.,
[HGB78, AEL88, NOPH92, NO93, NOG93]).

[App89] sketches how static typing can eliminate the need for almost all tag
bits in a garbage-collected language. Many of the details of tag-free GC were
worked out in [Gol91]. Determining the types of tagless objects in a statically
typed language with polymorphism is a problem. One solution is to dynamically
reconstruct the types at run time [AFH94]. Another is to modify the compiler and

11This is true only because FLARE/V does not include constructs that capture control points,
such as label/jump or cwcc. Also, note that stack allocation of continuation closures can be
performed without sophisticated analysis. For example, Rozas’s Liar compiler for Scheme
[Roz84] achieved this result by performing a pre-CPS closure-conversion pass that allocated
closures on the heap and a post-CPS closure conversion pass that allocated closures on the
stack.
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run-time system to explicitly pass the types onto which polymorphic functions are
projected [Tol94]. Conservative GC [BW88] is a variant of tag-free GC suitable
for languages whose data representations cannot contain GC tag bits.

An operational framework for reasoning formally about memory management
is presented in [MFH95]. Interestingly, type reconstruction in this system can be
used to identify values that, though reachable, will never actually be referenced,
and so can be reclaimed as garbage. So-called linear types, which track the
number of times a value is used, can be used in such a framework to eagerly
reclaim values after their last use [IK00].

Many techniques have been developed to reduce dangling pointer errors in
languages with manual heap deallocation. One approach is to insert additional
run-time checks before memory operations to guarantee memory safety [NMW02,
JMG+02]. Another approach is to prove statically that no dangling pointers can
be encountered in a running program. Although this is undecidable in general,
it can be done for certain kinds of programs with a sufficiently sophisticated
analysis (e.g., [DKAL03, ZX05, Zhu06]).

Heap management is only one of many services provided by the run-time sys-
tem for a programming language implementation. For a discussion of a more
full-featured run-time system, see [App90], which provides an overview of data
layout and run-time services (including garbage collection, module loading, in-
put/output, foreign function calls, and execution profiling) for an ML implemen-
tation.



Appendix A

A Metalanguage

Man acts as though he were the shaper and master of language, while in
fact language remains the master of man.

— Martin Heidegger, “Building Dwelling Thinking,” Poetry, Language,
Thought (1971)

This book explores many aspects of programming languages, including their form
and their meaning. But we need some language in which to carry out these discus-
sions. A language used for describing other languages is called a metalanguage.
This appendix introduces the metalanguage used in the body of the text.

The most obvious choice for a metalanguage is a natural language, such as
English, that we use in our everyday lives. When it comes to talking about pro-
gramming languages, natural language is certainly useful for describing features,
explaining concepts at a high level, expressing intuitions, and conveying the big
picture. But natural language is too bulky and imprecise to adequately treat the
details and subtleties that characterize programming languages. For these we
require the precision and conciseness of a mathematical language.

We present our metalanguage as follows. We begin by reviewing the basic
mathematics upon which the metalanguage is founded. Next, we explore two
concepts at the core of the metalanguage: functions and domains. We conclude
with a summary of the metalanguage notation.

A.1 The Basics

The metalanguage we will use is based on set theory. Since set theory serves
as the foundation for much of popular mathematics, you are probably already
familiar with many of the basics described in this section. However, since some
of our notation is nonstandard, we recommend that you at least skim this section
in order to familiarize yourself with our conventions.
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A.1.1 Sets

A set is an unordered collection of elements. Sets with a finite number of elements
are written by enclosing the written representations of the elements within braces
and separating them by commas. So {2, 3, 5} denotes the set of the first three
primes. Order and duplication don’t matter within set notation, so {3, 5, 2} and
{3, 2, 5, 5, 2, 2} also denote the set of the first three primes. A set containing one
element, such as {19}, is called a singleton. The set containing no elements is
called the empty set and is written {}.

We will assume the existence of certain sets:

Unit = {unit} ; standard singleton set
Bool = {true, false} ; truth values
Int = {. . . ,−2,−1, 0, 1, 2, . . .} ; integers
Pos = {1, 2, 3, . . .} ; positive integers
Neg = {−1,−2,−3, . . .} ; negative integers
Nat = {0, 1, 2, . . .} ; natural numbers
Rat = {0, 1,−1, 1

2 ,−1
2 , 2,−2, 1

3 ,−1
3 , 2

3 ,−2
3 , 3,−3, 3

2 ,−3
2 , . . .} ; rationals

Char = {‘a’, ‘b’, . . . , ‘A’, ‘B’, . . . , ‘1’, ‘2’, . . . , ‘.’, ‘,’, . . .} ; text characters
String = {“”, “a”, “b”, . . . , “foo”, . . . “a string”, . . .} ; all character strings

(The text in slanted font following the semicolon is just a comment and is not a
part of the definition. This is one of two commenting styles used in this book.
In the other commenting style, the comments are written in slanted font and are
delimited by braces. However, the braces would be confusing in the presence
of set notation, so we use the semicolon style in some cases.) The Unit set is
the canonical singleton set; its single element is named unit. Bool is the set of
the boolean truth values true and false. Int, Pos, Neg, Nat, and Rat (which
contains all ratios of integers) are standard sets of numbers. String is the set of
all character strings. Unit and Bool are finite sets, but the other examples are
infinite. Since it is impossible to write down all elements of an infinite set, we
use ellipses (“. . .”) to stand for the missing elements in standard sets where it is
clear what the remaining elements are.

We consider the unit value, truth values, numbers, and characters to be prim-
itive elements that cannot be broken down into subparts. Character strings are
not primitive because they can be decomposed into their component characters.

Sets can contain any structure, including other sets. For example, the set
{Int,Nat, {2, 3, {4, 5}, 6}} contains three elements: the set of integers, the set
of natural numbers, and a set of four elements (one of which is itself a set of
two numbers). Here the names Int and Nat are used as synonyms for the set
structures they denote.
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Set membership is specified by the symbol ∈ (pronounced “element of” or
“in”). The notation e ∈ S asserts that e is an element of the set S, while e 
∈ S
asserts that e is not an element of S. (In general, a slash through a symbol
indicates the negation of the property denoted by that symbol.) For example,

0 ∈ Nat
0 
∈ Neg

Int ∈ {Int,Nat, {2, 3, {4, 5}, 6}}
Neg 
∈ {Int,Nat, {2, 3, {4, 5}, 6}}

2 
∈ {Int,Nat, {2, 3, {4, 5}, 6}}

In the last example, 2 is not an element of the given set even though it is an
element of one of that set’s elements.

A set A is a subset of a set B (written A ⊆ B) if every element of A is also
an element of B. Every set is a subset of itself, and the empty set is trivially a
subset of every set. E.g.,

{} ⊆ {1, 2, 3} ⊆ Pos ⊆ Nat ⊆ Int ⊆ Rat
Nat ⊆ Nat
Nat 
⊆ Pos

Two sets A and B are equal (written A = B) if they contain the same elements,
i.e., if every element of one is an element of the other. Note that A = B if and
only if A ⊆ B and B ⊆ A. A is said to be a proper subset of B (written A ⊂ B)
if A ⊆ B and A 
= B.

Sets are often specified by describing a defining property of their elements.
The set builder notation {x | Px} (pronounced “the set of all x such that Px”)
designates the set of all elements x such that the property Px is true of x. For
example, Nat could be defined as {n | n ∈ Int and n ≥ 0}. The sets described
by set builder notation are not always well defined. For example, {s | s 
∈ s},
(the set of all sets that are not elements of themselves) is a famous nonsensical
description known as Russell’s paradox.

We will use [lo..hi ] (pronounced “the integers between lo and hi , inclusive”)
as an abbreviation for {n | n ∈ Int and lo ≤ n ≤ hi}; if lo > hi , then [lo..hi ]
denotes the empty set.

Some common binary operations on sets are defined below using set builder
notation:

A ∪B = {x | x ∈ A or x ∈ B} ; union
A ∩B = {x | x ∈ A and x ∈ B} ; intersection
A − B = {x | x ∈ A and x 
∈ B} ; difference
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The notions of union and intersection can be extended to (potentially infinite)
collections of sets. If A is a set of sets, then

⋃
A denotes the union of all of the

component sets of A. That is,⋃
A = {x | there exists an a ∈ A such that x ∈ a}

If Ai is a family of sets indexed by elements i of some given index set I, then⋃
i∈I Ai =

⋃
{Ai | i ∈ I}

denotes the union of all the sets Ai as i ranges over I. Intersections of collections
of sets are defined in a similar fashion.

Two sets B and C are said to be disjoint if and only if B∩C = {}. A set of
sets A = {Ai | i ∈ I} is said to be pairwise disjoint if and only if Ai and Aj are
disjoint for any distinct i and j in I. A is said to partition (or be a partition
of) a set S if and only if S =

⋃
i∈I Ai and A is pairwise disjoint.

The cardinality of a set A (written |A|) is the number of elements in A.
The cardinality of an infinite set is said to be infinite. Thus |Int| is infinite, but
|{Int,Nat, {2, 3, {4, 5}, 6}}| = 3. Still, there are distinctions between infinities.
Informally, two sets are said to be in a one-to-one correspondence if it is
possible to pair every element of one set with a unique and distinct element
in the other set without having any elements left over. Any set that is either
finite or in a one-to-one correspondence with Nat is said to be countable. For
instance, the set Int is countable because every nonnegative element n in Int can
be paired with 2n in Nat and every negative element n in Int can be paired with
1− 2 · (n + 1). Clearly Unit, Bool, Pos, Neg, and Char are also countable. It can
be shown that Rat and String are countable as well. Informally, all countably
infinite sets “have the same size.” On the other hand, any infinite set that is not
in a one-to-one correspondence with Int is said to be uncountable. Cantor’s
celebrated diagonalization proof shows that the real numbers are uncountable.1

Informally, the size of the reals is a much “bigger” infinity than the size of the
integers.

The powerset of a set A (written P(A)) is the set of all subsets of A. For
example,

P({1, 2, 3}) = {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

The cardinality of the powerset of a finite set is given by:

|P(A)| = 2|A|

1A description of Cantor’s method can be found in many books on mathematical analysis
and computability. We particularly recommend [Hof80].
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In the above example, the powerset has size 23 = 8. The set of all subsets of the
integers, P(Int), is an uncountable set.

A.1.2 Boolean Operators and Predicates

In our metalanguage, we will often employ standard operators to manipulate
expressions that denote the boolean truth values, true and false. Suppose that
p, q, and r are any expressions that stand for boolean truth values. Then:

• ¬p, the logical negation of p, is false if p is true and is true if p is false. The
notation ¬p is pronounced “not p.” Note that ¬(¬p) = p.

• p ∧ q, the logical conjunction of p and q, is true only if both p and q are
true; otherwise it is false. The notation p ∧ q is pronounced “p and q.” It is
commutative (p ∧ q = q ∧ p) and associative ((p ∧ q) ∧ r = p ∧ (q ∧ r)).

• p ∨ q, the logical disjunction of p and q, is false only if both p and q are
false; otherwise it is true. The notation p ∨ q is pronounced “p or q.” It is
commutative and associative.

• The logical implication statements “p implies q,”2 “if p then q,” and “p only
if q” are synonymous, and are true only when p is false or q is true; otherwise,
they are false. So these statements are equivalent to (¬p)∨ q. When p is false,
these statements are said to be vacuously true.

• The contrapositive of “p implies q” is “not q implies not p.” This is logically
equivalent to “p implies q,” which we can see because (¬ (¬q)) ∨ (¬p) can be
simplified to (¬p) ∨ q.

• The statement “p if q” is equivalent to “if q then p” and thus to p ∨ (¬q).

• The statement “p if and only if q,” usually abbreviated “p iff q,” is true only
if both “p implies q” and its converse, “q implies p,” are true; otherwise it is
false. It is equivalent to ((¬p) ∨ q) ∧ (p ∨ (¬q)).

For our purposes, a predicate is a metalanguage expression, usually con-
taining variables, that may denote either true or false when the variables are
instantiated with values. Some examples are n ∈ Pos, A ⊆ B, and x > y. The
first of these examples is a unary predicate, a predicate that mentions one
variable (in this case, n).

2“p implies q” is traditionally written as p → q or p ⇒ q. However, the arrows → and ⇒
are used for other purposes in this book. To avoid confusion, we will always express logical
implication in English.
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We have already seen predicates in set builder notation; the expression to the
right of the | symbol is a predicate over the variables mentioned in the expression
to the right. For example, the notation

{x | x ∈ Int and (x ≥ 0 or x ≤ 5)}

denotes the set of integers between 0 and 5, inclusive. In this case, the predicate
after the | symbol is built out of three smaller predicates, and we could rewrite
it using boolean operators as

(x ∈ Int) ∧ (x ≥ 0 ∨ x ≤ 5)

Suppose that S is a set and P (x) is a unary predicate over the variable x.
Then the universal quantification statement ∀x∈S . P (x), pronounced “for all
x in S, P (x),” is true iff P is true when x is instantiated to any member of S. If
there is some element for which the predicate is false, the universal quantification
statement is false. If S is empty, ∀x∈S . P (x) is true for any predicate P (x);
in this case, the statement is said to be vacuously true. We use the notation
∀hi
i=lo . P (i) as an abbreviation for ∀i∈[lo..hi ] . P (i), where [lo..hi ] is the set of all

integers i such that lo ≤ i ≤ hi .
The existential quantification statement ∃x∈S . P (x), pronounced “there

exists an x in S such that P (x),” is true iff there is at least one element xwitness

in S such that P (x) is true when x is instantiated to xwitness. If there is no
element for which the predicate is true, the existential quantification statement
is false. The element xwitness (if it exists) is called a witness for the existential
quantification because it provides the evidence that the statement is true.

A.1.3 Tuples

A tuple is an ordered collection of elements. A tuple of length n, called an
n-tuple, can be envisioned as a structure with n slots arranged in a row, each of
which is filled by an element. Tuples with a finite length are written by writing
the slot values down in order, separated by commas, and enclosing the result in
angle brackets. Thus 〈2, 3, 5〉 is a tuple of the first three primes. The number
and order of elements in a tuple matter, so 〈2, 3, 5〉, 〈3, 2, 5〉, and 〈3, 2, 5, 5, 2,
2〉 denote three distinct tuples. Tuples of size 2 through 5 are called, respectively,
pairs, triples, quadruples, and quintuples. The 0-tuple, 〈〉, and 1-tuples also
exist.

The element of the ith slot of a tuple t can be obtained by projection,
written t ↓ i. For example, if s is the triple 〈2, 3, 5〉, then s ↓ 1 = 2, s ↓ 2 = 3,
and s ↓ 3 = 5. The notation t ↓ i is well formed only when t is an n-tuple and
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1 ≤ i ≤ n. Two tuples s and t are equal if they have the same length n and s ↓ i
= t ↓ i for all 1 ≤ i ≤ n.

As with sets, tuples may contain other tuples; e.g., 〈〈2, 3, 5, 7〉, 11, 〈13, 17〉〉
is a tuple of three elements: a quadruple, an integer, and a pair. Moreover,
tuples may contain sets and sets may contain tuples. For instance, 〈〈2, 3, 5〉, Int,
{{2, 3, 5}, 〈7, 11〉}〉 is a well-formed tuple.

If A and B are sets, then their Cartesian product (written A × B) is the
set of all pairs whose first slot holds an element from A and whose second slot
holds an element from B. This can be expressed using set builder notation as:

A×B = {〈a, b〉 | a ∈ A and b ∈ B}
For example:

{2, 3, 5} × {7, 11} = {〈2, 7〉, 〈2, 11〉, 〈3, 7〉, 〈3, 11〉, 〈5, 7〉, 〈5, 11〉}
Nat× Bool = {〈0, false〉, 〈1, false〉, 〈2, false〉, . . . , 〈0, true〉, 〈1, true〉, 〈2, true〉, . . .}

If A and B are finite, then |A×B| = |A| · |B|.
The product notion extends to families of sets. If A1, . . . , An is a family of

sets, then their product (written A1×A2× . . . ×An or
∏n

i=1 Ai) is the set of all
n-tuples 〈a1, a2, . . ., an〉 such that ai ∈ Ai. The notation An (=

∏n
i=1 A) stands

for the n-fold product of the set A.

A.1.4 Relations

A binary relation on A is a subset of A × A.3 For example, the less-than
relation, <Nat, on natural numbers is the subset of Nat × Nat consisting of all
pairs of natural numbers 〈n, m〉 such that n is less than m:

<Nat = {〈0, 1〉, 〈0, 2〉, 〈0, 3〉, . . . , 〈1, 2〉, 〈1, 3〉, . . . , 〈2, 3〉, . . .}

For a binary relation R on A, the notation a1 R a2 is shorthand for 〈a1, a2〉 ∈ R.
Similarly, the notation a1 
R a2 means that 〈a1, a2〉 
∈ R. Thus, 1 <Nat 2 is really
just another way of saying 〈1, 2〉 ∈ <Nat, and 3 
<Nat 2 is another way of saying
〈3, 2〉 
∈ <Nat.

For any set A, the equality relation =A on A is defined as {〈a, a〉 | a ∈ A}. If
N is one of the standard numerical sets (Nat, Int, Pos, Neg, Rat, etc.), then <N ,
≤N , ≥N , and >N denote the standard binary numerical relations on N . The
subscripts in these relations may be omitted when they are clear from context.

3The notion of a relation can be generalized to arbitrary products: an n-ary relation on
the sets A1, . . ., An is a subset of A1 × . . . × An. However, binary relations on a single set are
sufficient for most of our purposes.
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Binary relations are often classified by certain properties. Let R be a binary
relation on a set A. Then:

• R is reflexive if, for all a ∈ A, a R a.

• R is symmetric if, for all a1, a2 ∈ A, a1 R a2 implies a2 R a1.

• R is antisymmetric if, for all a1, a2 ∈ A, a1 R a2 and a2 R a1 implies
a1 =A a2.

• R is transitive if, for all a1, a2, a3 ∈ A, a1 R a2 and a2 R a3 imply a1 R a3.

For example:

• The =Nat relation has all four properties: it is reflexive, symmetric, antisym-
metric, and transitive.

• The “has the same remainder modulo 3” relation on natural numbers (which
we shall call =mod3) is reflexive, symmetric, and transitive, but is not antisym-
metric (why?).

• The ≤Nat relation and the “is a divisor of” relation on natural numbers are
reflexive, antisymmetric, and transitive, but not symmetric.

• The <Nat relation is antisymmetric and transitive but not reflexive or symmet-
ric. (It is antisymmetric because the premise a1 <Nat a2 and a2 <Nat a1 doesn’t
hold for any two natural numbers a1 and a2 , so the property is vacuously true.)

• The following isOneLess relation on Int is (vacuously) antisymmetric, but not
reflexive, symmetric, or transitive:

isOneLess = {〈i , (i + 1)〉 | i ∈ Int}

A binary relation that is reflexive, symmetric, and transitive is called an
equivalence relation. An equivalence relation R on A uniquely partitions the
elements of A into disjoint equivalence classes Ai whose union is A and that
satisfy the following: a1 R a2 if and only if a1 and a2 are elements of the same Ai.
For example, it’s easy to show that the =mod3 relation introduced above satisfies
the criteria for an equivalence relation. It partitions Nat into three equivalence
classes:

Nat0 = {0, 3, 6, 9, . . .}
Nat1 = {1, 4, 7, 10, . . .}
Nat2 = {2, 5, 8, 11, . . .}
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The quotient of a set A by an equivalence relation R (written A/R) is the
set of equivalence classes into which R partitions A. Thus, (Nat / =mod3) =
{Nat0 ,Nat1 ,Nat2}.

A binary relation that is reflexive, antisymmetric, and transitive is called a
partial order. We study partial orders in more detail in Chapter 5.

There are several operations on binary relations that produce new relations.
For n ∈ Nat, the n-fold composition of a binary relation R, written Rn, is the
unique relation such that aleft Rn aright if and only if there exist ai, 1 ≤ i ≤ n+1,
such that a1 = aleft , an+1 = aright , and aj R aj+1 for each j such that 1 ≤ j ≤
n. For example, n-fold composition of the isOneLess relation introduced above
yields:

isOneLessn = {〈i , (i + n)〉 | i ∈ Int}

Note that R0 is the equality relation =A and R1 is the same relation as R.
The reflexive transitive closure of a binary relation R on A, written R∗,

is defined as:

R∗ = {〈aleft , aright〉 | aleft Rn aright for some natural number n}

If we instead require n ≥ 1 in this definition, we obtain the transitive closure
of R, written R+. For example, isOneLess∗ is the same relation as ≤Int and
isOneLess+ is the same relation as <Int.

Exercise A.1 Let P be the set {reflexive, symmetric, antisymmetric, transitive} of the
names of four properties that relations can have. Let X be the three-element set {a, b, c}.
For each set S ∈ P(P ), either

• define a binary relation on X (i.e., as a set of pairs in X × X) that has all the
properties in S but none of the properties in P − S; or

• explain why no such relation can be defined.

Note that there are 16 subsets of P . For example, for Sst = {symmetric, transitive},
one answer is the binary relation Rst = {〈a, b〉, 〈b, a〉, 〈a, a〉, 〈b, b〉}. Rst is symmetric
and transitive, but it isn’t reflexive (since it’s missing 〈c, c〉) and it isn’t antisymmetric
(since a Rst b and b Rst a but a 
=X b). Keep in mind that a relation can be vacuously
symmetric, antisymmetric, or transitive — i.e., if the premises in the definition of one of
these properties are never true, the property vacuously holds.

A.2 Functions

Functions are crucial elements of our metalanguage. Here we carefully explain
what they are in the context of sets (set-theoretic functions) and develop
notations to express them.
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A.2.1 What Is a Function?

Informally, a function is a mapping from an argument to a result. More for-
mally, a function f is a triple of three components:4

1. The source S of the function, written src(f ) — the set from which the argu-
ment is taken.

2. The target T of the function, written tgt(f ) — the set from which the result
is taken.

3. The graph of a function, written gph(f ) — a subset G of S × T such that
each s ∈ S appears as the first component in no more than one pair 〈s, t〉 ∈ G.

For example, the increment function incInt on the integers can be defined as

incInt = 〈Int, Int, Ginc〉

where Ginc is the set of all pairs 〈i , i + 1〉 such that i ∈ Int. That is,

Ginc = {. . . , 〈−3,−2〉, 〈−2,−1〉, 〈−1, 0〉, 〈0, 1〉, 〈1, 2〉, 〈2, 3〉, . . .}

Note that src(incInt) = Int, tgt(incInt) = Int, and gph(incInt) = Ginc.
A total function is one that is defined for all elements of its source — that

is, one for which {s | 〈s, t〉 ∈ gph(f )} = src(f ). If there are source elements for
which the function is undefined, the function is said to be partial. Most familiar
numerical functions are total, but some are partial. The reciprocal function on
rationals is partial because it is not defined at 0. And a square-root function
defined as

sqrt = 〈Nat,Nat, {〈n2, n〉 | n ∈ Nat}〉

is partial because it is defined only at perfect squares.
For any function f , we use the notation dom(f ) to stand for its domain of

definition, the source elements at which f is defined. That is,

dom(f ) = {s | 〈s, t〉 ∈ gph(f )}

For example, dom(sqrt) is the set of perfect squares. A function f is total if
dom(f ) = src(f ) and otherwise is partial.

4What we call source and target are commonly called domain and codomain, respectively.
We use different names so as not to cause confusion with the meaning of the term domain

introduced in Section A.3.
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It is always possible to turn a partial function into a total function by adding
a distinguished element to the target that represents the undefined case, and
altering the graph to map all previously unmapped members of the source to this
element. By convention, this element is called bottom and is written ⊥. Using
this element, we can define a total reciprocal function whose source is Rat, whose
target is Rat ∪ {⊥}, and whose graph is

{〈0,⊥〉} ∪ {〈q , 1
q
〉 | q ∈ Rat and q 
= 0}

Bottom plays a crucial role in the explanation of fixed points in Chapter 5.
The notation S → T stands for the set of all total functions with source S

and target T , while the notation S ⇀ T stands for the set of all partial functions
with source S and target T . The notation f :S → T declares that f ∈ (S → T );
in this case, we say that S → T is the signature of the function.5 In a function
signature, the arrow → can be replaced by ⇀ to indicate a partial function.

Two functions are equal if they are equal as triples — i.e., if their sources, tar-
gets, and graphs are respectively equal. In particular, it is not sufficient for their
graphs to be equal — they must have the same signature as well. For example,
consider the two functions abs1 = 〈Int, Int, Gabs〉 and abs2 = 〈Int,Nat, Gabs〉,
where Gabs is the set of all pairs 〈i , iabs〉 such that i is an integer and iabs is the
absolute value of i . Then even though abs1 and abs2 have the same graph, they
are not equal as functions because the signature of abs1 , Int → Int, is different
from the signature of abs2 , Int→ Nat.

Many programming languages use the term “function” to refer to a kind of
subroutine. To avoid confusion, we will use the term procedure for a program-
ming language subroutine, and will reserve the term function for the mathemat-
ical notion. We wish to carefully distinguish them because they differ in some
important respects:

• We often think of procedures as methods, or sometimes even agents, for com-
puting an output (result) from an input (argument). A function doesn’t use
any method or perform any computation; it doesn’t do anything. It simply is
a structure that contains the source, the target, and all input/output pairs.

• We typically view procedures as taking multiple arguments or returning mul-
tiple results. But a function always has exactly one argument and exactly
one result. However, we will see shortly how these procedural notions can be
simulated with functions.

5The signature of a function is also called its type. In Section A.3, we will generalize the
notion of type to describe the well-formedness of arbitrary metalanguage expressions.
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• In addition to returning a value, procedures often have a side effect — e.g.,
changing the state of the computer’s memory or display screen. There is no
equivalent notion of side effect for a function. However, we will see in Chapter 8
how to use functions to model side effects in a programming language.

• When viewed in terms of their input/output behavior, procedures can spec-
ify only a subset of functions known as the computable functions — i.e.,
those functions whose results can be determined by executing a computational
process on their arguments. The most famous example of an uncomputable
function is the halting function, which maps the text of a program to a boolean
that indicates whether or not the program will halt when executed.

The above points do not necessarily apply to the procedural entities in all lan-
guages. In particular, the subroutines in so-called functional programming lan-
guages are very close in spirit to mathematical functions.

A.2.2 Application

The primary operation involving a function is the application of the function
to an argument, an element in its source. The function is called the operator
of the application, while the argument is called the operand of the application.
The result of applying an operator f to an operand s is the unique element t in
the target of f such that 〈s, t〉 is in the graph of f . If there is no pair 〈s, t〉 in the
graph of f , then the result of the application of f to s is said to be undefined.

We use the juxtaposition f s to denote the application of a function f to an
argument s.6 For instance, the increment of 3 is written incInt 3. Parentheses
are used to structure nested applications. Thus, incInt (incInt 3) expresses the
increment of the increment of 3. In the metalanguage, parentheses that don’t af-
fect the application structure can always be added without changing the meaning
of an expression.7 For example, ((incInt) (incInt (3))) is equivalent to the above
application. Function application associates to the left, so that the expression
a b c d parses as (((a b) c) d).

6The reader may find it strange that we depart from the more traditional notation for appli-
cation, which is written f(s) for single arguments, and f(s1, s2, . . . , sn) for multiple arguments.
The reason is that in the traditional notation, f is usually restricted to be a function name,
whereas we will want to allow the function position of an application to be any metalanguage
expression that stands for a function. Application by juxtaposition is a superior notation for
handling this more general case because it visually distinguishes less between the function po-
sition and the argument position.

7This contrasts with s-expression grammars (see Section 2.3), as in Lisp-like programming
languages, in which no parentheses are optional.
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If f is a partial function and s ∈ src(f ) but s 
∈ dom(f ), then f s is undefined.
We sometimes write f s = undefined to indicate this situation; in this notation,
undefined does not denote an element of tgt(f ). For example, sqrt 4 = 2 but
sqrt 5 = undefined.

The application notation f s is well formed only when f:S → T and s ∈ S.
For example, (sqrt − 3) is an invalid application because −3 
∈ Nat and (1 2) is
an invalid application because 1 is not a function.

A.2.3 More Function Terminology

For any set A, there is an identity function idA :A→ A that maps every element
of A to itself:

idA = 〈A, A, {〈a, a〉 | a ∈ A}〉

Given sets A and B, for each element b ∈ B, there is a constant function
constA,B ,b that maps every element of A to b:

constA,B,b = 〈A, B, {〈a, b〉 | a ∈ A}〉

If f :A→ B and g :B → C, then the composition of g and f , written g ◦ f ,
is a function with signature A → C defined as follows:

(g ◦ f) a = (g (f a)) , for all a ∈ A

The composition function8 is associative, so that

f ◦ g ◦ h = (f ◦ g) ◦ h = f ◦ (g ◦ h)

If f :A→ A then the n-fold composition of f , written fn, is

f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
n times

f0 is defined to be the identity function on A. Because of the associativity of
composition, fn ◦ fm = fn+m.

For any set B such that B ⊆ A, there is an inclusion function B ↪→ A that
maps every element of B to the same element in the larger set:

B ↪→ A = 〈B, A, {〈b, b〉 | b ∈ B}〉
8There is not a single composition function, but really a family of composition functions

indexed by the sets A, B, and C used in its definition.
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Inclusion functions are handy for satisfying the constraints imposed by function
signatures. For example, if inc : Int→ Int and square : Int→ Nat, then the com-
position inc ◦ square is ill defined because the target set of square is not the same
as the source set of inc. Using an inclusion function leads to the well-formed
composition inc ◦ (Nat ↪→ Int ◦ square).

The image of a function is that subset of the target to which the function
actually maps all source elements. That is, for f :S → T , the image of f is

img(f ) = {t | there exists an s such that (f s) = t}

A function f is injective when no two elements of the source map to the
same target element, i.e., when (f s1) = (f s2) implies s1 = s2. A function f
is surjective when every element in the target is the result of some application,
i.e., when img(f ) = tgt(f ). A function is bijective if it is both injective and
surjective. Two sets A and B are said to be isomorphic or in a one-to-one
correspondence if there exists a bijective function with signature A → B; such
a function is called an isomorphism between A and B.

For any n ∈ Nat , an isomorphism with signature [1..n] → [1..n] is called a
permutation. By convention, we will use π to range over permutations, and
will write the application of π to k as π(k). We will use permutations to formally
express that phrases indexed by numbers in the range [1..n] can be reordered.

A.2.4 Higher-order Functions

The sources and targets of functions are not limited to familiar sets like numbers,
but may be sets of sets, sets of tuples, or even sets of functions. Functions
whose sources or targets themselves include functions are called higher-order
functions. We make extensive use of higher-order functions throughout this
book.

As a natural example of a function that returns a function, consider a function
make-expt that, given a power, returns a function that raises numbers to that
power. The signature of make-expt is Nat → (Nat→ Nat). That is, the source
of make-ext is Nat , and the target of make-expt is the set of all functions with
signature Nat→ Nat. The graph of make-expt is:

{〈0, 〈Nat,Nat, {〈0, 1〉, 〈1, 1〉, 〈2, 1〉, 〈3, 1〉, 〈4, 1〉, . . .}〉〉,
〈1, 〈Nat,Nat, {〈0, 0〉, 〈1, 1〉, 〈2, 2〉, 〈3, 3〉, 〈4, 4〉, . . .}〉〉,
〈2, 〈Nat,Nat, {〈0, 0〉, 〈1, 1〉, 〈2, 4〉, 〈3, 9〉, 〈4, 16〉, . . .}〉〉,
〈3, 〈Nat,Nat, {〈0, 0〉, 〈1, 1〉, 〈2, 8〉, 〈3, 27〉, 〈4, 64〉, . . .}〉〉,
. . .}
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That is, (make-expt 0) denotes a function that maps every natural number to 1,
(make-expt 1) denotes the identity function on natural numbers, (make-expt 2)
denotes the squaring function, (make-expt 3) denotes the cubing function, and
so on.

As an example of a function that takes functions as arguments, consider
the function apply-to-five that takes a function between natural numbers and
returns the value of this function applied to 5. The signature of apply-to-five is
(Nat→ Nat) → Nat and its graph is:

{〈idNat, 5〉, 〈incNat, 6〉, 〈decNat, 4〉, 〈squareNat, 25〉, 〈cubeNat, 125〉,
. . ., 〈〈Nat,Nat, {. . . , 〈5, n〉, . . .}〉, n〉, . . .}

where incNat, decNat, squareNat, and cubeNat denote, respectively, the increment-
ing function, decrementing function, squaring function, and cubing function on
natural numbers.

A.2.5 Multiple Arguments and Results

We noted before that every mathematical function has a single argument and
a single result. Yet, as programmers, we are used to thinking that many fa-
miliar procedures, like addition and multiplication, have multiple arguments.
Sometimes we think of procedures as returning multiple results; for instance, a
division procedure can profitably be viewed as returning both a quotient and a
remainder. How can we translate these programming language notions into the
world of mathematical functions?

Multiple Arguments

There are two common approaches for handling multiple arguments:

1. In the first approach, called tupling, the multiple arguments can be boxed up
into a single argument tuple. For instance, under this approach, the binary ad-
dition function +Nat on natural numbers would have signature (Nat×Nat) →
Nat and would have the following graph:

{〈〈0, 0〉, 0〉, 〈〈0, 1〉, 1〉, 〈〈0, 2〉, 2〉, 〈〈0, 3〉, 3〉, . . .,
〈〈1, 0〉, 1〉, 〈〈1, 1〉, 2〉, 〈〈1, 2〉, 3〉, 〈〈1, 3〉, 4〉, . . .,
〈〈2, 0〉, 2〉, 〈〈2, 1〉, 3〉, 〈〈2, 2〉, 4〉, 〈〈2, 3〉, 5〉, . . .,
. . .}

Then an application of the addition function to 3 and 5, say, would be written
as (+Nat 〈3, 5〉).



1162 Appendix A A Metalanguage

2. A function of multiple arguments can be represented as a higher-order func-
tion that takes the first argument and returns a function that takes the rest of
the arguments. This approach is named currying, after its inventor, Haskell
Curry. Under this approach, the binary addition function +Nat on natural
numbers would have signature Nat → (Nat→ Nat) and would have the fol-
lowing graph:

{〈0, 〈Nat,Nat, {〈0, 0〉, 〈1, 1〉, 〈2, 2〉, 〈3, 3〉, . . .}〉〉,
〈1, 〈Nat,Nat, {〈0, 1〉, 〈1, 2〉, 〈2, 3〉, 〈3, 4〉, . . .}〉〉,
〈2, 〈Nat,Nat, {〈0, 2〉, 〈1, 3〉, 〈2, 4〉, 〈3, 5〉, . . .}〉〉,
. . .}

When +Nat is applied to n, the resulting value is the increment-by-n function.
So, given 0, it returns the identity function on natural numbers; given 1, it
returns the increment-by-one function; given 2, it returns the increment-by-
two function; and so on. With currying, the application of +Nat to 3 and 5 is
written as ((+Nat 3) 5) or, relying on the left-associativity of application, as
(+Nat 3 5).

In the currying approach, functions like +Nat or make-expt can be viewed
differently according to the context in which they are used. Sometimes, we
may like to think of them as functions that “take two arguments.” Other
times, it is helpful to view them as functions that take a single argument and
return a function. Of course, they are exactly the same function in both cases;
the only difference is the glasses through which we’re viewing them.

Throughout this book, we will use the second approach, currying, as our standard
method of handling multiple arguments.

Now that we have a way to express functions of multiple arguments, we
will describe some standard functions that we will use throughout the book.
For example, we can view the logical negation (¬ :Bool→ Bool), conjunction
(∧ :Bool→ (Bool→ Bool)), and disjunction (∨ :Bool→ (Bool→ Bool)) opera-
tors as functions with the following graphs:

gph(¬) = {〈false, true〉, 〈true, false〉}

gph(∧) = {〈false, 〈Bool,Bool, {〈false, false〉, 〈true, false〉}〉〉,
〈true, 〈Bool,Bool, {〈false, false〉, 〈true, true〉}〉〉}

gph(∨) = {〈false, 〈Bool,Bool, {〈false, false〉, 〈true, true〉}〉〉,
〈true, 〈Bool,Bool, {〈false, true〉, 〈true, true〉}〉〉}
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Suppose that N is a numerical set (Nat, Int, Rat, etc.). The standard binary
numerical operator names +N (addition), −N (subtraction),9 and ×N (multi-
plication) denote curried functions with signature N → (N → N). So, +Nat is
addition on the naturals, −Int is subtraction on the integers, and (×Rat 2) denotes
a doubling function on rationals.

The absolute value function on integers, absInt : Int→ Int, returns i for i ≥ 0
and (−Int 0 i) for i < 0. We abbreviate (absInt i) as |i |.

The division function for rationals is ÷Rat :Rat→ (Rat ⇀ Rat); the second
arrow signifies a partial function because division by zero is undefined. If N is
Nat or Int , the functions ÷N and %N have the signature N → (N ⇀ N) and
denote, respectively, quotient and remainder functions on N . Given a numerator
n ∈ N and denominator d ∈ N such that d 
= 0, these calculate the unique
quotient q and remainder r (where 0 ≤ r < |d| if n ≥ 0 and −|d| < r ≤ 0 if
n < 0) such that n = (+N (×N q d) r). For example,

n d q r

17 5 3 2

−17 5 −3 −2

17 −5 −3 2

−17 −5 3 −2

We will assume that the standard binary numerical relation names, such as
<N , ≤N , =N , 
= N , ≥N , and >N can be used not only as relations but as curried
functions with signature N → (N → Bool), where N is a numerical set. Func-
tions that return boolean values are called predicate functions. When a binary
relation name R is used as a predicate, (R n1 n2) denotes true if n1 R n2 and
denotes false otherwise. E.g., (<Nat 1 2) = true and (>Nat 1 2) = false.

Since infix notation for standard binary functions is so much more familiar
than the curried prefix form, we will typically use infix notation when both argu-
ments are present. Thus, the expression (b1 ∧ b2 ) is synonymous with (∧ b1 b2 ),
(i1 +Int i2 ) is synonymous with (+Int i1 i2 ), and (n1 <Nat n2 ) is synonymous
with (<Nat n1 n2 ).

We will often omit the subscript on a function name when it is clear from
context. For example, by the domain variable convention on page 1172, i1 and
i2 are known to be integers, so (i1 + i2 ) is assumed to mean (i1 +Int i2 ).

9The Nat subtraction (−Nat n1 n2 ) is defined to be 0 if n1 ≤Nat n2 ; otherwise it is the n3

such that (+Nat n2 n3 ) = n1 . Since Pos does not contain 0, the Pos subtraction (−Pos n1 n2 )
is undefined if n1 ≤Pos n2 ; −Pos is a partial function with signature Pos → (Pos ⇀ Pos).
Corresponding remarks hold for Neg.



1164 Appendix A A Metalanguage

Conditionals are expressed via a family of curried three-argument functions
ifS , indexed by a set S, with signatures Bool→ (S → (S → S)).10 These return
the second argument if the first argument is true, and return the third argument
if the first argument is false. E.g.,

(ifNat (1 =Nat 1) 3 4) = 3
(ifNat (1 =Nat 2) 3 4) = 4

Multiple Results

The handling of multiple results parallels the handling of multiple arguments.
Again, there are two common approaches:

1. Return a tuple of the results. Under this approach, a quotient-and-remainder
function quot&rem on natural numbers would have the signature

Nat→ (Nat ⇀ (Nat× Nat))

Some sample applications using this approach:

(quot&rem 17 4) = 〈4, 1〉
(quot&rem 17 5) = 〈3, 2〉
(quot&rem 17 0) = undefined

2. Suppose the goal is to define a function f of k arguments that “returns” n
results. Instead define a function f ′ that accepts the k arguments that f
would, but in addition also takes a special extra argument called a receiver.
The value returned by f ′ is the result of applying the receiver to the n values
we want f to return. The receiver indicates how the n returned values can be
combined into a single value. For example:

(quot&rem 14 4 −Int) = (3−Int 2) = 1
(quot&rem 14 4 ×Int) = (3×Int 2) = 6

In these examples the signature of quot&rem is

Nat→ (Nat ⇀ ((Nat→ (Nat→ Nat))→ Nat))

In general, the notation (f ′ a1 . . . ak r) can be pronounced “Apply receiver
r to the n results of the application of f to a1 . . . ak.” Note how this pronun-
ciation mentions the f upon which f ′ is based.

10We use these conditional functions until they are superseded by the if notation introduced
on page 1190.



A.2.6 Lambda Notation 1165

We will use both of these approaches for returning multiple values. The
second approach probably seems obscure and bizarre at first reading, but it will
prove to be a surprisingly useful technique in many situations. In fact, it is just
a special case of a more general technique called continuation-passing style that
we will study in Sections 9.2 and 17.9.

A.2.6 Lambda Notation

Up to this point, the only notation we’ve had to express new functions is a
combination of tuple notation and set builder notation. For example, the squaring
function on natural numbers can be expressed by the notation:

square = 〈Nat,Nat, {〈n, n2〉 | n ∈ Nat}〉

This notation is cumbersome for all but the simplest of functions.
For our metalanguage, we will instead adopt lambda notation as a more

compact and direct notation for expressing functions. The lambda notation ver-
sion of the above square function is:

square :Nat→ Nat = λn . (n ×Nat n)

Here, the source and target of the function are encoded in the signature that
is attached to the function name. The Greek lambda symbol, λ, introduces an
abstraction that specifies the graph of the function, i.e., how the function maps
its argument to a result. An abstraction has the form λ formal.body where formal
is a formal parameter variable that ranges over the source of the function, and
body is a metalanguage expression, possibly referring to the formal parameter,
that specifies a result in the target of the function. The abstraction λ formal.body
is pronounced “A function that maps formal to body.”

For a function with signature A → B, an abstraction defines the graph of the
function to be the following subset of A × B:

{〈a, b〉 | a ∈ A and body denotes an element b ∈ B when each
occurrence of formal in body is replaced by a}

(The notion of replacing each occurrence of a name in an expression that may
contain other abstractions is fraught with subtle problems. These are discussed
in Section 6.3.5.) For example, the abstraction λn . (n ×Nat n) specifies the graph
{〈n,n2〉 | n ∈ Nat}. In the case of a partial function, body may not be defined
at all elements of the source set. For example, consider a reciprocal function
defined as:
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recip :Rat→ Rat = λq . (1 ÷ q)

The graph of recip defined by the abstraction contains no pair of the form 〈0, q0 〉
because (1÷Rat 0) is undefined.

An abstraction for a function with signature A → B is well formed only when
its body expression is well formed and denotes an element of B (or is undefined,
in the case of a partial functions) when each occurrence of its formal parameter
is replaced by any element of A. For example, the abstraction λn . 0 is not a
well-formed abstraction for a function with signature Nat → Pos because the
returned value 0 is not an element of the target, Pos. However, the very same
abstraction is well formed for a function with signature Nat → Nat. As another
example, the definition

dec :Nat→ Nat = λn . (−1 +Nat n)

is not well formed because in the body of the abstraction +Nat is applied to an
argument, −1, that is not in the set Nat. Issues of well-formedness involving
abstractions can be explained in terms of a notion of type that is introduced in
Section A.3.

An important feature of lambda notation is that it facilitates the expression of
higher-order functions. For example, suppose that expt is a binary exponentiation
function on natural numbers such that (expt nbase npower ) is the result of raising
nbase to npower . Then the make-expt function from Section A.2.4 can be expressed
succinctly as:

make-expt :Nat→ (Nat→ Nat) = λn1 . (λn2 . (expt n2 n1 ))

The abstraction λn1 . . . . can be read as “The function that maps n1 to an
exponentiating function that raises its argument to the n1 power.” Similarly, the
apply-to-five function can be concisely written as:

apply-to-five : (Nat→ Nat)→ Nat = λf . (f 5)

By the signature of apply-to-five, the argument f is constrained to range over
functions with the signature Nat → Nat. The lambda notation says that the
apply-to-five function maps a given f to the result of applying f to 5.

An abstraction for a function with signature S → T can appear anywhere
that a function with signature S → T can be used. For example, an application
of the squaring function to the result of adding 2 and 3 can be written:

(λn . (n ×Nat n)) (2 +Nat 3)
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Such an application can be simplified by any manipulation that maintains the
meaning of the expression. For instance:

(λn . (n ×Nat n)) (2 +Nat 3)
= (λn . (n ×Nat n)) 5
= 5×Nat 5
= 25

In the next-to-last step above, the number 5 was substituted for the formal pa-
rameter n in the body expression n ×Nat n. This step is justified by the meaning
of application in conjunction with the function graph specified by the abstraction.
As another sample application, consider:

make-expt 3
= (λn1 . (λn2 . (expt n2 n1 ))) 3
= λn2 . (expt n2 3)

In this case, the result of the application is a cubing function.
Often the same abstraction can be used to define many different functions.

For example, the abstraction λa.a can be used to define the graph of any identity
or inclusion function. Because the variable a ranges over the source, though, the
resulting graphs are different for each source. A family of functions defined by
the same abstraction is said to be a polymorphic function. We will often
parameterize such functions over a set or sets to take advantage of their common
structure. Thus, we can define the polymorphic identity function as

idA :A→ A = λa . a

where the subscript A means that idA defines a family of functions indexed by
the type A. We specify a particular member of the family by fixing the subscript
to be a known type. So idInt is the identity function on integers, and idBool is the
identity function on booleans. As another example of a polymorphic function,
consider the following polymorphic version of the apply-to-five function studied
above:

apply-to-fiveT : (Nat→ T )→ T = λf . (f 5)

The family of functions apply-to-fiveT is parameterized over the target set T
of the function parameter f . As a final example, we can define a polymor-
phic function composition function composeA,B ,C with signature (B → C) →
((A → B)→ (A→ C)) using the abstraction λf . (λg . (λa . (f (g a)))).
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There are several conventions for making lambda notation more compact:

• It is common to abbreviate nested abstractions by collecting all the formal
parameters and putting them between a single λ and dot. Thus,

λa1 . λa2 . . . . λan . body

can also be written as

λa1a2 . . . an . body

This abbreviation promotes the view that curried functions accept “multiple
arguments”: λa1a2 . . . an .body can be considered a specification for a function
that “takes n arguments.”

• Formal parameter names are almost always single characters, perhaps anno-
tated with a subscript or prime. This means that whitespace separating such
names can be removed without resulting in any ambiguity. In combination with
the left-associativity of application, these conventions allow λa b c . ((b c) a)
to be written as λabc.bca. In situations where formal parameter names contain
multiple characters, whitespace will be used to separate the names. E.g., if bc
is a single name, then we would write λa bc . (bc a) instead of λabc . bca.

• Nested abstractions are potentially ambiguous since it’s not always appar-
ent where the body of each abstraction ends. For example, the abstraction
λx . λy . yx could be parsed either as λx . λy . (yx) or as λx . (λy . y)x. Tra-
ditionally, the following disambiguating convention is used in such cases: the
body of an abstraction is assumed to extend as far right as explicit parentheses
allow. By this convention, λx . λy . yx means λx . (λy . (yx)). We will tend to
use explicit parentheses to clarify the extent of an abstraction.

A.2.7 Recursion

Using lambda notation, it is possible to write recursive function specifications:
functions that are directly or indirectly defined in terms of themselves. For ex-
ample, the factorial function fact on natural numbers can be defined as:

fact :Nat→ Nat = λn . (ifNat (n =Nat 0) 1 (n ×Nat (fact (n −Nat 1))))

We can argue that fact is defined on all natural numbers based on the principle
of mathematical induction. That is, for the base case of an argument equal to 0,
the definition clearly specifies the value of fact to be 1. For the inductive case,
assume that fact is defined for the argument m. Then, according to the definition,
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the value of (fact (m + 1)) is ((m + 1) ×Nat (fact m)). But by the assumption
that (fact m) is defined, this expression has a clear meaning. So (fact (m + 1)) is
also defined. By induction, fact is defined on every element of Nat, so the above
definition determines a unique total function.

There are many recursive definitions for which the above kind of inductive
argument fails. Consider the definition of the strange function given below:

strange :Nat→ Nat = λn . (ifNat (even?Nat n) 0 (strange (n +Nat 2)))

(Assume that even?Nat is a predicate function that tests whether its argument
is even.) Clearly the function strange maps every even number to 0. But what
does it map odd numbers to? Induction does not help us because the argument
never gets smaller. If we think in terms of function graphs, then we see that for
any natural number c, the above definition is consistent with a graph of the form

{〈2n, 0〉 | n ∈ Nat} ∪ {〈2n + 1, c〉 | n ∈ Nat}

So the specification for strange is ambiguous; it designates any of an infinite
number of function graphs!

The strange example illustrates that recursive definitions need to be handled
with extreme care. For now, we will assume that the only case in which a recursive
definition has a well-defined meaning is one for which it is possible to construct
an inductive argument of the sort used for fact. Chapter 5 presents a technique
for determining the meaning of a broad class of recursive definitions that includes
functions like strange.

A.2.8 Lambda Notation Is Not Lisp!

Those familiar with a dialect of the Lisp programming language may notice a
variety of similarities between lambda notation and Lisp. (Those unfamiliar with
Lisp may safely skip this section.) Although Lisp is in many ways related to our
metalanguage, we emphasize that there are some crucial differences:

• Our metalanguage requires that signatures declaring source and target sets
must be specified for every abstraction. Most dialects of Lisp, on the other
hand, provide no mechanism for specifying the signatures of procedures.11

• Most Lisp-like languages support procedures that handle multiple arguments.
Because abstractions specify mathematical functions, they always take a single
argument. However, we have seen that the notion of multiple arguments can
be simulated by currying or tupling.

11The FX language [GJSO92] is a notable exception.
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• Every parenthesis in a Lisp expression is required, but parentheses are strictly
necessary in our lambda notation only to override the default way in which a
metalanguage expression is parsed. Of course, extra parentheses may be added
to clarify a metalanguage expression.

• Lisp dialects are characterized by evaluation strategies that determine details
like which subexpressions of a conditional are evaluated and when argument
expressions are evaluated relative to the evaluation of a procedure body. Our
metalanguage, on the other hand, is not associated with any notion of a dy-
namic evaluation strategy. Rather, it is just a notation to describe the graph
of a function, i.e., a set of argument/result pairs. Any reasoning about an
abstraction is based on the structure of the graph it denotes.

For example, compare the metalanguage abstraction

λa . (ifNat (even?Nat a) (a +Nat 1) (a×Nat 2))

with the similar Lisp expression

(lambda (a) (if (even? a) (+ a 1) (* a 2)))

In the case of Lisp, only one branch of the conditional is evaluated for any given
argument a; if a is even, then (+ a 1) is evaluated, and if it’s odd, (* a 2) is
evaluated. In the case of the metalanguage, the value of the function for any
argument a is the result of applying the ifNat function to the three arguments
(even?Nat a), (a +Nat 1), and (a×Nat 2). Here there is no notion of evaluation,
no notion that some event does or does not happen, and no notion of time.
The expression simply designates the mathematical function:

〈Nat,Nat, {〈0, 1〉, 〈1, 2〉, 〈2, 3〉, 〈3, 6〉, 〈4, 5〉, 〈5, 10〉, . . .}〉

In fact, a metalanguage abstraction can be viewed as simply a structured name
for a particular function.

Although there are many differences between Lisp and lambda notation, the
two obviously share some important similarities. Some functional programming
languages have features that are even more closely patterned after lambda nota-
tion. (The FL language presented in Chapter 6 is an example.) However, our
purpose for introducing lambda notation here is to have a convenient notation for
expressing mathematical functions, not for writing programs. The relationship
between mathematical functions and programs is the essence of semantics, which
is studied in the main text of the book.
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A.3 Domains

A.3.1 Motivation

Sets and set-theoretic functions have too simple a structure to model some im-
portant aspects of the semantics of programming languages. Yet, we would like
to proceed with the simplifying assumption that sets are adequate for our pur-
poses until the need for more structure arises. And when we do augment sets
with more structure (see Chapter 5), we would prefer not to throw away all of
the concepts and notations developed up to that point and start from scratch.

To protect against such a disaster, we will use the same technique that good
programmers use to guarantee that their code can be easily modified: abstrac-
tion.12 The essence of abstraction is constructing an abstraction barrier or
interface that clearly separates behavior from implementation. In program-
ming, an interface usually consists of a collection of procedures that manipulate
elements of an abstract data type. The data type is abstract in the sense that
it can be manipulated only by the procedures in the interface; its internal rep-
resentation details are hidden. The power of abstraction is that changes to the
representation of a data type are limited to the implementation side of the barrier;
as long as the interface specification is maintained, no client of the abstraction
needs to be modified.

We introduce an abstract structure called a domain that will serve as our
basic entity for modeling programming languages. Domains are set-like structures
that have constituent elements, but may have other structure as well. In our
initial naive implementation, domains are just sets. In Chapter 5, however, we
change this implementation by considering sets whose elements are ordered by
information content; the additional ordering structure is essential for defining
recursive functions and domains.

The simplest kind of domain is a primitive domain, whose elements are
treated as indecomposable entities. Examples of primitive domains include Unit ,
Nat , Int , and Rat.13 Domain constructors build more complex domains from
simpler ones. Elements of the resulting compound domains can be con-
structed out of the elements of simpler domains and can be deconstructed
into the elements from which they were constructed. We will study four domain
constructors, × , + , *, and → , and their associated means for constructing

12Note that this use of the term “abstraction” is different from that used in the previous
section, where it meant a metalanguage expression that begins with a λ.

13For purposes of examples, we will also often treat Bool and Char as primitive domains, but
we shall see in Section A.3.4 that they can be constructed as sum domains. We shall always
treat Rat as a primitive domain rather than as a product of Int domains.
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and deconstructing compound elements. Together, primitive domain names and
domain constructors define a simple language of domain expressions. In our
presentation of domains, we will typically use D (possibly subscripted) to stand
for an arbitrary domain expression, and d (possibly subscripted) to stand for an
arbitrary element expression that stands for the element of some domain.

A.3.2 Types

If an element expression d can be assigned a domain D such that d denotes an
element of D, this domain D is called the type of d. We write d :D (pronounced
“d has type D”) to declare that the element expression d has type D. If an
element expression can be assigned a type, it is well typed; otherwise it is ill
typed. In our presentation of domains, we shall describe (using a combination of
English and metalanguage) the well-typedness conditions for each kind of domain
expression. See Chapter 11 for a more formal way to describe the well-typedness
conditions of a language via type rules.

The elements of many primitive domains have an obvious type. For example,
unit :Unit , true :Bool , ‘a’ :Char , and 2

3 :Rat . However, the types of some
elements are ambiguous; e.g., 3 could have type Nat , Int , or Rat . When the
type of such an element is not clear from context, we will write it explicitly, as
in 3 : Int .

The type of applications of standard unary and binary operators is straight-
forward. For example, (1 +Nat 2) :Nat and (3 <Int 4) :Bool . It is clear from
context that 1 and 2 are being used with type Nat and 3 and 4 are being used
with type Int.

To enhance the readability of element expressions, we adopt a convention in
which each domain of interest has associated with it a domain variable that
ranges over elements of the domain. Suppose v ranges over domain variable
names. Then the notation v ∈ D indicates that v is the domain variable for the
domain D. For example, we use the following conventions throughout the text:

b ∈ Bool
h ∈ Char
n ∈ Nat
z ∈ Pos
i ∈ Int
q ∈ Rat

Domain variables, possibly in subscripted or primed form, are used in meta-
language expressions to indicate that they denote only entities from their as-
sociated domain. So (n +Nat 1), (n1 −Nat n2 ), and (n ′ ×Nat n ′ ′) are all well-
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typed element expressions having type Nat . However, the expressions (i +Nat 1),
(n −Int 2), and (i ×Int q) are all ill typed. In some cases, inclusion functions (see
Section A.2.3) can be used to turn an ill-typed expression into a well-typed one.
E.g., ((Nat ↪→ Int n) −Int 2) is a well-typed expression.

A.3.3 Product Domains

The product of domains D1 and D2, written D1 × D2, is the domain ver-
sion of a Cartesian product. Elements of a compound domain are created by
an appropriate constructor function. In the case of products, the construc-
tor function tupleD1 ,D2

:D1 → (D2 → (D1 ×D2)) creates elements of the prod-
uct domain D1 × D2, which are called tuples. If d1 :D1 and d2 :D2 then(
tupleD1 ,D2

d1 d2

)
: (D1 ×D2). The domain subscripts on tupleD1 ,D2

empha-
size that it is really a family of functions indexed by the domains D1 and D2.
For example, tupleNat,Bool and tupleInt,Int both serve to pair elements, but the
fact that they have different sources, targets, and graphs makes them different
functions.

We will abbreviate
(
tupleD1 ,D2

d1 d2

)
as 〈d1, d2〉D1 ,D2

, and will drop the
domain subscripts when they are clear from context. For example, the product
of Nat and Bool technically is

Nat × Bool =
{
(
tupleNat,Bool 0 false

)
,
(
tupleNat,Bool 1 false

)
,
(
tupleNat,Bool 2 false

)
, . . .,(

tupleNat,Bool 0 true
)
,
(
tupleNat,Bool 1 true

)
,
(
tupleNat,Bool 2 true

)
, . . . }

but we will usually write it as

Nat × Bool = {〈0, false〉, 〈1, false〉, 〈2, false〉, . . . ,
〈0, true〉, 〈1, true〉, 〈2, true〉, . . . }

Domains of n-tuples (known as n-ary products) are written∏n
j=1 Dj = D1 ×D2 × · · · ×Dn

and elements of this domain are constructed via tupleD1 ,D2 ,...,Dn , which is a func-

tion with signature D1 →
(
D2 → . . .

(
Dn →

∏n
j=1 Dj

)
. . .

)
. The applica-

tion
(
tupleD1 ,D2 ,...,Dn

d1 d2 . . . dn

)
is abbreviated 〈d1, d2, . . ., dn〉D1 ,D2 ,...,Dn ,

where the domain subscripts Di can be dropped if they are understood from
context. The well-typedness condition for tuples is: if ∀n

j=1 . dj :Dj , then
〈d1, . . ., dn〉D1 ,...,Dn :

∏n
j=1 Dj . The notation Dn stands for the product of n

copies of D.



1174 Appendix A A Metalanguage

Deconstruction of tuples in the product domain
∏n

j=1 Dj is performed via n
projection functions of the form

Proj kD1 ,...,Dn
: (D1 × . . . ×Dn)→ Dk,

where k is in the range [1..n]. Proj kD1 ,...,Dn extracts the kth element from an
n-tuple:

Proj kD1 ,...,Dn
〈d1, . . . , dn〉D1 ,...,Dn

= dk, if k ∈ [1..n]

For example,

Proj 1Nat,Bool 〈19, true〉 = 19
Proj 2Nat,Bool 〈19, true〉 = true

Again, the domain subscripts indicate that for each k, Proj k is a family of func-
tions indexed by the component domains of the tuple being operated on. They
will be omitted when they are clear from context. The well-typedness condition
for Proj kD1 ,...,Dn is: if d :

∏n
j=1 Dj and k ∈ [1..n], then

(
Proj kD1 ,...,Dn

d
)
:Dk.

Notice that we have overloaded the notation 〈. . .〉, which may now denote
either a set-theoretic tuple or a domain-theoretic one. We have done this because
in the simple implementation of domains as sets, product domains simply are
set-theoretic Cartesian products, and set-theoretic tuples are tuples. However,
thinking in terms of a concrete implementation for domains can be somewhat
dangerous. Product domains are really defined only by the behavior of tuple and
Proj k, which must satisfy the following two properties:

1. Proj kD1 ,...,Dn

(
tupleD1 ,...,Dn

d1 . . . dn

)
= dk, if k ∈ [1..n]

2. tupleD1 ,...,Dn

(
Proj 1D1 ,...,Dn

d
)

. . .
(
Proj nD1 ,...,Dn

d
)

= d, if d :
∏n

j=1 Dj

Any implementation of tuple and Proj k that satisfies these two properties is a
valid implementation of products for domains. For example, it’s perfectly legiti-
mate to define tupleNat,Bool by

tupleNat,Bool n b = 〈b, n〉,

where the order of elements in the concrete (set-theoretic) representation is re-
versed, as long as Proj kNat,Bool is defined consistently:

Proj 1Nat,Bool 〈b, n〉 = n
Proj 2Nat,Bool 〈b, n〉 = b
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From here on, and in the body of the text, the 〈. . .〉 notation will by default
denote domain-theoretic tuples rather than set-theoretic tuples.

Since writing out compound domains in full can be cumbersome, it is common
to introduce synonyms for them via a domain definition of the form

v ∈ domain-name = domain-description

where the domain variable declaration “v ∈” is optional. For example, the domain
definitions

Vector = Int × Int
c ∈ Circle = Vector × Int × Bool

introduce the name Vector as a synonym for a domain of pairs of integers and the
name Circle as a synonym for a domain of triples whose components represent
the state of a graphical circle object: the position of its center (a pair of integers),
its radius (an integer), and a flag indicating whether or not it is filled (a boolean).
The domain variable c ranges over elements of Circle, but no domain variable is
declared for the Vector domain.

Domain definitions are often used merely to introduce more mnemonic names
for domains. The following set of domain definitions is equivalent to the set
above:

Vector = X-coord × Y-coord
X-coord = Int
Y-coord = Int

c ∈ Circle = Position × Radius × Filled?
Position = Vector
Radius = Int
Filled? = Bool

Domain equality is purely structural and has nothing to do with names. Thus,
the assertion Position = (Int× Int) is true because both descriptions designate
the domain of pairs of integers.14

14It may seem confusing that the equality symbol, = , is used both to test domains for equality
and to define new domain names. But this confusion is standard in mathematics. In the first
case, it is assumed that the meaning of all names is known, and = asserts that the left- and
right-hand sides are equal. In the second case, it is assumed that the meaning of the left-hand
names are unknown, and the equations are solved to make the = assertions true. In the circle
examples above, the equations are trivial to solve, but domain equations with recursion can be
difficult to solve (see Chapter 5).
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A.3.4 Sum Domains

Sum domains are analogous to variant records and unions in programming lan-
guages. The sum of two domains, written D1 + D2, is a domain that is the
disjoint union of the two domains. A disjoint union differs from the usual set
union in that each element of the union is effectively “tagged” to indicate which
component set it comes from. An element of a sum domain, which we will call a
oneof, is constructed by an injection function

Inj kD1 ,D2
:Dk → (D1 + D2)

Here, k, which can be either 1 or 2, indicates which component domain the
element is from.

Intuitively,
(
Inj kD1 ,D2

dk

)
(where dk is an element of Dk) can be viewed

as a pair 〈k, dk〉 whose first component k serves as a tag that indicates which
domain the second component is from (see Exercise A.2). The tag is essential for
interpreting the meaning of dk when D1 and D2 are the same or their elements
overlap. For example, if D1 = Nat and D2 = Int, then

(
Inj 1Nat,Int 5

)
(which

can be viewed as the tagged pair 〈1, 5〉) designates the natural number 5 while(
Inj 2Nat,Int 5

)
(which can be viewed as the tagged pair 〈2, 5〉) designates the

integer 5.
It is often the case that the tag indicates information that cannot be deduced

from the untagged value. Consider a system for representing geometric figures
that are either squares or equilateral triangles, where side lengths are natural
numbers. A figure can be represented as an element of the sum domain Nat + Nat,
where

(
Inj 1Nat,Nat n

)
represents a square with side length n and

(
Inj 2Nat,Nat n

)
represents an equilateral triangle with side length n. In this case, the tag indicates
the kind of figure (1 for square, 2 for equilateral triangle), while the natural
number indicates a property of the figure (its side length).

A sum domain contains all oneofs that can be constructed from its component
domains. For example,

Nat + Int = {
(
Inj 1Nat,Int 0

)
,
(
Inj 1Nat,Int 1

)
,
(
Inj 1Nat,Int 2

)
, . . . ,

. . . ,
(
Inj 2Nat,Int −1

)
,
(
Inj 2Nat,Int 0

)
,
(
Inj 2Nat,Int 1

)
, . . .}

If the familiar set-theoretic union were performed on the domains Nat and Int , it
would be impossible to determine the source domain for any n ≥ 0 in the union.

The notion of sum naturally extends to n-ary sums, which are constructed
via the notation∑n

k=1 Dk = D1 + . . . + Dn = {
(
Inj kD1 ,...,Dn

dk

)
| (k ∈ [1..n]) ∧ (dk :Dk)}
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where, for each k in [1..n], the injection function Inj kD1 ,...,Dn has the signature
Dk →

∑n
j=1 Dj . For example, for geometric figures that are either squares, rect-

angles, or triangles (not necessarily equilateral), we can define a Figure domain
as a sum of three domains:

f ∈ Figure = Square + Rectangle + Triangle
s ∈ Square = Nat ; side length of square
r ∈ Rectangle = Nat × Nat ; two side lengths of rectangle
t ∈ Triangle = Nat × Nat × Nat ; three side lengths of triangle

When Dsum =
∑n

j=1 Dj and all the domain names Dj are distinct, we write
Dk �Dsum as a synonym for Inj kD1 ,...,Dn . For example, Rectangle�Figure is a
synonym for Inj 2Square,Rectangle,Triangle. Note that since the Bool domain contains
only two elements, we can define it as the sum of two Unit domains:

Bool = True + False
True = Unit
False = Unit

Then the value true is a synonym for (True�Bool unit) and the value false is a
synonym for (False�Bool unit).

A key benefit of the mnemonic injection functions Dk �Dsum is that they use
domain names rather than positions to indicate the intended injection. Unlike
the positional notation, the mnemonic notation remains the same if the order of
summands is changed; we can still write True�Bool whether Bool is defined as
True + False or as False + True. However, this also means that the mnemonic
injection notation is one place in domain expressions where the name, rather
than the structure, of a domain matters. Even though True = Unit = False,
the injection function True�Bool is not the same as False�Bool . And if Bool
were instead described as the sum Unit + Unit, the mnemonic injection functions
could not be used because the name Unit�Bool would be ambiguous.

Generalizing the definition of Bool, we can construct any finite domain (such
as Char) with n elements as an n-ary sum of n copies of the Unit domain.

Oneofs are deconstructed by a case analysis construct that performs a dispatch
based on the tag of the oneof. We will introduce this construct in the context of
a concrete example and then discuss its general form. Our concrete example is a
function that calculates the perimeter of an element f ∈ Figure:

perim :Figure→ Nat
= λf . cases Figure,Nat f

� (Square �Figure s) [] 4×Nat s
� (Rectangle �Figure r) [] 2×Nat

((
Proj 1Nat,Nat r

)
+Nat

(
Proj 2Nat,Nat r

))
� (Triangle �Figure t) []

(
Proj 1Nat,Nat,Nat t

)
+Nat(

Proj 2Nat,Nat,Nat t
)

+Nat

(
Proj 3Nat,Nat,Nat t

)
end
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The construct casesFigure,Nat performs a case analysis on a discriminant value in
Figure (in this case, f ) and returns an element in Nat. The perimeter calculation
depends on which kind of figure f is, so there is one clause for each of the three
kind of figures. Each clause has the form � head [] body, where the head (D �

Figure v) can be viewed as a pattern that can “match” one of the three forms of a
figure value (i.e., D is one of Square, Rectangle, or Triangle). The v appearing in
the head stands for a metavariable that ranges over elements of D. For example,
in the clause head (Rectangle � Figure r), r is a metavariable ranging over
elements of Rectangle = Nat × Nat.

The discriminant value matches the clause head (D �Figure v) if it can be
expressed as (D�Figure d) for some element d in D. In this case, the value of
the cases construct is the result of evaluating the clause body after replacing each
occurrence of the variable v by d. For example, if f is (Rectangle�Figure 〈3, 4〉),
then it matches the second clause of the cases in perim, and the value of this
clause body after replacing r by 〈3, 4〉 is

2×Nat

((
Proj 1Nat,Nat 〈3, 4〉

)
+Nat

(
Proj 2Nat,Nat 〈3, 4〉

))
= 2×Nat (3 +Nat 4) = 14

Here are examples involving the other two kinds of figures:

(perim (Square �Figure 6)) = 4×Nat 6 = 24

(perim (Triangle �Figure 〈8, 2, 1〉))
=

(
Proj 1Nat,Nat,Nat 〈8, 2, 1〉

)
+Nat

(
Proj 2Nat,Nat,Nat 〈8, 2, 1〉

)
+Nat

(
Proj 3Nat,Nat,Nat 〈8, 2, 1〉

)
= 8 +Nat 2 +Nat 1 = 11

Suppose Dsum =
∑n

j=1 Dj . Then the general casesDsum ,Dres construct has
the form

cases Dsum ,Dres
ddisc

� (D1 �Dsum v1) [] dres1

� (D2 �Dsum v2) [] dres2

...
� (Dn �Dsum vn) [] dresn

end

This construct describes how to map the value of the discriminant expression
ddisc, which must be an element of Dsum, into an element of the result domain
Dres. The domain subscripts on cases will be omitted when they are clear from
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context. The discriminant value must be expressible as (Di �Dsum di) for some
summand Di of Dsum and some element di of Di. The cases construct dispatches
on this discriminant value to the unique matching clause,

� (Di �Dsum vi)[] dresi

and evaluates the body expression dresi after replacing every occurrence of vi

by di. The value of this body expression, which must have type Dres, is the value
of the cases construct.

For example, the value of

cases Nat+Int,Int ((Nat �Nat + Int) 3)
� ((Nat �Nat + Int) n) [] (Nat ↪→ Int (n +Nat 1))
� ((Int �Nat + Int) i) [] i ×Int i
end

is 4, because the discriminant ((Nat �Nat + Int) 3) matches the head of the first
clause, ((Nat �Nat + Int) n), and when n is 3, the value of n +Nat 1 is 4. Similarly,

cases Nat+Int,Int ((Int �Nat + Int) 3)
� ((Nat �Nat + Int) n) [] (Nat ↪→ Int (n +Nat 1))
� ((Int �Nat + Int) i) [] i ×Int i
end

has the value 9 because ((Int �Nat + Int) 3) matches the head ((Int �Nat + Int) i)
of the second clause, and the value of i ×Int i is 9 when i is 3. The inclusion
function Nat ↪→ Int is necessary to guarantee that the body expression of the first
clause has type Int. The domain variable names n and i in the clause heads have
been chosen to reflect the type of value being injected (n :Nat and i : Int).

Because the cases clauses use mnemonic injection functions, the order of the
clauses does not matter, so they can be reordered without changing the meaning
of the expression. E.g,

cases Nat+Int,Int ((Nat �Nat + Int) 3)
� ((Int �Nat + Int) i) [] i ×Int i
� ((Nat �Nat + Int) n) [] (Nat ↪→ Int (n +Nat 1))
end

is a well-formed cases expression with the value 4. So the most general form of
a cases expression is really



1180 Appendix A A Metalanguage

cases Dsum ,Dres
ddisc

� (Dπ(1) �Dsum vπ(1)) [] dresπ(1)

...
� (Dπ(n) �Dsum vπ(n)) [] dresπ(n)

end

where π is a permutation on the integer range [1..n] (see page 1160). This expres-
sion is well typed with type Dres iff Dsum =

∑n
j=1 Dj , ddisc :Dsum, and for each

k ∈ [1..n], dresk
:Dres under the assumption that vk :Dk. The casesNat+Int,Int

expressions above are all well typed with type Int.
When the expression dtest has type Bool the notation

if D dtest then dthen else delse end

is an abbreviation for the cases expression

cases Bool,D dtest

� (True �Bool vignore) [] dthen

� (False �Bool vignore) [] delse

end

This abbreviation treats the Bool domain as the sum of two Unit domains (see
page 1177). The if is subscripted with the domain D of the result, but we will
omit it when it is clear from context. Here, the domain variable vignore should
be a name that does not appear in either dthen or delse.

15

Since a cases expression has one clause for each summand, there is exactly one
clause that matches the discriminant. However, for convenience, the distinguished
clause head else may be used as a catch-all to handle all tags unmatched by
previous clauses. Since an else clause does not mention a domain variable, it can
be used only in situations where the injected element is irrelevant. For example,
the expansion of the if D expression from above could also be written

cases Bool,D dtest

� (True �Bool vignore) [] dthen

� else delse

end

Like products, sums are defined only by their abstract behavior — in this case,
the behavior of the injection functions and the cases construct. In particular,
these must satisfy the following two properties:

15This restriction prevents the variable capture problems discussed in Section 6.3.
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1.

cases Dsum ,Dk
(Dk �Dsum dk)

� (Dk �Dsum vk) [] vk

� else d ′
k

end

= dk, for all k ∈ [1..n], where d ′
k

is an arbitrary element expression
such that d ′

k :Dk

2.

cases Dsum ,Dsum
d

� (D1 �Dsum v1) [] (D1 �Dsum v1)
...

� (Dn �Dsum vn) [] (Dn �Dsum vn)
end

= d

In the first property, the requirement that the arbitrary expression d ′
k have type

Dk is needed to ensure that the casesDsum ,Dk
expression is well typed with type

Dk. Any implementation of sums in which the injection functions and cases
satisfy these two properties is a legal implementation of sums for domains.

Exercise A.2 It is natural to represent a oneof in
∑n

i=1 Di as a set-theoretic pair con-
taining the tag i and an element di of Di:`

Inj iD1 ,...,Dn
di

´
= 〈i, di〉

Assuming that oneofs are represented as pairs, use lambda notation to construct a set-
theoretic function of a oneof argument s ∈ S = D1 + D2 that has the same meaning as
the following cases expression:

cases S ,Dres s
� (D1 �S v1) [] dres1

� (D2 �S v2) [] dres2

end

(Assume dres1
and dres2

each have type Dres. Use the three-argument ifDres
function on

page 1164 rather than the if abbreviation on page 1180, which itself is implemented in
terms of a cases expression.)

A.3.5 Sequence Domains

Sequence domains model finite sequences of elements all taken from the same
domain. They are built by the * domain constructor; a sequence domain whose
sequences contain elements from domain D is written D*. An element of a
sequence domain is simply called a sequence. A sequence is characterized by
its length n and its ordered elements, which are indexed from 1 to n. E.g., Int*
contains all finite-length sequences with integer elements and Char* contains all
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finite-length sequences with character elements. We will use the convention that
if v is a variable ranging over the domain D, v∗ is a variable ranging over the
domain D∗.

A length-n sequence over the domain D is constructed by the function

sequencen,D :Dn → D*

Thus sequence3 ,Int〈−5, 7,−3〉 is a sequence of length three with −5 at index 1, 7
at index 2, and −3 at index 3. We will abbreviate

(
sequencen,D 〈d1, . . . , dn〉

)
as

[d1, . . . , dn]D . So the sample sequence above could also be written [−5, 7,−3]Int,
and the empty sequence of integers would be written [ ]Int.

16 As elsewhere, we
will omit the domain subscripts when they can be inferred from context. Observe
that Char* is isomorphic to the String domain introduced in Section A.1.1, so
that a character sequence (such as sequence3 ,Char〈‘c’, ‘a’, ‘t’〉) can be viewed as
another way of writing a string (in this case, “cat”).

Every sequence domain D* is equipped with the following functions:

• consD :D → (D*→ D*)
Suppose that d :D, d∗ :D*, and d∗ is a length-n sequence. Then (consD d s)
is a length-(n + 1) sequence whose first element is d and whose kth element
(for k ∈ [2..n + 1]) is the (k − 1)th element of d∗. Using consD , if n > 0, the
notation

(
sequencen,D 〈d1, . . . , dn〉

)
can be interpreted as an abbreviation for

the nested cons applications (consD d1 . . . (consD dn [ ]D) . . . ).

• empty?D :D*→ Bool(
empty?D d∗

)
is true if d∗ = [ ]D and false otherwise.

• headD :D* ⇀ D
If d∗ :D* is nonempty, (headD d∗) is the first element of d∗. headD is a par-
tial function because it is undefined on an empty sequence. (An alternative
approach would be to treat headD as a total function and define (headD [ ]D)
as a particular element of D.)

• tailD :D*→ D*
If d∗ :D* is nonempty, (tailD d∗) is the subsequence of the sequence d∗ that
consists of all elements but the first element. If d∗ is empty, (tailD d∗) is
defined as [ ]D ; so tailD , unlike headD , is a total function. We could have
instead made tailD a partial function, but treating (tailD [ ]D) as [ ]D is helpful
in many situations.

16The empty sequence is created using a 0-tuple.
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Other useful functions can be defined in terms of the above functions:

lengthD : D*→ Nat
= λd∗ . if

(
empty?D d∗

)
then 0 else

(
1 +Nat

(
lengthD (tailD d∗)

))
end

nthD : Pos→ (D*→ D)
= λzd∗ . if (z =Pos 1) then (headD d∗) else (nthD (z −Pos 1) (tailD d∗)) end

appendD : D*→ (D*→ D*)
= λd1*d2* . if

(
empty?D d1*

)
then d2*

else
(
consD (headD d1*)

(
appendD (tailD d1*) d2*

))
end

mapD1 ,D2
: (D1 → D2)→ (D1* → D2*)

= λf d∗ . if
(
empty?D1

d∗
)

then [ ]D2

else
(
consD2

(f (headD1
d∗))

(
mapD1 ,D2

f (tailD1
d∗)

))
end

lengthD returns the length of a sequence. nthD returns the element of the
given sequence at the given index, which must be a positive integer. appendD

concatenates a length-m sequence and a length-n sequence to form a length-
(m + n) sequence. Given a function f : (D1 → D2) and a length-n sequence of
D1 elements [d1, . . . , dn], mapD1 ,D2

returns a length-n sequence of D2 elements
[ (f d1) , . . . , (f dn)].

All of the above function definitions exhibit a simple form of recursion in
which the size of the first argument is reduced at every recursive call. By the
principle of mathematical induction, all of the functions are therefore well defined.

The cons and append functions are common enough to warrant some conve-
nient abbreviations:

• d . d∗ is an abbreviation of (cons d d∗). The dot (“ . ”) is an infix binary
function that naturally associates to the right. Thus, d1 . d2 . d∗ is parsed as
d1 . (d2 . d∗).

• d1* @ d2* is an abbreviation of (append d1* d2*). The at sign, @ , is an asso-
ciative infix binary operator.

As with products and sums, sequences are defined purely in terms of their ab-
stract behavior. A legal implementation of sequence domains is one that satisfies
the following properties for all domains D, all d :D, and all d∗ :D*:

1.
(
empty?D [ ]D

)
= true

2.
(
empty?D (d . d∗)

)
= false
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3. (headD (d . d∗)) = d

4. (headD [ ]D) = undefined

5. (tailD (d . d∗)) = d∗

6. (tailD [ ]D) = [ ]D

7. (consD (headD d∗) (tailD d∗)) = d∗ if ¬
(
empty?D d∗

)

A.3.6 Function Domains

The final constructor we will consider is the binary infix function-domain con-
structor, → . In the naive implementation of domains as sets, D1 → D2 is
the domain of all total functions with D1 as their source and D2 as their tar-
get. Elements of a function domain are called functions. As with tuples, there is
the possibility for confusion between set-theoretic functions and domain-theoretic
functions. These are the same in the naive implementation, but differ when we
change the implementation of domains. In the body of the text, “function” means
domain-theoretic function; we explicitly refer to “set-theoretic functions” when
necessary. The same holds for arrow notation, which refers to the function-domain
constructor unless otherwise specified.

The arrow and type notations mesh nicely with the use of arrows and sig-
natures already familiar from set-theoretic functions (Section A.2.1). Thus, the
notation f : Int→ Bool can now be interpreted as “f is an element of the function
domain Int→ Bool.” Elements of this domain are predicates on the integers, such
as functions for testing whether an integer is even or odd, or for testing whether
an integer is positive or negative. Similarly, the domain Int→ (Int→ Int) is the
domain of functions on two (curried) integer arguments that return an integer.
The binary integer functions +Int, −Int, and ×Int are elements of this domain.

As before, the application of a function f to an argument d is written with
the juxtaposition notation f d. Such an application is well typed with type Dres

(written (f d) :Dres) iff d :Darg and f : (Darg → Dres).
The → constructor is right-associative:

D1 → D2 → · · · → Dn−1 → Dn means (D1 → (D2 → (· · · (Dn−1 → Dn) · · ·)))

The right-associativity of → interacts nicely with the left associativity of ap-
plication. That is, if a :A, b :B, and f : (A→ B → C), then (f a) :B → C, so
that (f a b) :C = ((f a) b) :C, just as we’d like.
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We write particular elements of a function domain using lambda notation.
Thus (λn . (n ×Nat n)) :Nat→ Nat is the squaring function on natural numbers,
and (λi . (i >Int 0)) : Int→ Bool is a predicate function for testing whether an
integer is positive.

When the formal parameter of an abstraction is the domain variable v (pos-
sibly in subscripted or primed form) associated with a domain D, we will assume
that the abstraction argument must have type D. Thus (λb . b) and (λb1 . b1 )
both unambiguously denote the identity function in the domain Bool→ Bool,
and (λn . n) and (λn ′ . n ′) both denote the identity function in the domain
Nat→ Nat. Given the domain definition

p ∈ NatPred = Nat→ Bool

the abstraction (λp . p) denotes the identity function in the domain

NatPred→ NatPred = (Nat→ Bool) → (Nat→ Bool)

and the abstraction (λn . λp . (p n)) is an element of the function domain

Nat→ NatPred→ Bool = Nat→ (Nat→ Bool) → Bool

The well-typedness condition for an abstraction is (λv . d) : (Darg → Dres) iff
d :Dres under the assumption that v :Darg. As seen above, the type of the formal
parameter v will usually be apparent from its name. But when v is not a domain
variable for a particular domain, its type can be determined from an explicit
function signature. So (λx . x) : Int→ Int specifies the identity function on inte-
gers, while (λx . x) :Bool→ Bool specifies the identity function on booleans. We
have already used this convention in the definition of the sequence functions on
page 1183. For example, in the defining abstraction (λf d∗ . . . . ) for the mapD1 ,D2

function, the types of f and d∗ are not apparent from their names. But since this
function has the type (D1 → D2)→ (D1*→ D2*), we know that f : (D1 → D2)
and d∗ :D1*.

Our description of function domains in this section has a different flavor than
the description of product, sum, and sequence domains. With the other do-
mains, elements of the compound domain were abstractly defined by constructor
functions that had to satisfy certain properties with respect to deconstructor
functions. But with function domains, we concretely specify the elements as
set-theoretic functions designated by lambda notation. Is there a more abstract
approach to defining function domains? Yes, but it is rather abstract and not
important to our current line of development; see Exercise A.3.
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Exercise A.3 This exercise explores some further properties of function domains. Con-
sider the following two functions:

• applyA,B : ((A → B) ×A) → B
If f :A→ B and a :A, then

(
applyA,B 〈f, a〉

)
denotes the result of applying f to a.

• curryA,B,C : ((A×B)→ C)→ (A → (B → C))
If f : (A×B)→ C, then

(
curryA,B,C f

)
denotes a curried version of f — i.e., it

denotes a function g such that (g a b) = (f 〈a, b〉) for all a ∈ A and b ∈ B.

a. Use lambda notation to define set-theoretic versions of apply and curry.

b. Using your definitions from above, show that if f : (A×B)→ C, then

f = applyB,C ◦
``

curryA,B,C f
´
× idB

´
Recall that idB is the identity function on the domain B. The meaning of ×
on functions is defined as follows: if f :A→ B, g :C → D, a :A, and c :C, then
(f × g) : (A× C)→ (B ×D) is defined by

((f × g) 〈a, c〉) = 〈(f a) , (g c)〉

c. Using your definitions from above, show that if g :A→ (B → C), then

g =
`
curryA,B,C

`
applyB,C ◦ (g × idB)

´´
It turns out that any domain implementation with an apply and a curry function that
satisfy the properties in part b and part c is a valid implementation of a function domain.
This is the abstract view of function domains alluded to above.

A.4 Metalanguage Summary

So far we’ve introduced many pieces of the metalanguage. The goal of this section
is to put all of the pieces together. We’ll summarize the metalanguage notation
introduced so far and introduce a few more handy notations.

In the study of programming languages, it is often useful to break up the
description of a language into two parts: the core of the language, called the ker-
nel, and various extensions that can be expressed in terms of the core, called the
syntactic sugar. We shall use this approach to summarize the metalanguage.
(See Section 6.2 for an example of using this approach to specify a programming
language.)

A.4.1 The Metalanguage Kernel

The entities manipulated by the metalanguage are domains and their elements.
Domains are either primitive, in which case they can be viewed as sets of un-
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structured elements, or compound, in which case they are built out of component
domains. Domains are denoted by domain expressions. Domain expressions
are either domain names (such as Bool, Nat, etc.) or are the application of the
domain operators × , + , *, and → to other domain expressions. So if D1

and D2 are any valid domain expressions, the following are also valid domain
expressions: (D1 ×D2), (D1 + D2), D1*, and (D1 → D2). New names can be
given to domains via domain definitions of the form

v ∈ domain-name = domain-description

where the optional declaration “v ∈” introduces a domain variable v that ranges
over the elements of the domain named by domain-name.

Domain elements are denoted by element expressions. The kernel element
expressions are summarized in Figure A.1. Every well-formed domain expression
d must be well typed with some type D, written d :D, which indicates that the
element denoted by d is in the domain D. Constants are names for particular
domain elements; these include numbers, booleans, and functions. We will assume
that the type of every constant is evident from context. Variables are introduced
as formal parameters in abstractions, names in the heads of a cases clauses, or
as the domain variable of a definition. Every variable ranges over a particular
domain. If a variable is the domain variable introduced by some domain definition
having the declaration v ∈ D, it is assumed that v (possibly with subscripts or
primes) has type D. Otherwise, it must be possible to determine the type of the
variable from its context; variables with an ambiguous type are not permitted.

Applications are compound expressions in which an operator dfun is applied
to an operand darg. The operator expression must denote an element of a func-
tion domain Darg → Dres, and the operand expression must denote an element of
the domain Darg; in this case, the application denotes an element of the domain
Dres. Applications with multiple operands are usually expressed by currying.
Elements of primitive domains are often the operands to functions (such as arith-
metic and logical functions) associated with the domain. Elements of product,
sum, and sequence domains can be built by the application of constructor func-
tions (tupleD1 ,...,Dn , Inj kD1 ,...,Dn , or sequencen,D , respectively) to the appropriate
arguments. Compound domains are equipped with many other useful functions
that operate on elements of the domain.

Abstractions are compound expressions that denote the elements of function
domains. Structurally, an abstraction (λvfml . dbody) consists of a formal parame-
ter variable vfml and a body element expression dbody. The type of the abstraction
should either be given explicitly or should be inferable from the structure of the
parts of the abstraction. If vfml is assumed to have type Dfml, then dbody should
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be well typed with some type Dbody. In this case, the abstraction is well typed
with type Dfml → Dbody, and it denotes a function whose source is the domain
Dfml, whose target is the domain Dbody, and whose graph is a set of all pairs
〈dsrc, dtgt〉 where dsrc ranges over Dfml and dtgt is the element of Dbody obtained
by evaluating the body expression dbody after replacing each occurrence of vfml

by dsrc.
While products and sequences are deconstructed into their component parts

by function application, elements of a sum domain are deconstructed by the cases
construct. A casesDsum ,Dres expression consists of a discriminant ddisc that must
have a sum type Dsum =

∑n
j=1 Dj and a set of clauses, each of which has a head

of the form (Dj �Dsum vj) and a body element expression dresj . There must
be one clause to handle each summand in the domain Dsum. A clause with the
keyword else as its head handles all cases not handled by other clauses. All body
expressions dresj — which may contain vj , the untagged value of ddisc from Dj

— must denote elements of the same result domain Dres so that the domain Dres

of the value denoted by the cases expression is well defined.
Element expressions can be used in the following element definition form

to define a named domain element:

name : D = ddefn

Here, name is the name of the element being defined, D is a domain expression
denoting the type of the element, and ddefn is an element expression that specifies
the element. For example:

five : Nat = ((+Nat 2) 3)
origin : Int× Int =

((
tupleInt,Int 0

)
0
)

inc : Int→ Int = (+Int 1)
app5D : (Int→ D) → D = (λf . (f 5))

Element definitions may be recursive only in the case where it can be shown that
ddefn defines a unique element in the domain D. One way to do this is to use
induction; another way is to use the iterative fixed point technique developed in
Chapter 5.

A.4.2 The Metalanguage Sugar

It is possible to write all element expressions using kernel element expressions,
but it is not always convenient to do so. We have introduced various notational
conventions to make the metalanguage more readable and concise. We review
those notations here, and introduce a few more.
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constants: E.g., true :Bool , -1 : Int , ∨ :Bool→ Bool,
+Nat :Nat→ (Nat→ Nat), <Int : Int→ (Int→ Bool),
tupleNat,Bool :Nat→ (Bool→ (Nat× Bool)),
Proj 1Nat,Bool : (Nat× Bool) → Nat,
Inj 2Nat,Bool :Bool→ (Nat + Bool),
sequence3 ,Int : (Int× Int× Int)→ Int*,
consNat :Nat→ (Nat* → Nat*).

variables: v :D. E.g., b :Bool , n :Nat , i : Int .

applications: (dfun darg) :Dres iff dfun : (Darg → Dres) and darg :Darg.
E.g, (¬ b) :Bool , (<Int 1) : Int→ Bool, ((+Nat 2) 3) :Nat , ((λi . i) 4) : Int .

abstractions:
(λvfml . dbody) :Dfml → Dbody iff dbody :Dbody assuming that vfml :Dfml.
E.g., (λn . n) :Nat→ Nat, (λi . i) : Int→ Int,

(λn . ((>Nat n) 5)) :Nat→ Bool,
(λi . (λf . (¬ (f i)))) : Int→ ((Int→ Bool) → Bool).

case analysis: cases Dsum ,Dres
ddisc

� (D1 �Dsum v1) [] dres1

� (D2 �Dsum v2) [] dres2

...
� (Dn �Dsum vn) [] dresn

end

or cases Dsum ,Dres
ddisc

...
some subset of clauses
...
� else [] dreselse

end

These casesDsum ,Dres
expressions are well typed with type Dres iff Dsum =∑n

j=1 Dj , ddisc :Dsum, and, for each j in [1..n], dresj
:Dres assuming vj :Dj .

Figure A.1 The kernel element expressions and well-typedness conditions.

Figure A.2 gives examples of the syntactic sugar for element expressions. Ap-
plications and abstractions are simplified by various conventions. The default
left-associativity of application simplifies the expression of multiargument appli-
cations; thus, (expt 2 5) is an abbreviation for ((expt 2) 5). This default can be
overridden by explicit parenthesization. Applications of familiar binary functions
like +Nat are often written in infix style to enhance readability. For example,
2 +Nat 3 is an abbreviation for ((+Nat 2) 3). The formal parameters of nested
abstractions are often coalesced into a single abstraction. For instance, λabc.(c a)
is shorthand for λa . λb . λc . (c a).
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The construction of elements in product, sum, and sequence domains is aided
by special notation. Thus,

〈1, true〉 is shorthand for
(
tupleNat,Bool 1 true

)
((Nat �Nat + Int) 3) is shorthand for

(
Inj 1Nat,Int 3

)
[5, 3, 2, 7] is shorthand for sequence4 ,Nat 〈5, 3, 2, 7〉

(We have assumed in all these examples that the numbers are elements of Nat
rather than of some other numerical domain.) The notations d . d* and d1* @ d2*
are abbreviations for (cons d d*) and (append d1* d2*) respectively, so that the
following notations all denote the same sequence of natural numbers:

[5, 3, 2, 7] = 5 . [3, 2, 7] = [5, 3] @ [2, 7]

The if conditional expression

if dtest then dthen else delse end

is an abbreviation for the case analysis

cases Bool,Dres
dtest

� (True �Bool vignore) [] dthen

� (False �Bool vignore) [] delse

end

where dtest is an expression that denotes an element of the domain Bool and dthen

and delse denote elements of a result domain Dres. The variable vignore can be
any variable that does not appear in dthen or delse. This notation assumes that
the Bool domain is represented as a sum of two synonyms for the Unit domain
named True and False. We will use this if notation in preference to the ifDres

conditional function from page 1163.
The match expression is an extension to the cases notation that simpli-

fies deconstructing tuples and sequences in addition to oneofs. It is inspired by
pattern-matching constructs that enhance program readability and conciseness
in programming languages like ML and Haskell. We use a different keyword
(match instead of cases) to emphasize that match is syntactic sugar. Since
match subsumes cases, we will use match rather than cases throughout the
main text.

A match expression has the form:

match Ddisc ,Dres
ddisc

� p1 [] dres1

� p2 [] dres2

...
� pn [] dresn

end
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applications: E.g., (expt 2 5), (2 +Nat 3).

abstractions: λp1 . . . pn . dbody, where here and below p ranges over metalanguage
patterns (see Figure A.3). E.g., λabc . (c a), λ〈n1 , n2 . n∗

rest〉 . 〈n1 +Nat n2 , n∗
rest〉.

tuples: E.g., 〈1, true〉.

oneofs: E.g., ((Nat �Nat + Int) 3).

sequences: E.g., [5, 3, 2, 7], 5 . [3, 2, 7], [5, 3] @ [2, 7].

if: if dtest then dthen else delse end

match: match Ddisc ,Dres
ddisc

� p1 [] dres1

� p2 [] dres2

...
� pn [] dresn

end

or match Ddisc ,Dres
ddisc

...
some subset of clauses
...
� else [] dreselse

end

let: let p1 be d1 and
p2 be d2 and
...
pn be dn

in dbody

Figure A.2 Sugar for element expressions.

As in cases, a match expression consists of a discriminant and a number of
clauses, and the domain subscripts on match will be omitted when they are
clear from context. The two parts of a match clause are called the pattern
and the body. A pattern (indicated by the metavariable p) is more general than
the head of a cases clause and can be composed of constants, variables, sum
injections, and tuple and sequence constructors (see Figure A.3). For example,
the following are typical patterns:

n
〈n, 1〉
((Nat �Nat + Int) n)
[i1 ,−17, i3 ]
n . n∗

〈b, 〈n1 , 1〉, ((Nat �Nat + Int) n2 ), [i1 ,−17, i3 ]〉

We require that the same variable cannot appear more than once in a pattern.
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constant patterns: E.g., true, 17, −1

variable patterns: E.g., b, n, i

tuple patterns: E.g., 〈b, 17, 〈false, i〉〉

oneof patterns: E.g., ((Nat �Nat + Int) n)

sequence patterns: E.g., [i1 ,-17, i3 ], n . n∗

Figure A.3 Structure of metalanguage patterns.

A pattern is said to match a value dval if it is possible to assign values to the
variables appearing in the pattern such that the pattern would denote dval if it
were interpreted as an element expression with the assignments in effect. Thus,
the pattern 〈n, 1〉 matches the value 〈2, 1〉 with n = 2, but it does not match the
values 〈3, 4〉 or 〈2, 1, 3〉. Similarly, n . n* matches [3, 7, 4] with n = 3 and n*=
[7, 4], but it does not match [ ].

The value of the match expression, which has type Dres, is determined by the
first clause (reading top down) whose pattern matches the discriminant. In this
case, the value of the match expression is the value of the clause body in a context
where each variable introduced by the pattern denotes the value determined by
the match. For example, consider the following match expression, where the
discriminant expression ddisc is assumed to have type (Nat + Bool) × Nat :

match (Nat+Bool)×Nat,Nat ddisc

� 〈((Bool �Nat + Bool) b), n2 〉 [] if b then n2 else n2 ×Nat 2 end
� 〈((Nat �Nat + Bool) n1 ), 1〉 [] n1 +Nat 1
� 〈((Nat �Nat + Bool) n1 ), 2〉 [] n1 ×Nat n1

� 〈((Nat �Nat + Bool) n1 ), n2 〉 [] n1 +Nat n2

end

If the first component of ddisc is a boolean b, then the second component (a
natural number n2 ) is returned if b is true and twice n2 is returned if b is
false. Otherwise, the first component of ddisc must be a natural number n1 . If
the second component is 1, then the result is one more than n1 ; if the second
component is 2, then the result is n1 squared; and otherwise the result is the sum
of the two numerical components.

A match expression can always be rewritten in terms of cases, conditional
expressions (which themselves are shorthand for cases), and explicit component
extraction functions. For example, the above match expression is equivalent to:
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cases (Nat+Bool)×Nat,Nat

(
Proj 1(Nat+Bool),Nat ddisc

)
� ((Bool �Nat + Bool) b)

[] (λn2 . if b then n2 else n2 ×Nat 2 end)
(
Proj 2(Nat+Bool),Nat ddisc

)
� ((Nat �Nat + Bool) n1 )

[] if
(
Proj 2(Nat+Bool),Nat ddisc

)
=Nat 1

then n1 +Nat 1

else if
(
Proj 2(Nat+Bool),Nat ddisc

)
=Nat 2

then n1 ×Nat n1

else (λn2 . n1 +Nat n2 )
(
Proj 2(Nat+Bool),Nat ddisc

)
end

end
end

In most cases, the match expression is more concise and more readable than the
desugared form.

As a more compelling example, we can use match to simplify the perim func-
tion definition from page 1177 by eliminating all projection-function invocations:

perim :Figure→ Nat
= λf . match Figure,Nat f

� (Square �Figure n) [] 4×Nat n
� (Rectangle �Figure 〈n1 , n2 〉) [] 2×Nat (n1 +Nat n2 )
� (Triangle �Figure 〈n1 , n2 , n3 〉) [] n1 +Nat n2 +Nat n3

end

As in cases, the last clause of the match expression can have an else pat-
tern that handles any discriminant that did not successfully match the preceding
patterns. The value of a match expression is undefined if no pattern matches
the discriminant.

For the match expression in Figure A.2, the well-typedness conditions are as
follows:

• The discriminant ddisc must have the type Ddisc;

• For each j in [1..n], assume that the pattern pj contains variables vj,1, . . ., vj,kj
.

Then it must be possible to assign the types Dj,1, . . ., Dj,kj
to these variables,

respectively, such that, with these assignments:

• The pattern pj has the type Ddisc when interpreted as an element expression;
and

• The body expression dresj has the type Dres.
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Since pattern matching is such a useful technique, we shall extend some of
our other notations to use implicit pattern matching in contexts where variables
are introduced. For example, we shall allow formal parameters to an abstraction
to be patterns rather than just variables. The abstraction

λp1 . . . pn . dbody

is shorthand for

λv1 . . . vn . match 〈v1, . . ., vn〉
� 〈p1, . . ., pn〉 [] dbody

end

For example, the abstraction (λ〈n1 ,n2 〉 . n1 +Nat n2 ) specifies a function with
type (Nat×Nat)→ Nat that is shorthand for

λv . match v
� 〈n1 , n2 〉 [] (n1 +Nat n2 )
end

where v is assumed to range over Nat × Nat.
Throughout the book, we will often avoid a very long (even multipage) match

construct by using patterns to define a function by cases. For example, we can
define a function stringLength that maps a sequence of characters to its length
as follows:

stringLength : Char*→ Nat
stringLength [ ]Char = 0
stringLength (hfirst . h∗

rest) = 1 +Nat (stringLength h∗
rest)

This is equivalent to:

stringLength : Char*→ Nat
= λh∗ . match h∗

� [ ]Char [] 0
� hfirst . h∗

rest [] 1 +Nat (stringLength h∗
rest)

end

The definition-by-cases notation is especially helpful when we define functions
that operate over programs, where each clause defines the function for a particular
type of program expression.
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Our last piece of metalanguage sugar is the let expression, whose form is:

let p1 be d1 and
p2 be d2 and
...
pn be dn

in dbody

This is pronounced “Let p1 match the value of d1 and p2 match the value of d2

. . . and pn match the value of dn in the expression dbody.” The let expression
is used to name (parts of) intermediate results that can then be referenced by
name in the body expression. The value of a let expression is the value of its
body expression dbody in a context where the variable assignments specified by
the pattern matches are in effect. For example, if point1 and point2 are two-
dimensional points with integer coordinates, then the vector sum of these two
points can be written

let 〈ix , iy〉 be point1 and
〈i ′x , i ′y〉 be point2

in 〈ix +Int i ′x , iy +Int i ′y〉

The general let expression above is just a more readable form of the following
application of an abstraction:

((λp1p2 . . . pn . dbody) d1 d2 . . . dn)

This expansion makes it clear that none of the expressions d1 . . . dn can refer
to any of the variables introduced by the patterns p1 . . . pn. For example, the
expression

let nx be 3 and
ny be 4 and

in let nx be nx +Nat ny

ny be nx ×Nat ny

in 〈nx , ny〉

has the value 〈7, 12〉 rather than 〈7, 28〉 because the nx in nx ×Nat ny refers to the
one declared by the outer let , not the inner let . The region of an expression
in which a variable can be referenced is called its scope. So we can say that
the scope of the variables introduced in the let patterns p1 . . . pn includes dbody

but not d1 . . . dn. See Section 6.3.1 for an in-depth discussion of the notion of
variable scope, which plays an important role in programming language design.
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Notes

The concept of domains introduced in this appendix is refined in Chapter 5. See
the references on page 204 for reading on domain theory.

Defining products, sums, and functions in an abstract way is at the heart
of category theory. [Pie91] and [BW90] are accessible introductions to category
theory aimed at computer scientists.

For coverage of computability issues, we recommend [Min67, HU79, Hof80,
Sip06].



Appendix B

Our Pedagogical Languages

Language name Mnemonic Where defined

EL Expression Language Sections 2.1 and 4.2
ELM EL Minus Sections 3.2.5 and 4.2.2
ELMM EL Minus Minus Sections 3.2.6 and 4.2.3

FL Functional Language Chapter 6

FLIC FL Including mutable Cells Section 8.3

FLAVAR FL And mutable VARiables Section 8.4

FLEX FL with EXplicit types Sections 11.4 and 11.8
FLEX/S FLEX with Subtyping Section 12.1
FLEX/SP FLEX/S with Polymorphism Section 12.2
FLEX/P FLEX with Polymorphism Section 12.2
FLEX/SPD FLEX/SP with Descriptions Section 12.3.1
FLEX/SPDK FLEX/SPD with Kinds Section 12.3.2

FLARE FL And type REconstruction Sections 13.2 and 13.5

FLEX/M FLEX/SP with Modules Section 15.2

FLARE/E FLARE with Effects Section 16.2

FLARE/V FLARE with mutable Variables Section 17.2.2

FIL Functional Intermediate Language Section 17.7

HOOPLA Humble Object-Oriented
Programming LAnguage

Section 7.3

PostFix Section 1.4
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Xk
i=j (indexed sequence), 34

fn (n-fold function composition), 1159
◦ (function composition), 1159
n (Church numeral), 298, see also Church

numeral
−V1 ,...,Vn−−−−−L → (program execution with

arguments V in language L), 9, 217
P(. . .) (powerset), 1150
: (PostFix2 command composition), 39,

40, 41
_ (wildcard pattern/variable), 516

desugaring in match, 597–598
match pattern, 590

? (type reconstruction variable prefix),
770

~ (tilde or “twiddle”) in deconstructor
name, 584

[[ ]], 35–36
[lo..hi ] (integer range notation), 1149
[0; 1] (unit interval), 167
! (“bang,” suffix for state-changing

functions), 385
! (has effect), 946
: (has type), 643
$ (has cost), 989
$ (special name prefix in HOOK), 363
# (sequence size), 546
# (nonce type prefix), 860, 861
#f (false literal), 209, 211, 465
#t (true literal), 209, 211, 212, 465
#u (unit literal), 209, 211, 212
. (infix prepend), 34, 1183
@ (infix append), 34, 1183
@· · · (FL primitive application sugar),

218, 219
desugaring in FL, 220, 233
primitive operator vs. standard library

procedure, 451

resugaring in Tortoise examples,
1018, 1032, 1037

�(denotational soundness agreement
relation), 151

�� (name concatenation), 586, 1094, 1095,
1101

↓ (tuple/sequence projection), 546, 1152
->, see Arrow type
->>, see Arrow kind
=>, see Program type
→ (total function arrow), 1157
→ (function-domain constructor), 1184
⇀ (partial function arrow), 1157
−−� (BOS evaluation relation), 75
� (injection into sum domain), 1177
↪→ (set-inclusion function), 1159
−−→ (SOS simplification step relation),

271, see also Simplification step
relation

−simp−−−→ (simplification relation)
in FIL, 1033
in PostFix, 90

−−−n.o.→ (lambda calculus normalization step
relation), 292–295

◦−−−n.o.→ (lambda calculus nonnormalization
step relation), 292, 294

� (context-based SOS reduction
relation), 72, see also Reduction
relation

s
� (context-based SOS stateful reduction

relation)
in FLICK, 407, 409
single-threading, 407

�ds (one-step desugaring relation), 233
⇒ds (desugaring transition relation), 233
◦=⇒ (SOS nonevaluation step relation),

271
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⇒ (SOS one-step transition relation), 49,
see also Rewrite rule; Transition
relation

∗⇒ (SOS multistep transition relation), 50

=
n
=⇒ (SOS n-step transition relation), 50
∞⇒ (SOS looping configuration), 50
∞ (looping outcome in SOS), 50, 212

⇒ (SOS irreducible configuration), 50
+ (EL/FL addition primitive), 25, 213

FL standard library binding for, 236
in EL dialects DS, 121
in FLK DS, 285
in restricted ELMM DS, 118
type in μFLEX, 643

- (EL/FL subtraction primitive), 25, 213
type in μFLEX, 643

* (EL/FL multiplication primitive), 25,
213

type in μFLEX, 643
* (“star,” prefix for single-threading state

functions), 392
/ (EL/FL division primitive), 25, 213

in EL dialects DS, 121
type in μFLEX, 643

% (EL/FL remainder primitive), 25, 213
type in μFLEX, 643

^ (FLIC mutable cell content), 398
in FLICK DS, 417
in FLICK SOS, 409
in FLICK standard DS, 477
informal semantics, 398
type rule in FLEX, 681

; metalanguage comment style 1, 1148
{metalanguage comment style 2}, 1148
{mini-language comment style}, 9, 212
:= (FLIC mutable cell assignment), 398,

966
in FLICK DS, 417
in FLICK SOS, 409
in FLICK standard DS, 477
informal semantics, 398
set! vs., 431
type rule in FLEX, 681

⊥ (bottom), 150, 172, 176, 1157
representing nontermination, 185, 275,

280
� (top), 176
�

kind judgment, 760
type/cost judgment, 989
type/effect judgment, 951
type/exception judgment, 987
type judgment, 645

�pure (syntactic purity judgment),
816–817, see also Syntactic purity
judgment

in type/effect system, 952
variable assignments and, 821

. . . (ellipsis notation), 33
〈. . .〉 (tuple notation), 1152
[. . .] (sequence notation), 1182
′· · · ′ (symbolic outcome in FL), 212
〈· · · , · · · 〉 (pair outcome in FL), 212
�T�eT (effect/region erasure), 956, 959
�TE�eTE (effect/region erasure), 956, 959
�E�, 772, 774, see also Type erasure
�P�pgm , 772, 774, see also Type erasure
�TD�TD , 776, see also Type erasure
�TJ �TJ , 776, see also Type erasure
[α] (lambda calculus alpha reduction),

295
[β-value] (CBV FLK reduction), 310
[β], see also Beta reduction

in CBN FLK SOS, 259, 261, 310
in μFLARE SOS, 778
in μFLEX SOS, 662, 664
in lambda calculus SOS, 292

[η] (lambda calculus eta reduction), 295
α reduction (alpha reduction), 295
α-equivalence (alpha-equivalence),

250–251
α-renaming, 251, see also

Alpha-renaming
α ∈ AssignedVal, 412
β reduction, see Beta reduction
δ ∈ DescId, 753, 949
θ ∈ TyConId, 831, 893
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η expansion (eta expansion), 295
in DS clause, 526

η reduction (eta reduction), 295
FIL simplification, 1033
in DS clause, 478

λ (function abstraction), 1165
Λ (polymorphic abstraction), 730
λ (strict function abstraction), 200
μFLARE, see entry before FLARE
μFLEX, see entry before FLEX
ν ∈ NonceType, 861∏n

i=1 Di (product of set family/domains),
1153, 1173

σ ∈ DescSubst, see DescSubst
σ ∈ TypeSubst, see TypeSubst
σ ∈ Storable, 412∑n

i=1 Di (sum of domains), 1176
τ ∈ TypeId, see TypeId; Type identifier
υ ∈ UnificationVar, 893
∧ (logical conjunction), 1151, 1162
∨ (logical disjunction), 1151, 1162
¬ (logical negation), 1151, 1162
∀, see Universal quantification
∃, see Existential quantification
+ (numerical addition), 1163
+ (sum-domain constructor), 1176–1181
− (numerical subtraction), 1163
− (set difference), 1149
* (sequence-domain constructor), 1181
× (numerical multiplication), 1163
× (product-domain constructor),

1173–1175
× (set product), 1153
÷ (numerical division), 1163
/ (set quotient), 1155
% (numerical remainder), 1163
 (“at least as general” operator on

substitutions), 785
< (less-than relation), 1153, 1163
≤ (less-than-or-equal-to relation), 1153,

1163
=, see Equality relation
=S (equality relation on elements of

set/domain S), 1153

=α (alpha-equivalence), 250–251
=obs , 91, see also Observational

equivalence
= (domain definition), 1175, 1187
.
=, see Type constraint

= (inequality relation), 1163
> (greater-than relation), 1153, 1163
≥ (greater-than-or-equal-to relation),

1153, 1163
<-> (named subpattern in match), 604
< (EL/FL less-than primitive), 25, 213

in FLK DS, 285
type in μFLEX, 643

<= (FL less-than-or-equal-to primitive),
213

type in μFLEX, 643
<= (in bounded quantification), 745
= (EL/FL equality primitive), 25, 213

type in μFLEX, 643
!= (FL inequality primitive), 213

type in μFLEX, 643
>= (FL greater-than-or-equal-to

primitive), 213
type in μFLEX, 643

>= (effect inequality constraint), 960, 961
> (EL/FL greater-than primitive), 25,

213
type in μFLEX, 643

{. . .} (set notation), 1148
{} (empty type environment), 643
{} (empty set), 1148
{}TCS (empty type-constraint set), see

emptyTCS

{x | Px} (set builder notation), 1149
| (such that), 1149
| | (absolute value), 1163
| | (cardinality of set), 1150
∈ (element of set), 1149

∈ (not element of set), 1149
⊕ (extend type environment with

data-type definitions), 830
in FLEX/M, 914
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� (environment merge), 277
� (type-constraint set union), see

unionTCS

∪ (set union), 1149
∩ (set intersection), 1149
⊆ (subset), 1149
⊂ (proper subset), 1149
� (subtype), 702, 703, 707

type equivalence and, 708
�AS (subtype), 707
�e (subeffect), 947, 949, 954
"e (supereffect), 949
[E/I ] (substitute E for I ), 253, 254, 637,

639, see also Substitution
[Ei/Ii ]

n
i=1 (simultaneous substitution),

256
[T/τ ] (substitute T for τ), 637, see also

Substitution
∼SA (PostFix stack-answer

equivalence), 94
∼S (PostFix stack equivalence), 94
∼Q (PostFix transform equivalence), 93
∼V (PostFix value equivalence), 94
≈at (abstract-type equivalence), 913
≈e (effect equivalence), 947, 949
≈tc (type-constructor equivalence), 913
≈depends (dependent type equivalence),

872, 874, 877–879, 911
≈ (type equivalence), 679, 708, see also

Type equivalence
[≈at] (abstract-type-equivalence rule),

913
[+] (FLK SOS reduction), 259
[/] (FLK SOS reduction), 259
[<] (FLK SOS reduction), 259
[^] (FLICK SOS stateful reduction), 407,

409
[:=] (FLICK SOS stateful reduction),

407, 409
[∀-�] (FLEX/SP subtype rule), 731
[∀-≈BQ ] (FLEX/SP type rule), 747
[∀-≈] (FLEX/SP equivalence rule), 731
[∀-elimBQ ] (FLEX/SP type rule), 747

[∀-elim]
FLEX/SP type rule, 730, 731
FLEX/SPDK type rule, 763

[∀-introBQ ] (FLEX/SP type rule), 747
[∀-intro]

FLEX/SP type rule, 730, 731, 732,
734

FLEX/SPDK type rule, 763
[→-�] (subtype rule)

in FLEX/M, 912, 913
in FLEX/S, 703, 704

[→-≈] (type-equivalence rule)
for dependent procedures, 874
FLARE/E, 949
in FLEX, 679, 680

[→-elim-inclusion] (FLEX/S type rule),
715, 716

[→-elim] (type rule), 644
for dependent procedures, 875
μFLARE, 775
FLARE/E type/effect rule, 951, 952,

953
μFLEX, 646

[→-intro] (type rule), 644
for dependent procedures, 875
μFLARE, 774, 775
FLARE/E type/effect rule, 951, 953,

955, 961
μFLEX, 646
FLEX/SPDK, 763

[→] (FLEX/SPDK kind rule), 760
[->>–elim] (FLEX/SPDK kind rule),

760
[->>–intro] (FLEX/SPDK kind rule),

760
[→elimR] (μFLARE type reconstruction

rule), 793, 794
[→introR] (μFLARE type reconstruction

rule), 793
[→-elimZ ] (FLARE/E type/effect

reconstruction rule), 963, 964
[→-introZ ] (FLARE/E type/effect

reconstruction rule), 961, 964, 965
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A ∈ AnsExp, see AnsExp
A ∈ ArithmeticOperator, 25
A (arithmetic operator meaning function)

in EL dialects, 121
in PostFix, definition, 137
in PostFix, signature, 135
in restricted ELMM, 118

a ∈ Answer, see Answer
AB ∈ Abstraction, 321, 1095
Abadi, Mart́ın, 381
abort! (a transaction), 423–425
ABS (abstraction collecting function),

1016
abs (multiabstraction), 219, see also λ;

lam

desugaring in FL, 220, 233
desugaring in HOOK, 369, 375
free identifiers of, 638
in DIFLEX, 983
in FILcps , 1046
in FIL kernel, 1030
in FILlift , 1095
in FILreg , 1101
in FL, 218–221
in μFLARE/FLARE kernel, 772
in μFLEX/FLEX kernel, 628, 631, 632
in μFLEX SOS, 664
in lambda calculus, 291
in metaCPS conversion, 1061
in simple CPS conversion, 1051
substitution, in μFLEX, 639
tuple-based desugaring, 257
type rule in dependent type system,

875
type rule in μFLEX, 644
type rule in FLEX/SPDK, 763
with latent exception, 987

absInt (absolute value), 1163
Absolute value (absInt, | |), 1163
[abs-pure] (FLARE syntactic purity

axiom), 816
Abstract class in Java, 724
Abstract data type (ADT), see Abstract

type

Abstract grammar, 20
Abstract interpretation, 699
Abstraction, 1187, see also λ; abs; lam

abstraction barrier, 1171
body of, 1165
Captain, 212
data, see Abstract type; Data

abstraction
formal parameter of, 1165
lambda (λ), 291, 1165
in object-oriented programming, 379
procedural, 841
views in pattern-matching, 607–610

Abstraction (syntactic domain)
in CBV recursion, 321
in FILlift , 1095

Abstraction barrier, 402, 839, see also
Interface

Abstraction violation, 357, 402, 841
Abstract machine, 47
Abstract syntax, 20–21, 42
Abstract syntax DAG, 248–250
Abstract syntax tree (AST), 20, 42, 115

in interpreters and translators, 116
Abstract type, 839–887, see also Data

abstraction
as static lock and key, 848
closure as example of, 1077
controlling complexity with, 333
dependent type, 869–884, see also

Dependent Type
environment example, 901–906
existential type, 847–859, see also

Existential Type
export of, 847
in FLEX/M, 914, 915
generativity, 886
nonce type, 859–869, see also Nonce

Type
point example, 851, 861, 871
sealing/unsealing, 885, 934
table example, 906–909

AbstractType (domain), 893
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AC (assignment conversion transform),
1023

access (PostHeap command), 110
Acrobatics, notational, 57
Action in monadic style, 394
Activation frame, see Procedure call

frame
Actor language, 378, 380, 537, 941
Actual parameter, of procedure

application, 214, see also Argument
ACUI (associative, commutative, unitary,

idempotent), 947, 962, 999
Ada

array, as homogeneous product, 548
as explicitly typed language, 625
as imperative language, 384
as statically typed language, 623
closure conversion via

defunctionalization, 1088
command, 472
dangling pointers, lack of, 1144
data abstraction, 885
garbage collection in (or not), 1121
second-class modules, 891
simulating higher-order procedures,

1076
type conversion, 716
type safety, 622
valueless procedure, 385
value-returning function, 385

add (PostFix command), 8, 40, see also
Arithmetic operator

informal semantics, 10
PostFix DS, 137

add (extended number addition), 568
Addition function (+), 1163, see also +;

add; Arithmetic operator
on Church numerals, 299

addr (FILreg subroutine label), 1101
Address, lexical, 1091
Address word, 1122
Adequacy of denotational semantics, 147,

157–159
of EL, 158
of PostFix, 158

Ad hoc polymorphism, 748–750, see also
Polymorphism

after (FL monadic action sequencing),
395

Agre, Phil, 269
Agreement relation in denotational

soundness (�), 151
Algebra, semantic and syntactic, 115
Algebraic data type, see Sum of products
Algebraic type schema, 966–969
AlgebraicTypeSchema (domain), 967
Algol 60

Backus-Naur form originating with, 43
call-by-name parameter passing, 309

Algol 68
as explicitly typed language, 625

Algorithm M (type reconstruction), 836
Algorithm R (type reconstruction), see R
Algorithm W (type reconstruction), 836
Algorithm Z (type/effect reconstruction),

see Z
Aliasing, 437, 944

optimization inhibited by, 944
allocate (PostHeap command), 110
allocating (computation function), 415

in CBL product DS, 557
with continuation, 485

Allocation effect, 946
Allocation of memory, see Heap

allocation
Alpha-equivalence (=α), 250–251

alpha-equivalence class, 250
Alpha reduction, 295
Alpha-renaming, 251

dependent types and, 872, 879–880
import restriction and, 853, 858, 874,

880, 920
in [copy-prop], 1066
in HOOK-to-FL translation, 373
in Tortoise compiler, 1038–1041
of arrow type parameters, 916
of expression identifiers, 269, 914
of type constructors, 916
of type identifiers, 732, 735

alts (list procedure), 240, 242
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amb (nondeterministic choice), 538
AN ∈ Assumption, 692, 707
Analysis time, 617
AND (on Church booleans), 301
and (EL/FL boolean conjunction), 25,

213
in FLK DS, 285
type in μFLEX, 643

[and] (FLK SOS reduction), 259
Anonymous inner class, see Inner class
A-normal form, 1117
AnsExp (SOS answer semantic domain)

in CBL product SOS, 553
in CBN product SOS, 552
in CBV named sum SOS, 572
in CBV product SOS, 543
in μFLARE, 778
in μFLEX, 664
in FLICK+{label, jump} SOS, 503
in FLICK SOS, 406
in FLK, 259

Answer (semantic domain)
in EL dialects DS, 121
in ELM DS, 124, 126
in ELMM DS, 120
in FLICK continuation-based DS, 474
in FLICK standard DS, 473
in FLK, 275, 276
in PostFix DS, 132

Answer compatibility for μFLEX type
soundness, 667

Answer domain, see also AnsExp;
Answer

of continuation-based DS, 474
of DS, 115
of restricted ELMM, 117
of SOS, 48, 49

Antecedent of rewrite rule, 54
Antisymmetric relation, 1154

partial order as example of, 174
subtyping as example of, 702

API (Application Programming
Interface), 235, 839, see also
Interface

APL
compositional programming, 613
dynamically typed language, 623
dynamic scoping, 338
matrix-manipulation libraries, 239

app (FLK application), 211, 214, see also
Multiapplication

actual parameter (argument) of, 214
continuations as procedure-call stack in

CPS, 1043
in CBD DS, 328
in CBL FLAVARK DS, 435
in CBN vs. CBV DS, 317
in CBN vs. CBV parameter passing,

316
in CBN vs. CBV SOS, 310
in CBN FLAVARK DS, 434
in CBN FLK SOS, 259
in CBR FLAVARK DS, 435
in CBVC DS, 565
in CBV FLAVARK DS, 434
in FILcps , 1046
in FILlift , 1095
in FILreg , 1101
in FLAVARK DS, 431
in FLICK standard DS, 477
in FLICK standard DS for exceptions,

520, 521
in FLK DS, 283, 286
in lambda calculus, 291, 292
in metaCPS conversion, 1061
in simple CPS conversion, 1051
in static vs. dynamic scope, 335
kernel multiapplication in FIL, 1030
nontail call, 1044–1049
operand (rand) of, 214
operator (rator) of, 214
procedure-calling mechanism in CPS

conversion, 1043
procedure call not returning in CPS,

1043, 1046
single-threaded store in CBV FLICK
app clause, 418

tail call, 1044–1049
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Appel, Andrew, 1116, 1117
append (metalanguage sequence

function), 34, 1183
append (procedure), 237, 238
Application, see also Multiapplication

of description, 753
of function, 1158–1159, 1187
of procedure, see app

Application Programming Interface
(API), 235, 839, see also Interface

Applicative functor, 939
Applicative language, 305
Applicative-order reduction, 377
Applied type system (ATS), 887
apply-to-five (higher-order function),

1161, 1166, 1167
apply-twice (type/effect example), 950
arg (EL/ELM argument reference), 25,

67
in ELM and EL DS, 126
expression constructor, 585

arg~ (ELM expression deconstructor),
585

Argument
of function, 1156, 1158
of procedure, 214
of program, 217
simulating multiple function/procedure

arguments, 214, 1161–1164
Arithmetic module, 358
Arithmetic operation, see also Primitive

application
in EL dialects DS, 121
in ELMM DS, 65
in PostFix DS, 55
in restricted ELMM DS, 118

Arithmetic operator, see also Primitive
operator

in EL dialects, 25
in EL dialects DS, 121
in ELMM DS, 65
in FL dialects, 213
in metalanguage, 1162

in PostFix DS, 55, 137
in PostFix grammar, 40
in PostFix informal semantics, 10
in restricted ELMM DS, 118
on Church numerals, 298–300

ArithmeticOperator (EL domain), 25
arithop (ELM expression constructor),

585
arithop (PostFix2 command), 41
arithop (function in PostFix DS)

definition, 143, 144
specification, 133

[arithop]
ELM BOS rule, 77
ELMM BOS rule, 75
ELMM SOS rule, 65
PostFix SOS rule, 55

arithop~ (ELM expression
deconstructor), 585

Array, 540
bounds check, 542
indexing, see Product indexing
mutable, 548
sequence vs., 544

Arrow kind (->>), 759
in FLEX/SPDK, 759
kind checking in FLEX/SPDK, 760
of type constructor, 760

Arrow type (->), 630
desugaring in FLEX/M, 894
inclusion rule for implicit argument

subtyping, 716
kind checking in FLEX/SPDK, 760
parameterized, 870, 873
subtyping, 704
subtyping in FLEX/M, 913
subtyping in FLEX/S, 703
type constructor, 630
type equivalence, 680

AS ∈ AssumptionSet, 692, 707
assign (store function), 412
[assign] (FLEX type rule), 681
AssignedVal (DS stored binding domain),

411, 412
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Assignment (SOS assignment domain)
in CBL product SOS, 553
in FLICK SOS, 406

Assignment conversion, 430, 439, 820
in CBR language, 1024
closure conversion and, 1082
letrec-bound variables in

FLARE-to-FIL translation, 1036
in Tortoise compiler, 1019–1025

Assignment-free program, 1019
Assignment of variable, 430–439, see also

Mutable cell; Mutable variable
Association list, 540, 550
Associative operator, 41
[assumed] (FLEX/S subtype rule), 706,

707
Assumption/AssumptionSet (domains for

comparing equirecursive types), 691,
692, 707

AST, see Abstract syntax tree
AT ∈ AbstractType, 893
ATS ∈ AlgebraicTypeSchema, 967
Autoboxing/autounboxing in Java, 750
Automata-based type comparison

equirecursive subtyping, 707, 767
equirecursive type equivalence, 691

Automatic heap deallocation, 1119, see
also Garbage collection (GC)

Automatic storage management, see
Garbage collection (GC)

Axiom, 54–58
Axiomatic semantics, 441

B ∈ BoolLit, 25, 211
B (boolean literal meaning function), 283
b ∈ Bool, 129, 132, 276, 1148
Backtracking, 422, 445

in extended FLICK, 422
nondeterminism and, 538
stream and, 612
success/failure continuations and, 612
with continuations, 465–471
with generate-and-test using iterator,

512

Backus, John, 613
Backus-Naur form (BNF), 43
FL and FP languages, 207
Turing award paper, 305

balance (bank account procedure)
implementation, 402
specification, 384

Bang (!) suffix for state-changing
functions, 385

Bank account
in imperative style, 401–403
with message-passing objects, 403
in stateless language, 384–389, 392–396

Barendregt, Henk, 887
Base effect, 946
BaseEffect (domain), 949
BaseEffectSet (domain), 949
Base kind environment, 761
[base-tycon] (FLEX/SPDK kind rule),

760
Base type, 629
BaseType (base type domain in typed

FL dialects)
in μFLARE, 775
in FLARE, 815
in FLARE/E, 949
in μFLEX, 628

[base-type] (FLEX/SPDK kind rule),
760

BaseTypeConstructor (domain)
in FLEX/SPD, 753

Basic, lack of passable procedures, 320
Basic block, 1005, 1048
BdIds (bound identifier function)

in FLK, 247
ill-defined on alpha-equivalence class,

251
BE ∈ BoolExp, 25
BE (EL boolean expression meaning

function), 129
Beardly, 988
begin (FLICK sequencing construct),

386
desugaring in FLEX, 681
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begin (continued)
desugaring of in FLIC, 401
extended sequencing sugar, 399
in CBR FLAVARK DS, 435
in FLARE, 813
in FLICK DS, 386, 416, 418
in FLICK SOS, 386, 409
in FLICK standard DS, 477
in simple CPS conversion, 1054
nonkernel version, 410
type rule in FLEX, 681

[begin] (FLICK SOS reduction), 409
[begin] (FLEX type rule), 681
begin-transaction!, 423–425
beh (behavior of SOS), 51
behdet (deterministic behavior of SOS),

51, 91
denotational behavior and, 151
in language L, see L, SOS

Behavioral equivalence, 90, see also
Observational equivalence

Behavior of program, 50–52
of concurrent program, 997
deterministic, 51
nondeterministic, 51, 997
observational equivalence and, 91

Bekić expansion, 229, 327
Beta-redex, 261
Beta reduction, 261

in CBN FLK SOS, 259, 261, 310
in CBV FLK SOS, 310
in μFLARE SOS, 778
in μFLEX SOS, 662, 664
in lambda calculus SOS, 292
in metaCPS conversion, 1062
in type application, 730

between (iterator example), 509
BF ∈ BaseEffect, 949
BF ∈ BooleanFormula, 465
BFS ∈ BaseEffectSet, 949
Big Bag of Pages (BIBOP), 1129
Bignum, 1124
Big-step operational semantics (BOS),

75–79

error, 76
evaluation relation (−−�), 75
evaluation tree, 75
of EL, 79
of ELM, 76–77
of ELMM, 75–76
of FLK, 269
of PostFix, 77–78
small-step semantics vs., 78

Bijective function, 1160
Binary relation, 1153
Binary tree

example sum-of-products type, 750
example types, 694
multiple-value return examples,

450–453
procedures for manipulating, 451
type abstraction in make-node, 751
type specified with trec, 688
view example, 607–610

bind (PostLisp command), 109
bind (environment procedure in

FLEX/M), 901
list representation, 903
procedure representation, 905

bind (environment binding function), 322
bind-exit (Dylan nonlocal exit

construct), 505
Binding

in FLK DS, 276
local type binding expression, see trec;
tletrec

local value binding expression, see let;
letrec; let*; recur

of a variable, 245
of formal parameter to argument, 209,

214
in standard library, 235, 236, 237
top-level, 235

Binding construct, 122, 144, 244, 334
defined with higher-order function, 124
in FL, 334
in FLK, 307

Binding occurrence of identifier, 245
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BindingValue (binding value semantic
domain), 276

bindtypeof (μFLEX type-binding
construct), 660

Bit, 1122
Bizarre, see Beardly
Block, see Heap block
block (exit point declaration in

Common Lisp), 348
Block structure, 337, 1075

environment machinery for, 1075
in Scheme, 378

Blotation of code, 1054
lack of in metaCPS conversion, 1063

BNF (Backus-Naur form), 43
Body

of function, 1165
of pattern-matching clause, 590, 1191
of procedure, 214
of program, 209

Body clause/expression of tagcase, 570
Bool (boolean set & semantic domain),

129, 132, 276, 1148
bool (boolean type), 628, 629
[bool]

μFLARE type axiom, 775
FLARE/E type/effect axiom, 953
μFLEX type axiom, 644

bool=? (FL boolean equality), 213
type in μFLEX, 643

bool? (FL boolean type predicate), 213
BoolAnswer (EL semantic domain), 129
Boolean, see also Bool ; BoolLit

Church booleans in lambda calculus,
300

message-passing HOOK object, 365
message-passing SmallTalk object,

365
boolean-cont (standard DS function),

473, 475
BooleanFormula (domain), 465
Boolean formula satisfiability, 466
Boolean operator, see also Logical

operator

in metalanguage, 1151
BoolExp (EL domain), 25
BoolLit (boolean syntactic domain)

in EL dialects, 25
in FL dialects, 211

[boolR] (μFLARE type reconstruction
axiom), 793

BOS, see Big-step operational semantics
Bottom (⊥), 150, 172, 176, 1157

representing nontermination, 185, 275,
280

Bounded quantification, 745–746
Bound identifier, 246, see also BdIds
Bound occurrence of identifier, 245
Bounds check, 542
Bound variable, 246, see also BdIds
Boxed value, 1124
Boxing/unboxing in Java, 750
Branch, see Conditional expression; Jump
break (loop termination), 488–490

in C/Java, 445, 490
as sugar in FLIC+{label, jump}, 501

Bronte, Charlotte (quoted), 843
BT ∈ BaseType, 628, 775, 815, 949
BTCR ∈ BaseTypeConstructor, 753
Buffer overflow exploit, 542
Built-in value, 235
Bureaucracy, as model for computation,

269

C (PostFix command meaning
function), 135, 136–138

C
answer domain, 474
array, as homogeneous product, 548
array, as mutable sequence, 561
array subscripting notation, 561
as call-by-value language, 309
as explicitly typed language, 625
as imperative language, 384
as language without block structure,

337
as monomorphic language, 629, 658
as statically typed language, 623
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C (continued)
bounds checking, lack of, 542
call-by-value-copy of structures, 566
call-by-value-sharing of arrays, 566
compile-time inclusion of files, 928
conservative GC, 1127, 1142
dangling pointer, 1144
defining macros with #define, 330
downcast, 723
files as de facto modules, 889
garbage collection, lack of, 1121
libraries of numerical methods, 239
linking, 890
mutable string, 548
mutable variable, 430
named product (struct), 353, 550,

561, 568, 580
nonlocal exits (setjmp/longjmp), 506
perim definition using struct and
union, 582

pointer variable, as mutable cell, 397
program arguments as string array, 217
return/break/continue, 445
simulating higher-order procedures,

1076
strict application, 215
sum (union), 567, 568, 580
type coercion, 718
type conversion, 716
type loophole, 567, 580–583, 621–622
void expression as command, 472
void type, 209
void vs. value-returning function, 385

C++
array, as mutable sequence, 561
array subscripting notation, 561
as explicitly typed language, 625
as language without block structure,

337
as object-oriented language, 362
as stateful language, 384
as statically typed language, 623
bounds checking, lack of, 542
conservative GC, 1127, 1142

constructor method, 366
dangling pointer, 1144
destructor function, 1121
integers and booleans as nonobjects,

365, 379
iterator, 507, 512
libraries, 239
multiple inheritance, 380
non-object-oriented features, 379
overloading, 748
simulating higher-order procedures,

1076
standard library API, 235
sum-of-products data via objects, 579
template, 748
type coercion, 718
type conversion, 716
void expression as command, 472

C#
as object-oriented language, 362
as stateful language, 384
garbage collection, 1120
integers and booleans as nonobjects,

365
simulating higher-order procedures,

1076
calculate, 57
Calculator language, 61–62
Calculus of Communicating Systems

(CCS), 999
Call, procedure, see app

call/cc, see cwcc;
call-with-current-continuation

Call-by-denotation (CBD) parameter
passing, 328–332

Call-by-lazy (CBL), see Call-by-need
Call-by-name (CBN)

CBN/CBV relationship, 311–314
CBN and CBV in NAVAL, 327
CBV vs., in μFLEX SOS, 662, 672
CBV vs., in stateful language, 425–426
dragging tail and, 316
duality with CBV, 378
either (sum), 574
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inefficiencies of, 312–314, 433
mutable variable DS, 433, 434
normal-order reduction vs., 293, 377
pair, 318–320
parameter passing, 309, 331, 433, 434
parameter-passing DS, 316–318
parameter-passing SOS, 310–316
positional sum, 576
problems with in stateful language,

425–426, 433
product, 551–552
side effects and, 312
simulation in CBV, 325, 378

Call-by-need (CBL)
lambda calculus, 440
mutable variable DS, 435
parameter passing, 434–436
product, 552–555

Call-by-reference (CBR)
assignment conversion and, 1024
for mutable tuples, 566
for obtaining result of valueless

procedure, 437
mutable variable DS, 435
parameter passing, 436–438
with mutable products, 566

Call-by-value (CBV)
applicative-order reduction vs., 377
assignment conversion and, 1024
CBN vs., in μFLEX SOS, 662, 672
CBN/CBV relationship, 311–314
CBN and CBV in NAVAL, 327
CBN vs., in stateful language, 425–426
duality with CBN, 378
either (sum), 573
FLARE semantics, 813
imperative features in FLEX, 682, 696
lambda calculus, 378
letrec desugaring in FLAVAR, 432
mutable variable DS, 433, 434
named sum, 569–576
pair, 318–320
parameter passing, 309, 331, 397, 433,

434

parameter-passing DS, 316–318
parameter-passing SOS, 310–316
positional sum, 576
product, 541–550
recursion and, 378, 484–487
recursion in FLICK DS, 417
recursion in FLICK SOS, 408–410
recursion in FLK, 320–324
simulation in CBV, 378

Call-by-value-copy (CBVC), 564–566
Call-by-value-sharing (CBVS), 563–566
Caller-saves register, correspondence with

free variable in closure conversion,
1080

Call frame, see Procedure call frame
Call site, 1085
call-with-current-continuation

(control-point-capturing construct in
Scheme), 505–506, 538, see also
cwcc

Cantor, Georg, 1150
Captain Abstraction, 212
Capture of a variable, see Variable

capture
Capture restriction, 920, 921
capturing-cont (control-point duplicating

function), 498, 500
car (list head), 236

definition in FLEX/M, 895
definition in FLEX/SPD, 754
polymorphic type of, 728
sum-of-products data version, 586
type in FLEX/M list module, 899
type rule in FLEX, 686

[car] (FLEX type rule), 686
Cardelli, Luca, 381, 698, 768, 886
Cardinality of set (| |), 1150
Cartesian product (×), 1153, 1173
cases (metalanguage oneof

deconstructor), 1177–1181, 1188,
1189, see also match

Cast, see Type cast; Type coercion; Type
conversion
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catch (exception construct)
control operator in Scheme, 537
in Common Lisp, 506, 514
in FIL, 1072
in Java, 514, 985

Category theory, 1196
duality of sums and products, 571, 613

Cayenne, dependent types, 886, 941
CBD, see Call-by-denotation
CBL, see Call-by-need
CBN, see Call-by-name
CBR, see Call-by-reference
CBV, see Call-by-value
CBVC, see Call-by-value-copy
[CBV-rec] (FLICK SOS stateless

reduction), 409, 410
CBVS, see Call-by-value-sharing
CCS (Calculus of Communicating

Systems), 999
cdr (list tail), 236

definition in FLEX/M, 895
polymorphic type of, 728
sum-of-products data version, 586
type in FLEX/M list module, 899
type rule in FLEX, 686

[cdr] (FLEX type rule), 686
Cecil

multimethods, 380
prototype-based objects, 380

*cell* (FLICK cell value), 406, 407
Cell, see cell; Mutable cell
cell (FLIC mutable cell creation), 398

in FLARE, 813
in FLICK DS, 416, 418
in FLICK SOS, 409
in FLICK standard DS, 477
informal semantics, 398
type rule in FLEX, 681

[cell] (FLICK SOS stateful reduction),
407, 409

cell=? (FLIC mutable cell equality
predicate), 398

in FLICK DS, 417
in FLICK SOS, 409

in FLICK standard DS, 477
informal semantics of, 399
type rule in FLEX, 681

[cell=?-F] (FLICK SOS stateless
reduction), 409

[cell=?-T] (FLICK SOS stateless
reduction), 409

[cell?-F] (FLICK SOS stateless
reduction), 409

[cell?-T] (FLICK SOS stateless
reduction), 409

cell? (FLIC mutable cell type
predicate), 398

in FLICK DS, 417
in FLICK SOS, 409
in FLICK standard DS, 477
informal semantics of, 399

cellans (SOS cell outcome token), 406
[cell-eq] (FLEX type rule), 681
cellof (type constructor), 681, 682

in FLARE, 813
invariant subtyping in FLEX/S,

704–706, 710
kind checking in FLEX/SPDK, 760
type equivalence, 681

[cellof-≈] (type-equivalence rule)
in FLEX, 681, 682
in FLEX/S, 705

[cellof-elim] (FLEX type rule), 681, 682
[cellof-eq] (FLEX type rule), 682
[cellof-intro] (FLEX type rule), 681, 682
[cell-set] (FLEX type rule), 681, 682
CF (SOS configuration), 49

in language L, see L, SOS
state component, in FLICK SOS, 407

CF (PostFix configuration meaning
function), 153

cf ∈ CF , 49
Chain

in a partial order, 177
strictly decreasing, 104

channel (channel creation), 998
Channel, for concurrency, 998
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Char (character set & semantic domain),
1148

Character, of symbol in FRM, 1125
check-. . . (computation function), 417,

473, 475
Checked exception in Java, 985
check-quota (quota construct), 492–493
choice, choose (nondeterministic choice

constructs), 538
Church, Alonzo, 298, 305, 699
Church booleans (TRUE and FALSE),

300
Church conditional (IF), 300
church-fst, in FLEX/SP, 737
Church numeral (n), 298

arithmetic on, 298–300, 302, 303
pictorial representation of, 298

Church pair, 302, 320, 737
church-pair, in FLEX/SP, 737
Church-Rosser (CR) property, 82, see

also Confluence
church-snd, in FLEX/SP, 737
Church tuple, 225, 302
CL (flat closure conversion transform),

1081
class (HOOPLA class sugar), 369
Class, equivalence, 1154
Classification, see also classify

of FLK expression, 272
objectification of nessness, 362
preservation of, by FLK nonevaluation

step, 273
classify (FLK expression classification

function), 273
Class methods, 362
Class of object, 362

controlling complexity with, 333
representing in HOOK, 366
simulated in prototype-based system,

366
subclass, 366, 723–725
superclass, 366

Class variable, 362
Clause

cases clause, 1178

function definition by clauses, 35
match clause (metalanguage), 1191
match clause (FL), 590
tagcase body clause, 570

Client
of data abstraction, 839
of module, 352

CLOS
multimethods, 380
multiple inheritance, 380

Closed expression, 246
Closed procedure, see Closure
Closed program, 247, 1015
Closure, 290, 378, 1075

as abstract data type, 1077
actor and, 378
code/environment pair, 1077
code/linked-environment pair, 1092
flat, 1076–1085
as heap block in FRM, 1128
objects as poor man’s closures, 441
in Scheme, 378

Closure conversion, 441, 1075–1093, 1117
closure-passing style, 1078, 1117
code/environment pair, 1077
code/linked-environment pair, 1092
control-flow analysis in, 1085–1090
correspondence of free variable to

caller-saves register, 1080
defunctionalization, 1088, 1117
Java inner classes and, 441, 1082
lightweight, 1089, 1117
linked environment, 1090–1093
mutable variable and, 1081–1082, 1092
ordering of CPS conversion in

Tortoise, 1076
representation pollution, 1086
selective, 1085, 1117
substitution strategy for, 1084
with flat closures, 1076–1085
wrapping strategy for, 1084

Closure of relation
reflexive transitive, 196, 1155
transitive, 1155
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Closure-passing style, 1078, 1117
CLU

1-based indexing, 562
array, as dynamically sized mutable

sequence, 562
array, as mutable sequence, 561
cluster, 885, 940
data abstraction, 885
exception handling via
signal/except when, 514

explicit resignaling of exceptions, 514
immutable string, 548
immutable updatable sequence, 548
iterator, 506
mutable and immutable data types, 563
second-class modules, 891
separate compilation, 940
sum values, 568
updatable sequence, 545

Cluster in CLU, 885, 940
Cmdcont (standard DS domain), 473
Coalesced sum, 186
cobegin (concurrent evaluation), 998
Cobol, as imperative language, 384
Code, residual, in metaCPS conversion,

1059
Code/environment pair, 1077
Code/linked-environment pair, 1092
Code bloat, 1054

lack of in metaCPS conversion, 1063
Code component of a configuration, 47

in FLICK SOS, 407
Code hoisting, 1029
Code linearization, in CPS conversion,

1042, 1043, 1047
Code motion, inhibited by aliasing, 944
Code optimization, see Optimization
Code segment, 1123
Codomain (target) of function, 1156
Coercion of types, see Type coercion
Coercion semantics of subtyping, 718
Coherence

file-type coherence, 926
file-value coherence, 926

modules and, 934–937
Column-major order, 547
Combination, see Application
Combinator, 291

S and K combinators, 296
comefrom (control effect), 979
Command, 472

in PostFix, 8
Command continuation, 472–474
Comment

in metalanguage, 1148
in mini-language, 9

Commingling, unholy, 870
commit! (a transaction), 423–425
Common Lisp, see also Lisp

as dynamically typed language, 623
as mostly functional language, 384
as object-oriented language, 362
defstruct, 590
dynamic scoping via special, 348
exception handling via throw/catch,

514
implicit resignaling of exceptions, 514
multimethods, 380
multiple namespaces, 348
nonlocal exits via block and
return-from, 348

nonlocal exits via throw/catch, 506
tagbody and go, 347–348
unsafe features, 622

Common subexpression elimination, 1028
inhibited by aliasing, 944

Communicating Sequential Processes
(CSP), 941, 999

Communication, between threads via
channel, 997

Communication effect, 998–999, 1001
Comp (computation semantic domain)

equality laws, in
FLICK+{label, jump} continuation
semantics, 500

equality laws, in FLICK standard
semantics, 476

equality laws, in FLK, 282
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equality laws, on store-based
computations in FLICK, 416

functions on, in FLICK, 415
functions on, in FLK, 281
in exception semantics, 524, 525
in FLICK, 413–416, 418
in FLICK continuation semantics,

482–484
in FLK, 275, 276, 279

Compaction of memory, 1132
compare, 57
Compatibility with a type, 667
Compilation, 7, 1005–1117, see also

Tortoise compiler; Translation
A-normal form, 1117
optimization in, see Optimization
type and effect information, 1026
via source-to-source transformation,

1005–1009, 1116
Compile time, 617, 890
Completeness, of type reconstruction

algorithm, 799
Complete partial order (CPO), 182–184
Complete row type, 823
Completion of a set, 184
Component (semantic domain)

to model pair components, 320
Component value, 319–320
compose (HOOK object composition),

363, 365
translation to FL, 371

Composition
of functions (◦), 1159
of functions, n-fold (fn), 1159, see also

Church numeral
of relations, 1155

Compositionality
of compiler transforms, 1006
of denotational semantics, 116
of stack transforms, 135

Compound domain, 1171
syntactic, 25

Compound expression, 20
Compound phrase, 26
Computable function, 199, 1158

Computation, 275, see also Comp
as abstraction for simplifying DS, 275,

279
pending, circumventing with

continuation, 455–457, 494–495, 522
pending, representing with

continuation, 453
in stateful language, 413–416

Computational universality, see Universal
programming language

Computation-based DS
of exceptions, 524–527
of FLICK, 411–420
of FLICK, continuation-based,

482–493
of FLK, 275–290
of label and jump, 498, 500

Computation laws, see Comp, equality
laws

conceal (record-field hiding), 353, 354,
550

DS, 357
Concrete syntax, 22–23
Concurrency, 996–999

behavior analysis, 998–999, 1001
channel for, 998
interleaving, 997
in object-oriented programming, 379
parallelism, 1027
synchronization, 997

cond (FL n-way conditional), 219, 222
desugaring in FL, 220, 233
in simple CPS conversion, 1054

Conditional expression (if)
elseless if sugar in FLICK, 399, 401
in assembly language, 1056
in EL, 20
in EL dialects, 21, 25
in FL dialects, 211, 214
in FLK DS, 282
in FLK SOS, 259, 261
in lambda calculus, 300
n-way (cond), 222
via message-passing in HOOK, 365

Conditional function (ifS ), 1164
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Configuration of SOS (cf ∈ CF ), 47, 49
code component, 47
context component, see Configuration

of SOS, state component
final, 50
initial, 47
in language L, see L, SOS
irreducible (
⇒), 50

looping (
∞⇒), 50

normal form, 50
reducible, 50
state component, 47
state component, in FLICK SOS, 407
stuck, 50

Confluence, 82
of FLK simplification (−−→), 273
in ISWIM, 306
of lambda calculus simplification, 292
one-step, 82

Congruence, 679
Conjunction, logical (∧), 1151, 1162
cons (list prepend), 236

definition in FLEX/M, 895
definition in FLEX/SPD, 754
generic type of list constructor, 827
pattern example, 592
pattern-matching view, 607
polymorphic type of, 728
sum-of-products data version, 586
type in FLEX/M list module, 896, 899
type rule in FLEX, 686

cons (metalanguage sequence prepend),
34, 1182–1184, 1189

[cons] (FLEX type rule), 686
cons~ (list deconstructor)

generic type of, 827
type in FLEX/M list module, 896, 899

Consequent of rewrite rule, 54
Conservative approximation to

undecidable property, 618
Conservative GC, 1127, 1142
cons-stream (Scheme stream

constructor), 561
constA,B,b (constant function), 1159
Constant, 1187

Constant declaration, 430
Constant function, 1159
Constant pattern, in metalanguage, 1192
Constant propagation, 1053
Constraint

effect inequality constraint, 960
type equality constraint, see Type

constraint
Construction of a domain element, 1171
Constructor

for domain, 1171, 1173, 1187
for sum-of-products value, see

Constructor procedure
type constructor, see Type constructor

Constructor application pattern, 590
desugaring in match, 599–601

Constructor method, 366
Constructor procedure, 583, 599

deconstructor, 584, 590, see also
Deconstructor procedure

from def-data desugaring, 587, 588
from def-datatype desugaring, 740
type schema for, 827–833, 894, 896, 914

Consumer/producer coroutine, 457–461
Contagious error value, 60
Content of a mutable cell, 397
Context, 71

control context, 443–446
desugaring context (DC), see

DesugaringContext
evaluation context (E), 71, see also

EvalContext
filling hole in, 71
hole in, 71
naming context, 443
naming context for referential

transparency, 389
normalization context (NC), see

NormContext
observational equivalence and, 91
PostFix command sequence context,

91
PostFix evaluation context, 73
PostFix program context, 91
program context, 91
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simplification context (S), see
SimpContext

state context, 443
tail-call context, 1045

Context-based SOS semantics, 71–73
Context component of configuration, see

Configuration of SOS, state
component

Context domain
continuation in FLICK standard DS,

476
in DS, 115
in ELM DS, 124, 128
environment in FLK DS, 280
flow of in program, 128
store in FLICK DS, 413

Context-free grammar, 26, 43
Continuation, 445–538

command continuation, 472–474
control point vs., 493
in CPS conversion, 1042–1075
domain, 472
duplication of, in label, 498
dynamic, 1117
exception, 1074
expression continuation, 474
expression list continuation, 474
failure, see Failure continuation
for backtracking, 465–471
for coroutine, 457–461
for multiple-value return, 450–455
for nonlocal exit, 455–457
for pending computation, 453, 457
iteration and, 447–449
normal, 446
as procedure, 446–471
procedure-call stack representation in

CPS, 1043
receiver, see Receiver

function/procedure
static, 1117
success, see Success continuation

Continuation-based denotational
semantics, 471–493

Continuation-passing style (CPS), 124,
449–450, 480, 538, 1042, 1116, 1165

continuations as call stack, 450, 1043
evaluation order, 1042, 1043, 1047
metaCPS conversion (MCPS),

1058–1070
procedure-calling mechanism explicit

in, 1043
procedure call not returning, 1043,

1046
representing advanced control features

in, 1070–1075
simple CPS conversion (SCPS),

1049–1057
simplification in FIL and, 1048, 1064
structure of CPS code, 1044–1049

continue (loop continuation), 488–490
in C/Java, 445, 490
as sugar in FLIC+{label, jump}, 501

Continuous function, 187
Contract, 839, see also Interface
Contrapositive, 1151
Contravariant subtyping, 704
Control, 443–538

branch, see Conditional expression
continuation-based DS, 471–493
control context, 443–446
coroutine via iterator, 506–513
exception handling, 513–537
iteration/looping, see Iteration
jump, see Jump
modeling with procedures, 446–471
nonlocal exit, 493–506
recursion, see Recursion
representing in CPS, 1070–1075
thread, see Thread of control

Control effect, 978–983, 1001
Control flow analysis, 995–996, 1001,

1117, see also Control
closure conversion and, 1085–1090

Control point, 493
continuation vs., 493
as first-class continuation value, 493,

495–496
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ControlPoint (semantic domain), 497
controlpointof (type constructor), 979

in μFLARE, 800
in μFLEX, 658–659

Control restriction, in [letregion] rule, 992
Control space, 449
Control transfer analysis, 978–983
Converse, 1151
Cooper, Keith, 1116
copy (FILreg register move), 1101

reducing number of, 1109
Copy phase, 1133
[copy-prop] (FIL simplification), 1033

mutable variables and, 1034
renaming in, 1066

Copy propagation, see [copy-prop]
Coroutine, 445, 457–461

between scanner and parser, 457
in compiler organization, 538

Cost system, 988–991
latent cost effect, 988, 989

Countable set, 1150
Covariant subtyping, 703, 704
*cp* (control point value in

FLICK+{label, jump} SOS), 503
controlpointans (SOS control point

outcome token), 503
[cp-elim] (control point type/effect rule),

980
[cp-intro] (control point type/effect rule),

980
CPO (Complete partial order), 182–184
CPS, see Continuation-passing style
CPS conversion, 1042–1075, 1117

continuation in, 1049
metacontinuation in, 1059
metaCPS conversion (MCPS),

1058–1070
of cwcc, 1072
of exceptions, 1072
of label and jump, 1070–1075
ordering of closure conversion in

Tortoise, 1076

simple CPS conversion (SCPS),
1049–1057

CR (Church-Rosser) property, 82, see
also Confluence

CSP (Communicating Sequential
Processes), 941, 999

cummings, e e (quoted), 19
Curry, Haskell, 699, 835, 1162
Curry-Howard isomorphism, 700
Currying, 672

of dependently typed procedures, 883
of FL procedures, 214, 219
lambda notation for, 1168
Lisp’s lack of, 221, 1169
simulation of multiple arguments, 214,

1162, 1168
cwcc (FLIC control-point-capturing

construct), 505–506, see also
call-with-current-continuation

denotational valuation clause for, 506
in FLEX/SP, 737
label/jump and, 505, 506
in metaCPS conversion, 1072
type and effect for, 982
type rule, 717

Cyclic lambda calculus, 440
Cyclic unification and recursive types,

836

D ∈ Def, see Def
D ∈ Desc, 753, 759, 949
dabs (description abstraction), 753

in FLEX/SPD, 752
in FLEX/SPDK, 759
kind checking in FLEX/SPDK, 760

[dabs-α-≈] (FLEX/SPD equivalence
rule), 756

[dabs-β-≈] (FLEX/SPD equivalence
rule), 756

[dabs-η-≈] (FLEX/SPD equivalence
rule), 756

DAG (directed acyclic graph) for abstract
syntax, 248–250

Damas, Luis, 835



Index 1247

Dangling pointer, 1119
Danvy, Olivier, 1117
[dapply-≈] (FLEX/SPD equivalence

rule), 756
Data abstraction, 839–842

abstraction barrier, 402, 839, see also
Interface

API, 839, see also Interface
client, 839
compromised by inheritance, 767
contract, 839
controlling complexity with, 333
implementer, 839
interface, 839, see also Interface
invariant of, 402, 842
in object-oriented programming, 379
point example, 840–841, 842, 844, 851,

861, 871
secure, 842
via abstract type, see Abstract type
via dynamic lock and key, 843–847
via message-passing procedure, 403,

842, 885
violation, 402, 841

Data declaration (def-data), 583–590
Data dependency, 391
Data flow, single-threaded, 392–394
Data safety, see Data abstraction
Data security, see Data abstraction
Data space, 449
Data type, see Abstract type; Data

abstraction; Sum of products
Data type declaration, see def-data;

def-datatype

DatatypeDefinition (domain)
in FLARE, 831
in FLEX/M, 893

DC ∈ DesugaringContext, 232
DD ∈ DatatypeDefinition, 831, 893
Dead code elimination, 1028

inhibited by aliasing, 944
Dead heap block, 1120, 1130–1133
Deallocation of memory, see Garbage

collection (GC)

Death 
= parenthesis, 19
Declaration of variable, 244
Decomposition of a programming

language, 207
decon (deconstructor accessor), 611
Deconstruction of a domain element, 1171
Deconstructor procedure, 584, 590, see

also Constructor procedure
alternative declaration, 611
from def-data desugaring, 587, 588
from def-datatype desugaring, 740
type schema for, 827–833, 894, 896, 914
user-defined view, 605–612

decorate (FLIC tree procedure), 405
deepCopying (computation function), 565
Deep copy of mutable data, 565
Def (definition domain)

in FL, 219
in FLIC+{def-data}, 587
in HOOK, 363

def (definition), 219, 893
desugaring in FL, 230, 231, 233
desugaring in μFLEX, 634
in FILlift , 1095
in FILreg , 1101
in FLEX/M, 893
in FLEX/SPD program, 754
PostText command, 106, 141

default-handlers (exception-handling
environment), 519, 521, 525

def-constructor, 611
def-data (sum-of-products declaration),

583–590
desugaring, 587
desugaring into predicates and

selectors, 589
def-datatype (typed sum-of-products

declaration), 739, 740, 893
desugaring in FLEX/SP, 741
dynamic semantics in FLEX/M, 924
in FLEX/M, 893
in type-reconstructed language, 828,

831
def-desc (description definition), 754



1248 Index

Deferred class in Eiffel, 724
#define (C macro-definition), 330
Definition, in program, see also def; Def

in FL, 230–232
in μFLEX, 634

defstruct (Common Lisp data
declaration), 590

Defunctionalization, 1088, 1117
delay (delay evaluation), 560
Delayed evaluation, 324, see also Thunk
delay and force, 560
freeze and thaw, 228
wrap and unwrap, 315

Delayed value, 560
Delegation, in object-oriented

programming, 379
Denotational reasoning, 145–150
Denotational semantics (DS), 15, 113–162

adequacy of, 147, 157–159
answer domain, 115
applications of, 116
basic framework, 115–116
compositionality of, 116
computation-based continuation DS of

FLICK, 482–493
computation-based DS of exceptions,

524–527
computation-based DS of label and
jump, 498, 500

context domain, 115
continuation-based DS, 471–493
direct semantics, 444, 471
equational reasoning/proof, 119
error-hiding functions, 122, 142, 144
game board, 116
how to read, 136–138, 142–145,

280–282, 417–420, 474, 476–479
importance of studying domains and

signatures, 128, 134–135
meaning function, 115
of CBL parameter-passing, 435
of CBL parameter-passing with

mutable variables, 434–436
of CBL product, 555

of CBN parameter-passing with
mutable variables, 433

of CBN product, 552
of CBN vs. CBV parameter passing,

316–318
of CBR parameter-passing, 435
of CBR parameter-passing with

mutable variables, 436–438
of CBVC parameter-passing, 565
of CBV named sums, 573–576
of CBV parameter-passing with

mutable variables, 433, 434
of CBV product, 543
of CBV recursion in FLK, 320–324
of CBVS parameter-passing, 564
of EL, 127–128, 129
of ELM, 124–126
of ELMM, 120–124
of FLICK, 411–420
of FLK, 275–290
of lambda calculus, 296–297
of mutable variables, 431–439
of PostFix, 131–145
of PostFix2, 141
of restricted ELMM, 117–120
of static vs. dynamic scope, 335
of strict vs. nonstrict pair, 318–320
operational semantics related to,

150–160
operational semantics vs., 161–162
overview of, 113–117
phrase denoting a meaning, 115
program vs., 128
reasoning with, 145–150
semantic algebra, 115
soundness of, see Denotational

soundness
standard DS, 471
standard DS for exceptions, 519–524
standard DS of FLICK, 472–480
standard DS of label and jump,

497–498
syntactic algebra, 115
valuation function, 115
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Denotational soundness, 151–156
of EL, 156
of PostFix, 151–156

Dependency, data, 391
Dependent description, 765
Dependent package, 870
Dependent type, 627, 765, 869–884

definition of, 869
dependent arrow/function type, 870
dependent package, 870
equivalence, 877–879, 911
name-capture restriction, 875, 879
soundness of, 879–881, 882, 883
specified by structured identifier, 886
static, 879, 891, 905, 911
substitutions in, 881–883

Dependent type constructor, 898
deposit! (bank account procedure)
*deposit! (single-threaded), 392
implementation, 402
specification, 384

Dereference a mutable variable, 432
Derivation, see also Proof tree

of SOS transition, 64
of type judgment, 648–650

derivative (example of procedure with
implicit parameter), 344

Desc (description domain)
in FLARE/E, 949
in FLEX/SPD, 753
in FLEX/SPDK, 759

DescId (description identifier domain)
in FLARE/E, 949
in FLEX/SPD, 753

DescIdKind (description identifier
declaration)

in FLARE/E, 957
[desc-inclusion] (FLEX/SPDK type

rule), 763
DescKeyword (FLEX/SPD description

keyword domain), 753
Description, 750–758

application of, 753
dependent, 765

equivalence, 756
higher-order description operator, 755
including effects and regions, 950

Descriptor in FRM, 1124
DescSubst (description substitution

domain), 960
Destination register, 1107
Destructor function for storage

deallocation in C++, 1121
Desugaring, 208, 218–234, see also

Syntactic sugar
desugaring-function (DS) approach to,

218–232
in Tortoise compiler, 1013–1014
of def-data, 587
of def-datatype in FLEX/SP, 741
of definition in FL, 230–234
of definition in μFLEX, 634
of expression in FL, 218–229, 232–234
of expression in μFLEX, 634
of letrec in FLARE-to-FIL

translation, 1036
of letrec preserving well-typedness,

1038
of match, 594–605
of match, final version, 603
of match, first cut, 597
of match, optimization of, 605
of nullary abstraction/application, 228
of program in FL, 230–234
of program in μFLEX, 634
of raise, handle, and trap, 527–529
rewriting-based (�ds) approach to,

232–234
DesugaringContext (domain), 232
Deterministic language, 80
Deterministic program behavior, 51, 79

in EL, 80–84
in ELMM, 76
in PostFix, 58

Deterministic transition relation, 50, 51,
58

Dethunk, 325, see also Thunk
Diabolically simple, 1058
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Diagonalization, 1150
Diamond property, see Confluence
Dictionary, in PostText, 106
Difference

of records, 550
of sets (−), 1149

Differences, programming by, 366
DIFLEX (with dynamic and lexical

scoping), 984, 985
Dimock, Allyn, 1117
Direct denotational semantics, 444, 471
Directed acyclic graph (DAG) for

abstract syntax, 248–250
direction (sample HOOPLA class), 371
Discount (language with cost system),

989
Discrete partial order, 175
Discriminant, 1178

of match, 590
of tagcase, 570
of sumcase, 576

Discriminated union, see Sum
Disjoint sets, 1150
Disjoint union, 1176
Disjunction, logical (∨), 1151, 1162
Dismissal semantics of exceptions, 522,

528–530
div (PostFix command), 8, 40, see also

Arithmetic operator
informal semantics, 10
PostFix DS, 137

Divergence, see also Nontermination
in CBV vs. CBN parameter passing,

denotational view, 316–318
in CBV vs. CBN parameter passing,

operational view, 310
in strict vs. nonstrict pairs, 319
making observationally equivalent to

error, 427
represented by bottom (⊥), 185

Division function (÷), 1163, see also /;
Arithmetic operator; div

DK ∈ DescIdKind, 957
DK ∈ DescKeyword, 753

dlet (FLEX/SPD description binding),
751, 753, 754

opaque version, 757
dletrec (recursive description binding),

753
decidability of kind checking and, 761
kind checking in FLEX/SPDK, 760

[dletrec] (FLEX/SPDK kind rule), 760
DML (Dependent ML), 887
do (monadic style sequencing), 396
[does] (FLARE/E type/effect rule), 953,

954–955, 1001
[effect-masking ] vs., 973
inflation of latent effect, 955, 956, 959,

960–961
dom (function domain of definition), 1156
Domain, 1171–1186

answer domain, see Answer domain
as type, 1172–1173
compound domain, 1171
constructor for, 1171, 1173, 1187
context domain, see Context domain
element expression, 1172, 1187
equality of, 1175
function (→) domain, see Function

domain
lifted domain, 176
primitive domain, 1171
product (×) domain, see Product

domain
reflexive domain, 201–202
semantic domain, 115
sequence (*) domain, see Sequence

domain
sum (+) domain, see Sum domain
syntactic domain, 24

Domain (source) of function, 1156
Domain definition, 1175, 1187
Domain element

construction of, 1171
deconstruction of, 1171

Domain equation, 1175, 1187
recursion, 132, 150, 161, 201–202

Domain expression, 1172, 1187
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Domain of definition (dom), 1156
Domain variable, 25, 26, 33, 1172
Dorough, Bob (quoted), 539
Dot notation, 550, 898
down (convert to concrete type), 844–845

existential type without, 859
in dependent type system, 875
in existential type system, 849, 850
in nonce type system, 861, 862
not necessary in FLEX/M, 902

Downcast, 721
in C, 723
in Java, 723

[downcast] (FLEX/S type rule), 722
[downcast-fail] (FLEX/S reduction rule),

722
[downcast-succeed] (FLEX/S reduction

rule), 722
Downward type conversion, 721–723
Doyle, Sir Arthur Conan, 769
[dpack] (dependent package type rule),

875
[dpackof-≈] (type-equivalence rule), 874
Dragging tail, 316
Dragon book, 1116
drec (recursive description binding), 753
DS, see Denotational semantics
DS (desugaring function), 220, 231

of def-data, 587
match desugaring, final version, 603
match desugaring, first cut, 597
well-definedness of, 229

dselect (dependent type selection), 892,
893, 898, 899, 916

type constructor equivalence, 913
[dselect-≈tc] (type-constructor

equivalence rule), 913
dtypeof (dependent type), 869–870

type equivalence, 874
type rules involving, 875

[dtypeof-≈] (type-equivalence rule), 874
Duality

between CBN and CBV, 378

between recordof and oneof

subtyping, 704
between sums and products, 571, 573,

613
[dunpack] (dependent package type rule),

875
dependent type substitution, 872,

881–883
dependent type substitution,

alternative, 884
import restriction, 874, 880
purity restriction, 881

dup (PostFix command), 101–102
dup! (generic type of including effects

and regions), 950
dyabs (dynamic variable abstraction),

349
Dylan

multimethods, 380
nonlocal exits (bind-exit), 505
object-oriented language, 362
overloading, 748

dylet (dynamic variable binding), 349,
528

DYNAFLEX, 985
DYNALEX (with statically and

dynamically scoped variables), 349
Dynamically typed language, 623, see

also Dynamic type checking
Dynamic bounds check, 542
Dynamic continuation, 1117
Dynamic correspondence theorem

(μFLEX/μFLARE), 781
Dynamic environment, 341
Dynamic nontype error, 661
Dynamic property, 617–620
Dynamic scope, 334, 338, 378

dynamic environment, 341
exception handling and, 343, 519–520,

527–529
FUNARG problem, 378
implicit parameter and, 343, 379
program execution tree and, 338
side effects and, 378
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Dynamic scope (continued)
simulating in stateful language with
fluid-let, 438

static scope vs., 335, 339–344
by translation to static scope, 346

Dynamic semantics, 16
static semantics vs., 617–620
of X, see X, BOS; X, DS; X, SOS

Dynamic type checking, 623
in FLK, 260, 263
in FLK DS, 279, 284, 318
in FLK primitive application, 213
in PostFix DS, 136
languages with, 623
of positional product, 548
static type checking vs., 623–625
sums and, 568–572
type reconstruction and, 837

Dynamic type error, 661
invalid program/expression in

Tortoise, 1025
lack of in FIL, 1035–1036

Dynamic type system, see Dynamic type
checking

Dynamic variable analysis, 983–985
dyref (dynamic variable reference), 349,

528
Dysfunctional programming language,

207

E ∈ ElmEvalContext, 74
E ∈ ElmmEvalContext, 72
E ∈ EvalContext, see EvalContext
E ∈ Exp, see Exp
E (expression meaning function)

in CBD DS, 328
in CBL FLAVARK DS, 435
in CBL product DS, 557
in CBN FLAVARK DS, 434
in CBN product DS, 552
in CBN vs. CBV parameter passing,

317
in CBR FLAVARK DS, 435
in CBVC DS, 565
in CBV FLAVARK DS, 434

in CBV named sum DS, 575
in CBV product DS, 543
in CBVS DS, 564
in computation-based exception DS,

525
in FLAVARK DS, 431
in FLICK, 418
in FLICK standard DS, 476–480
in FLICK standard DS for exceptions,

520, 521
in FLK, 279, 280–289
in lambda calculus, 296–297
in static vs. dynamic scope, 335
in strict vs. nonstrict pair DS, 319

E∗ (expression sequence meaning
function)

in FLICK standard DS, 477
in FLICK standard DS for exceptions,

520
in FLK, 283

Early termination, 445, 455–457
ecase (either case analysis), 574
ECMAScript, 380, see also

JavaScript
Effect, 308, 385, 943–1001

allocation effect, 946
base effect, 946
CBN parameter passing and, 312
communication effect, 998–999, 1001
compilation, use in, 1026
conservative approximation to, 954
control effect, 978–983, 1001
denotation of, 947
as description, 752
dynamic scope and, 378
equivalence (≈e), 947, 949
of expression, 943
for code optimization, 1026–1029
for concurrency analysis, 996–999
for control flow analysis, 995–996, 1001
for cost analysis, 988–991
for dynamic variable analysis, 983–985
for exception analysis, 985–988
for lifetime/storage analysis, 991–995,

1001
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for mobile code security, 999–1000
inequality constraint, 960
initialization effect, 946
latent, see Latent effect
lifetime, 995
masking, 972–974
masking for control effects, 981
masking for exceptions, 987
of procedure call, 385
purity, see Pure expression; pure
reconstruction, 959–972, 1000, 1001
reconstruction, in Tortoise compiler,

1025–1029
region of, see Region
store effect, 427–428, see also Store

effect
subeffect (�e), 947, 949, 954
supereffect ("e), 949
system, see Effect system

Effect (domain), 949
Effect/region erasure, 956, 959
Effect/type judgment, 951
EffectConstraint (domain), 960
Effect-constraint set, 959–963

solution, 961, 968
EffectConstraintSet (domain), 960
EffectConstructor (domain), 949

extended with control effects, 979
effectErase, 958
[effect-masking ] (type/effect rule), 973,

974
Effect system, 627, 817, 943–963, see also

Effect
alias detection, 944
code optimization with, 1000,

1026–1029
utility of, 943–944

Efficiency, see also Optimization
of CBL parameter-passing, 434
of code generated by Tortoise

compiler, 1006
in heap block representation, 1129
inefficiencies of CBN parameter

passing, 312–314, 433

egen (type/effect generalization), 952
egenPure (type/effect/region

generalization), 952, 974, 975
Eiffel

deferred class, 724
multiple inheritance, 380
object-oriented language, 362, 379
procedure subtyping, 709
Sather as dialect of, 507

Either, 574
call-by-name (CBN), 574
call-by-value (CBV), 573
sum, 567

either (ELMM choice construct), 83
EL (expression mini-language), 20–39

abstract grammar, 21
adequacy of, 158
BOS, 79
context-based SOS, 73
denotational soundness of, 156
deterministic behavior, 80–84
DS, 127–128, 129
expression evaluation in, 62–63
full abstraction of, 159
observational uniqueness of, 158
SOS, 67
syntax, 21, 25, 29, 31
termination, 89

el (program keyword), 25
in EL DS, 129

elect (election construct), 490–492
Element definition, 1188
Element expression, 1172, 1187
Element of (∈), 1149
ELM (EL with numerical expressions),

67
algebraic simplifier, 595
BOS, 76–77
context-based SOS, 73, 74
DS, 124–126
Fahrenheit-to-Celsius conversion

example, 578
interpreter for, 241–242, 243
SOS, 67
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elm (program keyword), 67
in ELM DS, 126

elm-eval (ELM interpreter)
using explicit deconstructors, 585
using match, 594
using records and oneofs, 578
using s-expressions, 241, 243

ElmEvalContext (domain), 74
elm-exp (data declaration), 585
ELM expression, as sum of products,

577, 578, 585
ELMM (ELM without arguments),

63–67
BOS, 75–76
context-based SOS, 72–73
deterministic behavior, 76, 80–84
DS, 120–124
error propagation in DS, 120–124
modeling errors in DS, 120
restricted ELMM DS, 117–120
SOS, 63–67
syntax, 63
translation to PostFix, 100

elmm (program keyword)
in ELMM DS, 121
in restricted ELMM DS, 118

ElmmEvalContext (domain), 72
ElmmRedex (domain), 72
ElmRedex (domain), 74
else (tagcase default clause), 570
Else expression of conditional, 20
Emerson, Ralph Waldo (quoted), 207
empty (environment in FLEX/M), 901

list representation, 903
procedure representation, 905

empty? (metalanguage sequence
predicate), 1182–1184

empty-env (empty environment), 277
[empty-let] (FIL simplification), 1032,

1033
Empty set, 1148
empty-store (store constant), 412
emptyTCS (empty type-constraint set),

788, 789, 790

empty-tenv (empty tag environment)
in CBV named sum DS, 575

Encapsulation of behavior/state, see also
Data abstraction; Object-oriented
programming

compromised by inheritance, 767
in object-oriented programming, 403

Energy of a PostFix configuration,
84–85

ensure-. . . (computation function), 473,
475

Env (environment domain), 275, 276
in lambda calculus, 296, 297
operations on, 277–278

Envelope, as model for value, 269
env-empty (empty environment),

461–464
using exceptions, 517

env-extend (environment extension),
461–464

Environment, 275, 1075, see also Env
binding names to locations, 431
call-time environment, 338
dynamic environment, 338, 341
dynamic handler environment for

exceptions, 519
error-handling example, 461–464,

517–518
kind environment, 760
lexical environment, 341
linked, 1090–1093
making explicit in Tortoise, 1075
module example, 901–906
parent environment, 1090
as product, 540
tag environment, 573
type environment, 643–644
value environment, 643
as virtual substitution, 280

Environment conversion, 1075, see also
Closure conversion

Environment diagram, 341, 378
Environment frame, 1090
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env-lookup (environment lookup),
461–464

env-merge (environment merging),
461–464

using exceptions, 517
envof (type constructor), 901

list representation, 903
procedure representation, 905

env-test1, 462
using exceptions, 518

env-test2, 464
using exceptions, 518

[epack] (existential type rule), 850
[epackof-≈] (type-equivalence rule), 850
Epictetus (quoted), 113
EQ ∈ PostfixEvalSequenceContext, 74
eq (PostFix command), 8, 40, see also

Relational operator
informal semantics, 10
PostFix DS, 137

equal?, 237, 238
Equality relation (=), 1163, see also =;

eq; Relational operator
on functions, 1157
on set elements, 1153
on sets, 1149
on tuples, 1153

equalL (equality test in match

desugaring), 596
Equational proof, 119

hierarchical structuring of, 139
Equational reasoning, 119
Equipotent, 228
Equirecursive type equivalence, 690, 699,

761
[equiv-�] (FLEX/S subtype rule), 702,

703, 708
Equivalence

behavioral, see Observational
equivalence

of descriptions, 756
observational, see Observational

equivalence
stack-answer equivalence (∼SA), 94

stack equivalence (∼S), 94
transform equivalence (∼Q), 93, see

also Transform equivalence
type equivalence, see Type equivalence
value equivalence (∼V ), 94

Equivalence class, 1154
Equivalence relation, 250, 1154

type equality as example of, 679
Eratosthenes, sieve of, 558
Erlang

as dynamically typed language, 623
as function-oriented language, 209

Error, see also Exception
as ⊥Fcn in lambda calculus DS, 296
as “contagious” error token in

PostFix SOS, 60
as error token in BOS, 76
as error token in BOS for ELMM,

ELM, and PostFix, 79
as error token in ELMM DS, 120
as error token in FLK DS, 280, 282
as error token in FLK SOS, 268
as error token in SOS, 52
as stuck state in μFLARE SOS, 780
as stuck state in μFLEX SOS, 666
as stuck state in FLK SOS, 264, 266
as stuck state in SOS, 48, 52, 58
error-hiding functions in DS, 122, 142,

144
errors in PostFix DS, 131–132, 134,

136
handling with continuations, 461–464
in CBV vs. CBN parameter passing,

denotational view, 316–318
in CBV vs. CBN parameter passing,

operational view, 310
in FLK DS, 275
in FLK primitive application, 213
in PostFix SOS, 52–53
in strict vs. nonstrict pairs, 319
making observationally equivalent to

divergence, 427
modeling in direct semantics, 444–445
nontype error, see Nontype error
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Error (continued)
propagation of in ELMM DS, 120–124
type error, see Type error
user-generated (error), 213

Error (semantic domain)
in EL dialects DS, 121
in FLK, 276
in PostFix DS, 132

Error (domain in PostFix), 52
error, 211, 213

in FILcps , 1046
in FILlift , 1095
in FILreg , 1101
in μFLEX, 628, 632
in FLICK standard DS, 477
in FLK DS, 282, 283
in metaCPS conversion, 1061
in simple CPS conversion, 1051
SOS error token, 52
type rule in μFLEX, 644
type rule in FLEX/SPDK, 763

[error]
μFLARE type axiom, 774, 775
FLARE/E type/effect axiom, 953
μFLEX type axiom, 644
FLEX/SPDK type rule, 763

error:· · · (error outcome in FL
semantics), 212, 213

errorAnswer (in PostFix DS)
definition, 143
specification, 133

error-cont (standard DS continuation),
473, 475

[error-pure] (FLARE syntactic purity
axiom), 816

[errorR] (μFLARE type reconstruction
axiom), 793, 794

errorResult (in PostFix DS)
definition, 143
specification, 133

ErrorStack (domain), 93
errorStack, 93
errorStack (in PostFix DS), 114, 131

definition, 143

specification, 133
errorTransform (in PostFix DS)

definition, 143
specification, 133

[errorZ ] (FLARE/E type/effect
reconstruction axiom), 964

err-to-comp (computation function), 414
for exception handling, 525
in FLK, 279, 281
with continuation, 483, 485, 525
with store in FLICK, 414

ES ∈ ExceptionSpec, 987
escape (Reynolds’s control operator), 537
Escape analysis, 993
Escape procedure, 505
[eta] (FIL simplification), 1033
Eta expansion, 295

in DS clause, 526
Eta reduction, 295

in DS clause, 478
FIL simplification, 1033

Euclid, as essentially a functional
language, 440

[eunpack] (existential type rule), 850
EvalContext (SOS evaluation context)

in CBL product SOS, 553
in CBN product SOS, 552
in CBN vs. CBV parameter passing,

310
in CBV named sum SOS, 572
in CBV product SOS, 543
in μFLARE, 778
in μFLEX, 664
in FLEX/SP, 731
in FLICK+{label, jump} SOS, 503
in FLICK SOS, 409
in FLK, 259, 260, 272
in strict vs. nonstrict pair SOS, 319

Evaluation, see also Interpreter
delayed, see Delayed evaluation
rule, see Rewrite rule of SOS;

Valuation function
static type checking as kind of, 641–643



Index 1257

Evaluation context, 71, see also
EvalContext

Evaluation order, see also Reduction
strategy

explicit, in CPS, 1042, 1043, 1047
in FLK, 284

Evaluation relation
in BOS (−−�), 75
in FLK (⇒), 260

Evaluation tree of BOS, 75
even? (mutual recursion example)

in FL, 224–226, 230
in FLEX, 636
in lambda calculus, 304
in recursive record, 354

evens (infinite stream), 558
Exception, 445, 506, 513–537, see also

Error
checked exception in Java, 985
dismissal semantics of, 522, 528–530
exception-handling procedure, 515
handling, 514
handling, and dynamic scope, 343,

519–520, 527–529
information, 515
latent exception effect, 986, 987
metaCPS conversion, 1072
nondismissal semantics of, 522, 528–530
raising, 514
resignaling, 514
resumption semantics, 514, 515, 520
signaling, 514
tag, 515
termination semantics, 514, 515, 520

Exception analysis, 985–988
Exception continuation, 1074
Exception masking, 987
ExceptionSpec (domain), 987
Exception specification, 987
except when (CLU exception construct),

514
exec (PostFix command), 8, 40

informal semantics, 10
PostFix DS, 137
PostFix SOS, 55

[exec] (PostFix BOS rule), 78
[exec-done] (PostFix SOS rule), 69
[exec-prog ] (PostFix SOS rule), 69
execs (PostSave command), 105
executable (PostFix outcome), 92, 99
Executable sequence, 8, 40

informal semantics, 10
in PostFix2, 39
in PostFix DS, 137
in PostFix SOS, 55

[execute] (PostFix SOS rule), 55
Execution cost analysis, 988–991
Execution frame, 338, see also Procedure

call frame
Execution of program in SOS, 58–62
Execution tree, 338
Existential package, 849
Existential quantification (∃), 849, 1152

witness, 886, 1152
Existential type, 627, 847–859, 885

definition of, 849
dynamic and static semantics, 850
existential package, 853
export restriction, 853–856, 858
import restriction, 853, 858
universal type equivalent to, 885

exists? (higher-order list procedure),
239, 241

Exp (expression domain)
in dependent type system, 873
in existential type system, 850
in FIL, 1031
in FILcps , 1046
in FILlift , 1095
in FILreg , 1101
in FL, 219
in μFLARE, 773
in FLARE, 814
in FLARE/V, 1010
in μFLEX, 628
in FLEX, 697
in FLIC, 401
in FLICK, 398
in FLICK SOS, 406, 407
in FLK, 211
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Exp (continued)
in FLEX/M, 893
in FLEX/SP, 731
in FLEX/SP with bounded

quantification, 747
in FLEX/SPD, 753
in HOOK, 363
in nonce type system, 861

Expansion phase of Tortoise register
allocator, 1102, 1104

Expcont (standard DS domain), 473
Explicit subtyping, 713–717
Explicit type, 625–627, see also Static

type checking
μFLEX as language with, 628
used in type checking, 632, 769

Explicit type projection, see Polymorphic
value projection, explicit

Explistcont (standard DS domain), 473
Export

of abstract type, 847
of module bindings, 333, 352, 889

Export restriction
in [effect-masking ] rule, 973
in existential types, 853–856, 858
in [letregion] rule, 992
in nonce types, lack of, 860, 862

Expressible (semantic domain)
Nameable vs., 278
in FLK, 275, 276

Expressible value, 275, see also
Expressible

Expression, see also Exp
closed, 246
of domain, 1172
in FL, 218–227
in FLK, 209–217
interference, 427, 1027–1029
jump as valueless, 498
open, 246
structured name, 307
valid, in Tortoise, 1025

Expression continuation, 474
Expression evaluation, in EL 62–63

Expression list continuation, 474
Expressive power, 471, 619, 727
Expressive type system, 627–628, 802
expr-to-comp (computation function),

414
extend (environment, [I �→n]e), 277
extend∗ (environment with bindings), 277
Extended-number arithmetic, 568–571

using explicit tags, 569
using oneofs, 571

extend-handlers (exception handling),
519, 521, 525

extending-handlers (computation
function), 525

extend-tenv (tag environment extension)
in CBV named sum DS, 575

extend-tenv∗(tag environment extension)
in CBV named sum DS, 575

Extensionality, 119
External variable capture, 252
extract-value, 322

in CBV recursion of FLK, 322

F ∈ Effect, 949
F (denotation of effect), 947, 949
#f (false literal), 209, 211, 465
Factorial

assignment conversion example,
1020–1022

CPS conversion example, 1069
CPS version, 449
examples with procedural

continuations, 447–449
illustrating rec semantics, 409
in FL, 226
in FLK, 216
in lambda calculus, via iterators, 302
in lambda calculus, via Y operator, 303
in metalanguage, 1168
iterative imperative version, 400
iterative stateless version, 400
in PostFix+{dup}, 102
recur example, 227
using label and jump, 496, 501
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Fahrenheit-to-Celsius formula
constructor representation, 585
ELM expression, 578
sum-of-products encoding, 579
XML representation, 581

fail (nondeterministic choice), 538
failsoln for type unification, 784
failTCS (type-constraint set), 788, 789,

790
Failure (domain)

in FLARE/E, 969
in type reconstruction, 791, 792
in type unification, 784

Failure continuation
for backtracking, 465–470, 612
for error handling, 461–464
for iterator, 513
for pattern matching, 584, 600, 601

Failure thunk in match desugaring, 595
FALSE (Church boolean), 300
false (boolean literal)

in EL, 25
in EL DS, 129
FL standard library binding, 236

false (false value outcome in FLK), 212
false (false value of Bool), 1148
FC , see Final configuration of SOS
FC ∈ EffectConstraint, 960
Fcn (lambda calculus function domain),

296–297
FCR ∈ EffectConstructor, 949
FCS ∈ EffectConstraintSet, 960
Featherweight Java (FJ), 768
Felleisen, Matthias, 112, 699
Fenichel, Robert R., 1145
fetch (store function), 412
fetching (computation function), 415

in CBL product DS, 557
with continuation, 485

FEXPR (MacLisp abstraction), 330
Fibonacci number

CPS conversion example, 1069
infinite stream, 558
in PostFix+{dup}, 102

with self construct, 488
Field of a record, 353
FIL (Tortoise compiler intermediate

language), 1030–1036
lack of dynamic type errors in,

1035–1036
semantics, 1035–1036
simplification, 1032–1034
syntactic sugar, 1031
syntax, 1030–1034
translation from FLARE, 1036–1038

fil (program keyword)
in FIL, 1031
in FILcps , 1046
in FILlift , 1095
in FILreg , 1101

FILcps (Tortoise compiler CPS
intermediate language), 1046

File-type coherence, 926
File-value coherence, 926
Filinski, Andrzej, 1117
FILlift (Tortoise compiler intermediate

language), 1095
Filling hole in context, 71
FILreg (Tortoise compiler target

language), 1007, 1098–1102
syntax, 1101

FILsum (FIL plus oneofs), 1038
filter (higher-order list procedure), 239,

241
Final configuration of SOS (FC ), 48, 50

in language L, see L, SOS
finally (exception construct), 532–533
FinalStack (PostFix domain), 53
Finite set, 1150
first-bigger-than (stream procedure),

558–559
First-class continuation, 493
First-class procedure, 130, 209, 214–215,

see also Higher-order function;
Higher-order procedure

modeling in DS, 275
modeling in SOS, 262
representing message-passing objects

with, 402
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First-class value, 349
first-fresh (store function), 412
First-order procedure

in C, Pascal, and Ada, 1076
closure conversion from higher-order,

1075
in FL−−, 349

Fischer, Michael, 537
fixD (least fixed point of domain D), 191

in FLK DS of rec, 286
Fixed point, 167, 190, 277, 321, 413

examples, 191–195
game board, 171
iterative technique for finding, 168–173
least, 173
solution to effect constraint set, 962
theorem of least, 190

Fixed-point combinator, see Y operator
FJ (Featherweight Java), 768
FL (Backus’s applicative language), 207
FL (functional mini-language), 207–306,

see also FLK
binding constructs, 307
definition in, 230–232
denotational semantics, 290
example procedures/programs, 239–242
kernel syntax, 211
list as chain of pairs, 221
list procedures, 236, 237
overview of, 208–242
primitive operators, 213
program in, 230–232
scheme syntax vs. FL syntax, 210
simplification, in proof of CBN/CBV

relationship, 312
simulating state in, 390–397
standard library, 235–239
as stateless language, 384–389
syntactic sugar, 218–234
syntactic sugar for record constructs,

355
translation from HOOK, 370–373

fl (program keyword), 219
desugaring, 230, 231, 233

FL−−, 349

Flanagan, Cormac, 1117
μFLARE (subset of FLARE), 772–813

dynamic semantics (SOS), 778–781
lack of unique types, 776
monomorphism of, 801
static semantics, 774–778
syntax, 773
type reconstruction, 781–800
type rules, 775
type soundness of, 780

μFLARELP (with let polymorphism),
803–813

less expressive than FLEX/SP, 806
type reconstruction, 808–812
type rules, 805

FLARE (FL with implicit types),
813–819

CBV semantics, 813
dynamic semantics, 813
pattern matching and sum-of-products

data, 831
static semantics, 813–817
syntactic purity, 816
syntactic sugar, 814
syntax, 813, 814
translation to FIL, 1036–1038
type reconstruction, 817
type rules, 815
type system less powerful than

FLARE/EEP ’s, 975
flare (program keyword), 773

desugaring in FLARE, 814
desugaring in FLARE/V, 1011

FLARE/E, 945–978
syntax, 949
type/effect reconstruction rules,

963–970
type system as powerful as FLARE’s,

955
type system less powerful than

FLARE/EEP ’s, 975
FLARE/EEP , 974–978

type system more powerful than
FLARE’s and FLARE/E’s, 975
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FLARE/V (Tortoise compiler source
language), 1009–1013

syntactic sugar, 1011
syntax, 1010

flarek (program keyword), 773, 814
extended with pattern matching and

sum-of-products data, 831
FLAREsum (FLARE plus oneofs), 1038
FLAT (language with only closed

procedures), 344
Flat closure, 1076–1085

conversion using control-flow analysis,
1085–1090

Flat partial order, 176
FLAVAR (FLIC with mutable

variables), 429–439
FLAVARK (FLAVAR kernel), 430

CBL DS, 434–436
CBN DS, 433
CBR DS, 436–438
CBV DS, 433
mutable variable DS, 431

Flavors
generic functions, 380
multiple inheritance, 380
Vanilla base type, 380

μFLEX (subset of FLEX), 628–673
CBN vs. CBV SOS, 662, 672
free identifiers, 636–640
monomorphic type system, 629,

655–660
programs, 634–636
SOS, 662–667
static semantics, 681
substitution, 636–640
syntactic sugar, 634–636
syntax, 628, 629–640
type rules, 645–648
type soundness, 667–673
type system, 640–660

FLEX (FL with explicit types), 675–698
CBV semantics, 682, 696
syntax, 697
type system, 675–698

flex (program keyword), 635, 647
desugaring in μFLEX, 634

FLEX/M, 891–900
constructors and deconstructors, 915
data-type declarations, 915
dynamic semantics, 923–925
first-class modules, 899
scoping, 910–911
static semantics, 910–923
subtyping, 912, 913
syntax, 893
type constructors in, 915
type environments, 914
type equivalence, 911, 913
type rules, 912–918

flex/M (program keyword), 894
flex/Mk (program keyword), 893
FLEX/P (FLEX with polymorphism),

727, 848
FLEX/S (FLEX with subtyping),

702–725
recursive subtype rules, 707
subtype rules, 703
type rule, 703

FLEX/SP (FLEX with subtyping and
polymorphism), 727–750

syntax, 731
type and subtype rules, 731
with bounded quantification, 747

flex/SP (program keyword), 741
FLEX/SPD (FLEX with subtyping,

polymorphism, and descriptions)
free identifiers and substitution, 758
syntax, 753

FLEX/SPDK (FLEX with subtyping,
polymorphism, descriptions, and
kinds), 758–767

kind checking, 760–763
syntax, 759
type-checking rules, 763

flexk (program keyword), 628
type rule in μFLEX, 644

FLIC (FL with mutable cells), 397–428
example programs, 400–404
iterators in, 507–513
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FLIC (continued)
syntactic sugar, 399, 401
syntax, 398, 401

flic (program keyword), 399
desugaring, 401

FLICK (FLIC kernel), 397–399
answer domain in continuation-based

DS, 474
command as expression, 472
computation-based continuation DS,

482–493
continuation-based semantics, 471–493
DS, 411–420
exception handling with raise,
handle, and trap, 515–532

nonlocal exits with label and jump,
494–506

SOS, 405–411
standard DS, 472–480
syntax, 398

flick (program keyword), 398
standard DS, 477
standard DS for exceptions, 524

FLIC# (FLIC extension), 492–493
Flipping of GC semispaces, 1134
FLK (FL kernel), see also FL

BOS, 269
CBN vs. CBV parameter passing,

denotational view, 316–318
CBN vs. CBV parameter passing,

operational view, 310–316
denotational semantics, 275–290
evaluation, 258–269
evaluation order, 284
evaluation reduction relation (�), 259
evaluation SOS, 258
evaluation step relation (⇒), 259
expression in, 209–210
free and bound identifiers, 247
informal semantics, 210–217
lambda calculus vs., 291–294
list as chain of pairs, 215
nonstrict application, 215
nonstrict pair, 216
overview of, 209–217

primitive operators, 213
program in, 209, 217
safe transformation in, 270–274
scheme syntax vs. FLK syntax, 210
semantic algebra, 275–280
semantic domains, 276
s-expressions as program inputs, 259
simplification, 270–274
simplification step relation (◦=⇒), 271
substitution, 254
syntax, 209–210, 211
valuation functions, 280–289
value in, 210–212

flk (program keyword), 209, 211
in FLK DS, 283
free and bound identifiers, 247

Flow, see Control flow analysis; Data flow
FLUID (dynamically scoped CBV FL),

345
fluid-let (dynamic scope in statically

scoped language), 379, 438
foldr (higher-order list procedure), 240,

241
to express other higher-order list

procedures, 240
for

desugaring into loop in FLIC, 489
PostLoop command, 103, 141

forall (polymorphic type), 728, 729
in FLEX/M, 914
in FLEX/SPDK, 759
generic vs., 802–804
kind checking in FLEX/SPDK, 760
type rules involving, 731
type rules involving, in bounded

quantification, 747
[forall] (FLEX/SPDK kind rule), 760
forall? (higher-order list procedure),

239, 241
[forall-�BQ ] (FLEX/SP subtype rule),

747
force (undelay evaluation), 560
fork (of control threads), 997
For loop, control context in, 443
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Formal parameter
of abstraction, 214, 244
of function, 1165
of method, 363
of program, 209
of program, scope of, 230

Forth, as stack language, 8
Fortran

1-based indexing, 562
array, as mutable sequence, 561
as imperative language, 384
as language without block structure,

337
as monomorphic language, 629
as statically typed language, 623
call-by-reference parameter passing,

436
command, 472
lack of passable procedures, 320
libraries of numerical methods, 239
mutable variable, 430
nameable and expressible values, 278
valueless procedure, 385
value-returning function, 385

Forwarding address in GC, 1136
FP (Backus’s applicative language), 207
Fragmentation of memory, 1131
Frame

environment, 1090
procedure call, 1005
procedure call, continuation

representing, 445, 448, 1043, 1132
Frank, Michael, 102
FrDescIds (free description identifiers),

756, 952
in FLEX/SPD, 758

Free identifier, 246, 389, see also FrIds
Free list, 1131
Free occurrence of identifier, 245
Free pointer in GC, 1134, 1135
Free variable, 246, see also FrIds

capture of, 251–252, see also Variable
capture

substituting for, 253
freeze (delay evaluation), 228

Fresh identifier, 221, 255
in letrec desugaring, 225
mechanism for generating, 1039–1041
to avoid name capture in macro

systems, 331
fresh-loc (store function), 412
FrIds (free identifiers)

in dependent type system, 873
in existential type system, 850
in μFLEX, 636, 638
in FLK, 247
in FLEX/SP, 731
in FLEX/SP with bounded

quantification, 747
in FLEX/SPD, 758
in nonce type system, 861
well-defined on alpha-equivalence class,

251
Friedman, Dan, 112
FRM (FIL register machine), 1121,

1122–1130
architecture, 1122–1123
descriptor, 1123–1124
heap block, 1127–1130
program state, 1122

from (iterator/stream example), 509, 556
From-space in GC, 1133
Frost, Robert (quoted), 443
FrTyIds (free type identifiers)

in dependent type system, 873
in existential type system, 850
in μFLARELP , 805, 806
in μFLEX, 637, 638
in FLEX/SP, 731
in FLEX/SP with bounded

quantification, 747
in nonce type system, 861

FST (first element of Church pair), 302
fst (pair primitive), 213, 215

in FLK DS, 285
generic type for in FLARE, 813
PostFix command, 102, 141
sum-of-products data version, 586
type rule in FLEX, 675

[fst] (FLK SOS reduction), 259
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Full abstraction, 159–160
of EL, 159
lack of for PostFix, 160

Full language, 208
FUNARG problem, 378
Function, 1155–1170, see also Procedure

abstraction (λ), 1165
application of, see Function application
argument of, 1156, 1158
as element of function domain, 1184
bijective, 1160
binding construct defined with, 124
codomain of, 1156
composition of (◦), 1159
computable, 199, 1158
constant function, 1159
definition of, 1156
domain of, 1156
domain of definition of (dom), 1156
equality (=) on, 1157
extensionality, 119
graph of (gph), 1156
higher-order, 1160–1161, 1166
identity function, 1159, 1167
image of (img), 1160
inclusion function ( ↪→ ), 1159
injective, 1160
lambda notation, 1165–1170
multiple arguments via currying, 1168
n-fold composition of (fn), 1159
nonstrict, 199
one-to-one, 1160
partial function, 1156
polymorphic, 1167
predicate function, 1163
procedure vs., 209, 1157–1158
recursive, 1168–1169
result of, 1156
set theoretic, 1155–1170
signature, 1157
simulating multiple arguments,

1161–1164
simulating multiple results, 1164–1165
source of (src), 1156
strict, 199

surjective, 1160
on syntactic domain, 35–36
target of (tgt), 1156
total function, 1156
type of, 1157, 1166
uncomputable, 199, 1158

Functional language, see
Function-oriented programming

Function application, 1158–1159
operand of, 1158
operator of, 1158
parentheses and, 1158

Function domain, 1184–1186
partial order on, 178–179

Function-oriented programming, 207,
1158, 1170

expressing denotational-style
interpreter, 128

in real-world languages, 304
Function type, see Arrow type
Functor, 890

applicative, 939
generative, 939
table example, 906–909

Functorization, 929
Fundamental tension, 619
FX

as implicitly typed language, 626
as Lisp dialect with procedure

signatures, 1169
HDM type reconstruction, 836

FX-87
early experiments with effects, 1000
explicit effect declarations, 945
implicit type projection, 940

FX-91
modules with abstract and concrete

type definitions, 893, 934
module system, 940

Game board
of denotational semantics, 116
of fixed points, 171
of operational semantics, 48
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Garbage collection (GC), 438, 991,
1119–1146

conservative, 1127, 1142
from-space, 1133
generational, 1142
heap, see Heap allocation; Heap

memory
in-place, 1141
mark-sweep, 1141
memory tracing, 1132–1133
reference counting, 1131–1132
stop-and-copy, 1133–1140
tag-free, 1127, 1141–1142, 1145
to-space, 1133

GC tag, 1126
gen (FLARE type generalization), 805,

806
Generating function, 167
Generational garbage collection, 1142
Generative functor, 939
Generator (procedure/iterator in Icon),

507
generic (type schema)

in FLARE/E, 949, 966
in μFLARELP , 802, 803
forall vs., 802–804

Generic function in object-oriented
programming, 380

Generic type in Java, 749, 768
genPure (FLARE type generalization),

815, 816
gensym (Lisp fresh identifier generator),

331
[genvar] (FLARE/E type/effect axiom),

951, 953
[genvarLP ] (μFLARELP type axiom),

804, 805
[genvarLPR] (μFLARELP type

reconstruction axiom), 809
[genvarZ ] (FLARE/E type/effect

reconstruction axiom), 967, 968, 969
Geometric shape, as sum of products,

577, 583–584
get (PostFix extension command), 102
get (tuple projection), 541

type reconstruction, 825
type rule in FLEX, 676

[get] (stateless reduction rule), 541, 543
get (store accessing function), 405, 406

in CBL product SOS, 553
get-age (subtyping example), 701, 702,

715, 716, 719
get-handler (exception-handling

environment lookup), 519, 521, 525
getting-handler (computation function),

525
GI (globalization inlining transform),

1019
Gifford, David K., 1000
Girard, Jean-Yves, 768, 886
GJ (Java with generics), 768
Glück, Louise (quoted), 839
Globalization, 1015

inlining strategy for, 1017–1019
in Tortoise compiler, 1014–1019
wrapping strategy for, 1015–1016

Global procedure, 1094
Global scope, 346, 352, 1095
go (goto construct in Common Lisp),

348
goto (control effect), 979
goto (unrestricted jump construct), 497
gph (function graph), 1156
Grammar, 20, see also Syntax

abstract, 20
context-free, 26, 43
s-expression, see S-expression grammar

Graph coloring for register allocation,
1117

Graphics abstract class in Java, 724
Graph of function (gph), 1156
Graph reduction, 315

for lazy evaluation, 314, 440
Graph rewriting system, 112
Greater-than-or-equal-to relation (>),

1163, see also >=; Relational
operator

Greater-than relation (>), 1163, see also
>; gt; Relational operator

Greatest lower bound (glb), 176
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gt (PostFix command), 8, 40, see also
Relational operator

informal semantics, 10
PostFix DS, 137

GW (globalization wrapping transform),
1016

Gymnastics, mental, 446

halt (program termination)
in FILreg , 1101
in FLICK extension, 501

Halting problem, 618, see also
Undecidability

halting function, 198, 1158
halting theorem, 49

Hamming numbers, 560
handle (FLIC exception-handling

construct), 515–532
computation-based DS, 524–527
desugaring-based implementation,

527–529
metaCPS conversion, 1072
standard DS, 519–524
termination semantics, 515, 520
in type/effect system, 986–988

handle (SML exception construct), 514
[handle] (unsound type/effect rule), 986
Handle an exception, 514
HandlerEnv (exception handler domain),

519, 521, 525
Handler environment for exceptions, 519
handlerof (exception handler type),

986–988
Hankin, Chris, 1117
Hard link, 1132
Hash (Perl record), 353
Haskell

array, as updatable sequence, 545
array indexing, 548
as block-structured language, 337
as implicitly typed language, 626
as purely functional language, 384
as purely functional lazy language, 209
as statically typed language, 623

currying of constructor arguments,
588–589

extensible records, 767
garbage collection, 1120
HDM type reconstruction, 836
heterogeneous tuple, 548
immutable string, 548
immutable updatable sequence, 548
implicit parameter, 379
lack of abstraction in pattern

matching, 607–610
list-manipulation libraries, 239
monadic style and do notation, 396
nonstrict application, 215
nonstrict product, 551
pattern matching, 590, 605–610, 768,

829
sum (Either), 568
sum-of-products data, 579, 829
type reconstruction, 812
universal polymorphism, 627
unsafe features, 622
user-defined data-type declaration,

588–589
Hasse diagram for partial order, 174
Haugen, Marty (quoted), 889
Hawes, Bess (quoted), 1042
HDM type reconstruction, 812, 836
head (Scheme stream head), 561
head (metalanguage sequence function),

1182–1184
Header word in FRM block, 1127
Heap allocation

in active semispace of stop-and-copy
GC, 1133–1134

of FRM block, 1127
in PostHeap, 110

Heap block, 1119, 1122, see also FRM
live or dead, 1120, 1130–1133
stack allocation of, 1144

Heap deallocation, see Garbage collection
(GC)

Heap memory, 438, 991, 1119, 1123
in PostHeap, 110
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Heidegger, Martin (quoted), 1147
Heterogeneous list, 686
Heterogeneous product, 548, 677
Hewitt, Carl, 941
Hewlett Packard stack calculator, 8
Hiding names, 333, 901
Hierarchical scope, 334–347, 352
Higher-order function, 1160–1161, see

also First-class procedure;
Higher-order procedure

binding construct defined with, 124
lambda notation and, 1166
to simulate multiple arguments

(currying), 1162
Higher-order polymorphic lambda

calculus, 765
Higher-order procedure, 214–215, see also

First-class procedure; Higher-order
function

closure conversion to simulate with
first-order procedure, 1075

list procedure, 239–240
perspectives on, 305

Higher-order type, 750–767
description, 750–758
kind, 758–767

Hindley, J. Roger, 835
Hindley-Damas-Milner (HDM) type

reconstruction, 812, 836
Hoare, C. A. R., 941
Hole

in context, 71
in scope of a variable, 245, 337

Holmes, Sherlock (quoted), 769
Homogeneous list, 686
Homogeneous product, 548, 677
Homomorphism, 115
HOOK (Humble Object-Oriented

Kernel), 362–368, see also
HOOPLA

class, simulating with prototype object,
366

prototype-based language, 380
semantics, 370–373

static scope, 366
syntax, 363
translation to FL, 370–373

hook (HOOK program keyword), 363
HOOPLA (Humble Object-Oriented

Programming Language), 362,
368–370, see also HOOK

extending with state, 403
namespaces, 376
sample classes, 371

hoopla (HOOPLA program keyword),
369

Horace (quoted), 163
Horizontal style for type derivation,

648–650
HTML, sum-of-products data via

markups, 580
Hudak, Paul, 305
Hughes, R. J. M., 305
Hygienic macros, 331, 379

I ∈ Ident, see Ident
I ∈ Inputs, see Inputs
i ∈ Int, see Int
IBM 360, register spilling, 1115
Ice cream, inspiration for mixin, 380
Icon generators, 507
[id-≈tc] (type-constructor equivalence

axiom), 913
idA (identity function), 1159, 1167
Idempotence, 1084
Ident (identifier domain)

in FILreg(Identreg), 1099
in FL dialects, 211
in FLEX/M, 893
in HOOK, 363

Identification (unique object handle), 941
Identifier, 244, 334, see also Variable;

Variable reference
binding occurrence of, 245
bound, 246
bound occurrence of, 245
in FLK, 210
free, 246, 389
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Identifier (continued)
free occurrence of, 245
fresh, 221, 225, 255, 331
primitive name, 307
structured, 886
variable vs., 244

Identifier pattern, 590
desugaring in match, 598

Identity element of an operator, 40
Identity function, 1159, 1167
Identity of an object, 383

state and, 383–384
Identity substitution, 782
id→mc (metaCPS function), 1060
IdSet (identifier set domain), 1019
IE (input expression meaning function),

283
IF (Church conditional), 300
IF (SOS input function), see Input

function of SOS
if (metalanguage conditional), 1180,

1190, 1191
if (EL/FL conditional)

desugaring in HOOK, 369
elseless if sugar in FLICK, 399, 401
in EL dialects, 25
in EL DS, 129
in FILcps , 1046
in FILlift , 1095
in FILreg , 1101
in FL dialects, 211, 214
in FLICK standard DS, 477
in FLK DS, 282, 283
in FLK SOS, 259, 261
in metaCPS conversion, 1061
in simple CPS conversion, 1051
as primitive operator, 267
type rule in μFLEX, 644

ifS (conditional function), 1164
[if ]

μFLARE type rule, 775
FLARE/E type/effect rule, 953, 955
μFLEX type rule, 644, 646
type/exception rule, 988

[if-F] (FLK SOS reduction), 259, 261

iff (if and only if), 1151
[if-pure] (FLARE syntactic purity rule),

816
[ifR] (μFLARE type reconstruction rule),

793
[if-T] (FLK SOS reduction), 259, 261
[ifZ ] (FLARE/E type/effect

reconstruction rule), 963, 964
Ill-typed expression, 641, 645, 770
match expression, 593
metalanguage expression, 1172

Image of function (img), 1160
Immediate component expression, 1013
Immediate descriptor, 1124
Immediate subexpression, 1013
Immutable data, 397

named product, 353–359, 549–550,
677–678, 821–826

positional product, 541–549, 676–677
sequence, 544–545, 677
string, 548
tuple, 541–542, 676–677
updatable sequence, 545–547, 548

impeach (election construct), 490–492
Imperative programming, 384, 397, see

also Stateful language
essence, 397
examples, 400–404

Imperative type variable, 837
Implementation language, 7
[implicit-let] (FIL simplification), 1033
Implicit parameter, 343, 344

in Haskell, 379
[implicit-projection] (FLEX/M type

rule), 921
Implicit subtyping, 713–717
Implicit type, 625–627, 774, see also

Type reconstruction
Implicit type projection, see Polymorphic

value projection, implicit
Import of module bindings, 333, 352, 889
Import restriction, 916

in [effect-masking ] rule, 973
in existential types, 853, 858
in [letregion] rule, 992
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in nonce types, lack of, 862
in universal polymorphism, 731, 732

Impredicative type system, 735
of FLEX/SP, 804

in (communication effect), 998
in (input function of DS), 151
incInt (metalanguage incrementing

function), 1156
[inclusion] (FLEX/S type rule), 702, 703,

719
Inclusion function ( ↪→ ), 1159
Inclusion on types, see Subtyping
Incomparable elements in partial order,

175
Incomplete row type, 823
In-degree of graph vertex, 1107
Indexing, see Product indexing
Induction, 1168, see also Structural

induction
Inequality relation ( 
= ), 1163, see also

!=; Relational operator
+inf, -inf (extended integer), 568
Inference of types, see Type

reconstruction
Inference rule for type judgment, 645
Infinite data, see also Lazy (CBL)

product; Nonstrictness; Stream
in CBN FL, 217, 324
coroutine producer value sequence, 459
thunk implementation in CBV FL, 325

Infinite loop, see Divergence;
Nontermination

Infinite set, 1150
Information, of exception, 515
Information hiding, 901
Ingalls, Daniel H. H. (quoted), 362
Inheritance, 362, 366–367, 379

hierarchy, 362
multiple, 380
subtyping vs., 723–725, 767

init (initialization effect in FLARE/E),
946, 949

Initial configuration of SOS, 47
Initialization effect, 946

inj (positional sum injection), 576
Injection, into sum value, 570
Injection function, 1176, 1189
Injective function, 1160
Inj k (metalanguage oneof injection),

1176, 1189
inleft (either injection), 574
Inlining, 1017, 1053, 1056, 1088, 1116

inlining strategy for globalization,
1017–1019

Inner class in Java, 338
closure conversion and, 441, 1082

[input] (ELM BOS rule), 77
InputExp (input value domain)

in μFLARE, 778
in μFLEX, 664
in FLK, 258, 259–260

Input function of SOS (IF ), 47, 50
in FLICK, 407
in language L, see L, SOS

Inputs (program inputs domain), 49, see
also InputExp

in EL, 152
in PostFix, 53, 152

inright (either injection), 574
install-cont (control-point invoking

function), 498, 500
Instance method, 362

representing in HOOK, 366
Instance of class, 362

representing in HOOK, 366
Instance variable, 362

representing in HOOK, 366
Instantiation of type by substitution, 783
Int (integer set & semantic domain), 1148

in EL DS, 118
in PostFix DS, 132

int (PostFix2 command), 41
int (extended integer conversion), 568
int (integer type), 628, 629
[int]

μFLARE type axiom, 775
FLARE/E type/effect axiom, 953
μFLEX type axiom, 644
type/exception axiom, 988
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int? (FL integer type predicate), 213
in FLK DS, 285

intAt (function in PostFix DS)
definition, 143
specification, 133

Integer, see also Int ; IntLit; Nat ; NatLit;
Neg ; Pos ; PosLit

message-passing HOOK object, 364
message-passing SmallTalk object,

365
numeral vs., 57

Integer arithmetic module, 358
Integer range notation ([lo..hi ]), 1149
Interface, 235, 333, 839, 889, 1171, see

also Abstraction barrier; API
in dependent type system, 870
in existential type system, 856
in Java, 724
of module, 352

Interference between expressions, 427
code optimization and, 1027–1029

interleave (list interleaving view), 607
Interleaving of observable actions, 997
Internal variable capture, 252
Interpreter, 7

ASTs processed by, 116
denotational semantics vs. program to

specify, 128
for ELM, 241–242, 243
interpreted language, 623
metacircular, for FL, 242

Interprocedural register allocation, 1111
Intersection

of records, 550
of sets (∩), 1149

[int?-F] (FLK SOS reduction), 259
intlist (integer list data type)
def-datatype declaration in FLARE,

833, 834
def-datatype declaration in

FLEX/SP, 738, 739
IntLit (integer syntactic domain)

in EL dialects, 25
in FL dialects, 211

[intR] (μFLARE type reconstruction
axiom), 793

[int?-T] (FLK SOS reduction), 259
int-tree (integer tree data type)

declared by def-data, 609
example sum-of-products type, 750
example types, 694
type specified with trec, 688

Invariant
loop-invariant expressions and code

hoisting, 1029
of representation, 402, 842

Invariant subtyping, 704–706
Inverse limit construction, 202
Invocation, procedure, see app

Invocation frame, see Procedure call
frame

Irreducible (SOS configurations), 50
Irreducible SOS configuration (
⇒), 50
IS ∈ IdSet, 1019
Isomorphism, 1160

isomorphic sets, 1160
Isorecursive type equivalence, 689, 699,

761
ISWIM (Landin’s If You See What I

Mean language), 305
CBN variant, 378
CBV lambda calculus and, 378

Iter (iterator in Sather), 507
Iterating procedure, 507
Iteration, 390, see also Iterator; Loop

Church numeral expressing, 298
continuations and, 447–449
factorial as example of, 400–401
in FL, 226
in FLIC via for, 489
in FLIC via loop, 488–490
in FLIC via repeat, 420, 489
in PostLoop via for/repeat, 103,

141
via label and jump, 496
looping constructs, 449
simulating state with, 390–391
tail recursion and, 1064
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using recur, 227
while sugar, 399, 401

Iterative fixed point technique, 168–173
Iterative procedure, 449
Iterator, see also Iteration

in C++, 507, 512
in CLU, 506
in FLIC, 507–513
in Java, 507, 512
stream vs., 556, 612
with success and failure continuations,

513
iterator (FLIC iterator construct), 507

J (Landin’s control operator), 537
Java

abstract class, 724
answer domain, 474
array, as fixed-length mutable

sequence, 561
array, as homogeneous product, 548
array subscripting notation, 561
as call-by-value language, 309
as explicitly typed language, 625
as language without block structure,

337
as monomorphic language, 658
as object-oriented language, 362
as stateful language, 384
autoboxing/autounboxing, 750
call-by-value-sharing of mutable

products, 563
constructor method, 366
covariant array subtyping, 709
downcast, 723
dynamic and static type checking, 624
dynamic loading, 890, 892, 928, 941
dynamic loading and side effects, 926
effect system for tracking exceptions,

1001
exception handling with
throw/try. . .catch, 514, 985

explicit typing example, 626
file-value coherence, 926

garbage collection, 1120, 1121
generic types, 749, 768
immutable string, 548
implicit projection for generic methods,

918
inner class and closure conversion, 441,

1082
inner class as limited form of block

structure, 338
integers and booleans as nonobjects,

365, 379
interface, 724
iterator, 507, 512
lack of universal polymorphism,

749–750
libraries, 239
object, 550
overloading, 748
program arguments as string array, 217
resignaling of exceptions, 514
return/break/continue, 445, 490
simulating higher-order procedures,

1076
standard library API, 235
strict application, 215
sum-of-products data via objects, 579
this as receiver parameter, 363
throws to specify exceptions, 514, 985
type coercion, 718
type conversion, 716
type information in compiled files, 926
type vs. class, 723
universal polymorphism, lack of, 627
vector, as dynamically sized mutable

sequence, 561, 562
vector, as heterogeneous product, 562
void expression as command, 472
void type, 209
void vs. value-returning method, 385

JavaScript
as dynamically typed language, 623
as object-oriented language, 362
prototype-based objects, 380

Jim, Trevor, 1117
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Johnsson, Thomas, 1117
join (list joining view), 607
join (of control threads), 997
Judgment

kind, 760
syntactic purity, see Syntactic purity

judgment
type, 645
type/cost, 989
type/effect, 951
type/exception, 987

Jump, see also break; continue; goto;
jump

in assembly language, 1056
to represent procedure call, 1043, 1046,

1064
jump, 494–506, 717

computation-based DS for, 500
control effects and, 978–983
in μFLARE, 800
in μFLEX, 658–659
in FLICK SOS, 503–504
in metaCPS conversion, 1070–1075
in standard DS, 497
as sugar for cwcc, 506
as valueless expression, 498

[jump] (SOS transition rule), 503

K (lambda calculus combinator), 296
K ∈ Kind, 759
Kahn, Gilles, 112
Kelsey, Richard, 1116
Kernel of programming language, 207,

1186
Key/lock for data abstraction, 843–847
Keyword (keyword domain), 211

in language L, see L, syntax
Keyword, reserved, 210
Kind, 758–767

well-kinded description, 760
Kind (kind domain)

in FLARE/E, 957
in FLEX/SPDK, 759

Kind assignment, 761

Kind checking, 760–763
decidability of, 761
interactions with type checking, 762

Kind environment, 760
base kind environment, 761

Kind judgment, 760
knull (alternative to null), 611
kons (alternative to cons), 611

L ∈ Lit, see Lit
L ∈ LogicalOperator, 25
L (literal meaning function)

in EL, 129
in FLK, 283

l ∈ Location, 412
label (control point), 494–506

computation-based DS for, 500
control effects and, 978–983
duplication of continuation, 498
in μFLARE, 800
in μFLEX, 658–659
in FLICK SOS, 503–504
in metaCPS conversion, 1070–1075
in standard DS, 497
as sugar for cwcc, 506

[label] (SOS transition rule), 503
lam (FLK abstraction), 211, 214

free and bound identifiers, 247
in CBN vs. CBV SOS, 310
in FLICK standard DS, 477
in FLICK standard DS for exceptions,

520, 521
in FLK DS, 283, 286
in FLK ValueExp domain, 258
in lambda calculus, 291
in static vs. dynamic scope, 335
scope, 245
substitution, in FLK, 254

Lambda abstraction, 1165
Lambda calculus (LC), 290–304

Church boolean, 300–301
Church conditional, 300–301
Church numeral, 298–300
Church pair, 302
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Church tuple, 225
combinator as program, 291
denotational semantics, 296–297
FLK vs., 291–294
higher-order polymorphic, 765
history, 305
normalization, 292–295
operational semantics, 291–296
polymorphic, 764, 768
recursion (Y operator), 303–304
second-order, 764
simplification, 291
simply typed, 674, 699, 764
syntactic sugar, 291
syntax, 291
untyped, 622

Lambda cube, 887
Lambda lifting, 1094–1096, 1117
Lambda notation, 1165–1170

for curried function, 1168
Lisp vs., 1169–1170
recursion, 1168–1169

Landin, Peter, 42, 112, 162, 305, 378, 537
lastStack (PostFix function), 93

alternative definitions of, 98
Latent effect (of a procedure), 944, 947

in control flow analysis, 996
inflating with [does], 955
latent control effect example, 981
latent cost effect, 988, 989
latent exception effect, 986, 987
latent store effect examples, 952
in security analysis, 999
unifying in reconstruction, 965

Latently typed language, see
Dynamically typed language

Laziness, see also Nonstrictness
graph reduction and, 314, 440
lazy evaluation, 434, see also

Call-by-need; Lazy (CBL) product
lazy language, 209
lazy list, see Stream
lazy parameter passing, 434, see

Call-by-need

modularity of, 440, 559, 612
Lazy (CBL) product, 552–555

denotational semantics of, 555
SOS, 553–555

LC ∈ Location, 406
LC, see Lambda calculus
leaf (tree constructor), 608, 609

generic type of, 832
leaf? (tree predicate), 451, 608
leaf~ (tree deconstructor)

generic type of, 832
least (extended FL construct), 267
Least fixed point, 173, 190

in FLK DS of rec, 286
solution to effect constraint set, 962

Least Fixed Point Theorem, 190
Least upper bound (lub), 176
leaves (iterator example), 509
left (tree selector), 451, 608
Left-hand side (LHS) of transition, 50
length (procedure), 236, 238
length (metalanguage sequence function),

1183
Length of transition path, 50
Less-than-or-equal-to relation (≤), 1163,

see also <=; Relational operator
Less-than relation (<), 1163, see also <;

Relational operator; lt
let (metalanguage binding), 1191,

1194–1195
let (FL local binding), 219, 223

desugaring in FL, 220, 223, 233
desugaring in HOOK, 369
free identifiers, in μFLEX, 638
in FIL, 1030
in FILcps , 1046
in FILlift , 1095
in FILreg , 1101
in μFLARE/FLARE kernel, 772
in μFLEX/FLEX kernel, 628, 631, 632
in μFLEX SOS, 664
in metaCPS conversion, 1061
in simple CPS conversion, 1051
letrec equipotent with, 228
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let (continued)
polymorphic type reconstruction, 808,

815
scope, 245
substitution, in μFLEX, 639
type rule in dependent type system,

875
type rule in μFLEX, 644

[let]
μFLARE SOS reduction, 778
μFLARE type rule, 775
μFLEX SOS reduction, 663, 664
μFLEX type rule, 644, 646
type rule with dependent types, 875
type rule with dependent types,

alternative, 882
[let′LP ] (FLARE type rule), 815

purity required for generalization, 816
[let′LPR] (FLARE type reconstruction

rule), 818
let* (local sequential binding), 227

FIL sugar, 1031, 1032
LetableExp (domain), 1046, 1047

in FILlift , 1095
in FILreg , 1101

[letEP ] (FLARE/EEP type/effect rule),
974, 975

[letEPZ ] (proposed by Bud Lojack), 979
[letLP ] (μFLARELP type rule), 805, 806
[letLPR] (μFLARELP type

reconstruction rule), 809
letpar (parallel binding construct), 1027
Let polymorphism, 801–813
[let-pure] (FLARE syntactic purity

rule), 816
[letR] (μFLARE type reconstruction

rule), 793, 794
letrec (mutual recursion), 219

alternative desugaring, 229, 267
Bekić expansion for desugaring, 229,

327
CBV desugaring, 326
desugaring in CBN FL, 224–226
desugaring in CBV FLAVAR, 432

desugaring in FL, 220, 233
desugaring in FLARE-to-FIL

translation, 1036
desugaring in FLEX/M, 894
free identifiers, in μFLEX, 638
in μFLARE/FLARE kernel, 772
in μFLEX/FLEX kernel, 628, 631, 632
in μFLEX SOS, 664
let equipotent with, 228
polymorphic type reconstruction, 808,

815
scope, 245
substitution, in μFLEX, 639
type rule in μFLEX, 644
type rule in dependent type system,

875
type rule in FLEX/SPDK, 763
well-typedness preserving desugaring,

1038
[letrec]

μFLARE SOS reduction, 778
μFLARE type rule, 774, 775
μFLEX SOS reduction, 663, 664
μFLEX type rule, 644, 646
FLEX/SPDK type rule, 763
type rule with dependent types, 875

[letrec′LP ] (FLARE type rule), 815
purity required for generalization, 816

[letrec′LPR] (FLARE type reconstruction
rule), 818

[letrecEP ] (FLARE/EEP type/effect
rule), 974, 975

[letrecEPZ ] (proposed by Bud Lojack),
979

[letrecLP ] (μFLARELP type rule), 805,
806

[letrecLPR] (μFLARELP type
reconstruction rule), 809

[letrec-pure] (FLARE syntactic purity
rule), 816

[letrecR] (μFLARE type reconstruction
rule), 793

[letrecSP ] (FLARE/E type/effect rule),
952, 953
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[letrecSPZ ] (FLARE/E type/effect
reconstruction rule), 967

letregion (region-based storage
management), 992, 994

[letregion] (type/effect rule), 992
[letSP ] (FLARE/E type/effect rule),

952, 953
[letSPZ ] (FLARE/E type/effect

reconstruction rule), 967
let-type (type binding), 634, 635
let-type* (type binding), 634, 635
Lex (scanner generator), 43
Lexical address, 342, 1091
Lexical environment, 341
Lexical scope, see Static scope
Lexicographic order, 104
lget (CBL product projection), 552–555

DS, 555, 557
SOS, 553–555

[lget] (stateful reduction rule), 553
[lget-progress] (evaluation rule), 553
LHS (left-hand side) of transition, 50
LI (Tortoise lifting transform), 1095
Liar compiler for Scheme, 1145
Life 
= paragraph, 19
Lifetime analysis, 991–995, 1145
Lifetime effect, 995
Lifted domain, 176
Lifting compiler transformation, see

Lambda lifting
Lightweight closure conversion, 1089,

1117
Linearization of code, in CPS conversion,

1042, 1043, 1047
Linear type, 1146
Linked environment, 1090–1093
Linking, 890–891, 1014, see also

Globalization; Loading modules
Linking language, 890
Link time, 890
Linux, reference counts in file system,

1132
Lisp, see also Common Lisp; Scheme

association list, 550

avoiding variable capture in macros
with gensym, 331

compositional programming, 613
currying, lack of, 221, 1169
dynamic scoping, 338
encoding sums, 567
evaluation strategy, 1170
FL syntax vs. Lisp syntax, 210
FUNARG problem, 378
garbage collection, 1120, 1121
generic functions, 380
lambda notation vs., 1169–1170
list-manipulation libraries, 239
macros, 379
mutable one-slot cell, 397
object-oriented dialects, 362
parentheses required, 1158, 1170
procedure signatures, lack of, 1169
s-expression notation, 43
sum-of-products data via s-expressions,

580
value-returning function, 385

Lisp Machine Lisp, generic functions,
380

List, 540
association list, 540, 550
chain of pairs, 221
heterogeneous vs. homogeneous, 686
higher-order list procedure, 239–240
list node as heap block in FRM, 1128
stream vs., 559
sum of products, 577
typed, 685–688

list, 219, 221
desugaring in FL, 220, 233
in FLARE, 813
in FLEX, 686
match pattern, 603
need for type in, 686–687

list? (type predicate), 236, 238
list-data (data declaration), 586
list-map (higher-order description

example), 755
list-module (FLEX/M example), 898
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listof (type constructor), 685–688
covariant subtyping in FLEX/S, 703
definition in FLEX/M, 895
definition in FLEX/SPD, 754
in FLARE, 813
in FLEX/M list module type, 899
kinding of, in FLEX/SPDK, 761–762
type equivalence, 686

[listof-≈] (type-equivalence rule), 686
[listof-�] (FLEX/S subtype rule), 703
Lit (literal domain in FL dialects), 211

in FLK DS, 282
in metaCPS conversion, 1061
in simple CPS conversion, 1051

lit (ELM expression constructor), 585
lit~ (ELM expression deconstructor),

585
Literal, see also Lit

in FLICK standard DS, 477
in FLK, 209
in FLK DS, 282, 283
primitive name, 307
translation of HOOK message-passing

literals to FL, 371
type rule in μFLEX, 644

Literal pattern, 590
desugaring in match, 596

[lit-pure] (FLARE syntactic purity
axiom), 816

Live heap block, 1120, 1130–1133
Live register, 1112
load (module load), 893, 899, 925–931

referential transparency in, 930
semantics with compile-time

comparison, 929
semantics with load-time comparison,

927
type soundness of, 926, 927–931

[loadCTdyn ] (FLEX/M reduction), 929
[loadCTstat ] (FLEX/M type axiom), 929
[loadLTdyn ] (FLEX/M reduction), 927
[loadLTstat ] (FLEX/M type axiom), 927
Load dependency, 929
Loading modules, 899, 925–931

Local binding, see let; letrec; let*;
recur

Locality restriction of implicit projection,
920, 921

Location, 397
in CBL product, 553
in mutable product, 563
in PostHeap, 110
in SOS, 405

Location (domain), 412
Location (SOS domain), 406
lock (data sealing), 843–847
Lock/key for data abstraction, 843–847
logapp (boolean operation), 260
Logical operator, see also Primitive

operator
on Church booleans, 301
conjunction (∧), 1151, 1162
contrapositive, 1151
disjunction (∨), 1151, 1162
existential quantification (∃), see

Existential quantification
implication, 1151
in EL dialects, 25
in EL DS, 129
in FL dialects, 213
in metalanguage, 1151–1152
negation (¬), 1151, 1162
short-circuit, 222, see also scand; scor
universal quantification (∀), see

Universal quantification
LogicalOperator (domain), 25
Logical relations, 699
Logic programming, 445, 538, 612
login! (quota construct), 492–493
Logo, as dynamically typed language,

623
logout! (quota construct), 492–493
longjmp/setjmp (C nonlocal exit), 506
lookup (PostLisp command), 109
lookup (environment procedure in

FLEX/M), 901
list representation, 903
procedure representation, 905
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lookup (environment lookup), 277
Loop, see also Iteration

Church numeral, 298
early termination of, 445
infinite, see Divergence;

Nontermination
while sugar, 399, 401

loop (PostFix command), 68
loop (looping construct), 488–490

as sugar in FLIC+{label, jump}, 501
[loop] (PostFix SOS rule), 68
Loophole, type, see Type loophole
Looping SOS configuration (

∞⇒), 50
loopout (looping token in SOS), 50
Lower bound, 176
LProd (CBL product domain), 557
lprod (CBL product creation), 552–555

DS, 555, 557
SOS, 553–555

[lprod] (stateful reduction rule), 553
*lprod* (CBL product value), 553
lt (PostFix command), 8, 40, see also

Relational operator
informal semantics, 10
PostFix DS, 137

lub (least upper bound), 176
Lucassen, John M., 1000
LV (L-Value meaning function)

CBR DS for mutable tuples, 566
CBR FLAVARK DS, 435

L-value
of expression, 436
of mutable variable, 432

M (type reconstruction algorithm), 836
Machine language (typeless), 622
MacLisp, FEXPR construct, 330
MacQueen, David, 940
Macro, 330, 379

dynamic scoping in macro systems, 338
high-level language for, 379
hygienic, 331, 379
in PostMac, 107

Main memory, 1123

make-account (procedure)
implementation, 402
specification, 384

make-expt (higher-order function), 1160,
1166

make-pt

dependent type implementation, 871
dynamic type implementation, 840
existentially typed object

implementation, 857
existential type implementation,

848–849
message-passing implementation

(make-pair-point,
make-proc-point), 843

nonce type implementation, 860–861
using dynamic lock and key, 844

makeTCS (type-constraint set), 788, 789,
790

Mann, Thomas (quoted), 3
Manual heap deallocation, 1120
map (list procedure), 239, 241

polymorphic, 726, 730
map (metalanguage sequence function),

1183
mapperof (higher-order description), 755
MapReduce model, 613
mapsub, 1012, 1034
Mark-sweep GC, 1141
Match

clause, 590
expansion phase, 923
of pattern and value, 1192
s-expression pattern, 27

match (extension to cases), 590,
1190–1194

match (FL pattern matching), 590–612
body, 590
clause, 590
desugaring, 594–605
desugaring, final version, 603
desugaring, first cut, 597
desugaring, optimization of, 605
discriminant, 590
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match (continued)
failure thunk in match desugaring, 595
free identifiers, 602
in FLARE, 831
in FLEX/M, 894, 921–923
in FLEX/SP, 742
informal semantics, 590
pattern, 590
success expression in desugaring, 596
well-typed vs. ill-typed, 593

match-prod (pattern-based tuple access)
type reconstruction, 825

Matrix module, 360, 361
max (procedure), 236
maxeff (combine effects), 946, 947, 949
maybe-cell (assignment conversion

function), 1023, 1024
McCarthy, John, 42, 43, 1145
mc→exp (metaCPS function), 1060
MCPS (metaCPS), 1058–1070
Meaning

of phrase in DS, 115
of whole from meaning of parts, 116

meaning (function), 151
Meaning function, 115, see also Valuation

function
operational behavior and, 151

member?, 237, 238
Memo (domain), 435

in CBL product DS, 555, 557
Memoization, 314, 555

in CBL parameter passing, 434
in CBL product, 555
for nonstrict parameter passing, 314

Memory allocation, see Heap allocation
Memory compaction, 1132
Memory fragmentation, 1131
Memory leak, 1120
Memory management, see Garbage

collection (GC)
Memory page, 1129
Memory tracing for GC, 1132–1133
Mental gymnastics, 446
merge (list procedure), 240, 242
merge (environment merge, �), 277

merge-sort, 240, 242
Message (HOOK domain), 362, 363
Message-passing object, see also Object

in object-oriented programming, 362
procedural representation of, 403, 842,

885
Metacall, 1060
Metacircular interpreter for FL, 242
MetaCont (domain), 1060
Metacontinuation, 1059
MetaCPS conversion, 1058–1070

beta reduction in, 1062
of cwcc, 1072
of exceptions, 1072
of label and jump, 1070–1075

Metalanguage, 7, 16, 1147–1196
boolean operator, 1151
commenting convention, 1148
conditional function (ifS ), 1164
domain, 1171–1186
function, 1155–1170
function domain, 1184–1186
kernel, 1186–1188
lambda notation, 1165–1170
logical operator, 1151–1152
predicate, 1151–1152
product domain, 1173–1175
recursion, 1168–1169
relation, 1153–1155
sequence domain, 1181–1184
set, 1148–1151
sum domain, 1176–1181
syntactic sugar, 1188–1195
tuple, 1152–1153

Metaprogramming, 7
Method

class method, 362
constructor method, 366
controlling complexity with, 333
in HOOK/HOOPLA, 363–370
instance method, 362

method (HOOK object constructor), 363
translation to FL, 371

mfst (mutable pair selector), 421
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mget (mutable product projection), 562,
1031

CBR DS for mutable tuples, 566
CBVS DS, 564
desugaring with mutable cell, 563

mgu (most general unifier), 785
Milner, Robin, 835, 836
min (procedure), 236
Mini-language, 7
Minsky, Marvin, 1145
Miranda

as implicitly typed language, 626
as purely functional language, 384
as purely functional lazy language, 209
HDM type reconstruction, 836

Mitchell, John, 885
Mixin, 367–368, 380
ML, see also OCAML; SML

as block-structured language, 337
as call-by-value language, 309
as function-oriented language, 209
as implicitly typed language, 626
as mostly functional language, 384
as statically typed language, 623
constraint-based type reconstruction

for, 836
dependent types in DML, 887
first-class control point, 497
garbage collection, 1120
implicit resignaling of exceptions, 514
implicit typing example, 626
list-manipulation libraries, 239
module system, 940
mutable cell ref, 397
pattern matching, 590, 605–610, 612,

768, 829
polymorphism, 768
second-class modules, 891
strict application, 215
sum-of-products data, 579, 829
type reconstruction, 812
universal polymorphism, 627
unsafe features, 622
value restriction, 817

ML-style type reconstruction, 812
mm ∈ Memo, 435
mnew (mutable product allocation), 1101
Mobile code, security of, 999–1000
Modula-2, separate compilation, 940
Modularity

of laziness, 440, 559, 612
polymorphism and, 727
of state in imperative program, 397,

404, 440
Module, 352, 540, 889–941, see also

Record
arithmetic module example, 358
client, 352
coherence problem, 934–937
controlling complexity with, 333
dot notation, 898
dynamic semantics, 381, 923–925
environment example, 901–906
examples of, 356–359
exports, 333, 889
first-class, 890
imports, 333, 352, 889
interface of, 352
linking, 890–891
loading, 899, 925–931
matrix module example, 360, 361
multiple bindings in, 890
record vs., 353
scoping in FLEX/M, 910–911
second-class, 891
separate compilation of, 890
signature of, 897
static dependent types and, 891, 911
static semantics of FLEX/M, 910–923
subtyping, 912, 913
table example, 906–909
type, 627, see also moduleof

type equivalence and, 911, 913
type rules for FLEX/M, 912–918

module, 893–895, 914
dynamic semantics in FLEX/M, 924
static semantics in FLEX/M, 917
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moduleof (type), 893, 897, 914
subtyping in FLEX/M, 913
type equivalence, 913
type rules involving, in FLEX/M, 917

[moduleof-≈] (type-equivalence rule), 913
[moduleof-�] (FLEX/M subtype rule),

912, 913
[moduleof-elim] (FLEX/M type rule),

917
[moduleof-intro] (FLEX/M type rule),

917
Moggi, Eugenio, 440
Monad, 396, 440
Monadic style, 124, 394–396, 414, 417

via after and return in FL, 394
do notation in Haskell, 396
effects and, 1001
lack of modularity, 404, 440
to hide state plumbing, 395, 414
to simulate stateful features, 440

Monomorphism, 655–660, 725, see also
Simple type system

of FLEX type system, 629
Monotonic function, 187
Morris, F. Lockwood, 537
Morris, James, 537
Mortis, rigor, 57
Moscow ML, 941
Moses, Joel, 378
Most general unifier (mgu), 785
Mostly functional language, 384, see also

Function-oriented programming
mpair (mutable pair), 421
MProd (mutable tuple domain)

in CBVC DS of mutable tuples, 565
in CBVS DS of mutable tuples, 564

mprod (mutable product), 562, 1031
CBVS DS, 564
desugaring with mutable cell, 563

mprod=? (mutable product equality),
1031

mselect (module selection), 898
desugaring in FLEX/M, 894

mset! (mutable product assignment),
562, 1031

CBVS DS, 564
desugaring with mutable cell, 563

msnd (mutable pair selector), 421
Muchnick, Steven, 1116
mul (PostFix command), 8, 40, see also

Arithmetic operator
informal semantics, 10
PostFix DS, 137

Multiabstraction, see abs

Multiapplication, see also app,
Application

desugaring in FL, 220, 233
desugaring in HOOK, 369
in FL, 218–221
in μFLARE/FLARE kernel, 772
in μFLEX/FLEX kernel, 628, 632
in μFLEX SOS, 664
in lambda calculus, 291
kernel construct (app) in FIL, 1030
tuple-based desugaring, 257
type rule in dependent type system,

875
type rule in μFLEX, 644

Multiple arguments
of function, 1161–1164
of procedure, 214

Multiple inheritance, 380
Multiple-value return, 450–455

via result and result-bind, 710–712
simulating with receiver procedure,

394, 451–453, 1164–1165
Multiplication function (×), 1163, see

also *; Arithmetic operator; mul
on Church numerals, 300

Multistep SOS transition relation (
∗⇒), 50

Multithreaded computation, 997
Mutable cell, 397–399

assignment conversion from mutable
variable, 1019

content of, 397
as getter/setter procedures, 710
for mutable data, 563
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mutable variable in CBR vs., 437
operations on, 398–399
typed, 681–682
type reconstruction and, 837

Mutable data, 397
array, 548
cell, see Mutable cell
deep copy, 565
invariant subtyping of, 704–706
mutable tuple, 562–566, 1031, 1101,

1104, 1128
pair, 421
parameter passing of mutable

products, 563–566
product, 561–566, 1031, 1101, 1104,

1128
sequence, 561–562
shallow copy, 565
string, 548
using mutable cell, 563

Mutable variable, 429–430
assignment conversion to mutable cell,

1019
closure conversion and, 1081–1082,

1092
copy propagation and, 1034
dereferencing, 432
in CBL FLAVARK DS, 434–436
in CBN FLAVARK DS, 433
in CBR FLAVARK DS, 436–438
in CBV FLAVARK DS, 433
in FLARE/V, 1009
in FLAVAR, 430–439
in FLAVARK DS, 431
L-value, 432
mutable cell vs., in CBR, 437
R-value, 432, 436
type reconstruction, 820–821, 837

Mutation, 385, see also Effect
MutIds (mutated free identifiers

function), 1018, 1020, 1022
Mutual recursion, see also Recursion,

mutual
as single recursive definition, 163

in FL, 224–226, see also letrec

in FLEX type, 688, see also tletrec

in lambda calculus, 304

N ∈ IntLit, 25, 211
N (numeral meaning function)

in EL dialects, 118
in FLK, 283
in PostFix, definition, 137
in PostFix, signature, 135
in restricted ELMM, 118

n (Church numeral), 298, see also Church
numeral

Name, see Identifier; Variable
Nameable (domain)

Expressible vs., 278
in CBD, 328
in CBN vs. CBV, 316, 317
in FLAVARK, 431
in FLICK, 416, 418
in FLICK standard DS, 473
in FLK, 276, 278

Nameable value, 275, 308, 319–320, see
also Nameable

Name capture, see Variable capture
Name control, 308, 332–359, 891

modules and, 889
Named product, 353–359, 549–550

typed, 677–678, 821–826
Named sum

DS, 573–576
SOS, 572

Name equivalence of types, 864
Name hiding, 333, 901
Name resolution, 1014, see also Linking
Namespace, 308, 347–351, 891

in HOOPLA, 376
multiple, 347, 635, 636
multiple, in Common Lisp, 348

Naming, 307–381
binding construct, 307, see also

Binding construct
cognitive issues with, 332–333
engineering issues with, 333
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Naming (continued)
expression as structured name, 307, 869
import of module bindings, 333, 352,

889
in PostLisp, 109
in PostText, 106
literals and identifiers as primitive

names, 307
name control, see Name control
name hiding, 333, 901
parameter passing, see Parameter

passing
renaming, see Alpha-renaming
scope, see Scope of a variable
unique, see Unique naming

Naming context, 443
for referential transparency, 389

nam-to-comp (computation function)
in FLICK, 414
in FLK, 279, 281

Nanopass compiler for Scheme, 1116
n-ary relation, 1153
Nat, 1148
NatLit (natural numeral domain), 406
nats (infinite stream), 558
Natural semantics, 75, see also Big-step

operational semantics (BOS)
NAVAL (CBN and CBV language), 327
NC ∈ NormContext, 292
NE ∈ NumExp, 25
NE (numerical-expression meaning

function), 129
in ELM, 126
in ELMM, 121
in restricted ELMM, 117, 118

Neg (set & domain), 1148
Negation, logical (¬), 1151, 1162
nessness, 362
new (HOOK instance creation), 366
$new-· · · (HOOK literal), 372, 373
new-key (sealing key generator), 843–847
next-location (store function), 412
NF ∈ NormalForm, 292

n-fold composition
of functions (fn), 1159, see also

Church numeral
of relations, 1155

nget

CBN product projection, 551–552
PostFix command, 8, 40
PostFix DS for, 137
PostFix informal semantics for, 10
PostFix SOS for, 55

[nget]
PostFix SOS rule, 55
stateless reduction rule, 552

Nielson, Flemming, 1117
Nielson, Hanne Riis, 1117
nil (empty list value), 236

sum-of-products data version, 586
nlam (NAVAL CBN abstraction), 327
NLNC ∈ NonLambdaNormContext, 292
NLNF ∈ NonLambdaNormalForm, 292
node (tree constructor), 451, 608, 609

generic type of, 832
node~ (tree deconstructor)

generic type of, 832
non-boolean (dynamic type error), 473
NonceType (domain), 861
Nonce type, 859–869

difficulties with, 863–866
dynamic and static semantics, 861
import/export restrictions, lack of, 860,

862
nonce package, 860
type generativity in SML and, 886

Nondeterministic, 51, 445, 997
BOS, 76
either construct in ELMM, 83
logic programming, 538
transition relation, 50, 51

Nondismissal semantics of exceptions,
522, 528–530

Nonevaluation step relation (◦=⇒), 271,
272

preservation of classification, 273
[non-exec] (PostFix BOS rule), 78
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Nonhierarchical scope, 352–359, 889
Nonimmediate descriptor, 1124
noninteger (exception tag), 516
NonLambdaNormalForm (domain), 292
NonLambdaNormContext (domain), 292
Nonlocal exit, 445, 455–457, 493–506
Nonnormalization step (◦−−−n.o.→), 294
Nonstrictness, 267, see also Laziness;

Strictness
CBN parameter passing, 310, 316
if as primitive operator in FLK, 267
inefficiencies associated with, 262, 263
modeling with envelopes, 269
nonstrict function, 199
nonstrict pair, 216–217, 266, 269,

318–320
nonstrict parameter passing, see

Call-by-name (CBN); Call-by-need
(CBL)

nonstrict procedure, 215, 262
nonstrict product, 551–561, see also

Call-by-name (CBN), product; Lazy
(CBL) product; Stream

Nontail call, 1044–1049
Nontermination

in FLK, 263
in lambda calculus, 293
in PostFix+{dup}, 101
represented by ⊥Comp in FLK, 275,

280
represented by ⊥Fcn in lambda

calculus DS, 296
represented by bottom (⊥), 185
universality and, 79–80, 100

Nontype error, 661
stuck at, 666, 780

Normal continuation, 446
Normal form, 50

of FLK simplification (−−→), 272, 273
in lambda calculus, 292
weak head, in lambda calculus, 378

NormalForm (domain), 292
Normalization

in lambda calculus, 292–295
strong, see Strong normalization

Normal-order reduction strategy,
293–295, 309, 377

NormContext (domain), 292
NOT (on Church booleans), 301
not (FL boolean negation), 213

FL standard library binding for, 236
in FLK DS, 285
type in μFLEX, 643

not-a-· · · (dynamic type error), 281, 473,
479, 480

Notational acrobatics, 57
[not-F] (FLK SOS reduction), 259
[not-T] (FLK SOS reduction), 259
[npack] (nonce type rule), 861
[npackof-≈] (type-equivalence rule), 861
NProd (CBN product domain), 552
nprod (CBN product creation), 551–552

n-step SOS transition relation (=
n
=⇒), 50

NT ∈ NatLit, 406
nth (list indexing procedure), 236, 238

in letrec desugaring, 224
variable capture in letrec desugaring,

257
nth (metalanguage sequence function),

1183
n-tuple, 1152
null (empty list procedure), 236

definition in FLEX/M, 895
definition in FLEX/SPD, 754
generic type of list constructor null,

827
need for type in, 686–687
pattern example, 592
polymorphic type of, 728
sum-of-products data version, 586
type in FLEX/M list module, 896, 899
type rule in FLEX, 686

[null] (FLEX type rule), 686
null? (empty list predicate), 236

definition in FLEX/SPD, 754
polymorphic type of, 728
type in FLEX/M list module, 899
type rule in FLEX, 686

[null? ] (FLEX type rule), 686
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null~ (list deconstructor)
generic type of, 827
type in FLEX/M list module, 896, 899

Nullary procedure, 221, 228
null-object (HOOK empty object),

363, 368
Null pointer, in sum-of-products

encoding, 579
[num]

ELM BOS rule, 77
ELMM BOS rule, 75
PostFix SOS rule, 54–56

Numeral
integer vs., 57
semantics of, 118, 131

NumExp (EL domain), 25
[nunpack] (nonce type rule), 861
n-way conditional (cond), 222

O ∈ Primop, see Primop
O (primitive operator meaning function)

in FLICK, 419
in FLICK standard DS, 477
in FLK, 285

o ∈ Outcome, 50
Object, 362, 379

dot notation, 550
dynamic semantics, 381
in HOOK/HOOPLA, 363–370
in Java, 550
notion of state and, 383–384
as poor man’s closure, 441
special syntax, 549–550

object (HOOPLA object sugar), 369
Objectification of nessness, 362
Object-oriented programming (OOP),

362–377, see also Stateful language
class, simulating in prototype-based

system, 366
class-based, 362, 366, 379–380
design dimensions, 379
generic-function, 380
inheritance, 366–367
mixin, 367–368, 380

multimethod, 380
procedural representation of

message-passing object, 403
programming by differences, 366
prototype-based, 380
sigma calculus, 381
state and, 403, 441
stateful programming and, 384
type-based, 381, 768

Observable properties, 389
Observational equivalence (=obs), 90, 91

adequacy and, 157
full abstraction and, 159
in ISWIM, 306
in PostFix, 89–100
PostFix transform equivalence and,

96–98
Observational uniqueness, 157

of EL, 158
of PostFix, 158

OCAML
applicative functors, 939
functors distinct from procedures, 900
modules with abstract and concrete

type definitions, 893
object-oriented language, 362
pattern-based tuple access, 825
row variables with object types, 836
unique record field names, 822

occam module system, 941
Occurs check, 785, 786

removing to reconstruct recursive
types, 836

odd? (mutual recursion example)
in FL, 224–226, 230
in FLEX, 636
in lambda calculus, 304
in recursive record, 354

OF (SOS output function), see Output
function of SOS

one (sum creation), 569, 570
CBV named sum DS, 575
CBV named sum SOS, 572
match pattern, 602
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type reconstruction, 826
type rule in FLEX, 684
type rule in FLEX/SPDK, 763

one-arg (standard DS function), 473, 475
Oneof, 568, 570, see also Sum

injection function (Inj k), 1176, 1189
metalanguage sum value, 1176
sum, 567

Oneof (named sum semantic domain),
573, 575

oneof (sum type constructor), 682–685
in FLEX/S, 704
kind checking in FLEX/SPDK, 760
subtyping in FLEX/S, 703
type equivalence, 684

[oneof-≈] (type-equivalence rule), 684,
685

[oneof-�] (FLEX/S subtype rule), 703,
704

[oneof-elim1] (FLEX type rule), 684
[oneof-elim2] (FLEX type rule), 684, 685
[oneof-intro]

FLEX/SPDK type rule, 763
FLEX type rule, 683, 684

Oneof pattern, in metalanguage, 1192
One-step confluence, 82
One-step SOS transition relation (⇒), 49
One-to-one correspondence, 1150, 1160
OOP, see Object-oriented programming
Opaque type, 757, 933, 934
open (module open), 893, 898, 915, 916

dynamic semantics in FLEX/M, 924
static semantics in FLEX/M, 917

Open expression, 246
Operand of application, 214, 1158, 1187
Operation, pending, see Computation,

pending
Operational execution, 58–62
Operational reasoning, 79–100
Operational semantics, 15, 45–112

behavior, 50–52, see also Behavior of
program

big-step, see Big-step operational
semantics (BOS)

denotational semantics related to,
150–160

denotational semantics vs., 161–162
drawbacks of, 113
game board, 48
natural, see Big-step operational

semantics (BOS)
reasoning with, 79–100
small-step, see Small-step operational

semantics (SOS)
of X, see X, BOS; X, SOS

Operator of application, 214, 1158, 1187
Optimization, see also Efficiency

aliasing inhibits, 944
code hoisting, 1029
common subexpression elimination,

1028
constant propagation, 1053
copy propagation, 1033
dead code elimination, 1028
def-data desugaring, 587
of descriptor encoding, 1126–1127
effect-based, 1026–1029
eta reduction, 1033
of heap block representation, 1129
of match desugaring, 605
memoization, 434
parallelization, 1027
peephole optimization, 1066
procedure inlining, 1053, 1056, 1088,

1116
of sum-of-products encoding, 578
tail-call optimization, 1064

OR (on Church booleans), 301
or (EL/FL boolean disjunction), 25, 213

type in μFLEX, 643
Order of evaluation, see Evaluation

order; Reduction strategy
out (communication effect), 998
Outcome (outcome domain of SOS), 50
Output function of SOS (OF ), 48, 50

in CBL product SOS, 553
in CBN product SOS, 552
in CBV named sum SOS, 572
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Output function of SOS (continued)
in CBV product SOS, 543
in μFLARE, 779
in μFLEX, 664
in FLICK, 407
in FLICK+{label, jump} SOS, 503
in FLK, 260

Overloading, 748
override (record combination), 353, 354,

550
DS, 357

P ∈ PostfixProgContext, 91
P ∈ Prog, see Prog
P (program meaning function)

in EL, 129
in ELM, 126
in ELMM, 121
in FLICK, 419
in FLICK standard DS, 477
in FLICK standard DS for exceptions,

524
in FLK, 283, 289
in PostFix, definition, 137
in PostFix, signature, 135
in restricted ELMM, 117, 118

pabs (polymorphic abstraction in
FLEX/SP), 728, 729, 730

as compile-type fiction, 734
dynamic semantics, 731, 736, 747
in bounded quantification, 745, 747
in FLEX/SPD, 752
in FLEX/SPDK, 759, 763
static semantics, 731, 747, 763

pack (data abstraction creation)
in dependent type system, 873, 875
in existential type system, 850
in nonce type system, 861

Package, 848
dependent package, 870
existential package, 849
nonce package, 860

package (StackFix command), 105
Packed representation of data, 1129

packof (data abstraction type)
in dependent type system, 873, 874,

875
in existential type system, 850
in nonce type system, 861

Page of memory, 1129
PAIR (Church pair constructor), 302
Pair, 1152, see also Church pair; pair;

Product
mutable, 421
positional product, 541
strict vs. nonstrict, 318–320
sum represented as, 567
typed, 675–676

Pair (semantic domain)
in FLICK, 418
in FLK, 276
in strict vs. nonstrict pair DS, 319

pair (FL pairing expression), 211,
215–216

generic constructor type of, 832
generic type for in FLARE, 813
in FLARE, 813
in FLICK standard DS, 477
in FLK DS, 282, 283
in FLK InputExp domain, 258
in FLK ValueExp domain, 258
PostFix command, 102, 141
as primitive operator, 268
strict vs. nonstrict semantics, 319
sum-of-products data version, 586
type rule in FLEX, 675
as user-defined procedure, 268

pair? (FL pair type predicate), 213
pair~, generic deconstructor type of, 832
pairans (SOS pair outcome token), 258,

260, 319
meaning in FLK SOS, 266

pair-data (pair data declaration), 586
pairof (type constructor), 675–676

covariant subtyping in FLEX/S, 703
definition in FLEX/SPD, 754
in FLARE, 813
type equivalence, 680
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[pairof ] (FLEX/S subtype rule), 707
[pairof-≈] (type-equivalence rule), 679,

680
[pairof-�] (FLEX/S subtype rule), 702,

703
[pairof-elim-fst] (FLEX type rule), 675,

676
[pairof-elim-snd] (FLEX type rule), 675
[pairof-intro] (FLEX type rule), 675
pair-point-impl (pair implementation

of points), 840
Pair tree, 217, 259

partridge not in a, 217
Pairwise disjoint, 1150
Paragraph 
= life, 19
Parallelism, 1027, see also Concurrency
Parameter

actual, of procedure, 214
formal, of abstraction, 244
formal, of function, 1165
formal, of method, 363
formal, of procedure, 214
formal, of program, 209
formal, of program, scope of, 230

Parameterized arrow/procedure type,
870, 873

Parameter passing, 308, 309–332, see also
Reduction strategy

call-by-denotation (CBD), 328–332
call-by-name (CBN), 309, 310–328, 377
call-by-name (CBN) with mutable

variables, 433
call-by-need (CBL), 434–436
call-by-reference (CBR), 436–438
call-by-value (CBV), 309, 310–328,

377, 378
call-by-value (CBV) with mutable

variables, 433
call-by-value-copy (CBVC), 564–566
call-by-value-sharing (CBVS), 563–566
mutable products and, 563–566
mutable variables and, 432–439

Parametric polymorphism, see Universal
polymorphism

Parent environment, 1090
Parentheses

= death, 19
in lambda notation, 1168
in Lisp vs. metalanguage, 1170
in metalanguage, 1158
in s-expression, 24

Parser generator, 43
semantic actions and DS, 116

Partial evaluation, 1059
Partial function (⇀), 1156, 1157

lambda (λ) abstraction and, 1165
Partial order, 174–182, 1155

complete, 182–184
discrete, 175
flat, 176
pointed, 185–187, 321

Partition, 250, 1150
of set by equivalence relation, 1154

partition (list partitioning view), 610
partition (assignment conversion

function), 1022, 1023
Partridge, not in a pair tree, 217
Pascal

answer domain, 474
array, as homogeneous product, 548
array, as mutable sequence, 561
array indexing, 547, 548
array length in array type, 627
as block-structured language, 337
as call-by-value language, 309
as explicitly typed language, 625
as imperative language, 384
as monomorphic language, 629, 658
as statically typed language, 623
call-by-reference parameter passing,

436
call-by-value-copy of arrays and

records, 566
closure conversion via

defunctionalization, 1088
command, 472
conservative GC, 1127, 1142
dangling pointers, lack of, 1144
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Pascal (continued)
enumerations as indices, 562
function vs. procedure, 209
garbage collection, lack of, 1121
limitations on passable procedures, 320
mutable variable, 430
pointer variable, as mutable cell, 397
record, 353, 550, 561
simulating higher-order procedures,

1076
strict application, 215
sum (variant record), 567, 583
type conversion, 716
type loophole, 567, 583, 621
unstorability of procedures, 412
valueless procedure, 385
value-returning function, 385

Passable (semantic domain)
to model parameter passing, 320

Passable value, 319–320
Password data abstraction mechanism in

Pebble, 886
Pattern, 590

in abstraction parameter, 1194
constructor application pattern, 590
identifier pattern, 590
informal matching rules, 591
in let expression, 1194
in match clause, 1191
list pattern, 603
literal pattern, 590
metalanguage constant pattern, 1192
metalanguage oneof pattern, 1192
metalanguage tuple pattern, 1192
metalanguage variable pattern, 1192
named subpattern (<->), 604
record and oneof patterns, 602
sequence pattern, 31–32, 1192
s-expression pattern, 26–32, see also

S-expression pattern
wildcard pattern (_), 590

Pattern (syntactic domain), 590
Pattern for s-expression, 26

Pattern matching, 124, 590–612
desugaring of match, 594–605
desugaring of match, final version, 603
desugaring of match, first cut, 597
efficient, in SML, 601
in ML, 612
optimizing match desugaring, 605
typed, see Typed pattern matching
view, 605–612

Payload of a sum, 567
pcall (polymorphic projection in

FLEX/SP), 728, 729, 730
as compile-time fiction, 734
dynamic semantics, 731, 736, 747
in bounded quantification, 747
in FLEX/SPDK, 763
static semantics, 731, 747, 763

PCF (Programming Computable
Functions), 699

PD ∈ ProgDesc, 753
Pebble

dependent types, 886
first-class types, 941
language with type : type, 768
password data abstraction mechanism,

886
Peephole optimization, 1066, 1114
perim (shape procedure)

using explicit deconstructors, 584
using match, 592
using predicates and selectors, 589
using record and oneof patterns, 602
using records and oneofs, 578
using struct and union in C, 582
using typed sums and products, 683

Perl
as dynamically typed language, 623
record, 353
type markers, 625

Permutation, 1160
Persistence, in object-oriented

programming, 379
Peyton Jones, Simon, 1116
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Phase distinction, 877, 878, 886
Phrase tag, 30
Phrase type in s-expression production,

26
Pierce, Benjamin C., 699
Pivot of a partition, 610
plet (FL−− procedure binding), 349
plet (polymorphic binding), 751, 753,

754
opaque version, 757

pletrec (recursive polymorphic binding),
753, 754

Plotkin, Gordon, 112, 305, 378, 885
Plumbing

of continuations, 490
of exception handler environment, 524
of sharing information in modules, 936
of state, hiding with monadic style,

395, 414
point (sample HOOPLA class), 371
Pointed partial order, 185–187, 321, 413
Pointer, 1122

in PostHeap, 110
Pointer variable in C/Pascal, as

mutable cell, 397
Pollution, in closure conversion, 1086
Polymorphic function, 1167
Polymorphic lambda calculus, 764, 768

undecidability of type reconstruction,
837

[polymorphic projection] (FLEX/SP
type rule), 731

[polymorphic projectionBQ ] (FLEX/SP
type rule), 747

Polymorphic type, 701, 725–750, see also
Universal polymorphism

in second-order lambda calculus, 764
Polymorphic value, 725, 728

in second-order lambda calculus, 764
Polymorphic value projection

explicit, 728, 729, 730, 731, 736, 738,
804

implicit, 730, 896, 918–921

implicit, in FX-87 and FX-91, 768
implicit, in type-reconstructed

language, 804
locality restriction of, 920, 921
in second-order lambda calculus, 764

Polymorphism, 701–768, see also
Polymorphic type; Polymorphic
value; Subtyping

ad hoc, 748–750
bounded quantification, 745–746
parametric, see Universal

polymorphism
in type reconstruction, 772, 801–813
universal, see Universal polymorphism

pop (PostFix command), 8, 40
informal semantics, 10
PostFix DS, 137
PostFix SOS, 55

pop (function in PostFix DS)
definition, 143, 144
specification, 133

[pop] (PostFix SOS rule), 55
Porter, Cole (quoted), 567
Pos (positive number set & semantic

domain), 1148
Positional product, 541–549

fixed-length, 541–545
immutable sequence, 544–545
immutable tuple, 541–542
size, 544
typed, 676–677
type reconstruction, 825
updatable sequence, 545–547
variable-length, 545–547

Positional sum, 576
call-by-name (CBN), 576
call-by-value (CBV), 576

PosLit (positive numeral domain), 1031
Postcondition of transformation, 1013
PostFix (stack mini-language), 8–15
⊥ in recursive domains, 150
adequacy of, 158
BOS, 77–78
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PostFix (continued)
command specification, 10
compositionality of stack transforms in

DS, 135
configuration energy in, 84–85
context-based SOS, 73, 74
denotational soundness of, 151–156
deterministic behavior, 58
DS, 131–145
error, 52–53, 60
error, as stuck state, 58
informal semantics, 9–12
lack of full abstraction of, 160
meaning function, 134–145
observational equivalence in, 89–100
observational uniqueness of, 158
program, 8
safe transformation in, 89–100
safe transformation in, using DS, 147,

150
semantic algebra, 131–134
semantic domains, 131–132
SOS, 52–54
SOS, with one-component

configurations, 70
syntax, 8–9, 39–42
termination, 84–89
transform equivalence, 92–100
translation from ELMM, 100
valuation functions, 134–145

postfix (PostFix program keyword), 8
in PostFix DS, 137
in PostFix SOS, 53

PostFix+{dup}, 101–102
expressing recursion in, 102–103
PostSafe and, 104
type system for, 654–655
universality, 102, 112

PostFix2 (PostFix with alternative
syntax), 39–42

DS, 141
SOS, 60
termination, 87

Postfix calculator language, 61

PostfixEvalSequenceContext (domain), 74
PostfixProgContext (domain), 91
PostFixRedex (domain), 74
PostfixSequenceContext (domain), 91
PostHeap (PostFix plus a heap), 110
PostLisp (PostFix plus name stacks),

109
PostLoop (PostFix plus looping), 103
PostMac (PostFix plus macros), 107
PostSafe (PostFix plus safe

duplication), 104
PostSave (PostFix plus stack

save/restore), 105
PostScript

as call-by-value language, 309
as stack language, 8

PostText (PostFix plus dictionaries),
106

Powerdomain, 182
partial order on, 182

Powerset (P(. . .)), 1150
Pragmatics, 4, 6
Precondition of transformation, 1013
Predicate

in def-datatype sugar, 589
in metalanguage, 1151–1152, 1163

Predicative type system, 735
of μFLARE, 804

prefix (iterator example), 509
prefix (stream prefix), 556
Prefix ordering on sequence domain, 179
Preservation theorem for type soundness

in μFLARE, 780
in μFLEX, 662

prim (FL primitive application), 211, 212
in FILcps , 1046
in FILlift , 1095
in FILreg , 1101
in FLICK standard DS, 477
in FLK DS, 282, 283
in FLK SOS, 259, 260–261
in metaCPS conversion, 1061
in simple CPS conversion, 1051
optionality in FL programs, 230–231
type rule in μFLEX, 644
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[prim]
μFLARE type rule, 775
FLARE/E type/effect rule, 952, 953
μFLEX type rule, 644, 647

primes (infinite stream), 558
Primitive application, see also Arithmetic

operation; Relational operation
error in, 213
explicit order of, in CPS, 1042, 1043,

1047
FL sugar for (@), 218
in FILreg , 1100
in FLK SOS, 260–261

Primitive domain, 1171
Primitive operator, 20, see also

Arithmetic operator; Logical
operator; Relational operator

extending language with new operator,
235

number of arguments in FILreg , 1100
in EL dialects, 25
in FLK DS, 285
in FLK SOS, 259
in FL standard library, 213, 236
top-level binding for, 236
type assignment in μFLEX, 643

Primitive set elements, 1148
Primitive syntactic domain, 25
Primitive type environment (TEprim),

643, 647
Primop (primitive operator domain)

in FLEX/M, 893
in FIL, 1031
in FILreg , 1101
in FLARE, 814
in FLARE-to-FIL translation, 1037
in FLARE/V, 1010
in FL dialects, 211
in μFLEX, 628
in FLICK, 398
in wrapping-based globalization, 1016

[prim-pure] (FLARE syntactic purity
rule), 816

[primR] (μFLARE type reconstruction
rule), 793, 794

[primZ ] (FLARE/E type/effect
reconstruction rule), 964

[primZ ]FLARE/E type/effect
reconstruction rule, 963, 964

Principal type, 796
property, 836, 971
for type reconstruction algorithm, 799

Principal typing property, 836
Private Data, see Captain Abstraction;

Data abstraction
Proc (procedure semantic domain)

in CBV recursion, 321
in computation-based exception DS,

524, 525
in FLICK, 418
in FLICK DS, 418–419
in FLICK standard DS, 473, 474–475
in FLICK standard DS for exceptions,

520, 521
in FLK, 276, 278
in static vs. dynamic scope, 335

proc? (FL procedure type predicate), 213
procans (SOS procedure outcome token),

258, 260
Procedural abstraction, 841
Procedure, 209, see also Function

closure, 378
as continuation, 446–471
controlling complexity with, 333
early termination of, 445, 455–457
exception-handling procedure, 515
first-class, 214–215
first-class vs. second-class, 349
first-order, in FL−−, 349
function vs., 209, 1157–1158
higher-order, 214–215, 239–240, 305
higher-order to first-order conversion,

1075
iterating procedure, 507
iterative, 449
simulating multiple arguments via

currying, 214
virtual, see Method
yielding procedure, 507
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procedure (procedure outcome in FL),
212

Procedure application, see app

Procedure body, 214
Procedure call, see app

Procedure call frame, 338, 1005
continuation representing, 445, 448,

1043, 1132
deallocation, 1144

procedure-cont (standard DS function),
473, 475

Procedure inlining, see Inlining
Procedure invocation, see app

Procedure type, 630, see also Arrow type
proc-point-impl (procedural

implementation of points), 840
Prod (product semantic domain)

in CBV product DS, 542, 543
prod (tuple creation), 541

type reconstruction, 825
type rule in FLEX, 676

prodof (tuple type constructor), 676–677
covariant subtyping in FLEX/S, 703
kind checking in FLEX/SPDK, 760
type equivalence, 680
type reconstruction, 825

[prodof-≈] (type-equivalence rule), 679,
680

[prodof-�] (FLEX/S subtype rule), 703
[prodof-elim] (FLEX type rule), 676, 677
[prodof-intro] (FLEX type rule), 676
Producer/consumer coroutine, 457–461
Product, 319, 539–566

call-by-name (CBN), 551–552
call-by-value, 551
Church pair, 302
Church tuple, 225
of domains (×), 1173–1175
fixed-length, 541–545
heterogeneous, 548, 677
homogeneous, 548, 677
immutable, 541–561
lazy (CBL), 552–555
mutable, 561–566, 1031, 1101, 1104,

1128

named, 549–550, 677–678
nonstrict, 551–561
positional, 541–549, see also Positional

product
projection, see Projection of product
of set family (

∏n
i=1 Ai), 1153

of sets (×), 1153
special syntax, 548–549
strict (CBV), 541–550
sum as dual of, 571, 573, 613
type as dimension, 548
typed, see Typed product
variable-length, 545–547

Product domain, 539, 1173–1175
partial order on, 177–178

Product indexing, 547
0- vs. 1-based indexing, 547
calculated name, 550
calculated position, 544
literal name, 549
literal position, 541
Pascal array indexing, 547

Production rule, 24
production, 26

Profiling, 1057
Prog (program domain)

in EL, 25
in FIL, 1031
in FILcps , 1046
in FILlift , 1095
in FILreg , 1101
in μFLARE, 773
in FLARE, 814
in FLARE/V, 1010
in μFLEX, 628
in FLEX, 697
in FLIC, 401
in FLICK, 398
in FLK, 211
in FLEX/M, 893
in FLEX/SP, 741
in FLEX/SPD, 753
in HOOK, 363
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[prog ]
ELM BOS rule, 77
ELMM BOS rule, 75
μFLARE type rule, 774, 775
FLARE/E type/effect rule, 953
μFLEX type rule, 644, 647
PostFix BOS rule, 78

ProgDesc (program description in
FLEX/SPD), 753

[prog-left] (ELMM SOS rule), 65
[progR] (μFLARE type reconstruction

rule), 793, 794
extended to support pattern matching,

831
Program, see also Prog

arguments in FLK, 217
assignment-free, 1019
denotational semantics vs., 128
execution in SOS, 58–62
in FL, 230–232
in FLK, 209, 217
of language L, see Prog (program

domain), in L
reasoning about, see Denotational

reasoning; Operational reasoning
valid, in Tortoise, 1025

Program context, 91
Program counter, 1122
Program equality

proving via DS, 145–147
in SOS, see Observational equivalence

Programming by differences, 366
Programming language

actor, see Actor language
applicative language, 305
block-structured, 337, see also Block

structure
decomposition, 207
dynamically scoped, 334, see also

Dynamic scope
dynamically typed, see Dynamic type

checking
expressive power, 471, 619, 727
extending with new primitive

operators, 235

full, 208
functional, see Function-oriented

programming
imperative, see Imperative

programming; Stateful language
interpreted, 623
kernel of, 207, 1186
logic-oriented, 445
machine language, 622
object-oriented, see Object-oriented

programming
polymorphic, see Polymorphism
reasoning about, see Denotational

reasoning; Operational reasoning
scope, see Scope
simply typed, see Simple type system
standard library of, 208, 235
stateful, see Imperative programming;

Object-oriented programming;
Stateful language

stateless, see Stateless language
statically scoped, 334, see also Static

scope
statically typed, see Static type

checking
syntactic sugar, 208, 218, see also

Desugaring; Syntactic sugar
typed, see Dynamic type checking;

Static type checking
typeless, 622
universal, see Universal programming

language
von Neumann language, 305

Programming paradigm, 16
Program optimization, see Optimization
Program transformation, see also

Compilation; Optimization; Safe
transformation; Simplification;
Translation

alpha-renaming, 1038–1041, see also
Alpha-renaming

assignment conversion, 430, 439,
1019–1025

closure conversion, 441, 1075–1093,
1117, see also Closure conversion
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Program transformation (continued)
CPS conversion, 1042–1075, see also

CPS conversion
defunctionalization, 1117
desugaring, 1013–1014, see also

Desugaring
globalization, 1014–1019
lambda lifting, 1094–1096, 1117
preconditions and postconditions, 1013
purely structural, 1012
register allocation, 1098–1115, 1117,

see also register allocation
translation, in Tortoise compiler,

1030–1038
type/effect reconstruction, 1025–1029

Program type (=>), 630, see also
ProgType

example, 636
introduced by [prog ] rule in μFLEX,

647
Progress rule, 54, 62–71

proof tree, 64
structure restriction, 68

Progress theorem for type soundness
in μFLARE, 780
in μFLEX, 662

[prog-right] (ELMM SOS rule), 65
ProgType (program type domain in

typed FL dialects)
in μFLARE, 775
in FLARE, 815
in μFLEX, 628
in FLEX, 697

[progZ ] (FLARE/E type/effect
reconstruction rule), 968, 969

Projection of polymorphic value on type,
see Polymorphic value projection

implicit, 896, 918–921
Projection of product

CBL tuple (lget), 552–555
CBN tuple (nget), 551
immutable sequence (seq-get), 544,

677
metalanguage tuple, 1152, 1174, 1189

mutable tuple (mget), 562, 1031
named product (select), 353, 549, 678
named product (select-sym), 550
named product (with), 678
named product (with-fields), 355
named product, dot notation, 550
pair (fst, snd), 213, 675
positional product (get), 541, 676
updatable sequence (useq-get), 545

Proj k (metalanguage tuple projection),
1174, 1189

Prolog
backtracking, 445
as logic programming language, 538
pattern matching, 590

Promise, 324, 560, see also Delayed
evaluation

Proof-carrying code, 1000, 1116
Proof tree, 65, see also Derivation

for BOS evaluation step, 75
linearization of, 66
for SOS transition, 64

Proper subset (⊂), 1149
Proper tail recursion, 1064
Prototype-based object-oriented

programming, 366
Prototype object, 380

used to simulate class, 366
Proverbs (quoted), 307
PT ∈ Pattern, 590
PT ∈ ProgType, 628, 697, 775, 815
pt-x/pt-y

dependent type implementation, 871
dynamic type implementation, 840
existentially typed object

implementation, 857
existential type implementation,

848–849
nonce type implementation, 860–861
using dynamic lock and key, 844

pure (effect in FLARE/E), 947, 949
Pure expression, 428, 880, 947, 973, see

also Purity restriction
purity test, effect-based, 974–978
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purity test, syntactic, see Syntactic
purity

referential transparency and, 428
required for type generalization, 815,

816
Purely functional language, 209, 384, see

also Function-oriented programming;
Stateless language

monadic style to simulate state,
394–396, 440

Purely structural rewrite rule, 69
Purely structural transformation, 1012
Purely structural type rule, 647
Purity restriction, see also Pure

expression
in dependent type system, 875,

880–881, 882, 883
in eta reduction ([eta]), 1033
in FLEX/M implicit type projection,

920, 921
in let polymorphism, 815
in module system with dependent

types, 916, 917, 937–939
in universal polymorphism, 731, 734,

735
value restriction in SML, 817, 837

push (function in PostFix DS)
definition, 143, 144
specification, 133

put (PostFix extension command), 102
Python, as dynamically typed language,

623

Q ∈ PostfixSequenceContext, 91
Q (PostFix command sequence meaning

function), 135–136, 137
Quadruple, 1152
Quantification, see Existential

quantification (∃); Universal
quantification (∀)

Quest, first-class existential types in, 886
Quota for store, 492–493
quote (FL s-expression sugar), 219, 222

desugaring in FL, 220, 233

Quotient (/), 1155
Quux, The Great, see Steele, Guy Lewis

Jr.

R ∈ ElmmRedex, 72
R ∈ ElmRedex, 74
R ∈ PostFixRedex, 74
R (type reconstruction function), 836

completeness of, 799
deduction-style specification, 791, 794,

795, 836
for data-type definitions, 831
for μFLARE, 790–800
for FLARE, 818
for μFLARELP , 809
for positional products, 825
for records, 823–824
for recursive sum-of-products types,

835
for sums, 826
function-style specification, 794
principal types for, 799
soundness of, 799

R ∈ Region, 949
R ∈ RelationalOperator, 25
R (renaming transform), 1040
R (relational operator meaning function)

in EL, 129
in PostFix, definition, 137
in PostFix, signature, 135

r ∈ Result, 132
RA ∈ ReconAns, see ReconAns
Rabbit compiler, 1006, 1116
raise (FLIC exception-generating

construct), 515–532
computation-based DS, 524–527
desugaring-based implementation,

527–529
metaCPS conversion, 1072
standard DS, 519–524
in type/effect system, 986–988

raise (SML exception construct), 514
[raise] (unsound type/effect rule), 986
Raise an exception, 514
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raise-quota! (quota construct), 493
raises (exception base effect), 985
raises (exception construct), 532–533
Rand of application, 20, 214
Range notation ([lo..hi ]), 1149
Range of function, see Target of function
Rat (rational number set & semantic

domain), 1148
Rational arithmetic module, 358
Rator of application, 20, 214
rbind (renaming environment binding

function), 1040
RDG (register dependence graph), 1107
re ∈ RenEnv, 1040
read (effect in FLARE/E), 946, 949
Reasoning

aliasing complicates, 437
denotational, 145–150, see also Comp,

equality laws
equational, 119
operational, 79–100
referential transparency simplifies, 389,

427
state complicates, 397, 400, 408, 430,

440
rec (FL local recursive binding), 211,

216–217
free and bound identifiers, 247
in CBN FLK DS, 283, 286–289, 321
in CBN FLK SOS, 259
in CBV continuation-based DS,

484–487
in CBV FLICK DS, 417, 418
in CBV FLICK SOS, 408–410
in CBV FLK DS, 320–323
in CBV FLK SOS, 320
in CBV FLK SOS, alternative, 323
in CBV language, 378
substitution, in FLK, 254

[rec] (FLK SOS reduction), 259, 263
receive! (channel reception), 998
Receiver function/procedure, to simulate

multiple-value return, 394, 451–453,
1164

Receiver of message, 363
Receiver parameter (self/this), 363
ReconAns (type reconstruction answer)

in μFLARE, 791, 792
in FLARE/E, 969

Reconstruction of types, see Type
reconstruction

Record, 353–359, 540, 549, see also
Module

arithmetic module example, 358
difference, 550
dot notation, 550
dynamic semantics, 381
examples of, 356–359
field, 353
in Pascal, 561
intersection, 550
matrix module example, 360, 361
module vs., 353
named product, 549–550
nonhierarchical scope of, 353
in Pascal, 353, 550
special syntax, 549–550
subtyping, 701–702, 703–704
subtyping of, and object-oriented

programming, 768
typed, 677–678, 821–826
variant, 1176, see also Sum
variant, in Pascal, 567, 583

Record (semantic domain), 357
record (record creation), 353, 549

DS, 357
match pattern, 602
type reconstruction, 823
type rule in FLEX, 678

record-delete, 550
record-insert, 550
recordof (record type constructor),

677–678
kind checking in FLEX/SPDK, 760
subtyping in FLEX/S, 703
subtyping rule, alternative, 720
type equivalence, 680
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[recordof-≈] (type-equivalence rule), 679,
680

[recordof-�] (FLEX/S subtype rule), 703
[recordof-elim] (FLEX type rule), 677,

678
[recordof-elimR] (type reconstruction

rule), 823
[recordof-intro] (FLEX type rule), 678
[recordof-introR] (type reconstruction

rule), 823
[recordof-with] (FLEX type rule), 678
recordrec (recursive record), 354, 355
record-size, 550
rectangle (shape constructor), 583–584

from shape desugaring, 588
rectangle~ (shape deconstructor), 584

from shape desugaring, 588
recur (FL local recursion), 219, 226

desugaring in FL, 220, 233
Recursion

in CBN FLK rec, 216–217
in CBV FLICK continuation-based

DS, 484–487
in CBV FLICK DS, 417
in CBV FLICK SOS, 408–410
in CBV FLK, 320–324
in CBV language, 378
in domain equations, 132, 150, 161,

201–202
induction and, 1168
in lambda calculus (Y operator),

303–304
in metalanguage, 1168–1169
letrec desugaring in CBN FL,

224–226
letrec desugaring in CBV FLAVAR,

432
mutual, see letrec; Mutual recursion;
tletrec

type recursion, see tletrec; trec
unwinding, 263
value recursion, see letrec; rec;
recur

Recursive definition, 163, 1168–1169
solution to, 164

Recursive domain equations, 132, 150,
161, 201–202

Recursive type, 688–696
canonical form, 690–691
equirecursive equivalence of, 690, 699,

761
equirecursive subtyping of, 699, 707
finite automata and, 691
isorecursive equivalence of, 689, 699,

761
isorecursive subtyping of, 699
strong normalization and, 688
subtyping of, 706–707, 767
type equivalence, 688–692

Redex, 71, 83
Reducible (SOS configurations), 50
reducible (expression classification), 272
Reduct, 73
Reduction relation (�), 72

in CBN vs. CBV parameter passing,
310

in ELM, 74
in ELMM, 72
in μFLARE, 778
in μFLEX, 664
in FLK, 259, 260
in PostFix, 74
stateful reduction in FLICK (

s
�), 407,

409
stateless reduction in FLICK, 407, 409

Reduction strategy, see also Evaluation
order; Parameter passing

applicative-order, 377
normal-order, 293–295, 309, 377

reelect (election construct), 490–492
Rees, Jonathan, 362, 380, 612
ref (PostText command), 106, 141
Reference (ref, ML mutable cell), 397,

see also Mutable cell
Reference counting for GC, 1131–1132
Reference to variable, see Variable

reference
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Referential transparency, 79, 389,
427–428

effect masking and, 973
lack of in stateful language, 427
in module loading, 930
of polymorphic value, 734
purity and, 428

[reflexive-≈] (type-equivalence rule), 679,
680

[reflexive-�] (FLEX/S subtype rule), 708
Reflexive domain, 201–202
Reflexive relation, 1154

partial order as example of, 174
subtyping as example of, 702
type equality as example of, 679

Reflexive transitive closure, 196, 1155
Region (domain), 949
region (control delimiter), 501–502
Region (of effect), 944, 945–951

as channel in communication effect,
998–999

in control effect, 980–982
effect masking and, 972–974
in mutable cell type, 945

Region-based concurrency analysis, 998
Region-based storage management,

991–995, 1001, 1145
Register

argument passing in, 1099
caller-saves, correspondence with free

variable in closure conversion, 1080
destination register, 1107
live, 1112
source register, 1107
spilled register, 1113
usage analysis, 1001

Register allocation, 1047, 1098–1115,
1117, see also Spilling

conversion phase, 1103, 1104–1112
expansion phase, 1102, 1104
interprocedural, 1111
register shuffling, 1106–1112
spilling phase, 1103, 1112–1115

Register caching and aliasing, 944

Register conversion phase of Tortoise
register allocator, 1103, 1104–1112

Register dependence graph (RDG), 1107
Register machine, 1098
Register memory, 1123
Register move, using copy, 1100

reducing number of, 1109
Register shuffling, 1106–1112
Regular tree, 690, 761
relapp (relational operation on boolean

literals), 260
Relation, 1153–1155

antisymmetric, 1154
binary, 1153
equivalence relation, 1154
n-ary, 1153
n-fold composition of, 1155
partial order, 1155
reflexive, 1154
reflexive transitive closure of, 1155
symmetric, 1154
transitive, 1154, see also Transitive

relation
transitive closure of, 1155

Relational operation
in EL DS, 129
in PostFix DS, 55

Relational operator, see also Primitive
operator

in EL dialects, 25
in EL DS, 129
in FL dialects, 213
in metalanguage, 1153, 1163
in PostFix DS, 55, 137
in PostFix grammar, 40
in PostFix informal semantics, 10

RelationalOperator (EL domain), 25
relop (PostFix2 command), 41
[relop-false] (PostFix SOS rule), 55
[relop-true] (PostFix SOS rule), 55
rem (PostFix command), 8, 40, see also

Arithmetic operator
informal semantics, 10
PostFix DS, 137
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Remainder function (%), 1163, see also %;
Arithmetic operator; rem

rename (record-field renaming), 355, 356
Renaming a variable, see Alpha-renaming
RenEnv (renaming environment), 1040
repeat (FLIC looping construct), 420

desugaring into loop, 489
repeat (PostLoop command), 103, 141
Representation conversion, 718
Representation invariant, 402, 842
Representation pollution, in closure

conversion, 1086
Reserved keyword, 210
Residual code, in metaCPS conversion,

1059
Resignaling of exception, 514
resToAns (function in PostFix DS)

definition, 143
specification, 133

restrict (record-field restriction), 355,
356

Restricted ELMM, 117
DS, 117–120

Resugaring
of let expressions in Tortoise, 1037
of primitive applications in Tortoise,

1018, 1032
Result

of function, 1156
of procedure application, 214
of procedure application, simulating

with call-by-reference, 437
of program execution, 209
simulating multiple results, 1164–1165

Result (semantic domain)
in PostFix DS, 132

resume (exception construct), 534
Resumption semantics of exceptions, 514,

515, 520
Resumption thunk, 508
return (FL monadic action return), 395
return (procedure/loop termination in

C/Java), 445
Return code, 514

return-from (block-exiting construct in
Common Lisp), 348

Return of multiple values, see
Multiple-value return

reverse (procedure), 238
iterative version, 390
recursive version, 237

revmap (Tortoise compiler example
program), 1009

0. initial, 1011
1. after desugaring, 1015
2. after globalization, 1021
3. after assignment conversion, 1025
4. after type/effect reconstruction,

1025
5. after translation, 1039
6. after renaming, 1041
7. after CPS conversion, 1067
7 ′. after CPS conversion (without

simplifications), 1068
8. after closure conversion, 1083
9. after lambda lifting, 1097
10. after register allocation, 1110

Rewrite rule of SOS, 49, 54–58, see also
⇒; Transition relation

antecedent, 54
axiom, 54–58
consequent, 54
progress rule, 54, 62–71
purely structural, 69
side condition, 57
transition pattern, 54

Reynolds, John, 537, 768, 1117
rgen (μFLARELP type reconstruction

generalization function), 808, 809
rgenPure (FLARE type generalization

function), 817, 818
RHS (right-hand side) of transition, 50
right (tree selector), 451, 608
Right-hand side (RHS) of transition, 50
Rigor mortis, 57
Robinson, J. A., 836
Root edge of RDG, 1107
Root set of GC, 1132
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Rose tree, 833
rot (PostFix command), 59
Row-major order, 547
Row type

complete, 823
incomplete, 823
for reconstructing product types, 822
for reconstructing sum types, 826
for reconstructing tuple types, 824
unification, 823

Row variable
in ML, 836
in object-oriented language, 836
for reconstructing product types, 822

RPN (stack calculator language), 61
Run time, 617, 890
Russell, type as operation set, 887
Russell’s paradox, 1149
R-value of mutable variable, 432, 436

S (lambda calculus combinator), 296
S ∈ Stack, see Stack
S ∈ SimpContext, 271
S ∈ Store, 406
S (stack meaning function), 153
s ∈ Stack, 132
s ∈ Store, 412–413
SAerror (StackAnswer error value), 93
Safe transformation, 79, see also

Compilation; Optimization; Program
transformation; Simplification;
Translation

in FLK, 270–274
in PostFix, 89–100
in PostFix, using DS, 147–150
in stateful language, 427–428
interference and, 427, 1027–1029
observational equivalence of divergence

and errors, 427
safety of FLK simplification (−−→), 274

Safety
of data, see Data abstraction
of typed language, see Type safety

Safety property analysis, 1001

Sather iters, 507
Satisfiable boolean formula, 466
satisfy (boolean formula satisfaction

procedure), 466–470
scale (shape procedure, using typed

sums and products), 683
scand (FL short-circuit and), 219, 222

desugaring in FL, 220, 233
in simple CPS conversion, 1054

Scanned region of stop-and-copy GC,
1135

Scanner generator, 43
Scan pointer in GC, 1134
scar (stream head), 556
scdr (stream tail), 556
Schema, see Type schema
Scheme, see also Lisp

as block-structured language, 337, 378
as call-by-value language, 309
as dynamically typed language, 623
as function-oriented language, 209
as mostly functional language, 384
call-by-value-sharing of mutable

products, 563
call-with-current-continuation,

505, 538
catch construct, 537
dynamic scope simulated via
fluid-let, 379

first-class control point, 497
FL syntax vs. Scheme syntax, 210
hygienic macros, 331, 379
mutable string, 548
mutable variable, 430
pair, 561
static scope, 378
stream, 560–561
strict application, 215
vector, as heterogeneous product, 562
vector, as mutable sequence, 561

scons (stream constructor), 556
Scope of a variable, 223, 245, 308, 334

block structure, see Block structure
dynamic, see Dynamic scope
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global, see Global scope
hierarchical, see Hierarchical scope
hole in, 245, 337
lexical, see Static scope
in metalanguage, 1195
nonhierarchical, see Nonhierarchical

scope
shadowing, 231
static, see Static scope

scor (FL short-circuit or), 219, 222
desugaring in FL, 220, 233
in simple CPS conversion, 1054

Scott, Dana, 161, 162
SCPS (simple CPS conversion),

1049–1057
SDT, 879, see also Static dependent type
sdup (PostSafe command), 104
Sealing an abstract type, 885, 934
SECD machine, 112
Second-class procedure, 349
Second-order lambda calculus, 764
Security

of data, see Data abstraction
of mobile code, 999–1000

sel (PostFix command), 8, 40
informal semantics, 10
PostFix DS, 137
PostFix SOS, 55

select (record-field selection), 353, 354,
549

DS, 357
type reconstruction, 821, 822, 823
type rule in FLEX, 678

Selective closure conversion, 1085, 1117
Selector, in def-datatype sugar, 589
select-sym (record selection with

calculated field), 550
Self, prototype-based objects, 380
self (FLIC recursive procedure call),

488
self (receiver parameter)

in HOOK, 366
in Selfish, 376
in SmallTalk, 363

[sel-false] (PostFix SOS rule), 55
Selfish (HOOK variant with self), 376
Self-reference, see Self-reference
[sel-true] (PostFix SOS rule), 55, 57
Semantic action in parser generator, 116
Semantic algebra, 115

in FLK DS, 275–280
how to read, 142–145
importance of studying signatures, 134
of language L, see L, DS

Semantic domain, 115
for FLICK standard DS, 473
for FLK, 276
importance of studying, 128

Semantics, 4, 5–6
axiomatic, 441
coercion semantics for subtyping, 718
denotational, see Denotational

semantics
dynamic semantics, see Axiomatic

semantics; Denotational semantics;
Operational semantics

dynamic semantics of X, see X, BOS;
X, DS; X, SOS

informal, pitfalls of, 14–15
operational, see Operational semantics
static semantics, see Effect; Effect

system; Type; Type System
static semantics of X, see X, static

semantics; X type rule; X, type
system

subset semantics for subtyping, 718
Semispace in GC, 1133
send (HOOK message send), 363, 364

translation to FL, 371
send! (channel transmission), 998
seq (PostFix2 command), 41
seq (sequence creation), 544

type rule in FLEX, 677
[seq] (PostFix SOS rule), 55
seq-get (sequence projection), 544

type rule in FLEX, 677
seq-map (higher-order description

example), 755
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seqof (type constructor), 677
covariant subtyping in FLEX/S, 703
kind checking in FLEX/SPDK, 760
type equivalence, 680

[seqof-≈] (type-equivalence rule), 679, 680
[seqof-�] (FLEX/S subtype rule), 703
[seqof-elim] (FLEX type rule), 677
[seqof-intro] (FLEX type rule), 677
[seqof-size] (FLEX type rule), 677
seq-size (sequence size), 544

type rule in FLEX, 677
Sequence, 540, 544

array vs., 544
immutable fixed-length positional

product, 544–545
immutable updatable, 548
strictly decreasing, 70
typed, 677
updatable, 545–547

sequence (computation function), 415
with continuation, 485

sequence (metalanguage sequence
constructor), 1182, 1189

Sequence domain, 1181–1184
partial order on, 179–180
prefix ordering on, 179
sum-of-products ordering on, 180

Sequence notation, 34–35
Sequence pattern

in metalanguage, 1192
in s-expression, 31–32

Sequential program, 996
Sergeant Spaghetticode, 333, 497, see also

Captain Abstraction
Set, 1148–1151

builder notation ({x | Px}), 1149
cardinality (| |), 1150
completion of, 184
countable, 1150
difference (−), 1149
disjoint, 1150
element of (∈), 1149
empty ({}), 1148
equality (=), 1149
finite, 1150

function, 1155–1170
infinite, 1150
intersection (∩), 1149
isomorphism, 1160
not element of (
∈), 1149
one-to-one correspondence, 1150, 1160
pairwise disjoint, 1150
partition, 1150, 1154
powerset of (P(. . .)), 1150
primitive element, 1148
product (×), 1153
product of set family (

∏n
i=1 Ai), 1153

proper subset (⊂), 1149
quotient (/), 1155
singleton, 1148
subset (⊆), 1149
uncountable, 1150
union (∪), 1149

set! (variable assignment in FLAVAR
and FLARE/V), 430

:= vs., 431
assignment conversion to mutable cell,

1019–1025
closure conversion and, 1081–1082,

1092
FLAVARK DS, 431–432
in simple CPS conversion, 1054
type reconstruction and, 820
type rule in FLEX, 681

set-car! (Scheme pair procedure), 561
set-cdr! (Scheme pair procedure), 561
setjmp/longjmp (C nonlocal exit

constructs), 506
set-mfst! (mutable pair assigner), 421
set-msnd! (mutable pair assigner), 421
Set theory, 1147
SExp (s-expression domain), 219
S-expression (symbolic expression), 23–24

abstract syntax tree as, 210, 222, 580
FLK program input, 259
in Lisp, 43
quote sugar for, 222

S-expression grammar, 15, 23–39
concise form, 29
sum-of-products interpretation, 36–38
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S-expression pattern, 26
matching, 27
sequence pattern, 31–32

sfilter (stream filtering), 559
Shadowing of a name, 231
Shakespeare, William (quoted), 185, 1005
Shallow copy of mutable data, 565
shape (data declaration), 583–584
Shape, as sum of products, 577, 583–584
Sharing

by construction, 935
by specification, 936

Shelley, Percy Bysshe (quoted), 383
Short-circuit logical operator, 222, see

also scand; scor
Side condition of rewrite rule, 57
Side effect, see Effect
Sieve of Eratosthenes, 558
Sigma calculus, 381
signal (CLU exception construct), 514
Signal an exception, 514
Signature

of function, 1157
of module, 897

Signature matching of module, 934
simp (algebraic simplifier for ELM), 595
SimpContext (SOS simplification

context)
in FLK, 271
in lambda calculus, 292

[simple-�AS ] (FLEX/S subtype rule),
707

Simple CPS conversion (SCPS),
1049–1057

Simple type system, 617–700
Simplification

algebraic simplifier for ELM, 595
confluence of, in FLK, 273
confluence of, in lambda calculus, 292
constant propagation, 1053
copy propagation, 1033
eta reduction, 1033
in FIL, 1032–1034
in FIL, and CPS code, 1048, 1064

in FIL, making confluent, 1035
in FIL, nonconfluence of, 1034
in FLK, 270–274
in lambda calculus, 291, 292
safety of, in FLK, 274
standardization of, in FLK, 274
standardization of, in lambda calculus,

295
tail-call optimization, 1064

Simplification step relation (−−→)
confluence of, 273, 292
in FLK, 271
in lambda calculus, 291, 292
safety of, 274
standardization of, 274

Simplification strategy, see Reduction
strategy

Simply typed lambda calculus, 674, 699,
764

Simula 67
abstraction, 941
first object-oriented language, 362, 379

Simulation
of CBN lambda calculus in CBV, 378
of CBN parameter passing in CBV, 325
of CBV lambda calculus in CBN, 378
of class in prototype-based object

system, 366
of dynamic scope in static scope with
fluid-let, 438

of higher-order procedures with
first-order procedures via closure
conversion, 1076

of message-passing object with
procedure, 403, 842, 885

of multiple function/procedure
arguments, 214, 1161–1164

of multiple function/procedure results,
394, 451–453, 1164–1165

of procedure result(s) with
call-by-reference, 437

of state in a stateless language, 390–397
of state with monadic style, 394–396,

440
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Simultaneous substitution ([Ei/Ii ]
n
i=1),

256
Single-threaded store, 392–394, 411, 471

global store, 408, 440
in CBV FLICK app clause, 418
in FLICK SOS, 408
lack of modularity with, 404, 440

Singleton set, 1148
skip (PostFix2 command), 39, 40, 41
Skolem constant, 862
Small-step operational semantics (SOS),

49–73
answer, 48
axiom, 54
behavior, 50–52
big-step semantics vs., 78
CBN vs. CBV parameter passing,

310–316
CBV recursion, alternative rule, 323
configuration (cf ∈ CF ), 47, 49, see

also Configuration of SOS
drawbacks of, 113
error, 52–53, 58, 60
final configuration (FC ), 48, 50
game board, 48
initial configuration, 47
input function (IF ), 47, 50, see also

Input function of SOS
multistep transition relation (

∗⇒), 50

n-step transition relation (=
n
=⇒), 50

of CBL product, 553–555
of CBN/CBV recursion in FLK, 320
of CBN product, 552
of CBV named sums, 572
of CBV product, 543
of EL, 67
of ELM, 67
of ELMM, 63–67
of μFLARE, 778–781
of μFLEX, 662–667
of FLICK, 405–411
of FLK, 258–274
of FLK evaluation, 258–269
of FLK simplification, 270–274

of label and jump, 503–504
of lambda calculus normalization, 292
of lambda calculus simplification, 292
of PostFix, 52–54
of PostFix, with one-component

configurations, 70
of PostFix2, 60
of static vs. dynamic scope, 335
of strict vs. nonstrict pair, 318–320
one-step transition relation (⇒), see

Transition relation
output function (OF ), 48, 50, see also

Output function of SOS
program execution, 58–62
progress rule, 54, 62–71
rewrite rule, 49, 54–58
stuck state, 48, 50
transition path, 50
transition relation (⇒), see Transition

relation
SmallTalk

as call-by-value language, 309
as dynamically typed language, 623
as stateful language, 384
garbage collection, 1120, 1121
integers and booleans as

message-passing objects, 365, 379
purely object-oriented language, 362,

379
self as receiver parameter, 363
simulating higher-order procedures,

1076
sum-of-products data via objects, 579

smap (stream mapping), 559
Smash sequence, 187
Smash sum, 186
SML (Standard ML)

efficient pattern matching, 601
exception handling via raise/handle,

514
functors distinct from procedures, 900
generative functors, 939
heterogeneous tuple, 548
immutable string, 548
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implicit-typing example, 626
lack of abstraction in pattern

matching, 607–610
making type reconstruction practical,

835
modules with abstract and concrete

type definitions, 893
mutable variables, 837
record syntax, 549, 550
sharing, 936
signature sealing, 934
simulating mutable products, 563
translucent types, 934
tuple syntax, 548
tupling of constructor arguments, 588
type generativity, 886
user-defined data-type declaration,

588–589
value restriction, 837
vector, as updatable sequence, 545

SND (second element of Church pair),
302

snd (pair primitive), 213, 215
generic type for in FLARE, 813
PostFix command, 102, 141
sum-of-products data version, 586
type rule in FLEX, 675

[snd] (FLK SOS reduction), 259
snil (empty stream), 556
SNOBOL4, dynamic scoping in, 338
snoc (list postpending view), 606, 607
snoc~ (list view deconstructor), 606
snull? (empty stream predicate), 556
Soft typing, 624, 837
Solvability restriction, 920, 921
solveFCS (effect constraint solver), 960,

963
solveTCS (type constraint solver), 788,

789, 790, 969
extended to handle effects, 965

Sort (“type” of a kind), 765
Sorting (merge sort), 240
SOS (small-step (or structural)

operational semantics), see
Small-step operational semantics

Soundness
of compiler, 1007
of denotational semantics, 151–156
of dependent types, 879–881
of subtyping in FLEX/S, 708–713
of type reconstruction algorithm, 799
of type system, see Type soundness

Sound with respect to (wrt), 151
Source (domain) of function (src), 1156
Source language, 7
Source register, 1107
Source-to-source transformation,

1005–1009, 1116, see also Desugaring
Spaghetticode, Sergeant, 333, 497, see

also Captain Abstraction
special (dynamically scoped variable in

Common Lisp), 348
spget (FILreg spill register get), 1101,

1112
Spilling, 1100, 1112, 1117

in IBM 360, 1115
spilled register, 1113
spilling phase of Tortoise register

allocator, 1103, 1112–1115
spill memory, 1112

Spinoza, Benedict (quoted), 943
split (list splitting view), 607
spset! (FILreg spill register set), 1101,

1112
sqrt (metalanguage square root partial

function), 1156
square (shape constructor), 583–584

from shape desugaring, 588
square~ (shape deconstructor), 584

from shape desugaring, 588
src (function source), 1156
Stack

CPS continuations as procedure-call
stack, 448, 450, 453, 1043

first-class value in StackFix, 105
name stack in PostLisp, 109
stack of procedure-call frames, 1005,

1144
Stack (PostFix domain), 53
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Stack (PostFix DS domain), 132
StackAnswer (domain), 93
Stack-answer equivalence (∼SA), 94
Stack calculator language, 61
Stack equivalence (∼S), 94
StackFix (PostFix plus first-class

stacks), 105
Stack frame, see Procedure call frame
Stack smashing, see Buffer overflow

exploit
Stack transform, see also StackTransform

compositionality of, 135
in PostFix DS, 113, 132

StackTransform (PostFix DS domain),
132

Stack value equivalence (∼V ), 94
Staged computation, 1059
Standard DS, 471

how to read, 476–479
of exceptions, 519–524
of FLICK, 472–480
of label and jump, 497–498

Standard identifier, 230
in FL, 236, 237
in FLARE/V, 1009

Standardization
of FLK simplification (−−→), 274
in ISWIM, 306
of lambda calculus simplification (−−→),

295
Standard library, 208, 230, 235

built-in value, 235
in FL, 235–239
top-level value, 235

Standard ML, see SML
Standard ML of New Jersey, see

also SML
callcc construct, 505

Standard path, 274
Star (*) prefix for single-threading state

functions, 392
State, 383–441

analysis of, see Effect
identity and, 383–384

iteration state variable, 390
lack of referential transparency with,

389
monadic style to hide plumbing of, 395,

414
in object-oriented programming, 403,

441
philosophy of, 383–384, 440
problems with CBN in the presence of,

425–426, 433
simulating dynamic scope with
fluid-let, 438

threading of, 78, 392–394
time and, 383–384

State component of a configuration, 47
in FLICK SOS, 407

State context, 443
Stateful language, 384, see also

Imperative programming,
Object-oriented programming

lack of referential transparency, 389,
397, 427

modularity advantages, 397, 404, 440
problems with CBN, 425–426, 433
simulating dynamic scope with
fluid-let, 438

time-based bugs, 400
Stateless language, 384–389

lack of modularity, 404, 440
monadic style to simulate state,

394–396, 440
referential transparency and, 389
simulating state in, 390–397

Statement, 472, see also Command
State variable of iteration, 390
Statically typed language, see also Static

type checking
Static analysis, 39, 79

alias analysis, 944
concurrent behavior analysis, 998–999
control flow analysis, 995–996
control transfer analysis, 978–983
dynamic variable analysis, 983–985
effect system, 943
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escape analysis, 993
exception analysis, 985–988
execution cost analysis, 988–991
free variables, 247
lifetime analysis, 991–995
security analysis, 999–1000
static type checking, 623
store effect analysis, 943–978
termination analysis, 618
undecidability and, 618–619

Static checkability, 79, see also Static
analysis

Static continuation, 1117
Static correspondence theorem in

μFLEX/μFLARE, 776
Static dependent type, 879

modules and, 891, 905, 911
Static link, 1091
Static property, 617–620, see also

Analysis time; Compile time; Static
analysis

Static scope, 334, 336–338
block structure, 337
closure, 378
dynamic scope vs., 335, 339–344
environment diagram, 341
in HOOK, 366
lexical addressing, 342
lexical environment, 341

Static semantics, 16, 617–620
dynamic semantics vs., 617–620
effect system, see Effect; Effect system
type system, see Static type checking;

Type; Type system
of X, see X, static semantics; X type

rule; X, type system
Static type checking, 623, see also Static

semantics
dynamic type checking vs., 623–625
as evaluation, 641–643
explicit type annotations, 632, 769
in μFLEX, 640–660
languages with, 623

of list, 685–688
of positional product, 548, 676–677
of record, 677–678
of sequence, 677
of sum, 682–685
of sum of products, 738–745
of X, see X, static semantics; X, type

rule; X, type system
statically typed language, 623
strong normalization and, 673–674, 699
syntax-directed, 648, 713, 714
type reconstruction, see Type

reconstruction
Static type system, 619, see also Static

type checking
Steckler, Paul, 1117
Steele, Guy Lewis Jr., 1006, 1116

(quoted), 397, 577
Steiner, Jacqueline (quoted), 1042
Stop-and-copy garbage collection,

1133–1140
Storable (DS storable value domain), 412

in CBL FLAVARK DS, 435
in CBL product DS, 555, 557
in CBN FLAVARK DS, 434
in CBR FLAVARK DS, 435
in CBV FLAVARK DS, 434
in FLICK, 416, 418
in FLICK standard DS, 473

Storage management, see Garbage
collection (GC)

Store, 397
alternative implementation of, 413
in DS, 411–413
global, via single-threading, 408, 440
implementation of, 408
quota, 492–493
single-threaded, 471, see also

Single-threaded store
in SOS, 405–408

Store (DS store domain), 412–413
Store (SOS store domain), 406, 407
store (PostHeap command), 110
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Store effect, 945
allocation effect, 946
analysis of, 943–978
combination of, 946
initialization effect, 946
pure effect, 947
read effect, 946
write effect, 946

Stoy, Joseph, 249
Stoy diagram, 249–253, 337, 389
Strachey, Christopher, 162
Stream, 555–561, see also Lazy (CBL)

product
for backtracking, 612
examples of, 558
iterator vs., 556, 612
strict list vs., 559

strict (strict function), 200
Strictly decreasing chain, 104
Strictly decreasing sequence, 70
Strictness, see also Nonstrictness

parameter passing, 199
strict (CBV) pair, 318–320
strict (CBV) product, 541–550
strict function, 199
strict list vs. stream, 559
strictness analysis, 314
strict parameter passing, see also

Call-by-value
strict procedure, 215

String, 540, 548
immutable, 548
mutable, 548

String (string set & semantic domain),
1148

Strong normalization, 52, 79, 84, see also
Termination

PostFix programs, 84–89
recursive types and, 688
static type checking and, 673–674, 699
type/kind system, 761

Strong sum, 877
struct (C named product), 353, 550,

561, 568, 580

Structural equivalence of types, 864
Structural induction, 88

in ELMM determinism proof, 80–81
in PostFix termination proof, 88–89
in Postfix Transform Equivalence

proof, 96
Structural operational semantics (SOS),

49, 69, see also Small-step
operational semantics

Structure (example of product), 540, see
also struct (C named product)

Structured identifier, 886
Structured name, 869
Structured programming, 497
Structure restriction, 68
Stuck (stuck states in SOS), 50
stuck (expression classification), 272
stuck (stuck outcome in SOS), 50
stuckout (stuck token in SOS), 50
Stuck state of SOS, 48, 50

example of in PostFix, 58
in μFLARE, 779
in FLK, 264, 266
in PostFix, 52
stuck at a nontype error, 666, 780
stuck at a type error, 666, 780

stuffit (unsound cell subtyping
example), 705

sub (PostFix command), 8, 40, see also
Arithmetic operator

informal semantics, 10
PostFix DS, 137

Subclass, 366
inheritance vs. subtyping, 723–725

Subeffect (�e), 947, 949, 954
subexpsFLARE/V (function), 1013
subexpsFIL (function), 1034
Subject reduction theorem for type

soundness, 662
Subr (subroutine name domain in

FILlift), 1095, 1101
Subroutine, addr as address of, 1100
Subroutine memory, 1123
Subroutine name, 1094
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Subset (⊆, ⊂), 1149
Subset semantics of subtyping, 718
subst (expression substitution), see also

Substitution
in μFLEX, 639
in FLK, 254

Substitution ([E1/I ]E2 ), 253–257
capture-free, in closed expression, 269
environment as virtual, 280
in μFLEX, 637, 639
in FLK, 254
in FLEX/SPD, 758
of type in expression or type ([T/τ ]),

in μFLEX, 641
simultaneous ([Ei/Ii ]

n
i=1), 256

type substitution (σ) in reconstruction,
see Type substitution

Substitution strategy for closure
conversion, 1084

substTy (type substitution), 641, see also
Substitution

Subtraction function (−), 1163, see also
-; Arithmetic operator; sub

on Church numerals, 302
Subtyping, 627, 701–725, see also

FLEX/S; Polymorphism
of arrow types, 704
automata-based approach, 707
in bounded quantification, 747
coercion semantics, 718
contravariant, 704
covariant, 703, 704
dimensions of, 713–725
downward conversion, 721–723
explicit vs. implicit, 713–717
inheritance vs., 723–725, 767, see also

Subclass
invariant subtyping of mutable

structure, 704–706
modules and, 912, 913
of record types, 701–702, 703–704
of recursive types, 706–707, 767

reflexivity, 702
semantics (subset vs. coercion),

718–721
soundness of in FLEX/S, 708–713, 719
subset semantics, 718
type checking and, 714, 715
type equivalence and, 708
unsoundness of covariant subtyping for

procedure arguments, 710
upward conversion, 714

Success continuation
for backtracking, 465–470, 612
for error handling, 461–464
for iterator, 513
for pattern matching, 584, 606

Success expression, in match desugaring,
596

Sugar (syntactic), see Syntactic sugar
Sum, 567–576

discriminant of, 570, 576
dynamic typing and, 568–572
extended-number arithmetic example,

568–571
named, 567–576
named sum DS, 573–576
named sum SOS, 572
pair vs., 567
payload, 567
positional, 576
product as dual of, 571, 573, 613
strong, 877
tag, 567
typed, 682–685, see also Typed sum
weak, 877

sum

iterator example, 507
rec example in FLK DS, 286
tree summation procedure, 608, 609

sumcase (positional sum case analysis),
576

Sum domain, 568, 1176–1181
partial order on, 178
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Sum of products, 577–583
constructor procedure, see Constructor

procedure
declaration, see def-data;
def-datatype

deconstructor procedure, see
Deconstructor procedure

ELM expression example, 577, 585
list, 577
optimization of encoding, 578
shape example, 577, 583–584
typed, see Typed sum of products
typed pattern matching, see Typed

pattern matching
Sum-of-products interpretation of

s-expression grammar, 36–38
Sum-of-products ordering on a sequence

domain, 180
Superclass, 366
Supereffect ("e), 949
Supertype, 702, 714
Surjective function, 1160
Suspension, 325, 560, see also Delayed

evaluation
swap (PostFix command), 8, 40

informal semantics, 10
PostFix DS, 137
PostFix SOS, 55

swap (cell-swapping example)
algebraic type schema for, 966, 968
solving effect constraints for, 969

[swap] (PostFix SOS rule), 55
Sweep phase of mark-sweep GC, 1141
switch (StackFix command), 105
switch (exception construct), 534–537
Switcheroo (FLIC extension), 534–537
SX ∈ SExp, 219
Sym (symbol semantic domain)

in FLK, 276
sym (FL symbolic literal), 209, 211, 212

type rule in μFLEX, 644
sym=? (FL symbol equality), 213

type in μFLEX, 643
sym? (FL symbol type predicate), 213

symb (symbol type), 628, 629
[symb]

μFLARE type axiom, 775
FLARE/E type/effect axiom, 953
μFLEX type axiom, 644

Symbol
as block of characters in FRM, 1125,

1128
FL value, 209
message-passing HOOK object, 365

Symbolic expression, see S-expression
Symbolic token, s-expression leaf, 23
Symbol table, 1005
[symbR] (μFLARE type reconstruction

axiom), 793
SymLit (symbol syntactic domain)

in FL dialects, 211
[symmetric-≈] (type-equivalence rule),

679, 680
Symmetric relation, 1154

type equality as example of, 679
Synchronization, 997
Syntactic algebra, 115
Syntactic domain, 24

compound, 25
primitive, 25

Syntactic function, 35–36
Syntactic purity, 428, see also Pure

expression
deduction system for testing, 816–817
in module system with dependent

types, 916, 938
syntactic value, see Syntactic value
in type/effect system, 952, 968
variable assignments and, 821

Syntactic purity judgment (�pure),
816–817

in type/effect system, 952
variable assignments and, 821

Syntactic sugar, 208, 218–234, 1186, see
also Desugaring; Resugaring

in FL, 218–234
user-defined, see Macro
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Syntactic value, 428, 816, see also
Syntactic purity

in let polymorphism, 817, 837
in dependent type rules, 881
in universal type rule, 734

Syntax, 4–5, 19–43
abstract, 20–21
concrete, 22–23
named product syntax, 549–550
of language L, see L, syntax
product syntax, 548–549
s-expression grammar, 23–39

Syntax-directed type system, 648, 713,
714

System F , 764, see also Polymorphic
lambda calculus

System F2, Fi, Fω, 764–765

T, prototype-based objects, 380
T (FLARE-to-FIL translation), 1037
T (HOOK-to-FL translation), 372
T ∈ Type, see Type
t ∈ StackTransform, 132
#t (true literal), 209, 211, 212, 465
Table

module example, 906–909
as product, 540

tabulate (sequence constructor), 545
Tag

of exception, 515
GC tag, 1126
phrase tag, 30
of sum, 567
type tag, 1124

tagbody (Common Lisp goto label),
347–348

tagcase (sum case analysis), 569, 570
body clause, 570
body expression, 570
CBV named sum DS, 575
CBV named sum SOS, 572
else, 570
type reconstruction, 826
type rule in FLEX, 684

[tagcase] (stateless reduction rule), 572
[tagcase-else] (stateless reduction rule),

572
TagEnv (sum tag environment), 575
Tag environment, 573
Tag-free GC, 1127, 1141–1142, 1145
Tagged sum, see Sum
Tagged union, see Sum
tail (Scheme stream tail), 561
tail (metalanguage sequence function),

1182–1184
Tail call, 1044–1049

optimization, 1064
TailCallContext (context domain), 1045
Tail recursion, proper, 1064
Talpin, Jean-Pierre, 994
Tarditi, David, 1116
Target (codomain) of function (tgt), 1156
Target language, 7
tbind (local type abbreviation), 640
TC ∈ TailCallContext, 1045
TC ∈ TypeConstraint, 784
TCR ∈ TypeConstructor, 893, 949
TE ∈ TypeEnvironment, 643, 775, 815,

875, 914, 952
Template, in C++, 748
Term (lambda calculus expression), 291
Terminating language/SOS, 52, see also

Strong normalization
Termination, see also Strong

normalization
early termination of procedures/loops,

445, 455–457
of PostFix programs, 84–89
of PostLoop, 103
of PostSafe, 104

Termination analysis, 618
Termination semantics of exceptions, 514,

515, 520
Term rewriting system, 112
Test expression of conditional, 20
tgt (function target), 1156
thaw (undelay evaluation), 228
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the (μFLEX type ascription), 628, 633
in μFLEX SOS, 664
inclusion rule for explicit subtyping,

715
static semantics in FLEX/M, 917
type rule in μFLEX, 644
upward type conversion in FLEX/M,

904, 916, 926
upward type conversion in FLEX/S,

714
[the]

μFLEX SOS reduction, 664
μFLEX type rule, 644, 647

[the-inclusion] (type rule)
in FLEX/M, 916, 917
in FLEX/S, 714, 715
in FLEX/S, alternative, 716

Then expression of conditional, 20
this (Java receiver parameter), 363
Thoreau, Henry David (quoted), 701
Threading of state, 78, 392–394, see also

Single-threaded store
Thread of control, 996

communication by channel, 997
interleaving, 997
synchronization, 997

throws (Java exception-handling
specification), 514, 985

Thunk, 324–328, see also Delayed
evaluation

failure thunk in match desugaring, 595
in producer/consumer coroutine, 461
resumption thunk, in iterator, 508
to implement infinite data in a CBV

language, 325
to simulate CBN parameter passing in

a CBV language, 325
Tilde (~), deconstructor suffix, 584
Time

bugs due to time-based nature of
stateful programming, 400

data dependency and, 391
state and, 383–384

tletrec (recursive type), 688

Tofte, Mads, 994
Token, s-expression leaf, 23
to-list (iterator example), 508
to-list (stream-to-list conversion), 556
top (top type in FLEX/SP with

bounded quantification), 746, 747
top (function in PostFix DS)

definition, 143
specification, 133

Top (�), 176
[top-�BQ ] (FLEX/SP subtype rule), 747
top-level-cont (standard DS

continuation), 473, 475
Top level of program, 1094
Top-level values, 235
Torczon, Linda, 1116
Tortoise compiler, 1006

alpha-renaming, 1038–1041
assignment conversion, 1019–1025
closure conversion, 1075–1093
CPS conversion, 1042–1075
desugaring, 1013–1014
FLARE-to-FIL translation, 1030–1038
globalization, 1014–1019
lambda lifting, 1094–1096
preconditions and postconditions for

transformations, 1013
register allocation, 1098–1115
source language (FLARE/V),

1009–1013
structure of CPS code, 1044–1049
target language (FILreg), 1007,

1098–1102
transformation-based architecture,

1007–1009
type/effect reconstruction, 1025–1029
well-formed program, 1014

To-space in GC, 1133
Total function (→), 1156, 1157
Total order, 175
Transaction, 423
transform (function in PostFix DS)

definition, 143
specification, 133
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Transformation, see Program
transformation; Safe transformation;
Source-to-source transformation;
Translation

Transform equivalence (∼Q), 93
in EL, 99
in PostFix, 92–100
in PostFix, observational equivalence

and, 96–98
Transition path of SOS, 50

length, 50
Transition pattern of rewrite rule, 54
Transition relation, 49, see also Rewrite

rule of SOS
confluence of, 82
in context-based SOS, 71
deterministic, 50, 51, 58
evaluation context, 71
in ELMM, 65
in μFLARE, 778
in μFLEX, 664
in FLICK, 407, 409
in FLK, 259, 260
in PostFix, 55
left-hand side (LHS), 50

multistep (
∗⇒), 50

nondeterministic, 50, 51
n-step (=

n
=⇒), 50

one-step (⇒), 49
redex, 71, 83
right-hand side (RHS), 50

[transitive-≈] (type-equivalence rule),
679, 680

[transitive-�] (FLEX/S subtype rule),
703

Transitive closure, 1155
Transitive relation, 1154

partial order as example of, 174
subtyping as example of, 702
type equality as example of, 679

Translation, 7, see also Compilation
ASTs processed by, 116
between exception-handling languages,

534

of ELMM to PostFix, 100
of FLARE to FIL, 1036–1038
of FLARE/V to FLARE (assignment

conversion), 1019–1025
of HOOK to FL, 370–373
type-directed, 720

Translucent type, 934
Transparent type, 933
Transparent type bindings, 757
trap (FLIC exception-handling

construct), 515–532
computation-based DS, 524–527
desugaring-based implementation,

527–529
resumption semantics, 515, 520
standard DS, 519–524

trec (recursive type), 688
subtyping in FLEX/S, 706–707
type equivalence, 688–692
unsound subtyping rule, 713

[trec-α] (type-equivalence rule), 689
[trec-β] (type-equivalence rule), 689
[trec-left] (FLEX/S subtype rule), 707
[trec-right] (FLEX/S subtype rule), 707
Tree, see Abstract syntax tree; Binary

tree; S-expression
Tree decoration, as imperative

programming example, 404
treeof (example type constructor), 752
tree-product (nonlocal exit example),

455–457, 480
CPS version, 456
CPS version with nonlocal exit, 456
non-CPS version with nonlocal exit,

457
simple recursive version, 456
version using cwcc, 505
version using label and jump, 495

triangle (shape constructor), 583–584
from shape desugaring, 588

triangle~ (shape deconstructor), 584
from shape desugaring, 588

Triple, 1152
TRUE (Church boolean), 300
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true (boolean literal)
in EL, 25
in EL DS, 129
FL standard library binding, 236

true (true value outcome in FLK), 212
true (true value of Bool), 1148
try (FLIC backtracking construct), 422
try. . .catch (Java exception-handling

construct), 514, 985
TS ∈ TypeSchema, see TypeSchema
Tuple, 540

equality (=), 1153
heterogeneous product in SML and

Haskell, 548
immutable fixed-length positional

product, 541–542
metalanguage product value,

1152–1153, 1173
mutable tuple, 562–566, 1031, 1101,

1104, 1128
pair, 1152
projection function (Proj k), 1174, 1189
projection of (↓), 1152
quadruple, 1152
to simulate multiple arguments

(tupling), 1161
to simulate multiple results, 1164
triple, 1152
typed, 676–677
type reconstruction, 825

tuple (metalanguage tuple constructor),
1173, 1189

Tuple notation (〈. . .〉), 1152
Tuple pattern, in metalanguage, 1192
turtle (sample HOOPLA class), 371
Twiddle (~), deconstructor suffix, 584
two-args (standard DS function), 473, 475
twos (infinite list/stream)

in CBN FL, 324
stream implementation, 558
thunk implementation in CBV FL, 325

[tyconapp-≈] (type-equivalence rule), 913
TyConId (type constructor name), 831

in FLARE, 831
in FLEX/M, 893

Type, 16, 620–622
abstract type, see Abstract type
arrow type, see Arrow type
as abstract description of value, 620
as approximate value, 621, 641, 699
as data dimension, 548
as formula, 700
as partial value, 621
as set, 621
base type, 629
compilation, use in, 1026
dependent, see Dependent type
dimensions of, 622–628, 698
domain as, 1172–1173
dynamic, see Dynamic type checking
dynamic vs. static, 623–625
existential, see Existential type
explicit, see Explicit type
explicit vs. implicit, 625–627
expressive vs. simple, 627–628
of function, 1157, 1166
generativity, 886
generic, see generic

ill-typed expression, see Ill-typed
expression

implicit, see Implicit type
implicit vs. explicit, 625–627
linear, 1146
monomorphic, see Monomorphism
nonce, see Nonce type
in object-oriented programming, 379,

381, 768
opaque, 933, 934
polymorphic, see Polymorphic type
principal type, 796, 799
principal type property, 836, 971
principal typing property, 836
of procedure, see Arrow type
product, see Typed product
of program, see Program type
recursive, see Recursive type
simple, 617–700
simple vs. expressive, 627–628
static, see Static type checking
static vs. dynamic, 623–625
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subtype, see Subtyping
sum, see Typed sum
sum-of-products, see Typed sum of

products
supertype, 702, 714
translucent, 934
transparent, 933
typed data, see Typed data
union type, see Typed sum
universal, see Universal quantification
well-typed expression, see Well-typed

expression
Type (domain)

extended with control points, 979
in dependent type system, 873
in existential type system, 850
in μFLARE, 775
in FLARE, 815
in FLARE/E, 949
in μFLEX, 628
in FLEX, 697
in FLEX/M, 893
in FLEX/SP, 731
in FLEX/SP with bounded

quantification, 747
in nonce type system, 861
with type constructor applications in

FLARE, 831
Type/cost judgment, 989
Type/effect judgment, 951
Type/exception judgment, 987
Type/kind judgment, 762
type : type, 886
[type-≈] (type-equivalence rule), 679, 680

in FLEX/S, 708
Type assignment, 643
Type cast, 717, see also Type coercion;

Type conversion
downcast, 721
upcast, 721

Type checking
dynamic, see Dynamic type checking
explicit type annotations, 632, 769
interactions with kind checking, 762

soft, 837
static, see Static type checking
subtyping and, 714, 715

Type coercion, 718, see also Type cast;
Type conversion

in C/C++/Java, 718
TypeConstraint (domain), 784
Type constraint (

.
=), 770, 771

solution to, 781, 783
Type-constraint set, 787–790
TypeConstraintSet (domain), 787–790
Type constructor, 630, 752

arrow kind (->>) of, 760
arrow type (->) as, 630
dependent, 898
as description in FLEX/SPD, 751–755

TypeConstructor (domain)
in FLARE/E, 949
in FLEX/M, 893

Type conversion, 633, see also Type cast;
Type coercion

in C/C++/Java, 716
downward, 721
upward, 714

Typed assembly language, 1026, 1116
Typed data, 675–698, see also Typed

mutable data; Typed product;
Typed sum; Typed sum of products

Type derivation, 648–650
horizontal style, 648–650
vertical style, 648–650, 699

TypeDerivation (domain)
in μFLEX, 776
in μFLARE, 776

Typed intermediate language, 1026, 1116
Type-directed translation, 720
Typed lambda calculus

higher-order polymorphic, 765
polymorphic, 764, 768
second-order, 764
simply typed, 674, 699, 764

Typed list, 685–688
Typed mutable data, 681–682

type reconstruction and, 837
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Typed pair, 675–676
Typed pattern matching, 742–745,

894–897, 921–923
Typed product, 675–679

pair, 675–676
record, 677–678
sequence, 677
tuple, 676–677
type reconstruction, 821–826

Typed record, 677–678
Typed sequence, 677
Typed sum, 682–685

type reconstruction, 821–826
Typed sum of products, 738–745,

766–767, 894–897
pattern matching, 742–745, 894–897,

921–923
typed list, 685–688
type reconstruction, 826–835

Typed tuple, 676–677
Type environment, 643–644

empty type environment, 643
extending, 644
extending with data-type definitions,

830, 831, 832, 912–914
in FLEX/M, 914
name-capture restriction in dependent

type system, 875, 879
primitive (TEprim), 643, 647

TypeEnvironment (domain), 643
in dependent type system, 875
in μFLARE, 775
in FLARE, 815
in FLARE/E, 952, 967
in μFLARELP , 805
in FLEX/M, 914

Type equivalence (≈), 679–680
automata-based approach, 691
equirecursive, 690, 699, 761
isorecursive, 689, 699, 761
name equivalence, 864
of dependent types, 872, 874, 877–879,

911
of existential types, 850

of modules with dependent types, 911,
913

of nonce types, 861, 864
structural equivalence, 864
subtyping and, 708

typeErase (function), μFLEX to
μFLARE, 774, 776

Type erasure, 734, 772–774
μFLEX to μFLARE, 774
in FLEX/M, 923–925
of type derivation, 775
of type judgment, 775

Type error, 621, 661
stuck at, 666, 780

Type-error slicing, 837
TypeId (type identifier domain)

in μFLARE, 775
in FLARE, 815
in μFLEX, 628, 630, 635
in FLEX/M, 893

Type identifier (τ), 630, see also TypeId
for type reconstruction (?t), 770
unconstrained, 772

Type inclusion, see Subtyping
Type inference, see Type reconstruction
typeinp (program input type)

in μFLARE, 779
in μFLEX, 665

Type judgment, 645
TypeJudgment (domain)

in μFLEX, 776
in μFLARE, 776

Typeless language, 622
Type loophole, 567, 580–583, 621–622,

633, 723, see also Type safety
typeof (function), 656
Type operator, 752, see also Type

constructor
Type polymorphism, see Polymorphism
Type projection, see Polymorphic value

projection
Type reconstruction, 16, 626, 769–837

completeness of, 799
for μFLARE, 781–800
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for FLARE, 817
for μFLARELP , 808–812
Hindley-Damas-Milner (HDM), 812,

836
in dynamically typed language, 837
in Tortoise compiler, 1025–1029
ML-style, 812
of mutable variable, 820–821
of positional product, 825
of typed product, 821–826
of typed sum, 821–826
of typed sum of product, 826–835
pinpointing type errors, 837
principal types for, 799
soundness of, 799
undecidability for polymorphic

recursion, 806
undecidability for universal types, 808
undecidability in System F, 837
with type annotations, 837

Type rule, 645
axiom, 645
inference rule, 645
purely structural, 647
for X, see X, static semantics; X, type

rule; X, type system
Type safety, 621, 624, 702, 709, see also

Type loophole
Type schema, 802, 805, 806, 966–971

algebraic, 966–969
in μFLARELP , 803
in type environment, 804

TypeSchema (domain)
in FLARE, 815
in FLARE/E, 949, 957
in μFLARELP , 803, 805

Type soundness, 661–673, 699
of dynamic loading, 926, 927–931
of μFLARE, 780
preservation theorem, 662, 780
progress theorem, 662, 780
subject reduction theorem, 662

TypeSubst (type substitution domain),
781, 784

Type substitution (σ), 781–783, see also
Substitution

in dependent type, 881–883
identity substitution, 782
instantiation of type by, 783
substitution instance, 783, 804

Type system, 621, see also Type
checking; Type reconstruction; Type
rule

expressive, 627–628
μFLEX, 640–660
FLEX, 675–698
monomorphic, see Monomorphism
polymorphic, see Polymorphism
simple, see Simple type system
static, 619, see also Static type

checking
strongly normalizing, 761
strong normalization and, 673–674, 699
syntax-directed, 648, 713, 714
for X, see X, static semantics; X, type

rule; X, type system
Type tag, 1124
Type variable, see also Type identifier

imperative type variable, 837
Typing, see Type checking; Type

derivation; Type rule

#u (unit literal), 209, 211, 212
Unallocated region of stop-and-copy GC,

1136
Unary predicate, 1151
Unassigned (unassigned location

domain), 412
unassigned, 412
unassigned-location (FLICK error),

485
unbind (PostLisp command), 109
Unbound (unbound name domain), 276
unbound, 276
unbound-var (unbound variable error),

280, 281
unbound-variable (exception tag), 517
Unbound variable error, 247, 282
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Unboxed value, 1124
Uncomputable function, 199, 1158
Uncountable set, 1150
Undecidability, see also Halting problem

static analysis and, 618–619
of variable mutation, 1021

undef (extended integer), 568
Undefined (function result), 1158
Underscore variable, see Wildcard

pattern/variable
Unholy commingling, 870
Unification, 781, 783–787

in implicit projection, 919–921
most general unifier (mgu), 785
recursive types and, 836
of row types, 822–824
signature matching and, 934
unifier, 784

UnificationVar (domain), 893
Unification variable, 919, see also Type

identifier
unify (function), 784, 785
unifyLoop (function), 784, 785–787
UnifySoln (domain), 784

in FLARE/E, 960
Union

disjoint, 1176
of domains, 1176
of sets (∪), 1149
sum value, 568
tagged, see Sum

union (C sum), 567, 568, 580
unionTCS (type-constraint set union),

788, 789, 790
Union type, see Typed sum
Union value, see Sum
Unique naming, 1038, see also

Alpha-renaming
metaCPS conversion and, 1069
not preserved by closure conversion,

1079
variable capture and, in CPS

conversion, 1054
Unique types, lack of in μFLARE, 776

Unit (singleton set/domain), 1148
unit (unit type), 628, 629
unit (unit value outcome in FLK), 212
unit (only value of Unit), 1148
[unit]

μFLARE type axiom, 775
FLARE/E type/effect axiom, 953
μFLEX type axiom, 644

unit? (FL unit type predicate), 213
Unit interval, [0; 1], 167
[unitR] (μFLARE type reconstruction

axiom), 793
[unitZ ] (FLARE/E type/effect

reconstruction axiom), 964
Universal polymorphism, 627, 727–738,

see also Polymorphism
dynamic semantics, 736–738
static semantics, 730–736

Universal programming language, 49, 79,
101, 102, 110, 390

lambda calculus as example of, 290
nontermination and, 79–80, 100

Universal quantification (∀), 1152
equivalent to existential type, 885
universal type, 728, 735, see also
forall

Unix, reference counts in file system, 1132
unless (FL conditional construct)

in CBN FL, 324
in NAVAL, 327
thunk implementation in CBV FL, 325

unlock (data unsealing), 843–847
unmatched-tagcase-tag (error

message), 575
unpack (data abstraction use)

in dependent type system, 873, 875
in dependent type system, alternative

version, 883
in existential type system, 850
in nonce type system, 861

unpackage (StackFix command), 105
Unscanned region of stop-and-copy GC,

1135
Unsealing an abstract type, 885
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[unsound-cellof-�], 705
Untyped lambda calculus, 290–304, 622,

see also Lambda calculus (LC)
Unwinding a recursion, 263
unwrap (undelay evaluation), 315
up (convert to abstract type), 844–845

existential type without, 859
in dependent type system, 875
in existential type system, 849, 850
in nonce type system, 861, 862
not necessary in FLEX/M, 902

Upcast, 721
Updatable sequence, 545–547

immutable, 548
update (computation function), 415

with continuation, 485
Upper bound, 175
Upward type conversion, 714
us ∈ UnifySoln, 784, 960
useq... (updatable sequence procedure),

545–546
User-defined data type, see Sum of

products

V ∈ Value, see Value
V (stack value meaning function), 153
v ∈ Value, see Value
Vacuously true, 1151, 1152, 1154, 1155
Valid program or expression, 1025
Valid type judgment, 645
val-to-comp (computation function), 414

in computation-based exception DS,
525

in FLICK, 414
in FLICK computation-based

continuation DS, 483, 485
in FLK, 279, 281

val-to-storable (value function)
in CBL FLAVARK DS, 435
in CBN FLAVARK DS, 434
in CBR FLAVARK DS, 435
in CBV FLAVARK DS, 434
signature of, in FLAVARK DS, 431

Valuation clause, in FLICK, 416–420

Valuation function, 115, 134, see also
Meaning function

in FLICK standard DS, 476–480
in FLK, 280–289
how to read, in FLICK, 417–420
how to read, in FLK, 280–282
how to read, in PostFix, 136–138
importance of studying signatures, 128,

134–135
of X, see X, DS

Value (PostFix domain), 53
Value (semantic domain)

in CBL product DS, 557
in CBN product DS, 552
in CBVC DS of mutable tuples, 565
in CBV named sum DS, 573, 575
in CBV product DS, 542, 543
in CBVS DS of mutable tuples, 564
in FLICK, 414, 415, 416, 418
in FLICK+{label, jump} standard

DS, 497
in FLK, 275, 276
in PostFix DS, 132
in record DS, 357

value (expression classification), 272
Value, syntactic, see Syntactic value
Value constructor procedure, 583, see

also Constructor procedure
from def-data desugaring, 587, 588

ValueDefinition (domain), 893
Value environment, 643
Value equivalence (∼V ), 94
ValueExp (SOS value domain)

in CBL product SOS, 553
in CBN product SOS, 552
in CBV named sum SOS, 572
in CBV parameter passing, 310
in CBV product SOS, 543
in FILcps , 1046, 1048
in FILlift , 1095
in FILreg , 1101
in μFLARE, 778
in μFLEX, 664
in FLICK+{label, jump} SOS, 503
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ValueExp (continued)
in FLICK SOS, 406, 407
in FLK, 258–260
in FLEX/SP, 731
in FLEX/SP with bounded

quantification, 747
in strict vs. nonstrict pair SOS, 319

Value representation in FRM, 1124
Value restriction, 817, 837, see also

Purity restriction; Syntactic value
Vanilla (base type in Flavors), 380
van Wijngaarden, Adriaan, 537
[var]

μFLARE type axiom, 775
FLARE/E type/effect axiom, 953
μFLEX type axiom, 644
FLEX/SPDK kind rule, 760

[var-failLPR] (μFLARELP type
reconstruction axiom), 809

[var-failR] (μFLARE type reconstruction
axiom), 793

[var-failZ ] (FLARE/E type/effect
reconstruction axiom), 964

Variable, 244, 334, 1187, see also
Identifier

alpha-renaming, see Alpha-renaming
assignment, 430–439, see also Mutable

cell; Mutable variable
binding, 245
bound, 246
capture, see Variable capture
class variable, 362
declaration of, 244, 334, 389
dereferencing, 432
domain variable, 25, 26, 33, 1172
free, 246, see also Free variable
identifier vs., 244
instance variable, 362
lexical address of, 342
mutable, see Mutable variable
pointer variable in C/Pascal, as

mutable cell, 397
reference to, see Variable reference
renaming, see Alpha-renaming

scope, see Scope of a variable
shadowing, 231
state variable in iteration, 390
unbound, see Unbound variable error

Variable capture, 251–252, 308, 732
alpha-renaming to avoid, see

Alpha-renaming
avoiding in dependent type system,

875, 879
in call-by-denotation, 329, 330
in desugaring, 330
external, 252
import restriction to avoid, see Import

restriction
internal, 252
lack of in closed expression, 269
in macro systems, 330, 331, 379
unique naming and, in CPS conversion,

1054
Variable pattern, in metalanguage, 1192
Variable reference, 244, 334

bound, 245
free, 245
handling in syntactic function, 246
in CBD DS, 328
in CBL FLAVARK DS, 435
in CBN FLAVARK DS, 434
in CBR FLAVARK DS, 435
in CBV FLAVARK DS, 434
in FILcps , 1046
in FLAVARK DS, 431
in FLICK standard DS, 477
in FLK DS, 282, 283
in lambda calculus, 291
in metaCPS conversion, 1061
in simple CPS conversion, 1051
in Stoy diagram, 249
substituting for free, 253
type rule in μFLEX, 644

Variant, see Sum
Variant record, 1176, see also Sum

in Pascal, 567, 583
[varLP ] (μFLARELP type axiom), 804,

805
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[varLPR] (μFLARELP type
reconstruction axiom), 809

[var-pure] (FLARE syntactic purity
axiom), 816

[varR] (μFLARE type reconstruction
axiom), 793, 794

[varZ ] (FLARE/E type/effect
reconstruction axiom), 964

VD ∈ ValueDefinition, 893
Vector, 540
Vertical style for type derivation,

648–650, 699
View in pattern matching, 605–612

abstraction in pattern-matching,
607–610

list views, 607
Violation of abstraction, see Abstraction

violation
Virtual procedure, see Method
vlam (NAVAL CBV abstraction), 327
vlet (FL−− value binding), 349
void (base type)

as bottom type, 717
in C and Java, 209, 385, 472

von Neumann language, 305

W (type reconstruction algorithm), 836
Wadler, Philip, 378, 440
Wadsworth, Chris, 537
Wand, Mitchell, 836, 1117
Weak head normal form, 378
Weak sum, 877
Wegner, Peter, 379, 698, 768
Well-formed program, 1014
Well-kinded description, 760
Well-kinded type schema, 957
Wells, J. B., 837
Well-typed expression, 640–642, 645, 713,

714, 770
match expression, 593
metalanguage expression, 1172

Well-typed program, 623
while (FLIC loop sugar), 399, 401, 420,

487, 489
While loop, control context in, 443

Whitespace, 8, 24, 210
Wildcard pattern/variable (_), 516

desugaring in match, 597–598
match pattern, 590

with (FLEX record opening), 678
type rule in dependent type system,

875
type rule in FLEX, 678
with-fields vs., 678

[with] (type rule with dependent types),
875

with-...-and-checked-index (computation
function), 542, 543, 552, 557

with-...-comp (computation function),
500

in FLICK, 414
in FLK, 279, 281

with-...-val (computation function)
in FLICK, 414
in FLK, 279, 281

withdraw! (bank account procedure)
implementation, 402
specification, 384

with-fields (FL record opening), 355
with vs., 678

with-int (error-hiding function in ELMM
DS), 122

with-int&stack (error-hiding function in
PostFix DS), 142, 144

with-nameable (computation function)
in FLK, 281

with-stack-values (error-hiding function
in PostFix DS), 142, 144

with-val&stack (error-hiding function in
PostFix DS), 142, 144

with-value (computation function)
in computation-based exception DS,

525
in FLICK, 414
in FLICK computation-based

continuation DS, 483, 485
in FLK, 279, 281

with-values (computation function)
in FLICK, 414
in FLK, 279, 281
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Witness
of abstract type, 886
of existential quantifier, 1152

Witty, Carl, 102
Word, 1122
Wordsworth, William (quoted), 45, 617
wrap (delay evaluation), 315
wrap-cells (assignment conversion

function), 1023
Wrapping strategy

for closure conversion, 1084
for globalization, 1015–1016

Wright, Andrew K., 699
Wright, Steven (quoted), 383
write (effect in FLARE/E), 946, 949
write-disk (effect), 999
wrong-number-of-args (error), 258, 283,

289, 473, 477
wrt (with respect to), 151

XML, 581
Fahrenheit-to-Celsius conversion

example, 581
sum-of-products data via markups, 580

Y ∈ SymLit, see SymLit
Yacc (parser generator), 43
Yielding procedure, 507
Yochelson, Jerome C., 1145
Y operator (lambda calculus fixed-point

combinator), 303, 930, 931
Yosemite Sam (quoted), 1119

Z ∈ Assignment, 406
Z (type/effect reconstruction function),

959, 960, 961, 963–972
completeness of, 970
R vs., 966, 971
soundness of, 970

zgen (type/effect/region generalization),
967, 968

zgenPure (type/effect/region
generalization), 967, 968

proposed by Bud Lojack, 979
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