Design Concepts
in Programming
EUDIEDES

FRANKLYN TURBAK AND
DAVID GIFFORD

WITH MARK A. SHELDON

Design Concepts in Programming Languages

Design Concepts in Programming Languages

Franklyn Turbak and David Gifford
with Mark A. Sheldon

The MIT Press
Cambridge, Massachusetts
London, England

(©2008 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any
electronic or mechanical means (including photocopying, recording, or information
storage and retrieval) without permission in writing from the publisher.

MIT Press books may be purchased at special quantity discounts for business or sales
promotional use. For information, please email special_sales@mitpress.mit.edu or write
to Special Sales Department, The MIT Press, 55 Hayward Street, Cambridge, MA
02142.

This book was set in ITEX by the authors, and was printed and bound in the United
States of America.

Library of Congress Cataloging-in-Publication Data

Turbak, Franklyn A.
Design concepts in programming languages / Franklyn A. Turbak and David K.
Gifford, with Mark A. Sheldon.

p. cm.

Includes bibliographical references and index.
ISBN 978-0-262-20175-9 (hardcover : alk. paper)

1. Programming languages (Electronic computers). 1. Gifford, David K., 1954-.
IT. Sheldon, Mark A. III. Title.

QAT76.7.T845 2008

005.1—dc22 2008013841

10987654321

Brief Contents

Preface xix
Acknowledgments xxi
I Foundations 1
Introduction 3
Syntax 19
Operational Semantics 45
Denotational Semantics 113
Fixed Points 163
II Dynamic Semantics 205
6 FL: A Functional Language 207
7 Naming 307
8 State 383
9 Control 443
10 Data 539
IITI Static Semantics 615
11 Simple Types 617

OU B W N =

12 Polymorphism and Higher-order Types

13 Type Reconstruction 769
14 Abstract Types 839
15 Modules 889

16 Effects Describe Program Behavior

IV Pragmatics 1003
17 Compilation 1005
18 Garbage Collection 1119
A A Metalanguage 1147
B Our Pedagogical Languages 1197
References 1199
Index 1227

Contents

Preface xix

Acknowledgments xxi

I Foundations 1

1 Introduction 3
1.1 Programming Languages 3
1.2 Syntax, Semantics, and Pragmatics 4
1.3 Goals 6
1.4 PosTFIx: A Simple Stack Language 8
1.4.1 Syntax 8
1.4.2 Semantics 9
1.4.3 The Pitfalls of Informal Descriptions 14
1.5 Overview of the Book 15

2 Syntax 19
2.1 Abstract Syntax 20
2.2 Concrete Syntax 22
2.3 S-Expression Grammars Specify ASTs 23
2.3.1 S-Expressions 23
2.3.2 The Structure of S-Expression Grammars 24
2.3.3 Phrase Tags 30
2.3.4 Sequence Patterns 30
2.3.5 Notational Conventions 32
2.3.6 Mathematical Foundation of Syntactic Domains 36
2.4 The Syntax of PostFix 39

3 Operational Semantics 45
3.1 The Operational Semantics Game 45
3.2 Small-step Operational Semantics (SOS) 49
3.2.1 Formal Framework 49
3.2.2 Example: An SOS for PosTFix 52
3.2.3 Rewrite Rules 54
3.2.4 Operational Execution 58

viii Contents

3.2.5 Progress Rules 62
3.2.6 Context-based Semantics 71
3.3 Big-step Operational Semantics 75
3.4 Operational Reasoning 79
3.5 Deterministic Behavior of EL. 80
3.6 Termination of PostFix Programs 84
3.6.1 Energy 84
3.6.2 The Proof of Termination 86
3.6.3 Structural Induction 88
3.7 Safe PosTFIiX Transformations 89
3.7.1 Observational Equivalence 89
3.7.2 Transform Equivalence 92
3.7.3 Transform Equivalence Implies Observational Equivalence 96
3.8 Extending PosTFix 100

4 Denotational Semantics 113
4.1 The Denotational Semantics Game 113
4.2 A Denotational Semantics for EL 117
4.2.1 Step 1: Restricted ELMM 117
4.2.2 Step 2: Full ELMM 120
4.2.3 Step 3: ELM 124
424 Step4: EL 127
4.2.5 A Denotational Semantics Is Not a Program 128
4.3 A Denotational Semantics for PosTFix 131
4.3.1 A Semantic Algebra for PosTFix 131
4.3.2 A Meaning Function for PosTFix 134
4.3.3 Semantic Functions for POSTFIX: the Details 142
4.4 Denotational Reasoning 145
4.4.1 Program Equality 145
4.4.2 Safe Transformations: A Denotational Approach 147
4.4.3 Technical Difficulties 150
4.5 Relating Operational and Denotational Semantics 150
4.5.1 Soundness 151
4.5.2 Adequacy 157
4.5.3 Full Abstraction 159
4.5.4 Operational versus Denotational: A Comparison 161

Contents ix

5 Fixed Points 163
5.1 The Fixed Point Game 163
5.1.1 Recursive Definitions 163
5.1.2 Fixed Points 166
5.1.3 The Iterative Fixed Point Technique 168
5.2 Fixed Point Machinery 174
5.2.1 Partial Orders 174
5.2.2 Complete Partial Orders (CPOs) 182
5.2.3 Pointedness 185
5.2.4 Monotonicity and Continuity 187
5.2.5 The Least Fixed Point Theorem 190
5.2.6 Fixed Point Examples 191
5.2.7 Continuity and Strictness 197
5.3 Reflexive Domains 201
5.4 Summary 203

II Dynamic Semantics 205

6 FL: A Functional Language 207

6.1 Decomposing Language Descriptions 207

6.2 The Structure of FL. 208
6.2.1 FLK: The Kernel of the FL. Language 209
6.2.2 FL Syntactic Sugar 218
6.2.3 The FL Standard Library 235
6.2.4 Examples 239

6.3 Variables and Substitution 244
6.3.1 Terminology 244
6.3.2 Abstract Syntax DAGs and Stoy Diagrams 248
6.3.3 Alpha-Equivalence 250
6.3.4 Renaming and Variable Capture 251
6.3.5 Substitution 253

6.4 An Operational Semantics for FLK 258
6.4.1 FLK Evaluation 258
6.4.2 FLK Simplification 270

6.5 A Denotational Semantics for FLK 275
6.5.1 Semantic Algebra 275
6.5.2 Valuation Functions 280

6.6 The Lambda Calculus 290

Contents

6.6.1
6.6.2
6.6.3
6.6.4

Syntax of the Lambda Calculus 291

Operational Semantics of the Lambda Calculus 291
Denotational Semantics of the Lambda Calculus 296
Representational Games 297

7 Naming 307
Parameter Passing 309

7.1

7.2

7.3

8 State

8.1
8.2

8.3

8.4

7.1.1
7.1.2
7.1.3
7.1.4
7.1.5
7.1.6

Call-by-Name vs. Call-by-Value: The Operational View 310
Call-by-Name vs. Call-by-Value: The Denotational View 316
Nonstrict versus Strict Pairs 318

Handling rec in a CBV Language 320

Thunking 324

Call-by-Denotation 328

Name Control 332

7.2.1
7.2.2
7.2.3

Hierarchical Scoping: Static and Dynamic 334
Multiple Namespaces 347
Nonhierarchical Scope 352

Object-oriented Programming 362

7.3.1
7.3.2
7.3.3

383

HOOK: An Object-oriented Kernel 362
HOOPLA 368
Semantics of HOOK 370

FL Is a Stateless Language 384
Simulating State in FL. 390

8.2.1
8.2.2
8.2.3
8.2.4

Iteration 390

Single-Threaded Data Flow 392
Monadic Style 394

Imperative Programming 397

Mutable Data: FLIC 397

8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.3.6

Mutable Cells 397

Examples of Imperative Programming 400

An Operational Semantics for FLICK 405

A Denotational Semantics for FLICK 411
Call-by-Name versus Call-by-Value Revisited 425
Referential Transparency, Interference, and Purity 427

Mutable Variables: FLAVAR 429

8.4.1
8.4.2
8.4.3

Mutable Variables 429
FLAVAR 430
Parameter-passing Mechanisms for FLAVAR 432

Contents

X1

443

446

505

9 Control 443
9.1 Motivation: Control Contexts and Continuations
9.2 Using Procedures to Model Control 446
9.2.1 Representing Continuations as Procedures
9.2.2 Continuation-Passing Style (CPS) 449
9.2.3 Multiple-value Returns 450
9.2.4 Nonlocal Exits 455
9.2.5 Coroutines 457
9.2.6 Error Handling 461
9.2.7 Backtracking 465
9.3 Continuation-based Semantics of FLICK 471
9.3.1 A Standard Semantics of FLICK 472
9.3.2 A Computation-based Continuation Semantics of FLICK 482
9.4 Nonlocal Exits 493
9.4.1 label and jump 494
9.4.2 A Denotational Semantics for 1abel and jump 497
9.4.3 An Operational Semantics for label and jump 503
9.4.4 call-with-current-continuation (cwcc)
9.5 TIterators: A Simple Coroutining Mechanism 506
9.6 Exception Handling 513

10 Data 539

9.6.1
9.6.2
9.6.3
9.6.4
9.6.5

raise, handle, and trap 515
A Standard Semantics for Exceptions 519

A Computation-based Semantics for Exceptions
A Desugaring-based Implementation of Exceptions 527

Examples Revisited 530

10.1 Products 539

10.1.1 Positional Products 541
10.1.2 Named Products 549
10.1.3 Nonstrict Products 551
10.1.4 Mutable Products 561

10.2
10.3
10.4
10.5

Sums

567

Sum of Products 577

Data Declarations 583

Pattern Matching 590

10.5.1 Introduction to Pattern Matching 590
10.5.2 A Desugaring-based Semantics of match 594
10.5.3 Views 605

524

xii

Contents

IITI Static Semantics 615

11 Simple Types 617

11.1
11.2
11.3

11.4

11.5

11.6

11.7
11.8

Static Semantics 617

What Is a Type? 620

Dimensions of Types 622

11.3.1 Dynamic versus Static Types 623
11.3.2 Explicit versus Implicit Types 625
11.3.3 Simple versus Expressive Types 627
uwFLEX: A Language with Explicit Types 628
11.4.1 Types 629

11.4.2 Expressions 631

11.4.3 Programs and Syntactic Sugar 634
11.4.4 Free Identifiers and Substitution 636
Type Checking in yFLEX 640

11.5.1 Introduction to Type Checking 640
11.5.2 Type Environments 643

11.5.3 Type Rules for pFLEX 645

11.5.4 Type Derivations 648

11.5.5 Monomorphism 655

Type Soundness 661

11.6.1 What Is Type Soundness? 661

11.6.2 An Operational Semantics for yFLEX 662
11.6.3 Type Soundness of uFLEX 667

Types and Strong Normalization 673

Full FLEX: Typed Data and Recursive Types 675
11.8.1 Typed Products 675

11.8.2 Type Equivalence 679

11.8.3 Typed Mutable Data 681

11.8.4 Typed Sums 682

11.8.5 Typed Lists 685

11.8.6 Recursive Types 688

11.8.7 Full FLEX Summary 696

12 Polymorphism and Higher-order Types 701

12.1

Subtyping 701

12.1.1 FLEX/S: FLEX with Subtyping 702
12.1.2 Dimensions of Subtyping 713

12.1.3 Subtyping and Inheritance 723

12.2 Polymorphic Types 725

Contents

xiii

12.3

12.2.1 Monomorphic Types Are Not Expressive 725
12.2.2 Universal Polymorphism: FLEX/SP 727
12.2.3 Deconstructible Data Types 738

12.2.4 Bounded Quantification 745

12.2.5 Ad Hoc Polymorphism 748

Higher-order Types: Descriptions and Kinds 750
12.3.1 Descriptions: FLEX/SPD 750

12.3.2 Kinds and Kind Checking: FLEX/SPDK 758
12.3.3 Discussion 764

13 Type Reconstruction 769

13.1
13.2

13.3

13.4

13.5

Introduction 769

wFLARE: A Language with Implicit Types 772

13.2.1 pFLARE Syntax and Type Erasure 772

13.2.2 Static Semantics of uFLARE 774

13.2.3 Dynamic Semantics and Type Soundness of yFLARE 778
Type Reconstruction for uFLARE 781

13.3.1 Type Substitutions 781

13.3.2 Unification 783

13.3.3 The Type-Constraint-Set Abstraction 787

13.3.4 A Reconstruction Algorithm for uFLARE 790

Let Polymorphism 801

13.4.1 Motivation 801

13.4.2 A uFLARE Type System with Let Polymorphism 803

13.4.3 pFLARE Type Reconstruction with Let Polymorphism 808

Extensions 813

13.5.1 The Full FLARE Language 813
13.5.2 Mutable Variables 820

13.5.3 Products and Sums 821

13.5.4 Sum-of-products Data Types 826

14 Abstract Types 839

14.1

14.2
14.3
14.4
14.5

Data Abstraction 839

14.1.1 A Point Abstraction 840

14.1.2 Procedural Abstraction Is Not Enough 841
Dynamic Locks and Keys 843

Existential Types 847

Nonce Types 859

Dependent Types 869

14.5.1 A Dependent Package System 870

xiv Contents

14.5.2 Design Issues with Dependent Types 877

15 Modules 889
15.1 An Overview of Modules and Linking 889
15.2 An Introduction to FLEX/M 891
15.3 Module Examples: Environments and Tables 901
15.4 Static Semantics of FLEX /M Modules 910
15.4.1 Scoping 910
15.4.2 Type Equivalence 911
15.4.3 Subtyping 912
15.4.4 Type Rules 912
15.4.5 Implicit Projection 918
15.4.6 Typed Pattern Matching 921
15.5 Dynamic Semantics of FLEX/M Modules 923
15.6 Loading Modules 925
15.6.1 Type Soundness of load via a Load-Time Check 927
15.6.2 Type Soundness of load via a Compile-Time Check 928
15.6.3 Referential Transparency of load for File-Value Coherence 930
15.7 Discussion 932
15.7.1 Scoping Limitations 932
15.7.2 Lack of Transparent and Translucent Types 933
15.7.3 The Coherence Problem 934
15.7.4 Purity Issues 937

16 Effects Describe Program Behavior 943
16.1 Types, Effects, and Regions: What, How, and Where 943
16.2 A Language with a Simple Effect System 945
16.2.1 Types, Effects, and Regions 945
16.2.2 Type and Effect Rules 951
16.2.3 Reconstructing Types and Effects: Algorithm Z 959
16.2.4 Effect Masking Hides Unobservable Effects 972
16.2.5 Effect-based Purity for Generalization 974
16.3 Using Effects to Analyze Program Behavior 978
16.3.1 Control Transfers 978
16.3.2 Dynamic Variables 983
16.3.3 Exceptions 985
16.3.4 Execution Cost Analysis 988
16.3.5 Storage Deallocation and Lifetime Analysis 991
16.3.6 Control Flow Analysis 995
16.3.7 Concurrent Behavior 996

Contents XV

16.3.8 Mobile Code Security 999

IV Pragmatics 1003

17 Compilation 1005

17.1 Why Do We Study Compilation? 1005

17.2 TORTOISE Architecture 1007
17.2.1 Overview of TORTOISE 1007
17.2.2 The Compiler Source Language: FLARE/V 1009
17.2.3 Purely Structural Transformations 1012

17.3 Transformation 1: Desugaring 1013

17.4 Transformation 2: Globalization 1014

17.5 Transformation 3: Assignment Conversion 1019

17.6 Transformation 4: Type/Effect Reconstruction 1025
17.6.1 Propagating Type and Effect Information 1026
17.6.2 Effect-based Code Optimization 1026

17.7 Transformation 5: Translation 1030
17.7.1 The Compiler Intermediate Language: FIL 1030
17.7.2 Translating FLARE to FIL 1036

17.8 Transformation 6: Renaming 1038

17.9 Transformation 7: CPS Conversion 1042
17.9.1 The Structure of TORTOISE CPS Code 1044
17.9.2 A Simple CPS Transformation 1049
17.9.3 A More Efficient CPS Transformation 1058
17.9.4 CPS-Converting Control Constructs 1070

17.10 Transformation 8: Closure Conversion 1075
17.10.1 Flat Closures 1076
17.10.2 Variations on Flat Closure Conversion 1085
17.10.3 Linked Environments 1090

17.11 Transformation 9: Lifting 1094

17.12 Transformation 10: Register Allocation 1098
17.12.1 The FIL,,, Language 1098
17.12.2 A Register Allocation Algorithm 1102
17.12.3 The Expansion Phase 1104
17.12.4 The Register Conversion Phase 1104
17.12.5 The Spilling Phase 1112

Xvi

Contents

18 Garbage Collection 1119

18.1
18.2

18.3

18.4
18.5

18.6

Why Garbage Collection? 1119

FRM: The FIL Register Machine 1122
18.2.1 The FRM Architecture 1122
18.2.2 FRM Descriptors 1123

18.2.3 FRM Blocks 1127

A Block Is Dead if It Is Unreachable 1130
18.3.1 Reference Counting 1131

18.3.2 Memory Tracing 1132
Stop-and-copy GC 1133

Garbage Collection Variants 1141

18.5.1 Mark-sweep GC 1141

18.5.2 Tag-free GC 1141

18.5.3 Conservative GC 1142

18.5.4 Other Variations 1142

Static Approaches to Automatic Deallocation 1144

A A Metalanguage 1147

Al

A2

A3

The Basics 1147

A.1.1 Sets 1148

A.1.2 Boolean Operators and Predicates 1151
A.1.3 Tuples 1152

A.1.4 Relations 1153

Functions 1155

A.2.1 What Is a Function? 1156

A.2.2 Application 1158

A.2.3 More Function Terminology 1159
A.2.4 Higher-order Functions 1160

A.2.5 Multiple Arguments and Results 1161
A.2.6 Lambda Notation 1165

A.2.7 Recursion 1168

A.2.8 Lambda Notation Is Not Lisp! 1169
Domains 1171

A.3.1 Motivation 1171

A3.2 Types 1172

A.3.3 Product Domains 1173

A.3.4 Sum Domains 1176

A.3.5 Sequence Domains 1181

A.3.6 Function Domains 1184

Contents

xvil

A.4 Metalanguage Summary 1186
A.4.1 The Metalanguage Kernel 1186
A.4.2 The Metalanguage Sugar 1188

B Our Pedagogical Languages 1197
References 1199
Index 1227

Preface

This book is the text for 6.821 Programming Languages, an entry-level, single-
semester, graduate-level course at the Massachusetts Institute of Technology. The
students that take our course know how to program and are mathematically in-
clined, but they typically have not had an introduction to programming language
design or its mathematical foundations. We assume a reader with similar prepa-
ration, and we include an appendix that completely explains the mathematical
metalanguage we use. Many of the exercises are taken directly from our prob-
lem sets and examination questions, and have been specifically designed to cause
students to apply their newfound knowledge to practical (and sometimes imprac-
ticall) extensions to the foundational ideas taught in the course.

Our fundamental goal for Programming Languages is to use a simple and
concise framework to teach key ideas in programming language design and im-
plementation. We specifically eschewed an approach based on a tour of the great
programming languages. Instead, we have adopted a family of syntactically sim-
ple pedagogical languages that systematically explore programming language con-
cepts (see Appendix B). Contemporary concerns about safety and security have
caused programmers to migrate to languages that embrace many of the key ideas
that we explain. Where appropriate, we discuss how the ideas we introduce have
been incorporated into contemporary programming languages that are in wide
use.

We use an s-expression syntax for programs because this syntactic form is
easy to parse and to directly manipulate, key attributes that support our desire
to make everything explicit in our descriptions of language semantics and prag-
matics. While you may find s-expression syntax unfamiliar at first, it permits the
unambiguous and complete articulation of ideas in a simple framework.

Programming languages are a plastic and expressive medium, and we are
hopeful that we will communicate our passion for these computational canvases
that are an important underpinning for computer science.

Web Supplement

Specialized topics and code that implements many of the algorithms and compi-
lation methods can be found on our accompanying Web site:

dcpl.mit.edu

XX Preface

The Web Supplement also includes additional material, such as a section on
concurrency and proofs of the theorems stated in the book.

To the Student

The book is full of examples, and a good way to approach the material is to study
the examples first. Then review the figures that capture key rules or algorithms.
Skip over details that bog you down at first, and return to them later once you
have additional context.

Using and implementing novel programming language concepts will further
enhance your understanding. The Web Supplement contains interpreters for vari-
ous pedagogical languages used in the book, and there are many implementation-
based exercises that will help forge connections between theory and practice.

To the Teacher

We teach the highlights of the material in this book in 24 lectures over a 14-
week period. Each lecture is 1.5 hours long, and students also attend a one-hour
recitation every week. With this amount of contact time it is not possible to
cover all of the detail in the book. The Web Supplement contains an example
lecture schedule, reading assignments, and problem sets. In addition, the MIT
OpenCourseWare site at ocw.mit.edu contains material from previous versions
of 6.821.

This book can be used to teach many different kinds of courses, including
an introduction to semantics (Chapters 1-5), essential concepts of programming
languages (Chapters 1-13), and types and effects (Chapters 6 and 11-16).

We hope you enjoy teaching this material as much as we have!

Acknowledgments

This book owes its existence to many people. We are grateful to the following
individuals for their contributions:

Jonathan Rees profoundly influenced the content of this book when he was
a teaching assistant. Many of the mini-languages, examples, exercises, and
software implementations, as well as some of the sections of text, had their
origins with Jonathan. Jonathan was also the author of an early data type and
pattern matching facility used in course software that strongly influenced the
facilities described in the book.

Brian Reistad and Trevor Jim greatly improved the quality of the book. As
teaching assistants, they unearthed and fixed innumerable bugs, improved the
presentation and content of the material, and created many new exercises.
Brian also played a major role in implementing software for testing the mini-
languages in the book.

In addition to his contributions as a teaching assistant, Alex Salcianu also
collected and edited homework and exam problems from fifteen years of the
course for inclusion in the book.

Valuable contributions and improvements to this book were made by other
teaching assistants: Aaron Adler, Alexandra Andersson, Arnab Bhattacharyya,
Michael (Ziggy) Blair, Barbara Cutler, Timothy Danford, Joshua Glazer, Robert
Grimm, Alex Hartemink, David Huynh, Adam Kiezun, Eddie Kohler, Gary
Leavens, Ravi Nanavati, Jim O’Toole, Dennis Quan, Alex Snoeren, Patrick
Sobalvarro, Peter Szilagyi, Bienvenido Velez-Rivera, Earl Waldin, and Qian
Wang.

In Fall 2002 and Fall 2004, Michael Ernst taught 6.821 based on an earlier
version of this book, and his detailed comments resulted in many improvements.

Based on teaching 6.821 at MIT and using the course materials at Hong Kong
University and Georgia Tech, Olin Shivers made many excellent suggestions on
how to improve the content and presentation of the material.

While using the course materials at other universities, Gary Leavens, Andrew
Myers, Randy Osborne, and Kathy Yelick provided helpful feedback.

xxii Acknowledgments

e Early versions of the pragmatics system were written by Doug Grundman, with
major extensions by Raymie Stata and Brian Reistad.

e Pierre Jouvelot did the lion’s share of the implementation of FX (a language
upon which early versions of 6.821 were based) with help from Mark Sheldon
and Jim O’Toole.

e David Espinosa introduced us to embedded interpreters and helped us to im-
prove our presentation of dynamic semantics, effects, and compilation.

e Guillermo Rozas taught us many nifty pragmatics tricks. Our pragmatics
coverage is heavily influenced by his source-to-source front end to the MIT
SCHEME compiler.

e Ken Moody provided helpful feedback on the course material, especially on the
PosTFi1x Equivalence Theorem.

e Numerous students have improved this book in various ways, from correct-
ing bugs to suggesting major reorganizations. In this regard, we are especially
grateful to: Atul Adya, Kavita Bala, Ron Bodkin, Philip Bogle, Miguel Castro,
Anna Chefter, Natalya Cohen, Brooke Cowan, Richard Davis, Andre deHon,
Michael Frank, Robert Grimm, Yevgeny Gurevich, Viktor Kuncak, Mark Lil-
libridge, Greg Little, Andrew Myers, Michael Noakes, Heidi Pan, John Pezaris,
Matt Power, Roberto Segala, Emily Shen, Mark Torrance, Michael Walfish,
Amy Williams, and Carl Witty.

e Tim Chevalier and Jue Wang uncovered numerous typos and inconsistencies
in their careful proofreading of book drafts.

e Special thanks to Jeanne Darling, who has been the 6.821 course administrator
for over ten years. Her administrative, editing, and technical skills, as well as
her can-do spirit and cheerful demeanor, were critical in keeping both the course
and the book project afloat.

e We bow before David Jones, whose TEX wizardry is so magical we are sure he
has a wand hidden in his sleeve.

e Kudos go to Julie Sussman, PPA, for her excellent work as a technical editor on
the book. Julie’s amazing ability to find and fix uncountably many technical
bugs, inconsistencies, ambiguities, and poor explanations in every chapter we
thought was “done” has improved the quality of the book tremendously. Of
course, Julie cannot be held responsible for remaining erorrs, especially them
what we introducd after she fixished the editos.

xxiii

e We are grateful to the MIT Press for their patience with us over the years we
worked on this book.

We also have some personal dedications and acknowledgments:

Franklyn: I dedicate this book to my parents, Dr. Albin F. Turbak and Irene
J. Turbak, who taught me (1) how to think and (2) never to give up, traits
without which this book would not exist.

I owe my love of programming languages to Hal Abelson and Jerry Sussman,
whose Structure and Interpretation of Computer Programs book and class
changed the course my life, and to Dave Gifford, whose 6.821 class inspired
an odyssey of programming language exploration that is still ongoing. My
understanding of programming languages matured greatly through my inter-
actions with members of the Church Project, especially Assaf Kfoury, Torben
Amtoft, Anindya Banerjee, Alan Bawden, Chiyan Chen, Allyn Dimock, Glenn
Holloway, Trevor Jim, Elena Machkasova, Harry Mairson, Bob Muller, Peter
Mgller Neergaard, Santiago Pericas, Joe Wells, ITan Westmacott, Hongwei Xi,
and Dengping Zhu.

I am grateful to Wellesley College for providing me with a sabbatical during
the 2005-06 academic year, which I devoted largely to work on this book.

Finally, I thank my wife, Lisa, and daughters, Ohana and Kalani, who have
never known my life without “the book” but have been waiting oh-so-long to
find out what it will be like. Their love keeps me going!

Dave: Heidi, Ariella, and Talia — thanks for your support and love; this book
is dedicated to you.
To my parents, for providing me with opportunities that enabled my successes.

Thanks Franklyn, for your labors on this book, and the chance to share your
passion for programming languages.

Thanks Julie. You are a beacon of quality.
Thanks Mark, for all your help on this project.

And finally, thanks to all of the 6.821 students. Your enthusiasm, intelligence,
and questions provided the wonderful context that motivated this book and
made it fun.

xxXiv Acknowledgments

Mark: I am grateful to my coauthors for bringing me into this project. The
task was initially to be a few weeks of technical editing but blossomed into a
rewarding and educational five-year coauthoring journey.

I thank my colleagues and students at Wellesley. My students were patient
beyond all reason when told their work hadn’t been graded because I was
working on “the book.”

I am fortunate to have the love and support of my family: my wife, Ishrat
Chaudhuri, my daughters, Raina and Maya, and my parents, Beverly Sheldon
and Frank Sheldon.

I would also like to thank my dance partner, Mercedes von Deck, my coaches
(especially Stephen and Jennifer Hillier and Charlotte Jorgensen), and my
dance students.

Part 1

Foundations

1

Introduction

Order and simplification are the first steps toward the mastery of a subject
— the actual enemy is the unknown.

— Thomas Mann, The Magic Mountain

1.1 Programming Languages

Programming is a lot of fun. As you have no doubt experienced, clarity and
simplicity are the keys to good programming. When you have a tangle of code
that is difficult to understand, your confidence in its behavior wavers, and the
code is no longer any fun to read or update.

Designing a new programming language is a kind of metalevel programming
activity that is just as much fun as programming in a regular language (if not
more s0). You will discover that clarity and simplicity are even more important
in language design than they are in ordinary programming. Today hundreds of
programming languages are in use — whether they be scripting languages for
Internet commerce, user interface programming tools, spreadsheet macros, or
page format specification languages that when executed can produce formatted
documents. Inspired application design often requires a programmer to provide a
new programming language or to extend an existing one. This is because flexible
and extensible applications need to provide some sort of programming capability
to their end users.

Elements of programming language design are even found in “ordinary” pro-
gramming. For instance, consider designing the interface to a collection data
structure. What is a good way to encapsulate an iteration idiom over the ele-
ments of such a collection? The issues faced in this problem are similar to those
in adding a looping construct to a programming language.

The goal of this book is to teach you the great ideas in programming lan-
guages in a simple framework that strips them of complexity. You will learn sev-
eral ways to specify the meaning of programming language constructs and will
see that small changes in these specifications can have dramatic consequences
for program behavior. You will explore many dimensions of the programming

4 Chapter 1 Introduction

language design space, study decisions to be made along each dimension, and
consider how decisions from different dimensions can interact. We will teach you
about a wide variety of neat tricks for extending programing languages with inter-
esting features like undoable state changes, exitable loops, and pattern matching.
Our approach for teaching you this material is based on the premise that when
language behaviors become incredibly complex, the descriptions of the behaviors
must be incredibly simple. It is the only hope.

1.2 Syntax, Semantics, and Pragmatics
Programming languages are traditionally viewed in terms of three facets:
1. Syntax — the form of programming languages.

2. Semantics — the meaning of programming languages.

3. Pragmatics — the implementation of programming languages.

Here we briefly describe these facets.

Syntax

Syntax focuses on the concrete notations used to encode programming language
phrases. Consider a phrase that indicates the sum of the product of v and w and
the quotient of y and z. Such a phrase can be written in many different notations
— as a traditional mathematical expression:

vw+y/z
or as a LISP parenthesized prefix expression:
+ xvw (/y2)
or as a sequence of keystrokes on a postfix calculator:

[v][EntER] [W] [ENTER] [x | [v] [ENTER | [2|[ENTER | [+ | [+]

or as a layout of cells and formulas in a spreadsheet:

1 2 3 4
A v= VKW = A2 * B2
B W= y/z = | C2 /D2
C y= ans = | A} + B4
D

1.2 Syntax, Semantics, and Pragmatics 5)

or as a graphical tree:

Although these concrete notations are superficially different, they all designate
the same abstract phrase structure (the sum of a product and a quotient). The
syntax of a programming language specifies which concrete notations (strings
of characters, lines on a page) in the language are legal and which tree-shaped
abstract phrase structure is denoted by each legal notation.

Semantics

Semantics specifies the mapping between the structure of a programming lan-
guage phrase and what the phrase means. Such phrases have no inherent mean-
ing: their meaning is determined only in the context of a system for interpreting
their structure. For example, consider the following expression tree:

Suppose we interpret the nodes labeled 1, 10, and 11 as the usual decimal notation
for numbers, and the nodes labeled + and * as the sum and product of the values of
their subnodes. Then the root of the tree stands for (14 11)-10 = 120. But there
are many other possible meanings for this tree. If * stands for exponentiation
rather than multiplication, the meaning of the tree could be 1219, If the numerals
are in binary notation rather than decimal notation, the tree could stand for (in
decimal notation) (1 + 3) - 2 = 8. Alternatively, suppose that odd integers stand
for the truth value true, even integers stand for the truth value false, and + and *
stand for, respectively, the logical disjunction (V) and conjunction (A) operators
on truth values; then the meaning of the tree is false. Perhaps the tree does not
indicate an evaluation at all, and only stands for a property intrinsic to the tree,
such as its height (3), its number of nodes (5), or its shape (perhaps it describes
a simple corporate hierarchy). Or maybe the tree is an arbitrary encoding for a
particular object of interest, such as a person or a book.

6 Chapter 1 Introduction

This example illustrates how a single program phrase can have many possible
meanings. Semantics describes the relationship between the abstract structure
of a phrase and its meaning.

Pragmatics

Whereas semantics deals with what a phrase means, pragmatics focuses on the
details of how that meaning is computed. Of particular interest is the effective
use of various resources, such as time, space, and access to shared physical devices
(storage devices, network connections, video monitors, printers, speakers, etc.).
As a simple example of pragmatics, consider the evaluation of the following
expression tree (under the first semantic interpretation described above):

Suppose that a and b stand for particular numeric values. Because the phrase
(+ a b) appears twice, a naive evaluation strategy will compute the same sum
twice. An alternative strategy is to compute the sum once, save the result, and
use the saved result the next time the phrase is encountered. The alternative
strategy does not change the meaning of the program, but does change its use of
resources; it reduces the number of additions performed, but may require extra
storage for the saved result. Is the alternative strategy better? The answer
depends on the details of the evaluation model and the relative importance of
time and space.

Another potential improvement in the example involves the phrase (* 2 3),
which always stands for the number 6. If the sample expression is to be evalu-
ated many times (for different values of a and b), it may be worthwhile to replace
(* 2 3) by 6 to avoid unnecessary multiplications. Again, this is a purely prag-
matic concern that does not change the meaning of the expression.

1.3 Goals

The goals of this book are to explore the semantics of a comprehensive set of pro-
gramming language design idioms, show how they can be combined into complete

1.3 Goals 7

practical programming languages, and discuss the interplay between semantics
and pragmatics.

Because syntactic issues are so well covered in standard compiler texts, we
won’t say much about syntax except for establishing a few syntactic conventions
at the outset. We will introduce a number of tools for describing the semantics
of programming languages, and will use these tools to build intuitions about
programming language features and study many of the dimensions along which
languages can vary. Our coverage of pragmatics is mainly at a high level. We
will study some simple programming language implementation techniques and
program improvement strategies rather than focus on squeezing the last ounce of
performance out of a particular computer architecture.

We will discuss programming language features in the context of several mini-
languages. Each of these is a simple programming language that captures the
essential features of a class of existing programming languages. In many cases,
the mini-languages are so pared down that they are hardly suitable for serious
programming activities. Nevertheless, these languages embody all of the key
ideas in programming languages. Their simplicity saves us from getting bogged
down in needless complexity in our explorations of semantics and pragmatics.
And like good modular building blocks, the components of the mini-languages
are designed to be “snapped together” to create practical languages.

Issues of semantics and pragmatics are important for reasoning about proper-
ties of programming languages and about particular programs in these languages.
We will also discuss them in the context of two fundamental strategies for pro-
gramming language implementation: interpretation and translation. In the
interpretation approach, a program written in a source language S is directly
executed by an S-interpreter, which is a program written in an implementa-
tion language. In the translation approach, an S program is translated to a
program in the target language 7', which can be executed by a T-interpreter.
The translation itself is performed by a translator program written in an im-
plementation language. A translator is also called a compiler, especially when
it translates from a high-level language to a low-level one. We will use mini-
languages for our source and target languages. For our implementation lan-
guage, we will use the mathematical metalanguage described in Appendix A.
However, we strongly encourage readers to build working interpreters and trans-
lators for the mini-languages in their favorite real-world programming languages.
Metaprogramming — writing programs that manipulate other programs — is
perhaps the most exciting form of programming!

8 Chapter 1 Introduction

1.4 PostFix: A Simple Stack Language

We will introduce the tools for syntax, semantics, and pragmatics in the context
of a mini-language called POSTFI1X. POSTFIX is a simple stack-based language
inspired by the POSTSCRIPT graphics language, the FORTH programming lan-
guage, and Hewlett Packard calculators. Here we give an informal introduction
to POSTFIX in order to build some intuitions about the language. In subsequent
chapters, we will introduce tools that allow us to study POSTFIX in more depth.

1.4.1 Syntax

The basic syntactic unit of a POSTFIX program is the command. Commands
are of the following form:

e Any integer numeral. E.g., 17, 0, -3.

e One of the following special command tokens: add, div, eq, exec, gt, 1t, mul,
nget, pop, rem, sel, sub, swap.

e An executable sequence — a single command that serves as a subroutine.
It is written as a parenthesized list of subcommands separated by whitespace
(any contiguous sequence of characters that leave no mark on the page, such as
spaces, tabs, and newlines). E.g., (7 add 3 swap) or (2 (5 mul) exec add).

Since executable sequences contain other commands (including other executable
sequences), they can be arbitrarily nested. An executable sequence counts as a
single command despite its hierarchical structure.

A PosTFIX program is a parenthesized sequence consisting of (1) the token
postfix followed by (2) a natural number (i.e., nonnegative integer) indicat-
ing the number of program parameters followed by (3) zero or more PoSTFIx
commands. Here are some sample POSTFIX programs:

(postfix 0 4 7 sub)
(postfix 2 add 2 div)
(postfix 4 4 nget 5 nget mul mul swap 4 nget mul add add)

(postfix 1 ((3 nget swap exec) (2 mul swap exec) swap)
(6 sub) swap exec exec)

In PosTF1X, as in all the languages we’ll be studying, all parentheses are
required and none are optional. Moving parentheses around changes the structure
of the program and most likely changes its behavior. Thus, while the following

1.4.2 Semantics 9

PosTFiIxX executable sequences use the same numerals and command tokens in
the same order, they are distinguished by their parenthesization, which, as we
shall see below, makes them behave differently.

((1) (2 3 4) swap exec)
((1 2) (3 4) swap exec)
((1 2) (3 4 swap) exec)

1.4.2 Semantics

The meaning of a POSTFIX program is determined by executing its commands in
left-to-right order. Each command manipulates an implicit stack of values that
initially contains the integer arguments of the program (where the first argument
is at the top of the stack and the last argument is at the bottom). A value on
the stack is either (1) an integer numeral or (2) an executable sequence. The
result of a program is the integer value at the top of the stack after its command
sequence has been completely executed. A program signals an error if (1) the
final stack is empty, (2) the value at the top of the final stack is not an integer,
or (3) an inappropriate stack of values is encountered when one of its commands
is executed.

The behavior of POSTFIX commands is summarized in Figure 1.1. Each
command is specified in terms of how it manipulates the implicit stack. We use
the notation P "% ¢ to mean that executing the POSTFIX program P on the
integer argument sequence args returns the value v. The notation P “2% error
means that executing the POSTFIX program P on the arguments args signals an
error. Errors are caused by inappropriate stack values or an insufficient number
of stack values. In practice, it is desirable for an implementation to indicate the
type of error. We will use comments (delimited by braces) to explain errors and
other situations.

To illustrate the meanings of various commands, we show the results of some
simple program executions. For example, numerals are pushed onto the stack,
while pop and swap are the usual stack operations.

23) L3 {Only the top stack value is returned.}
2 3 pop) Lo

(postfix 0 1
1
1 2 swap 3 pop) g
1
1

(postfix O

(postfix 0

(postfix 0 1 swap) L error {Not enough values to swap.}
0

(postfix pop pop) U, error {Empty stack on second pop.}

Program arguments are pushed onto the stack (from last to first) before the
execution of the program commands.

10 Chapter 1 Introduction

N: Push the numeral N onto the stack.

sub: Call the top stack value v; and the next-to-top stack value vs. Pop these two
values off the stack and push the result of vs — v; onto the stack. If there are
fewer than two values on the stack or the top two values aren’t both numerals,
signal an error. The other binary arithmetic operators — add (addition), mul
(multiplication), div (integer division?®), and rem (remainder of integer division)
— behave similarly. Both div and rem signal an error if v; is zero.

1t: Call the top stack value v; and the next-to-top stack value vs. Pop these
two values off the stack. If ve < vy, then push a 1 (a true value) on the stack,
otherwise push a 0 (false). The other binary comparison operators — eq (equals)
and gt (greater than) — behave similarly. If there are fewer than two values on
the stack or the top two values aren’t both numerals, signal an error.

pop: Pop the top element off the stack and discard it. Signal an error if the stack
is empty.

swap: Swap the top two elements of the stack. Signal an error if the stack has fewer
than two values.

sel: Call the top three stack values (from top down) vy, vg, and vg. Pop these
three values off the stack. If vg is the numeral 0, push v; onto the stack; if vg is
a nonzero numeral, push ve onto the stack. Signal an error if the stack does not
contain three values, or if vs is not a numeral.

nget: Call the top stack value vj,40; and the remaining stack values (from top
down) vy, vz, ..., Un. POD Uinder Off the stack. If v;,4e, is a numeral ¢ such that
1 <4 < n and v; is a numeral, push v; onto the stack. Signal an error if the stack
does not contain at least one value, if v;,4e; iS not a numeral, if ¢ is not in the
range [1..n], or if v; is not a numeral.

(C; ... Cp): Push the ezxecutable sequence (C; ... C,) as a single value onto
the stack. Executable sequences are used in conjunction with exec.

exec: Pop the executable sequence from the top of the stack, and prepend its
component commands onto the sequence of currently executing commands. Signal
an error if the stack is empty or the top stack value isn’t an executable sequence.

“The integer division of n and d returns the integer quotient g such that n = gqd + r,
where r (the remainder) is such that 0 <r < |d| if n > 0 and —|d| <r <0if n < 0.

Figure 1.1 English semantics of POSTFIX commands.

(postfix 2) == 3 {Imtzal stack has 3 on top with 4 below.}

(postfix 2 swap) BA, g

(postfix 3 pop swap) 1B.4sl, 5

1.4.2 Semantics 11

It is an error if the actual number of arguments does not match the number of
parameters specified in the program.

(postfix 2 swap) error { Wrong number of arguments.}

(postfix 1 pop) B3, error { Wrong number of arguments.}

Note that program arguments must be integers — they cannot be executable
sequences.

Numerical operations are expressed in postfix notation, in which each operator
comes after the commands that compute its operands. add, sub, mul, and div are
binary integer operators. 1t, eq, and gt are binary integer predicates returning
either 1 (true) or 0 (false).

(postfix 1 4 sub) Bl

(postfix 1 4 add 5 mul 6 sub 7 div) Bl

(postfix 5 add mul sub swap div) M -20

(postfix 3 4000 swap pop add) 1300:20.11, 4920

(postfix 2 add 2 div) B, 5 {An averaging program.}
(postfix 1 3 div) L7, 5

(postfix 1 3 rem) Eﬂ» 2

(postfix 1 4 1t) £

(postfix 1 4 1t) 2L

(postfix 1 4 1t 10 add) Bl

(postfix 1 4 mul add) i error {Not enough numbers to add.}
(postfix 2 4 sub div) ==L error {Divide by zero.}

In all the above examples, each stack value is used at most once. Sometimes
it is desirable to use a number two or more times or to access a number that is
not near the top of the stack. The nget command is useful in these situations; it
puts at the top of the stack a copy of a number located on the stack at a specified
index. The index is 1-based, from the top of the stack down, not counting the
index value itself.

(postfix 2 1 nget) 1451, 4 {4 is at index 1, 5 at index 2.}

(postfix 2 2 nget) 131, 5

It is an error to use an index that is out of bounds or to access a nonnumeric
stack value (i.e., an executable sequence) with nget.

(postfix 2 3 nget) error {Index 3 is too large.}
(postfix 2 0 nget) B3], error {Index 0 is too small.}

(postfix 1 (2 mul) 1 nget) B, error
{Value at index 1 is not a number but an executable sequence.}

12 Chapter 1 Introduction

The nget command is particularly useful for numerical programs, where it is
common to reference arbitrary parameter values and use them multiple times.

(postfix 1 1 nget mul) Bl o5 {4 squaring program.}

(postfix 4 4 nget 5 nget mul mul swap 4 nget mul add add) 18452, 95

{Given a, b, c, 7, calculates az® + bz + c.}

As illustrated in the last example, the index of a given value increases every time
a new value is pushed onto the stack. The final stack in this example contains
(from top down) 25 and 2, showing that the program may end with more than
one value on the stack.

Executable sequences are compound commands like (2 mul) that are pushed
onto the stack as a single value. They can be executed later by the exec command.
Executable sequences act like subroutines in other languages; execution of an
executable sequence is similar to a subroutine call, except that transmission of
arguments and results is accomplished via the stack.

(postfix 1 (2 mul) exec) 11, 14 {(2 mul) is a doubling subroutine.}
(postfix 0 (O swap sub) 7 swap exec) U, 7

{(0 swap sub) is a negation subroutine.}
(postfix 0 (2 mul)) 1 error {Final top of stack is not an integer.}
(postfix 0 3 (2 mul) gt) U error

{Ezecutable sequence where number expected.}

(postfix O 3 exec) U error {Number where executable sequence expected.}

(postfix 0 (7 swap exec) (O swap sub) swap exec) U, 7

(postfix 2 (mul sub) (1 nget mul) 4 nget swap exec swap exec)

121020, 49 {Given a and b, calculates b — a-b*.}
The last two examples illustrate that evaluations involving executable sequences
can be rather contorted.

The sel command selects between two values based on a test value, where
zero is treated as false and any nonzero integer is treated as true. It can be used in
conjunction with exec to conditionally execute one of two executable sequences.

(postfix 1 2 3 sel) 1,9

(postfix 1 2 3 sel) 1% 3

(postfix 1 2 3 sel) 17,9 {Any nonzero number is “true.”}

(postfix 0 (2 mul) 3 4 sel) U error {Test not a number.}

(postfix 4 1t (add) (mul) sel exec) 134546, 39

(postfix 4 1t (add) (mul) sel exec) 18356, 19

(postfix 1 1 nget 0 1t (0 swap sub) () sel exec) 1,7
{An absolute value program.}

(postfix 1 1 nget 0 1t (O swap sub) () sel exec) 1, 6

1.4.2 Semantics 13

Exercise 1.1 Determine the value of the following POSTFIX programs on an empty
stack.

a. (postfix O 10 (swap 2 mul sub) 1 swap exec)
b. (postfix 0 (5 (2 mul) exec) 3 swap)

c. (postfix 0 (() exec) exec)

d. (postfix 0 2 3 1 add mul sel)

e. (postfix 0 2 3 1 (add) (mul) sel)

f. (postfix 0 2 3 1 (add) (mul) sel exec)

g. (postfix 0 0 (2 3 add) 4 sel exec)

h. (postfix 0 1 (2 3 add) 4 sel exec)

i. (postfix 0 (5 6 1t) (2 3 add) 4 sel exec)

j- (postfix O (swap exec swap exec) (1 sub) swap (2 mul)

swap 3 swap exec)

Exercise 1.2

a. What function of its argument does the following POSTFIX program calculate?
(postfix 1 ((3 nget swap exec) (2 mul swap exec) swap)

(5 sub) swap exec exec)

b. Write a simpler POSTFIX program that performs the same calculation.

Exercise 1.3 Recall that executable sequences are effectively subroutines that, when
invoked (by the exec command), take their arguments from the top of the stack. Write
executable sequences that compute the following logical operations. Recall that 0 stands
for false and all other numerals are treated as true.

a. not: return the logical negation of a single argument.

b. and: given two numeric arguments, return 1 if their logical conjunction is true, and
0 otherwise.

c. short-circuit-and: return O if the first argument is false; otherwise return the second
argument.

d. Demonstrate the difference between and and short-circuit-and by writing a POSTFI1X
program with zero arguments that has a different result if and is replaced by short-
circuit-and.

Exercise 1.4

a. Without nget, is it possible to write a POSTFIX program that squares its single
argument? If so, write it; if not, explain.

14 Chapter 1 Introduction

b. Is it possible to write a POSTFIX program that takes three integers and returns the
smallest of the three? If so, write it; if not, explain.

c. Is it possible to write a POSTFIX program that calculates the factorial of its single
argument (assume it’s nonnegative)? If so, write it; if not, explain.

1.4.3 The Pitfalls of Informal Descriptions

The “by-example” and English descriptions of POSTFIX given above are typical
of the way that programming languages are described in manuals, textbooks,
courses, and conversations. That is, a syntax for the language is presented, and
the semantics of each of the language constructs is specified using English prose
and examples. The utility of this method for specifying semantics is apparent
from the fact that the vast majority of programmers learn to read and write
programs via this approach.

But there are many situations in which informal descriptions of programming
languages are inadequate. Suppose that we want to improve a program by trans-
forming complex phrases into phrases that are simpler and more efficient. How
can we be sure that the transformation process preserves the meaning of the
program?

Or suppose that we want to prove that the language as a whole has a particular
property. For instance, it turns out that every POSTFIX program is guaranteed
to terminate (i.e., a POSTFIX program cannot enter an infinite loop). How would
we go about proving this property based on the informal description? Natural
language does not provide any rigorous framework for reasoning about programs
or programming languages. Without the aid of some formal reasoning tools, we
can only give hand-waving arguments that are not likely to be very convincing.

Or suppose that we wish to extend POSTF1X with features that make it easier
to use. For example, it would be nice to name values, to collect values into arrays,
to query the user for input, and to loop over sequences of values. With each new
feature, the specification of the language becomes more complex, and it becomes
more difficult to reason about the interaction between various features. We’d like
techniques that help to highlight which features are orthogonal and which can
interact in subtle ways.

Or suppose that a software vendor wants to develop POSTFIX into a product
that runs on several different machines. The vendor wants any given POSTFI1X
program to have exactly the same behavior on all of the supported machines.
But how do the development teams for the different machines guarantee that
they’re all implementing the “same” language? If there are any ambiguities
in the POSTFIX specification that they’re implementing, different development

1.5 Overview of the Book 15

teams might resolve the ambiguity in incompatible ways. What’s needed in this
case is an unambiguous specification of the language as well as a means of proving
that an implementation meets that specification.

The problem with informal descriptions of a programming language is that
they’re neither concise nor precise enough for these kinds of situations. English
is often verbose, and even relatively simple ideas can be unduly complicated
to explain. Moreover, it’s easy for the writer of an informal specification to
underspecify a language by forgetting to cover all the special cases (e.g., error
situations in POSTFIX). It isn’t that covering all the special cases is impossible;
it’s just that the natural-language framework doesn’t help much in pointing out
what the special cases are.

It is possible to overspecify a language in English as well. Consider the PosT-
Fix programming model introduced above. The current state of a program is
captured in two entities: the stack and the current command sequence. To pro-
grammers and implementers alike, this might imply that a language implemen-
tation must have explicit stack and command sequence elements in it. Although
these would indeed appear in a straightforward implementation, they are not in
any way required; there are alternative models and implementations for POSTFIx
(e.g., see Exercise 3.12 on page 70). It would be desirable to have a more ab-
stract definition of what constitutes a legal POSTFIX implementation so that a
would-be implementer could be sure that an implementation was faithful to the
language definition regardless of the representations and algorithms employed.

1.5 Overview of the Book

The remainder of Part I introduces a number of tools that address the inade-
quacies outlined above and that form an essential foundation for the study of
programming language design. Chapter 2 presents s-expression grammars, a
simple specification for syntax that we will use to describe the structure of all
of the mini-languages we will explore. Then, using POSTFIX and a simple ex-
pression language as our objects of study, we introduce two approaches to formal
semantics:

e An operational semantics (Chapter 3) explains the meaning of programming
language constructs in terms of the step-by-step process of an abstract machine.

e A denotational semantics (Chapter 4) explains the meaning of programming
language constructs in terms of the meaning of their subparts.

16 Chapter 1 Introduction

These approaches support the unambiguous specification of programming lan-
guages and provide a framework in which to reason about properties of programs
and languages. Our discussion of tools concludes in Chapter 5 with a presentation
of a technique for determining the meaning of recursive specifications. Through-
out the book, and especially in these early chapters, we formalize concepts in
terms of a mathematical metalanguage described in Appendix A. Readers are
encouraged to familiarize themselves with this language by skimming this ap-
pendix early on and later referring to it in more detail on an “as needed” basis.

Part II focuses on dynamic semantics, the meaning of programming lan-
guage constructs and the run-time behavior of programs. In Chapter 6, we in-
troduce FL, a mini-language we use as a basis for investigating dimensions of
programming language design. By extending FL in various ways, we then ex-
plore programming language features along key dimensions: naming (Chapter 7),
state (Chapter 8), control (Chapter 9), and data (Chapter 10). Along the way,
we will encounter several programming paradigms, high-level approaches for
viewing computation: function-oriented programming, imperative programming,
and object-oriented programming.

In Part III, we shift our focus to static semantics, properties of programs
that can be determined without executing them. In Chapter 11, we introduce the
notion of type — a description of what an expression computes — and develop a
simple type-checking system for a dialect of FL such that “well-typed” programs
cannot encounter certain kinds of run-time errors. In Chapter 12, we study some
more advanced features of typed languages: subtyping, universal polymorphism,
bounded quantification, and kind systems. A major drawback to many of our
typed mini-languages is that programmers are required to annotate programs
with significant amounts of explicit type information. In some languages, many
of these annotations can be eliminated via type reconstruction, a technique we
study in Chapter 13. Types can be used as a mechanism for enforcing data
abstraction, a notion that we explore in Chapter 14. In Chapter 15, we show
how many of the dynamic and static semantics features we have studied can be
combined to yield a mini-language in which program modules with both value and
type components can be independently type-checked and then linked together in
a type-safe way. We wrap up our discussion of static semantics in Chapter 16
with a study of effect systems, which describe how expressions compute rather
than what they compute.

The book culminates, in Part IV, in a pragmatics segment that illustrates
how concepts from dynamic and static semantics play an important role in the
implementation of a programming language. Chapter 17 presents a compiler
that translates from a typed dialect of FL to a low-level language that resembles

1.5 Overview of the Book 17

assembly code. The compiler is organized as a sequence of meaning-preserving
translation steps that construct explicit representations for the naming, state,
control, and data aspects of programs. In order to automatically reclaim memory
in a type-safe way, the run-time system for executing the low-level code generated
by the compiler uses garbage collection, a topic that is explored in Chapter 18.

While we will emphasize formal tools throughout this book, we do not imply
that formal tools are a panacea or that formal approaches are superior to informal
ones in an absolute sense. In fact, informal explanations of language features are
usually the simplest way to learn about a language. In addition, it’s very easy
for formal approaches to get out of control, to the point where they are overly
obscure, or require too much mathematical machinery to be of any practical
use on a day-to-day basis. For this reason, we won’t cover material as a dry
sequence of definitions, theorems, and proofs. Instead, our goal is to show that the
concepts underlying the formal approaches are indispensable for understanding
particular programming languages as well as the dimensions of language design.
The tools, techniques, and features introduced in this book should be in any
serious computer scientist’s bag of tricks.

2

Syntax

since feeling is first

who pays any attention

to the syntax of things
will never wholly kiss you;

for life’s not a paragraph

And death i think is no parenthesis

— e. e. cummings, “since feeling is first”

In the area of programming languages, syntax refers to the form of programs
— how they are constructed from symbolic parts. A number of theoretical and
practical tools — including grammars, lexical analyzers, and parsers — have been
developed to aid in the study of syntax. By and large we will downplay syntactic
issues and tools. Instead, we will emphasize the semantics of programs; we will
study the meaning of language constructs rather than their form.

We are not claiming that syntactic issues and tools are unimportant in the
analysis, design, and implementation of programming languages. In actual pro-
gramming language implementations, syntactic issues are very important and a
number of standard tools (like Lex and Yacc) are available for addressing them.
But we do believe that syntax has traditionally garnered much more than its fair
share of attention, largely because its problems were more amenable to solution
with familiar tools. This state of affairs is reminiscent of the popular tale of the
person who searches all night long under a street lamp for a lost item not because
the item was lost there but because the light was better. Luckily, many investiga-
tors strayed away from the street lamp of parsing theory in order to explore the
much dimmer area of semantics. Along the way, they developed many new tools
for understanding semantics, some of which we will focus on in later chapters.

Despite our emphasis on semantics, however, we can’t ignore syntax com-
pletely. Programs must be expressed in some form, preferably one that elucidates
the fundamental structure of the program and is easy to read, write, and reason

20 Chapter 2 Syntax

about. In this chapter, we introduce a set of syntactic conventions for describing
our mini-languages.

2.1 Abstract Syntax

We will motivate various syntactic issues in the context of EL, a mini-language
of expressions. EL expressions have a tree-like structure that is more typical
of program phrases than the mostly linear structure of POSTFIX command se-
quences. EL describes functions that map any number of numerical inputs to a
single numerical output. Such a language might be useful on a calculator, say,
for automating the evaluation of commonly used mathematical formulas.

Figure 2.1 describes (in English) the abstract structure of a legal EL program.
EL programs contain numerical expressions, where a numerical expression can
be constructed out of various kinds of components. Some of the components,
like numerals, references to input values, and various kinds of operators, are
primitive — they cannot be broken down into subparts.! Other components
are compound — they are constructed out of constituent components. The
components have names; e.g., the subparts of an arithmetic operation are the
rator (short for “operator”) and two rands (short for “operands”), while the
subexpressions of the conditional expression are the test expression, the then
expression, and the else expression.

There are three major classes of phrases in an EL program: whole programs
that designate calculations on a given number of inputs, numerical expressions
that designate numbers, and boolean expressions that designate truth values
(i.e., true or false). The structural description in Figure 2.1 constrains the ways
in which these expressions may be “wired together.” For instance, the test com-
ponent of a conditional must be a boolean expression, while the then and else
components must be numerical expressions.

A specification of the allowed wiring patterns for the syntactic entities of a
language is called a grammar. Figure 2.1 is said to be an abstract grammar
because it specifies the logical structure of the syntax but does not give any
indication how individual expressions in the language are actually written.

Parsing a program phrase with an abstract grammar results in a value called
an abstract syntax tree (AST). As we will see in Section 2.3, abstract syn-
tax trees are easy to inspect and disassemble, making them ideal substrates for
defining the meaning of program phrases in terms of their parts.

Consider an EL program that returns zero if its first input is between 1 and
10 (exclusive) and otherwise returns the product of the second and third inputs.

'Numerals can be broken down into digits, but we will ignore this detail.

2.1 Abstract Syntax

21

A legal EL program is a pair of (1) a numargs numeral specifying the number of pa-
rameters and (2) a body that is a numerical expression, where a numerical expression
is one of:

e an intval — an integer literal num;
e an input — a reference to one of the program inputs specified by an index numeral;

e an arithmetic operation — an application of a rator, in this case a binary arithmetic
operator, to two numerical rand expressions, where an arithmetic operator is one of:

e addition,

e subtraction,

e multiplication,
e division,

e remainder;

e a conditional — a choice between numerical then and else expressions determined
by a boolean test expression, where a boolean expression is one of:

e a boolval — a boolean literal bool,

e a relational operation — an application of rator, in this case a binary rela-
tional operator, to two numerical rand expressions, where a relational operator
is one of:

e less-than,
e cqual-to,
e greater-than;

e a logical operation — an application of a rator, in this case a binary logical
operator, to two boolean rand expressions, where a logical operator is one of:

e and,

® Or.

Figure 2.1 An abstract grammar for EL programs.

The abstract syntax tree for this program appears in Figure 2.2. Each node of t

he

tree except the root corresponds to a numerical or boolean expression. The leaves

of the tree stand for primitive phrases, while the intermediate nodes represe

nt

compound phrases. The labeled edges from a parent node to its children show

the relationship between a compound phrase and its components. The AST

is

defined purely in terms of these relationships; the particular way that the nodes

and edges of a tree are arranged on the page is immaterial.

22 Chapter 2 Syntax

Program
numargs body
3 Conditional
test then Ise

Logical Arithmetic

Operation IntVal Operation
rator randl rand2 num rator randl/ rand?2

Relational Relational

and Operation Operation 0 | Input | Input

rator, randl rand2 rator, randl/ rand2 index index]
| Input | | IntVal | | Input | | IntVal |
index] index num

Figure 2.2 An abstract syntax tree for an EL program.

2.2 Concrete Syntax

Abstract grammars and ASTs aren’t very helpful when it comes to representing
programs in a textual fashion.? The same abstract structure can be expressed
in many different concrete forms. The sample EL conditional expression in Fig-
ure 2.2, for instance, could be written down in some strikingly different textual
forms. Here are three examples:

if $1 > 1 && $1 < 10 then O else $2 * $3 endif

(cond ((and (> (arg 1) 1) (< (arg 1) 10)) 0)
(else (x (arg 2) (arg 3))))

1 input 1 gt 1 input 10 1t and {0} {2 input 3 input mul} choose
The above forms differ along a variety of dimensions:

o Keywords and operation names. The keywords if, cond, and choose all indi-
cate a conditional expression, while multiplication is represented by the names

2Tt is also possible to represent programs more pictorially, and visual programming languages
are an active area of research. But textual representations enjoy certain advantages over visual
ones: they tend to be more compact than visual representations; the technology for processing
them and communicating them is well established; and, most important, they can effectively
make use of our familiarity with natural language.

2.3 S-Expression Grammars Specify ASTs 23

* and mul. Accessing the ith input to the program is written in three different
ways: $i, (arg i), and ¢ input.

e Operand order. The example forms use infix, prefix, and postfix operations,
respectively.

e Means of grouping. Grouping can be determined by precedence (&& has a
lower precedence than > and < in the first example), keywords (then, else,
and endif delimit the test, then, and else parts of the first conditional), or
explicit matched delimiter pairs (such as the parentheses and braces in the last
two examples).

These are only some of the possible dimensions. Many more are imaginable. For
instance, numbers could be written in many different numeral formats such as
decimal, binary, or octal numerals, scientific notation, or even Roman numerals!

2.3 S-Expression Grammars Specify ASTs

The examples in Section 2.2 illustrate that the nature of concrete syntax ne-
cessitates making representational choices that are arbitrary with respect to the
abstract syntactic structure. While we will dispense with many of the complex-
ities of concrete syntax, we still need some concrete notation for representing
abstract syntax trees. Such a representation should be simple, yet permit us to
precisely describe abstract syntax trees and operations on such trees. Throughout
this book, we need to operate on abstract syntax trees to determine the meaning
of a phrase, the type of a phrase, the translation of a phrase, and so on. To
perform such operations, we need a far more compact representation for abstract
syntax trees than the English description in Figure 2.1 or the graphical one in
Figure 2.2.

We have chosen to represent abstract syntax trees using s-expression gram-
mars. An s-expression grammar unites LISP’s fully parenthesized prefix notation
with traditional grammar notations to describe the structure of abstract syntax
trees via parenthesized sequences of symbols and metavariables. Not only are
these grammars very flexible for defining unambiguous program language syntax,
but it is easy to construct programs that process s-expression notation. This fa-
cilitates writing interpreters and translators for the mini-languages we will study.

2.3.1 S-Expressions

An s-expression (short for symbolic expression) is a notation for represent-
ing trees by parenthesized linear text strings. The leaves of the trees are sym-

24 Chapter 2 Syntax

|example| |s—expression|

Figure 2.3 Viewing ((this is) an ((example) (s-expression tree))) as a tree.

bolic tokens, where (to first approximation) a symbolic token is any sequence
of characters that does not contain a left parenthesis (‘(’), a right parenthesis
()7), or a whitespace character. Examples of symbolic tokens include x, foo,
this-is-a-token, 17, 6.821, and 4/3*pi*r~2. We always write s-expressions
in teletype font.

An intermediate node in a tree is represented by a pair of parentheses sur-
rounding the s-expressions that represent the subtrees. Thus, the s-expression

((this is) an ((example) (s-expression tree)))

designates the structure depicted in Figure 2.3. Whitespace is necessary for
separating tokens that appear next to each other, but can be used liberally to
enhance the readability of the structure. Thus, the above s-expression could also
be written as

((this is)
an
((example)
(s-expression
tree)))

without changing the structure of the tree.

2.3.2 The Structure of S-Expression Grammars

An s-expression grammar combines the domain notation of Appendix A with
s-expressions to specify the syntactic structure of a language. It has two parts:

1. A list of syntactic domains, one for each kind of phrase.
2. A set of production rules that define the structure of compound phrases.

Figure 2.4 presents a sample s-expression grammar for EL.

2.3.2 The Structure of S-Expression Grammars 25

Syntactic Domains
P € Prog

NE € NumExp

BE € BoolExp
N € IntLit = {..., -2, -1, 0, 1, 2, ...}
B € BoolLit = {true, false}
A € ArithmeticOperator = {+, -, *, /, %}
R € RelationalOperator = {<, =, >}
L € LogicalOperator = {and, or}

Production Rules
P ::= (el Npumargs NEpody) [Program]
NE ::= Npum [IntVal]
| (arg Nindes) [Input]
| (Avator NE,ands NEgnde) [ArithmeticOperation]
| (if BE(est NEhen NEs.) [Conditional]

BE ::= By [BoolVal]
| (Rrator NEyand: NE and2) [RelationalOperation]
| (Lyator BEr andi BErandz) [LogicalOperation]

Figure 2.4 An s-expression grammar for EL.

A syntactic domain is a collection of program phrases. Primitive syntactic
domains are collections of phrases with no substructure. The primitive syntactic
domains of EL are IntLit, BoolLit, ArithmeticOperator, RelationalOperator, and
LogicalOperator. Primitive syntactic domains are specified by an enumeration
of their elements or by an informal description with examples. For instance, the
details of what constitutes a numeral in EL are left to the reader’s intuition.

Compound syntactic domains are collections of phrases built out of other
phrases. Because compound syntactic domains are defined by a grammar’s pro-
duction rules, the list of syntactic domains does not explicitly indicate their
structure. All syntactic domains are annotated with domain variables (such as
NE, BE, and N) that range over their elements; these play an important role in
the production rules.

The production rules specify the structure of compound domains. There is
one rule for each compound domain. A production rule has the form

domain-variable ::= pattern [phrase-type]
| pattern [phrase-type]

| pattern [phrase-type]

26 Chapter 2 Syntax

where

e domain-variable is the domain variable for the compound syntactic domain
being defined,

e pattern is an s-expression pattern (defined below), and

e phrase-type is a mnemonic name for the subclass of phrases in the domain that
match the pattern. The phrase types correspond to the labels of intermediate
nodes in an AST.

Each line of the rule is called a production; it specifies a collection of phrases
that are considered to belong to the compound syntactic domain being defined.
The second production rule in Figure 2.4, for instance, has four productions, spec-
ifying that a NumExp can be an integer literal, an indexed input, an arithmetic
operation, or a conditional.

S-expression grammars are specialized versions of context-free grammars, the
standard way to define programming language syntax. Domain variables play
the role of nonterminals in such grammars. Our grammars are context-free be-
cause each production specifies the expansion of a single nonterminal in a way
that does not depend on the context in which that nonterminal appears. The
terminals of an s-expression grammar are tokens written in teletype font, such
as parentheses, keywords, and literals. For certain elementary domains, we gloss
over the details of how their elements are constructed from more basic parts,
and instead provide a set-based description. For example, we use the description
{-.., -2, -1, 0, 1, 2, ...} to define integer literals rather than using productions
to specify how they can be constructed from digits and an optional minus sign.

An s-expression pattern appearing in a production stands for all s-expressions
that have the form of the pattern. An s-expression pattern may include symbolic
tokens (such as el, arg, if) to differentiate it from other kinds of s-expression
patterns. Domain variables may appear as tokens in s-expression patterns. For
example, the pattern (if BEiest NEpen NE ose) contains a symbolic token (if)
and the domain variables BE o5t, NE ther, and NE ... Such a pattern specifies the
structure of a compound phrase — a phrase that is built from other phrases.
Subscripts on the domain variables indicate their role in the phrase. This helps to
distinguish positions within a phrase that have the same domain variable — e.g.,
the then and else parts of a conditional, which are both numerical expressions.
This subscript appears as an edge label in the AST node corresponding to the
pattern, while the phrase type of the production appears as the node label. So
the if pattern denotes an AST node pattern of the form:

2.3.2 The Structure of S-Expression Grammars 27

BE

An s-expression pattern PT is said to match an s-expression SX if PT’s
domain variables dy, ..., d, can be replaced by matching s-expressions SX 7, ...,
SX, to yield SX. Each SX; must be an element of the domain over which d;
ranges. A compound syntactic domain contains exactly those s-expressions that
match the patterns of its productions in an s-expression grammar.

For example, Figure 2.5 shows the steps by which the NumExp production

(if BEtest NEthen NEelse)
matches the s-expression
(if (= (arg 1) 3) (arg 2) 4)

Matching is a recursive process: BE s matches (= (arg 1) 3), NE., matches
(arg 2), and NE . matches 4. The recursion bottoms out at primitive syntactic
domain elements (in this case, elements of the domain IntLit). Figure 2.5 shows
how an AST for the sample if expression is constructed as the recursive matching
process backs out of the recursion.

Note that the pattern (if BFiest NEihen NEese) would not match any of
the s-expressions (if 1 2 3), (if (arg 2) 2 3),or (if (+ (arg 1) 1) 2 3),
because none of the test expressions 1, (arg 2), or (+ (arg 1) 1) match any
of the patterns in the productions for BoolExp.

More formally, the rules for matching s-expression patterns to s-expressions
are as follows:

e A pattern (PT; ... PT,) matches an s-expression (SX; ... SX,) if each
subpattern PT; matches the corresponding subexpression SX;.

e A symbolic token T as a pattern matches only itself.

e A domain variable for a primitive syntactic domain D matches an s-expression
SX if SX is an element of D.

e A domain variable for a compound syntactic domain D matches an s-expression
SX if one of the patterns in the rule for D matches SX.

If SX is an s-expression, we shall use the notation SX p to designate the
domain element in D that SX designates. When D is a compound domain, SX p

28 Chapter 2 Syntax
s-expression domain| production
(arg 1) NE | (arg Nindez)
3 NE Noum
(Rmtor
(= (arg 1) 3) BE NEm,n,dZ .
Relational
NEm.ndZ) Operation
ratorfandl rand?2
IntVal
index| num
2 NE N;
(arg) (arg 'mdfzm) @I
index
2]
4 NE Noum
IntVal
num
[4]
(if (= (arg 1) 3) (if BEieq [Conditional |
(arg 2) NE NE then
4) NE else) test, then else
Relati 1
Operation IntVal
rator fand1l rand2 index] num
IntVal
index num|

Figure 2.5 The steps by which (if (= (arg 1) 3) (arg 2) 4) is determined to be
a member of the syntactic domain NumExp. In each row, an s-expression matches a
domain by a production to yield an abstract syntax tree.

2.3.2 The Structure of S-Expression Grammars 29

P € Prog == (el Npumargs NEbody) [Program]

NE € NumExp ::= Nyum [IntVal]
| (arg Nindes) [Input]
| (Arator NErands NE ange) [ArithmeticOperation]

| (if BEiest NEwhen NEese) [Conditional]

BE € BoolExp ::= Bpool [BoolVal]
| (Rrator NErandi NE andz) [RelationalOperation]
| (Lyator BErands BErand2) [LogicalOperation]

N e IntLit = {..., -2, -1, 0, 1, 2, ...}
B € BoolLit = {true, false}

A € ArithmeticOperator = {+, -, *, /, %}
R € RelationalOperator = {<, =, >}

L € LogicalOperator = {and, or}

Figure 2.6 A more concise rendering of the s-expression grammar for EL.

corresponds to an abstract syntax tree that indicates how SX matches one of the
rule patterns for the domain. For example,

(if (= (arg 1) 3) (arg 2) 4)NumExp

can be viewed as the abstract syntax tree depicted in Figure 2.5 on page 28. Each
node of the AST indicates the production that successfully matches the corre-
sponding s-expression, and each edge indicates a domain variable that appeared
in the production pattern.

In the notation SX p, domain subscript D serves to disambiguate cases where
SX belongs to more than one syntactic domain. For example, 1p,¢1i is 1 as a
primitive numeral, while 1NumExp is 1 as a numerical expression. The subscript
will be omitted when the domain is clear from context.

Using the s-expression grammar specified in Figure 2.4, the abstract syntax
tree in Figure 2.2 can be expressed as:

(el 3 (if (and (> (arg 1) 1) (< (arg 1) 10))

0
(x (arg 2) (arg 3))))

To make s-expression grammars more concise, we will often combine the spec-
ification of a compound syntactic domain with its production rules. Figure 2.6
shows the EL s-expression grammar written in this more concise style.

30 Chapter 2 Syntax

Exercise 2.1
a. Write an EL program that takes three integers and returns the largest one.

b. Draw an AST for your program.

2.3.3 Phrase Tags

S-expression grammars for our mini-languages will generally follow the Lisp-style
convention that compound phrases begin with a phrase tag that unambiguously
indicates the phrase type. In EL, if is an example of a phrase tag. The fact
that all compound phrases are delimited by explicit parentheses eliminates the
need for syntactic keywords in the middle of or at the end of phrases (e.g., then,
else, and endif in a conditional).

Because phrase tags can be cumbersome, we will often omit them when no
ambiguity results. Figure 2.7 shows an alternative syntax for EL in which ev-
ery production pattern is marked with a distinct phrase tag. In this alternative
syntax, the addition of 1 and 2 would be written (arith + (num 1) (num 2))
— quite a bit more verbose than (+ 1 2)! But most of the phrase tags can
be removed without introducing ambiguity. Because numerals are clearly distin-
guished from other s-expressions, there is no need for the num tag. Likewise, we
can dispense with the bool tag. Since the arithmetic operators are disjoint from
the other operators, the arith tag is superfluous as are the rel and log tags.
The result of these optimizations is the original EL syntax in Figure 2.4.

2.3.4 Sequence Patterns

As defined above, each component of an s-expression pattern matches only a
single s-expression. But sometimes it is desirable for a pattern component to
match a sequence of s-expressions. For example, suppose we want to extend the
+ operator of EL to accept an arbitrary number of numeric operands, making
(+ 123 4)and (+ 2 (+ 3 45) (+ 6 7)) legal numerical expressions in EL.
Using the simple patterns introduced above, this extension requires an infinite
number of productions:

NE == ...
| (+) [Addition-0]
| (+ NErandI) [Addltlon—l]
‘ (+ NET'GTLd] NErandQ) [Addition—2]
[]

‘ (+ NEvandi NEranaz NEranas) [Addition-3
.

2.3.4 Sequence Patterns 31

P ::= (el Nyumargs NEpoay) [Program]

NE ::= (num N,um) [IntVal]
| (arg Nindes) [Input]
| (arith Asgtor NErands NErande) [ArithmeticOperation]
| (if BEiest NEwen NEeise) [Conditional]

BE ::= (bool DBpoo) [BoolVal]

| (rel Ryutor NErand: NErandz) [RelationalOperation]
| (10g Lyator BErandi BErands) [LogicalOperation]

Figure 2.7 An alternative syntax for EL in which every production pattern has a
phrase tag.

Here we introduce a concise way of handling this kind of syntactic flexibil-
ity within s-expression grammars. We extend s-expression patterns so that any
pattern can be annotated with a postfix * character. Such a pattern is called a
sequence pattern. A sequence pattern PT* matches any consecutive sequence
of zero or more s-expressions SX; ... SX, such that each SX; matches the
pattern PT.

For instance, the extended addition expression can be specified concisely by
the pattern (+ NE7,). Here are some phrases that match this new pattern,
along with the sequence matched by NE7, ; in each case:?

(+ 6 821) NE; a = [6, 8, 2, 1]NumExp

(+7 (+584) (+96)) NE ..=17 (+584), (+ 9 6)|NumExp
(+3) NEing = [3INumpxp

+ NEj'and = HNUHIEXP

In graphical depictions of ASTs, a sequence node will be drawn as a solid cir-
cle whose components (indexed starting at 1) branch out from the node. E.g.,
Figure 2.8 shows the AST for (+ 7 (+ 5 8 4) (+ 9 6)) in EL with extended
addition expressions.

Note that a sequence pattern can match any number of elements, including
zero or one. To specify that an addition should have a minimum of two operands,
we could use the following production pattern:

(+ NEmndZ NErandQ NE:est)

A postfix T is similar to *, except that the pattern matches only a sequence

with at least one element. Thus, the pattern (+ NE:m 4) is an alternative way

3 [InumExp denotes the empty sequence of numerical expressions, as explained in Section A.3.5.

32 Chapter 2 Syntax

of expressing the essence of the pattern (+ NE,.,0 NE,.). However, the two
patterns are subtly different: (+ NEjand) denotes an AST node with a single
component that is a sequence of numerical expressions, while (+ NE, 4,0 NET..)
denotes an AST node with two components — a numerical expression (its rand)
and a sequence of numerical expressions (its rest).

A postfix 7 indicates a sequence of either zero or one elements of a domain. Tt
is used to specify optional syntactic elements. For example, (- FEj E;) describes
the syntax for a - operator that designates subtraction (in the two-element case)
or unary negation (in the one-element case).

A postfix *, T, or 7 can be attached to any s-expression pattern, not just a
domain variable. For example, in the s-expression pattern

(cond (BEtest NEthen)* (else NEdefault>?)

the subpattern (BE st NE)" matches any sequence of parenthesized clauses
containing a boolean expression followed by a numerical expression, and the sub-
pattern (else NEdefault)? matches an optional else clause.

To avoid ambiguity, s-expression grammars are not allowed to use s-expression
patterns in which multiple sequence patterns enable a single s-expression to match
a pattern in more than one way. As an example of a disallowed pattern, consider
(op NE .01 NE},.q2), which could match the s-expression (op 1 2) in three
different ways:

hd NE:andl = [1? Q}NumExp and NEiandQ = HNUIHEXP
hd NE:andl = [ﬂNumExp and NE:andQ = [Q}NumExp
hd NEiandl = []NumExp and NEiandQ = [1’ 2]NumExp

A disallowed pattern can always be transformed into a legal pattern by inserting
explicit parentheses to demarcate components. For instance, the following are all
unambiguous legal patterns:

(op (NE7,a1) (NE}4n42))
(OP (NE:andJ) NE:andQ)
(op NE (NE; a2))

randl

2.3.5 Notational Conventions

In addition to the s-expression patterns described above, we will employ a few
other notational conventions for syntax.

2.3.5 Notational Conventions 33

| IntVal | | Addition |

rand

|IntVal| [mtVal| [IntVal| [IntVal| |IntVal]

0 B oM B O

Figure 2.8 AST notation for (+ 7 (+ 5 8 4) (+ 9 6)) in EL with extended addi-
tion expressions.

Domain Variables

In addition to being used in s-expression patterns, domain variables can appear
inside s-expressions when they denote particular s-expressions. For example, if
NE; is the s-expression (+ 1 2) and NFE, is the s-expression (- 3 4), then
(x NE; NE») is the same syntactic entity as (x (+ 1 2) (- 3 4)).

Ellipsis Notation

If SX is an s-expression pattern denoting an element of a syntactic domain D,
then the ellipsis notation SX; ... SX} specifies a sequence with (k — j + 1)
elements from D*. For example, (+ NE; ... NE5) designates an EL extended
addition expression with 5 operands, and

(cond (BE; NE;) ... (BE,, NE,,) (else NEgetquit))

stands for an expression containing m pairs of the form (BF; NF;). The pattern
(+ N; ... No_; NE; ... NE,)

designates an EL extended addition expression with n operands in which the first
i — 1 operands are numeric literals (a specific kind of numeric expression) and the
remaining operands are arbitrary numeric expressions.

Note that ellipsis notation can denote sequences with zero elements or one
element: SX; ... SX} denotes a sequence with one element if £ = j and a
sequence with zero elements if k = (j — 1).

34 Chapter 2 Syntax

Index Notation

To abbreviate ellipsis notation further, we will sometimes employ the indexed
notation SX f:j to stand for SX; ... SXj, where SX; refers to a particular
element of this sequence. Here are the ellipsis notation examples from above
expressed with index notation:

(+ NEZ_)
(cond (BEJ NEJ);nzl (else NEdefault))
(+ NZ} NEp_)

Note that SX f’:j denotes a sequence with one element if £k = j and a sequence
with zero elements if k = (j — 1).

Sequence Notation

Sequence notation, including the infix notations for the cons (“.”) and append
(“@7”) sequence functions (see Section A.3.5), can be intermixed with s-expression
notation to designate sequence elements of compound syntactic domains. For ex-
ample, all of the following are alternative ways of writing the same extended EL
addition expression:

+123)
(+[1, 2, 3D
+ [1, 2J@[3D
(+1.[2, 3]

Similarly, if NE; = 1, NE, = [2, (+ 3 4)],and NE% = [(* 5 6), (- 7 8)],
then (+ NE;.NE?%) designates the same syntactic entity as

(+12 (+34)
and (+ NE, @Q NE%) designates the same syntactic entity as
+2 (+34) (x56) (-7 8))

The sequence notation is legal only in positions where a production for a
compound syntactic domain contains a sequence pattern. For example, the fol-
lowing notations are illegal because if expressions do not contain any component
sequences:

(if [(< (arg 1) 1), 2, 3]
(if [(< (arg 1) 1), 2] @[3])
(if (< (arg 1) 1).[2, 3]

2.3.5 Notational Conventions 35

nheight : NumExp — Nat
nheight[N] = 0
nheight[(arg N)] = 0
nheight[(A NE; NE32)] = (1 +nat (max nheight[NE ;] nheight[NE2]))
nheight[(if BEicsi NEhen NEcise)]

= (1 +nat (max bheight[BE 5] (max nheight[NE o] nheight[NE cse])))
bheight : BoolExp — Nat
bheight[B] = 0
bheight[(R NE; NE2)] = (1 +nq (max nheight[NE;] nheight[NE:]))
bheight[(L BE; BEz)] = (1 +nat (max bheight[BE] bheight[BE]))

Figure 2.9 Two examples illustrating the form of function definitions on syntactic
domains.

Similarly, the notation (+ 1 [2, 3]) is not legal for an EL extended addition ex-
pression, because the production pattern (+ NE7 . .) requires a single sequence
component, not two components (a numerical expression and a sequence of nu-
merical expressions). If the production pattern were instead (+ NE, 40 NE7 ..,
then the expression (+ 1 [2, 3]) would match the pattern, but (+ [1, 2, 3]),
(+ [1, 2]@J3]), and (+ 1.[2, 3]) would not. However, according to our con-
ventions, (+ 1 2 3) would match either of these production patterns.

Sequence notation can be used in s-expression patterns as well. For exam-
ple, the pattern (+ NE, 4,41 - NE},) matches any extended addition expression

with at least one operand, while the pattern (+ [4, 7] @ NE7,,,) matches any
extended addition expression whose first two operands are 4 and 7.

Syntactic Functions

We will follow a convention (standard in the semantics literature) that functions
on compound syntactic domains are defined by a series of clauses, one for each
production. Figure 2.9 illustrates this style of definition for two functions on EL
expressions: nheight specifies the height of a numerical expression, while bheight
specifies the height of a boolean expression. Each clause consists of two parts: a
head that specifies an s-expression pattern from a production; and a body defining
the meaning of the function for s-expressions that match the head.

The double brackets, [], are often used in syntactic functions to demar-
cate a syntactic operand. They help to visually distinguish phrases in the pro-
graming language being processed from phrases in the metalanguage defining

36 Chapter 2 Syntax

the function. These brackets may be viewed as part of the name of the syn-
tactic function. In function applications involving bracket notation, the func-
tion is assumed to bind tightly with the syntactic argument. For instance, the
application max nheight[NE ;] nheight[NE] is parsed as if it were written
(max (nheight[NE;]) (nheight[NEz])).

2.3.6 Mathematical Foundation of Syntactic Domains

Exactly what kinds of entities are defined by s-expression grammars? The an-
swer to this question is important, because we will spend the rest of this book
manipulating such entities. Intuitively, each compound syntactic domain in an
s-expression grammar is defined to be the set of trees whose structure is deter-
mined by the productions for that domain. But can we define these trees in a
more formal way?

Yes! Using the domain concepts introduced in Section A.3, we can precisely
define the mathematical structures specified by an s-expression grammar via what
we will call the sum-of-products interpretation. An s-expression grammar
defines a (potentially mutually recursive) collection of syntactic domains. In the
sum-of-products interpretation we define:

e the primitive syntactic domains mentioned in the s-expression grammar, each
simply containing the elements specified for that domain;

e a new domain for each production, which we name with the phrase type of
that production and define to be the product of the domains associated with
the domain-variable occurrences in the production pattern;

e the compound syntactic domains mentioned in the s-expression grammar, each
defined as a sum of domains, one for each production for that domain.

Note these special cases:

e The domain for a production containing exactly one domain-variable occur-
rence turns out to be a synonym for the domain associated with that domain
variable.

e A compound domain with just one production turns out to be a synonym for
the domain associated with that production.

e A production containing no domain-variable occurrences represents the Unit
domain.

2.3.6 Mathematical Foundation of Syntactic Domains 37

Prog = Program

Program = IntLit x NumExp

NumExp = IntVal 4+ Input 4+ ArithmeticOperation + Conditional
IntLit = {..., -2, -1, 0, 1, 2, ...}

IntVal = IntLit

Input = IntLit

ArithmeticOperation = ArithmeticOperator x NumExp x NumExp
ArithmeticOperator = {+, -, * /, %}

Conditional = BoolExp x NumExp x NumExp

BoolExp = BoolVal + RelationalOperation + LogicalOperation
BoolLit = {true, false}

BoolVal = BoolLit

RelationalOperation = RelationalOperator x NumExp x NumExp
RelationalOperator = {<, =, >}

LogicalOperation = LogicalOperator x BoolExp x BoolExp
LogicalOperator = {and, or}

Figure 2.10 Syntactic domains for sum-of-products interpretation of the s-expression
grammar for EL.

Any occurrence of a sequence pattern PT™ in a production represents a sequence
domain whose elements are described by the pattern PT.

For example, Figure 2.10 shows the complete domain definitions implied by
the s-expression grammar for EL in Figure 2.4. Recall that the Prog domain
is defined by the single production pattern (el Npumargs NEpody), With phrase
type Prog. So Prog is a synonym for Program, a product domain of IntLit
(the domain associated with the domain variable N) and NumExp (the domain
associated with the domain variable NE). In the s-expression grammar, the
NumExp domain is defined by the following four productions:

NE ::= Npum [IntVal]
| (arg Nindesz) [Input]
| (Arator NEranar NEanaz) [ArithmeticOperation]
| (if BEjes; NEgen NEos0) [Conditional]

So NumExp is interpreted as a sum of four domains:
1. the IntVal domain, a synonym for IntLit, representing an integer literal;

2. the Input domain, a synonym for IntLit, representing the index of a reference
to a program input;

38 Chapter 2 Syntax

(3,
Conditional —NumExp
(LogicalOperation —BoolExp(and,
RelationalOperation —BoolExp
(>, (Input —NumExp 1), (IntVal>»NumExp 1)),
RelationalOperation —BoolExp
(<, (Input —NumExp 1), (IntVal>»NumExp 10))
)
(IntVal—»NumExp 0),
(ArithmeticOperation —NumExp (*, (Input—NumExp 2), (Input —NumExp 3)))
)
)

Figure 2.11 Sample EL program from Figure 2.2 expressed in syntactic-domain no-
tation.

3. the ArithmeticOperation domain, whose elements are triples of an arithmetic
operator in ArithmeticOperator and two operands from NumExp; and

4. the Conditional domain, whose elements are triples of a test expression from
BoolExp and two branch expressions from NumExp.

The structure of BoolExp is similarly determined from its productions. Fig-
ure 2.11 shows how the EL program AST from Figure 2.2 can be expressed in
this domain notation.

In the sum-of-products interpretation, the tag on an AST node indicates the
summand domain to which it belongs, and the subtrees of that node are the prod-
uct components of that summand domain. Throughout the rest of this book, we
will assume that any syntactic phrase constructed from an s-expression gram-
mar is really an element of a syntactic domain defined via the sum-of-products
interpretation. E.g., the EL expression (+ 1 (x 2 3)) is not a sequence of char-
acters, nor is it an s-expression tree; it is an element of the NumExp domain.

Exercise 2.2
a. Define two syntactic functions

nrange : NumExp — (IntLit x IntLit)
brange : BoolExp — (IntLit x IntLit)

such that nrange returns a pair of the smallest and largest argument index referenced
in an EL numerical expression and brange does the same for a boolean expression.
E.g., for the conditional expression in Figure 2.2, nrange should return (1, 3).

2.4 The Syntax of PostFix 39

b. Define a function argcheck : Prog — Bool that returns true if all argument indices ref-
erenced within an EL program are between 1 and the declared number of arguments;
otherwise, it returns false. argcheck performs a simple static analysis — determin-
ing a property of the program (might it encounter an out-of-bounds argument index?)
without executing it.

(To complete this exercise, you may need to review some of the metalanguage notation
in Appendix A.)

2.4 The Syntax of PostFix

Equipped with our syntactic tools, we are now ready to formally specify the syn-
tactic structure of POSTF1X, the stack language introduced in Section 1.4, and
to explore some variations on this structure. Figure 2.12 presents an s-expression
grammar for POSTFIX. Top-level programs are represented as s-expressions of
the form (postfix Npumargs @body) s Where Npymargs is a numeral specifying the
number of arguments and @4y is the command sequence executed by the pro-
gram. The sequence pattern C* in the production for CommandSeq (@) indicates
that CommandSeq is a sequence domain over elements from the Command do-
main. All of the elements of Command (C) are single tokens (e.g., add and
sel), except for executable sequences, which are parenthesized elements of the
CommandSeq domain. The mutually recursive structure of Command and Com-
mandSeq permits arbitrary nesting of executable sequences.

The concrete details specified by Figure 2.12 are only one way of capturing
the underlying abstract syntactic structure of the language. Figure 2.13 presents
an alternative s-expression grammar for POSTFIX. In order to avoid confusion,
we will refer to the language defined in Figure 2.13 as PosTF1x2.

There are two main differences between the grammars of POSTF1X and PosT-
F1x2.

1. The PosTF1Xx2 grammar strictly adheres to the phrase tag convention intro-
duced in Section 2.3.3. That is, every element of a compound syntactic domain
appears as a parenthesized structure introduced by a unique tag. For example,
1 becomes (int 1), pop becomes (pop), and add becomes (arithop add).*

2. Rather than representing command sequences as a sequence domain, POST-
Fi1x2 uses the : and (skip) commands to encode such sequences. (skip) is
intended to be a “no op” command that leaves the stack unchanged, while

4The arithop keyword underscores that the arithmetic operators are related; similarly for
relop.

40

Chapter 2 Syntax

C € Command ::= N,um
| pop

P € Prog ::= (postfix Nyumargs Qbody) [Program]
@ € CommandSeq ::= C* [CommandSequence]

[t Val]
[Pop]
[Swap
[ArithOp]
[RelOp]
[NumGet]
[Select]

[

| (Qeoms) [ExecutableSequence]
A € ArithmeticOperator = {add, sub, mul, div, rem}
R € RelationalOperator = {1t, eq, gt}
N elntlit = {..., -2, -1, 0, 1, 2, ...}

Figure 2.12 An s-expression grammar for POSTFIX.

(: C; Cy) is intended first to perform C; on the current stack and then to

perform Cs on the stack resulting from C;. The :

and (skip) commands in

PosTF1X2 serve the roles of cons and [] for command sequences in POSTFIX.
For example, the POSTFIX command sequence

[8,9,2dd]command = (cons 8 (cons 9 (cons add []|command)))

can be encoded in POSTFIX2 as a single command:

(: (int 8) (: (int 9) (: (arithop add) (skip))))

The difference in phrase tags is a surface variation in concrete syntax that does
not affect the structure of abstract syntax trees. Whether sequences are explicit
(the original grammar) or implicit (the alternative grammar) is a deeper variation
because the abstract syntax trees differ in these two cases (see Figure 2.14).

Although the tree structures are similar, it is not a priori possible to deter-
mine that the second tree encodes a sequence without knowing more about the
semantics of compositions and skips. In particular,
two behavioral properties in order for them to encode sequences:

e (skip) must be an identity for the command :
Le.,, (: C (skip)) and (: (skip) C) must behave like C.

: and (skip) must satisfy

2.4 The Syntax of PostFix 41

P € Prog ::= (postfix Nyumargs Chody) [Program]

(: C(:oml com2) Compose]
(skip) Skip]

A € ArithmeticOperator = {add, sub, mul, div, rem}
R e RelationalOperator = {1t, eq, gt}
N € IntLit = {.. -1, 0,1, 2, ...}

C € Command ::= (int Npum) [IntVal]
| (pop) [Pop]
| (swap) [Swap]
| (arithop A,,) [ArithOp]
| (relop R,p) [RelOp]
| (nget) [NumGet]
| (sel) [Select]
| (exec) [Execute]
| (seq Ceom) [ExecutableSequence]
| [
| [

Figure 2.13 An s-expression grammar for POSTFIX2, an alternative syntax for PosT-
Fix.

Command
Sequence Compose
coml com?2
| IntVal | | Compose |
num| coml com?2
1 2 3
| IntVal | | Compose |
[meval] [mival] [Aasienop | — "
num| num| op
2] [2ad |
(a) AST for POSTFIX expression (b) AST for POSTFIX2 expression

Figure 2.14 A comparison of the abstract syntax trees for two encodings of an expres-
sion.

e The command : must be associative

lLe., (: C; (: Cyo (%)) must behave the same as (: (: C; Cy) Cg).

These two properties amount to saying that (1) skips can be ignored and (2) in a
tree of compositions, only the order of the leaves matters. With these properties,

42 Chapter 2 Syntax

any tree of compositions is isomorphic to a sequence of the non-skip leaves. The
informal semantics of : and (skip) given above satisfies these two properties.

Is one of the two grammars presented above “better” than the other? It de-
pends on the context in which they are used. As the following example indicates,
the POSTFIX grammar certainly leads to programs that are more concise than
those generated by the POSTFIX2 grammar:

(postfix 1 (1 2 add) (3 4 mul) sel exec)

(postfix2 1
(: (seq (: (int 1) (: (@int 2) (: (arithop add) (skip)))))
(: (seq (: (int 3) (: (int 4) (: (arithop mul) (skip)))))
(: (sel) (: (exec) (skip))))))

Additionally, we shall see that the explicit sequences of POSTFIX make it more
amenable to certain kinds of semantic analysis. On the other hand, other semantic
and pragmatic tools are easier to apply to POSTFI1X2 programs. Though we will
focus on the POSTFIX grammar, we will consider POSTF1X2 when it is instructive
to do so. In any event, the reader should be aware that even the fairly constrained
boundaries of s-expression grammars leave some room for design decisions.

Exercise 2.3

a. Consider a subset of POSTFIX that has the following commands: integer literals,
executable sequences, arithmetic operators, and exec. Using the sum-of-products
interpretation described in Section 2.3.6, give definitions for all the syntactic domains
implied by the s-expression grammar for this subset. Your domain definitions may be
recursive.

b. Express the POSTFIX program (postfix 1 (2 mul) exec) as an element of your
syntactic domains.

c. Repeat the above two parts for the corresponding subset of POSTFIX2.

(To complete this exercise, you may need to review some of the metalanguage notation
in Appendix A.)

Notes

Early proponents of abstract syntax were McCarthy [McC62] and Landin [Lan66].
This notion is commonly used in operational and denotational semantics to ignore
unimportant syntactic details. Interpreters and compilers often have a “front-
end” stage that converts concrete syntax into data structures representing ab-
stract syntax trees.

Notes for Chapter 2 43

The concrete syntax for programming languages is usually specified via a
context-free grammar, a formalism covered in any automata theory text (e.g,
[Min67, HU79, Sip06]). In the programming language literature, a standard no-
tation for such grammars is Backus-Naur form (BNF'), which was used in the
report defining ALcoL 60 [BBG163].

Our s-expression grammars are based on McCarthy’s LISP s-expression nota-
tion [McC60], which is a trivially parsable generic and extensible concrete syntax
for programming languages.

Many tools — most notably the scanner generator Lex [Les75] and the parser
generator Yacc [Joh75] — are available for converting concrete syntactic notations
that satisfy more complex grammatical specifications into abstract syntax trees.
A discussion of these tools, the scanning and parsing theory behind them, and
the grammatical specifications they use can be found in almost any compiler
textbook. For a particularly concise account, consult one of Appel’s textbooks
[App98b, App98a, AP02].

3

Operational Semantics

And now I see with eye serene
The very pulse of the machine.

— William Wordsworth, “She Was a Phantom of Delight”

3.1 The Operational Semantics Game

Consider executing the following POSTFIX program on the arguments [4, 5]:

(postfix 2 (2 (3 mul add) exec) 1 swap exec sub)

It helps to have a bookkeeping notation that represents the process of applying
the informal rules presented in Chapter 1. For example, the table in Figure 3.1
illustrates one way to represent the execution of the above program. The table has
two columns: the first column in each row holds the current command sequence;
the second holds the current stack. The execution process begins by filling the
first row of the table with the command sequence of the given program and a
stack consisting of the program arguments. Execution proceeds in a step-by-step
fashion by using the rule for the first command of the current row to generate the
next row. Each execution step removes the first command from the sequence and
updates the stack. In the case of exec, new commands may also be prepended to
the command sequence. The execution process terminates as soon as a row with
an empty command sequence is generated. The result of the execution is the top
stack element of the final row (-3 in the example).

The table-based technique for executing POSTFIX programs exemplifies an
operational semantics. Operational semantics formalizes the common intu-
ition that program execution can be understood as a step-by-step process that
evolves by the mechanical application of a fixed set of rules. Sometimes the
rules describe how the state of some physical machine is changed by executing
an instruction. For example, assembly code instructions are defined in terms of
the effect that they have on the architectural elements of a computer: registers,
stack, memory, instruction stream, etc. But the rules may also describe how

46

Chapter 3 Operational Semantics

Commands Stack
(2 (3 mul add) exec) 1 swap exec sub 4

5
1 swap exec sub (2 (3 mul add) exec)

4

5
swap exec sub 1

(2 (3 mul add) exec)

4

5
exec sub (2 (3 mul add) exec)

1

4

5
2 (3 mul add) exec sub 1

4

5
(3 mul add) exec sub 2

1

4

5
exec sub (3 mul add)

2

1

4

5
3 mul add sub 2

1

4

5
mul add sub 3

2

1

4

5
add sub 6

1

4

5
sub 7

4

5

-3

5

Figure 3.1 A table showing the step-by-step execution of a POSTFIX program.

3.1 The Operational Semantics Game 47

language constructs affect the state of some abstract machine that provides a
mathematical model for program execution. Each state of the abstract machine
is called a configuration.

For example, in the POSTF1X abstract machine implied by the table in Fig-
ure 3.1, each configuration is modeled by one row of the execution table: a pair
of a program and a stack. The next configuration of the machine is determined
from the current one based on the first command in the current program. The
behavior of each command can be specified in terms of how it transforms the cur-
rent configuration into the next one. For example, executing the add command
removes it from the command sequence and replaces the top two elements of the
stack by their sum. Executing the exec command pops an executable sequence
from the top of the stack and prepends its commands in front of the commands
following exec.

The general structure of an operational semantics execution is illustrated in
Figure 3.2. An abstract machine accepts a program to be executed along with
its inputs and then chugs away until it emits an answer. Internally, the abstract
machine typically manipulates configurations with two kinds of parts:

1. The code component: a program phrase that controls the rest of the com-
putation.

2. The state components: entities that are manipulated by the program dur-
ing its execution. In the case of POSTFIX, the single state component is a
stack, but configurations for other languages might include state components
modeling random-access memory, a set of name/object bindings, a file system,
a graphics state, various kinds of control information, etc. Sometimes there
are no state components, in which case a configuration is just code.

The stages of the operational execution are as follows:

e The program and its inputs are first mapped by an input functioninto an ini-
tial configuration of the abstract machine. The code component of the initial
configuration is usually some part of the given program, and the state compo-
nents are appropriately initialized from the inputs. For instance, in an initial
configuration for POSTF1X, the code component is the command sequence body
of the program and the single state component is a stack containing the integer
arguments in order with the first argument at the top of the stack.

e After an initial configuration has been constructed, it’s time to “turn the crank”
of the abstract machine. During this phase, the rules governing the abstract
machine are applied in an iterative fashion to yield a sequence of intermediate
configurations. Each configuration is the result of one step in the step-by-step

48 Chapter 3 Operational Semantics

|
Abstract Machine
Input
IInitia] Conﬁguration|
Function
T ———
~ ~ N
|Intermediate Conﬁguration| N
. \
R S
X /
|Intermediate Conﬁguration| !
7
for----"7 ~
Output
Answer I Final Conﬁguration|
Function

Figure 3.2 The operational semantics “game board.”

execution of the program. This stage continues until a configuration is reached
that is deemed to be a final configuration. What counts as a final config-
uration varies widely between abstract machines. In the case of POSTFIX, a
configuration is final when the code component is an empty command sequence.

e The last step of execution is mapping the final configuration to an answer via
an output function. What is considered to be an answer differs greatly from
language to language. For POSTF1X, the answer is the top stack value in a final
configuration, if it’s an integer. If the stack is empty or the top value is an
executable sequence, the answer is an error token. In other systems, the answer
might also include elements like the final state of the memory, file system, or
graphics screen.

Sometimes an abstract machine never reaches a final configuration. This can
happen for one of two reasons:

1. The abstract machine may reach a nonfinal configuration to which no rules
apply. Such a configuration is said to be a stuck state. Stuck states often
model error situations.

3.2 Small-step Operational Semantics (SOS) 49

2. The rule-applying process of the abstract machine might not terminate. In any
universal programming language (a programming language that can express
all computable functions) it is possible to write programs that loop forever.
For such programs, the execution process of the abstract machine never termi-
nates. As a consequence of the halting theorem — which states that there
is no program that can decide for all programs P and all inputs A whether
P terminates on A — we can’t do better than this: there’s no general way to
tweak the abstract machine of a universal language so that it always indicates
when it is in an infinite loop.

We show in Section 3.6 that all POSTFIX programs must terminate. This
implies that POSTFIX is not universal.

3.2 Small-step Operational Semantics (SOS)

3.2.1 Formal Framework

Above, we presented a high-level introduction to operational semantics. Here, we
iron out all the details necessary to turn this approach into a formal framework
known as small-step operational semantics (SOS!). An SOS is character-
ized by the use of rewrite rules to specify the step-by-step transformation of
configurations in an abstract machine.

To express this framework formally, we will employ the mathematical meta-
language described in Appendix A. Before reading further, you should at least
skim this appendix to familiarize yourself with the notational conventions of the
metalanguage. Later, when you encounter an unfamiliar notation or concept,
consult the relevant section of this appendix for a detailed explanation.

Consider a programming language L with legal programs P € Prog, inputs
I € Inputs, and elements A € AnsExp that are considered to be valid answers to
programs. Then an SOS for L is a five-tuple S = (CF,=, FC,IF, OF), where:

e ('F is the domain of configurations for an abstract machine for L. The domain
variable cf ranges over configurations.

e = the transition relation, is a binary relation on configurations that de-
fines the allowable transitions between configurations. The notation cf = cf’
means that there is a (one step) transition from the configuration cf to
the configuration ¢f’. This notation, which is shorthand for (cf,cf’) € =, is

!This framework, due to Plotkin [Plo81], was originally called structural operational
semantics. It later became known as the small-step approach to distinguish it from — you
guessed it — a big-step approach (see Section 3.3).

50 Chapter 3 Operational Semantics

pronounced “cf rewrites to c¢f prime in one step.” The two parts of a tran-
sition have names: cf is called the left-hand side (LHS) and cf’ is called
the right-hand side (RHS). The transition relation is usually specified by
rewrite rules, as described below in Section 3.2.3.

The reflexive, transitive closure of = is written =. So ¢f = cf’ means that
cf rewrites to c¢f’ in zero or more steps. The sequence of transitions between
cf and cf’ is called a transition path. The length of a transition path is
the number of transitions in the path. The notation ¢f = ¢’ means that cf
rewrites to cf’ in n steps, i.e., via a transition path of length n. The notation
cf = means that there is an infinitely long transition path beginning with cf.

A configuration c¢f is reducible if there is some cf’ such that ¢f = cf’. If
there is no such cf’, then we write c¢f # and say that cf is irreducible. An ir-
reducible configuration (or its code component) is often called a normal form.
CF can be partitioned into two sets, Reducibles (containing all reducible con-
figurations) and Irreducibleg (containing all irreducible ones). We omit the
subscript when it is clear from context. A transition relation = is determin-
istic if for every cf € Reducibleg there is exactly one cf’ such that c¢f = cf’.
Otherwise, = is said to be nondeterministic.

e ['C, the set of final configurations, is a subset of Irreducibles containing
all configurations that are considered to be final states in the execution of a
program. The set Stuckgs of stuck states is defined to be (Irreducibles — FC)
— i.e., the nonfinal irreducible configurations.

e [F': (Prog x Inputs) — CF is an input function that maps a program and
its inputs to an initial configuration.

e OF : FC — AnsExp is an output function that maps a final configuration
to an appropriate answer domain.

An SOS defines the behavior of a program in a way that we shall now make
precise. What are the possible behaviors of a program? As discussed in Sec-
tion 3.1, a program either (1) returns an answer, (2) gets stuck in a nonfinal
irreducible configuration, or (3) loops infinitely. We model these via the follow-
ing Outcome domain, where stuckout designates a stuck program and loopout
designates an infinitely looping program:

StuckOut = {stuckout}
LoopOut = {loopout}
o € Outcome = AnsExp + StuckOut + LoopOut
stuck = (StuckOut—Outcome stuckout)
o0 = (LoopOut—OQutcome loopout)

3.2.1 Formal Framework 51

Suppose that an SOS has a deterministic transition relation. Then we can
define the behavior of a program P on inputs I as follows:

beh get : (Prog x Inputs) — Outcome
(AnsExp—Outcome (OF cf)) if (IF (P,I)) = cf € FC
behaer (P,I) = { stuck if (IF (P,I)) = cf € Stuck
00 if (IF (P,I)) =

In the first case, an execution starting at the initial configuration eventually
reaches a final configuration, whose answer is returned. In the second case, an
execution starting at the initial configuration eventually gets stuck at a nonfinal
configuration. In the last case, there is an infinite transition path starting at
the initial configuration, so the program never halts.? We call this behavior
deterministic because a deterministic translation relation guarantees a unique
outcome.

What if the transition relation is not deterministic? In this case, it is possible
that there are multiple transition paths starting at the initial configuration. Some
of these might end at final configurations with different answers. Others might be
infinitely long or end at stuck states. In general, we must allow for the possibility
that there are many outcomes, so the signature of the behavior function beh in
this case must return a set of outcomes — i.e., an element of the powerset domain
P(Outcome).?

beh : (Prog x Inputs) — P(Outcome)
0 = (AnsExp—Outcome (OF cf))
and (IF (P,I)) = cf € FC
o = stuck and (IF (P,I)) = cf € Stuck
o = ocoand (IF (P,I)) =

o€ (beh (P, I)) if

An SOS with a nondeterministic transition relation won’t necessarily give rise to
results that contain multiple outcomes. Indeed, we will see later (in Section 3.5)
that some systems with nondeterministic transition relations can still have a
behavior that is deterministic — i.e., the resulting set of outcomes is always a
singleton.

2Though mathematically well defined, the behge: function is uncomputable because the co
symbol cannot actually be returned by a nonterminating process. However, if we instead view
oo as indicating that behge; is undefined for a given program and inputs, then behqe; is a partial
recursive function and is therefore computable [HU79]. This idea reappears in Chapter 5, where
we use the L symbol to stand for nonterminating computations.

3The result of beh must in fact be a nonempty set of outcomes, since every program will have
at least one outcome.

52 Chapter 3 Operational Semantics

An SOS (as well as the language defined by an SOS) is said to be strongly
normalizing, or terminating, if there are no infinitely long transition paths
starting with an initial configuration. In a strongly normalizing SOS, all program
executions terminate: for all programs P and inputs I, oo & (beh (P,I)). As we
will see in Section 3.6, both POSTFIX and EL are strongly normalizing.

3.2.2 Example: An SOS for PostFix

We can now formalize the elements of the POSTFIx SOS described informally
in Section 3.1 (except for the transition relation, which will be formalized in
Section 3.2.3). The details are presented in Figure 3.3, which uses domains and
domain variables defined in the s-expression grammar for POSTFIX defined in
Figure 2.12 on page 40.

A stack is a sequence of values that are either integer numerals (from do-
main IntLit) or executable sequences (from domain CommandSeq). PoOSTFIx
programs take a sequence of integer numerals as their inputs, and, when no error
is encountered, return an integer numeral as an answer. A configuration is a pair
of a command sequence and a stack. A final configuration is one whose command
sequence is empty and whose stack is nonempty with an integer numeral on top
(i.e., an element of FinalStack). The input function IF' maps a program and
its numeric inputs to a configuration consisting of the body command sequence
and an initial stack with the inputs arranged from top down. If the number of
arguments N expected by the program does not match the actual number n of ar-
guments supplied, then IF' returns a stuck configuration ([]command; [|Value) that
represents an error. The output function OF returns the top integer numeral
from the stack of a final configuration.

The PosTFix SOS in Figure 3.3 models errors using stuck states. By defini-
tion, stuck states are exactly those irreducible configurations that are nonfinal.
In PosTF1X, stuck states are irreducible configurations whose command sequence
is nonempty or those that pair an empty command sequence with a stack that
is empty or has an executable sequence on top. The outcome of a program that
reaches such a configuration will be stuck.

Although it is convenient to use stuck states to model errors, it is not strictly
necessary. With some extra work, it is always possible to modify the final config-
uration set F'C' and the output function OF so that such programs instead have
as their outcome some error token in AnsExp. Using POSTFIX as an example,
we can use a modified answer domain AnsExp’ that includes an error token, a
modified final configuration set F'C'’ that includes all irreducible configurations,
and the modified OF’ shown below:

3.2.2 Example: An SOS for PosTFIx 53

Domains
V € Value = IntLit + CommandSeq
S € Stack = Value*
FinalStack = {S | (length §) >1
and (nth 1 S) = (IntLit>—Value N) for some N € IntLit}
Inputs = IntLit*
AnsExp = IntLit

SOS
Suppose that the PosTFix SOS has the form PFSOS = (CF,=,FC,IF, OF).
Then the SOS components are:
CF = CommandSeq x Stack
= is a deterministic transition relation defined in Section 3.2.3
FC = {[]command} x FinalStack

IF : (Prog x Inputs) — CF

= A((postfix N @Q),[N;,...,N,]).
if N =mn ; forn € Int, n stands for the IntLit N that denotes n.
then (@, [(IntLit —Value Ny), ..., (IntLit—Value Ny,)])
else <[]Command7 []Value> end

OF : FC — AnsExp

= A[]command, (IntLit>—Value N).S’). (IntLit>—AnsExp N)

Figure 3.3 An SOS for PosTFix.

Error = {error}
AnsExp’ = IntLit + Error

FC' = Irreducibleprsos
OF' : FC' — AnsExp’
= MQ, V*). match (Q, V*)
> {[]command, (IntLit>—Value N).S’) | (IntLit>—AnsExp’ N)

> else (Error—AnsExp’ error)
end

(Here the pattern-matching capabilities of the metalanguage construct match,
defined in Section A.4, are used to distinguish the cases in which (@, V*) is
and is not a final configuration.) With these modifications, the outcome of a
PosTFIX program that encounters an error will be (AnsExp’—Outcome (Error—
AnsExp’ error)) rather than stuck.

54 Chapter 3 Operational Semantics

Exercise 3.1 Look up definitions of the following kinds of automata and express each
of them in the SOS framework: deterministic finite automata, nondeterministic finite
automata, deterministic pushdown automata, and Turing machines. Represent strings,
stacks, and tapes as sequences of symbols.

3.2.3 Rewrite Rules

The transition relation, =, for an SOS is often specified by a set of rewrite
rules. A rewrite rule has the form
antecedents

[rule-name]
consequent

where the antecedents and the consequent contain transition patterns (described
below). Informally, the rule asserts: “If the transitions specified by the an-
tecedents are valid, then the transition specified by the consequent is valid.” The
label [rule-name] on the rule is just a handy name for referring to the rule, and is
not a part of the rule structure. A rewrite rule with no antecedents is an axiom,;
otherwise it is a progress rule. The horizontal bar is often omitted in an axiom.

A complete set of rewrite rules for POSTFIX appears in Figure 3.4. All of
the rules are axioms. Together with the definitions of CF, FC, IF, and OF,
these rules constitute a formal SOS version of the informal POSTFIX semantics
originally presented in Figure 1.1. We will spend the rest of Section 3.2 studying
the meaning of these rules and considering alternative rules.

Since an axiom has no antecedents, it is determined solely by its consequent.
As noted above, the consequent must be a transition pattern. A transition
pattern looks like a transition except that the LHS and RHS may contain domain
variables interspersed with the usual notation for configurations. Informally, a
transition pattern is a schema that stands for all the transitions that match the
pattern. An axiom stands for the collection of all configuration pairs that match
the LHS and RHS of the transition pattern, respectively.

As an example, let’s consider in detail the axiom that defines the behavior of
PosTFIX numerals:

(N.Q,S5) = (Q,N.S) [num)]

This axiom stands for an infinite number of pairs of configurations of the form
(cf,ef’). Tt says that if ¢f is a configuration in which the command sequence is
a numeral N followed by a command sequence @) and the stack is S, then there
is a transition from cf to a configuration c¢f’ whose command sequence is @, and
whose stack holds N followed by S.

3.2.3 Rewrite Rules 55

(N.Q,S)=(Q,N.S) [num]
<(Qezec) - Qresta S> = <Qresta (Qezec) - S> [Se(ﬂ
(pop. @, Viop - §) = (Q, 5) [pop]
(nget - @, Nindes - [Vl PR VNWSD = <Q7 Vsziez : [VI U] VN5'129]> [ngeﬂ
where (compare gt Nipger 0) A —(compare gt Ninger Nsize)
A (VNyue. € IntLit)
(swap. @, V; . Vp.8) = (Q, V2. V;.5) [swap]
<Sel . Qresty Vfulse - Vigwe - 0. S> = <Q’resta Vfalse . S> [Sel‘false]
<Sel . QTest; Vfalse . Vt'rue . Ntest . S> = <Qrest7 Vtrue . S> [Sel'true]
where Nyt # 0
(exec . Qrest, (Qezec) . S> = <Qezec Q Qresta S> [execute]
(A.Q, Ny .Nz.S) = (Q, Ngps . S) [arithop]
where Ng,s = (calculate A Ny Nj)
(R.Q,N;.Ny.S)=(Q,1.5) [relop-true]
where (compare R Ny Nj)
(R.Q,N;.N;.S)= (Q,0.5) [relop-false]
where —(compare R Np Nj)

Figure 3.4 Rewrite rules defining the transition relation (=) for POSTFIX.

In the [num]| rule, N, @, and S are domain variables that act as patterns that
can match any element in the domain over which the variable ranges. Thus, N
matches any integer numeral, () matches any command sequence, and S matches
any stack. When the same pattern variable occurs more than once within a
rule, all occurrences must denote the same element; this constrains the class of
transitions specified by the rule. Thus, the [num] rule matches the transition

((17 add swap), [19, (2 mul)]) = ((add swap), [17, 19, (2 mul)])

with N = 17, @ = [add, swap|, and S = [19, (2 mul)]. On the other hand, the
rule does not match the transition

((17 add swap), [19, (2 mul)]) = ((add swap), [17, 19, (2 mul), 23])

because there is no consistent interpretation for the pattern variable S — it is
[19, (2 mul)] in the LHS of the transition, and [19, (2 mul), 23] in the RHS.

As another example, the configuration pattern (@, N.N .S) would match
only configurations with stacks in which the top two values are the same inte-

56 Chapter 3 Operational Semantics

ger numeral. If the RHS of the [num]| rule consequent were replaced with this
configuration pattern, then the rule would indicate that two copies of the integer
numeral should be pushed onto the stack.

At this point, the meticulous reader may have noticed that in the rewrite rules
and sample transitions we have taken many liberties with our notation. If we had
strictly adhered to our metalanguage notation, then we would have written the
[num)] rule as

{(IntLit—~Command N). @, S) = (@, (IntLit—Value N).S) [num)]

and we would have written the matching transition as

([17,add, swap]command, |[(IntLit—Value 19),
(CommandSeq—Value [2,mul]command)])
= ([add, swap|Command, [(IntLit>—Value 17),
(IntLit —Value 19),
(CommandSeq—Value [2,mul]command)])

However, we believe that the more rigorous notation severely impedes the read-
ability of the rules and examples. For this reason, we will stick with our stylized
notation when it is unlikely to cause confusion. In particular, in operational
semantics rules and sample transitions, we adopt the following conventions:

e Injections will be elided when they are clear from context. For example, if N
appears as a command, then it stands for (IntLit — Command N), while if it
appears as a stack element, then it stands for (IntLit—Value N).

e Sequences of syntactic elements may be written as parenthesized s-expressions.
For example, the POSTFIX command sequence

[37 [2’ mUJ-]Commanda Swap]Command
will often be abbreviated as
(3 (2 mul) swap)

The former is more precise, but the latter is easier to read. In POSTFIX
examples, we have chosen to keep the sequence notation for stacks to visually
distinguish the two components of a configuration.

e For POsTF1X, the explicit parentheses in the notation (@) are syntactic mark-
ers that abbreviate an underlying injection. If this notation appears where an
element of Command is expected, it stands for (CommandSeq —Command Q). If
it appears where an element of Value is expected, it stands for (CommandSeq—
Value Q)

3.2.3 Rewrite Rules 57

Despite these notational acrobatics, keep in mind that we are manipulating
well-defined mathematical structures. So it is always possible to add the appro-
priate decorations to make the notation completely rigorous.*

Some of the POSTFIX rules ([arithop]|, [relop-true|, [relop-false|, [sel-true],
and [nget]) include side conditions that specify additional restrictions on the
domain variables. For example, consider the axiom that handles a conditional
whose test is true:

<Sel . Qresty Vfalse . Vt'rue . Ntest . S> = <Qresta Vtrue . S> [Sel'true]
where Nyt # 0

This axiom says that sel treats any nonzero integer numeral as true. As long as
the test numeral Ny (the third element on the stack) is not the same syntactic
object as 0, then the next configuration is obtained by removing sel from the
command sequence and pushing the second stack element onto the result of pop-
ping the top three elements off the stack. The domain variable Ny that appears
in the side condition N # O stands for the same entity that N denotes in
the LHS of the consequent, providing the link between the transition pattern
and the side condition. Note how the domain variables and the structure of the
components are used to constrain the pairs of configurations that satisfy this
rule. This rule represents only pairs (cf, cf’) in which the stack of ¢f contains at
least three elements, the third of which is a nonzero integer numeral. The rule
does not apply to configurations whose stacks have fewer than three elements, or
whose third element is an executable sequence or the numeral 0.

The side conditions in the [arithop], [relop-true], [relop-false], and [nget] rules
deserve some explanation. The calculate function used in the side condition of
[arithop] returns the numeral N, resulting from the application of the operator
A to the operands N2 and Nj; it abstracts away the details of such computa-
tions.® We assume that calculate is a partial function that is undefined when A
is div or rem and Ny is 0, so division or remainder by zero yields a stuck state.
The [relop-true] and [relop-false| rules are similar to [arithop]; here the auxiliary
compare function is assumed to return the truth value resulting from the associ-
ated comparison. The rules then convert this truth value into a POSTFIX value
of 1 (true) or O (false). In the [nget] rule, the compare function is used to ensure

4But those who pay too much attention to rigor may develop rigor mortis!

5Note that calculate manipulates numerals (i.e., names for integers) rather than the integers
that they name. This may seem pedantic, but we haven’t described yet how the meaning of an
integer numeral is determined. If we had instead defined the syntax of POSTFIX to use integers
rather than integer numerals, then we could have used the usual integer addition operation here.
But we chose integer numerals to emphasize the syntactic nature of operational semantics.

58 Chapter 3 Operational Semantics

that the numeral Nj, 4., is a valid index for one of the values on the stack. If not,
the configuration is stuck. In the side conditions, the symbol — stands for logical
negation and A stands for logical conjunction.

You should now know enough about the rule notation to understand all of
the rewrite rules in Figure 3.4. The [num] and [seq] rules push the two different
kinds of values onto the stack. The [swap], [pop], [sel-true|, and [sel-false| rules
all perform straightforward stack manipulations. The [exec] rule prepends an
executable sequence from the stack onto the command sequence following the
current command.

It is easy to see that the transition relation defined in Figure 3.4 is determinis-
tic. The first command in the command sequence of a configuration uniquely de-
termines which transition pattern might match, except for the case of sel, where
the third stack value distinguishes whether [sel-true| or [sel-false] matches, and
the relational operators, where the side condition distinguishes whether [relop-
true] or [relop-false] matches. The LHS of each transition pattern can match a
given configuration in at most one way. So for any given POSTFIX configuration
cf, there is at most one c¢f’ such that c¢f = cf’.

3.2.4 Operational Execution

The operational semantics can be used to execute a POSTFIX program in a way
similar to the table-based method presented earlier. For example, the execution
of the POSTFIX program shown earlier in Figure 3.1 is illustrated in Figure 3.5.
The input function is applied to the program to yield an initial configuration, and
then a series of transitions specified by the rewrite rules are applied. In the figure,
the configuration resulting from each transition appears on a separate line and
is labeled by the applied rule. When a final configuration is reached, the output
function is applied to this configuration to yield -3, which is the result computed
by the program. We can summarize the transition path from the initial to the
final configuration as

(((2 (3 mul add) exec) 1 swap exec sub), [4, 5]) = (O, [-3, 5])

where 11 is the number of transitions. If we don’t care about this number, we
write * in its place.

Not all POSTF1X executions lead to a final configuration. For example, exe-
cuting the program (postfix 2 add mul 3 4 sub) on the inputs [5, 6] leads to
the configuration ((mul 3 4 sub), [11]). This configuration is not final because
there are still commands to be executed. But it does not match the LHS of any
rewrite rule consequent. In particular, the [arithop] rule requires the stack to

3.2.4 Operational Execution 59

—~

IF ((postfix 2 (2 (3 mul add) exec) 1 swap exec sub),[4,5]))
((2 (3 mul add) exec) 1 swap exec sub), [4, 5|)

= {

= ((1 swap exec sub), [(2 (3 mul add) exec), 4, 5]) [seq]

= ((swap exec sub), [1, (2 (3 mul add) exec), 4, 5]) [num)]
= ((exec sub), [(2 (3 mul add) exec), 1, 4, 5]) [swap]
= ((2 (3 mul add) exec sub), [1, 4, 5]) [execute]
= (((3 mul add) exec sub), [2, 1, 4, 5]) [num]
= ((exec sub), [(3 mul add), 2, 1, 4, 5]) [seq]

= ((3 mul add sub), [2, 1, 4, 5]) [execute]
= ((mul add sub), [3, 2, 1, 4, 5]) [num)]
= ((add sub), [6, 1, 4, 5]) [arithop]
= ((sub), [7, 4, 5]) [arithop]
= (0, [-3, 5]) € FC [arithop]
(OF

(O, [-3, 8])) = -3

Figure 3.5 An SOS-based execution of a POSTFIX program.

have two integers at the top, and here there is only one. This is an example of
a stuck state. As discussed earlier, a program reaching a stuck state is consid-
ered to signal an error. In this case the error is due to an insufficient number of
arguments on the stack.

Exercise 3.2 Use the SOS for POSTFIX to determine the values of the POSTFIX pro-
grams in Exercise 1.1 on page 13.

Exercise 3.3 Consider extending POSTFIX with a rot command defined by the follow-
ing rewrite rule:

(rot. Q,N.Vi..... Vn.S) = (Q, Va..... Vn.Vi.S) [rot]
where (compare gt N 1)

a. Give an informal English description of the behavior of rot.

b. What is the contents of the stack after executing the following program on zero
arguments?

(postfix 0 2 3 4 2 3 4 rot rot rot)

c. Using rot, write a POSTFIX executable sequence that serves as subroutine for revers-
ing the top three elements of a given stack.

d. List the kinds of situations in which rot can lead to a stuck state, and give a sample
program illustrating each one.

60 Chapter 3 Operational Semantics

Exercise 3.4 The SOS for POSTFIX specifies that a configuration is stuck when the stack
contains an insufficient number of values for a command. For example, ((mul), [2]) is
stuck because multiplication requires two stack values.

a. Modify the semantics of POSTFIX so that, rather than becoming stuck, it uses sensible
defaults for the missing values when the stack contains an insufficient number of
values. For example, the default value(s) for mul would be 1:

((mul), [2]) = (O, [2])
((mu1), []) = (O, [1])

b. Do you think this modification is a good idea? Why or why not?

Exercise 3.5 Suppose the Value domain in the PosTFix SOS is augmented with a
distinguished error value. Modify the rewrite rules for POSTFIX so that error configura-
tions push this error value onto the stack. The error value should be “contagious” in the
sense that any operation attempting to act on it should also push an error value onto
the stack. Under the revised semantics, a program may return a non-error value even
though it encounters an error along the way. E.g., (postfix 0 1 2 add mul 3 4 sub)
should return -1 rather than signaling an error when called on zero inputs.

Exercise 3.6 An operational semantics for POSTFI1X2 (the alternative POSTFIX syntax
introduced in Figure 2.13) can be defined by making minor tweaks to the operational
semantics for POSTFIX. Consider the following domains:

@ € CommandSeqpostrize = Commandpspize
V' € Valuepostrize = IntLit + Command postrize
S € Stackpostpize = Valuep,gpize

Then CommandSeqposirize X Stackpostmize can be used as the configuration domain
for a PosTF1x2 SOS. Using this approach, most POSTFI1X2 rewrite rules differ only
cosmetically from the corresponding POSTFIX rewrite rules. For example, here is the
rewrite rule for a POSTFI1X2 numeral command:

((dnt N) . Q, S) = (Q, N.S) [num’]

a. Define an input function that maps POSTFI1X2 programs (postfix2 N () into an
initial configuration.

b. Give rewrite axioms for the POSTFIX2 commands (exec), (: Cioms Cromsz), and
(skip).

(See Exercise 3.7 for another approach to defining the semantics of POSTFI1X2.)

Exercise 3.7 A distinguishing feature of POSTFIX2 (the alternative POSTFIX syntax
introduced in Figure 2.13) is that its grammar makes no use of sequence domains. It is
reasonable to expect that its operational semantics can be modeled by configurations in
which the code component is a single command rather than a command sequence. Based
on this idea, design an SOS for POSTFI1X2 in which CF = Command x Stack. (Note:
do not modify the Command domain.)

3.2.4 Operational Execution 61

Exercise 3.8 The Hugely Profitable Calculator Company has hired you to design a
calculator language called RPN that is based on POSTFIX. RPN has the same syntax
as POSTFIX command sequences (an RPN program is just a command sequence that is
assumed to take zero arguments) and the operations are intended to work in basically
the same manner. However, instead of providing an arbitrarily large stack, RPN limits
the size of the stack to four values. Additionally, the stack is always full in the sense that
it contains four values at all times. Initially, the stack contains four 0 values. Pushing
a value onto a full stack causes the bottommost stack value to be forgotten. Popping
the topmost value from a full stack has the effect of duplicating the bottommost element
(i.e., it appears in the last two stack positions after the pop).

a. Develop a complete SOS for the RPN language.

b. Use your SOS to find the results of the following RPN programs:
i (mul 1 add)
ii. (1 20 300 4000 50000 add add add add)

c. Although PoOSTFIX programs are guaranteed to terminate, as we will see in Sec-
tion 3.6, RPN programs are not. Demonstrate this fact by writing an RPN program
that loops infinitely.

Exercise 3.9 A class of calculators known as four-function calculators support the four
usual binary arithmetic operators (+, -, *, /) in an infix notation.® Here we consider a
language FF based on four-function calculators. The programs of FF are any parenthe-
sized sequence of numbers and commands, where commands are +, -, *, /, and =. The =
command is used to compute the result of an expression, which may be used as the first
argument to another binary operator. The = may be elided in a string of operations.

1+ 20 =) 7721

(1 + 20 =+ 300 =) 7 321

(1 + 20 + 300 =) 4 321 {Note elision of first =.}

(1 + 20) =20 {Last number is returned when no final =.}

Other features supported by FF include:

o C(Clalculation with a constant. Typing a number followed by = uses the number as the
first operand in a calculation with the previous operator and previous second operand.

(2*%5=) 7 10 2*¥5=7=) 77235 (2*5=T7=11 =) 73> 55

e Implied second argument. If no second argument is specified, the value of the second
argument defaults to the first.

(5*=) 77 25

e Operator correction. An operator key can be corrected by typing the correct one after
(any number of) unintentional operators.

(1*-+2) 73

5The one described here is based on the TI-1025. See [You81] for more details.

62 Chapter 3 Operational Semantics

a. Design an SOS for FF that is consistent with the informal description given above.

b. Use your SOS to find the final values of the following command sequences. (Note:
some of the values may be floating point numbers.) Comment on the intended meaning
of the unconventional command sequences.

1. (8 -3 + x 4 =)
ii. (3+5/

]
I
~

Hi. (3 +5 /

1]
(o)
]
e

3.2.5 Progress Rules

The commands of POSTFIX programs are interpreted in a highly linear fashion
in Figure 3.4. Even though executable sequences give the code a kind of tree
structure, the contents of an executable sequence can be used only when they
are prepended to the single stream of commands that is executed by the abstract
machine. The fact that the next command to execute is always at the front
of this command stream leads to a very simple structure for the rewrite rules in
Figure 3.4. Transitions, which appear only in rule consequents, are all of the form

<Cﬁ'rst . Qa S> = <Q/a Sl>

where Q' is either the same as @ or is the result of prepending some commands
onto the front of (). In all rules, the command Cpys at the head of the current
command sequence is consumed by the application of the rule.

These simple kinds of rules are not adequate for programming languages ex-
hibiting a more general tree structure. Evaluating a node in an arbitrary syntax
tree usually requires the recursive evaluation of its subnodes. For example, con-
sider the evaluation of a sample numerical expression written in the EL language
described in Section 2.3:

+ (x (-51)2) (/217)

Before the sum can be performed, the results of the multiplication and division
must be computed; before the multiplication can be performed, the subtraction
must be computed. If the values of operand expressions are computed in left-to-
right order, we expect the evaluation of the expression to occur via the following
transition path:

+ (x (-51)2) (/217)

= (+ (x42) (/217)

= (+8 (/217)

= (+ 8 3)

= 11

3.2.5 Progress Rules 63

P € Prog := (elmm NE,4,) [Program]

NE € NumExp ::= Nyum [IntLit]
‘ (ATator NETandl NE'randQ) [ArithmeticOperation]
N entLit = {..., -2, -1, 0, 1, 2, ...}

A € ArithmeticOperator = {+, -, *, /, %}

Figure 3.6 An s-expression grammar for ELMM.

In each transition, the structure of the expression tree remains unchanged ex-
cept at the node where the computation is being performed. Rewrite rules for
expressing such transitions need to be able to express a transition from tree to
tree in terms of transitions between the subtrees. That is, the transition

+ (512 (/21))=> G (x42) (/217)
is implied by the transition
(x (-51) 2)=(x42)
which in turn is implied by the transition
(-51)=4

In some sense, “real work” is done only by the last of these transitions; the other
transitions just inherit the change because they define the surrounding context
in which the change is embedded.

These kinds of transitions on tree-structured programs are expressed using
progress rules, which are rules with antecedents. Progress rules effectively
allow an evaluation process to reach inside a complicated expression to evaluate
one of its subexpressions. A one-step transition in the subexpression is then
reflected as a one-step transition of the expression in which it is embedded.

Example: ELMM

To illustrate progress rules, we will develop an operational semantics for an ex-
tremely simple subset of the EL language that we will call ELMM (which stands
for EL MiNus MINuUS). As shown in Figure 3.6, an ELMM program is just a
numerical expression, where a numerical expression is either (1) an integer nu-
meral or (2) an arithmetic operation. There are no arguments, no conditional
expressions, and no boolean expressions in ELMM.

In an SOS for ELMM, configurations are just numerical expressions them-
selves; there are no state components. Numerical literals are the only final con-

64 Chapter 3 Operational Semantics

figurations. The input and output functions are straightforward. The interesting
aspect of the ELMM SOS is the specification of the transition relation =, which
is shown in Figure 3.7. The ELMM [arithop] axiom is similar to the same-named
axiom in the PosTF1x SOS; it performs a calculation on integer numerals.

To evaluate expressions with nested subexpressions in left-to-right order, the
rules [prog-left] and [prog-right] are needed. The [prog-left] rule says that if
the ELMM abstract machine would make a transition from NE; to NE';, it
should also allow a transition from (A NE; NEj3) to (A NE’, NEjy). This
rule permits evaluation of the left operand of the operation while leaving the
right operand unchanged. The [prog-right] rule is similar, except that it permits
evaluation of the right operand only once the left operand has been fully evaluated
to an integer numeral. This forces the operands to be evaluated in left-to-right
order. Rules like [prog-left] and [prog-right| are called “progress rules” because
an evaluation step performed on a subexpression allows progress to be made on
the evaluation of the whole expression.

In the case of axioms, it is easy to determine if a transition is justified by an
axiom. But how do we determine if a transition is justfied by a progress rule?
A transition is justified by a progress rule if it matches the consequent of the
rule and it is possible to show that the antecedent transition patterns are also
justified. For example, since the ELMM transition (- 7 4) = 3 is justified
by the [arithop] rule, the transition (* (- 7 4) (+ 5 6)) = (x 3 (+ 5 6)) is
justified by the [prog-left] rule, and the transition (* 2 (- 7 4)) = (* 2 3)
is justified by the [prog-right] rule. Furthermore, since the above transitions
themselves match the antecedents of the [prog-left] and [prog-right] rules, it is
possible to use these rules again to justify the following transitions:

(/ (x (-74) (+56)) (h92))=((x3 +56)) (h92)
(/ 2 C748) h9o2)= (x23) (%9 2)
(/ 100 (x (-7 4) (+56))) = (/100 (x 3 (+ 5 6)))
(/ 100 (*x 2 (-7 4))) = (/ 100 (x 2 3))

These examples suggest that we can justify any transition as long as we can
give a proof of the transition based upon the rewrite rules. Such a proof can be
visualized as a so-called proof tree (also known as a derivation) that grows
upward from the bottom of the page. The root of a proof tree is the tran-
sition we are trying to prove, its intermediate nodes are instantiated progress
rules, and its leaves are instantiated axioms. A proof tree is structured so that
the consequent of each instantiated rule is one antecedent of its parent (be-
low) in the tree. For example, the proof tree associated with the transition
of (/ 100 (* (- 7 4) (+ 5 6))) appears in Figure 3.8.

3.2.5 Progress Rules 65

(A N; Ng) = Ngups, where Ng,s = (calculate A N; Ny) [arithop]
NE,; = NE, prog-lcf]
(A NE; NE,) = (A NE, NEj) prog=i¢
NE, = NE, []
(A N NE,) = (A4 N NE,) Prog-is
Figure 3.7 Rewrite rules defining the transition relation (=) for ELMM.
(-74)=3 [arithop]
where (calculate - 7 4) = 3
(-74)=3 [prog-left]
(* 74 (+56) = (*3 (+56) Prog:
(x (-74) (+56)) = (x3 (+586)) [prog-right]
(/100 (* (-7 4) (+56))) = (/ 100 (x 3 (+ 5 6))) &8

(/ 100 (*x (-7 4) (+ 56))) = (/ 100 (x 3 (+ 5 6)))

Figure 3.8 A proof tree for an ELMM transition involving nested expressions. The
root of the tree is at the bottom of the page; the leaf is at the top.

We can represent the proof tree in the figure much more concisely by display-
ing each transition only once, as shown below:

— [arithop]
(-74)=3

[prog-left)
(x (-74) (+586))=(x3 (+586))

[prog-right]
(/100 (* (-7 4) (+586)))= (/100 (*x 3 (+ 5 6)))

The proof tree in this particular example is linear because each of the progress
rules involved has only one antecedent transition pattern. A progress rule with n
antecedent transition patterns would correspond to a tree node with a branching
factor of n. For example, suppose we added the following progress rule to the
ELMM SOS:

66 Chapter 3 Operational Semantics

NE; = NE', ; NE, = NE,
(A NE; NEj) = (A NE', NE)

[prog-both]

This rule allows simultaneous evaluation of both operands. It leads to proof
trees that have branching, such as the following tree in which three arithmetic
operations are performed simultaneously:

——— |arithop] ——— [arithop]
(-74)=3 (+ 5 6) =11
[arithop] [prog-both]
(+ 25 75) = 100 (x (- 74) (+586))=(x311)
[prog-both]

(/ (+2575) (x (-74) (+56))= (/100 (x 3 11))

It is possible to express any proof tree (even one with branches) in the more
traditional linear textual style for a proof. In this style, a proof of a transition is
a sequence of transitions where each transition is justified either by an axiom or
by a progress rule whose antecedent transitions are justified by transitions earlier
in the sequence. A linear textual version of the branching proof tree above is:

Transition Justification
[1] (+ 25 75) =100 [arithop]
2 7 4) =3 [arithop]
5 6) =11 [arithop]
[

prog-both] & [2] & [3]
5 (+ 26 75) (x (-7 4) (+56)))
= (/ 100 (* 3 11)) [prog-both] & [1] & [4]

[2] (-
[3] (+
[4] (*+ (-7 4) (+ 586)) =(*3 11)
[B] /

The elements of the linear textual proof sequence have been numbered, and justi-
fications involving progress rules include the numbers of the transitions matched
by their antecedents. There are many alternative proof sequences for this exam-
ple that differ in the ordering of the elements. Indeed, the legal linear textual
proof sequences for this example are just topological sorts of the original proof
tree. Because such linearizations involve making arbitrary choices, we prefer to
use the tree-based notation, whose structure highlights the essential dependencies
in the proof.

When writing down a transition sequence to show the evaluation of an ELMM
expression we will not explicitly justify every transition with a proof tree, even
though such a proof tree must exist. However, if we are listing justifications
for transitions, then we will list the names of the rules that would be needed
to perform the proof. See Figure 3.9 for an example. (This example uses the
original SOS, which does not include the [prog-both] rule.)

We shall see in Section 3.6.3 that the fact that each transition has a proof
tree is key to proving properties about transitions. Transition properties are
often proven by structural induction on the structure of the proof tree for the
transition.

3.2.5 Progress Rules 67

(/ (+2575) (x (=7 4) (+56)))

= (/100 (x (-7 4) (+ 5 6))) [prog-left] & [arithop]

= (/ 100 (* 3 (+ 5 6))) [prog-right] & [prog—]eft] & |arithop]
= (/ 100 (* 3 11)) [prog-right] (twice) & [arithop]

= (/ 100 33) [prog-right] & [arithop]

=3 [arithop]

Figure 3.9 An example illustrating evaluation of ELMM expressions.

Exercise 3.10

a. Consider a language ELM (short for EL MINUS) that extends ELMM with indexed
references to program inputs. That is, ELM is EL without conditionals and boolean
expressions. The syntax for ELM is like that of ELMM except that (1) ELM pro-
grams have the form (elm Npumargs NEbody), Where Nyymargs specifies the number
of expected program arguments and (2) numerical expressions are extended with EL’s
(arg Ningdesz) construct, which gives the value of the argument whose index is given
by Ninder (assume indices start at 1).

Write a complete SOS for ELM. Your configurations will need to include a state
component representing the program arguments.

b. Write a complete SOS for the full EL language described in Section 2.3.2. You will
need to define two kinds of configurations: one to handle numeric expressions and
one to handle boolean expressions. Each kind of configuration will be a pair of an
expression and a sequence of numeric arguments and will have its own transition
relation.

Example: PostFix

For another example of progress rules, we will consider an alternative approach
for describing the exec command of POSTFIX. The [execute] axiom in Figure 3.4
handled exec by popping an executable sequence Qe off the stack and prepend-
ing it to the command sequence Qs following the exec command. Figure 3.10
presents a progress rule, [exec-prog], that, together with the axiom [exec-done],
can replace the [execute] rule. Rather than prepending the commands in Qegec
to Qrest, the [exec-prog] rule effectively executes the commands in Qezec While it
remains on the stack.

The [exec-prog]| rule says that if the abstract machine would make a tran-
sition from (Qegec, S) t0 (Qlyee, S’) then it should also allow a transition from
(exec . Qrest; (Qegec) - S) to (exec. Qpest, (Ql,..) . S’). Note that, unlike all the
rules that we have seen before, this rule does not remove the exec command from
the current command sequence. Instead, the exec command is left in place so

68 Chapter 3 Operational Semantics

that the execution of the command sequence at the top of the stack will continue
during the next transition. Since the commands are removed from Qc.e. after
being executed, the executable sequence at the top of the stack will eventually
become empty. At this point, the [exec-done] rule takes over, and removes both
the completed exec command and its associated empty executable sequence.

Figure 3.11 shows how the example considered earlier in Figure 3.1 and Fig-
ure 3.5 would be handled using the [exec-prog] and [exec-done| rules. Each
transition is justified by a proof tree that uses the rules listed as a justification.
For example, the transition

((exec sub), [(exec), (mul add), 3, 2, 1, 4, 5])
= ((exec sub), [(exec), (add), 6, 1, 4, 5])

is justified by the following proof tree:

[arithop]
((mul add), [3, 2, 1, 4, 5]) = ((add), [6, 1, 4, 5])

[exec-prog]
((exec), [(mul add), 3, 2, 1, 4, 5]) = ((exec), [(add), 6, 1, 4, 5])

[exec-prog]
((exec sub), [(exec), (mul add), 3, 2, 1, 4, 5])

= ((exec sub), [(exec), (add), 6, 1, 4, 5])

The Meaning of Progress Rules

There are some technical details about progress rules that we glossed over earlier.
When we introduced progress rules, we blindly assumed that they were always
reasonable. But not all progress rules make sense.

For example, suppose we extend POSTFI1X with a loop command defined by
the following progress rule:

(loop. @, S) = (@, S)
(Toop. Q, 5) = (Q, 5) [foop]

Any attempt to prove a transition involving loop will fail because there are no
axioms involving loop with which to terminate the proof tree. Thus, this rule
stands for no transitions whatsoever!

We'd like to ensure that all progress rules we consider make sense. We can
guarantee this by restricting the form of allowable progress rules to outlaw non-
sensical rules like [loop]. This so-called structure restriction guarantees that
any attempt to prove a transition from a given configuration will eventually ter-
minate. The standard structure restriction for an SOS requires rules that are

3.2.5 Progress Rules 69

<Q61€C? S> = <Qéxec’ S/> [GXGC— 70 }
(exec. Qrest; (Qezec) - S) = (exec. Qrest; (Qlree) - S') brog
(exec. Qrest, O . 89) = (Qrest, S) [exec-done]
Figure 3.10 A pair of rules that could replace the [execute] axiom.
(IF ((postfix 2 (2 (3 mul add) exec) 1 swap exec sub),[4,5]))
= (((2 (3 mul add) exec) 1 swap exec sub), [4, 5])
= ((1 swap exec sub), [(2 (3 mul add) exec), 4, 5]) [seq]
= ((swap exec sub), [1, (2 (3 mul add) exec), 4, 5]) [num)]
= ((exec sub), [(2 (3 mul add) exec), 1, 4, 5]) [swap]
= ((exec sub), [((3 mul add) exec), 2, 1, 4, 5]) [exec-prog] & [num]
= ((exec sub), [(exec), (3 mul add), 2, 1, 4, 5]) [exec-prog| & [seq]
= ((exec sub), [(exec), (mul add), 3, 2, 1, 4, 5]) [exec-prog]| (twice)
& [num]
= ((exec sub), [(exec), (add), 6, 1, 4, 5]) [exec—prog] (twice)
& [arithop]
= ((exec sub), [(exec), (), 7, 4, 5]) [exec prog] (twice)
& [arithop]
= ((exec sub), [0, 7, 4, 5]) [exec-prog)|
& [exec-done]
= ((sub) [7, 4, 5]) [exec-done]
= (0O, [-3]} € FC [arithop]
(OF (0, [-3, 8])) = -3

Figure 3.11 An example illustrating the alternative rules for exec.

purely structural in the sense that the code component of the LHS of each
antecedent transition is a subphrase of the code component of the LHS of the
consequent transition. Since program ASTSs are necessarily finite, this guarantees
that all attempts to prove a transition will have a finite proof.”

While simple to follow, the standard structure restriction prohibits many
reasonable rules. For example, the [exec-prog] rule does not obey this restriction,
because the code component of the LHS of the antecedent is unrelated to the
code component of the LHS of the consequent. Yet, by considering the entire
configuration rather than just the code component, it is possible to design a

"This restriction accounts for the term “Structural” in Plotkin’s Structural Operational Se-
mantics [Plo81].

70 Chapter 3 Operational Semantics

metric in which the LHS of the antecedent is “smaller” than the LHS of the
consequent (see Exercise 3.11). Although it is sometimes necessary to extend the
standard structure restriction in this fashion, most of our rules will be purely
structural.

Exercise 3.11 To guarantee that a progress rule is well defined, we must show that
the antecedent configurations are smaller than the consequent configurations. Here we
explore a notion of “smaller than” for the POSTFIX configurations that establishes the
well-definedness of the [exec-prog] rule. (Since [exec-prog]| is the only progress rule for
PosTF1x, it is the only one we need to consider.)

Suppose that we define a relation < on POSTFIX configurations such that

(Q1, S) < {exec. @z, Q1 .5)

for any command sequences (); and (2 and any stack S. This is the only relation
on POSTFIX configurations; two configurations not satisfying this relation are simply
incomparable.

a. A sequence [a1,as,...] is strictly decreasing if a;11 < a; for all i. Using the rela-
tion < defined above for configurations, show that every strictly decreasing sequence
[cf1,cfa,...] of POSTFIX configurations must be finite.

b. Explain how the result of the previous part implies the well-definedness of the [exec-
prog] rule.

Exercise 3.12 The abstract machine for POSTFIX described thus far employs configura-
tions with two components: a command sequence and a stack. It is possible to construct
an alternative abstract machine for POSTFIX in which configurations consist only of a
command sequence. The essence of such a machine is suggested by the transition se-
quence in Figure 3.12, where the primed rule names are the names of rules for the new
abstract machine, not the abstract machine presented earlier.

a. The above example shows that an explicit stack component is not necessary to model
PosTFIX evaluation. Explain how this is possible. (Is there an implicit stack some-
where?)

b. Write an SOS for POSTFIX in which a configuration is just a command sequence. The
SOS should have the behavior exhibited above on the given example. Recall that an
SOS has five components; describe all five. Use only axioms to specify your transition
relation.

c. In the above example, the exec command is handled by replacing it and the executable
sequence @ to its left by the contents of . This mirrors the prepending behavior of
[execute] in the original abstract machine. Write rules for the new abstract machine
that instead mirror the behavior of [exec-prog] and [exec-done].

3.2.6 Context-based Semantics 71

((swap exec swap exec) (1 sub) swap (2 mul) swap 3 swap exec)

= ((1 sub) (swap exec swap exec) (2 mul) swap 3 swap exec) [swap']
= ((1 sub) (2 mul) (swap exec swap exec) 3 swap exec) [swap']
= ((1 sub) (2 mul) 3 (swap exec swap exec) exec) [swap']
= ((1 sub) (2 mul) 3 swap exec swap exec) [exec’]
= ((1 sub) 3 (2 mul) exec swap exec) [swap’]
= ((1 sub) 3 2 mul swap exec) [exec’]
= ((1 sub) 6 swap exec) [arithop’]
= (6 (1 sub) exec) [swap']
= (6 1 sub) [exec’]
=5 [arithop’]

Figure 3.12 Sample transition sequence for an alternative POSTFIX abstract machine
whose configurations are command sequences.

d. Develop an appropriate notion of “smaller than” that establishes the well-definedness
of your new [exec-prog] rule. (See Exercise 3.11.)

e. Sketch how you might prove that the new SOS and the original SOS define the
behavior.

3.2.6 Context-based Semantics

Rewrite rules are not the only way to specify the transition relation of a small-
step operational semantics. Here we introduce another approach to specifying
transitions that is popular in the literature. This approach is based on a notion
of context that specifies the position of a subphrase in a larger program phrase.
Here we will explain this notion and show how it can be used to specify transitions.

In general, a context is a phrase with a single hole node in the abstract
syntax tree for the phrase. A sample context C in the ELMM language is
(+ 1 (- O 2)), where O denotes the hole in the context. “Filling” this hole
with any ELMM numerical expression yields another numerical expression. For
example, filling C with (/ (x 4 5) 3), written C{(/ (* 4 5) 3)}, yields the
numerical expression (+ 1 (- (/ (* 4 5) 3) 2)).

Contexts are useful for specifying a particular occurrence of a phrase that
occurs more than once in an expression. For example, (+ 3 4) appears twice
in (*x (+ 34) (/ (+ 3 4) 2)). The leftmost occurrence is specified by the
context (* O (/ (+ 3 4) 2)), while (x (+ 3 4) (/ O 2)) specifies the right-
most one. Contexts are also useful for specifying the part of a phrase that remains
unchanged (the evaluation context) when a basic computation (known as a re-

72 Chapter 3 Operational Semantics

Redexes
R € ElmmRedex ::= (A N; Np) [ArithmeticOperation]

Reduction Relation (~)
(A N1 NQ) ~ Nansa where Nans = (Calculate A N1 Ng)

Evaluation Contexts

E € ElmmEvalContext ::= O [Hole]
| (A E NE) [EvalLeft]
| (A N E) [EvalRight]

Transition Relation (=)
E{R} = E{R'}, where R ~» R’

Figure 3.13 A context-based specification of the ELMM transition relation.

dex, short for “reducible expression”) is performed. E.g., consider the evaluation
of the ELMM expression (/ 100 (x (- 7 4) (+ 5 6))). If operands are eval-
uated in left-to-right order, the next redex to be performed is (- 7 4). The
evaluation context for this redex is E = (/ 100 (x O (+ 5 6))). The result
(3 in this case) of performing the redex is plugged into the evaluation context
to yield the result of the transition: E{3} = (/ 100 (* 3 (+ 5 6))). This
transition can also be written as:

(/ 100 (x (-7 4) (+ 56)))

= (/100 (* O (+ 5 &)N{(-7 4}
= (/ 100 (*x O (+ 5 6))){3}

= (/ 100 (x 3 (+ 5 6)))

Evaluation contexts and redexes can be defined via grammars, such as the
ones for ELMM in Figure 3.13. In ELMM, a redex is an arithmetic operator
applied to two integer numerals. An ELMM evaluation context is either a hole
or an arithmetic operation one of whose two operands is an evaluation context.
If the evaluation context is in the left operand position ([Eval Left]) the right
operand can be an arbitrary numerical expression. But if the evaluation context
is in the right operand position ([Eval Right]), the left operand must be a numeral.
This structure enforces left-to-right evaluation in ELMM in a way similar to the
[prog-left] and [prog-right] progress rules. Indeed, evaluation contexts are just
another way of expressing the information in progress rules — namely, how to
find the redex (i.e., where an axiom can be applied).

Associated with redexes is a reduction relation (~) that corresponds to
the basic computation axioms we have seen before. In the simplest case, the left-

3.2.6 Context-based Semantics 73

hand side of the relation is the redex, while the right-hand side is the reduct.
The transition relation (=) is defined in terms of the reduction relation using
evaluation contexts: the expression E{R} rewrites to E{R’} as long as there is a
reduction R ~ R’. The transition relation is deterministic if there is at most one
way to parse an expression into an evaluation context filled with a redex (which
is the case in ELMM). The following table shows the context-based evaluation
of an ELMM expression:

Expression Evaluation Context Redex |Reduct
(/ (+ 256 75) (/O (-74) (+56))) | (+ 25 75) 100
(x (-7 4) (+56))

= (/ 100 (x (-7 4) (+ 5 6))) (/ 100 (x O (+ 5 6))) -74 3
= (/ 100 (x 3 (+ 5 6))) (/ 100 (x 3 0)) (+ 5 6) 11
= (/ 100 (* 3 11)) (/ 100 O) (x 3 11) 33
= (/ 100 33) O (/ 100 33) 3
= 3

Context-based semantics are most convenient in an SOS where the config-
urations consist solely of a code component. But they can also be adapted to
configurations that have state components. For example, Figure 3.14 is a context-
based semantics for ELM, the extension to ELMM that includes indexed input
via the form (arg Nge:) (see Exercise 3.10). An ELM configuration is a pair
of (1) an ELM numerical expression and (2) a sequence of numerals representing
the program arguments. Both the ELM reduction relation and transition relation
must include the program arguments so that the arg form can access them.

When the reduction relation involves additional components, such as program
arguments in the case of ELM, there is some ambiguity in the terms “redex”
and “reduct.” Sometimes they refer to the left-hand and right-hand sides of the
reduction rule, but often they refer to just the expression components of these
sides. E.g., in ELM, both (arg 2) and ((arg 2),[7,4,5]) can be called a redex.

Exercise 3.13 Starting with Figure 3.14, develop a context-based semantics for the full
EL language.

Exercise 3.14 The most natural context-based semantics for POSTFIX is based on the
approach sketched in Exercise 3.12, where configurations consist only of a command
sequence. Figure 3.15 is the skeleton of a context-based semantics that defines the tran-
sition relation for these configurations. It uses a command sequence context EQ whose
hole can be filled with a command sequence that is internally appended to other command
sequences. For example, if EQ = [1,2, 0, sub], then EQ{[3, swap]} = [1,2, 3, swap, sub].
Complete the semantics in Figure 3.15 by fleshing out the missing details.

74 Chapter 3 Operational Semantics

Redexes
R € ElmRedex ::= (A N; Ng) [ArithmeticOperation]
| (arg Nindes) [IndexedInput]

Reduction Relation (~)
((A Ny N3),N*) ~» Ngns where Ny = (calculate A N; Ny)
<(arg Nindez)7 [Nl PII) Nstzc]> ~ Ndem

where (compare > Nipgex 0) A —(compare > Nipder Nsize)

Evaluation Contexts
E € ElmEvalContext ::= EI [Hole]
| (A E NE) [EvalLeft]
¢

N E) [EvalRight]

Transition Relation (=)
(E{R}, N*) = (E{R'}, N*) where (R, N*) ~» R’

Figure 3.14 A context-based specification of the ELM transition relation.

Redexes

R € PostFixRedex ::= [V, pop] [Pop]
| [V1, V2, swap] [Swap]
| [N/, No, A [ArithmeticOperation]
-

. other redezes left as an exercise ...

Reduction Relation (~)
[V, pop] ~ []
[Vi, Va,swap| ~ [V, Vi]
[N1, N2, A] ~ [Ngns] where Ng,s = (calculate A N; Na)
. other reduction rules left as an exercise ...

Evaluation Contexts
EQ € PostfixEvalSequenceContext ::= V* QO Q @

Transition Relation (=)
EQ{R} = EQ{R’'}, where R ~» R’

Figure 3.15 A context-based specification of the transition relation for a subset of
PosTFIX.

3.3 Big-step Operational Semantics 75

NE —NE Nans [}
(elmm NE) —p Nans Prog
N —ng N [num)]

NE; —nyg N; ; NEz —ng No
(A NE1 NEQ) —NE Nans
where N,,s = (calculate A N; Np)

[arithop]

Figure 3.16 Big-step operational semantics for ELMM.

3.3 Big-step Operational Semantics

A small-step operational semantics is a framework for describing program execu-
tion as an iterative sequence of small computational steps. But this is not always
the most natural way to view execution. We often want to evaluate a phrase
by recursively evaluating its subphrases and then combining the results. This is
the key idea of denotational semantics, which we shall study in Chapter 4. How-
ever, this idea also underlies an alternative form of operational semantics, called
big-step operational semantics (BOS) (also known as natural semantics).
Here we briefly introduce big-step semantics in the context of a few examples.
Let’s begin by defining a BOS for the simple expression language ELMM, in
which programs are numerical expressions that are either numerals or arithmetic
operations. A BOS typically has an evaluation relation for each nontrivial
syntactic domain that directly specifies a result for a given program phrase or
configuration. The BOS in Figure 3.16 defines two evaluation relations:

1. —» g € NumExp x IntLit specifies the evaluation of an ELMM numerical
expression; and

2. —p € Prog x IntLit specifies the evaluation of an ELMM program.

There are two rules specifying — nyg. The [num] rule says that numerals evaluate
to themselves. The [arithop] rule says that evaluating an arithmetic operation
(A NE; NE3j) yields the result (Ngps) of applying the operator to the results
(N; and Np) of evaluating the operands. The single [prog] rule specifying — p
just says that the result of an ELMM program is the result of evaluating its
numerical expression.

As with SOS transitions, each instantiation of a BOS evaluation rule is justi-
fied by a proof tree, which we shall call an evaluation tree. Below is the proof
tree for the evaluation of the program (elmm (* (- 7 4) (+ 5 6))):

76 Chapter 3 Operational Semantics

[num] ——— [num] —— [num|] ——— [num)|
7T —>NET 4 —nNp 4 5 —>nNE b 6 —nNE 6
[arithop] [arithop]
(-74) —»NE 3 (+ 5 6) —»nyg 11
[arithop]

(x (-74) (+56)) —yg33

[prog]

(elmm (x (-7 4) (+ 5 6))) —p 33
Unlike the proof tree for an SOS transition, which justifies a single computational
step, the proof tree for a BOS transition justifies the entire evaluation! This is
the sense in which the steps of a BOS are “big”; they tell how to go from a phrase
to an answer (or something close to an answer). In the case of ELMM, the leaves
of the proof tree are always trivial evaluations of numerals to themselves.

With BOS evaluations there is no notion of a stuck state. In the ELMM BOS,
there is no proof tree for an expression like (* (/ 7 0) (+ 5 6)) that contains
an error. However, we can extend the BOS to include an explicit error token as a
possible result and modify the rules to generate and propagate such a token. Since
all ELMM programs terminate, a BOS with this extension completely specifies
the behavior of a program. But in general, the top-level evaluation rule for a
program only partially specifies its behavior, since there is no tree (not even an
infinite one) asserting that a program loops. What would the answer A of such
a program be in the relation P —p A?

The ELMM BOS rules also do not specify the order in which operands are
evaluated, but this is irrelevant since there is no way in ELMM to detect whether
one operation is performed before another. The ELMM BOS rules happen to
specify a function, which implies that ELMM evaluation is deterministic. In gen-
eral, a BOS may specify a relation, so it can describe nondeterministic evaluation
as well.

In ELMM, the evaluation relation maps a code phrase to its result. In general,
the LHS (and RHS) of an evaluation relation can be more complex, containing
state components in addition to a code component. This is illustrated in the
BOS for ELM, which extends ELMM with an indexed input construct (Fig-
ure 3.17). Here, the two evaluation relations have different domains than before:
they include an integer numeral sequence to model the program arguments.

1. —ng € (NumExp x IntLit*) x IntLit specifies the evaluation of an ELM
numerical expression; and

2. —p € (Prog x IntLit*) x IntLit specifies the evaluation of an ELM program.

Each of these relations can be read as “evaluating a program phrase relative to the
program arguments to yield a result.” As a notational convenience, we abbreviate

3.3 Big-step Operational Semantics 77

NE Nsooo, M) NE Nrms [}
prog
(elm Nnumargs NE) ['NI’—’NA”P Nans
where (compare = Npymargs T0)
and 7 stands for the IntLit N that denotes n € Int
N Xsyve N [num]
NE; Yoy Ny 3 NEg Yngp Ny)
e [arithop]
(A NE] NEQ) —*NE Nans
where N,,s = (calculate A N; Np)
(arg Ninges) 2ol yp N, linput]
where (compare > Njnger 0) A =(compare > Nijpger T)

Figure 3.17 Big-step operational semantics for ELM.

*

(X, N;Tgs) —»x Ngns as X i\/ﬂ»x Nans, where X ranges over P and NE. The
[prog] rule is as in ELMM, except that it checks that the number of arguments
is as expected and passes them to the body for its evaluation. These arguments
are ignored by the [num] and [arithop]| rules, but are used by the [input] rule to
return the specified argument.

Here is a sample ELM proof tree showing the evaluation of the program

(elm 2 (x (arg 1) (+ 1 (arg 2)))) on the two arguments 7 and 5:

[num] [input]

150 g1 (arg 2) 22y p 5

[input] [arithop]

(arg 1) L2y 7 (+ 1 (arg 2)) 28y 6[]
prog
(elm 2 (* (arg 1) (+ 1 (arg 2)))) 13, 42

Can we describe POSTFIX execution in terms of a BOS? Yes — via the eval-
uation relations — p (for programs) and —¢ (for command sequences) in Fig-
ure 3.18. The —»(relation € (CommandSeq x Stack) x Stack treats command
sequences as “stack transformers” that map an input stack to an output stack.
We abbreviate (Q, S) —¢ S" as Q i»Q S’. The [non-exec| rule “cheats” by using
the SOS transition relation = to specify how a non-exec command C' transforms
the stack to S’. Then —» specifies how the rest of the commands transform S’
into S”. The [exec] rule is more interesting because it uses —¢ in both an-
tecedents. The executable sequence commands Qeze. transform S to S’, while
the remaining commands Qe transform S’ to S”. The [exec] and [nonexec]
rules illustrate how evaluation order (in this case, executing Qezec before Qpes

78 Chapter 3 Operational Semantics

Q LU N Q Nans .S

[prog]
. Ni,...uNy
(postfix Nnumargs @) My] P Nans
where (compare = Nypymargs T)

and 7 stands for the IntLit N that denotes n € Int

(C.Q, 8 =(Q,8) : QL5

non-exec
C. Q i»Q S// [
where C' # exec
SI
Qezec i»Q S Qrest —_Q 8" [exec]

execC. Qrest LQeec) - 5, Q S

Figure 3.18 Big-step operational semantics for POSTFIX.

or C before @) can be specified in a BOS by “threading” a state component (in
this case, the stack) through an evaluation.

It is convenient to define —» so that it returns a stack, but stacks are not
the final answer we desire. The [prog] rule € (Prog x IntLit*) x Stack takes care
of creating the initial stack from the arguments and extracting the top integer
numeral (if it exists) from the final stack.

How do small-step and big-step semantics stack up against each other? Each
has its advantages and limitations. A big-step semantics is often more concise
than a small-step semantics, and one of its proof trees can summarize the entire
execution of a program. The recursive nature of a big-step semantics also corre-
sponds more closely to the structure of interpreters for high-level languages than
a small-step semantics does. On the other hand, the iterative step-by-step nature
of a small-step semantics corresponds more closely to the way low-level languages
are implemented, and it is often a better framework for reasoning about compu-
tational resources, errors, and termination. Furthemore, infinite loops are easy
to model in a small-step semantics but not in a big-step semantics.

We will use small-step semantics as our default form of operational semantics
throughout the rest of this book. This is not because the big-step semantics
approach is not useful — it is — but because we will tend to use denotational
semantics rather than big-step operational semantics for language specifications
that compose the meanings of whole phrases from subphrases.

Exercise 3.15 Construct a BOS evaluation tree that shows the evaluation of
(postfix 2 (2 (3 mul add) exec) 1 swap exec sub)

on arguments 4 and 5.

3.4 Operational Reasoning 79

Exercise 3.16 Extend the BOS in Figure 3.16 to handle the full EL language. You will
need a new evaluation relation, — gg, to handle boolean expressions.

Exercise 3.17 Modify each of the BOS specifications in Figures 3.16-3.18 to generate
and propagate an error token that models signaling an error. Be careful to handle all
error situations.

3.4 Operational Reasoning

The suitability of a programming language for a given purpose largely depends
on many high-level properties of the language. Important global properties of a
programming language include:

e universality: the language can express all computable programs;

e determinism: the set of possible outcomes from executing a program on any
particular inputs is a singleton;

e strong normalization: all programs are guaranteed to terminate on all inputs
(i.e., it is not possible to express an infinite loop);

e static checkability: a class of program errors can be found by static analysis
without resorting to execution;

e referential transparency: different occurrences of an expression within the
same context always have the same meaning.

Languages often exhibit equivalence properties that allow safe transforma-
tions: systematic substitutions of one program phrase for another that are guar-
anteed not to change the behavior of the program. Finally, properties of particular
programs are often of interest. For instance, we might want to show that a given
program terminates, that it uses only bounded resources, or that it is equivalent
to some other program. For these sorts of purposes, an important characteristic
of a language is how easy it is to prove properties of particular programs written
in a language.

A language exhibiting a desired list of properties may not always exist. For
example, no language can be both universal and terminating, because a universal
language must be able to express infinite loops. (But it is often possible to carve
a terminating sublanguage out of a universal language.)

The properties of a programming language are important to language design-
ers, implementers, and programmers alike. The features included in a language
strongly depend on what properties the designers want the language to have. For

80 Chapter 3 Operational Semantics

example, designers of a language in which all programs are intended to terminate
cannot include general looping constructs, while designers of a universal language
must include features that allow nontermination. Compiler writers extensively
use safe transformations to automatically improve the efficiency of programs.
The properties of a language influence which language a programmer chooses for
a task as well as what style of code the programmer writes.

An important benefit of a formal semantics is that it provides a framework
that facilitates proving properties both about the entire language and about
particular programs written in the language. Without a formal semantics, our
understanding of such properties would be limited to intuitions and informal
(and possibly incorrect) arguments. A formal semantics is a shared language for
convincing both ourselves and others that some intuition that we have about a
program or a language is really true. It can also help us develop new intuitions.
It is useful not only to the extent that it helps us construct proofs but also to the
extent that it helps us find holes in our arguments. After all, some of the things
we think we can prove simply aren’t true. The process of constructing a proof
can give us important insight into why they aren’t true.

In the next three sections, we use operational semantics to reason about EL
and POSTFIX. In Section 3.5, we discuss the deterministic behavior of EL under
various conditions. Then we show in Section 3.6 that all POSTFIX programs are
guaranteed to terminate. In Section 3.7, we consider conditions under which we
can transform one POSTFIX command sequence to another without changing the
behavior of a program.

3.5 Deterministic Behavior of EL

A programming language is deterministic if there is exactly one possible out-
come for any pair of program and inputs. In Section 3.2.1, we saw that a deter-
ministic SOS transition relation implies that programs behave deterministically.
In Section 3.2.3, we argued that the POSTFIX transition relation is deterministic,
so POsSTFIX is a deterministic language.

We can similarly argue that EL is deterministic. We will give the argument
for the sublanguage ELMM, but it can be extended to full EL. There are only
three SOS rewrite rules for ELMM (Figure 3.7 on page 65): [arithop], [prog-left],
and [prog-right]. For a given ELMM numerical expression NE, we argue that
there is at most one proof tree using these three rules that justifies a transition
for NE. The proof is by structural induction on the AST for NE.

3.5 Deterministic Behavior of EL 81

e (Base cases) If NE is a numeral, it matches no rules, so there is no transition.
If NE has the form (A N; Npz), it can match only the [arithop] rule, since
there are no transitions involving numerals.

e (Induction cases) NE must have the form (A NE; NEj), where at least one
of NE; and NE, is not a numeral. If NF; is not a numeral, then NE can
match only the [prog-left] rule, and only in the case where there is a proof tree
justifying the transition NE; = NE’,. By induction, there is at most one such
proof tree, so there is at most one proof tree for a transition of NE. If NE,
is a numeral, then NE» must not be a numeral, in which case NE can match
only the [prog-right| rule, and similar reasoning applies.

Alternatively, we can prove the determinism of the ELMM transition relation
using the context semantics in Figure 3.13. In this case, we need to show that
each ELMM numerical expression can be parsed into an evaluation context and
redex in at most one way. Such a proof is essentially the same as the one given
above, so we omit it.

The ELMM SOS specifies that operations are performed in left-to-right order.
Why does the order of evaluation matter? It turns out that it doesn’t — there
is no way in ELMM to detect the order in which operations are performed!
Intuitively, either the evaluation is successful, in which case all operations are
performed anyway, leading to the same answer, or a division or remainder by
zero is encountered somewhere along the way, in which case the evaluation is
unsuccessful. Note that if we could distinguish between different kinds of errors,
the story would be different. For instance, if divide-by-zero gave a different error
from remainder-by-zero, then evaluating the expression (+ (/ 1 0) (% 2 0))
would indicate which of the two subexpressions was evaluated first. The issue
of evaluation order is important to implementers, because they sometimes can
make programs execute more efficiently by reordering operations.

How can we formally show that evaluation order in ELMM does not matter?
We begin by replacing the [prog-right] rule in the SOS by the following [prog-
right’] rule to yield a modified ELMM transition relation ='.

NE, =' NE/,
(A NE; NE,) =' (A NE; NE,)

[prog-right’|

Now operands can be evaluated in either order, so the transition relation is no
longer deterministic. For example, the expression (* (- 7 4) (+ 5 6)) now
has two transitions:

(x (-74) (+56))="(x3 (+586))
x (-74) +586)="(x(-74) 11D

82 Chapter 3 Operational Semantics

Nevertheless, we would like to argue that the behavior of programs is still deter-
ministic even though the transition relation is not.

A handy property for this purpose is called confluence. Informally, conflu-
ence says that if two transition paths from a configuration diverge, there must
be a way to bring them back together. The formal definition is as follows:

Definition 3.1 (Confluence) A relation — € X x X is confluent if and
only if for every x1,xo, 3 € X such that x1 = x9 and v1 = x3, there exists
an x4 such that xo = x4 and x5 = x4. Confluence is usually displayed via
the following diagram, in which solid lines are the given relations and the
dashed lines are assumed to exist when the property holds.

Mo
/ x
X2 Zs3
N Ve
Nk X /
N Ve
\ s

N/
Ty

Because of the shape of the diagram, = is said to satisfy the diamond
property. Saying that a relation is Church-Rosser (CR for short) is
the same as saying it is confluent.

Suppose that a transition relation = is confluent. Then if an initial configu-
ration cf; has transition paths to two final configurations cfy, and cfy,, these are
necessarily the same configuration! Why? By confluence, there must be a config-
uration cf such that cfy, = ¢f and cfp, = ¢f. But cfy, and cfy, are elements of
Irreducible, so the only transition paths leaving them have length 0. This means
cfr, =cf=cfy,. Thus, a confluent transition relation guarantees a unique final
configuration. Indeed, it guarantees a unique irreducible configuration: it is not
possible to get stuck on one path and reach a final configuration on another.

Confluence by itself does not guarantee a single outcome. It is still possible for
a confluent transition relation to have some infinite paths, in which case there is
a second outcome (00). This possibility must be ruled out to prove deterministic
behavior. In the case of ELMM — and even EL — it is easy to prove there are
no loops (see Exercise 3.27 on page 89).

We can now show that ELMM has deterministic behavior under =’ by ar-
guing that =’ is confluent. We will actually show a stronger property, known
as one-step confluence, in which the transitive closure stars in the diamond
diagram are removed; confluence easily follows from one-step confluence.

3.5 Deterministic Behavior of EL 83

Suppose that NE; =’ NE, and NE; =’ NE3. Any such ELMM transition
is justified by a linear derivation (like the one depicted in Figure 3.8 on page 65)
whose single leaf is an instance of the [arithop] rule. As in context-based se-
mantics, we will call the LHS of the basic arithmetic transition justified by this
[arithop] rule a redex. Call the redex reduced in NE; =’ NE, the “red” redex
and the one reduced in NE; =’ NE 3 the “blue” redex. Either these are the same
redex, in which case NEy = NE trivially joins the paths, or the redexes are
disjoint, i.e., one does not occur as a subexpression of another. (A redex has the
form (A N; Nj), and the integer numerals N; and Np cannot contain another
redex.) In the latter case, there must be an expression NE, that is a copy of
NE ; in which both the red and blue redexes have been reduced. Then NEj, =/
NE, by reducing the blue redex and NE3 =’ NE, by reducing the red redex.
So NE, joins the diverging transitions.

We have shown that ELMM has deterministic behavior even when its op-
erations are performed in a nondeterministic order. A similar approach can be
used to show that ELM and EL have the same property (see Exercise 3.20).
Confluence in these languages is fairly straightforward. It becomes much trickier
in languages where redexes overlap or performing one redex can copy another.

We emphasize that confluence is a sufficient but not necessary condition for a
nondeterministic transition relation to give rise to deterministic behavior. That
is, confluence implies deterministic behavior, but deterministic behavior can exist
without confluence. In general, many distinct final configurations might map to
the same outcome.

Exercise 3.18 Suppose that in addition to replacing [prog-right] with [prog-right’] in
the ELMM SOS, we add the rule [prog-both| introduced on page 65 to the SOS.

a. In this modified SOS, how many different transition paths lead from the expression
(/ (+2575) (x (-7 4) (+ 5 6))) to the result 37

b. Does the modified SOS still have deterministic behavior? Explain your answer.

Exercise 3.19 Consider extending ELMM with a construct (either NE; NEj) that
returns the result of evaluating either NE; or NE,.

a. What are the possible behaviors of the following program?
(elmm (* (- (either 1 2) (either 3 4)) (either 5 6)))

b. The informal specification of either given above is ambiguous. For example, must
the expression (+ (either 1 (/ 2 0)) (either (% 3 0) 4)) return the result 5,
or can it get stuck? The semantics of either can be defined either way. Give a formal
specification for each interpretation of either that is consistent with the informal
description.

84 Chapter 3 Operational Semantics

Exercise 3.20

a. Show that the two transition relations (one for NumExp, one for BoolExp) in an EL
SOS can be deterministic.

b. Suppose that both transition relations in an EL SOS allow operations to be performed
in any order, so that they are nondeterministic. Argue that the behavior of EL
programs is still deterministic.

3.6 Termination of PostFix Programs

The strong normalization property of POSTFIX is expressed by the following
theorem:

Theorem 3.2 (PostFix Termination) All POSTFIX programs are guar-
anteed to terminate. That is, executing a POSTFIX program on any inputs
always either returns a numeral or signals an error.

This theorem is based on the following intuition: existing commands are con-
sumed by execution, but no new commands are ever created, so the commands
must eventually “run out.” This intuition is essentially correct, but an intuition
does not a proof make. After all, POSTFIX is complex enough to harbor a sub-
tlety that invalidates the intuition. The nget command allows the duplication
of numerals — is this problematic with regard to termination? Executable se-
quences are moved to the stack, but their contents can later be prepended to the
command sequence. How can we be certain that this shuffling between command
sequence and stack doesn’t go on forever? And how do we deal with the fact
that executable sequences can be arbitrarily nested? In fact, the termination
theorem can fail to hold if POSTFIX is extended with new commands, such as a
dup command that duplicates the top stack value (see Section 3.8 for details).

These questions indicate the need for a more convincing argument that ter-
mination is guaranteed. This is the kind of situation in which formal semantics
comes in handy. Below we present a proof for termination based on the SOS for
PosTFIX.

3.6.1 Energy

Associate with each POSTFIX configuration a natural number called its energy
(so called to suggest the potential energy of a dynamical system). By considering
each rewrite rule of the semantics in turn, we will prove that the energy strictly
decreases with each transition. The energy of an initial configuration must then

3.6.1 Energy 85

be an upper bound on the length of any path of transitions leading from the
initial configuration. Since the initial energy is finite, there can be no unbounded
transition sequences from the initial configuration, so the execution of a program
must terminate.

The energy of a configuration is defined by the following energy functions:

Eeonfig[(Q,)] = Eseg[Q] + Estack[5] (3.1)
Eseq [H]Command]] =0 (3 2)
EsqC. Q] = 1+Ecom[C]+ Eseq[Q] (3.3)
Estack IH]Valuo]] =0 (3 4)
Estack [[V. S]] = Ecom [[V]] + Estack [[S]] (3 5)
Ecom[[(Q)]] = Eseq[[Q]] (3 6)
Eoom[C] = 1, C not an executable sequence. (3.7)

These definitions embody the following intuitions:

e The energy of a configuration, sequence, or stack is greater than or equal to
the sum of the energy of its components.

e Executing a command consumes at least one unit of energy (the 1 that appears
in 3.3). This is true even for commands that are transferred from the code
component to the stack component (i.e., numerals and executable sequences);
such commands are worth one more unit of energy in the command sequence
than on the stack.®

e Since the commands in an executable sequence may eventually be executed,
an executable sequence on the stack must have at least as much energy as its
component command sequence. This is the essence of 3.6, where E ., [(Q)] is
interpreted as the energy of a command sequence on the stack (by 3.5).

The following lemmas are handy for reasoning about the energy of sequences:

Eom[C] = 0 (3.8)
Eseq[[Q] Q QQ]] = Eseq[[Q]ﬂ + Eseq[[QQ]] (39)

These can be derived from the energy definitions above. Their derivations are
left as an exercise.

Equipped with the energy definitions and lemmas 3.8 and 3.9, we are ready
to prove the POSTF1X Termination Theorem.

8The invocation Ecom[V] that appears in 3.5 may seem questionable because Eom [] should
be called on elements of Command, not elements of Value. But since every stack value is also
a command, the invocation is well defined.

86 Chapter 3 Operational Semantics

3.6.2 The Proof of Termination

Proof: We show that every transition reduces the energy of a configuration.
Recall that every transition in an SOS has a proof in terms of the rewrite rules.
In the case of POSTFI1X, where all the rules are axioms, the proof is trivial: every
PosSTFIX transition is justified by one rewrite axiom. To prove a property about
PosTFIX transitions, we just need to show that it holds for each rewrite axiom
in the SOS. Here’s the case analysis for the energy reduction property:

e [num|: (N.Q, S)= (Q, N.S)

Econﬁg[[<N . Q? S>]]

= Esq[N . Q] + Estack[S] by 3.1
= 1+ Ecom [[N]] + Eseq[[Q]] + Estack [[S]] by 3.3
= 14 Esq[Q] + Estack [V - 5] by 3.5
= 14 Een[(Q. N.S)] by 3.1

The LHS has one more unit of energy than the RHS, so moving a numeral to
the stack reduces the configuration energy by one unit.

o [seq]: ((Qezec) - Qrests S) = (Qrest; (Qexec) - 5)

Moving an executable sequence to the stack also consumes one energy unit by
exactly the same argument as for [num).

e [pop]: (pop. Q, Viep-S) = (Q, S)

Popping Vi, off a stack takes at least two energy units:

Econﬁg[[<pop . Qa VtO:D . S>]]

= Eseqlpop. Q] + Estack [Viop - S] by 3.1
= 1+Ecwm [[POP]] + Eseq[[Q]] + Ecom[[vtop]] + Estack [[S]] by 3.3 and 3.5
= 24 Ecom[[vtop]] + Eseq[[@]] + Estack [[S]] by 3.7
> 24 Beongig[(Q,)] by 3.1 and 3.8

o [swap]: (swap. @, V;.V2.S8) = (Q, Vo.V;.S5)

Swapping the top two elements of a stack consumes two energy units:

Econfigl{swap. @, Vi . Vs . 8)]
= Eseq [[SW&p . Q]] + Estack[[vl Va2 S]] by 3.1
= 1+ Ecom[swap] + ESEq[[Q]]
+ Ecom[[vl]] + Ecom[[VQ]] + Estack [[S]] by 3.3 and 3.5
= 24 Eyy[Q] + Estact[Ve . Vi . 5] by 3.7 and 3.5
= 2+ Econﬁg[[(Qa Vo. Vs S>]] by 3.1

3.6.2 The Proof of Termination 87

o [execute]: (exec. Qrest; (Qezec) - S) = (Qexec @ Qrest, S)

Executing the exec command consumes two energy units:

Econﬁg [[(exec . Qrest7 (Qezec) . S>]]
= Eseq [[exec . Qrest]] + Estack[[(Qexec) . S]] by 3.1
= 1+Ecm [[exeC]] + Eseq [[Qrest]]

+ Ecom[(Qezec)] + Estack [S] by 3.3 and 3.5
- 2 + Eseq[[Qezec]] + Eseq[[Qrest]] + Estack [[SH by 36 and 37
= 2 + Eseq[[Qezec @ Qrest]] + Estack [[S]] by 39
= 2+ Econﬁg[KQemec Q Qresta S>]] by 3.1

e [nget], [arithop], [relop-true], [relop-false|, [sel-true], [sel-false|: These cases are
similar to those above and are left as exercises for the reader. &

The approach of defining a natural number function that decreases on every
iteration of a process is a common technique for proving termination. However,
inventing the function can sometimes be tricky. In the case of POSTFIX, we have
to get the relative weights of components just right to handle movements between
the program and stack.

The termination proof presented above is rather complex. The difficulty is not
inherent to POSTFIX, but is due to the particular way we have chosen to formulate
its semantics. There are alternative formulations in which the termination proof
is simpler (see Exercise 3.25 on page 89).

Exercise 3.21 Show that lemmas 3.8 and 3.9 hold.

Exercise 3.22 Complete the proof of the POSTFIX termination theorem by showing
that the following axioms reduce configuration energy: [nget|, [arithop], [relop-true],
[relop-false], [sel-true], [sel-false].

Exercise 3.23 Bud “eagle-eye” Lojack notices that Definitions 3.2 and 3.4 do not appear
as the justification for any steps in the POSTF1X Termination Theorem. He reasons that
these definitions are arbitrary, so he could just as well use the following definitions instead:

Bl = 17 (
Estrzckﬂ[]]] = 23 (34/)

Is Bud correct? Explain your answer.

Exercise 3.24 Prove the termination property of POSTFIX based on the SOS for PosT-
Fi1x2 from Exercise 3.7.

a. Define an appropriate energy function on configurations in the alternative SOS.

b. Show that each transition in the alternative SOS reduces energy.

88 Chapter 3 Operational Semantics

3.6.3 Structural Induction

The above proof is based on a POSTFIX SOS that uses only axioms. But what
if the SOS contained progress rules, like [exec-prog| from Figure 3.10 in Sec-
tion 3.2.57 How do we prove a property like reduction in configuration energy
when progress rules are involved?

Here’s where we can take advantage of the fact that every transition of an
SOS must be justified by a finite proof tree based on the rewrite rules. Recall that
there are two types of nodes in the proof tree: the leaves, which correspond to
axioms, and the intermediate nodes, which correspond to progress rules. Suppose
we can show that

e the property holds at each leaf — i.e., it is true for (the consequent of) every
axiom; and

e the property holds at each intermediate node — i.e., for every progress rule, if
the property holds for all of the antecedents, then it also holds for the conse-
quent.

Then, by induction on the height of its proof tree, the property must hold for
each transition specified by the rewrite rules. This method for proving a property
based on the structure of a tree (in this case the proof tree of a transition relation)
is called structural induction.

As an example of a proof by structural induction, we consider how the pre-
vious proof of the termination property for POSTFI1X would be modified for an
SOS that uses the [exec-done] and [exec-prog] rules in place of the [exec] rule.
It is straightforward to show that the [exec-done] axiom reduces configuration
energy; this is left as an exercise for the reader. To show that the [exec-prog]
rule satisfies the property, we must show that if its single antecedent transition
reduces configuration energy, then its consequent transition reduces configuration

energy as well.
Recall that the [exec-prog]| rule has the form:

(Qecgec, S) = <Qéa}ec7 S/>
<exec - Qrest; (Qegec) - S> = <exec - Qrest, (Qéxec) . S,>

[exec-prog]

We assume that the antecedent transition,
<Q€$€C? S> = < éIEC’ Sl>
reduces configuration energy, so that the following inequality holds:

Econﬁg[[<Qezeca S)]] > Econﬁg [[<Qéq;eca Sl>]]

3.7 Safe PosTFi1x Transformations 89

Then we show that the consequent transition also reduces configuration energy:

Econﬁg[[<exec . Qr‘est; (Qexec) . S>]]

= Eseq [[GXGC . Qrest] + Estack [[(Qezec) . S]] by 31
= Eseq [[GXQC . Qrestﬂ + Ecom[[(Qemec)]] + Estack [[S]] by 3.5
= Eseq [[exec . Qrestﬂ + Eseq[[Qewec]] + Estack [[S]] by 36
= Eseq [[exec . Qrest]] + Econﬁg [[<Qewec, S>]] by 3.1
> Ese‘] [[exec . QT“—’StH + Econﬁg H< émec’ S/>]] by assumption
= Eseqlexec. Qrest] + Eseq[Qeuec] + Estack [S'] by 3.1
= Eseq [[GXGC . Qrest] + Ecom[[(Qézec)]] + Estack [[S/]] by 3.6
= Eseq [[exec . Qrestﬂ + Estack[“Q;g;ec) . S/]] by 3.5
= Econﬁg [Kexec - Qrest, (Q;xec) . Sl>]] by 3.1

The > appearing in the derivation sequence guarantees that the energy specified
by the first line is strictly greater than the energy specified by the last line. This
completes the proof that the [exec-prog] rule reduces configuration energy. To-
gether with the proofs that the axioms reduce configuration energy, this provides
an alternative proof of POSTFIX’s termination property.

Exercise 3.25 Prove the termination property of POSTFIX based on the alternative
PosTF1x SOS suggested in Exercise 3.12 on page 70:

a. Define an appropriate energy function on configurations in the alternative SOS.

b. Show that each transition in the alternative SOS reduces energy.

c. The termination proof for the alternative semantics should be more straightforward
than the termination proofs in the text and in Exercise 3.24. What characteristic(s)
of the alternative SOS simplify the proof? Does this mean the alternative SOS is a
“better” one?

Exercise 3.26 Prove that the rewrite rules [exec-prog] and [exec-done| presented in
the text specify the same behavior as the [execute] rule. That is, show that for any
configuration c¢f of the form (exec. @, S), both sets of rules eventually rewrite c¢f into
either (1) a stuck state or (2) the same configuration.

Exercise 3.27 As in POSTFIX, every program in the EL language terminates. Prove
this fact based on an operational semantics for EL (see Exercise 3.10 on page 67).

3.7 Safe PostFix Transformations

3.7.1 Observational Equivalence

One of the most important aspects of reasoning about programs is knowing when
it is safe to replace one program phrase by another. Two phrases are said to be

90 Chapter 3 Operational Semantics

observationally equivalent (or behaviorally equivalent) if an instance of
one can be replaced by the other in any program without changing the behavior
of the program.

Observational equivalence is important because it is the basis for a wide range
of program transformation techniques. It is often possible to improve a pragmatic
aspect of a program by replacing a phrase by one that is equivalent but more
efficient. For example, we expect that the POSTFIX sequence [1,add, 2, add] can
always be replaced by [3,add] without changing the behavior of the surrounding
program. The latter may be more desirable in practice because it performs fewer
additions.

A series of simple transformations can sometimes lead to dramatic improve-
ments in performance. Consider the following three transformations on POsTF1x
command sequences, just three of the many safe POSTFIX transformations:

Before After Name
[Vi, Vg, swap] [V, V4] [swap-trans]
[(@), exec] Q [exec-trans]
[N, Ng, Al [Nans] where N, = (calculate A N; Np) | [arith-trans]

Applying these to our example of a POSTFIX command sequence yields the fol-
lowing sequence of simplifications:

((2 (3 mul add) exec) 1 swap exec sub)
TP, ((2 3 mul add) 1 swap exec sub) exec-trans|
2TP, ((6 add) 1 swap exec sub) arith-trans]
SImP, (1 6 add sub)

Smp, (7 sub)

[

‘ [
2T, (1 (6 add) exec sub) [swap-trans]
[exec-trans]
[

arith-trans]

Thus, the original command sequence is a “subtract 7” subroutine. The trans-
formations essentially perform operations at compile time that otherwise would
be performed at run time.

It is often tricky to determine whether two phrases are observationally equiv-
alent. For example, at first glance it might seem that the POSTFIX sequence
[swap, swap] can always be replaced by the empty sequence []. While this trans-
formation is valid in many situations, these two sequences are not observationally
equivalent because they behave differently when the stack contains fewer than
two elements. For instance, the POSTFIX program (postfix 0 1) returns 1 as
a final answer, but the program (postfix O 1 swap swap) generates an error.
Two phrases are observationally equivalent only if they are interchangeable in all
programs.

3.7.1 Observational Equivalence 91

P € PostfixProgContext ::= (postfix Npumargs Q@) [ProgramContext]
Q € PostfixSequenceContext ::= O [Hole]

| Q@ QQ [Prefix]

| Q@ @ [Suffix]

| [(Q)] [Nesting]

Figure 3.19 Definition of POSTFIX contexts.

Observational equivalence can be formalized in terms of the notions of be-
havior and context presented earlier. Recall that the behavior of a program
(see Section 3.2.1) is specified by a function beh that maps a program and its
inputs to a set of possible outcomes:

beh : (Prog x Inputs) — P(Outcome)

The behavior is deterministic when the resulting set is guaranteed to be a single-
ton. A program context is a program with a hole in it (see Section 3.2.6).

Definition 3.3 (Observational Equivalence) Suppose that P ranges
over program contexts and H ranges over the kinds of phrases that fill the
holes in program contexts. Then H; and Hy are defined to be observation-
ally equivalent (written H; =,ps Hg) if and only if for all program contexts
P and all inputs I, beh (P{H;},I) = beh (P{Hz},1).

We will consider POSTFIX as an example. An appropriate notion of pro-
gram contexts for POSTFIX is defined in Figure 3.19. A command sequence
context Q is one that can be filled with a sequence of commands to yield another
sequence of commands. For example, if Q = [(2 mul),3] @O @ [exec], then
Q{[4,add, swap]} = [(2 mul),3,4,add,swap,exec|. The [Prefix] and [Suffix]
productions allow the hole to be surrounded by arbitrary command sequences,
while the [Nesting] production allows the hole to be nested within an executable
sequence command. (The notation [(Q)] designates a sequence containing a sin-
gle element. That element is an executable sequence that contains a single hole.)
Because of the presence of @, the grammar for PostfixSequenceContext is am-
biguous, but that will not affect our presentation, since filling the hole for any
parsing of a sequence context yields exactly the same sequence.

The possible outcomes of a program must be carefully defined to lead to a sat-
isfactory notion of observational equivalence. The outcomes for POSTFIX defined
in Section 3.2.1 are fine, but small changes can sometimes lead to surprising re-
sults. For example, suppose we allow POSTFIX programs to return the top value

92 Chapter 3 Operational Semantics

of a nonempty stack, even if the top value is an executable sequence. If we can
observe the structure of a returned executable sequence, then this change invali-
dates all nontrivial program transformations! To see why, take any two sequences
we expect to be equivalent (say, [1,add,2,add] and [3,add]|) and plug them into
the context (postfix 0 (O)). In the modified semantics, the two outcomes are
the executable sequences (1 add 2 add) and (3 add), which are clearly not the
same, and so the two sequences are not observationally equivalent.

The problem is that the modified SOS makes distinctions between executable
sequence outcomes that are too fine-grained for our purposes. We can fix the
problem by instead adopting a coarser-grained notion of behavior in which there
is no observable difference between outcomes that are executable sequences. For
example, the outcome in this case could be the token executable, indicating
that the outcome is an executable sequence without divulging which particular
executable sequence it is. With this change, all the expected program transfor-
mations become valid again.

3.7.2 Transform Equivalence

It is possible to show the observational equivalence of two particular POSTFIX
command sequences according to the definition on page 91. However, we will fol-
low another route. First, we will develop an easier-to-prove notion of equivalence
for PosTFIX sequences called transform equivalence. Then, after giving an
example of transform equivalence, we will prove a theorem that transform equiv-
alence implies observational equivalence for POSTFIX programs. This approach
has the advantage that the structural induction proof on contexts needed to show
observational equivalence need be proved only once (for the theorem) rather than
for every pair of POSTFIX command sequences.

Transform equivalence is based on the intuition that POSTFIX command se-
quences can be viewed as a means of transforming one stack to another. Infor-
mally, transform equivalence is defined as follows:

Definition 3.4 (Transform Equivalence) Two POSTFIX command se-
quences are transform equivalent if they always transform equivalent
mput stacks to equivalent output stacks.

This definition is informal in that it doesn’t say how command sequences can be
viewed as transformers or pin down what it means for two stacks to be equivalent.
We will now flesh out these notions.

Our approach to transform equivalence depends on a notion of the last stack
reached when all commands are executed in a POSTFIX program. We model

3.7.2 Transform Equivalence 93

the possibility of executions stuck at a command by introducing a StackAnswer
domain that contains the usual POSTFIxX stacks (Figure 3.3 on page 53) along
with a distinguished error stack element SA ..o

ErrorStack = {errorStack}
SA € StackAnswer = Stack + ErrorStack

SAerror : StackAnswer = (ErrorStack —StackAnswer errorStack)

We now define a lastStack function that returns the last stack reached for a
given initial command sequence and stack when all commands are executed:

lastStack : CommandSeq — Stack — StackAnswer

— (Stack —StackAnswer S') if (Q, S) = ([], S')
(lastStack @) = { SAcrror otherwise

The lastStack function is well defined because POSTFIX is deterministic. The
longest transition path starting with an initial configuration (@, S) ends in a
unique configuration that either has an empty command sequence or doesn’t.
Because it handles the nonempty command sequence case by returning SA e ror,
lastStack is also a total function. For example, (lastStack [add,mul] [4,3,2,1])
= [14,1] and (lastStack [add,exec] [4,3,2,1]) = SAcpor. It easily follows from
the definition of lastStack that if (@, S) = (Q’, S’) then (lastStack @ S) =
(lastStack Q" S’). Note that a stack returned by lastStack may be empty or
have an empty command sequence at the top, so it may not be an element of
FinalStack (defined in Figure 3.3 on page 53).

The simplest notion of “stack equivalence” is that two stacks are equivalent
if they are identical sequences of values. But this notion has problems similar
to those discussed above with regard to outcomes in the context of observational
equivalence. For example, suppose we are able to show that (1 add 2 add) and
(3 add) are transform equivalent. Then we’d also like the transform equivalence
of ((1 add 2 add)) and ((3 add)) to follow as a corollary. But given identical
input stacks, these two sequences do not yield identical output stacks — the top
values of the output stacks are different executable sequences!

To finesse this problem, we need a notion of stack equivalence that treats
two executable sequence elements as being the same if they are transform equiv-
alent. The recursive nature of these notions prompts us to define four mutu-
ally recursive equivalence relations that formalize this approach: one between
command sequences (transform equivalence), one between stack answers (stack-
answer equivalence), one between stacks (stack equivalence), and one between
stack elements (value equivalence).

94 Chapter 3 Operational Semantics

1. Command sequences @; and @ are said to be transform equivalent (writ-
ten Q7 ~q Q2) if, for all stack-equivalent stacks S; and Sy, it is the case that
(lastStack @Q; S;) is stack-answer equivalent to (lastStack Qg S2).

2. Stack answers SA; and SAy are said to be stack-answer equivalent (written
SA; ~sa SA») if

e both SA; and SA, are the distinguished error stack, SAe¢pror; OF

e SA; = (Stack—StackAnswer S7), SAp = (Stack—StackAnswer Sp), and S is
stack equivalent to Ss.

3. Stacks S; and Sy are stack equivalent (written S; ~g S») if they are equal-
length sequences of values that are elementwise value equivalent. I.e., S; =
(Viyeooy Vil, Se = [Vy,..., V]],and V; ~y V/ for all i such that 1 <i <mn.
Equivalently, S; and S» are stack equivalent if

e both S; and S» are the empty stack; or
[] S] = V] S;, Sg = VQSé, V] ~y VQ, and Sé ~g Sé

4. Stack elements V; and Vy are value equivalent (written V; ~y Vp) if V;
and Vy are the same integer numeral (i.e., V; = N = Vy) or if V; and Vy
are executable sequences whose contents are transform equivalent (i.e., V; =

(Q1), Vo = (Q2), and Q1 ~q Q2).

Despite the mutually recursive nature of these definitions, we claim that all four
are well-defined equivalence relations as long as we choose the largest relations
satisfying the descriptions.

Two POSTFIX command sequences can be proved transform equivalent by
case analysis on the structure of input stacks. This is much easier than the case
analysis on the structure of contexts that is implied by observational equivalence.
Since (as we shall show below) observational equivalence follows from transform
equivalence, transform equivalence is a practical technique for demonstrating
observational equivalence.

As a simple example of transform equivalence, we show that [1,add, 2, add]
~@ [3,add]. Consider two stacks S; and Sz such that S; ~g S2. We proceed by
case analysis on the structure of the stacks:

1. S; and Sy are both [], in which case

[
(lastStack [3,add] [])
= (lastStack [add] [3])
= SAcrror
= (lastStack [add, 2,add] [1])
= (lastStack [1,add, 2,add] [])

3.7.2 Transform Equivalence 95

2. S; and S are nonempty sequences whose heads are the same numeric literal
and whose tails are stack equivalent. Le., S; = N .S}, Sp = N.Sj, and]
~g S,. We use the abbreviation N;+Ny for (calculate + N; Ny).

(lastStack [3,add] N .S7)
(lastStack [add] 3. N .S7)
lastStack [] N+3. 51)

Stack >—>StackAnswer N+3.57%)

(

(

~s4 (Stack—StackAnswer N+3.S})
(lastStack] N+3. 5'2)
(
(
(

lastStack [add] 2. N+1.5})
lastStack [2,add] N+1.5%)
[a
1,

lastStack [add,2,add] 1.N.S})
(lastStack [1 add,2,add] N.S))

3. S7 and Sz are nonempty sequences whose heads are transform-equivalent ex-
ecutable sequences and whose tails are stack equivalent. l.e., §; = @y .S;,
Se = Q2.855, Q1 ~qg Q2,and S} ~g 5.

(lastStack [3,add] Q; .S})

= (lastStack [add] 3.Q; .5))

= SAerror

= (lastStack [add,2,add] 1.Qz.S})
= (lastStack [1,add,2,add] Qg .S})

In all three cases,
(lastStack [1,add,2,add] S;) ~sa (lastStack [3,add] Sg)

so the transform equivalence of the sequences follows by definition of ~¢.

We emphasize that stacks can be equivalent without being identical. For
instance, given the result of the above example, it is easy to construct two stacks
that are stack equivalent but not identical:

[(1 add 2 add),5] ~g [(3 add), 5]

Intuitively, these stacks are equivalent because they cannot be distinguished by
any POSTFIX command sequence. Any such sequence must either ignore both
sequence elements (e.g., [pop]), attempt an illegal operation on both sequence
elements (e.g., [mul]), or execute both sequence elements on equivalent stacks (via
exec). But because the sequence elements are transform equivalent, executing
them cannot distinguish them.

96 Chapter 3 Operational Semantics

3.7.3 Transform Equivalence Implies Observational Equivalence

We wrap up the discussion of observational equivalence by showing that transform
equivalence of POSTFIX command sequences implies observational equivalence.
This result is useful because it is generally easier to show that two command
sequences are transform equivalent than to construct a proof based directly on
the definition of observational equivalence.

The fact that transform equivalence implies observational equivalence can be
explained informally as follows. Every POSTFIX program context has a top-level
command-sequence context with two parts: the commands performed before the
hole and the commands performed after the hole. The commands before the
hole transform the initial stack into Sp... Suppose the hole is filled by one of
two executable sequences, J; and ()2, that are transform equivalent. Then the
stacks Spostr and Spost2 that result from executing these sequences, respectively,
on Spr. must be stack equivalent. The commands performed after the hole must
transform Spyst; and Speste into stack-equivalent stacks Sppair and Sgpee. Since
behavior depends only on the equivalence class of the final stack, it is impossi-
ble to construct a context that distinguishes @; and (2. Therefore, they are
observationally equivalent.

We will need the following lemma for the formal argument:

Lemma 3.5 For any command-sequence context Q, Q; ~q Q2 implies

Q{Q:1} ~q Q{Q2}-

Proof of Lemma 3.5: We will employ the following properties of transform
equivalence, which are left as exercises for the reader:

Qr ~¢ Q7 and Q2 ~o Q) implies @Q; Q Qs ~o Q) Q Q) (3.10)
Q1 ~q Q2 implies [(Q1)] ~¢q [(Q2)] (3.11)

Property 3.11 is tricky to read; it says that if J; and @2 are transform equivalent,
then the singleton command sequences containing the exectuable sequences made
up of the commands of); and ()2 are also transform equivalent.

We proceed by structural induction on the grammar of the PostfixSequence-
Context domain (Figure 3.19 on page 91):

e (Base case) For sequence contexts of the form O, @; ~¢g Q2 trivially implies

0{Q:1} ~oO{Q2}.

3.7.3 Transform Equivalence Implies Observational Equivalence 97

e (Induction cases) For each of the compound sequence contexts — Q @QQ,
Q@ @, [(Q)] — assume that Q; ~q Q2 implies Q{Q;} ~qg Q{Q2} for any Q.
e For sequence contexts of the form @Q,
Q1 ~q Q2
implies Q{Q:} ~o Q{Q2} by assumption
implies QQ(Q{Q:}) ~o QQ@(Q{Q2}) by reflexivity of ~¢ and 3.10
implies (QQQ){Q:} ~o (QQQ){Q2} by definition of Q
e Sequence contexts of the form Q@ () are handled similarly to those of the
form Q @Q.

e For sequence contexts of the form [(Q)],

Q1 ~q Q2

implies Q{Q:} ~o Q{Q2} by assumption

implies [(Q{Q: D] ~o [(Q{Q2})] by 3.11

implies [(Q]{Q:} ~¢ [(@]{Q2} by definition of Q o

Now we are ready to present a formal proof that transform equivalence implies
observational equivalence.

Theorem 3.6 (PostFix Transform Equivalence)
Q1 ~q Q2 implies Q1 =obs Q2.

Proof of Theorem 3.6: Assume that @Q; ~qg (2. By the definition of
Q1 =ops Q2, we need to show that for any POSTFIX program context of the

form (postfix N, Q) and any integer numeral argument sequence N

beh et <(postfix N, Q{Q1}),N;ys> = behges ((postfix N, Q{QQ}),N;7gb>

Here we use beh 4.; (defined for a generic SOS on page 51) because we know that
PosTFIX has a deterministic behavior function.

By Lemma 3.5, Q; ~q @2 implies Q{Qs} ~g Q{Q2}. Let Sii; be a stack

consisting of the elements of N, ;. Then by the definition of ~¢, we have

(lastStack Q{Q;} Sinit) ~sa (lastStack Q{Q2} Sinit)

By the definition of lastStack and ~g4, there are two cases:

L A(Q{Q1}, Sint) = cfr and (Q{Qs}, Sinit) = cfz, where both cfi and cfs
are irreducible POSTFIX configurations with a nonempty command sequence
component. In this case, both executions are stuck, so

behger ((postfix N, Q{Q11}), Nypys)

= stuck
= behger ((postfix N Q{Q2}), Ny)

98 Chapter 3 Operational Semantics

2. (Q{Q]}, Sim’t> :*> <H, S]>, <Q{Q2}, Sim't> :*> <H, Sg), and S; ~g S». In this

case, there are two subcases:

(a) S; and S» are both nonempty stacks with the same integer numeral N
on top. In this subcase,
betht <(pOStle N Q{Ql}) args>
= (IntLit —Outcome N)
= behger ((postfix N, Q{Q:2}), args>

(b) S; and Sy either (1) are both the empty stack or (2) are both nonempty
stacks with executable sequences on top. In this subcase,

behdet <(pOStf1X N Q{QI}) args>
= stuck

= behger ((postfix N, Q{Qz2}), Njys) <&

Exercise 3.28 For each of the following purported observational equivalences, either
prove that the observational equivalence is valid (via transform equivalence), or give a
counterexample to show that it is not.

a. [N,pop] =ops []
b. [add, N, add] =.s [N, add, add]
c. [Ni, Nz, Al =obs [Nans], where Ngps = (calculate A N; Ng)

(@), (@), sel,exec] =,ps pop- @

Ni, (N2 (Qu) (Qp) sel exec), (N2 (Q.) (Qq) sel exec),sel,exec]
=obs [Nz, (N; (Q,) (Q.) sel exec),(N; (Qy) (Qg) sel exec),sel,exec]

g. [017 Cg,swap] =obs [027 Cz]

h. [swap, swap, swap] =,ps [swap]

[
[
[
d. [(@),exec] =ups Q
[
[

Exercise 3.29 Prove Lemmas 3.10 and 3.11, which are used to show that transform
equivalence implies operational equivalence.

Exercise 3.30 Transform equivalence (~¢) is defined in terms of lastStack, where
lastStack is defined on page 93. Below we consider two alternative definitions of lastStack.

lastStack; : CommandSeq — Stack — StackAnswer

(Stack —StackAnswer S') if (Q, S) = ([], S”)
(lastStack; @ S) = and S’ € FinalStack
SA error otherwise

lastStacks : CommandSeq — Stack — StackAnswer
(lastStacks Q S) = (Stack—StackAnswer S') if (@, S) = (Q’, §') A
(Recall that ¢f # means that configuration cf is irreducible.)

3.7.3 Transform Equivalence Implies Observational Equivalence 99

a. Give an example of two sequences that are transform equivalent using the original
definition of lastStack but not using lastStack; .

b. Show that property (3.10) does not hold if transform equivalence is defined using
lastStacks.
Exercise 3.31

a. Modify the POSTFIX semantics in Figure 3.3 so that the outcome of a POSTFIX
program whose final configuration has an executable sequence at the top is the token
executable.

b. In your modified semantics, show that transform equivalence still implies observational

equivalence.

Exercise 3.32 Prove the following composition theorem for observationally equivalent
PosTFix sequences:

Q1 =ops Q7 and Q2 =4ps Q5 implies Q1 Q@ Q2 =ops Q7 Q@ Q5
Exercise 3.33 Which of the following transformations on EL numerical expressions are
safe? Explain your answers. Be sure to consider stuck expressions like (/ 1 0).
a. (+12) 5me, 3
b. (+ 0 NE) 2, NE
c. (x 0 NE) 2
d. (+ 1 (+ 2 NE)) £“™2, (+ 3 NE)
e. (+ NE NE) 22, (x 2 NE)
(if (= N N) NE, NEj) 22 NE,
(if (= NE; NE;) NE, NE3) =2, NE,

=

g
h. (if BE NE NE) %2, NE

Exercise 3.34 Develop a notion of transform equivalence for EL that is powerful enough
to formally prove that the transformations in Exercise 3.33 that you think are safe are
really safe. You will need to design appropriate contexts for EL programs, numerical
expressions, and boolean expressions.

Exercise 3.35 Given that transform equivalence implies observational equivalence in
PosTFI1X, it is natural to wonder whether the converse is true. That is, does the following
implication hold?

Q1 =obs Q2 implies Q1~q Q2

If so, prove it; if not, explain why.

100 Chapter 3 Operational Semantics

Exercise 3.36 Consider the following 7p function, which translates an ELMM program
to a POSTFIX program:

Tp : Progpyu — Progp,spis
Tpﬂ(elmm NEbody)]] = (pOStfiX 0 TNgﬂNEbndy]])

Tne : NumExp — CommandSeq

Iye[N] = [N]

Tne[(A NE; NE)] = Tne[NE:] QTne[NE2] Q [Ta[A]]
T4 : ArithmeticOperator g 5, — ArithmeticOperatorp, g, p;,
Ta [[+]] = add

Ta[-] = sub, etc.

a. What is Tp[(elmm (/ (+ 25 75) (x (- 7 4) (+ 5 6)))]?

b. Intuitively, 7p maps an ELMM program to a POSTFIX program with the same
behavior. Develop a proof that formalizes this intuition. As part of your proof, show
that the following diagram commutes:

ELMM
Cervyv, =——> Crermm,

TNE TNE

PostFiz
CPostFixl > CPOSiFi:tQ

The nodes Cgrya, and Cgram, represent ELMM configurations, and the nodes
Cpostriz, and Cpostrig, represent POSTFIX configurations of the form introduced
in Exercise 3.12 on page 70. The horizontal arrows are transitions in the respective
systems, while the vertical arrows are applications of Zxre. It may help to think in
terms of a context-based semantics.

c. Extend the translator to translate (1) ELM programs and (2) EL programs. In each
case, prove that the program resulting from your translation has the same behavior
as the original program.

3.8 Extending PostFix

We close this chapter on operational semantics by illustrating that slight pertur-
bations to a language can have extensive repercussions for the properties of the
language.

You have probably noticed that POSTFIX has a very limited expressive power.
The fact that all programs terminate gives us a hint why. Any language in which
all programs terminate can’t be universal, because any universal language must
allow nonterminating computations to be expressed. Even if we don’t care about

3.8 Extending PosTFIX 101

universality (maybe we just want a good calculator language), POSTFIX suffers
from numerous drawbacks. For example, nget allows us to “name” numerals by
their position relative to the top of the stack, but these positions change as values
are pushed and popped, leading to programs that are challenging to read and
write. It would be preferable to give unchanging names to values. Furthermore,
nget accesses only numerals, and there are situations where we need to access
executable sequences and use them more than once.

We could address these problems by allowing executable sequences to be
copied from any position on the stack and by introducing a general way to name
any value; these extensions are explored in exercises. For now, we will consider
extending POSTFIX with a command that just copies the top value on a stack.
Since the top value might be an executable sequence, this at least gives us a way
to copy executable sequences — something we could not do before.

Consider a new command, dup, which duplicates the value at the top of the
stack. After execution of this command, the top two values of the stack will be
the same. The rewrite rule for dup is given below:

(dup.Q,V.S) = (Q,V.V.S) [dup]

As a simple example of using dup, consider the executable sequence (dup mul),
which behaves as a squaring subroutine:

(postfix 1 (dup mul) exec) 02, 14q
(postfix 2 (dup mul) dup 3 nget swap exec swap 4 nget swap exec add)
1512, 469

The introduction of dup clearly enhances the expressive power of PoST-
Fix. But adding this innocent little command has a tremendous consequence
for the language: it destroys the termination property! Consider the program
(postfix 0 (dup exec) dup exec). Executing this program on zero argu-
ments yields the following transition sequence:

(((dup exec) dup exec), [])

= ((dup exec), [(dup exec)])

= ((exec), [(dup exec), (dup exec)])
= ((dup exec), [(dup exec)])

Because the rewrite process returns to a previously visited configuration, it is
clear that the execution of this program never terminates.

It is not difficult to see why dup invalidates the termination proof from Sec-
tion 3.6. The problem is that dup can increase the energy of a configuration in

102 Chapter 3 Operational Semantics

the case where the top element of the stack is an executable sequence. Because
dup effectively creates new commands in this situation, the number of commands
executed can be unbounded.

It turns out that extending POSTFIX with dup not only invalidates the ter-
mination property, but also results in a language that is universal!® (See Exer-
cise 3.48 on page 112.) That is, any computable function can be expressed in
PosTF1x+{dup}.

This simple example underscores that minor changes to a language can have
major consequences. Without careful thought, it is never safe to assume that
adding or removing a simple feature or tweaking a rewrite rule will change a
language in only minor ways.

We conclude this chapter with numerous exercises that explore various exten-
sions to the POSTFIX language.

Exercise 3.37 Extend the POSTF1x SOS so that it handles the following commands:

pair: Let v; be the top value on the stack and ve be the next-to-top value. Pop both
values off the stack and push onto the stack a pair object (vg, v;).

fst: If the top stack value is a pair (vfst, Usna), then replace it with vy, (the first value
in the pair). Otherwise signal an error.

snd: If the top stack value is a pair (v, Usna), then replace it with vs,q (the second
value in the pair). Otherwise signal an error.

Exercise 3.38 Extend the PosTF1x SOS so that it handles the following commands:

get: Call the top stack value v;p4e; and the remaining stack values (from top down) vy,
Vg, ..., Upn. POP Vinges Off the stack. If vi,g4e, 18 a numeral ¢ such that 1 < i < n, push
v; onto the stack. Signal an error if the stack does not contain at least one value, if
Vindes 1S NOt a numeral, or if ¢ is not in the range [1..n]. (get is like nget except that
it can copy any value, not just a numeral.)

put: Call the top stack value v;,q4er, the next-to-top stack value w,q;, the remaining
stack values (from top down) v;, ve, ..., Up. POD Vinger and vy, off the stack. If
Uinder 1S @ numeral ¢ such that 1 <4 < n, change the slot holding v; on the stack to
hold v,4;. Signal an error if the stack does not contain at least two values, if v;4e, 1S
not a numeral, or if 4 is not in the range [1..n].

Exercise 3.39 Write the following programs in POSTF1X+{dup}. You may also use the
pair commands from Exercise 3.37 and/or the get/put commands from Exercise 3.38 in

9We are indebted to Carl Witty and Michael Frank for showing us that POSTFIX+{dup} is
universal.

3.8 Extending PosTFIX 103

your solution, but they are not necessary — for an extra challenge, program purely in
PoSTFIX+{dup}.

a. A program that takes a single argument (call it n) and returns the factorial of n.
The factorial function f of an integer is defined so that (f 0) = 1 and (f n) =

(nXme (f (n—1nel))) for n > 1.

b. A program that takes a single argument (call it n) and returns the nth Fibonacci
number. The Fibonacci function f of an integer is defined so that (f 0) = 0, (f 1)
=l,and (f n) = (f (n—r1ne 1)) +1me (f (n—1ae2))) for n > 2.

Exercise 3.40 Abby Stracksen wishes to extend POSTFIX with a simple means of iter-
ation. She suggests adding a command of the form (for N (@Q)). Abby describes the
behavior of her command with the following rewrite axioms:

((for N (Qfor)) . Qrest; S) [for-once]
= <N . Qfor @ [(fOI‘ Niee (Qfor))] @ Q'rcst, S>
where (Ngec = (calculate sub N 1)) A (compare gt N 0)

<(f°r N (Qfor)) . Qrest: S> = <QT€St7 S> [for—done]
where —(compare gt N 0)

Abby calls her extended language PosTLoOOP.

a. Give an informal specification of Abby’s for command that would be appropriate for
a reference manual.

b. Using Abby’s for semantics, what are the results of executing the following PoSsT-
LoopP programs when called on zero arguments?

i. (postloop 0 1 (for 5 (mul)))

ii. (postloop 0 1 (for 5 (2 mul)))

ili. (postloop 0 1 (for 5 (add mul)))

iv. (postloop 0 0 (for 17 (pop 2 add)))

V. (postloop 0 0 (for 6 (pop (for 7 (pop 1 add)))))

c. Extending PosTFIX with the for command does not change its termination prop-
erty. Show this by extending the termination proof described in Section 3.6.2 in the
following way:

i. Define the energy of the for command.

ii. Show that the transitions in the [for-once] and [for-done] rules decrease config-
uration energy.

d. Bud Lojack has developed a repeat command of the form (repeat N (@)) that is
similar to Abby’s for command. Bud defines the semantics of his command by the
following rewrite rules:

104 Chapter 3 Operational Semantics

((repeat N (Qrpt)) . Qrest; S) [repeat-once]
= <N . (repeat Ngec (Qrpt)) . Qrpt @ Qrest, S>
where (Nge. = (calculate sub N 1)) A (compare gt N 0)

((repeat N (Qrpt)) . Qrest, S) = (Qrest, S) [repeat-done]
where —(compare gt N 0)

Does Bud’s repeat command have the same behavior as Abby’s for command? That
is, does the following observational equivalence hold?

[(repeat N (Q))] =ops [(for N (Q))]

Justify your answer.

Exercise 3.41 Alyssa P. Hacker has created POSTSAFE, an extension to POSTFIX with
a new command called sdup: safe dup. The sdup command is a restricted form of dup
that does not violate the termination property of POSTFIX. The informal semantics for
sdup is as follows: if the top of the stack is a number or a command sequence that doesn’t
contain sdup, duplicate it; otherwise, signal an error.

As a new graduate student in Alyssa’s ARGH (Advanced Research Group for Hack-
ing), you are assigned to give an operational semantics for sdup, and a proof that all
POSTSAFE programs terminate. Alyssa set up several intermediate steps to make your
life easier.

a. Write the operational semantics rules that describe the behavior of sdup. Model the
errors through stuck states. You can use the auxiliary function

contains_sdup : CommandSeq — Bool

that takes a sequence of commands and checks whether it contains sdup or not.

b. Consider the product domain P = N x N (recall that N is the set of natural numbers,
starting with 0). On this domain, Alyssa defined the ordering <p as follows:

Definition 1 (lexicographic order) (ai,b1) <p {(az,be) iff (a1 <nat a2) V
(((Ll —Nat a2) A (bl < Nat bg))) Eg, <3,10000> <p <470> <p <4,6> <p <5,2>

Definition 2 A strictly decreasing chain in P is a series of elements py,po, ...
such that Vi .p; € P and Vi . pi+1 <p p;-

i. Consider a finite strictly decreasing chain (ay,b1), {as,bs),. .., {ag,br), where
(a;, b;) € P, such that k > by +1 (i.e., the chain has more than b; + 1 elements).
Prove that ap < a;.

ii. Show that there is no infinite strictly decreasing chain in P.

c. Prove that each POSTSAFE program terminates by defining an appropriate energy
function £Sconpg. Note: If you need to use some helper functions that are intuitively
easy to describe but tedious to define (e.g., contains_sdup), just give an informal
description of them.

3.8 Extending PosTFIX 105

Exercise 3.42 Sam Antics extends the POSTFIX language to allow programmers to
directly manipulate stacks as first-class values. He calls the resulting language STACKFIX.
STACKFIX adds three commands to POSTFIX:

package: This command packages a copy of the stack as a first-class value, S. It then
clears the stack, leaving S as the only value on the stack.

unpackage: This command pops the top of the stack, which must be a stack-value S,
and replaces the stack with an “unpackaged” version of S.

switch: This command pops the top of the stack, which must be a stack-value, S. Then
the rest of the stack is packaged (as if by the package command); this results in a
new stack-value, Syes:. Finally, the stack is completely replaced with an “unpackaged”
version of S, and the stack-value S, is pushed on top of the resulting stack. Thus,
switch effectively switches the roles of the stack-value on top of the stack and the
rest of the stack.

As a warm-up, Sam has written some simple STACKF1X programs. First-class stack
values may be returned as the final result of a program execution; in that case, the
outcome is the token stack-value, which hides the details of the stack value.

(stackfix 0 1 2 package) U, stack-value

(stackfix 0 1 2 package unpackage) b 2

1 2 package 3 switch) L error {top of stack not stack-value}

0

0
(stackfix 0 1 2 package 3 swap switch) U, stack-value
(stackfix 0

(stackfix 0 1 2 package 3 swap switch unpackage) U, 3

(stackfix

2 package 3 swap switch pop) U, 9

a. Write a definition of the Value domain for the STACKFIX language.
b. Give rewrite rules for the package, unpackage, and switch commands.

c. Does unpackage add new expressive power to STACKFIX, beyond that provided by
package and switch? If yes, argue why. If no, provide an equivalent sequence of
commands from PosTFIX+{package,switch}.

d. Does every STACKFIX program terminate? Give a short, intuitive description of your
reasoning.

Exercise 3.43 Rhea Storr introduces a new POSTFIX command called execs that per-
mits executing a sequence of commands while saving the old stack. She calls her extended
language POSTSAVE.

Rhea asks you to help her define rewrite rules for POSTSAVE that in several steps
move (execs. @, (Qezec) - S) to the configuration (@, V .S). This sequence of trans-
formations assumes that the configuration (Qegec, S) will eventually result in a final
configuration {([]command, V -5").

Here are some examples that contrast exec with execs:

106 Chapter 3 Operational Semantics

(postsave 0 1 2 (3 mul) exec add) U, 7
(postsave 0 1 2 (3 mul) execs add) O, g
(postsave 0 (1) execs) U,y

(postsave 0 2 3 (mul) execs add add) 11

To implement the SOS for POSTSAVE, Rhea modifies the configuration space:

cf € CF = Layer*
L € Layer = CommandSeq x Stack

Rhea’s rewrite rule for execs is:
(execs . @, (Qezec) - S) . L* = (Qezec, S).(Q, S).L" [execs]
Note that the entire stack is copied into the new layer!

a. If (@, S) ELIN (@', ') is a rewrite rule in POSTFIX, provide the corresponding rule
in POSTSAVE.

b. Provide the rule for an empty command sequence in the top layer.

c. Show that programs in POSTSAVE are no longer guaranteed to terminate by giving a
command sequence that is equivalent to dup.

Exercise 3.44 One of the chief limitations of the POSTFIX language is that there is
no way to name values. In this problem, we consider extending POSTFI1X with a simple
naming system. We will call the resulting language POSTTEXT.

The grammar for POSTTEXT is the same as that for POSTFIX except that there are
three new commands:

Cu=...| 1] def | ref

Here, I is an element of the syntactic domain Ident, which includes all alphabetic names
except for the POSTTEXT command names (pop, exec, def, etc.), which are treated as
reserved words of the language.

The model of the POSTTEXT language extends the model of POSTFIX by including
a current dictionary as well as a current stack. A dictionary is an object that maintains
bindings between names and values. The commands inherited from POSTFIX have no
effect on the dictionary. The informal behavior of the new commands is as follows:

I: I is a literal name that is similar to an immutable string literal in other languages.
Executing this command simply pushes I on the stack. The Value domain must be
extended to include identifiers in addition to numerals and executable sequences.

def: Let v; be the top stack value and vy be the next-to-top value. The def command
pops both values off the stack and updates the current dictionary to include a binding
between vo and v1. vy should be a name, but v; can be any value (including an
executable sequence or name literal). It is an error if v9 is not a name.

3.8 Extending PosTFIX 107

ref: The ref command pops the top element v,,4.m,e off of the stack, where v, 4 should
be a name. It looks up the value v,,; associated with v, gme in the current dictionary
and pushes v,,; on top of the stack. It is an error if there is no binding for v,gme in
the current dictionary or if v,4me iS not a name.

For example:
(posttext O average (add 2 div) def 3 7 average ref exec) O s

(posttext 0 a 3 def dbl (2 mul) def a ref

dbl ref exec 4 dbl ref exec add) 1L 14
(posttext 0 a b def a ref 7 def b ref) U, 7

(posttext 0 a 5 def a ref 7 def b ref) U, error {5 is not a name.}
(posttext O ¢ 4 def d ref 1 add) b error {d is unbound.}

In an SOS for POSTTEXT, the usual POSTFIX configuration space must be extended
to include a dictionary object as a new state component:

CF postTest = CommandSeq x Stack x Dictionary
a. Suppose that a dictionary is represented as a sequence of identifier /value pairs:
D € Dictionary = (Ident x Value)*

i Define the final configurations, input function, and output function for the Post-
TeXT SOS.

ii. Give the rewrite rules for the I, def, and ref commands.

b. Redo part a, assuming that dictionaries are instead represented as functions from iden-
tifiers to values, i.e., D € Dictionary = Ident — (Value 4+ {unbound}) where unbound is
a distinguished token indicating that an identifier is unbound in the dictionary.

You may find the following bind function helpful:

bind : Ident — Value — Dictionary — Dictionary
=)\I},md VD .)\Iref . if Ibind = Iref then V else (D Irsf) end

bind takes a name, a value, and a dictionary, and returns a new dictionary in which
there is a binding between the name and value in addition to the existing bindings.
(If the name was already bound in the given dictionary, the new binding effectively
replaces the old.)

Exercise 3.45 After several focus-group studies, Ben Bitdiddle has decided that POsT-
F1x needs a macro facility. Below is Ben’s sketch of the informal semantics of the facility
for his extended language, which he dubs PosTMAC.

Macros are specified at the beginning of a POSTMAC program, as follows:

(POStmaC Nnumargs ((Il V]) (In Vn)) Q)

Each macro (I; V;) creates a command, called I; € Ident, that, when executed, pushes
the value V; (which can be an integer numeral or an executable sequence) onto the

108 Chapter 3 Operational Semantics

stack. It is illegal to give macros the names of existing POSTFIX commands, or to use
an identifier more than once in a list of macros. The behavior of programs that do so is
undefined. Here are some examples Ben has come up with:

{

(postmac 0 ((inc (1 add))) (O inc exec inc exec)) - 2
(postmac 0 ((A 1) (B (2 mul))) (A B exec)) b 2

(postmac 0 ((A 1) (B (2 mul))) (A C exec)) L, error
{undefined macro C}

(postmac 0 ((A 1) (B (C mul)) (C 2)) (A B exec)) 4, 9
(postmac 0 ((A pop)) (1 A)) U, error
{1ll-formed program: macro bodies must be values, not commands}

Ben started writing an SOS for POSTMAC, but had to go make a presentation for
some venture capitalists. It is your job to complete the SOS.
Before leaving, Ben made the following changes/additions to the domain definitions:

P S PI'Og n= (postmac Nnumargs Mmac'ms Qbody) [Program]
M € MacroList ::= (Ident Value)*
C € Command := ... | I [Macro Reference]

cf € CF postmac = CommandSeq x Stack x MacroList

He also introduced an auxiliary partial function, lookup, with the following signature:
lookup : (Ident x MacroList) — Value

If lookup is given an identifier and a macro list, it returns the value that the identifier is
bound to in the macro list. If there is no such value, lookup gets stuck.

a. Ben’s notes begin the SOS rewrite rules for POSTMAC as follows:

(Q,5) = (Q,5)
(Q,8, M) =% (Q', 8, M)

[POSTFIX commands]

where £ is the original transition relation for POSTFIX and L2 s the new tran-
sition relation for PosTMAc. Complete the SOS for PosTMAcC. Your completed
SOS should handle the first four of Ben’s examples. Don’t worry about ill-formed
programs. Model errors as stuck states.

b. Louis Reasoner finds out that your SOS handles macros that depend on other macros.
He wants to launch a new advertising campaign with the slogan: “Guaranteed to ter-
minate: POSTFIX with mutually recursive macros!” Show that Louis’s new campaign
is a bad idea by writing a nonterminating program in PosTMAcC.

¢. When Ben returns from his presentation, he finds out that you’ve written a nonter-
minating program in PosTMAcC. He decides to restrict the language so that non-
terminating programs are no longer possible. Ben’s restriction is that the body (or
value) of a macro cannot use any macros. Ben wants you to prove that this restricted
language terminates.

3.8 Extending PosTFIX 109

i Extend the POSTFIX energy function so that it assigns an energy to configura-
tions that include macros. Fill in the blanks in Ben’s definitions of the functions
Ecom[I, M], Eseq[Q, M] and Egqcx[S, M] and use these functions to define the
configuration energy function Econfsg[(Q, S, M)].

Econ[(Q), M] = Bu[Q, M]
Ecom[C,M] = 1 (C is not an identifier or
an executable sequence)
Ecom[l,M] =
Eseq[[lcommana, M] = 0
Eso[C.Q, M] =
Estack[[Ivalue, M] = 0

EstackHV.S,M]] =
Econﬁgﬂ<Q7 S, M)ﬂ =

ii. Use the extended energy function (for the restricted form of POSTMAC) to
show that executing a macro decreases the energy of a configuration. Since
it is possible to show that all the other commands decrease the energy of a
configuration (by adapting the termination proof for PostFix without macros),
this will show that the restricted form of POSTMAC terminates.

Exercise 3.46 Dinah McScoop, a Lisp hacker, is unsatisfied with POSTTEXT, the name-
binding extension of POSTFIX introduced in Exercise 3.44. She claims that there is
a better way to add name binding to POSTFIX, and creates a brand-new language,
PosTLIsP, to test out her ideas.

The grammar for POSTLISP is the same as that for POSTFIX except that there are
four new commands:

C == ...] I | bind | unbind | lookup

Here, I is an element of the syntactic domain Ident, which includes all alphabetic names
except for the POSTLISP command names (pop, exec, bind, etc.), which are treated as
reserved words of the language.

The model of the POSTLISP language extends the model of POSTFIX by including
a name stack for each name. A name stack is a stack of values associated with a name
that can be manipulated with the bind, unbind, and lookup commands as described
below. The commands inherited from POSTFIX have no effect on the name stacks. The
informal behavior of the new commands is as follows:

I: 1 is a literal name that is similar to an immutable string literal in other languages.
Executing this command simply pushes I onto the stack. The Value domain is ex-
tended to include names in addition to numerals and executable sequences.

bind: Let v1 be the top stack value and vy be the next-to-top value. The bind command
pops both values off the stack and pushes v; onto the name stack associated with wvs.
Thus vy is required to be a name, but v; can be any value (including an executable
sequence or name literal). It is an error if v is not a name.

110 Chapter 3 Operational Semantics

lookup: The command lookup pops the top element v, g, off the stack, where v,qme
should be a name. If v,y is the value at the top of the name stack associated with
Uname, then v,q; is pushed onto the stack. (v, is not popped off the name stack.) It
is an error if the name stack of vy,4me is empty, or if v,4me is NOt a name.

unbind: The command unbind pops the top element v,4me off the stack, where v,ame
should be a name. It then pops the top value off the name stack associated with
Uname- 1t 1s an error if the name stack of v,qme is empty, or if v,4me is not a name.

Initially each name is associated with the empty name stack. Here are some PosSTLISP
examples:

(postlisp O a 3 bind a lookup) 0,3

(postlisp O a 8 bind a lookup a lookup add) 1, 16

(postlisp O a 4 bind a 9 bind a lookup a unbind a lookup add) U, 13

(postlisp O 19 a bind a lookup) b error {19 is not a name.}

(postlisp O average (add 2 div) bind 3 7 average lookup exec) Us

(postlisp O a b bind a lookup 23 bind b lookup) U, 23

(postlisp O ¢ 4 bind d lookup 1 add) 1l error {d name stack is empty.}
0

(postlisp 0 b unbind) b error {b name stack is empty}

In an SOS for PosTLisP, the usual POSTFIX configuration space must be extended
to include the name stacks as a new state component. Name stacks are bundled up into
an object called a name file.

CF postrisp = CommandSeq x Stack x NameFile
F € NameFile = Name — Stack

A NameFile is a function mapping a name to the stack of values bound to the name. If
F is a name file, then (F I) is the stack associated with I in F'. The notation F[I = S]
denotes a name file that is identical to F' except that I is mapped to S.

a. Define the final configurations, input function, and output function for the PosTLisp
SOS.

b. Give the rewrite rules for the I, bind, unbind, and lookup commands.

Exercise 3.47 Abby Stracksen is bored with vanilla POSTFIX (it’s not even universall)
and decides to add a new feature, which she calls the heap. A heap maps locations to
elements from the Value domain, where locations are simply integer numerals:

Location = IntLit

Note that a location can be any integer numeral, including a negative one. Furthermore,
integer numerals and locations can be used interchangeably in Abby’s language, very
much like pointers in pre-ANSI C.

Abby christens her new language POSTHEAP. The grammar for POSTHEAP is the
same as that for POSTFIX except that there are three new commands:

C = ... | allocate | store | access

3.8 Extending PosTFIX 111

The commands inherited from POSTFIX have no effect on the heap. The informal
behavior of the new commands is as follows:

allocate: Executing this command pushes onto the stack a location that is not used
in the heap.

store: Let vy be the top stack value and vy be the next-to-top value. The store
command pops v off the stack and writes it into the heap at location vo. Thus v
can be any element from the Value domain and vy has to be an IntLit. It is an error
if vy is not an IntLit. Note that vy remains on the stack.

access: Let vy be the top stack value. The access command reads from the heap at
location v; and pushes the result onto the stack. Thus v; has to be an IntLit. It is
an error if vy is not an Intlit or if the heap at location v; has not been written with
store before. Note that v; remains on the stack.

For example:

(postheap 0 allocate) b N {implementation dependent}

(postheap 0 allocate 5 store access) 0,5
allocate 5 store 4 swap access swap pop add) U, 9

4 5 store) 0, 4

(postheap
(postheap
(postheap 0 access) 1 error {no location given}

allocate access) 1 error {location has not been written}

5 store) L error {no location given}

0
0
0
0

(postheap O 4 5 store access) 0, 5
0
(postheap 0
0

(postheap
After sketching this initial description of the heap, Abby asks you to flesh out her
initial draft.
a. Give the definition of the Heap domain and the configuration domain CF'.

b. Let access-from-heap be a partial function that, given a Location and a Heap in which
Location has been bound, returns an element from the Value domain. In other words,
access-from-heap has the following signature and definition:

access-from-heap : Location — Heap — Value

(access-from-heap N (N, V). H) = V

(access-from-heap N; (N3, V). H) = (access-from-heap N; H), where N; # Ny
Give the rewrite rules for the allocate, store, and access commands. You may use
access-from-heap.

c. Is POSTHEAP a universal programming language? Explain your answer.

d. Abby is concerned about security because POSTHEAP treats integer numerals and
locations interchangeably. Since her programs don’t use this “feature,” she decides
to restrict the language by disallowing pointer arithmetic. She wants to use tags

112 Chapter 3 Operational Semantics

to distinguish locations from integer numerals. Abby redefines the Value domain as
follows:

V € Value = (IntLit x Tag) + CommandSeq
Tag = {integer, pointer}

Informally, integer numerals and locations are represented as pairs on the stack: in-
teger numerals are paired with the integer tag, while locations are paired with the
pointer tag.

Give the revised rewrite rules for integer numerals, add, allocate, store, and access.

Exercise 3.48 Prove that POSTFIX+{dup} is universal. This can be done by showing
how to translate any Turing machine program into a POSTFIX+{dup} program. Assume
that integer numerals may be arbitrarily large in magnitude.

Notes

Early approaches to operational semantics defined the semantics of programming
languages by translating them to standard abstract machines. Landin’s SECD
machine [Lan64] is a classic example of such an abstract machine. Plotkin [Plo75]
used it to study the semantics of the lambda calculus. Along the way, Plotkin
developed a notion of observational equivalence that he called both “operational
equality” and “contextual equality.”

Later, Plotkin introduced structural operational semantics [Plo81] as a more
direct approach to specifying an operational semantics. The context-based ap-
proach to specifying transition relations for small-step operational semantics was
invented by Felleisen and Friedman in [FF86] and explored in a series of papers
culminating in [FH92| that explored state and control features of programming
languages. There is a forthcoming textbook [FFF] based on this material that
covers both expression-based models and machine-based models of program exe-
cution.

Big-step (natural) semantics was introduced by Kahn in [Kah87].

A concise overview of various approaches to semantics, including several forms
of operational semantics, can be found in the first chapter of [Gun92]. The
early chapters of [Win93| present an introduction to operational semantics in the
context of a simple imperative language.

Many forms of operational semantics are examples of term rewriting systems
[DJ90, BN98|. Properties like termination and confluence are key objects of study
in these systems. Graph rewriting systems [Cou90] extend term rewriting systems
by modeling sharing.

For a discussion of universal languages and the halting problem, consult a
theory of computation text, such as [Sip06].

4

Denotational Semantics

First learn the meaning of what you say, and then speak.

— Epictetus

4.1 The Denotational Semantics Game

We have seen how an operational semantics is a natural tool for evaluating pro-
grams and proving properties like termination. However, it is less than ideal
for many purposes. A framework based on transitions between configurations of
an abstract machine is usually better suited for reasoning about complete pro-
grams than program fragments. In POSTF1X, for instance, we had to extend the
operational semantics with elaborate notions of observational equivalence and
transform equivalence in order to effectively demonstrate the interchangeability
of command sequences. Additionally, the emphasis on syntactic entities in an
operational semantics can complicate reasoning. For example, in a version of
PostFix that allows executable sequences as answers, syntactically distinct ex-
ecutable sequence answers in POSTFIX must be treated as the same observable
value in order to support a nontrivial notion of observational equivalence for com-
mand sequences. Finally, the step-by-step nature of an operational semantics can
suggest notions of time and dependency that are not essential to the language
being defined. For example, an operational semantics for the expression language
EL might specify that the left operand of a binary operator is evaluated before
the right even though this order may be impossible to detect in practice.

An alternative framework for reasoning about programs is suggested by the
notion of transform equivalence developed for POSTF1X. According to this notion,
each PosSTFIX command sequence is associated with a stack transform that
describes how the sequence maps an input stack to an output stack. It is natural
to view these stack transforms as functions. For example, the stack transform

114 Chapter 4 Denotational Semantics

associated with the command sequence [3,add] would be an add3 function with
the following graph:!

{(errorStack, errorStack), ([],errorStack), ...,

(
([=1],[2), ([0}, 3), ([1],[4]), ...,

([add3], errorStack), ([mul2], errorStack), ...,
(

[5, 23], 18, 23]), ([6, mul2, 17, add3],[8, mul2, 17, add3]), ...}

Here, errorStack stands for a distinguished error stack analogous to SAepor in
the extended PosTFix SOS. Stack elements that are executable sequences are
represented by their stack transforms (e.g., add3 and mul2) rather than by some
syntactic phrase.

Associating stack transform functions with command sequences has several
benefits. First, this perspective directly supports a notion of equivalence for pro-
gram phrases. For example, the add3 function is the stack transform associated
with the sequence [1,add, 2,add] as well as the sequence [3,add]. This implies
that the two sequences are behaviorally indistinguishable and can be safely in-
terchanged in any POSTFIX context. The fact that stack elements that are ex-
ecutable sequences are represented by functions rather than syntactic entities
greatly simplifies this kind of reasoning.

The other major benefit of this approach is that the stack transform associ-
ated with the concatenation of two sequences is easily composed from the stack
transforms of the component sequences. For example, suppose that the sequence
[2,mul] is modeled by the mul2 function, whose graph is:

{(errorStack, errorStack), ([],errorStack), ...,

(

([=1],[=2]), ([0}, [0]), ([1,[2]), .-
([add3], errorStack), ([mul2], errorStack), ...,
(

5, 23], [10, 23], ([5, mul2, 17, add3],[10, mul2, 17, add3]), ...}

Then the stack transform of [3,add,2,mul] = [3,add] @[2,mul] is simply the
function mul2 o add3, whose graph is:

{(errorStack, errorStack), ([],errorStack), ...,

(

([=1],[4D), ([0],[6]), ([1],[8), -,

([add3], errorStack), ([mul2], errorStack), ...,
(

[5, 23],[16, 23]), ([b, mul2, 17, add3],[16, mul2, 17, add3]), ... }

Similarly the stack transform of [2,mul, 3,add] = [2,mul] @ [3, add] is the function
add3 o mul2, whose graph is:

'Here, and for the rest of this chapter, we rely heavily on the metalanguage concepts and
notations described in Appendix A. Consult this appendix as necessary to unravel the formalism.

4.1 The Denotational Semantics Game 115

{(errorStack, errorStack), ([],errorStack), ...,

(
([=1],01]), (0], [3), (AL, [5]) -+,

([add3], errorStack), ([mul2], errorStack), ...,
(

5, 23],[13, 23]), ([5, mul2, 17, add3],[13, mul2, 17, add3]), ...}

The notion that the meaning of a program phrase can be determined from the
meaning of its parts is the essence of a framework called denotational seman-
tics. A denotational semantics determines the meaning of a phrase in a composi-
tional way based on its static structure rather than on some sort of dynamically
changing configuration. Unlike an operational semantics, a denotational seman-
tics emphasizes what the meaning of a phrase is, not how the phrase is evaluated.
The name “denotational semantics” is derived from its focus on the mathematical
values that phrases “denote.”

The basic structure of the denotational framework is illustrated in Figure 4.1.
A denotational semantics consists of three parts:

1. A syntactic algebra that describes the abstract syntax of the language under
study. This can be specified by the s-expression grammar approach introduced
in Chapter 2.

2. A semantic algebra that models the meaning of program phrases. A seman-
tic algebra consists of a collection of semantic domains along with functions
that manipulate these domains. The meaning of a program may be something
as simple as an element of a primitive semantic domain like Int, the domain of
integers. More typically, the meaning of a program is an element of a function
domain that maps context domains to an answer domain, where

e Context domains are the denotational analogue of state components in an
SOS configuration. They model such entities as name/value associations,
the current contents of memory, and control information.

e An answer domain represents the possible meanings of programs. In addi-
tion to a component that models what we normally think of as the result
of a program phrase, the answer domain may also include components that
model context information that was transformed by the program.

3. A meaning function that maps elements of the syntactic algebra (i.e., nodes
in the abstract syntax trees) to their meanings in the semantic algebra. Each
phrase is said to denote its image under the meaning function. In practice, the
meaning function is specified by a collection of so-called valuation functions,
one for each syntactic domain defined by the abstract syntax for the language.

Not any function can serve as a meaning function; the function must be a
homomorphism between the syntactic algebra and the semantic algebra.

116 Chapter 4 Denotational Semantics

> (Mp)(Mg) (M)

K H
H s,
g - L3

N -,
| Ma)

Syntactic Meaning Semantic
Algebra Function Algebra
(Homomor phism)

Figure 4.1 The denotational semantics “game board.”

This is just the technical condition that constrains the meaning of an abstract
syntax tree node to be determined from the meaning of its subnodes. It can
be stated more formally as follows:

Suppose M is a meaning function and ¢ is a node in an abstract syntax
tree, with children ¢1, ..., f;x. Then
(M t) must equal (fy (M t1) ... (M tg))

where f; is a function that is determined by the syntactic class of t.

The reason to restrict meaning functions to homomorphisms is that their
structure-preserving behavior greatly simplifies reasoning. This design choice
accounts for a property of denotational semantics we call compositionality
that is summarized by the motto “the meaning of the whole is composed out
of the meaning of the parts.” A key consequence of compositionality is that the
meaning of a program remains the same when one of its phrases is replaced by
another phrase with the same meaning.

Compositionality also facilitates the implementation of programming lan-
guages. The core syntactic processing procedures of interpreters and translators
based on denotational semantics have a natural recursive structure that mimics
the recursive structure of the valuation functions and the abstract syntax trees
they manipulate. For example, parser generators like Yacc [Joh75] allow grammar
descriptions to specify semantic actions that are performed when an abstract
syntax tree node is recognized during the parsing of a program. Typically, these

4.2 A Denotational Semantics for EL 117

actions are used to construct a data structure representing the abstract syntax
tree, but the compositional nature of denotational semantics enables using se-
mantic actions to directly define interpreters and translators for the language
being parsed. So denotational semantics has practical applications as well as
theoretical ones.

4.2 A Denotational Semantics for EL

As our first example, we will develop a denotational semantics for the EL expres-
sion language. We begin with a pared-down version of the language and show
how the semantics changes when we add features to yield full EL.

4.2.1 Step 1: Restricted ELMM

Recall that ELMM (Figure 3.6, page 63) is a simple expression language in which
programs are just expressions, and expressions are trees of binary operations using
the operators (+, -, *, /, %) whose leaves are integer numerals. For the moment,
let’s ignore the / and % operations, because removing the possibility of divide-
by-zero and remainder-by-zero errors simplifies the semantics. We shall use the
name restricted ELMM to refer to the version of ELMM without / and %.

In restricted ELMM, the meaning of each numeral, expression, and program
is an integer. This meaning is formalized in Figure 4.2, which presents a deno-
tational semantics for restricted ELMM. The syntactic algebra is defined as a
restricted version of the s-expression grammar for EL from Figure 2.4 on page 25.
The semantic algebra consists of a single semantic domain (the domain Int of in-
tegers) and some operations (+jnt, —ms; Xme) on this domain. The meaning
function of an ELMM program is specified by a collection of valuation functions,
one for each syntactic domain in the s-expression grammar. For each syntactic
domain, the name of the associated valuation function is usually a script version
of the metavariable that ranges over that domain. For example, P is the valu-
ation function for P € Prog, N€ is the valuation function for NE € NumExp,
and so on.

The signature of P, Prog — Int, indicates that the meaning of a restricted
ELMM program is an integer. The restricted ELMM language is so simple
that it has only an answer domain (Int) and no context domains (these notions
were introduced on page 115). The meaning P[(elmm NFEp,q,)] of an ELMM
program (elmm NFEp,q,) is simply the integer NE[NE.qy] denoted by its body
expression NEpy,q,. Since an ELMM numerical expression may be either an
integer numeral or an arithmetic operation, the definition of AN’ has a clause

118 Chapter 4 Denotational Semantics

Syntactic Algebra

The syntactic algebra for restricted ELMM is a version of the s-expression grammar
for EL from Figure 2.4 on page 25 in which ArithmeticOperator contains only +,
-, and *, and in which the only productions for NF are the ones with phrase types
IntVal and ArithmeticOperation.

Semantic Algebra
ient={.., -2, —-1,0,1,2, ...}

Operations on Int: +rmt, —int, Xnt

Valuation Functions
P : Prog — Int

P[[(elmm NEbody)]] = NgIINEbody]]

NE : NumExp — Int
NE[N] = N[N]
NE[(A NE; NEp)] = (A[A] NE[NE ;] NE[NE,])

A : ArithmeticOperator — (Int — Int — Int)

A[["'H = 4+t
AH_H = —Int
AH*H = Xnt

N : IntLit — Int

N maps integer numerals to the integer numbers they denote.

Figure 4.2 Denotational semantics for a version of ELMM without / and %.

for each of these two cases. In the integer numeral case, the N/ function maps
the syntactic representation of an integer numeral into a mathematical integer.
We will treat integer numerals as atomic entities, but their meaning could be
determined in a denotational fashion from their component signs and digits (see
Exercise 4.1). In the arithmetic operation case, the A function maps the operator
name (one of +, = and *) into a binary integer function with signature Int —
Int — Int that determines the meaning of the operation from the meanings of
the operands. As explained on page 36, in applications of a function to a first
argument delimited by double square brackets, we assume that the function binds
tightly with the argument. So (A[A] NE[NE ;] NE[NE;]) is parsed as if it were
written (A[A] (NE[NE]) (NE[NEz])).

Figure 4.3 illustrates how the denotational semantics for the restricted version
of ELMM can be used to determine the meaning of the sample ELMM program
(elmm (* (+ 1 2) (- 9 5))). Because P maps programs to their meanings,

4.2.1 Step 1: Restricted ELMM 119

PlCelmm (x (+ 1 2) (- 9 5)N]

= NE[(x (+ 1 2) (- 9 5))], by definition of P

= (A[*] NE[(+ 1 2)] NE[(- 9 B)]), by definition of N'E€ on arithmetic operations
NE[(+ 1)] X NE[(= 9 B)], by definition of A

(A[+] NE[L] NE[2]) x e (A[-] NE[O] NE[S]),

by definition of A€ on arithmetic operations

(1 41t 2) Xt (9 — 1t 5), by definition of N'E on integer literals and of A

= 3 X nt 4, by definitions of +p,; and — ¢

= 12, by definition of X j,;

Figure 4.3 Meaning of a sample program in restricted ELMM.

Pl(elmm (* (+ 1 2) (= 9 5)))] is the meaning of this program. However,
this fact is not very useful as stated, because the element of Int denoted by the
program is not immediately apparent from the form of the metalanguage ex-
pression P[(elmm (* (+ 1 2) (- 9 5)))]. We would like to massage the met-
alanguage expression for the meaning of a program into another metalanguage
expression more recognizable as an element of the answer domain. We do this
by using equational reasoning to simplify the metalanguage expression. That
is, we are allowed to make any simplifications that are permitted by usual math-
ematical reasoning about the entities denoted by the metalanguage expressions.
Equational reasoning allows such manipulations as:

e substituting equals for equals;
e applying functions to arguments;

e equating two function-denoting expressions when, for each argument, they map
that argument to the same result (this is called extensionality).

Instances of equational reasoning are organized into equational proofs that
contain a series of equalities. Figure 4.3 presents an equational proof that the
metalanguage expression P[(elmm (¥ (+ 1 2) (- 9 5)))] is equal to the inte-
ger 12. Each equality in the proof is justified by familiar mathematical rules. For
example, the equality

NE[(x (+12) (-9 5] = (A[¥] NE[+ 1 2)] NE[(- 9 B])

is justified by the arithmetic operation clause in the definition of N'&, while the
equality
(1 + it 2) X Int (9 —Int 5) =3 X Int 4

120 Chapter 4 Denotational Semantics

is justified by algebraic rules for manipulating integers. As we explained in Sec-
tion A.2.5, for applications of standard numerical and logical functions, we often
use infix notations like (1 47t 2) Xt (9 —nt 5) instead of prefix notations like
(Xt (+me 1 2) (—me 9 5)) because the former are more familiar. We empha-
size that every line in Figure 4.3 denotes exactly the same integer. The whole
purpose of the equational proof is to simplify the original expression into another
metalanguage expression whose form more directly expresses the meaning of the
program.

4.2.2 Step 2: Full ELMM

What happens to the denotational semantics for ELMM if we add back in the
/ and % operators? We now have to worry about the meaning of expressions
like (/ 1 0) and (% 2 0). We will model the meaning of such expressions by
the distinguished token error. Since ELMM programs, numerical expressions,
and arithmetic operators can now return errors in addition to integers, we repre-
sent their meanings using elements of an Answer domain that is a sum domain
(Section A.3.4) including both of these kinds of entities (Figure 4.4).

We must also change the valuation functions P, NE, and A accordingly.
The integer numeral clause for N'E€ now needs the injection Int — Answer. The
arithmetic operation clause for '€ must now propagate any errors found in the
operands. This is done using the pattern-matching capabilities of the metalan-
guage construct match, which is defined in Section A.4. The expression

match (NVE[NE], NE[NE])
> ((Int —Answer i;), (Int —Answer ig)) | (A[4] i1 i2)
> else (Error — Answer error) end

can be read as

If the pair of answers (NE[NE], NE[NE2]) can be created via the expres-
sion ((Int —Answer i), (Int —Answer ig)) by substituting particular integers
for 7; and 42, then return the integer answer that results from substituting
the same integers for i; and iz in the expression (A[A] i; i2). Otherwise,
return the error answer (Error — Answer error).

The A clauses for / and % handle specially the case where the second operand
is zero, and Int — Answer injections must be used in the “regular” cases for all
operators.

In full ELMM, the sample program (elmm (* (+ 1 2) (- 9 5))) has the
meaning (Int — Answer 12). Figure 4.5 presents an equational proof of this fact.
All the pattern-matching clauses appearing in the proof are there to handle the
propagation of errors.

4.2.2 Step 2: Full ELMM 121

Semantic Algebra

ielnt={.., -2, —1,0, 1,2, ...}
Error = {error}

a € Answer = Int + Error

Operations on Int: +ut, —nt; X nts ~ It (integer quotient), %r,; (remainder)
Valuation Functions

P : Prog — Answer

Pl(elmm NE)] = NE[NE]

NE : NumExp — Answer
NE[N] = (Int—Answer NNJ])

> ((Int —Answer i;), (Int —Answer iz)) | (A[A] 41 i2)
> else (Error — Answer error) end

A : ArithmeticOperator — (Int — Int — Answer)
A[+] = Nigig . (Int—Answer (iy +1nt i2))
- and * are handled similarly.
A[/] = Nigig. ifiz =0

then (Error— Answer error)

else (Int—Answer (i; +pn i2)) end
% is handled similarly.
N : IntLit — Int

N maps integer numerals to the integer numbers they denote.

Figure 4.4 Denotational semantics for full ELMM (including / and %).

The sample program has no errors, but we could introduce one by replacing
the subexpression (- 9 5) by (/ 9 0). Then the part of the proof beginning

= match ((A[+] 1 2),(A[-] 9 5)) ...
would become:

= match ((A[+] 1 2),(A[/] 9 0))
> ((Int —Answer i;), (Int —Answer iz)) | (A[*] 41 i2)
> else (Error —Answer error) end
= match ((Int —Answer (1 -+ 2)), (Error —Answer error))
> ((Int —Answer i;), (Int —Answer ig)) | (A[*] i1 i2)
> else (Error — Answer error) end

= (BError—Answer error)

122 Chapter 4 Denotational Semantics

The final equality is justified by the fact that there is no integer is for which
(Int —Answer ig) matches (Error— Answer error) in the second component of the
pair of answers that is the discriminant of the match expression.

Expressing error propagation via explicit pattern matching makes the equa-
tional proof in Figure 4.5 rather messy. As in programming, in denotational
semantics it is good practice to create abstractions that capture common pat-
terns of behavior and hide messy details. This can improve the clarity of the
definitions and proofs while at the same time making them more compact.

We illustrate this kind of abstraction by extending the semantic algebra
to include the following higher-order function for simplifying error handling in
ELMM:

with-int : Answer — (Int — Answer) — Answer
= Aaf . match «

> (Int —Answer i) | (f)

> else (Error — Answer error) end

with-int takes an answer o and a function f from integers to answers and returns
an answer. It automatically propagates errors, in the sense that it maps an input
error answer to an output error answer. The function f specifies what is done
for inputs that are integer answers. Thus, with-int hides details of error handling
and extracting integers from integer answers.

A metalanguage expression of the form (with-int a (\i. E)) serves as a kind
of binding construct, i.e., a construct that introduces a name (in this case, i) for
a value (in this case, the integer supplied to the injection function Int — Answer
to create a). One way to read (with-int a (\i.FE)) is:

If a can be expressed as (Int — Answer i) for a particular integer i, return
the value of the expression that results from substituting this integer for
every occurrence of 7 in F. Otherwise, a must be an error, in which case
an error should be returned.

For example, the expression (with-int (Int—Answer 3) (Ai. (i X 1))) is equiv-
alent to 3 X,y 3 = 9, while (with-int (Error— Answer error) (Ai. (i X 1))) is
equivalent to (Error — Answer error). The following equalities involving with-int
are useful:
(with-int (Int—Answer i) f) = (f) (4.1)
(with-int NE[N] f) = (f N[N])

(with-int (Error — Answer error) f) = (Error»—Answer error) (4.3)

4.2.2 Step 2: Full ELMM 123

PlCelmn (x (+ 1 2) (- 9 5)))]

NE[(x (+ 1 2) (- 9 5))], by definition of P
match (NE[(+ 1 2)],NE[(- 9 B)])
> ((Int —Answer 1i;), (Int —Answer i2)) | (A[*] i; i2)
> else (Error—Answer error) end , by definition of N'€ on arithmetic operations
match (match (VE[1], NE[2])
> ((Int —Answer i), (Int —Answer 1)) | (A[+] is iy)
> else (Error — Answer error) end ,
match (VE[9], NE[5])
> ((Int —Answer i5), (Int —Answer ig)) | (A[-] i5 i6)
> else (Error — Answer error) end)
> ((Int —Answer iy), (Int —Answer iz2)) | (A[*] i1 i2)
> else (Error —Answer error) end , by definition of N'€ on arithmetic operations
match (match ((Int —Answer 1), (Int—Answer 2))
> ((Int —Answer ig), (Int —Answer iy)) | (A[+] is i)
> else (Error — Answer error) end ,
match ((Int —Answer 9), (Int — Answer 5))
> ((Int —Answer i5), (Int —Answer is)) | (A[-] i5 i6)
> else (Error — Answer error) end)
> ((Int —Answer i;), (Int —Answer i2)) | (A[*] i; i2)
> else (Error»—Answer error) end , by definition of N€ on integer literals
match ((A[+] 1 2),(A[-] 9 5))
> ((Int —Answer iy), (Int —Answer iz)) | (A[*] i1 i2)
> else (Error— Answer error) end , by pattern matching of match
match ((Int—Answer (1 +mt 2)), (Int —Answer (9 —n: 5)))
> ((Int —Answer 1i;), (Int —Answer i2)) | (A[*] i; i2)
> else (Error — Answer error) end , by definition of A
match ((Int —Answer 3), (Int —Answer 4))
> ((Int—Answer iy), (Int —Answer iz2)) | (A[*] i1 i2)
> else (Error — Answer error) end , by definitions of +,; and —
(A[*] 3 4), by pattern matching of match
(Int—Answer (3 Xt 4)), by definition of A4

(Int—Answer 12), by definition of X

Figure 4.5 Meaning of a sample program in full ELMM.

Using with-int, the N'E valuation clause for arithmetic expressions can be

redefined as:

NE[(A NE; NEJ)]
= with-int NE[NE;] (Nij . (with-int NE[NEo] (Mg . (A[A] 47 i2))))

124 Chapter 4 Denotational Semantics

With this modified definition and the above with-int equalities, details of er-
ror propagation can be hidden in equational proofs for ELMM meanings (see
Figure 4.6).

One of the powers of lambda notation is that it supports the invention of
new binding constructs like with-int via higher-order functions without requiring
any new syntactic extensions to the metalanguage. We will make extensive use
of this power to simplify our future denotational definitions. Later we will see
how this idea appears in practical programming in monadic style (Section 8.3),
continuation-passing style (Sections 9.2 and 17.9), and pattern matching (Sec-
tion 10.5).

4.2.3 Step 3: ELM

The ELM language (Exercise 3.10 on page 67) is obtained from ELMM by
adding indexed input via the expression (arg Nijuger), where Ny,g4.. specifies
the index (starting at 1) of a program argument. The form of a program is
(elm Npumargs NEpody), Where Npymargs indicates the number of integer argu-
ments expected by the program when it is executed.

Intuitively, the meaning of ELM programs and numerical expressions must
now be extended to include the program arguments. In Figure 4.7, this is ex-
pressed by modeling the meaning of programs and expressions as functions with
signature Int* — Answer that map the context domain Int* (a sequence of inte-
gers representing the program arguments) to the answer domain Answer (either
an integer or an error). The program argument sequence ¢* must be “passed
down” the syntax tree to the body of a program and the operands of an arith-
metic operation so that they can eventually be referenced in an arg expression at
a leaf of the syntax tree. The valuation function for an ELM program must check
that the number of supplied arguments matches the expected number of argu-
ments N [[Nmma,ngs]], and the valuation function for an arg expression must check
that the index N[Njngez] is between 1 and the number of arguments, inclusive.?

Figure 4.8 uses denotational definitions to find the result of applying the ELM
program (elm 2 (+ (arg 2) (* (arg 1) 3))) to the argument sequence [4, 5].
The equational proof assumes the following equalities, which are easy to verify:

’In these valuation clauses, we take a few liberties involving the types of metalanguage
expressions. (See Section A.3 for a discussion of types in the metalanguage.) Each occurrence
of (length i) should really be Nat — Int (length i*) since length returns a natural number,
but this number is used in contexts where an integer is expected. Also, in the application
(nth N Ningez] ©*), the first argument of nth should have type Pos, but N [Nindes] has type
Int. However, this application occurs in a context where N/ [Nindez] is guaranteed to be a positive
integer, 50 N'[Ningez] effectively denotes an element of Pos in this context. We will take similar
liberties in other denotational definitions without comment.

4.2.3 Step 3: ELM 125

PlCelmm (x (+ 1 2) (- 9 5)))]
= NE[(x (+ 1 2) (- 9 5))], by definition of P
= with-int NE[(+ 1 2)]
(Xiz . with-int NE[(- 9 5)]
(Mg . (A[*] i; 42))), by new definition of A€ on arithmetic operations
= with-int (with-int N'E[1]
(Aig . with-int NE[2]
(Aiy . (Al+] 43 i4))))
(Xiy . with-int (with-int N'E[9]
(Xi5 . with-int N'E[5]
(Aig . (A[-] 15 i6))))
(Mig . (A[*] i1 42))), by new definition of '€ on arithmetic operations
= with-int (A[+] 1 2)
(Nig . with-int (A[-] 9 5)
(Aig . (A[+] i1 i2))), by (4.2)
= with-int (Int—Answer (1 +n2))
(Xiy . with-int (Int—Answer (9 —pmt 5))
(Mg . (Int—Answer (i; Xt i2)))), by definition of A
= (Int—Answer (147t 2) Xnt (9 —me 5))), by (4.1)

= (Int—Answer (3 X nt 4)), by definitions of +,: and X ¢

= (Int—Answer 12), by definition of X p,;

Figure 4.6 Example illustrating how with-int hides error propagation.

(with-int (NE[N] i*) f) = (f N[N]) (4.4)

(with-int (NE[(arg NI [iz,---stky---5t]) f) = (f @), (4.5)
where N[N] = k

(with-int (A[A] iz i2) f) = (ians), (4.6)
where (A[A] i; iz) = (Int—Answer igns)

In Figure 4.8, if we replace the concrete argument integers 4 and 5 by abstract
integers iqrg; and 442, respectively, then the result would be

(Int — Answer (iargQ +Int (Z'argl X Int 3)))

Based on this observation, we can give a meaning to the sample program itself
(i.e., without applying it to particular arguments). Such a meaning must be
abstracted over an arbitrary argument sequence:

126 Chapter 4 Denotational Semantics

Semantic Algebra

ienmt={.., -2, —1,0, 1,2, ...}
Error = {error}

a € Answer = Int + Error

Operations on Int: +rmt, —ints Xints ~Ints JoInt
Operation on Answer: with-int (defined on page 122)

Valuation Functions
P : Prog — Int* — Answer
P[[(elm Nnummgs NEbody)]]
= Ai* . if (length i*) =i N[Npumargs]
then NVE[NE] i*
else (Error — Answer error) end

NE : NumExp — Int* — Answer
NE[Npum] = Ni* . (Int—Answer N[Npum])

Ng[[(arg Nindex)]] = X% . if (1 <Int N[[Nindea:]]) A (N[[Nindea;]] <Int (leﬂgth Z*))
then (Int—Answer (nth N[Nipgez] %))
else (Error — Answer error) end

NE[(A NE, NEJ)]
= \i* . with-int (NE[NE,] i*)
(Niy . with-int (NE[NE] i*) (Mg . (A[A] i; i2)))

N : IntLit — Int and A : ArithmeticOperator — (Int — Int — Answer)
are unchanged from ELMM (Figure 4.4).

Figure 4.7 Denotational semantics for ELM.

Pl(elmm 2 (+ (arg 2) (x (arg 1) 3)))]
= A\i*. match i*

> [iargl > Z'arg,Q] I] (Int — Answer (iarg2 +Int (iargl X Int 3)))
> else (Error — Answer error) end

Here we have translated the if that appears in the P definition in Figure 4.7 into
an equivalent match construct that gives the names iqy; and 7442 to the two
integer arguments in the case where the argument sequence * has two elements.
We showed above that the result in this case is correct, and we know that an
error is returned for any other length.

4.2.4 Step 4: EL 127

Pllelm 2 (+ (arg 2) (* (arg 1) 3)N] [4,5]
= if (length [4,5]) = N[2]
then NE[(+ (arg 2) (x (arg 1) 3))] [4,5]
else (Error —Answer error) end, by the definition of P
NE[(+ (arg 2) (x (arg 1) 3))] [4,5], by length, =, and if
= with-int (N€[(arg 2)] [4,5])
(Nig . with-int (NE[(x (arg 1) 3)] [4,5])
()\Zg . (A[["']] 11 22))), by the definition of N'E
= with-int (NE[(* (arg 1) 3)] [4,5])
(Nig . (A[+] 5 i2)), by (4.5)
= with-int (with-int (NE[(arg 1)] [4,5])
(Nig . with-int (N'E[3] [4,5])
(Niy . (Al*] 45 i)
(Mig . (A[+] 5 i2)), by the definition of N'E
= with-int (with-int (NE[3] [4,5])
(Niy . (A[*] 4 4p))
(Aig . (A[+] 5 42)), by (4.5)
= (with-int (A[¥] 4 3) (Niz. (A[+] 5 i2))), by (4.4)
= (A[+] 5 12), by (4.6)
= (Int—Answer 17), by the definition of A

Figure 4.8 Meaning of an ELM program applied to two arguments.

4.2.4 Step 4: EL

Full EL (Figure 2.4, page 25) is obtained from ELM by adding a numerical if
expression and boolean expressions for controlling the if expressions. Boolean
expressions BFE include the boolean literals true and false, relational expres-
sions like (< NE; NE»), and logical expressions like (and BE; BEj). Since
boolean expressions can include numerical expressions as subexpressions and such
subexpressions can denote errors, boolean expressions can also denote errors (e.g.
(<1 (/ 20))). In Figure 4.9, we model this by having the valuation func-
tion BE for boolean expressions return an element in the domain BoolAnswer
of “boolean answers” that is distinct from the domain Answer of “integer an-
swers.” Since a numerical subexpression of a relational expression could be an
arg expression, the meaning of a boolean expression is a function with signature
Int* — BoolAnswer that maps implicit program arguments to a boolean answer.

128 Chapter 4 Denotational Semantics

The error handling for relational and logical operations is performed by BE, so
the R and £ valuation functions manipulate only nonerror values.

Note that the error-handling in BE[(Ryator NE; NE32)] is performed by pat-
tern matching. Could it instead be done via with-int? No. The final return value
of with-int is in Answer, but the final return value of BE is in BoolAnswer. How-
ever, we could define and use a new auxiliary function that is like with-int but
returns an element of BoolAnswer (see Exercise 4.3 on page 131).

Something that stands out in our study of the denotational semantics of
the EL dialects is the importance of semantic domains and the signatures of
valuation functions. Studying these yields insight into the fundamental nature of
a language, even if the detailed valuation clause definitions are unavailable. For
example, consider the signature of the numerical expression valuation function
NE in the various dialects we studied. In ELMM without / and %, the signature

NE : NumExp — Int

indicates that an expression simply stands for an integer. In full ELMM, the
“unwound” signature

NE : NumExp — (Int+ Error)

indicates that errors may be encountered in the evaluation of some expressions.
The ELM (and EL) signature

NE : NumExp — Int* — (Int+ Error)

has a context domain Int* representing program arguments that are passed down
the abstract syntax tree. We will see many kinds of context domains in our
study of other languages. Some, like ELM program arguments, flow down only
to subexpressions. We shall see later that elements of other context domains
can have more complex flows, and that these flows are reflected in the valuation
function signatures.

4.2.5 A Denotational Semantics Is Not a Program

You may have noticed that the denotational definitions for the dialects of EL
strongly resemble programs in certain programming languages. In fact, it is
straightforward to write an executable EL interpreter that reflects the structure
of its valuation clauses, especially in functional programming languages like ML,
HASKELL, and SCHEME. Of course, an interpreter has to be explicit about many
of the details suppressed in the denotational definition (parsing the concrete
syntax, choosing appropriate data structures to represent domain elements, etc.).
Furthermore, details of the implementation language may complicate matters.

4.2.5 A Denotational Semantics Is Not a Program 129

Semantic Algebra
ient={.., -2, —1,0,1,2, ...}
b € Bool = {true, false}
Error = {error}
a € Answer = Int + Error
ba € BoolAnswer = Bool + Error

Operations on Bool: A (conjunction), V (disjunction)
Operations on Int: +Int, —Ints XInt, ~Ints %Int7 <Int, =Int; >Int
Operation on Answer: with-int (defined on page 122)

Valuation Functions
P : Prog — Int* — Answer
P is unchanged from ELM (Figure 4.4, except the keyword elm becomes el).

NE : NumExp — Int* — Answer
Ng[[(lf BEtest NEthen NEelse)]]
= Ai*. match (BE[BEest] i*)
> (Bool — BoolAnswer b) |
if b then NE[NEen] i else NE[NE os.] i* end
> else (Error — Answer error) end

The other NE€ clauses are unchanged from ELM (Figure 4.7).

BE : BoolExp — Int* — BoolAnswer
BE[true] = A\i*. (Bool—BoolAnswer true)
BE[false] = Ai*. (Bool—BoolAnswer false)
BE[(Rrator NE; NEZ)]
= \i*. match (NE[NE,] i*, NE[NE2] *)
> ((Int —Answer i;), (Int —Answer iz)) |
(Bool — BoolAnswer (R[R] i1 i2))
> else (Error — BoolAnswer error) end
Bg[[(Lrator BEJ BEQ)]]
= A\i* . match (BE[BE] i*,BE[BE ;] i*)
> ((Bool — BoolAnswer by), (Bool— BoolAnswer bg)) |
(Bool —BoolAnswer (L[L] b; bg))
> else (Error — BoolAnswer error) end

R : RelationalOperator — (Int — Int — Bool)
R[[<]] = <Int R[[=]] — —Int R[[>]] = >Int
L : LogicalOperator — (Bool — Bool — Bool)
Land] = A Llor] =V

N : IntLit — Int and A : ArithmeticOperator — (Int — Int — Answer)
are unchanged from ELMM (Figure 4.4).

Figure 4.9 Denotational semantics for EL.

130 Chapter 4 Denotational Semantics

In particular, the correspondence will be much less direct if the implementation
programming language does not support first-class procedures.

Although a denotational definition often suggests an approach for implement-
ing an interpreter program, it can be misleading to think of the denotational
definition itself as a program. Programming language procedures typically im-
ply computation; denotational specifications do not. An interpreter specifies a
process for evaluating program phrases, often one with particular operational
properties. In contrast, there is no notion of process associated with a valuation
function: it is simply a declarative description for a mathematical function (i.e.,
a triple of a source, a target, and a graph).

For example, consider the following metalanguage expression, which might
arise in the context of reasoning about an ELMM program:

Nig . with-int (A[/] i 2) (Nis . (with-int (A[-] 3 3) (Nig . (A[¥] i; i2))))

If we (incorrectly) view this as an expression in a programming language like ML
or SCHEME, we might think that no evaluation can take place until an integer
is supplied for iy, and that after this happens, the division must be performed
first, followed by the subtraction, and finally the multiplication. But there is no
inherent notion of evaluation order associated with the metalanguage expression.
We can perform any mathematical simplifications in any order on this expression.
For example, observing that (A[-] 3 3) has the same meaning as (N E[0]) allows
us to rewrite the expression to

Nig . with-int (A[/] ip 2) (Nig . (with-int (NE[0]) (Nig . (A[*] i1 i2))))
This is equivalent to
Nig . with-int (A[/] i 2) (Mg . (A[*] 41 0))
which is in turn equivalent to
Nig . with-int (A[/] ip 2) (Nig . (Int—Answer 0))

since the product of 0 and any integer is 0. A division result cannot be an error
when the second argument is nonzero, so this can be further simplified to

Aig . (Int—Answer 0)

The moral of this example is that many simplifications can be done with meta-
language expressions that would be difficult to justify with expressions in most
programming languages.?

3Certain real-world programming languages, particularly the purely functional language
HASKELL, were designed to support the kind of mathematical reasoning that can be done with
metalanguage expressions.

4.3 A Denotational Semantics for POSTFIX 131

Exercise 4.1 We have treated integer numerals atomically, but we could express them
in terms of their component signs and digits via an s-expression grammar:

SN € SignedNumeral ::= (+ UN) | (- UN) | UN
UN € UnsignedNumeral ::= D | (@ UN D)
DeDigitz=0]1|2|3|4]|5]|]6]|7]|8]|9
For example, the numeral traditionally written as =273 would be written in s-expression

form as (- (@ (@ 2 7) 3)). Give a denotational semantics for numerals by providing
valuation functions for each of SignedNumeral, UnsignedNumeral, and Digit.

Exercise 4.2 Use the ELM semantics to determine the meaning of the following ELM
program: (elm 2 (/ (arg 1) (- (arg 1) (arg 2)))).

Exercise 4.3 By analogy with the with-int auxiliary function in the ELM semantics,
define functions with the following signatures and use them to “hide” error handling in
the EL valuation clauses for conditional expressions, relational operations, and logical
operations:

with-bool : BoolAnswer — (Bool — Answer) — Answer
with-intpa : Answer — (Int — BoolAnswer) — BoolAnswer
with-boolpa : BoolAnswer — (Bool — BoolAnswer) — BoolAnswer

4.3 A Denotational Semantics for PostFix

We are now ready to flesh out the details of the denotational description of
PosTFIX that were sketched in Section 4.1. The abstract syntax for POSTFIX
was provided in Figure 2.12 on page 40, so the syntactic algebra is already taken
care of. We need to construct the semantic algebra and the meaning function.

4.3.1 A Semantic Algebra for PostFix

What kind of mathematical entities should we use to model POSTFIX programs?
Suppose that we have some sort of entity representing stacks. Then it’s natural
to model both POSTFIX commands and command sequences as functions that
transform one stack entity into another. For example, the swap command could
be modeled by a function that takes a stack as an argument, and returns a stack
in which the top two elements have been swapped.

We need to make some provision for the case where the stack contains an
insufficient number of elements or the wrong type of elements. For this purpose
we will assume that there is a distinguished stack, errorStack, that signifies an
error. For example, applying the transform associated with the swap command
to a stack with fewer than two elements should return errorStack. All transforms
should return errorStack when given errorStack as an argument.

132 Chapter 4 Denotational Semantics

t € StackTransform = Stack — Stack
s € Stack = Value* + Error
v € Value = Int + StackTransform
r € Result = Value + FError
a € Answer = Int + Error
Error = {error}
ielnt =1{.., -2 -1,01,2 ...}
b € Bool = {true, false}

Figure 4.10 Semantic domains for the POSTFI1X denotational semantics.

Figure 4.10 presents domain definitions that describe one implementation of
this approach. The StackTransform domain consists of functions from stacks to
stacks, where an element of the domain Stack is either a sequence of values or the
distinguished error stack (here modeled by the single element of the unit domain
Error). The domain Value of stackable values includes not only integers but
also stack transforms, which model executable sequences that have been pushed
onto the stack. The Result domain models intermediate results obtained from
stack manipulations or arithmetic operations. It includes an error result to model
situations like popping an empty stack and dividing by zero. The Answer domain
models the final outcome of a POSTFIX program. Like Result, Answer includes
an error answer, but its only nonerror answers are integers (because an executable
sequence at the top of a final stack is treated as an error).

A somewhat unsettling property of the domain definitions in the figure is that
they are recursive — transforms operate on stacks, which themselves may contain
transforms. In Chapter 5 we will discuss how to understand a set of recursively
defined domain equations. For now, we’ll just assume that these equations have
a sensible interpretation.?

We extend the semantic domains into a semantic algebra by defining a col-
lection of constants and functions on the domains. For now we’ll just specify
the interfaces to these constants and functions. We’ll defer the details of their
definitions until we’ve studied the meaning function. This will allow us to move
more quickly to the core of the denotational semantics — the meaning function —
without getting sidetracked by details of the definitions of the semantic functions.

Figure 4.11 gives informal specifications for the constants and functions we
will use to manipulate the semantic domains. We will study the implementa-

4t turns out that the domain definitions for Stack and Answer aren’t quite right as stated,
because they are missing a “bottom” element denoting nontermination. See the discussion in
Section 4.4.3.

4.3.1 A Semantic Algebra for POSTFIX

133

errorResult : Result
An error in the domain Result.

errorAnswer : Answer
An error in the domain Answer.

errorStack : Stack
The distinguished error stack.

errorTransform : StackTransform
A transform that maps all stacks to errorStack.

push : Result — StackTransform
Given a result that is a value v, return a transform that pushes v onto a
stack; otherwise return errorTransform.

pop : StackTransform
For a nonempty stack s, return the stack resulting from popping the top
value; otherwise return errorStack.

top : Stack — Result
Given a nonempty stack s, return a result that is the top element of s; oth-
erwise return errorResult.

intAt : Int — Stack — Result
Given an integer i;,4., and a stack whose i;,4e,th element (starting from 1)
is the integer tresuit, retUrN ipegyy; otherwise return errorResult.

arithop : (Int — Int — Result) — StackTransform
Let f : Int — Int — Result be the functional argument to arithop. Return a
transform with the following behavior: if the given stack has two integers
i; and g followed by S,es, then return a stack whose top value vpesuy is
followed by $yest, where (Value — Result Vyesuit) is the result of the application
(f iz i7). If the given stack is not of this form or if the result of applying f
is errorResult, then return errorStack.

transform : Result — StackTransform
Given a result that is a stack transform, return it; otherwise return
errorTransform.

resToAns : Result — Answer
Given a result that is an integer, return it as an answer; otherwise return
errorAnswer.

Figure 4.11 Specifications for constants and functions on POSTFIX semantic domains.

134 Chapter 4 Denotational Semantics

tion of these later, in Section 4.3.3. errorResult, errorAnswer, errorStack, and
error’Transform are just names for useful constants involving errors. push, pop,
and top are the usual stack operations. Their specifications are complicated
somewhat by the details of error handling. For example, top returns an element
of Result rather than Value because it must return errorResult in the case where
the given stack is empty. push takes its argument from Result rather than Value
so that it can be composed with top. intAt is an auxiliary function that simplifies
the specification of nget. arithop simplifies the specifications for arithmetic and
relational commands; it serves to abstract over a common behavior (replacing
the top two integers on the stack by some value that depends on them) while
suppressing error-handling detail (returning an error stack if any error is encoun-
tered along the way). transform facilitates error handling when a result that is
expected to be a transform turns out to be an integer or an error result instead.
resToAns handles the conversion from results to answers.

The signatures of the stack functions push, pop, arithop, transform, and
errorTransform may seem strange at first glance, because they don’t explicitly
refer to the Stack domain. But recall that StackTransform is defined to be
Stack — Stack, so that the signature of push, for instance, is really

Result — (Stack — Stack)

From this perspective, push probably seems more familiar: it is a function that
takes a result and stack (in curried form) and returns a stack. However, since
stack transforms are the key abstraction of this semantics, we have written the
signatures in a way that emphasizes this fact. Under this view, push is a function
that takes a result and returns a stack transform. Of course, in either case push
is exactly the same mathematical entity; the only difference is in how we think
about it!

4.3.2 A Meaning Function for PostFix

Now we’re ready to study the meaning function for POSTFIX. As in EL, we
specify the meaning function by a collection of valuation functions, one for each
syntactic domain defined by the abstract syntax for the language.

As we learned in studying the denotational semantics of EL, the signatures
of valuation functions contain valuable information about the meaning of the
language. It is always prudent to study the signatures before delving into the
details of the definitions for the valuation functions.

The signatures for the POSTFIX valuation functions appear in Figure 4.12.
In the case of POSTFIX, one of the things the signatures say is that a POSTFIX
program is like an EL program in that it takes a sequence of integers as arguments

4.3.2 A Meaning Function for POSTF1X 135

: Prog — Int* — Answer

: CommandSeq — StackTransform

: Command — StackTransform

: ArithmeticOperator — (Int — Int — Result)
: RelationalOperator — (Int — Int — Bool)

: IntLit — Int

ZRAer a0

Figure 4.12 Signatures of the POSTFIxX valuation functions.

and either returns an integer or signals an error: P : Prog — Int* — Answer.
If the signature of P were instead P : Prog — Int* — Result, it would indicate
that some POSTFIX programs could return a stack transform (corresponding
to an executable sequence) instead of an integer. If the signature were one of
P : Prog — Int* — Int or P : Prog — Int* — Value, it would tell us that errors
could not be signaled by a POSTFIX program.

The signatures also tell us that both commands and command sequences map
to stack transforms. Since stack transforms are easily composable, this suggests
that the meaning of a command sequence will be some sort of composition of the
meanings of its component commands. This turns out to be the case. The return
type of A matches the argument type of arithop, one of the auxiliary functions
specified in Figure 4.11. This is more than coincidence: the auxiliary functions
and valuation functions were designed to dovetail in a nice way.

Now we’re ready to study the definitions of the POSTFIX valuation functions,
which appear in Figure 4.13. The meaning of a program (postfix Npumargs @)
is a function that transforms an initial stack consisting of the integers in the
argument sequence i* via the transform Q@] and returns the top integer of the
resulting stack. The definitions of resToAns and top guarantee that an error
answer is returned when the stack is empty or does not have an integer as its
top element. An error is also signaled when the number of arguments does not
match the expected number Npymargs-

The meaning of a command sequence is the composition of the transforms of
its component commands. The order of the composition

Q@] o ClCT = Xs. (QLQ] (C[C] 9))

is crucial, because it guarantees that the stack manipulations of the first com-
mand can be observed by the subsequent commands. Reversing the order of the
composition would have the effect of executing commands in a right-to-left order
instead. The stack transform associated with the empty command sequence is
the identity function on stacks.

136 Chapter 4 Denotational Semantics

For valuation functions like @ that manipulate sequences of program phrases,
we will often take notational liberties to avoid explicit sequences between the
double brackets, []. For example, Q[] is an abbreviation for Q[[]command], and
Q[3 sub swap pop] is an abbreviation for Q[[3, sub, swap, pop|command]-

Most of the clauses for the command valuation function C are straightforward.
The integers and transforms corresponding to numerals and executable sequences
are simply pushed onto the stack after appropriate injections into the Value and
Result domains.® The transform associated with the pop command is simply the
pop auxiliary function, while the transform associated with swap is expressed as
a composition of push, top, and pop. If the top stack element is an integer i,
the nget transform replaces it by the ith element from the rest of the stack if
that element is an integer; in all other cases, nget returns an error stack. The
sel transform selects one of the top two stack elements based on the numeric
value of the third stack element; an error is signaled if the third element is not an
integer. In the exec transform, the top stack element is expected to be a stack
transform ¢ representing an executable sequence. Applying t to the rest of the
stack yields the stack resulting from executing the executable sequence. If the
top stack element is not a stack transform, an error is signaled. The meaning
of arithmetic and relational commands is determined by arithop in conjunction
with A and R, valuation functions that map operator symbols like add and 1t
to the expected functions and predicates. A treats div and rem specially so that
division by 0 signals an error.

Before we move on, a few notes about reading the POSTFIX denotational
definitions are in order. Valuation functions tend to be remarkably elegant and
concise. But this does not mean that they are always easy to read! To the
contrary, the density of information in a denotational definition often demands
meticulous attention from the reader. The ability to read semantic functions and
valuation functions is a skill that requires patient practice to acquire. At first, un-
raveling such a definition may seem like solving a puzzle or doing detective work.
However, the time invested in reading definitions of this sort pays off handsomely
in terms of deep insights into the meanings of programming languages.

The conciseness of a denotational definition is due in large part to the lib-
eral use of higher-order functions, i.e., functions that take other functions as
arguments or return them as results. arithop is an excellent example of such

SWhereas the operational semantics uses a stack with syntactic values — integer numerals
and command sequences — the denotational semantics uses a stack of semantic values — integers
and stack transforms. This is because the valuation functions N and Q are readily available for
translating the syntactic elements to the semantic ones. Here and elsewhere, we will follow the
convention of using explicit injections in denotational descriptions.

4.3.2 A Meaning Function for POSTF1X 137

Pl(postfix Npumargs @]
= Xi* . if (length i*) =i N[Npumargs]
then resToAns (top (Q[Q] (Value* —Stack (map Int— Value i*))))
else errorAnswer end

Q[c. Q] = Q[Q]~C[C]
Oll= As. s

nget] = As. match top s
> (Value —Result (Int—Value i)) | push (intAt ¢ (pop s)) (pop s)
> else errorStack end

C[sel] = As. match top (pop (pop s))
> (Value — Result (Int— Value 1)) |
push (if i =j,,; 0 then top s else top (pop s) end)

(pop (pop (pop s)))
> else errorStack end
Clexec] = As. (transform (top s) (pop $))
C[A] = arithop A[A4]

C[R] = arithop (Nijiz . (Value — Result
(Int—Value (if (R[R] i; ig) then I else 0 end))))

Alsub] = Xigig . (Valuer—Result (Int— Value (i —rnt t2)))
Similarly for add, mul

Aldiv] = Nigig. ifig =5 0

then errorResult

else (Value —Result (Int—Value (i; <+1,: 12))) end
Similarly for rem

R[[lt]] = <Int
Similarly for eq and gt

N maps integer numerals to the integer numbers they denote.

Figure 4.13 Valuation functions for POSTFIX.

138 Chapter 4 Denotational Semantics

a function: it takes an argument in the function domain Int — Int — Result,
and returns a stack transform, which itself is an element of the function domain
Stack — Stack.

Definitions involving higher-order functions can be rather daunting to read
until you acquire a knack for them. A typical problem is to think that pieces are
missing. For example, a common reaction to the valuation clause for numerals,

C[N] = (push (Value —Result (Int— Value (N[N]))))

is that a stack is somehow missing. After all, the value has to be pushed onto
something — where is it? Carefully considering types, however, will show that
nothing is missing. (Consult Sections A.3.2 and A.4 for more on types in the
metalanguage.) Recall that the signature of push is Result — StackTransform.
Since (Value — Result (Int— Value NNT])) is clearly an element of Result, the result
of the push application is a stack transform. Since C is supposed to map com-
mands to stack transforms, the definition is well typed. It’s possible to introduce
an explicit stack in this valuation clause by wrapping the right-hand side in a A
of a stack argument:

C[N] = As. (push (Value—Result (Int»—Value N'[NJ)) s)

This form of the definition probably seems much more familiar, because it’s more
apparent that the meaning of the command is a function that takes a stack and
returns a stack, and push is actually given a stack on which to push its value. But
the two definitions are equivalent. In order to stress the power of higher-order
functions, we will continue to use the more concise versions. We encourage you to
type-check the definitions and expand them with extra As to improve your skill
at reading them.

Figure 4.14 illustrates using the POSTFIX denotational semantics to deter-
mine the result of executing the program (postfix 2 3 sub swap pop) on the
argument integers [7,8]. To make the figure more concise, we use the shorthand
7 to stand for (Int — Value n). Each line of the equational proof is justified by
simple mathematical reasoning. For example, the equality

resToAns (top ((Q[pop] o C[swap]) (Value*—Stack [4,8])))
= resToAns (top (Q[pop] (C[swap] (Value* —Stack [4,8]))))

is justified by the definition of function composition, while the equality

4.3.2 A Meaning Function for POSTF1X 139

resToAns (top (Q[swap pop] (push (Value— Result 7fm\t3)
(Value* —Stack [8]))))

= resToAns (top (Q[swap pop] (Value* —Stack [41,8])))

is justified by the definition of —,; and the specification for the push function.
The proof shows that the result of the program execution is the integer 4.

Just as programs can be simplified by introducing procedural abstractions,
equational proofs can often be simplified by structuring them more hierarchically.
In the case of proofs, the analogue of a programming language procedure is a
theorem. For example, it’s not difficult to prove a theorem stating that for any
numeral N, any command sequence), and any stack s, the following equality is
valid:

(Q[N . Q] (Value*—Stack v*))
= (9[Q] (Value*—Stack ((Int— Value NNJ]).v*)))

This theorem is analogous to the operational rewrite rule for handling integer
numeral commands. It can be used to justify equalities like

D)
7.8)))

which took four steps in Figure 4.14. A few such theorems can greatly reduce
the length of the sample proof. In fact, if we prove other theorems analogous to
the operational rules, we can obtain a proof whose structure closely corresponds
to the configuration sequence for an operational execution of the program (see
Figure 4.15).

Figure 4.16 shows how the equational proof in Figure 4.15 can be generalized
to handle two arbitrary integer arguments. Based on this result, we conclude
that the meaning of the POSTFIX program (postfix 2 3 sub swap pop) is:

(Q[3 sub swap pop] (Value* —Stack [7,
3

9

= (Q[sub swap pop] (Value*—Stack

P[(postfix 2 3 sub swap pop)]

= Ai*. match *
> [ir,i2] | (Int—Answer (i; —mt 3))
> else errorAnswer end

Exercise 4.4 Use the POSTFI1X denotational semantics to determine the values of the
PosTFIX programs in Exercise 1.1 on page 13.

140 Chapter 4 Denotational Semantics

Note: 1 is a shorthand for (Int— Value n)

P[(postfix 2 3 sub swap pop)] [7,8]

= if (length [7,8]) =1 N[2]
then resToAns (top (Q[3 sub swap pop] (Value*—Stack [7,8])))
else errorAnswer end

= resToAns (top (Q[3 sub swap pop] (Value* —Stack [7,8])))
= resToAns (top ((Q[sub swap pop] o C[3]) (Value*—Stack [7,8])))
= resToAns (top (Q[sub swap pop] (C[3] (Value*—Stack [7,8])

)
= resToAns (top (Q[sub swap pop|] (push (Value— Result 32)
(Value* —Stack [7,8]))))

1)

top (Q[sub swap pop] (Value* —Stack [3,7,8])))

top ((Q[swap pop] o C[sub]) (Value* —Stack [3,7,8])))
(Qlswap pop] (C[sub] (Value* —Stack [3,7,8]))))

top (Q[swap pop] (arithop A[sub] (Value* —Stack K]

= resToAns
= resToAns

= resToAns (top

(
(
(
= resToAns (7,8))))
= resToAns (top (Q[swap pop] (push (Value— Result 7?1773)
(Value* —Stack [8]))))
= resToAns (top (Q[swap pop] (Value* —Stack 4, 8])))
= resToAns (top ((Q[pop] o C[swap]) (Value* >—>Stack [21 8)))
= resToAns (top (Q[pop] (C[swap] (Value*—Stack [4,8]))))

= resToAns (top (Q[pop] (push (top (pop (Value* —Stack [Zl,Aé]A)))
(push (top (Value* —Stack [4,8])) o
(pop (pop (Value* —Stack [4,8])))))))
= resToAns (top (Q[pop] (push (top (Value*— Stack [EE]))
(push (Value — Result 4)
(Value* —Stack [])))))

= resToAns (push (Value — Result 8) (Value* —Stack [4]))))

Q[pop]
Qlpop] (Value* —Stack [8 21])))
(Q]] o Clpop]) (Value*—Stack

(top
(top (
(top ((Ql
= resToAns (top (Q[] (C[pop] (Value*—Stack [8
(top (2l
(top (
(

= resToAns
= resToAns

8,41)))
)

)

= resToAns O[] (Value* —Stack [4])))
(As . 8) (Value*—Stack [Zﬂ)))
= resToAns (top (Value* —Stack [4]))

= resToAns (Value— Result 4)

= (Int—Answer 4)

= resToAns

Figure 4.14 Equational proof that executing the POSTFIX program (postfix 2 3
sub swap pop) on the arguments [7, 8] yields the answer 4.

4.3.2 A Meaning Function for POSTF1X 141

P[(postfix 2 3 sub swap pop)] [7,8]
= resToAns (top (Q[3 sub swap pop] (Value*—Stack k[7, 8})))
Q[sub swap pop]| (Value* —Stack [3 7.8))))

D))

= resToAns

= resToAns

(2l
top (Q[swap pop] (Value* —Stack [4
(
= resToAns (

(top
(

= resToAns (top (Qf pop]] (Value* — Stack [8,21])))
((Value* — Stack [4])))
(top (Value* — Stack [4]))

= resToAns (Value — Result 21)

(Int — Answer 4)

top

= resToAns

Figure 4.15 Alternative equational proof with an operational flavor.

P[(postfix 2 3 sub swap pop)] [is, iz]
= resToAns |(top (Q[[S sub swap pop] (Value*—Stack [z},z}])))
Q[sub swap pop] (Value*—Stack [3, z},z}])))

= resToAns (top

Ql[swap pop] (Value* —Stack [21/——1; 3, ZAQ])))

= resToAns (top (Q[pop] (Value*—Stack [zAg,z]/f;?)])))

= resToAns (top

(

(ter (
= resToAns (top (

(1o (

(((Value* »—Stack [21/—53]0)
= resToAns (top (Value* —Stack [21/—;3]»

= resToAns (Value — Result il/—; 3)

(Int —Answer (i —nt 3))

Figure 4.16 Version of equational proof for two arbitrary integer arguments.

Exercise 4.5 Modify the POSTFIX denotational semantics to handle POSTFI1X2. In-
clude valuation clauses for (: Cioms Ceomez), (skip), and (exec).

Exercise 4.6 For each of the following, modify the POSTFIX denotational semantics to
handle the specified extensions:

a. The pair, fst, and snd commands from Exercise 3.37 on page 102.

b. The for and repeat commands from Exercise 3.40 on page 103.

c. The I, def, and ref commands from Exercise 3.44 on page 106.

142 Chapter 4 Denotational Semantics

4.3.3 Semantic Functions for PostFix: the Details

Now that we’ve studied the core of the POSTFIX semantics, we’ll flesh out the
details of the functions specified in Figure 4.11. Figure 4.17 presents one imple-
mentation of the specifications. As an exercise, you should make sure that these
definitions type-check, and that they satisfy the specifications in Figure 4.11.

Notice that several functions in Figure 4.17 describe similar manipulations.
push, pop, and arithop all check to see if their input stack is a suitable stack of
values. If so, they perform some manipulation on the sequence of values in the
stack; if not, they return errorStack. We can abstract over these similarities by
introducing three abstractions (Figure 4.18) similar to the with-int error-hiding
function defined in the EL denotational semantics:

e with-stack-values takes a function f from value sequences to stacks and returns
a stack transform that (1) maps a nonerror stack to the result of applying f to
the value sequence in the stack, and (2) maps an error stack to an error stack.

o with-val&stack takes a function f from a value to a stack transform and returns
a stack transform that (1) maps any stack whose value sequence consists of the
value v followed by v, to the result of applying f to v and the stack whose

values are v, and (2) maps any stack not of this form to the error stack.

e with-int&stack takes a function f from an integer to a stack transform and
returns a stack transform that (1) maps any stack whose value sequence consists
of an integer 7 followed by v/, to the result of applying f to ¢ and the stack
whose values are v, and (2) maps any stack not of this form to the error
stack.

The purpose of these new functions is to hide the details of error handling in order
to highlight more important manipulations. As shown in Figure 4.18, rewriting
push in terms of with-stack-values removes an error check from the definition.
Using with-val&stack and with-int&stack greatly simplifies pop and arithop; the
updated versions concisely capture the essence of these functions without the
distraction of case analyses and error checks.

As with the valuation functions, these highly condensed semantic functions
can be challenging for the uninitiated to read. The fact that push, pop, and
arithop are ultimately manipulating a stack is even harder to see in the new
versions than it was in the original ones. As suggested before, reasoning about
types and inserting extra As can help. For example, since the result of a call to
with-int&stack is a stack transform ¢, and ¢ is equivalent to As. (¢ s), the new
version of arithop can be rewritten as:

4.3.3 Semantic Functions for POSTFIX: the Details

143

errorResult : Result = (Error—Result error)
errorAnswer : Answer = (Error— Answer error)
errorStack : Stack = (Error —Stack error)
errorTransform : StackTransform = As . errorStack

push : Result — StackTransform

= Ar. (As. match (r,s)
> ((Value — Result v), (Value* —Stack v*)) | (v.v*)
> else errorStack end)

pop : StackTransform

= As. match s
> (Value* —Stack (Vhead - V1yy)) | (Value* —Stack vf,;;)
> else errorStack end

top : Stack — Result

= As. match s
> (Value* —Stack (Vhead - Vioyp)) | (Value —Result Vheqd)
> else errorResult end

intAt : Int — Stack — Result
= Ais. match s
> (Value* —Stack v*) |
if 1 <jp¢ ¢ and i <p,; (length v*)
then match (nth i v*)
> (Int — Value iresuit) | (Value —Result (Int— Value tresuit))
> else errorResult
else errorResult end
> else errorResult end

arithop : (Int — Int — Result) — StackTransform
= Af. (As. matchs
> (Value* —Stack ((Int— Value iy) . (Int—Value i) .v%,)) |
(pUSh (f ig 21) v:est)
> else errorStack end)

transform : Result — StackTransform

= Ar. matchr
> (Value —Result (StackTransform— Value t)) | ¢
> else errorTransform end

resToAns : Result — Answer

= Ar. match r
> (Value — Result (Int— Value 1)) | (Int—Answer 1)
> else errorAnswer end

Figure 4.17 Functions manipulating the semantic domains for POSTFIX.

144 Chapter 4 Denotational Semantics

with-stack-values : (Value® — Stack) — StackTransform
= A . (As. match s

> (Value* —Stack v*) | (f v¥*)

> else errorStack end)

with-val&stack : (Value — StackTransform) — StackTransform
= Af . (with-stack-values
(Av* . match v*
>og. Ve | (f v (Value* —Stack v},,,))
> else errorStack end))

with-int&stack : (Int — StackTransform) — StackTransform
= A . (with-val&stack
(Av. matchv
> (Int— Value @) | (f ©)
> else errorTransform end))

push : Result — StackTransform

= Ar. matchr
> (Value —Result v) | (with-stack-values (Av* . (Value*—Stack (v.v*))))
> else errorTransform end

pop : StackTransform = with-val&stack (Avpead - (AStail - Stait))

arithop : (Int — Int — Result) — StackTransform
= A . (with-int&stack (\iy . (with-int&stack (Nig . (push (f iz i1))))))

Figure 4.18 The functions with-stack-values, with-val&stack, and with-integer&stack
simplify some of the semantic functions for POSTFIX. (Only the modified functions are
shown.)

Afsg . ((with-int&stack
(Nig sy . ((with-int&stack
(Nigsg . (push (f iz 1) s2)))
51)))

80)

In this form, it’s easier to see that there are stacks from which each occurrence
of with-int&stack can extract an integer and substack.

From this expanded form we can understand with-int&stack as a construct
that binds names to values. The pattern ((with-int&stack (AiSpest . E)) s) can
be read as:

4.4 Denotational Reasoning 145

Let 7 be the top value of s and s, be all but the top value of s in the
expression FE. Return the value of F, except when s is empty or its top
value isn’t an integer, in which cases the error stack should be returned
instead.

Some of the POSTF1X valuation functions can be reexpressed using the error-
hiding functions directly. For example, the valuation clause for swap can be
written as:

Cswap] = with-val&stack (Av; . (with-val&stack (Avg . (push vg) o (push v;))))

You should convince yourself that this has the same meaning as the version
written using push, top, and pop.

Exercise 4.7

a. By analogy with with-int&stack, define a function with-transé&stack whose signature
is (StackTransform — StackTransform) — StackTransform.

b. Using with-val&stack, with-int&stack, and with-trans&stack, rewrite the valuation
clauses for nget, sel, and exec to eliminate all occurrences of top, pop, transform,
and match.

4.4 Denotational Reasoning

The denotational definitions of EL and POSTFIX presented in the previous sec-
tion are mathematically elegant, but how useful are they? We have already shown
how they can be used to determine the meanings of particular programs. In this
section we show how denotational semantics helps us to reason about program
equality and safe program transformations. The compositional structure of the
denotational semantics makes it more amenable to proving certain properties
than the operational semantics. In Section 4.5 we study the relationship between
operational semantics and denotational semantics.

4.4.1 Program Equality

In Section 4.3.2, we studied the program (postfix 2 3 sub swap pop), which
takes two integer arguments and returns three less than the first argument:

P[(postfix 2 3 sub swap pop)]

= A\i*. match ¢*
> [ig,i2] | (Int—Answer (i; —nt 3))
> else errorAnswer end

146 Chapter 4 Denotational Semantics

Pl(postfix 2 3 sub)] [is,iz]
= resToAns (top (Q[[S sub] (Value* —Stack [z},z}])))
= resToAns (top (Q[sub]] (Value* —Stack [3, z},fg])))
= resToAns (top (Q[[]] (Value* — Stack [iz/—;& ’L;])))
= resToAns (top (Value* — Stack [ui; 3,2%]))

= resToAns (Value — Result il/—; 3)

= (Int—Answer (i; —mt 3))

Figure 4.19 The meaning of (postfix 2 3 sub) on two integer arguments (compare
Figure 4.16).

Intuitively, the purpose of the swap pop is to get rid of the second argument,
which is ignored by the program. But in a POSTFIX program, only the integer at
the top of the final stack can be observed and any other stack values are ignored.
So we should be able to remove the swap pop from the program without changing
its behavior.

We can formalize this reasoning using denotational semantics. Figure 4.19
shows a derivation of the meaning of the program (postfix 2 3 sub) when
it is applied to two arguments. From this, we deduce that the meaning of
(postfix 2 3 sub) is:

P[(postfix 2 3 sub)]

= Ai*. match *
> [Zj,ig] ﬂ (Int>—>Answer (i —mt 3))
> else errorAnswer end

Since (postfix 2 3 sub) and (postfix 2 3 sub swap pop) have exactly the
same meaning, they cannot be distinguished as programs.

Denotational semantics can also be used to show that programs from different
languages have the same meaning. For example, it is not hard to show that the
meaning of the EL program (el 2 (- (arg 1) 3)) is:

PlCel 2 (- (arg 1) 3)]

= A\i*. match i*
> [i7,12] | (Int—Answer (47 —pmt 3))
> else errorAnswer end

4.4.2 Safe Transformations: A Denotational Approach 147

If you review the semantic domains for EL. and PoOSTF1X, you will see that the
Answer domain is the same for both languages. So the above fact means that this
EL program is interchangeable with the two POSTFI1X programs whose meanings
are given above.

4.4.2 Safe Transformations: A Denotational Approach

Because denotational semantics is compositional, it is a natural tool for proving
that it is safe to replace one phrase by another. Recall the following three facts
from the operational semantics of POSTFIX:

1. Two PosTFIX command sequences are observationally equivalent if they be-
have indistinguishably in all program contexts.

2. Two PosTFI1X command sequences are transform equivalent if they map equiv-
alent stacks to equivalent stacks.

3. Transform equivalence implies observational equivalence.

Since the POSTFIX denotational semantics models command sequences as stack
transforms, the denotational equivalence of POSTFIX command sequences corre-
sponds to transform equivalence in the observational framework. So we expect
the following theorem:

Theorem 4.7 (PostFix Denotational Equivalence)

QlQ:] = Q[Q2] implies Q1 =ops Q2.

This theorem is a consequence of a so-called adequacy property of POsTFIX,
which we will study later in Section 4.5.2.

We can use this theorem to help us prove the behavioral equivalence of two
command sequences. For instance, consider the pair of command sequences
[1,add, 2, add] and [3, add]. Figure 4.20 shows that these are denotationally equiv-
alent, so, by the above theorem, they must be observationally equivalent. The
equational reasoning in Figure 4.20 uses the following three equalities, whose
proofs are left as exercises (see Exercise 4.8):

(QIC: Cap ... Cu]) = (C[Cy]) o ... o (C[C2]) o (C[C1]) (4.8)
(with-int&stack f) o (push (Value —Result (Int— Value 1))) = (f i) (4.9)
t o (with-int&stack f) = (with-int&stack (\i. (t o (f 7)))) (4.10)

where t€StackTransform maps errorStack to errorStack

148 Chapter 4 Denotational Semantics

(Q[1 add 2 add])
= (C[aad]) o (C[2]) (C[add]) o (C[1]) , by (4.8)
= (with-int&stack
(Ai} . (with-int&stack
(Aiy . push (Value—Result (Int—Value (if +mei7)))))))
o push (Value —Result (Int— Value N2]))
o (with-int&stack
(Nig . (with-int&stack
(MNig . push (Value—Result (Int— Value (ig +1nt i1)))))))
o push (Value —Result (Int— Value N1])) , by definition of C

= (with-int&stack
(Aig . push (Value —Result (Int— Value (i} +1nt2)))))
o (with-int&stack
(Mig . push (Value —Result (Int— Value (ig +me1))))) , by (4.9)
(with-int&stack
(Mig . (with-inté&stack
(M\iy . (push (Value—Result (Int—Value (i +mt 2))))))
o (push (Value —Result (Int— Value (ig +1nt1)))))), by (4.10)
(with-int&stack
(Aig . push (Value —Result (Int— Value ((ig +mt 1) +1me2))))) , by (4.9)

= (with-int&stack
(Mig . push (Value —Result (Int— Value (ig +1nt3))))) , by definition of + ¢
= (with-int&stack
(Aif . (with-int&stack
(Mig . push (Value —Result (Int—Value (ig 41t 17)))))))
o push (Value —Result (Int— Value N[3])) , by (4.9)
(Cladd]) o (C[3]) , by definition of C

(Q[3 add]) , by (4.8)

Figure 4.20 Proof that [1,add, 2,add] and [3, add] are denotationally equivalent. This
implies that the two sequences are observationally equivalent.

It is worth noting that the denotational proof that [1, add, 2, add] =5 [3, add]
has a very different flavor from the operational proof of this fact given in Sec-
tion 3.7.2. The operational proof worked by case analysis on the initial stack.
The denotational proof in Figure 4.20 works purely by equational reasoning —
there is no hint of case analysis here. This is because all the case analyses are
hidden within the carefully chosen abstractions with-int&stack and push (Fig-

4.4.2 Safe Transformations: A Denotational Approach 149

NE[(+ NE NE)]

— \i*. with-int (NE[NE] i) (Mj . with-int (NE[NE] i) (M2 . (A[+] i1 i2)))
= Mi* . with-int (NE[NE] i*) (Mg . (Int—Answer (A[+] iz i2)))

= Ai* . with-int (NE[NE] i*) (Nig . (Int—Answer (ig +nt 12)))

= X\i* . with-int (NE[NE] i*) (Nig . (2 X pne i2))

— i* . with-int (NE[NE] i*) (Mis . (A[¥] 2 is))

= Ai* . with-int (NE[2] i*) (Nig . with-int (NE[NE] i*) (Mig . (A[*] i1 i2)))
= NE&[(* 2 NE)]

Figure 4.21 Denotational proof that the EL expression (+ NE NE) may safely be
replaced by (* 2 NE).

ure 4.18) and equalities (4.8)—(4.10). The case analyses would become apparent
if these were expanded to show explicit match expressions.

Denotational justifications for the safety of transformations are not limited
to POSTF1X. For example, Figure 4.21 shows that the EL numerical expressions
(+ NE NE) and (* 2 NE) have the same meaning. So one can safely be sub-
stituted for the other in any EL program without changing the meaning of the
program.

Exercise 4.8
a. Prove equalities (4.8)—(4.10).

b. Equality (4.10) requires that ¢ map errorStack to errorStack. Show that the equality
is not true if this requirement is violated.

Exercise 4.9

a. We have seen that (postfix 2 3 sub swap pop) and (postfix 2 3 sub) areequiv-
alent programs. But in general it is not safe to replace the command sequence
3 sub swap pop by 3 sub. Give a context in which this replacement would change
the meaning of a program.

b. Use denotational reasoning to show that it is safe to replace any of the following
command sequences by 3 sub swap pop:

i swap pop 3 sub
ii. (3 sub) swap pop exec

ili. 3 2 nget swap sub swap pop swap pop

150 Chapter 4 Denotational Semantics

Exercise 4.10 Use the POSTFI1X denotational semantics to either prove or disprove the
purported observational equivalences in Exercise 3.28 on page 98.

Exercise 4.11 Use the EL denotational semantics to either prove or disprove the safety
of the EL transformations in Exercise 3.33 on page 99.

4.4.3 Technical Difficulties

The denotational definition of POSTFIX depends crucially on some subtle details.
As a hint of the subtlety, consider what happens to our denotational definition
if we extend POSTF1X with our old friend dup. A valuation clause for dup seems
straightforward:

Cldup] = As. (push (top s) s)

At the same time we know that adding dup to the language introduces the pos-
sibility that programs may not terminate. Yet, the signature for P declares that
programs map to the Answer domain, and the Answer domain does not include
any entity that represents nontermination. What’s going on here?

The source of the problem is the recursive structure of the semantic domains
for POSTFIX. As the domain definitions show, the StackTransform, Stack, and
Value domains are mutually recursive:

StackTransform = Stack — Stack
Stack = Value* + Error
Value = Int + StackTransform

It turns out that solving such recursive domain equations sometimes requires
extending some domains with an element that models nontermination, written L
and pronounced “bottom.” We will study this element in more detail in the next
chapter, where it plays a prominent role. In the case of POSTFIX — whether or
not we add dup — it turns out that both the Stack and Answer domains must
include |, and this allows the domains to model the meaning of nonterminating
command sequences.

4.5 Relating Operational and Denotational Semantics

We have presented the operational and denotational semantics of several simple
languages, but have not studied the connection between them. What is the
relationship between these two forms of semantics? How can we be sure that
reasoning done with one form of semantics is valid in the other?

4.5.1 Soundness 151

4.5.1 Soundness

Assume that an operational semantics has a deterministic behavior function of
the form

behger : (Prog x Inputs) — Outcome

and that the related denotational semantics has a meaning function
meaning : (Prog x Args) — Answer

where Args is a domain of program arguments and Answer is the domain of
final answers. Further suppose that there is a function in that maps between the
syntactic and semantic input domains.

in : Inputs — Args

Finally suppose that there is an agreement relation x C Answer x Outcome
that relates denotational meanings with operational behaviors. We will pro-
nounce a X o as “the denotational answer a agrees with the operational out-
come 0.” Then we define the following notion of soundness:

Definition 4.11 (Denotational Soundness) A denotational semantics
is sound with respect to (wrt) an operational semantics iff for all pro-
grams P and inputs I, meaning (P (in I)) X behger (PI).

This definition says that the denotational semantics agrees with the operational
semantics on the result of executing a program on any given inputs. Figure 4.22
shows how the parts of the soundness definition can be instantiated for EL and
PosTF1xX. Note that the Outcome domain does not include the nontermination
domain LoopOut (see page 50) because both EL and POSTFIX are terminating
languages.

We will now sketch a proof that the denotational semantics for POSTFIX is
sound wrt the operational semantics for POSTFI1X. The details of this proof,
and a denotational soundness proof for EL, are left as Exercises 4.13 and 4.14.
The essence of a denotational soundness proof for terminating languages like
PosTFIx and EL is (1) defining the meaning of an operational configuration, (2)
showing that each transition in the POSTFIX SOS preserves this meaning, and
(3) showing that the meanings of final and stuck configurations agree with the
outcomes of these configurations. Restricting attention to terminating languages
simplifies the proof, because it is not necessary to consider the case of infinitely
long transition paths (in which case beh 4ot (P, I) = 00). For languages containing

152 Chapter 4 Denotational Semantics

I € Inputs = IntLit*

0 € Outcome = IntLit + StuckOut
StuckOut = {stuckout}

ar € Args = Int*

a € Answer = Int + Error
Error = {error}

stuck : Outcome = (StuckOut—Outcome stuckout)

errorAnswer : Answer = (Error — Answer error)
in : Inputs — Args = AN*. (map N N*)

x C Answer x Outcome
x = {((Int—Answer (N[N])), (IntLit>—Outcome N)) | N € IntLit}
U {{errorAnswer, stuck)}

beh ger : (Prog x Inputs) — Outcome
beh get gL 1s the beh ger defined on page 51 in conjunction with the EL SOS.
beh get postria is the behge; defined on page 51 in conjunction with the POsSTFI1x SOS.

meaning : (Prog x Args) — Answer
meaninggr, = MNP, ar). (Per[P] ar),

where Pgy, is defined in Figure 4.9 on page 129.
meaningpostFiz =)\<Pa ar) . (PPostFix [[P]] ar),

where P postrie is defined in Figure 4.13 on page 137.

Figure 4.22 Instantiation of soundness components for EL. and POSTFIX.

nonterminating programs, a denotational soundness proof must also explicitly
handle this case, which can be challenging.

Recall that a configuration in the PosTFI1X SOS has the form CommandSeq
X Stack, where

S € Stack = Value*
V € Value = IntLit + CommandSeq

Figure 4.23 defines a function V that maps an operational value to a denotational
one, a function & that maps an operational stack to a denotational one, and a
function CF that maps an operational configuration to an element of Answer.5
Using these functions, we establish three lemmas that will lead to a proof of
denotational soundness.

5When we talk about operational and denotational semantics together, note the distinction
between syntactic or SOS domains, such as Value, and semantic domains, such as Value.

4.5.1 Soundness 153

V : Value — Value
V[N] = (Int— Value NNJ])

V[(Q)] = (StackTransform— Value Q[Q])
S : Stack — Stack = AV*. (Value*—Stack (map V V*))

CF : CommandSeq x Stack — Answer = X Q,S) . resToAns (top (Q[Q] S[S]))

Figure 4.23 Meaning of a POSTFIX configuration.

Lemma 4.12 (CF Calculates the Meaning of PostFix Program) For
any POSTFIX program P = (postfix Npumargs @) and numerals N*,

(P[P] (in N*)) = CF[(IF (P,N"))]
where IF s the input function defined in Figure 3.3 on page 53 that maps
a POSTFIX program and inputs into an initial SOS configuration.

Lemma 4.13 (PostFix Transitions Preserve Meaning) For any tran-

sition cf = cf’, CFlef] = CFlef'].

Lemma 4.14 (PostFix Stuck Configurations Denote Errors) For
any stuck configuration cf, CF[cf] = errorAnswer.

We now give proofs of these three lemmas. In the proofs, we will use the
following equalities, which are left as exercises (Exercise 4.12).

Q[Q: @ Qz] = (Q[Q:] o Q[Q2]) (4.15)
(Q[Q] errorStack) = errorStack (4.16)

Proof of Lemma 4.12 (CF Calculates the Meaning of PostFix Program):
There are two cases:

1. When N[Npumargs] = (length N*), both the left- and right-hand sides of the
equation denote

resToAns (top (Q[Q] (Value* —Stack (map (Int—Value o N) N*))))

2. When N[Npumargs] 7# (length N*), the left-hand side of the equation denotes
errorAnswer and the right-hand side denotes

154 Chapter 4 Denotational Semantics

C]—'[[(exec . Qreszh (Qemec) . S>]]

= resToAns (top (Q[exec. Qrest] (Value* —Stack (V[(Qezec)] - v*)))),
where v* = (map V S)

= resToAns
(top (Q[Qrest] (Clexec] (Value* —Stack (V[(Qexec)] - v*)))))

= resToAns
(top (Q[[Qrest]]
(transform (top (Value*—Stack (V[(Qezec)] - v*)))
(pop (Value* —Stack (V[[(Qemec)]] . U*))))))
= resToAns

(tOp (Q [[Qrest]]
(transform (Value — Result (StackTransform— Value Q[Qezec]))
(Value*—Stack v*))))

= resToAns (top (Q[Qrest] (Q[Qesec] (Value* —Stack v*))))

= resToAns (top ((Q[Qrest] o Q[Qexec]) (Value* —Stack v*)))

= resToAns (top (Q[Qrest @ Qegec] (Value*—Stack (map V S)))) , by (4.15)
= CF[(Qexec Q@ Qrest, S)]

Figure 4.24 Proof that the [execute] transition preserves meaning.

CF[(IF (P,N*))]

= Cf[[<“Command7 []Value>]]

= resToAns (top (Q[H]Command]] (ValUE*HStGCk HValue)))
= resToAns (top (Value*—Stack []valuc))

= errorAnswer O

Proof of Lemma 4.13 (PostFix Transitions Preserve Meaning): This
can be shown by demonstrating this equality for each of the POSTFIX rewrite
rules in Figure 3.4 on page 55. For example, one such rule is:

<exec . Qrest7 (Qezec) . S> = <Qe$ec @ Qresta S> [execute]

An equational proof that this rule preserves meaning is presented in Figure 4.24.

In this proof, we use the equality Q[Qrest @ Qezec] = (Q[Qrest] © Q[Qezec])- In
Exercise 4.13, you are asked to prove this equality and also show that the other
PosTFIX rewrite rules preserve meaning. &

Proof of Lemma 4.14 (PostFix Stuck Configurations Denote Errors):
This can be shown by enumerating the finite number of configuration patterns

4.5.1 Soundness 155

CF[(swap. @, [V])]
= resToAns (top (Q[swap. Q] (Value*—Stack [V[V]])))

= resToAns

(top (Q[Q] (push (top (pop (Value*—Stack [V[V]])))
(push (top (Value* —Stack [V[V]]))

(pop (pop (Value*—Stack [V[V]])))))))

= resToAns (top (Q[Q] (push (top (Value*—Stack []))
(push (Value — Result V[V])
(pop (Value*—Stack []))))))

= resToAns (top (Q[Q] (push errorResult
(push (Value —Result V[V]) errorStack))))

= resToAns (top (Q[Q] errorStack))
= resToAns (top errorStack), by (4.16)

= errorAnswer

Figure 4.25 Proof that the configuration (swap. @, [V]) denotes the error answer.

that stand for configurations in Irreducible ppsos, and showing that each denotes
the error answer. For example, one such pattern is (swap. @, [V]). Figure 4.25
shows that this configuration pattern denotes the error answer. In this figure,
we use the equality (Q[Q] errorStack) = errorStack for any @, which you are
asked to prove in Exercise 4.13. &

We’re now ready to put the lemmas together to show denotational soundness
for a POSTFIX program (postfix Npumargs @body) €xecuted on inputs N;;Lputs.
There are two cases:

L. N[Nnumargs] = (]ength N;Lpum) and the initial program configuration has a
transition path to a final configuration:

<Qbody7 NitLputs> é <[]C0mmand7 Nans . V:est>
In this case,

meaning ((postfix Npumargs Qbody), (in N{:Lputs»

= P[(postfix Npumargs Qvody)] (in Njipuss)
= C]:[[([F <(pOStfiX Nnuma’rgs QbUdy)7Niy;Lputs>)]] ,by Lemma 4.12.

= CF(Qvody> Nippuss)] » where the IntLit —Value injections on the elements

of N, are omitted by the convention on page 56.

156 Chapter 4 Denotational Semantics

= CF[{[]command, Nans - Viess)] ; by Lemma 4.13 on each =.

=resToAns
(top (Q[] (Value* —Stack ((Int—Value NNgns]). (map V Vi)

= resToAns (top (Value*—Stack ((Int— Value N'[Nupns]). (map V VX))
= (Int—Answer N[Ngpns])
X (IntLit—Outcome Ngyps)

= behdetPostFiz <(pOStfiX Nnumargs Qbody%Niﬁ;«Lputs)

2. N Nuumargs] # (length N}

mputs) or the initial program configuration has a

transition path to a stuck configuration. In these cases,
IF <(POStfiX Nnumargs Qbody)yN*> é cfstuck

where cfgycr 1S a stuck configuration. Then we have:

meaning ((postfix Npumargs @body), (1'11 N;Lputs»

= Pl(postfix Nuumargs Qbody)] (in N{:Lputs)

= CF[(IF ((postfix Npumargs Qbody)s Ninputs))] » by Lemma 4.12.
= CF|cfstuck] , by Lemma 4.13 on each =.

= errorAnswer, by Lemma 4.14.

X stuck

= behget postriz ((POStELX Npumargs Qbody) s Nipputs)

This completes the sketch of the proof that the denotational semantics for
PosTFIX is sound with respect to the operational semantics for POSTF1X.

Exercise 4.12 Prove equalities (4.15) and (4.16).

Exercise 4.13 Complete the proof that the denotational semantics for POSTFIX is
sound with respect to its operational semantics by fleshing out the following details:

a. Show that Lemma 4.13 holds for each transition rule in Figure 3.4 on page 55.

b. Make a list of all stuck configuration patterns in the PosTFi1x SOS and show that

Lemma 4.14 holds for each such pattern.

Exercise 4.14 Show that the denotational semantics for each of the following languages
is sound with respect to its operational semantics: (1) a version of ELMM whose oper-
ators include only +, -, and *; (2) full ELMM; (3) ELM; and (4) EL.

4.5.2 Adequacy 157

4.5.2 Adequacy

The notion of soundness developed above works at the level of a whole pro-
gram. But often we want to reason about smaller phrases within a program.
In particular, we want to reason that we can substitute one phrase for another
without changing the operational behavior of the program. The following ade-
quacy property says that denotational equivalence implies the operational notion
of observational equivalence:

Definition 4.17 (Adequacy) Suppose that P ranges over program con-
texts, H ranges over the kinds of phrases that fill the holes in program
contexts, and H is a denotational meaning function for phrases. A deno-
tational semantics is adequate with respect to (wrt) an operational
semantics if the following holds:

H[H;] = H[H2] implies H; =ops He

Recall from page 91 that H; =,,; He means that for all program contexts P and
all inputs I, beh (P{H;},I) = beh (P{Hz},I).

In the case of a deterministic behavior function, the following reasoning shows
that adequacy is almost implied by denotational soundness:

H[H:] = H[H:]
implies P[P{H;}] = P[P{Hz}] , by compositionality of denotational semantics
implies meaning (P{H;}, (in I)) = meaning (P{Hy}, (in I)) for any inputs I
implies behger (P{H;},I) X a X behger (P{Hz},I) , by soundness,

where meaning (P{H,},(in I)) = a = meaning (P{Hz}, (in I))

(In the final step, the symbol x stands for the relation in Outcome x Answer
that is the inverse of the relation x in Answer x Outcome.) But demonstrating
the observational equivalence H; =,,s Hy requires showing that

behaer (P{H;},T) = behae (P{Ho},I)

To conclude this from the above line of reasoning requires the following property
for x:

Definition 4.18 (Observational Uniqueness) The agreement relation
X C Answer x QOutcome is observationally unique iff for every a €
Answer and o7, 0o € Outcome, a X 05 and a X 0y implies 0; = 0s.

158 Chapter 4 Denotational Semantics

Observational uniqueness says that every denotational answer agrees with at most
one operational outcome. In other words, x is a partial function from Answer
to Outcome: an answer may not agree with any outcome, but if it does, it can
agree with exactly one.

The agreement relation for EL and POSTF1X in Figure 4.22 has observational
uniqueness. In each language, observable outcomes are either integer numerals or
a stuck token. Assuming that only canonical integer numerals are used (e.g., 17
rather than 017 or +17) every integer answer agrees with only the unique numeral
that represents it. And the error answer agrees with only the stuck token. Since
the agreement relation has observational uniqueness, we can conclude that the
denotational semantics for EL and POSTFIX are adequate.

Note that the agreement relation for POSTFIX would not have observational
uniqueness if executable sequences at the top of a final stack could be returned as
observable outcomes. For this extension to POSTF1X, we would need to extend the
agreement relation so that a new semantic answer (a stack transform) would agree
with any new observable syntactic outcome (an executable sequence) that denotes
it. For example, the executable sequences (1 add 2 add) and (3 add) both
denote the stack transform (push (Value —Result (Int— Value 3))), so this stack
transform would agree with both sequences. In such a framework, two outcomes
that a given answer agrees with would not necessarily be syntactically identical,
and the reasoning sketched above for adequacy would fail. However, as shown in
Exercise 4.15, adequacy can be restored in this situation if the output function
of the SOS maps all executable sequence outcomes to the token executable.

The above discussion allows us to conclude that any language with denota-
tional soundness and an observationally unique agreement relation has the ade-
quacy property. Since ELL and POSTFIX satisfy both of these conditions, they
have the adequacy property. In turn, this property justifies the use of denota-
tional reasoning for proving the safety of program transformations. For example,
the PosTF1x Denotational Equivalence Theorem on page 147 is a corollary of
the adequacy of PosSTFiX.

Exercise 4.15 Consider a variant of POSTFIX in which the SOS outcome of a POSTFI1X
program whose final configuration has an executable sequence at the top is the token
executable (see Exercise 3.31 on page 99).

a. Modify the denotational semantics of POSTFI1X (both domains and valuation func-
tions) so that the transform at the top of the final stack can be the result of executing
a POSTFIX program.

b. Show that your modified denotational semantics is denotationally sound with respect
to the modified operational semantics by tweaking the denotational soundness proof
for POSTFIX presented in Section 4.5.1.

4.5.3 Full Abstraction 159

c. Show that this POSTFIX variant has the adequacy property. This provides an alterna-
tive proof to the one in Exercise 3.31 that transform equivalence implies observational
equivalence for this variant of PosTFIX.

4.5.3 Full Abstraction

Changing the unidirectional implication of adequacy to a bidirectional implication
yields a stronger property called full abstraction:

Definition 4.19 (Full Abstraction) Suppose that P ranges over program
contexts, H ranges over the kinds of phrases that fill the holes in program
contexts, and H is a denotational meaning function for phrases. A denota-
tional semantics is fully abstract with respect to (wrt) an operational
semantics if the following holds:

H[H;] = H[H2] iff Hi =obs Ho

In addition to adequacy, full abstraction requires that observational equivalence
imply denotational equivalence. That is, program fragments that behave the
same in all contexts must have the same denotational meaning.

The denotational semantics of the various dialects of EL we have considered
are all fully abstract. Consider the restricted version of ELMM in which the
only operations are +, -, and *. In this language, every numerical expression
denotes an integer. We already know that the denotational semantics for this
language is adequate wrt the operational semantics; to prove full abstraction,
we need to show that observational equivalence implies denotational equivalence.
Suppose that NE; =,,; NE». Modeling nonexistent inputs by unit, this means
that for all restricted ELMM program contexts P, behge; (P{NE;}, unit) =
behget (P{NEg2}, unit). The program context P = (elmm O) is particularly
useful because the denotational soundness of restricted ELMM implies that
NE[NE] x behge ((elmm NE), unit) for any numerical expression NE. Let o =
behger ((elmm NE;),unit) = behget ((elmm NEp), unit). Then the denotational
soundness of restricted ELMM implies:

NE[NE] x 0 x NE[NE]
In restricted ELMM, the agreement relation is defined as:
x = {((Int—Answer NN]), (IntLit>—Outcome N)) | N € IntLit}

Assuming that only canonical numerals are used, this relation defines a bijection
between integer answers and integer numeral outcomes. So NE[NE;] x o x
NE[NE] implies NE[NE ;| = NE[NE;]. Via similar reasoning, we can show

160 Chapter 4 Denotational Semantics

that all the dialects of EL we have studied have a fully abstract denotational
semantics.

Surprisingly, the denotational semantics for POSTFIX is not fully abstract!
As argued in Section 4.4.3, even though all POSTFIX programs terminate, the
denotational domains for answers and stacks in POSTFIX must include an entity
denoting nontermination, which we will write as 1. This is the denotational ana-
logue of the operational token co. Even though no POSTFIX command sequence
can loop, the presence of L in the semantics can distinguish the meanings of some
observationally equivalent command sequences.

For example, consider the following two command sequences:

Q: =1 0 div
Q2 =exec 1 0 div

(; signals an error for any stack. @ first executes the top value Vi, on the
stack and then executes 1 0 div. We argue that ()2 is observationally equivalent
to @7, because it will also signal an error for any stack:

o if the stack is empty or if Vi, is not an executable sequence, the attempt to
perform exec will fail with an error;

o if Vi, is an executable sequence, Q2 will execute it. Since all POSTFIX com-
mand sequences terminate, the execution of Vj,, will either signal an error, or
it will terminate without an error. In the latter case, the execution continues
with 1 0 div, which necessarily signals an error.

Even though Q; =.s @2, they do not denote the same stack transform! To
see this, consider a stack transform ¢, = As._ L and a stack Syeiq Whose
top value is (StackTransform — Value tyeirg). BOth tyeirg and Syeiq are “weird”
in the sense that they can never arise during a POSTFI1X computation, in which
all stack transforms necessarily terminate. Nevertheless, t,eirq i a legal element
of the domain StackTransform, and it must be considered as a legal stack ele-
ment in denotational reasoning. Observe that (Q[Q;] Sweira) = errorStack, but
(9Q[Q2] Sweira) = L — i.e., the latter computation does not terminate. So @y
and @2 denote distinct stack transforms even though they are observationally
equivalent.

Intuitively, full abstraction says that the semantic domains don’t contain any
extra “junk” that can’t be expressed by phrases in the language. In the case
of PosTFIx, the domains harbor 1 even though it cannot be expressed in the
language.

4.5.4 Operational versus Denotational: A Comparison 161

4.5.4 Operational versus Denotational: A Comparison

We have noted in this chapter that a denotational semantics expresses the mean-
ing of a program in a much more direct way than an operational semantics. Fur-
thermore, the compositional nature of a denotational semantics is a real boon for
proving properties of programs and languages and for constructing interpreters
and translators. Why would we ever want to choose an operational semantics
over a denotational semantics?

For one thing, an operational semantics is usually a more natural medium for
expressing the step-by-step nature of program execution. The notion of “step”
is an important one: it is at the heart of a mechanistic view of computation; it
provides a measure by which computations can be compared (e.g., which takes
the fewest steps); and it provides a natural way to talk about nondeterminism
(choice between steps) and concurrency (interleaving the steps of more than one
process). What counts as a natural step for a program is explicit in the rewrite
rules of an SOS. These notions cannot always be expressed straightforwardly in
a denotational approach. Furthermore, in computer science, the bottom line is
often what actually runs on a machine, and the operational approach is much
closer to this bottom line.

From a mathematical perspective, the advantage of an operational semantics
is that it’s often much easier to construct than a denotational semantics. Since the
objects manipulated by an SOS are simple syntactic entities, there are very few
constraints on the form of an operational semantics. Any SOS with a determinis-
tic set of rewrite rules specifies a well-defined behavior function from programs to
answer expressions. Creating or extending a set of rewrite rules is fairly painless
since it rarely requires any deep mathematical reasoning. Of course, the same
emphasis on syntax that facilitates the construction of an operational semantics
limits its usefulness for reasoning about programs. For example, it’s difficult to
see how some local change to the rewrite rules affects the global properties of a
language.

Constructing a denotational semantics, on the other hand, is mathematically
much more intensive. It is necessary to build consistent mathematical represen-
tations for each kind of meaning object. The difficulty of building such models
in general is illustrated by the fact that there was no mathematically viable in-
terpretation for recursive domain equations until Dana Scott invented one in the
early 1970s. Since then, various tools and techniques have been developed that
make it easier to construct a denotational semantics that maps programs into a
restricted set of meanings. Extending this set of meanings requires potentially
difficult proofs that the extensions are sound, so most semanticists are content to

162 Chapter 4 Denotational Semantics

stick with the well-understood meanings. This class of meanings is large enough,
however, to facilitate a wide range of formal reasoning about programs and pro-
gramming languages.

Notes

Landin observed a correspondence between ALGOL 60 and the lambda calculus
and suggested that this correspondence could be the basis for a formal description
of the semantics of ALGOL 60 [Lan65a, Lan65b]. The notion of using the lambda
calculus to define programming language semantics in a formal way is the essence
of denotational semantics, which was developed by Strachey and Scott [Str00,
SS71, MS76).

For a tutorial introduction to denotational semantics, we recommend the
articles [Ten76] and [Mos90]. Coverage of both operational and denotational se-
mantics, along with their use in reasoning about several simple programming lan-
guages, can be found in several semantics textbooks [Gun92, Win93, Mit96]. Full-
length books devoted to denotational semantics include [Gor79, Sto85, Sch86].

Our notions of denotational soundness and adequacy are somewhat different
from (but related to) those in the literature. For a discussion of the traditional
approach to soundness, adequacy, and full abstraction, see [Gun92]. Seminal
papers on full abstraction are [Mil77] and [Plo77].

5)

Fixed Points

This is a quotation for the Fixed Points chapter.

— Turbak and Gifford with Sheldon
Design Concepts in Programming Languages, Chapter 5

Recursive definitions are a powerful and elegant tool for specifying complex struc-
tures and processes. While such definitions are second nature to experienced pro-
grammers, novices are often mystified by recursive definitions. Their confusion
often centers on the question: “How can something be defined in terms of itself?”
Sometimes there is a justifiable cause for confusion — not all recursive definitions
make sense!

In this chapter, we carve out a class of recursive definitions that do make sense,
and present a technique for assigning meaning to them. The technique involves
finding a fized point of a function derived from the recursive definition. The results
and techniques of this chapter will find frequent application in later denotational
descriptions of programming languages as we define recursive valuation functions
and recursive domains.

5.1 The Fixed Point Game

There are fized limits beyond which and short of which right cannot find a
resting place.

— Horace, Satires

5.1.1 Recursive Definitions
For our purposes, a recursive definition is an equation of the form

where ... z ... designates a mathematical expression that contains occurrences
of the defined variable x. Mutually recursive definitions of the form

164 Chapter 5 Fixed Points

Ty, = i XL ee. Ty v
can always be rephrased as a single recursive definition

x = (... (Projl z) ... (Projn x) ...,

... (Proj1 x) (Projn z) ...)

where x stands for the n-tuple (x1, ..., z,) and Proji extracts the ith element of
the tuple. For this reason, it is sufficient to focus on recursive definitions involving
a single variable.

A solution to a recursive definition is a value that makes the equation true
when substituted for all occurrences of the defined variable. A recursive definition
may have zero, one, or more solutions. For example, suppose that x ranges over
the integers. Then:

e r =1+ x has no solutions;

e r =4 — z has exactly one solution (2);

e z =2 has two solutions (—3, 3);

e x = z has an infinite number of solutions (each integer).

It is important to specify the domain of the defined variable in a recursive
definition, since the set of solutions depends on this domain. For example, the

recursive definition z = ﬁ has

e zero solutions over the integers (with division interpreted as a quotient function
on integers);

e one solution over the positive rationals (3);
e two solutions over the rationals (3, —1);
e four solutions over the complex numbers (%, —%, %, —%)

In fact, many numerical domains were invented precisely to solve classes of equa-
tions that were insoluble with existing domains.

Although we are most familiar with equations that involve numeric variables,
equations can involve variables from any domain, including product, sum, se-

5.1.1 Recursive Definitions 165

quence, and function domains. For example, consider the following recursive
definitions involving an element p of the product domain Nat x Nat:

e p={((Proj2 p),(Proj1 p)) has an infinite number of solutions of the form (n, n),
where n : Nat.

e p={((Proj2 p),(Proj1 p) —na 1) has the unique solution (0,0). (As noted on
page 1163, the natural number subtraction operation n; — yu n2 is defined to
be 0 when n; <pgt n2.)

e p={((Proj2 p),(Proj1 p) +1) has no solutions in Nat x Nat. The first element
n of a solution p= (n,...) would have to satisfy the equation n = n + 1, and
this equation has no solutions.

We can also have recursive definitions involving an element s of the sequence
domain Nat*:

e s=(cons 3 (tail s)) has an infinite number of solutions: all nonempty se-
quences s whose first element is 3.

e s=(cons 3 s) has no solutions in Nat*, which includes only finite sequences of
natural numbers and so does not contain an infinite sequence of 3s. However,
this equation does have a solution in a domain that includes infinite sequences
of numbers in addition to the finite ones. We shall use the notation Nat* to
designate this domain.

e s=(cons 3 (tail (tail s))) has the unique solution [3]. This definition requires
that (a) (head s)=3 and (b) (tail s)= (tail (tail s)). In Nat*, (b) is satisfied
only if s is an empty sequence or a singleton sequence (recall that (tail []) is
defined to be []). Since (a) requires s to be a nonempty sequence beginning
with 3, (a) and (b) imply that s must be [3]. However, in Nat*, this equation
has an infinite number of solutions, since for any natural number 7n, an infinite
sequence of ns satisfies (b).

We will be especially interested in recursive definitions over function domains.
Suppose that f is an element of the domain Nat — Nat. Consider the following
recursive function definition of f:

f = An.if (n=0) thenOelse (2+ (f (n—1))) end

Intuitively, this equation is solved when f is a doubling function, but how do we
show this more formally? Recall that a function in Nat — Nat can be viewed as

166 Chapter 5 Fixed Points

its graph, the set of argument /result pairs for the function. The graph associated
with the lambda expression is

0) then 0 else (
=0) then 0 else (
0) then 0 else (
0) then 0 else (

DN NN DN

After simplification, this becomes

{(0,0), (1, 2+ (£ 0)), 2,2+ (f 1)), B2+ (f2)), -}

If f is a doubling function, then the graph of the right-hand side can be further
simplified to

{{(0,0), (1,2), (2,4), (3,6), ... }

This is precisely the graph of the doubling function f on the left-hand side of the
equation, so the equation holds true. It is not difficult to show that the doubling
function is the only solution to the equation; we leave this as an exercise.

As with recursive definitions over other domains, recursive definitions of func-
tions may have zero, one, or more solutions. Maintaining the assumption that
f : Nat — Nat, the definition

J o= .1+ (f)

has no solutions, because the result n, for any given argument would have to
satisfy n, = n, + 1. On the other hand, the definition

f = An.(f (1+n)

has an infinite number of solutions: for any given constant n., a function with
the graph {(n,n.) | n : Nat} is a solution to the equation.

5.1.2 Fixed Points
If d ranges over domain D, then a recursive definition

d = (..d..)

can always be encoded as the D — D function

M. (...d..)

5.1.2 Fixed Points 167

We will call this the generating function for the recursive definition. For
example, if r : Real, the numeric equation » = 1— (r x r) can be represented by
the Real — Real generating function Ar. (1 — (r x r)). Similarly, the recursive
function definition

dbl: Nat — Nat = An .if (n =0) then O else (2+ (dbl (n—1))) end
can be represented by the generating function

gavl : (Nat — Nat) — (Nat — Nat)
=X . An. if(n=0) thenO else 2+ (f (n—1))) end

where f : Nat — Nat. A generating function is not recursive, so its meaning can
be straightforwardly determined from its component parts.

A solution to a recursive definition is a fixed point of its associated generating
function. A fixed point of a function g: D — D is an element d : D such that
(g d) = d. If a function in D — D is viewed as moving elements around the
space D, elements satisfying the recursive definition are the only ones that remain
stationary; hence the name “fixed point.”

To build intuitions about fixed points, consider functions from the unit in-
tervall [0;1] to itself. Such functions can be graphed in the unit square, with
arguments along the horizontal axis and results along the vertical axis:

k=== A
| |
| S
| |
o |
.- |
L ——— J
O0 1

Every point where the function graph intersects the diagonal is a fixed point of
the function. Figure 5.1 shows the graphs of functions with zero, one, two, and
an infinite number of fixed points.

It is especially worthwhile to consider how a generating function like gg
moves elements around a domain of functions. Here are a few examples of how
gaqp maps various functions f : Nat — Nat :

e If f is the identity function An.n, then (g, f) is the function that increments
positive numbers and returns 0 for 0:

An . if (n=0) thenOelse (n+ 1) end

!The unit interval is the set of real numbers between 0 and 1, inclusive. We use the notation
[0; 1] rather than the more traditional notation [0, 1] because in our domain notation the latter
means a sequence of the two numbers 0 and 1.

168 Chapter 5 Fixed Points

Figure 5.1 Functions on the unit interval with zero, one, two, and an infinite number
of fixed points.

o If f is the function An . ((n +1)? — 2) then (g, f) is the function An . n?

e If f is a doubling function, then (g, f) is also the doubling function, so the
doubling function is a fixed point of gg;. Indeed, it is the only fixed point of

8dbl-

Since generating functions D — D correspond to recursive definitions, their
fixed points have all the properties of solutions to recursive definitions. In par-
ticular, a generating function may have zero, one, or more fixed points, and the
existence and character of fixed points depends on the details of the function and
the nature of the domain D.

5.1.3 The Iterative Fixed Point Technique

Above, we saw that recursive definitions can make sense over any domain. How-
ever, the methods we used to find and/or verify solutions in the examples were
rather ad hoc. In the case of numeric definitions, there are many familiar tech-
niques for manipulating equations to find solutions. Are there any techniques
that will help us solve recursive definitions over more general domains?

There is a class of recursive definitions for which an iterative fixed point
technique will find a solution of the definition by finding a fixed point of the
generating function encoding the recursive definition. The iterative fixed point
technique is motivated by the observation that it is often possible to find a fixed
point for a generating function by iterating the function starting with an appro-
priate initial value.

As a graphical example of the iteration technique, consider a transformation
T on two-dimensional line drawings that is the sequential composition of the
following three steps:

5.1.3 The Iterative Fixed Point Technique 169

... T JI, S [L

Figure 5.2 Iterating the transformation T' starting with an empty line drawing leads
to a fixed point in four steps.

1. Rotate the drawing 90 degrees counterclockwise about the origin.
2. Translate the drawing right by one unit.
3. Add a line from (0,0) to (0,1).

Figure 5.2 shows what happens when T is iterated starting with the empty draw-
ing. Each of the first four applications of T" adds a new line until the unit square
is produced. Subsequent applications of 7" do not modify the square; it is a fixed
point of T

In the line drawing example, a fixed point is reached after four iterations of
the transformation. Often, iterating a generating function does not yield a fixed
point in a finite number of steps, but only approaches one in the limit. A classic
numerical example is finding square roots. The square root of a nonnegative
rational number n is a solution of the recursive definition

T+

r = 3

Iterating the generating function for this definition starting with n yields a se-
quence of approximations that converge to y/n. For example, for n = 3 the
generating function is

8sqrts : Rat — Rat = Aq . q;%
and the first few iteration steps are:
(ggqrtff 3) = 3
(ggqrtff 3) = 2
(82,45 3) T =175
(835 3) = 2L ~ 1.7321428571428572

(gﬁmg 3) = 18817 ~ 1.7320508100147276

170 Chapter 5 Fixed Points

Since /3 is not a rational number, the fixed point clearly cannot be reached in
a finite number of steps, but it is approached as the limit of the sequence of
approximations.

Even in nonnumeric domains, generating functions can produce sequences of
values approaching a limiting fixed point. For example, consider the following
recursive definition of the even natural numbers:

evens = {0} U {(n+ 2) | n € evens}
The associated generating function is
Zevens : P(Nat) — P(Nat) = As.{0}U{(n+2) |n € s}

where s ranges over the powerset of Nat. Iterating geyens starting with the empty
set yields a sequence of sets that approaches the set of even numbers in the limit:

(8hens 1) = O

(8hvens 1) = {0}

(820ens 1) = {0, 2}
(82ens {3) = {0, 2, 4}
(8hens 1) = {0, 2, 4, 6}

The above examples of the iterative fixed point technique involve different
domains but exhibit a common structure. In each case, the generating function
maps an approximation of the fixed point to another approximation that is at
least as good, where the notion of “at least as good” depends on the details of
the function:

e In the line-drawing example, picture b is at least as good as picture a if b
contains at least as many lines of the unit square as a.

e In the square-root example, number b is an approximation to /n that is at
least as good as number a if |0 — n| < |a? — n).

e In the even-number example, set b is at least as good as set a if a C b.

Moreover, in each of the examples, the sequence of approximations produced
by the generating function converges to a fixed point in the limit. This doesn’t
necessarily follow from the fact that each approximation is better than the pre-
vious one. For example, each element of the sequence 0,0.9,0.99,0.999,... is

5.1.3 The Iterative Fixed Point Technique 171

least fixed point

Figure 5.3 The “game board” for the iterative fixed point technique. Starting at
element dy, the generating function g calculates a sequence of domain elements, each
of which is a better approximation to the fixed point of g For an appropriate domain,
generating function g and starting element dp, this process reaches the fixed point or
approaches it as a limiting value.

closer to v/2 than the previous element, but the sequence converges to 1, not to
v/2. The notion of approaching a limiting value is central to the iterative fixed
point technique.

The basic structure of the iterative fixed point technique is depicted in Fig-
ure 5.3. The generating function g: D — D is defined over a domain D whose
values are assumed to be ordered by their information content. A line connects
two values when the lower value is an approximation to the higher value. That is,
the higher value contains all the information of the lower value plus some extra
information. What counts as “information” and “approximation” depends on the
problem domain. When values are sets, for instance, a line from a up to b might
indicate that a C b. In general, a lower value may approximate many higher
values. In Figure 5.3, this is represented by multiple branches leading upward
from a node. (To keep the diagram uncluttered, only the initial stubs of most
branches are depicted.)

In the iterative fixed point technique, iteratively applying g from an appro-
priate starting value dy yields a sequence of values with increasing information
content. Intuitively, iterative applications of g climb up through the ordered

172 Chapter 5 Fixed Points

Figure 5.4 An example in which the iterative fixed point technique cannot find a fixed
point of the picture transformation 7' for a nonempty initial picture.

values by refining the information of successive approximations. If this process
reaches a value d; such that d; = (g d;), then the fixed point d; has been found.
If this process never actually reaches a fixed point, it should at least approach a
fixed point as a limiting value.

The iterative fixed point technique does not work for every generating func-
tion g: D — D. It depends on the details of the domain D, the function g, and
the starting point dp. The technique must certainly fail for generating functions
that have no fixed points. Even when a generating function has a fixed point,
the iterative technique won’t necessarily find it. E.g., iterating the generating
function for n = % starting with any nonzero rational number ¢ yields an al-
ternating sequence g, %, q, %, ... that never gets any closer to the fixed point

v/3. Figure 5.4 shows an example in which the technique does not find a fixed
point of T" for an initial picture. Instead, it eventually cycles among four distinct
pictures.

Moreover, there may be more than one fixed point, and which one you find
may depend on where you start. As shown in Figure 5.5, if we start with an “X”
in the upper right quadrant, the iterative fixed point technique applied to the
picture transformation T yields a different fixed point than when we start with
an empty picture.

In the next section, we will describe an important class of generating functions
that are guaranteed to have a fixed point. A fixed point of these functions can
be found by applying the iterative fixed point technique starting with a special
informationless element called bottom. Such functions may have more than one

5.1.3 The Iterative Fixed Point Technique 173

______ >< i X I M I X Lo A

Figure 5.5 A different initial picture can lead to a different fixed point for the picture
transformation 7.

fixed point, but the one found by iterating from bottom has less information than
all the others — it is the least fixed point. We will choose this distinguished
fixed point as the solution of the associated recursive definition. This solution
matches our operational intuitions about what solution the computer will find
when the recursive definition is expressed as a program. We are guaranteed
to be able to solve any recursive definition whose generating function is in this
special class.

Exercise 5.1 Above, we showed two fixed points of the picture transformation 7.
a. Draw a third line drawing that is a fixed point of 7.
b. How many fixed points does T" have?

c. Characterize all the fixed points of T. That is, what properties must a picture have
in order to be a fixed point of T'7

d. Figure 5.4 shows an initial picture for which the iterative technique finds a cycle of
four distinct pictures related by T rather than a fixed point of 7. Give an initial
picture for which the iterative technique finds a cycle containing only two distinct
pictures related by 7. In the case of T, can the iterative technique find cycles of
pictures with periods other than 1, 2, and 47

Exercise 5.2 For each of the following classes of functions from the unit interval to
itself, indicate the minimum and maximum number of fixed points of functions in the
class:

. constant functions (i.e., functions of the form Az . a);

=

b. linear functions (i.e., functions of the form Az . ax + b);

c. quadratic functions (i.e., functions of the form Az . az? + bx + c);

d. continuous functions (i.e., functions whose graph is an unbroken curve);

e. nondecreasing functions (i.e., functions f for which a < b implies (f a) < (f b);

f. nonincreasing functions (i.e., functions f for which a < b implies (f a) > (f b).

174 Chapter 5 Fixed Points

5.2 Fixed Point Machinery

In this section we present the mathematical machinery for defining a class of
functions for which a distinguished fixed point always exists and illustrate the
use of this machinery via several examples.

We begin in Section 5.2.1 by introducing the notion of a partial order, which
will be used to model the information content of domain elements. We will see
how the information ordering on the elements of a compound domain can be
derived from the information ordering on its component domains. Some domains
have a least element, called bottom, that can serve as the starting point for the
iterative fixed point technique. It can also be viewed as the representation of a
nonterminating computation.

We are most interested in partial orders for which the information-climbing
process illustrated in Figure 5.3 approaches a limiting value. These are called
complete partial orders or CPOs. We study these in Section 5.2.2. CPOs with a
bottom element are said to be pointed (Section 5.2.3). Pointed CPOs are good
domains for the iterative fixed point technique because their bottom element is
the natural starting point for the technique.

In Section 5.2.4, we define two information-preserving properties of functions:
monotonicity and continuity. Iterative application of a generating function g with
these two properties starting at the bottom element of a pointed CPO yields a
sequence of elements that approaches the least fixed point of g. This fundamental
result, known as the Least Fized Point Theorem, is shown in Section 5.2.5. Several
examples of this theorem are illustrated in Section 5.2.6. Section 5.2.7 shows that
a broad class of functions expressible in the metalanguage notation summarized
in Section A.4 are monotonic and continuous.

5.2.1 Partial Orders

A partial order is a pair (D,C) of a domain D and a binary ordering relation
C on D that is reflexive, transitive, and antisymmetric. Recall that a relation is
antisymmetric if @ £ b and b C a together imply a = pb. The notation a C b is
pronounced “a is weaker than b” or “b is stronger than a.” Later, we shall be
ordering elements by information content, so we will also pronounce a C b as “a
approximates b.” When the relation C is understood from context, it is common
to refer to the partial order (D,C) as D.

Partial orders are commonly depicted by Hasse diagrams, in which elements
(represented by points) are connected by lines. In such a diagram, a C b if and

only if there is a path from the point representing a to the point representing b

5.2.1 Partial Orders 175

®
a b c

Figure 5.6 A Hasse diagram for the partial order PO.

such that each link of the path goes upward on the page. For example, Figure 5.6
shows the Hasse diagram for the partial order PO on six symbols whose relation
is defined by the following graph:

{(2,2), (a,9), (a,e), (a,£), (b,b), (b,d), (b,e), (b, 1),
(c,c); (c,e), (e, 1), (d,d), (d;e), (d,£), (e,e), (f,f)}

A partial order need not relate all the elements of its domain. Two elements
of a partial order that are unrelated by C are said to be incomparable. For
example, the pairs of incomparable elements in PO are {a,b}, {a,c}, {b,c},
{c,d}, and {e, £}.

A total order is a partial order in which every two elements are related (i.e.,
no two elements are incomparable). For example, the natural numbers under the
traditional value-based ordering <, form a total order called w (omega). The
elements of a total order can be arranged in a vertical line in a Hasse diagram
(see Figure 5.7).

Although <y, may be the most familiar ordering on natural numbers, in
the context of our discussion of fixed points we will consider some alternative
orderings that are based on information content and may seem nonintuitive at
first glance. For example, a discrete partial order is one in which every pair
of elements is incomparable. Figure 5.8 depicts the discrete ordering Ty, for
Nat. In this partial order, numbers are not ordered by their value, but by their
information content. Each number approximates only itself. The C y,; relation
is clearly very different from the familiar <y, relation. From the perspective of
information content, we will often consider primitive semantic domains to have
the discrete ordering.

An upper bound of a subset X C D of a partial order (D, C) is an element
u € D that is stronger than every element of X; i.e., for every x in X, x C w.

176 Chapter 5 Fixed Points

Figure 5.7 The total order w of natural numbers under the traditional value-based
ordering < ;-

In PO, the subset {a,b} has upper bounds d, e, and f; the subset {a,b,c} has
upper bounds e and f; and the subset {e,f} has no upper bounds. The least
upper bound (lub?) of a subset X of D, written | |, X, is the upper bound
of X that is weaker than every other upper bound of X; such an element may
not exist. In PO, the lub of {a,b} is d, but neither {a,b,c} nor {e,f} has a
lub. There are symmetric notions of lower bound and greatest lower bound
(glb?), but our fixed point machinery will mainly use upper bounds.

An element that is weaker than all other elements in a partial order D is
called the bottom element and is denoted | p. Symmetrically, an element that
is stronger than all other elements in D is the top element (written Tp). Par-
tial orders need not have bottom and top elements. For example, PO and Nat
(ordered by C) have neither. The total order w has a bottom element (0) but
not a top element.

Any partial order D can be lifted to another partial order D | that has all
the elements and orderings of D, but includes a new element L p that is weaker
than all elements of D. If D already has a bottom element 1 p, then | p and
1 p, are distinct, with Lp being the weaker of the two. Symmetrically, the
notation D' designates the result of extending D with a new top element.

A flat partial order D is a lifted discrete partial order. Figure 5.9 depicts
the flat partial order Nat; of natural numbers. The element L4, acts as an
“unknown natural number” that approximates every natural number. It is often
interpreted as representing the “result” of a nonterminating computational pro-

2The pronunciation of “lub” rhymes with “club.”
3The abbreviation “glb” is pronounced “glub.”

5.2.1 Partial Orders 177

[Jeul
o~
o
[JOM]

Figure 5.8 The semantic domain Nat with the discrete ordering C ;.

J—Natl

Figure 5.9 The flat partial order Nat, .

cess. Flat partial orders will play an important role in understanding recursively
defined functions that return elements of primitive semantic domains like the
natural numbers (see Sections 5.2.4-5.2.7). In this context, we do not care about
the usual numerical ordering of the numbers in Nat, but instead care about an
information ordering that tells us whether the function diverges (i.e., returns the
bottom element Ly, of Nat)) or terminates (i.e., returns a nonbottom element
of Natj_).

A chain is a totally ordered, nonempty subset of a partial order. The chains
of PO include {a,d, e}, {c,f}, {b,f}, and {d}. In Nat,, the only chains are (1)
singleton sets and (2) doubleton sets containing 1 4, and a natural number.

Given partially ordered domains, we would like to define orderings on prod-
uct, sum, sequence, and function domains such that the resulting domains are
also partially ordered. That way, we will be able to view all our semantic do-
mains as partial orders. In the following definitions, assume that D and E are
arbitrary partial orders ordered by Cp and Cg, respectively. We will illustrate
the definitions with examples involving the two concrete partial orders G and H
in Figure 5.10.

Product Domains
D x F is a partial order under the following ordering:

(di,e1) Cpxp (d2,e2) iff d Cp do and e; Cg eg

178 Chapter 5 Fixed Points

d e
c

rPe—OT

G H
Figure 5.10 Two simple partial orders.
(b,d) (b,e)
b, c
(a,d) (a,e)

(a,c)

Figure 5.11 The product partial order G x H.

The partial order G x H is depicted in Figure 5.11. Note how the Hasse diagram
for G x H is visually the product of the Hasse diagrams for G and H. G x H
results from making a copy of G at every point of H (or, symmetrically, making
a copy of H at every point of G) and adding the extra lines specified by the
ordering.
Sum Domains
D + FE is a partial order under the following ordering:

(D—(D+E) d;) Cpyg (D—(D+E) dp) iff d; Cp dg

(E¥~(D+E) e;) Cpyg (E—=(D+E) eg) iff e; Cg e

This ordering preserves the order between elements of the same summand do-
main, but treats elements from different summands as incomparable. The Hasse
diagram for a sum partial order is simply the juxtaposition of the diagrams for
the summands (see Figure 5.12).

Function Domains

D — FE is a partial order under the following ordering:

f1 Ep—g fo iff, forall d in D, (f; d) CEg (f2 d).

5.2.1 Partial Orders 179

(G—=(G+H)b) (H—(G+H)d) (H—(G+H)e)

| N7

(G—(G+ H) a) (H—(G+H) c)

Figure 5.12 The sum partial order G + H.

{(a;d), (b, d)} {(a;d),(b,e)} {(a;e), (b, d)} {(a,e),(b,e)}

{(a;¢), (b, c)}

Figure 5.13 The function partial order G — H. Each node is labeled with a function
graph.

Consider using this ordering on the elements of G — H. As usual, a total function
from G to H can be represented by a graph of argument/result pairs. Figure 5.13
uses this notation to depict the partial order G — H.

Sequence Domains

There are two common ways to order the elements of D*. These differ in whether
sequence elements of different lengths are comparable.
e Under the prefix ordering,

[dy, do, ..., di] Cp= [df, d}y, ..., d]]
iff k<land d; Cp d forall 1 <i <k

If D is a discrete domain, this implies that a sequence s; is weaker than sp if
and only if s; is a prefix of s — i.e., s = s; @s’ for some sequence s’.

180 Chapter 5 Fixed Points

000

Figure 5.14 The sequence partial order Bit* under the prefix ordering.

As an example, suppose that Bit is the discrete partial order of the binary
digits 0 and 1. Then Bit* under the prefix order is isomorphic to the partial
order of binary numerals shown in Figure 5.14. (For example, the numeral 110
corresponds to the sequence [1,1,0]gj;. The “empty numeral” consisting of no
digits corresponds to the sequence []pj; that is the bottom element of Bit*.)
This partial order is an infinite binary tree rooted at the empty sequence.
Each element of the tree can be viewed as an approximation to all of the
elements of the subtree rooted at it. For example, 110 is an approximation
to 1100, 1101, 11000, 11001, 11010, etc. In computational terms, this notion
of approximation corresponds to the behavior of a computation process that
produces its answer by printing out a string of 0s and 1s from left to right,
one character at a time. At any time, the characters already printed are the
current approximation to the final string that will be produced by the process.

Note that if D has a nontrivial ordering relation — i.e., D is not a discrete
domain — the prefix ordering of D* is more complex than a simple tree.

e Under the sum-of-products ordering, D* is treated as isomorphic to the
infinite sum of products D° + D' + D? + D3 +

That is,
[di, dg, ..., di] Cpx [d}, dy, ..., di]
iff d; Cp dl foralll1<i<k

As in the prefix ordering, sequences are ordered component-wise by their ele-
ments, but the sum-of-products ordering treats sequences of different lengths

as incomparable. For example, under the sum-of-products ordering, Bit| * is
isomorphic to the partial order depicted in Figure 5.15.

5.2.1 Partial Orders 181

00 01 10 11

: L N\ X
N NP

1 11
Bit 7 Bit ! Bit, ”

Figure 5.15 The sequence partial order Bit | * under the sum-of-products ordering.

Discussion

Although we have stated that the above definitions are partial orders, we have
not argued that each ordering is in fact reflexive, transitive, and antisymmetric.
We encourage the reader to verify that these properties hold for each of the
definitions (Exercise 5.6).

The orderings defined above are not the only ways to order compound do-
mains, but they are relatively natural and are useful in many situations. Later,
we will refine some of these orderings (particularly in the case of function do-
mains). But, for the most part, these are the orderings that will prove useful for
our study of semantic domains.

Exercise 5.3 Using the partial orders G and H in Figure 5.10, draw a Hasse diagram
for each of the following nine compound partial orders:

a. G x G

b. Hx H

c. G—-G

d. H—-H

e. H—-(G

=

G* under the prefix ordering (show the first four levels)
H* under the prefix ordering (show the first four levels)

=

G* under the sum-of-products ordering (show the first three summands)

—-

H* under the sum-of-products ordering (show the first three summands)

182 Chapter 5 Fixed Points

Exercise 5.4 Suppose that A and B are finite partial orders with the same number
of elements, but they are not isomorphic. Partition the following partial orders into
equivalence classes based on isomorphism. That is, each class should contain all the
partial orders that are isomorphic to each other.

Ax A, AxB, BxA BXxB,
A+A A+ B, B+ A B+ B,
A—A A—B, B—A B—B

Exercise 5.5 Given a discretely ordered domain D, the powerdomain P (D) is a partial
order under the subset ordering:

S Cpp) S'ifSC S’

Draw the Hasse diagram for the partial order P({a,b, c}) under the subset ordering.

If D is a partial order that is not discrete, it turns out that there are many “natural”
ways to order the elements of the powerdomain P(D), each of which is useful for different
purposes. See [Sch86] or [GS90] for details.

Exercise 5.6 For each ordering on a compound domain defined above, show that the
ordering is indeed a partial order. I.e., show that the orderings defined for product, sum,
function, and sequence domains are reflexive, transitive, and antisymmetric.

5.2.2 Complete Partial Orders (CPOs)

A partial order D is complete if every chain in D has a least upper bound
in D. The term “complete partial order” is usually abbreviated CPO. Intuitively,
completeness means that any sequence of elements visited on an upward path
through a Hasse diagram must converge to a limit. Completeness is important
because it guarantees that the iterative fixed point technique converges to a
limiting value.

Here are some examples of CPOs:

e Any partial order with a finite number of elements is a CPO because every
chain is finite and necessarily contains its lub. PO, GG, and H from the previous
section are all finite CPOs.

e Any flat partial order is a CPO because every chain has at most two elements,
the stronger of which must be the lub. Nat; is a CPO with an infinite number
of elements.

e P(Nat) is a CPO in which the elements (each of which is a subset of the
naturals) are ordered by subset inclusion (see Exercise 5.5). It is complete
because the lub of every chain C' is the (possibly infinite) union of the elements
of C. Unlike the previous examples of CPOs, this is one in which a chain may

5.2.2 Complete Partial Orders (CPOs) 183

be infinite and not contain its own lub. Consider the chain C with elements
¢i, where ¢; is defined to be {n |n <i,n : Nat} Then:

LIP(Nat)C = U{{0}7{071}’{05172}7} = Nat

The lub of C'is the entire set of natural numbers, but no individual ¢; is equal
to this set.

e The unit interval under the usual ordering of real numbers is a CPO. It is
complete because the construction of the reals guarantees that it contains the
least upper bound of every subset of the interval. The unit interval is another
CPO in which chains do not necessarily contain their own lubs. For example,

the set of all rational numbers less than \/g does not contain %

e The partial functions from Nat to Nat (denoted Nat — Nat) form a CPO.
Recall that a partial function can be represented by a graph of argument /result
pairs. So the function that is undefined everywhere is represented by {}, the
function that returns 23 given 17 and is elsewhere undefined is represented by
{(17,23)}, and so on. The ordering of elements in this CPO is just subset
inclusion on the graphs of the functions. It is complete for the same reason
that P(Nat) is complete.

It is worthwhile to consider examples of partial orders that are not CPOs:

e The total order w depicted in Figure 5.7 is not a CPO because the chain
consisting of the entire set has no least upper bound (i.e., there is no largest
natural number). This partial order can be turned into a CPO w' by extending
it with a top element T ,7 that by definition is larger than every natural number
(see Figure 5.16).

e The partial order of rational numbers (under the usual ordering) between 0
and 1, inclusive, is not complete because it does not contain irrational numbers

like \/g, and thus does not contain the lub of chains such as the set of all

rational numbers less than \/g . It can be made complete by extending it with

the irrationals between 0 and 1; this results in the unit interval [0; 1].

e The partial order of sequences Bit* under the prefix ordering is not a CPO. By
definition, D* is the set of finite sequences whose elements are taken from D.
But the chain {[], [1], [1,1], [1,1,1], ... } has as its lub an infinite sequence
of 1s, which is not an element of Bit*. To make this partial order complete, it
is necessary to extend it with the set of infinite sequences over 0 and 1, written
Bit®>°. So the set of sequences Bit* U Bit® under the prefix ordering is a CPO.

184 Chapter 5 Fixed Points

Figure 5.16 The partial order w' is the partial order w of natural numbers extended
with a largest element T .

Generalizing Bit™, we introduce the notation D> to denote the set of all
infinite sequences whose elements are taken from the domain D We also introduce
the notation D* to stand for D* U D> under the prefix ordering. (The overbar
notation is commonly used to designate the completion of a set, which adds to
a set all of its limit points.)

As with partial orders, we are interested in combination properties of CPOs.
As indicated by the following theorem, we can use L, x , 4+, — , and * to
build new CPOs out of existing CPOs.

Theorem 5.1 (CPO Construction) Suppose that D and E are CPOs.
Then:

D, is a CPO;

D x E is a CPO under the partial order for products;

D + E is a CPO under the partial order for sums;

D — FE is a CPO under the partial order for functions;

D*is a CPO under the sum-of-products ordering for sequences;

S Gvh o e =

D*is a CPO under the prefiz ordering for sequences.

Exercise 5.7 Prove Theorem 5.1 by showing that each of the compound CPOs it men-
tions is indeed complete. That is, show that the completeness property of D and F
implies that each chain of the compound domain has a lub in the compound domain.

5.2.3 Pointedness 185

5.2.3 Pointedness

Bottom! O most courageous day! O most happy hour!
— William Shakespeare, A Midsummer Night’s Dream

A partial order is pointed if it has a bottom element. Pointedness is important
because the bottom element of a CPO is the natural place for the iterative fixed
point technique to start. Here are some of the pointed CPOs we have studied,
listed with their bottom elements:

e (G, bottom = a;

e H, bottom = c;
e Nat), bottom = L g,
e P(Nat), bottom = {};

e [0;1], bottom = 0;
e Nat — Nat, bottom = the function whose graph is {};

w', bottom = 0;

Bit*, bottom = [].

CPOs that we have studied that are not pointed include PO, G + H, and
Bit | * under the sum-of-products ordering.

In the iterative fixed point technique, the bottom element of a pointed CPO
is treated as the element with the least information — the “worst” approxima-
tion to the desired value. For example, | 4, is the unknown natural number,
[] is a (bad) approximation to any sequence of Os and 1s, and {} is a (bad)
approximation to the graph of any partial function from Nat to Nat.

In computational terms, the bottom element of a CPO can informally be
viewed as representing a process that diverges (i.e., goes into an infinite loop).
For example, a procedure that returns a boolean for even numbers but diverges
on odd numbers can be modeled as an element of the domain Int — Bool; that
maps every odd number to L gy, -

Pointed CPOs are commonly used to encode partial functions as total func-
tions. Any partial function f in D — E can be represented as a total function
f'in D — E; by having f’ map to Lg, every element d: D on which f is
undefined. For example, the partial function in PO — PO with graph

186 Chapter 5 Fixed Points

{(a,d), (c,b), (£,£)}
can be represented as the total function in PO — PO, with graph
{<a’ d>a J‘POL>7 <C’ b>’ <d7 LPOL>’ <e’ LPOL)’ <f7 f>}

Because of the isomorphism between D — F and D — FE |, we casually perform
implicit conversions between the two representations.

The following theorem summarizes some handy facts about the pointedness
of partial orders constructed out of parts.

Theorem 5.2 (Pointedness of Compound Domains) Suppose that D
and E are arbitrary partial orders (not necessarily pointed). Then:

D s pointed.

D x E is pointed iff D and E are pointed.

D + FE is never pointed.

D — FE is pointed iff E is pointed.

D * under the sum-of-products ordering is never pointed.

S G oo =~

D* and D * under the prefix ordering are pointed.

Note that unpointed compound domains like D + E and D* under the sum-
of-products ordering can always be made pointed by lifting them with a new
bottom element or by coalescing their bottom elements if they are pointed (see
Exercise 5.9).

Exercise 5.8 Prove each of the facts about pointedness in Theorem 5.2.

Exercise 5.9 The smash sum (also known as coalesced sum) of two pointed partial
orders D and E, written D & E, consists of the elements

{LpeetU{(D'—(D'+E") d)|de D'} U{(E'—(D'+E’') e)|e€ E'}

where D' = (D—1p), E/ = (F— 1), and Lpgg is a single new bottom element
that combines the bottom elements L p and Lg. D & E is a partial order under the
following ordering:

J_D@E ED{BE x forall x € D& E;

(D'(D' +E’) di) Cpep (D' (D' +E') dy) iff dy, do € D' and dy Cp, ds;

(E'—(D"+E') e1) Cpgr (E'—(D'+E") eg) iff e, e2 € E' and e; Cp e

a. Using the CPOs G and H from Figure 5.10, draw a Hasse diagram for the partial
order G & H.

b. If D and E are CPOs, show that D & FE is a CPO.

5.2.4 Monotonicity and Continuity 187

c. What benefit does D @ E have over D + E?

d. Suppose that D is a pointed CPO. Extend the notion of smash sum to a smash
sequence D ® such that D® is a pointed CPO under an ordering analogous to the
sum-of-products ordering. What does Bit; ® look like?

5.2.4 Monotonicity and Continuity

Suppose that f: D — E, where D and E are CPOs (not necessarily pointed).
Then

e f is monotonic iff d; Cp dy implies (f d1) Cg (f d2).
e f is continuous iff, for all chains C'in D, (f (U, C)) = Ug{(f ¢) |c€ C}.

A monotonic function preserves order between CPOs, while a continuous function
preserves limits. In the iterative fixed point technique, monotonicity is important
because when f : D — D is monotonic, the set of values

(L, L), FEE), -}

is guaranteed to form a chain. The completeness of D guarantees that this
chain approaches a limit in D, and it turns out that this limit is a fixed point
of f. Continuity plays a key role in the proof of the Least Fixed Point Theorem
(Section 5.2.5).

As an example of these properties, consider the CPO of functions G — H
depicted in Figure 5.13. Any function whose graph is {(a, z), (b, y) } is monotonic
if and only if 2 C y. Although there are 32 = 9 total functions from G to H, only
five of these are monotonic:

{{{a,c), (b)), {(a,¢); (b,)}, {(a;d), (b, d)}, {(a,c), (be)}, {(a,e),(b,e)}}

The reason that there are fewer monotonic functions than total functions is that
choosing the target element ¢ for a particular source element s constrains all the
source elements stronger than s to map to a target element stronger than ¢. For
example, a monotonic function that maps a to e must necessarily map b to e.
With larger domains, the reduction from total functions to monotonic functions
can be more dramatic.

What functions from G to H are continuous? The only nonsingleton chain in
G is {a,b}. By the definition of continuity, this means that a function f : G — H
is continuous iff (f (| {a,b})) = Ug{(f a),(f b)}. In this case, this condi-
tion simplifies to (f a) Ty (f b), which is equivalent to saying that f is mono-
tonic. Thus, the continuous functions from G to H are exactly the five monotonic
functions listed above.

188 Chapter 5 Fixed Points

3
N
2 N
\\

1 RN

\\

~N
0@ @
wl Two

Figure 5.17 An example of a function that is monotonic but not continuous.

The relationship between monotonic and continuous functions in this example
is more than coincidence. Monotonicity and continuity are closely related, as
indicated by the following theorem:

Theorem 5.3 (Monotonicity /Continuity Relationship)

1. On finite CPOs (and even infinite CPOs with only finite chains),
momnotonicity implies continuity.

2. On any CPO, continuity implies monotonicity.

We leave the proof of this theorem as an exercise (see Exercise 5.12).

Although monotonicity and continuity coincide on finite-chain CPOs, mono-
tonicity does not imply continuity in general. To see this, consider the following
function from w' to the two-point CPO Two= {1, T}:

mon-not-con : w' — Two = An .if (n= T,7) then T else L end

(See Figure 5.17 for a depiction of this function.) This function is clearly mono-
tonic, but it is not continuous because on the subset w of w',

 Uw) = Tur) =T # L = UrwodL} = Urwol(f n) [n €w}

An important fact about continuous functions is that the set of continuous
functions between CPOs D and F is itself a CPO under the usual ordering of
functions. For example, Figure 5.18 depicts the CPO of the five continuous
functions between G and H. If E is pointed, the function that maps all elements

of D to Lg is continuous and serves as the bottom element of the continuous-
function CPO.

5.2.4 Monotonicity and Continuity 189

{(a,d), (b,a)} {(a,e), (be)}
{{a,¢), (b, d)} {(a;c), (be)}

{(a;c), (b,c)}

Figure 5.18 The CPO G < H of continuous functions between G and H.

Since the CPO of total functions between D and F and the CPO of contin-
uous functions between D and E are usually distinct, it will be helpful to have
a notation that distinguishes them. We will use D 15 E to designate the CPO
of total functions from D to E and D < E to designate the CPO of continuous
functions from D to E. As we shall see later in this chapter, the CPO of contin-
uous functions plays an important role in constructing fixed points of recursive
functions and solving recursive domain equations. For this reason, we adopt the
convention that, throughout the rest of this text, any unannotated — should be
interpreted as < whenever information ordering matters (i.e., when construct-
ing fixed points of recursive functions or solving recursive domain equations). We
shall use L5 whenever we wish to discuss total functions, and will explicitly use
g, only when we wish to emphasize the difference between 1> and g,

Exercise 5.10 Using the CPOs G and H from Figure 5.10, draw Hasse diagrams for
the following CPOs:

a. GG

b. HS H

c. HS G

Exercise 5.11 Consider the CPOs A and B pictured in Figure 5.19. For each of the fol-

lowing function domains, give the number of (1) total, (2) monotonic, and (3) continuous
functions in the domain:

a. AL A
b. BL B
c. AL B
d BL A

190 Chapter 5 Fixed Points

e f g
c
b
a
d
A B

Figure 5.19 CPOs A and B.

Exercise 5.12
a. Show that a continuous function between CPOs is necessarily monotonic.

b. Show that a monotonic function must also be continuous if its source is a CPO all of
whose chains are finite.

c. Show that if D is a CPO and E is a pointed CPO then D < F is a pointed CPO.

Exercise 5.13 This problem considers functions f from [0; 1] to itself. We will say that f

is continuous in the CPO sense if it is a member of [0;1] < [0; 1], where [0; 1] is assumed
to have the traditional ordering. We will say that f is continuous in the classical sense
if for all x and e there exists a § such that

(f [z=6z+6) C{(f 2) —&(f =) +€

(Here we are abusing the function call notation to designate the image of all of the
elements of the interval.)

a. Does classical continuity imply CPO continuity? If so, give a proof; if not, provide a
counterexample of a function that is continuous in the classical sense but not in the
CPO sense.

b. Does CPO continuity imply classical continuity? If so, give a proof; if not, provide
a counterexample of a function that is continuous in the CPO sense but not in the
classical sense.

5.2.5 The Least Fixed Point Theorem

Suppose D is a domain and f: D — D. Then d: D is a fixed point of f if
(f d) = d. If (D,C) is a partial order, then d : D is the least fixed point of f
if it is a fixed point of f and d C d’ for every fixed point d’ of f.

Everything is now in place to prove the following fixed point theorem:

5.2.6 Fixed Point Examples 191

Theorem 5.4 (Least Fixed Point Theorem) If D is a pointed CPO,
then a continuous function f : D — D has a least fized point (fixp f) de-

fined by ||p{(f" Lp) |n >0}

Proof:
First we show that the above definition of (fixp f) is a fixed point of f:

e Since L p is the least element in D, Lp C (f Lp).

e Since f is monotonic (continuity implies monotonicity by Theorem 5.3), Lp C

(f Lp) implies (f Lp) C (f (f Lp)). By induction, (f* Lp) C (f**1 Lp)
for every n >0, so {(f™ Lp) | n >0} is a chain in D.

e Now,

(f (fixp f))
(f LIp{(f™ Lp) |n> 0}) by definition of fixp
= p{(f (f™ Lp)) |n >0} by continuity of f
Up{(f* Lp) |n>1}
Up{(f™ Lp) |n =0} (f? Lp) = Lp can’t change lub
= (fixp f) by definition of fixp.

Thus, (f (fixp f)) = (fixp f), showing that (fixp f) is indeed a fixed point
of f.

To see that this is the least fixed point of f, suppose there is some other fixed
point d’. Then clearly Lp C d’, and by the monotonicity of f, (f* Lp) C
(f™ d’) = d’. So d’ is an upper bound of the set S = {(f™ Lp) |n > 0}. But
then, by the definition of least upper bound, (fixp f) = (L]D S) cCd'. O

We can treat fixp as a function of type (D — D) — D. It turns out that
fixp is itself a continuous function, and satisfies some other properties that make
it useful for many semantic purposes (see [GS90]).

The Least Fixed Point Theorem describes an important class of situations in
which fixed points exist, and we shall use it to specify the meaning of various
recursive definitions. However, there are many generating functions that have
least fixed points but do not satisfy the conditions of the Least Fixed Point
Theorem. In these cases, other means must be used to find the least fixed point.

5.2.6 Fixed Point Examples

Here we present several brief examples of the Least Fixed Point Theorem in
action. We have discussed many of these examples informally already but will

192 Chapter 5 Fixed Points

now show how the fixed point machinery formalizes the intuition underlying the
iterative fixed point technique.

Sequence Examples

In order to model sequences of natural numbers, we will use the domain of finite
and infinite sequences from Nat :

s € Natseq = Nat *

We use the flat domain Nat, instead of Nat to model the elements of a sequence so
that there is a distinguished bottom element to which head can map the empty
sequence. We will assume that (tail []) = [], though we could alternatively
introduce a new bottom element for sequences if we wanted to distinguish (tail [])
from []. We use Nat, * (with the prefix ordering) rather than Nat, * because the
former is a pointed CPO that contains all the limiting values that are missing
from the latter.

The equation s = (cons 3 (cons (14 (head s)) [])) has as its associated
generating function the following:

8seqr : Natseq — Natseq = As. (cons 3 (cons (1+ (head s)) []))

Natseq is a pointed CPO with bottom element [], and it is not hard to show that
Zseq1 1s continuous. Thus, the Least Fixed Point Theorem applies, and the least
fixed point can be found by iterating g starting with []:

(ﬁXNatseq gseql)
I_lNatseq{(ggeql H)v (gieql H)v (gfeql H)v (gfeql H), cee b
= Unatsegtlls 3 Lnvari], 3,41}
= 3.4

In this case, the unique fixed point [3,4] of gseqs is reached after two iterations

of 8seql -
What happens when we apply this technique to an equation like

s = (cons (head s) (cons (1+ (head s)) []))

which has an infinite number of fixed points? The corresponding generating
function is

8seqz : Natseq — Natseq = As. (cons (head s) (cons (1+ (head s)) []))

This function is continuous as long as + returns L y,;, when one of its arguments
is L nat, - The Least Fixed Point Theorem applies, and iterating gseq2 on [] gives:

5.2.6 Fixed Point Examples 193

(ﬁXNatseq gseqz)
U natseq {(8%qz [1) s (8leqe 11) 0 (82q2 [1) (8eq2 [1)s -+ }
= Unatseqtl)s [Lnats s Lnat,]}
= [Lnat,, Lnat,]

After one iteration, the iterative fixed point technique finds the fixed point
[LNat, > LNat, |, which is indeed less than all the other fixed points [n, (n + 1)].
Intuitively, this result indicates that the solution is a sequence of two numbers,
but that the value of those numbers cannot be determined without making an
arbitrary decision. Note the crucial roles that the bottom elements [] and L yg,
play in this example. Each represents the value with the least information from
a domain. Iterative application of the generating function may or may not refine
these values by adding information.
A similar story holds for equations like

s = (cons, (1+ (head s)) (cons (head s) []))

that have no solutions in Nat*. The reader can verify that this equation does
have the unique solution [L ygt, , Lngt, | in Natseq and that this solution can be
found by an application of the Least Fixed Point Theorem.

As a final sequence example, we consider the equation s = (cons 1 s), whose
associated generating function is

Zseqs : Natseq — Natseq = As. (cons 1 s)

This function is continuous, and the Least Fixed Point Theorem can be invoked
to find a solution to the original equation:

(ﬁXNatseq gsqu)

Uvatseq {1 (8%qs [1) 5 (8ieqs [1) 5 (8%eqs [1)5 (82eqs [1)> - }
= I_lNatseq{[]’ [, [1, 1], [1, 1, 1], ... }
= [1, 1,1, ..]

In this case, the unique fixed point of gs.s is an infinite sequence of 1s. This
fixed point is not reached in a finite number of iterations, but is the limit of
the sequence of approximations whose nth element (starting at index n = 0)
is (g?qu []) This example underscores why it is necessary to extend Nat, *
with Nat7® to make Natseq a CPO. Without the infinite sequences in Nat?®, the
iterative fixed point technique could not find a solution to some equations.

194 Chapter 5 Fixed Points

Function Examples

In the remainder of this book, we will typically apply the iterative fixed point
technique to generating functions over function domains. Here we consider a few
examples involving fixed points over the following domain of functions:

f € Natfun = Nat — Nat|

Since we assume that — designates continuous functions, Natfun is a domain
of the continuous functions between Nat and Nat;. Natfun is a CPO because
the set of continuous functions between CPOs is itself a CPO under the usual
ordering of functions. Furthermore, Natfun is pointed because Nat, is pointed.
Recall that Nat — Nat, is isomorphic to Nat — Nat, so elements of Natfun can
be represented by a function graph in which pairs whose target element is L 4,
are omitted.
Our first example is the definition of the doubling function studied earlier:

dbl = An.if (n=0) then O else (2+ (dbl (n—1))) end
A solution to this definition is the fixed point of the generating function ggp;:

gavt : Natfun — Natfun
= A . An. if(n=0) thenO else (24 (f (n—1))) end

Natfun is a pointed CPO, and Natfun’s bottom element is the function whose
graph is {}. In this CPO, | | on a chain of functions in Nat — Nat is equivalent
to | | on a chain of graphs of functions in Nat — Nat. It can be shown that ggp
is continuous, so the Least Fixed Point Theorem applies:

(ﬁXNatfun gdbl)
I—'Natfun{(ggbl {}), (g¢1ibl {})a (ggbl {})a (ggbz {})’ -}

Unatpun{{}, (0,00}, {(0,0), (1,2)}, {{0,0), (1,2), (2,4)}, ... }
= {(n,2n)|n: Nat}

Each (g%, {}) is a finite approximation of the doubling function that is defined
only on the naturals in [0..(n — 1)]. The least (and only) fixed point is the limit
of these approximations: a doubling function defined on all naturals.

As an example of a function with an infinite number of fixed points, consider
the following recursive definition of a function in Natfun:

even(: Natfun = An . if (n=0) then 0 else (even0 (n % 2)) end

5.2.6 Fixed Point Examples 195

Here (a % b) returns the remainder of dividing a by b. For each constant ¢ in
Nat, , the function whose graph is

Un : Nat{<2nv O>7 <2n +1, C>}

is a solution for even(0. Each solution maps all even numbers to zero and maps
every odd number to the same constant ¢, where c is a parameter that distin-
guishes one solution from another. Each of these solutions is a fixed point of the
generating function geyeng:

BevenO * Natfun — Natfun
= M. An. if (n=0) thenO else (f (n%2)) end

It turns out that this function is continuous, so the Least Fixed Point Theorem
gives:

(ﬁXNatfun gevenO)
I_lNatfun{(ggve'nO {})’ (gévenO {})7 (gﬁvenO {})7 (ggvenO {})7 }

= Unagrunt{}; (0,0}, {(2n,0) | n : Nat}}
= {(2n,0)|n: Nat}

The least fixed point is a function that maps every even number to zero, but
is undefined (i.e., yields L g,) on the odd numbers. Indeed, this is the least
element of the class of fixed points described above; it uses the least arbitrary
value for the constant c.

The solution for even(matches our intuitions about the operational behavior
of programming language procedures for computing even0. For example, the
definition for even0 can be expressed in the SCHEME programming language via
the following procedure:

(define (evenO n)

(if (=n 0)
0
(even0 (mod n 2))))

We expect this procedure to return zero in at most two steps for an even natural
number, but to diverge for an odd natural number. The fact that the function
even0 maps odd numbers to Lyq, can be interpreted as signifying that the
procedure evenO diverges on odd inputs.

196 Chapter 5 Fixed Points

Exercise 5.14 For each of the following equations:

e Characterize the set of all solutions to the equation in the specified solution domain.
e Use the iterative fixed point technique to determine the least solution to the equation.
Assume that s : Natseq, p : P(Nat), f : Natfun, and h : Int — Int, .

a. s = (cons 2 (cons (head (tail s)) s))

b. s = (cons (1+ (head (tail s))) (cons 3 s))

c. s = (cons 5 (mapinc s)), where mapinc is a function in Natseq — Natseq that maps
every sequence [n;, ng, ... to the sequence [(1+ n;), (1+ ng), ...]

d.p={1}u{z+3|zep}
e. p={1}U{2z|zep}
f.op= {1} U{2z—4|[zep}
g [=2xn. (fn)
h. f = An. (f (1+n))
i f=Xxn. (14 (fn)
i f=xn.if(n=1)
then 0
zifde if (even? n) then (1+ (f (n=+2))) else (f (n+2)) end

where even? is a predicate determining if a number is even.
k. h = Xi. if (i=0) thenO else (h (i —2)) end
Exercise 5.15 Section 5.1.3 sketches an example involving the solution of an equation

on line drawings involving the transformation 7". Formalize this example by completing
the following steps:

a. Represent line drawings as an appropriate pointed CPO Lines.

b. Express the transformation T" as a continuous function g7 in Lines — Lines.

c. Use the iterative fixed point technique to find the least fixed point of g7.

Exercise 5.16 A binary relation R on a set A is a subset of A x A. The reflexive

transitive closure of R is the smallest subset R’ of A x A satisfying the following
properties:

e Ifa € A, then (a,a) € R’;
o If (a,b) isin R’ and (b,c) is in R, then (a,c) isin R’.

5.2.7 Continuity and Strictness 197

a. Describe how the reflexive transitive closure of a binary relation can be expressed as
an instance of the Least Fixed Point Theorem. What is the pointed CPO? What is
the bottom element? What is the generating function?

b. Use the iterative fixed point technique to determine the reflexive transitive closure of
the following binary relation R on the set {a, b, c, d, e}:

R = {<avc>7 <Cve>7 <dva>7 <dvb>7 <e’c>}

Exercise 5.17 Show that each of the generating functions gscq1, seq2s Eseqss 8dbl, Seveno
from the examples in this section is continuous.

5.2.7 Continuity and Strictness

We have seen how compound CPOs can be constructed out of component CPOs
using the domain operators |, x , +,* and — . We have also seen how the
pointedness of a compound CPO is in some cases dependent on the pointedness
of its components.

But a pointed CPO D is not the only prerequisite of the Least Fixed Point
Theorem. The other prerequisite is that the generating function f : D — D must
be continuous. In the examples of the previous section, we waved our hands
about the continuity of the generating functions, but did not actually prove con-
tinuity in any of the cases. The proofs are not difficult, but they are tedious.
Below, we argue that all functions that can be expressed in the metalanguage
summarized in Section A.4 are guaranteed to be continuous as long as we make
certain assumptions about operations on primitive domains. The upshot is that
we generally do not need to worry about the continuity of generating functions.
We also introduce strictness, an important property for characterizing functions
on pointed domains.

Recall that metalanguage expressions include:

e constants (both primitive values and primitive functions on such values);
e variables;

e construction and deconstruction operators for compound domains (e.g., (...)
and Proji notation for products; Inji and cases notation for sums; cons,
empty?, head, and tail for sequences; \ abstraction and application for func-
tions);

e syntactic sugar like if, let, and match.

198 Chapter 5 Fixed Points

It turns out that all of the construction and deconstruction operators for com-
pound domains are continuous and that the composition of continuous functions is
continuous (see [Sch86] for the details). This implies that any function expressed
as a composition of construction and deconstruction operators is continuous. As
long as primitive functions are continuous and the if, let, and match notations
preserve continuity, all functions expressible in this metalanguage subset must
be continuous. Below, we refine our interpretation of primitive functions and the
sugar notations so that continuity is guaranteed.

Assume for now that all primitive domains are flat CPOs. What does it mean
for a function between primitive domains to be continuous? Since all chains
on a flat domain D can contain at most two elements (Lp and a nonbottom
element d), the continuity of a function f : D — E between flat domains D and
FE is equivalent to the following monotonicity condition:

(f Lp)Ee(f d)
This condition is satisfied only in the following two cases:
e f maps Lp to Lg, in which case d can map to any element of E;
e f maps all elements of D to the same nonbottom element of F.

In particular, f is mot continuous if it maps 1L p and d to distinct nonbottom
elements of F.

For example, a function sqr in Nat; — Nat; that maps L yg, to Lpyg, and
every number to its square is continuous. So is the constant function three that
maps every element of Nat; (including L y4,) to 3. But a function noncont that
maps every nonbottom number n to its square and maps L yq¢, to 3 is not continu-
ous, because (f n) is not a refinement of the approximation (noncont L g,) = 3
(because (noncont n) and (noncont Ly,) are incomparable).

Perhaps the most interesting example of a noncontinuous function is the
celebrated halting function. For our purposes, the halting function has the
signature

halts : (Nat — Nat,) — Nat — Bool

and the following behavior: if f : Nat — Nat, and n : Nat, then (halts f n) re-
turns true iff (f n) is a natural number (i.e., a nonbottom element of Nat,)
and returns false iff (f n) is Lyg, . Intuitively, the halts function is noncon-
tinuous for the same reason as noncont. It requires a mechanism for detecting
whether a computation is caught in an infinite loop, and such a mechanism must

5.2.7 Continuity and Strictness 199

map L g, (representing a diverging computation) to one result (false) and all
stronger elements in Nat to an incomparable result (true).

The halting function is the canonical example of an uncomputable function —
a mathematical function whose results cannot be determined from its arguments
by executing a computational process. In the study of programming languages,
we expect that we should be able to model only computable functions, since
these, by definition, are what procedures in a programming language can denote.
It turns out that the continuous functions correspond exactly to the computable
functions, which is why continuity is such an important property in the study of
programming languages.

What we seek now is an easy way in our metalanguage to outlaw functions
like noncont and halts while permitting functions like sqr and three. We do this
based on a notion of strictness. If D and E are pointed domains, a function
f:D — Eisstrict if (f Lp) = Lg. Otherwise, f is nonstrict. For example,
the sqr function described above is strict, while the three function is nonstrict.
Although strictness and continuity are orthogonal properties in general, strictness
does imply continuity for functions between flat domains (see Exercise 5.18).

Strictness is important because it captures the operational notion that a com-
putation will diverge if it depends on an input that diverges. For example, strict-
ness models the parameter-passing strategies of most modern languages, in which
a procedure call will diverge if the evaluation of any of its arguments diverges.
Nonstrictness models the parameter-passing strategies of so-called lazy languages.
See Sections 7.1, 8.4.3, and 10.1.3 for a discussion of these parameter-passing
mechanisms.

When pointed CPOs are manipulated in our metalanguage, we shall assume
the strictness of various operations:

e All the primitive functions on flat domains are strict. When such a function
has multiple arguments, we will assume it is strict in each of its arguments.
Thus, +ngt, returns Ly, if either argument is L pyq, , and =png, returns
L Boot, if either argument is L gy, -

e An if expression is strict in its test value whenever it is an element of Bool|
rather than Bool. Thus the expression

if x =ng4t, y then 3 else 3 end

is guaranteed to return Ly, (not 3) if either z or y is Ly, . Together with
the strictness of =yg, , the strictness of if test values thwarts attempts to

200 Chapter 5 Fixed Points

express uncomputable functions. For example, consider the following failed
attempt to define the noncont function described above:

An . if n =N, Lnge, then 3 else n Xy, n end

Because of the strictness of =pq, , this function returns Ly, for every n in
Nat, , and so is continuous. Similarly, here is an attempt to define a variant
of the halts function that returns true if applying the given function f to the
argument n yields 0 and otherwise returns false:

Mn if (f n) =pnae, 0 then true else false end

In the case where (f n) is L g, , this function must return L o0, , not false,
and so it is continuous.

e A match expression is strict in its discriminant whenever it is an element
of a pointed CPO. As with the strictness of if test values, this restriction
matches computational intuitions and prevents the expression of uncomputable
functions.

e If D is a pointed domain, we require the head operation on sequences to be
strict on D* under the prefix ordering. That is, (head []) must equal Lp. If
D is not pointed, or if D* has the sum-of-products ordering, head is undefined
for []; i.e., it is only a partial function.

With the above provisions for strictness, it turns out that all functions expressible
in the metalanguage are continuous.

We sometimes want to specify new strict functions, so it is helpful to have
a convenient notation for expressing strictness. If f is any function between
pointed domains D and FE, then (strictp g f) is a strict version of f. That is,
(strictp g f) maps Lp to Lg and maps every nonbottom element d of D to
(f d). As usual, we will omit the subscripts on strict when they are clear from
context. For example, a strict function in Nat, — Nat, that returns 3 for all
nonbottom arguments can be defined as:

strict-three = (strict (An.3))

We adopt the abbreviation A. ... for (strict (A. ...)), so An.3 is another way
to write the above function.

5.3 Reflexive Domains 201

Exercise 5.18

a. Show that strictness and continuity are orthogonal by exhibiting functions in D — D
that have the properties listed below. You may choose different Ds for different parts.

i Strict and continuous;
ii. Nonstrict and continuous;
iii. Strict and noncontinuous;

iv. Nonstrict and noncontinuous.

b. Which combinations of properties from the previous part cannot be achieved if D is
required to be a flat domain? Justify your answer.

5.3 Reflexive Domains

Reflexive domains are domains that are defined by recursive domain equations.
We have already seen reflexive domains in the context of POSTFIX:

StackTransform = Stack — Stack
Stack = Value* + Error
Value = Int + StackTransform

These equations imply that a stack may contain as one of its values a function
that maps stacks to stacks. A simpler example of reflexive domains is provided
by the lambda calculus (see Section 6.6), which is based on a single domain Fcn
defined as follows:

Fen = Fen — Fen

We know from set theory that descriptions of sets that contain themselves
(even indirectly) as members are not necessarily well defined. In fact, a simple
counting argument shows that equations like the above are nonsensical if inter-
preted in the normal set-theoretic way. For example, if we (improperly) view
— as the domain constructor for set-theoretic functions from Fen to Fen, by
counting the size of each set we find:

|Fen| = |Fen|!Fenl

For any set Fcn with more than one element, | Fen|/Fe™ is bigger than | Fen|. Even
if |Fen| is infinite, |Fen|/lF" is a “bigger” infinity! In the usual theory of sets,
the only solution to this equation is a trivial domain Fcn with one element. A
computational world with a single value is certainly not very interesting, and is
a far cry from the computationally complete world of the lambda calculus!

202 Chapter 5 Fixed Points

Dana Scott had the insight that the functions that can be implemented on
a computer are limited to continuous functions. There are fewer continuous
functions than set-theoretic functions on a given CPO, since the set-theoretic
functions do not have to be monotonic (you can get more information out of
them than you put in!). If we treat — as a constructor that describes com-
putable (continuous) functions and we interpret “equality” in domain equations
as isomorphisms, then we have a much more interesting world than with set-
theoretic functions. In this world, we can show an isomorphism between Fcn and
Fen — Fen:

Fen=~ Fen — Fen

The breakthrough came when Scott provided a constructive technique (the
so-called inverse limit construction) that showed how to build such a domain
and prove the isomorphism. Models exist as well for all of the other domain
constructors we have introduced (lifting, products, sums, sum-of-products, prefix
ordering of sequences), and as long as we stick to well-defined domain construc-
tors, we can be assured that there is a nontrivial solution to our reflexive domain
equations.

The beauty of this mathematical approach is that there is a formal way of
giving meaning to programming language constructs without any use of compu-
tation. We shall not describe the details of the inverse limit construction here.
This construction was first presented in [Sco73]. For a high-level retrospective
on this construction, see Scott’s 1976 Turing Award Lecture [Sco77]. A readable
account of the construction can be found in [Sch86, Chapter 11].

It is important to note that this construction requires that certain domains
have bottom elements. For example, in order to solve the POSTFIX domain
equations, we need to lift the Stack and Answer domains:

StackTransform = Stack — Stack
Stack = (Value* + Error) |

Value = Int 4+ StackTransform
Answer = (Int+ Error) |

This lifting explains how nontermination can “creep in” when POSTFIX is ex-
tended with dup. (Recall that we proved that programs in ordinary POSTFIX
terminate regardless of lifting.)

The inverse limit construction is only one way to understand recursive domain
equations. Many approaches to interpreting such equations have been proposed
over the years. One approach is to interpret solution domains as subdomains of
P(w), the powerset of natural numbers ordered by set inclusion [Sco76],[Sto85,
Chapter 7]. Another popular approach is based on the notion of information
systems [GS90, Gun92, Win93].

5.4 Summary 203

5.4 Summary

Here are the main ideas of this chapter:

The meaning of a recursive definition over a domain D can be understood as
the fixed point of a function D — D.

Complete partial orders (CPOs) model domain elements as approximations
that are ordered by information. In a CPO, every sequence of information-
consistent approximations has a well-defined limit.

A CPO D is pointed if it has a least element (bottom, written Lp). The
bottom element, which stands for “no information,” is used as a starting point
for the fixed point process. Bottom can be used to represent a partial function
as a total function. It is often used to model computations that diverge (go
into an infinite loop). A function between pointed CPOs is strict if it preserves
bottom.

Functions between CPOs are monotonic if they preserve the information order-
ing and continuous if they preserve the limits. Continuity implies monotonicity,
but not vice versa.

If D is a pointed CPO, every continuous function f : D — D has a least fixed
point (fixy f) that is defined as the limit of iterating f starting at Lp.

The domain constructors |, x , 4+, — , and * can be viewed as operators
on CPOs. In particular, D1 — Dy is interpreted as the CPO of continuous
functions from D; to Ds. Only some of these constructors preserve pointedness.
The new domain constructor | extends a domain with a new bottom element,
guaranteeing that it is pointed.

Functions that can be expressed in the metalanguage of Section A.4 are guaran-
teed to be continuous. Intuitively, such functions correspond to the computable
functions.

Recursive domain equations that are not solvable when domains are viewed
as sets can become solvable when domains are viewed as CPOs. The key
ideas (due to Scott) are to interpret equality as isomorphism and to focus
only on continuous functions rather than all set-theoretic functions. There are
restricted kinds of CPOs for which any domain equations over a rich set of
operators are guaranteed to have a solution.

204 Chapter 5 Fixed Points

Notes

This chapter was inspired by Schmidt’s presentation in [Sch86, Chapter 6]. The
excellent overview article by Gunter and Scott [GS90] presents alternative ap-
proaches involving more restricted domains and touches upon many technical
details omitted above. See Mosses’s article on denotational semantics [Mos90]
to see how these more restricted domains are used in practice. Gunter’s book
[Gun92| discusses many domain issues in detail.

For more information on domain theory and an introduction to the techniques
of solving recursive domain equations, see [Sto85, Sch86, GS90, Gun92, Win93].

Part 11

Dynamic Semantics

6

FL: A Functional Language

Things used as language are inexhaustibly attractive.
— Ralph Waldo Emerson, The Philosopher

FL (for Functional Language!) is a mini-language that exemplifies what is tra-
ditionally known as the functional programming paradigm. As we shall see,
functional programming languages are characterized by a compositional style
of expressing values and an emphasis on the manipulation of values that model
mathematical functions. The name “functional language” is a little bit odd, since
it suggests that languages not fitting this paradigm are somehow dysfunctional —
a perception that many functional language aficionados actively promote! Per-
haps function-oriented languages would be a more accurate term for this class
of languages.

FL will form the basis of many languages in this book. It will provide us with
the opportunity to use the semantic tools developed in the previous chapters to
analyze a programming language that is much closer to a “real” programming
language than POSTFIX or EL (see Section 6.4 and Section 6.5). But before we
get there, we shall study a technique of programming language decomposi-
tion that enables the application of our analytical tools to practical languages.
We shall also introduce two approaches for modeling names in a programming
language: substitution and environments.

6.1 Decomposing Language Descriptions

The study of a programming language can often be simplified if it is decomposed
into three parts:

1. A kernel language that forms the essential core of the language.

!Our FL language is not to be confused with any other similarly named language. In partic-
ular, our FL is not related to the FL functional programming language [BWW90, BWW89]
based on Backus’s FP [Bac78].

208 Chapter 6 FL: A Functional Language

2. Syntactic sugar that extends the kernel with convenient constructs. Such
constructs can be automatically translated into kernel constructs via a process
known as desugaring.

3. A standard library of procedures, constants, and operators supplied with
the language.

We shall refer to the combination of a kernel, syntactic sugar, and a standard
library as a full language to distinguish it from its components.

Decomposing a programming language definition into parts relieves a com-
mon tension in the design and analysis of programming languages. From the
standpoint of reasoning about a language, it is desirable for a language to have
only a few, simple parts. However, from the perspective of programming in a
language, it is desirable to concisely and conveniently express common program-
ming idioms. A language that is too pared down may be easy to reason about
but horrendous to program in — try writing factorial in POSTF1x+{dup}. On
the other hand, a language with many features may be convenient to program
in but difficult to reason about — try proving some nontrivial properties about
your next JAVA, C, ADA, or COMMON LISP program.

The technique of viewing a full language as mostly sugar-coating around a
kernel lets us have our cake and eat it too. When we want to reason about the
language, we consider only the small kernel upon which everything else is built.
But when we want to program in the language, we make heavy use of the syntactic
sugar and standard library to express what we want in a readable fashion. Indeed,
we can even add new syntactic sugar and new primitives modularly without
changing the properties of the kernel.

There are limitations to this approach. We’d like the kernel and full language
to be close enough so that the desugaring is easy to understand. Otherwise
we might have a situation where the kernel is a machine instruction set and
the desugaring is a full-fledged compilation from high-level programs into object
code. For this reason, we require that syntactic sugar be expressed via simple
local transformations; no global program analysis is allowed.

6.2 The Structure of FL

FL is a typical functional programming language for computing with numeric,
boolean, symbolic, procedural, and compound data values. The computational
model of FL is based on the functional programming paradigm exemplified by

6.2.1 FLK: The Kernel of the FL. Language 209

such languages as HASKELL, ML, SCHEME, and ERLANG. Syntactically, FL bears
a strong resemblance to SCHEME, but we shall see that semantically it is closer to
so-called purely functional lazy languages like HASKELL and MIRANDA. FL
programs are free of side effects and make heavy use of first-class functional values
(here called procedures). We shall consistently use the term procedure to refer
to entities in programming languages that denote mathematical functions, and
function to refer to the mathematical notion of function. In some languages,
these two terms are used to distinguish different kinds of programming language
entities. For example, in PASCAL, “function” refers to a subroutine that returns
a result whereas “procedure” refers to a subroutine that performs its work via
side effects and returns no result. Much of the functional programming literature
uses the term “function” to refer both to the programming language entity and
the mathematical entity it denotes, which we find confusing.

6.2.1 FLK: The Kernel of the FL Language
We begin by presenting the syntax and informal semantics of FLK, the FL kernel.

The Syntax of FLK

An FLK program is a member of the syntactic domain Prog defined by the s-
expression grammar in Figure 6.1. It has the form (flk (I7_;) FEjpogy), where
Ii, ..., I, (n > 0) are the formal parameters of the program and Ej.q, is
the body expression of the program. Intuitively, the formal parameters name
program inputs and the body expression specifies the result value computed by
the program for its inputs. When a program is applied to actual arguments, we
will say that the program binds the parameters to those values. (Section 6.3
spells out this notion of binding more formally.)

FLK expressions are s-expressions that represent ASTs whose leaves are either
literals or variable references. FLK literals include the unit literal, booleans,
integers, and symbols. We adopt the SCHEME convention of writing the boolean
literals as #t (true) and #f (false). The unit literal (#u) is used where the value
of an expression is irrelevant, such as in situations where C and JAVA use the
void return type. For symbolic (i.e., nonnumeric) processing, FLK supports the
Lisp-like notion of a symbol. Symbols are similar to the character-string values
supported by many languages, except that: (1) they are atomic entities that
cannot be decomposed into their constituent characters; (2) they are written using
a different syntax (e.g. (sym foobar) rather than "foobar"); and (3) certain
sequences of characters are forbidden as symbols:

210 Chapter 6 FL: A Functional Language

e any character sequence that is a valid representation of a number (e.g., 42 and
-17);

e any character sequence beginning with # (e.g., #u, #t, and #f); and

e any character sequence that includes whitespace, grouping characters ({, }, (,
), [, 1), or quotation characters (", ¢, *).

Later we shall see how symbols make it easy for an FL. program to manipulate
s-expressions representing ASTs with symbolic leaves. Since s-expressions are a
simple way to represent the abstract syntax trees of programs (see Section 2.3),
symbols facilitate writing F L programs that manipulate programs, such as inter-
preters and translators.

A key difference between FLK and PosTFI1X/EL is that FLK provides con-
structs (£1k, lam, and rec) that introduce names for values. Syntactically, names
are expressed via identifiers. The rules for what constitutes a well-formed iden-
tifier differ from language to language. In FLK we shall assume that any symbol
can be an identifier except for (1) symbols starting with the character @ and (2)
reserved keywords of the language (app, error, f1k, if, pair, prim, lam, rec,
sym). This means that expressions like x-y and 4/3*pi*r~2 are treated as atomic
identifiers in FLK. In many other languages, these would be infix specifications
of trees of binary operator applications.

For compound expressions, FLK supports procedural abstractions (lam) and
applications (app), primitive applications (prim), conditionals (if), pair creation
(pair), simple recursion (rec), and error signaling (error).

Although many of the syntactic conventions of FLK are borrowed from Lisp-
like languages, especially SCHEME, it’s worth emphasizing that FLK differs from
these languages in some important ways. For example, in SCHEME, abstractions
may take any number of formal parameters, are introduced via the keyword
lambda, and are invoked via an application syntax with no keyword. In contrast,
FLK abstractions have exactly one formal parameter, are introduced via the
keyword lam, and are applied via the keyword app.

An Informal Semantics for FLK

Because many readers may not be familiar with functional programming and
FLK is the basis for most of the mini-languages presented in the rest of this
book, we will begin with an informal explanation of the semantics of FLK via
examples. Later, in Sections 6.4 and 6.5, will use our operational and denotational
tools to specify the semantics of FLK formally.

2We disallow identifiers beginning with @ in order to support the syntactic sugar for prim
explained in Section 6.2.2.

6.2.1 FLK: The Kernel of the FL. Language 211

P € Prog = (£f1k (If,,,,.) Ebody) [Program)]

EcExp =1L [Literal]
| 1 [VariableReference]
| (exror Yiessage) [Errors]
| (if Eiest Eihen Feise) [Conditional]
| (prim Oprimop El,,) [PrimitiveApplication]
[
[
[
[

arg

| Qam Ijormar Epody) Abstraction]
| Capp Erator Frand) Application]
| (pair Efy Egna) Pairing]
| (rec Iname FEpody) Recursion]
L e Lit == #u [UnitLiteral]

| B [BooleanLiteral]

| N [IntegerLiteral]

|

(sym Y) [SymbolicLiteral]
B € BoolLit = {#t,#f}
N €IntLit = {...,-2,-1,0,1,2,...}
Y € SymLit = {x,1st,make-point,map_tree,4/3*pi*r-2,...}
Keyword = {app, error,flk,if,pair,prim, lam, rec, sym}
I € Ident = SymLit — ({Y | Y begins with @} U Keyword)
O € Primop = Defined in Figure 6.2

Figure 6.1 An s-expression grammar for FLK.

Intuitively, every FLK expression denotes a value that is tagged with its type
in addition to whatever information distinguishes it from other values of the same
type. The primitive values supported by FLK include the unit value, boolean
truth values, integers, and textual symbols. The unit value is the unique value
of a distinguished type that has a single element. In addition, FLK supports
pairs and procedures. A pair is a compound value that allows any two values
(which may themselves be pairs) to be glued together to form a single value. A
procedure is a value that represents a mathematical function by specifying how
to map a single input value to a single output value. Procedures are applied using
the application (app) construct. Primitive operators such as + are not procedure
values and will be described below.

To help build intuitions about FLK, here we will informally illustrate the
semantics of FLK constructs by considering some sample evaluations of FLK
expressions. The notation £ -7 o indicates that the expression £ evaluates to
the outcome o, where an outcome is a value, an error, or an infinite loop. Here
are some examples that indicate our conventions for writing FLK outcomes:

212 Chapter 6 FL: A Functional Language

unit The unit value
false, true The boolean values
17, =8 Integer values
"abstraction’, '} /8 x pixr" 2’ Symbolic values
procedure Procedural values
error:divide-by-zero, error:not-an-integer Errors
00 Nontermination
(represents an infinite loop)
(17, true), Pair values

(procedure, (' abstraction’, unit)),
(error:not-an-integer, co)
{this is a comment} Comment about an outcome

For simplicity, our outcome notation does not distinguish procedural values that
denote different mathematical functions. For instance, a squaring procedure and
a doubling procedure are both written procedure. Our notation for errors does
distinguish errors with different messages. Note that FLK pair values (o7, 02)
can combine any two outcomes o; and o0z, which may include errors and infinite
loops. Additionally, we will use the following abbreviation for representing lists
of outcomes that are encoded as a unit-terminated sequence of pairs chained
together via their second components:

<01,0g2,...,0,> = (01, (02, ... {(On, unit) ...))

For example, the notation <17, true, ('foo’, procedure)> is an abbreviation for the
three-element list (17, (true, (('foo’, procedure), unit))).
The literal expressions designate constants in the language:

#t o true
(sym captain) 7 'captain’

The primitive application (prim O E; ... E,) denotes the result of apply-
ing the primitive operator named by O to the n values of the argument expres-
sions F;. Figure 6.2 presents the primitive operator names O € Primop in FL
and their associated meanings.

(prim not #t) rg false

(prim int? 1) p true

(prim int? #t) w7 false

(prim + 1 2) 475 3

(prim / 17 8) = 3 {integer division}

(prim % 17 5) w1 2 {integer remainder}

(prim sym=? (sym captain) (sym captain)) 7 true
(prim sym=? (sym captain) (sym abstraction)) 73 false

6.2.1 FLK: The Kernel of the FL. Language 213

Operator Meaning

unit? Unary type predicate for the unit value.
bool? Unary type predicate for booleans.

int? Unary type predicate for integers.

sym? Unary type predicate for symbols.

proc? Unary type predicate for procedures.

pair? Unary type predicate for pairs.

not Unary boolean negation.

and Binary boolean conjunction (not short-circuit).
or Binary boolean disjunction (not short-circuit).
bool="7 Binary boolean equality predicate.

+ Binary integer addition.

- Binary integer subtraction.

* Binary integer multiplication.

/ Binary integer division.

% Binary integer remainder.

= Binary integer equality predicate.
1= Binary integer inequality predicate.

< Binary integer less-than predicate.

<= Binary integer less-than-or-equal-to predicate.

> Binary integer greater-than predicate.

>= Binary integer greater-than-or-equal-to predicate.
sym="7 Binary symbol equality.

fst Unary selector of the first element of a given pair.
snd Unary selector of the second element of a given pair.

Figure 6.2 The primitive operators O € Primop in FLK.

The value of a primitive application is not defined when a primitive operator
is given the wrong number of arguments, when an argument has an unexpected
type, or when integer division or remainder by 0 is performed. These situations
are considered errors:

(prim + 1) 4y error:wrong-number-of-args

(prim + 1 2 3) 4y error:wrong-number-of-args

(prim not 1) 43~ error:not-a-boolean

(prim + #t 1) g~ error:not-an-integer

(prim / 1 0) g~ error:divide-by-zero

The error expression (error Yi,essage) signals an error with the symbolic
message Yiessage:

(error index-out-of-range) g error:index-out-of-range

214 Chapter 6 FL: A Functional Language

The conditional expression (if FEiest Epren Feise) requires the value of iy
to be a boolean, and evaluates one of Fy,., or E.;. depending on whether the
test is true or false:

(if (prim > 8 7) (prim + 2 3) (prim * 2 3)) -7 I

(if (prim < 8 7) (prim + 2 3) (prim * 2 3)) 7> 6

(if (prim - 8 7) (prim + 2 3) (prim * 2 3))

7~ error:nonbool-in-if-test

The abstraction (lam I FE) specifies a procedural value that represents a
mathematical function. [names the procedure’s single formal parameter,
and the expression F is the procedure body. The procedure application®
(app F; FE2) stands for the result of applying the procedure denoted by the
operator (or rator) expression E; to the value denoted by the operand (or
rand) expression Fy. Intuitively, this result is determined by evaluating the
procedure’s body with all occurrences of its formal parameter replaced by the
expression Fg, whose value is called the actual parameter or argument of the
application. We say that the formal parameter is bound to the argument during
the evaluation of the procedure body. In the application (app E; E»), it is an
error if E; doesn’t denote a procedure.

(lam x (prim * x x)) > procedure {squaring procedure}
(app (lam x (prim * x x)) 5) w7z 26
(app 3 5) g error:monprocedural-rator
(app not #t) L7~ error:unbound-variable
{not is a primitive operator, not a variable naming a procedure}

Multiple-argument procedures can be simulated by currying (see Section A.2.5):
(app (app (lam n (lam x (prim - x n))) 5) 8) 7 3

A hallmark of functional programming is that procedures can be passed as
arguments to other procedures and returned as results from other procedures,
just like any other value:

(lam £ (app £ 5)) g~ procedure {apply-to-5 procedure}
(app (lam f (app f 5)) (lam x (prim * x X))) w7 20
(lam n (lam x (prim - x n)))

+I DProcedure {make-subtract-n procedure}
(app (lam n (lam x (prim - x n))) 1)

+1> procedure {subtract-1 procedure}
(app (lam f (app f 5))

(app (1am n (lam x (prim - x n))) 1)) w7 4

3Common synonyms for procedure application are procedure call and procedure invo-
cation, so we will also say that a procedure is “called” or “invoked” with an argument value.

6.2.1 FLK: The Kernel of the FL. Language 215

(app (lam f (app f 5)) (lam n (lam x (prim - x n))))
+17> DProcedure {subtract-5 procedure}
(app (app (lam f (app f 5))
(lam n (lam x (prim - x n)))) 8) w7 &
(app (lam x (app x x)) (lam x (app x x))) Jrp>
{similar to the POSTFIX command sequence (dup exec) dup exec}

Because they can be used in the same ways as values like integers and pairs, pro-
cedures in FLK are said to be first class. Procedures that take other procedures
as arguments or return them as results are called higher-order procedures.

As in HASKELL, FLK’s procedures are nonstrict. This means that a pro-
cedure application may return a value even if one of its arguments denotes an
error or a nonterminating computation. Intuitively, nonstrictness means that an
expression will never be evaluated if the rest of the computation does not require
its value. For example:

(app (lam x 3) (prim / 1 0)) w1z 3
(app (lam x (prim + x 3)) (prim / 1 0)) g error:divide-by-zero
(app (lam x 3)
(app (lam x (app x x)) (lam x (app x x)))) 1 3
(app (lam x (prim + x 3))
(app (lam x (app x x)) (lam x (app x x)))) > ©

Unlike FLK, most real-world languages (including C, JAva, ML, PAscAL, and
SCHEME) have strict procedures. In these languages, operands of procedure
applications are always evaluated, even if they are never referenced by the pro-
cedure body. We shall explore strict versus nonstrict procedures in more detail
in Sections 7.1 and 8.4.3.

The pairing expression (pair Epr; FEg,q) glues two outcomes together into a
single value of the pair type. The two components of a pair can be extracted
with the primitive operators £st and snd.

(prim fst (pair (+ 1 2) (* 3 4))) w7 3

(prim snd (pair (+ 1 2) (* 3 4))) w7 12

A chain of pairs linked by their second components and terminated by the unit
value is a standard way of encoding a list:

(pair 8 (pair 2 (pair 1 #u))) =z <8, 2, Iv
(prim fst (pair 8 (pair 2 (pair 1 #u)))) w1 &8
(prim snd (pair 8 (pair 2 (pair 1 #u)))) 7 <2, Ib>
(prim fst (prim snd (pair 8 (pair 2 (pair 1 #u))))) w7 2
(prim snd (prim fst (pair 8 (pair 2 (pair 1 #u)))))

FLR® error:not-a-pair

216 Chapter 6 FL: A Functional Language

Like procedure applications, pairing in FLK is nonstrict. The result of a pair
expression is always a well-defined pair even if one (or both) of its argument
expressions does not denote an FLK value. The unspecified nature of a contained
value can be detected only when it is extracted from the pair.

(pair (prim not #f) (prim / 1 0)) w73 (true, error:divide-by-zero)

(prim fst (pair (prim not #f) (prim / 1 0))) wrx true

(prim snd (pair (prim not #f) (prim / 1 0)))

+rxr error:divide-by-zero

As we shall see in Section 10.1.3, nonstrict data structures are an important
mechanism for supporting modularity in programs.

We choose to make pair a kernel construct rather than a primitive operator
like not or + to emphasize the fact that pairing is nonstrict. If we made pair
a primitive operator, we would still have to treat it specially when we describe
the semantics of the prim construct because all the other primitives are strict.
Treating pair as a separate syntactic construct provides a cleaner description of
the semantics. This is a purely stylistic decision; it is also possible to treat pair
as a binary primitive operator (see Exercise 6.27).

The recursion construct (rec I F) allows the expression of recursion equa-
tions over one variable. The value of the rec expression is the value of its body,
where the value of I within F is the value of the entire rec expression; i.e., the
value returned by a recursion is the solution to the equation I = FE. rec is used
to specify recursive procedures and data structures: it allows us to give a name
to a value so that the value itself can be used in the expression that determines
that value. For example:

(rec fact (lam n

(if (prim = n 0)
1
(prim * n (app fact (prim - n 1))))))
+re DProcedure {A factorial procedure.}
(app (rec fact (lam n
(if (prim = n 0)
1
(prim * n (app fact (prim - n 1))))))
5) s 120 {5! = 120}

(rec ones (pair 1 omnes)) w7z <1, 1, 1, ...> {an infinite list of 1s}

(prim fst (rec ones (pair 1 omes))) 4wy I

(prim fst (prim snd (rec ones (pair 1 ones)))) w7 I

6.2.1 FLK: The Kernel of the FL. Language 217

The ones example above illustrates a list that is conceptually infinite in length.
Conceptually infinite data structures are an important programming idiom; see

Section 10.1.3 for a discussion and examples.
Vi, V]

FLK programs are parameterized. We use the notation P 37" o to
indicate that running the FLK program P on argument values Vy, ..., V, yields

outcome o. For example:

(f1k (x) (prim * x x)) 7[%]? 25 {squaring program}

(f1k (a b) (prim / (prim + a b) 2)) -L?T"i]? 5 {averaging program}
(f1k (a b) (prim / (prim + a b) 2))

[2,8,11]
~—FT—> error:wrong-number-of-args

(f1k (x ns) {z is a scaling factor; ns is a list of ints}
(app (rec scale {4 recursive procedure}
(lam ys {to scale the ints in ys by x.}
(if (prim unit? ys) {Is ys the empty list?}
ys {If so, return it;}
(pair {otherwise, prepend the}
(prim * x (prim fst ys)) {scaled first int}
(app scale {to the result of scaling}

(prim snd ys)))))) {the rest of the ints.}
ns)) 1292250, 01 6,150

The penultimate example illustrates that it is an error if the number of arguments
supplied to the program differs from the number of formal parameters declared.
The final example illustrates that FLK program arguments may include values
other than integers, such as lists of integers in this case.

In general, the values considered to be valid program arguments will be a
proper subset of the values manipulated by a language. In languages such as
C and JAva, program arguments are passed as an array of strings, and these
strings can be parsed into other kinds of values (such as integers, floating-point
numbers, arrays of numbers, etc.) where necessary. Program arguments are typ-
ically limited to literal data with simple textual representations, which excludes
procedural values as program arguments. In the case of FLK, we shall assume
that program arguments may be any of the literal values (unit, booleans, integers,
symbols) and “pair trees”* (i.e., binary trees with pair nodes) whose leaves are
literals. Since s-expressions can be represented as such trees, this will allow us to
write FLK programs that manipulate representations of programming language
ASTs (e.g., see the ELM interpreter on page 241).

“sans partridge!

218 Chapter 6 FL: A Functional Language

6.2.2 FL Syntactic Sugar

While FLK has considerably more expressive punch than PosTFix or EL, ex-
pressing even simple programs with FLK is rather cumbersome. We will now
show how to extend the kernel FLK language with syntactic sugar to yield an-
other language, FL, that has the same semantic simplicity as FLK but is more
practical for writing and reading nontrivial programs.

Syntactic Sugar Syntax

Figure 6.3 shows the new constructs that constitute FL’s syntactic sugar. In
the definition of E, the ellipsis (...) stands for all the expression productions in
the FLK grammar. The new expressions in Figure 6.3 can be used anywhere the
nonterminal F appears in the kernel FLK grammar as well as in the new syntactic
constructs. Many of these syntactic abbreviations are inspired by constructs in
Lisp dialects, but some of them have somewhat different meanings in FL than
in Lisp.

Desugaring Expressions

FL expressions are desugared to FLK expressions via the desugaring function DS
defined in Figure 6.4. This function traverses an FL expression AST, performing
local transformations that replace the syntactic sugar constructs of FL. by FLK
constructs. The top clauses process the expressions of FL that are inherited
from FLK, recursively applying DS to all subexpressions. This will expand
any syntactic sugar constructs appearing in the subexpressions. DS acts as the
identity function when applied to an FLK expression.

The FL sugar construct (€0 E; ... E,) is an abbreviation of the kernel
construct (prim O E; ... E,). With this sugar, the verbose FLK expression

(prim - (prim * b b) (prim * 4 (prim * a c)))
can be shortened to the concise expression
(e- (@x b b) (@x 4 (@* a c)))

We will take advantage of this conciseness below by leaving this abbreviation in-
tact even after desugaring everything else in our examples, i.e., we will sometimes
show only partially desugared expressions that still contain sugared primitive ap-
plications.

This abbreviation is the reason that FL identifiers can’t begin with @. Oth-
erwise, procedures like (lam @+ (@+ 2 3)) would be ambiguous: should this
procedure apply its argument to 2 and 3, or should it always add 2 and 37

6.2.2 FL Syntactic Sugar 219

Modified Domains

Keyword = Keywordprx U {abs, cond, def, else, f1, let, letrec, list,
quote, scand, scor}

New Domains

D € Def
SX € SExp
New Productions
= (f1k (a0’ Ebody) [UnsugaredProgram]|
\ (£1 fmar) Eody Djep,) [SugaredProgram]
D = (def Iname Faen) [ValueDefinition]
| (def (Lppoc I mar) Evody) [FunctionDefinition]

E = ... FLK expressions ...

| (@Oprimop Ejppa) AbbreviatedPrimitiveApplication]

| (abs (If*ormaz) Epody) MultiAbstraction]
‘ (Erator rand) MultiApplication]
| (list E*) List]

element

[
[
[
[
| (quote SX guoted) [S-Expression]
| (cond (Eiest Einen)”™ (else Egefaur)) [NWayConditionall
[
[
[
[
[

| (scand E},,imct) ShortCircuitAnd]
| (scor Ejgiunet) ShortCircuitOr]

‘ (let (Upame Edefn) Ebody) LocalBinding]

| (Qetrec ((Uname Edetn)™) Ebody) RecursiveBinding]

| (recur Lyroe (Uname Pinit)™) Epody) [RecursiveFunctionCall]

SX =Y [Symbol]
| #u [UnitLiteral]
| B [BooleanLiteral]
| N [IntegerLiteral]
‘ (SX lement) [Llsﬂ

Figure 6.3 Grammar for FL syntactic sugar.

FL’s abs construct can bind any number (possibly zero) of identifiers within
a procedure body. In the tagless multiapplication construct, a procedure can
be applied to any number (possibly zero) of arguments. The rules for desug-
aring multiabstractions into lam and multiapplications into app are based on
the same currying technique that we use extensively in the metalanguage. (See
Exercise 6.21 for an alternative approach to desugaring these expressions.) For
example, suppose that E ;.9 is the three-parameter multiabstraction

(abs (a b c) (@ a (@+ b c)))

220 Chapter 6 FL: A Functional Language

DS : Exprr, — Exprrk

1] = L
] =
(error Y)] = (error Y)
(1f Etest Ethen else)]] - (1f DS[[Etest]] DSIIEthen]] DS[[Eelse]])
(prim O E?_)] = (prim O DS[E;]™,)
(1a-m Iformal Ebodu]] = (1am Iformal DS[[Eboduﬂ
(app Emtor mnd)]] - (app DS[[Erator]] DS[[Emmd]])
(pair Epy FEsnq)] = (pair DS[Efy] DS[Esnal)
DS (I'eC Iname Ebody)]] = (rec Iname DSIIEbOd’y]])

DS[(@O E*)] = (prim O DS[E;]™)

DS|

DS[I

DS|

DS|

DS|

DS|

DS|

DS|

[

[

S[[(abs O E)] = (Qam Ifresn DS[E]), where Ijeqp is fresh

DS[(abs (I) E)] = (1am I DS[E]D

DS[(abs (I; I1.,) E)] = (lam I; DS[(abs (I}.,) ED])
DS|

DS|

DS|

DS|

DS|

DS|

DS|

DS|

DS|

DS|

DS|

DS|

(E)] = (app DS[E] #u)
(E; E2)] = (app DS[E;] DS[E:])
(B; Bz Ei,)] =DS[((app E; Ep) Ej)]

(list)] = #u
(list E; EL.))] = (pair DS[E;] DS[(list EL.]

(quote #u)] = #u

(quote B)] =

(quote N)] =

(quote Y)] = (sym Y)

(quote (SX? 1))] = DS[(list (quote SX))]

(cond (else Egefauir))] = DS[Edefquit]
(Cond (Etest1 Ethen1> (Etest, Ethem) =2 <else Edefault))]]
= (if DS[[Etestyﬂ DS[[Ethen;]] DS[[(COIld (Etestl Ethen,)?zz (else Edefault))ﬂ)

(scand E7,,iunc)] = left as an exercise.

DS
DS[(scor Ej;g)] = left as an exercise.
DS[(let ((I; EDI-1) Epoay)] = DS[((abs (I71) Epoqy) El-1)]

DS[(letrec ((; E)I—1) Epoay)]
= [[(app (rec IChurchTuple
(lam Iselector (Iselector (IChurchTuple (abs (In 1) E)) 1)))
(abs (I7-1) Epoay))], where IchurchTupie and Iselector are fresh.

DS[(recur Ipe (; ED7—1) Eboday)]
:DS[[(letrec ((Iproc (abs (I;L:l) Ebody))) (Iproc En 1))]]

[
[
[
[[

Figure 6.4 The DS function desugars FL expressions into FLK expressions.

6.2.2 FL Syntactic Sugar 221

Then (Eyu 53 2 3 4) desugars into

(app (app (app (lam a
(lam b
(lam ¢ (prim * a (prim + b c)))))
2)
3)
4)

So (Egss 2 3 4) evaluates to 14, (Ey s 2 3) evaluates to the same procedure
as (abs (c) (@x 2 (@+ 3 ¢))),and (Eyuss 2) evaluates to the same procedure
as (abs (b c) (@x 2 (@+ b ¢))).

Because multiapplications are the only tagless construct, the lack of an explicit
tag is not ambiguous. Because applications tend to be the most common kind of
compound expression, eliminating the explicit tag for this case makes expressions
more concise. The multiabstraction and multiapplication syntax is inspired by
Lisp, but, unlike FLK, LisP does not support implicit currying.

The main desugaring clause for multiabstractions (those that have the form
(abs (I; If,) E)) is defined in a recursive way that processes one parameter
at a time. The argument abstraction to DS is made smaller by one parameter on
each call until the base case of a single parameter is reached. A similar recursive
strategy is used for desugaring multiapplications.

The nullary (zero-parameter) case for app is special because it is necessary
to invent an arbitrary operand expression. We choose #u, but any expression
would do. The nullary case for abs is special because it is necessary to invent
a parameter name for the lam that results from the desugaring. As we shall
see in Section 6.3.4, it is important to choose a name that does not conflict
with other names that already appear in the program. In definitions of program
transformations like desugaring, we will often declare that new names must be
fresh. This is an informal way of specifying that the new name should be different
from any name appearing elsewhere in the program. In Section 6.3.5, we will
formalize a way of choosing new names that do not conflict with existing ones.

The 1list construct is a shorthand for creating lists by a sequence of nested
pairings. (1ist FE; ... F,) constructs a unit-terminated chain of n pairs linked
by their second components, where the value of F; is the value of the first element
of the ith pair in the chain. For example,

(list (@+ 1 2) (6= 3 4) (pair 4 5) (sym end))

is equivalent to

222 Chapter 6 FL: A Functional Language

(pair (@+ 1 2)
(pair (= 3 4)
(pair (pair 4 5)
(pair (sym end)
#u))))

The quote expression facilitates the construction of s-expressions in FL.
These are recursively defined to be literals (unit, numeric, boolean, and sym-
bolic) and lists of s-expressions. Quoted s-expressions are a very concise way to
specify tree-structured data. The quote construct can be viewed as a means of
constructing a tree from a printed representation of the tree. For example, the
s-expression (quote (1 (#t three) (four 5 six))) desugars to

(1ist 1
(list #t (sym three))
(list (sym four) 5 (sym six)))

The concise quote notation for s-expressions facilitates writing program phrases
from languages with s-expression syntax that are to be used as inputs for program-
manipulating programs (like interpreters, translators, and analyzers). For exam-
ple, the POSTFIX program (postfix 1 (2 mul) exec) can be represented as
the FL s-expression (quote (postfix 1 (2 mul) exec)). This is much sim-
pler for programmers to read and write than the corresponding kernel expression:
(pair (sym postfix)
(pair 1
(pair (pair 2 (pair (sym mul) #u))
(pair (sym exec)

#u))))

The cond construct is an n-way conditional that stands for a nested sequence
of if expressions. For example,

(cond ((@>= grade 90) (sym A))
((@>= grade 80) (sym B))
((@>= grade 70) (sym C))
((@>= grade 60) (sym D))
(else (sym F)))

desugars to
(if (@>= grade 90) (sym A)
(if (@>= grade 80) (sym B)
(if (@>= grade 70) (sym C)
(if (@>= grade 60) (sym D) (sym F)))))

The scand and scor expressions provide for so-called short-circuit evalu-
ation of logical conjunctions and disjunctions, respectively. If a false value is

6.2.2 FL Syntactic Sugar 223

encountered in the left-to-right evaluation of the conjuncts of a scand expres-
sion, then its result is the false value, regardless of whether subsequent conjuncts
contain errors or infinite loops. So (scand (@= 1 2) (@/ 3 0) (@< 4 5)) eval-
uates to false but (scand (@/ 3 0) (@= 1 2) (@< 4 5)) signals a divide-by-
zero error. Similarly, if a true value is encountered in the left-to-right evaluation
of the disjuncts of a scor expression, then the result is the true value, regardless of
whether the subsequent disjuncts contain errors or infinite loops. Primitive appli-
cations involving the primitive operators and and or do not use short-circuit eval-
uation; they evaluate all operand expressions. So (@and (€= 1 2) (@/ 3 0))
and (Gor (@< 1 2) (@/ 3 0)) both signal a divide-by-zero error. The desug-
aring definitions for scand and scor are left as Exercise 6.1.

The let expression is a convenient way to name intermediate results in a com-

putation. The expression (let ((I; E;) ... (I, E,)) Epoy) evaluates the
body expression Ep.q, in a context where the names Iy, ..., I, are bound to the
values of the expressions Fy, ..., E,. For example,

(let ((a (@* 4 5))
(b (6+ 3 4)))
(@/ (@+ a b) (G- a b)))

has the same value as (@/ (@+ 20 7) (@- 20 7)) or (@/ 27 13), namely 2.
The names Iy, ..., I, introduced by the let can be referenced only in the body,
not in the definition expressions Fy, ..., Ey:

(let ((a 1))
(ex (let ((a 20)
(b (@+ a 300))) {refers to outer a, so b is 301}
(6- b a)) {refers to inner a, so difference is 281}
a)) {refers to outer a, so product is 281}

The let construct desugars into a multiapplication of a multiabstraction.
That is, (let ((I; E;) ... (I, Ep)) Epoay) desugars to

((abs (I; ... I,) Eyoq) E; ... E,)

Note that E;, ..., E, appear outside the abs and so cannot reference the pa-
rameters Iy, ..., I,. The part of the program in which a declared name can be
referenced is called its scope; we will study this notion in Section 6.3.1. That let
can be expressed in terms of an abstraction underscores the fact that abstractions
are a fundamental means of naming in FLK. Here is a (partial) desugaring of the
two let examples from above:

((abs (a b) (@/ (@+ a b) (@- a b))) (6x 4 5) (6+ 3 4))

224 Chapter 6 FL: A Functional Language

((abs (a)
(ex ((abs (a b) (@- b a))
20
(e+ a 300))
a))
1)
The (letrec ((I; E;) ... (I, E,)) Epygy) expression is similar to the let
expression except that the names Iy, ..., I, can be referenced inside the definition
expressions Fy, ..., E,. The letrec expression is similar to the rec expression,

except that it can be thought of as solving a group of mutually recursive equations.
For example,
(letrec ((even? (abs (x) (if (@= x 0) #t (odd? (@- x 1)))))

(0dd? (abs (y) (if (@= y 0) #f (even? (@- y 1))))))
(list (even? 0) (odd? 1) (odd? 2) (even? 3)))

evaluates to <true, true, false, falser.

The letrec desugaring is inspired by the observation made in Section 5.1.1
that n mutually recursive definitions can always be rephrased as a single recursive
definition of a tuple with n components. Because FLK’s rec construct is able
to “solve” a single recursive definition, we can use it to solve mutually recursive
definitions as long as we can combine them into a tuple-like structure.

Since the letrec desugaring is tricky, we develop it in two passes. In the
first pass, we combine the mutually recursive definitions into a list. As a concrete
example, we can express the even?/0dd? example using rec and 1list as follows:

(let ((outer (rec inner
(let ((even? (nth 1 inner))
(odd? (nth 2 inner)))
(list (abs (%)
(if (@= x 0) #t (odd? (@- x 1))))
(abs (y)
(if (6= y 0) #f (even? (@- y 1)))))))))
(let ((even? (nth 1 outer))
(odd? (nth 2 outer)))
(list (even? 0) (odd? 1) (odd? 2) (even? 3))))

Here we assume that nth is an identifier in the standard library bound to a
procedure that takes an integer ¢ and a list and returns the ith element of the
list, where elements are indexed starting at 1. (See Figure 6.8 for a definition
of nth.) In the expression (rec inner ...), inner denotes a list of the even?
and odd? functions. The nth function is used to extract the two functions from
this list, let is used to name these functions even? and odd?, and list glues
together abstractions that define these functions. Because let and 1ist are both

6.2.2 FL Syntactic Sugar 225

nonstrict in FL, the solution to (rec inner ...) (as computed using the least
fixed point technique from Chapter 5) is indeed a list of the two desired functions.
This list is then named outer and is deconstructed into named components that
become available for the evaluation of the body expression of the original letrec.

We can generalize this example into the following almost-correct desugaring
for letrec:

DS[(etrec ((I; E)Tq) Eyoay)]
= DS[[(let ((Iouter (rec Iinner
(let ((I; (nth i Lipper))i—;) (list Ej_1)))))
(let <(Iz (nth Z Iouter))?:l) Ebody))]]’
where I,yier and Iy, are fresh identifiers.

Note that both Ljer and I, must be fresh names. Whenever we choose more
than one fresh name, we always assume that the fresh names are pairwise distinct,
S0 Linner is necessarily a different name from I, e,

The above desugaring is almost right but is problematic for two technical
reasons. First, it assumes that the index arguments of nth can be integers when
in fact they must be numerals denoting the corresponding integers. Second,
employing the standard identifier nth is not only unaesthetic but also can lead
to bugs as a result of name capture (see Section 6.3.4).

For these reasons, we present an alternative desugaring that circumvents both
problems. This desugaring is based on the same idea but represents tuples as
procedures. In this representation, which we shall call a Church tuple, an n-
element list is represented as a unary procedure whose single argument is an
n-argument selector procedure that is applied to the n elements of the list. If
Ichurch Tuple is bound to an n-element Church tuple, then the application

(IChuTchTuple (abs (I; ... I,) 1))
extracts the ith element of the list. More generally, the application
(]C'hurchTuple (abs (I; ... I,) E))

returns the value of F in a context where each I; is bound to the 7th element of
the list. For example, suppose Ior is bound to the Church tuple

(abs (Iselector) (Iselector 281 6))
Then

(Icr (abs (abcd) a)) 5 2
(Icp (abs (a b cd) ¢)) 5 1

5This fact is not important here since the desugaring has the same meaning if Inner and
I, uter are the same name.

226 Chapter 6 FL: A Functional Language

(Icr (abs (a b c d) (0= (@x b d) d))) - 42
(Ugr (abs (a b c d) (list d b a ¢c))) > <6, 8, 2, Ib

If we modify the even?/0dd? example to use Church tuples in place of regular
lists, we obtain the following:

(app (rec ct
(lam s (s (ct (abs (even? 0dd7)
(abs (%)
(if (@= x 0) #t (odd? (€- x 1))))))
(ct (abs (even? o0dd?)
(abs (y)
(if (e= y 0) #f (even? (@- y 1)))))))))
(abs (even? 0dd?)
(1ist (even? 0) (odd? 1) (odd? 2) (even? 3))))

Here, ct names a Church tuple of the even? and odd? procedures. In the body of
the rec, these two components are extracted by applying ct to selector procedures
of the form (abs (even? 0dd?) ...). The Church tuple returned by the rec
is also directly applied to such a selector to evaluate the body of the original
letrec. Note how this approach avoids the use of nth and let to extract and
name parts.

This example can be generalized to our official letrec desugaring:

DS[(Qetrec ((I; Ey) ... Uy Ep)) Epoay)]
= DS[[(app (rec IChurchTuple
(1a-m Iselector (Iselector (IChurchTuple (abs <-[1 e In) El))

(IChurchTuple (abs Iy ... 1) Ex)))))
(abs (I; ... I,) Ebody))]], where IchurchTupte and Igeiector are fresh.

In this case, IchurchTupte and Isejector must not only be fresh, they must also be
distinct.

A common idiom is to create a locally recursive procedure and then apply it
immediately to initial values to start a computation. For example, an iterative
factorial procedure can be expressed in FL as:

(abs (n)
(letrec ((iter (abs (num ans)
(if (= num 0)
ans
(iter (- num 1) (* num ans))))))
(iter n 1)))

6.2.2 FL Syntactic Sugar 227

We can make this idiom easier to express by providing a new sugar construct
(recur Iproe (U; Einit,) ... Iy Einit,)) Epoay)
that desugars to

(letrec ((Lppoe (abs (I; ... I,) Epogy)))
(Iproc Einitz Einitn))
The recur expression is similar in structure to a let expression except that it
has an additional identifier I,,.. Each of the n variables I; is first bound to

the value of the corresponding initialization expression Ej,;, and then Ejp,g, is
evaluated in a context where these bindings are in effect and the name I, refers

to a procedure with parameters I;, ..., I, that computes Ejo4,. Using recur,
the iterative factorial procedure from above can be expressed more succinctly as
(abs (n)

(recur iter ((num n) (ans 1))
(if (= num 0)
ans
(iter (- num 1) (* num ans)))))

Exercise 6.1 Provide the missing desugarings for FL’s scand and scor constructs (see
Figure 6.4).

Exercise 6.2 It is often useful for the value of a let-bound variable to depend on the
value of a previous let-bound variable. In FL, achieving this behavior requires nested
let expressions. For example:

(abs (a b)
(let ((r (@+ a b)))
(let ((r-squared (@* r r)))
(let ((r-cubed (@* r r-squared)))
(@+ r (@+ r-squared r-cubed))))))

Many Lisp dialects support a let* construct that (other than the keyword let*) looks
just like a let construct. However, the meaning of let* differs from let: its variables
are guaranteed to be bound to the values of the associated definitions in the order in
which they appear in the list of bindings. A definition expression in let* can refer to
the result of a previous binding within the same let*. Using let*, the above example
can be rendered:

(abs (a b)
(letx ((r (@+ a b))
(r-squared (@x r r))
(r-cubed (@* r r-squared)))
(e+ r (@+ r-squared r-cubed))))

Extend the desugaring function DS to desugar let* expressions.

228 Chapter 6 FL: A Functional Language

Exercise 6.3 Ben Bitdiddle is upset by the desugaring for nullary (i.e., zero-parameter)
abstractions and applications. He argues (correctly) that, according to the desugar-
ings, the FL expression ((abs (x) x)) will return #u. He believes that evaluating this
expression should give an error.

One way to fix this problem is to package up multiple arguments into some sort of
data structure. See Exercise 6.21 for an example of this approach. Here we will consider
other approaches for handling nullary abstractions and applications.

a. Bud Lojack suggests desugaring (abs () F) into F and (F) into E. Give examples
of FL expressions that have a questionable behavior under this desugaring.

b. Abby Stracksen suggests a desugaring in which
DS[(E)] = (app (app DS[E] #t) #u)
DS[(E; E»)] = (app (app DS[E:] #£) DS[E:])
DS[(E; Es EL,)] = ((app (app DS[E:] #£) DS[E:])
DS[(EL DD

rest
i Give the corresponding desugarings for multiabstractions.

ii. ~ What value does ((abs (x) x)) have under this desugaring?

c. Ben reasons that the fundamental problem exhibited by the nullary desugarings is
that there is no way to call a procedure without passing it an argument. He decides
to extend FLK with the following kernel construct for parameterless procedures:

(freeze F) returns a “frozen” value containing the unevaluated expression F.

(thaw FE) evaluates the expression within a frozen value. It gives an error if called
on any value other than one created by freeze.

Show how freeze and thaw can be used to fix Ben’s problem.

d. Sam Antics doesn’t like the fact that multiabstractions and multiapplications both
have three desugaring clauses. Figuring that only two clauses should suffice in each
case, he develops the following desugaring rules based on Ben’s freeze and thaw
commands:

DS[(abs () E)] = DS[(freeze E)]

DS[(abs (I; I1.) E)] = Qam I, DS[(abs ([%,) E)])
DS[(E)] = DS[(thaw E)]

DS[(E; Fr] = DS[(app By Ex) DS[FiuD]

Discuss the strengths and weaknesses of Sam’s desugaring.

Exercise 6.4 We will say that two constructs are equipotent (roughly, “of equal
power”) if each can be expressed as a desugaring into the other. For example, mul-
tiargument procedures and single-argument procedures are equipotent: multiargument
abstractions and applications can be desugared into single-argument ones via currying;

6.2.2 FL Syntactic Sugar 229

and single-argument abstractions and applications are a special subcase of the multi-
argument ones. On the other hand, lists and procedures are not equipotent; although
Church tuples are a technique to represent lists as procedures, procedure abstractions
and applications cannot be represented as pairs.

We have considered a version of FLK where rec is the kernel recursion construct
and FL’s letrec is desugared into rec. Show that rec and letrec are equipotent by
providing a desugaring of rec into letrec (i.e., suppose that letrec is the kernel FLK
construct and define rec as syntactic sugar).

Exercise 6.5 The letrec desugaring based on nth presented in the above discussion
used three let expressions and two fresh identifiers. It is possible to simplify this desug-
aring to one that uses only one let expression and one fresh identifier. The simplified
desugaring has the following form:

DS[(letrec ((I; EDi—1) Eo]
= DS[(nth index (rec Iy (let bindings body)))], where Iy is fresh.

Complete the desugaring by fleshing out index, bindings, and body.

Exercise 6.6 The desugaring for letrec in Figure 6.4 requires a pair of fresh identifiers.
There is another desugaring for letrec that requires no fresh identifiers whatsoever. This
desugaring, known as the Beki¢ expansion, has a recursive structure not exhibited by
the other versions. Below is a skeleton of the desugaring.

DS[(letrec ((I; E;) ... (I, Ey)) Eo]
= DS[(Qet ((I; (rec I; O;)) ... (Ip (rec I, 0,))) Ep)]

where the boxes O; are to be filled in appropriately.

a. Give the general form for expressions that fill the boxes O; in such a way that the
above skeleton defines a correct desugaring for letrec.

b. Using your approach, how many recs will appear in a desugaring of a letrec with 5
bindings?

c. Give a closed-form solution for the number of recs that will appear in a desugaring
of a letrec with n bindings.

d. Comment on the practicality of this letrec desugaring.

Exercise 6.7 Prove that the expression-desugaring function DS specified in Figure 6.4
is well defined. That is, prove that if E is a valid FL expression, then DS[E] is a valid
FLK expression. Your proof should be by induction. However, it cannot be by structural
induction, since in many clauses of the definition, DS is called on an expression that is not
a subexpression of the original expression. The key challenge of this proof is developing
a metric on FL expressions that decreases with every call to DS.

230 Chapter 6 FL: A Functional Language

Desugaring Definitions and Programs

The top-level program construct (f1 (I; ... I,) EpgmBody D1 ... Di) evalu-
ates the program body expression EjgmpBody in a context where

e the formal program parameters Iy, ..., I, are bound to the program arguments;

e cach name I4m in a definition D of the form (def I,ume Egefn) is bound to
the value of the definition expression Egef,;

e cach procedure name I ocname in a definition of the form
(def (Ipchame IJI [qll) Epchody)

is bound to a (curried) procedure with formal parameters I/, ..., I/ and body
EprocBody; and

e cach member of a set of standard identifiers (names in the standard li-
brary) is bound to the value specified by the library. We will assume that
the standard library at the very least binds each primitive operator name to
a procedure performing the corresponding operation. E.g., not is bound to
(abs (a) (@not a)), + is bound to (abs (a b) (@+ a b)), etc. We will
have more to say about the standard library in Section 6.2.3.

Definitions make it convenient to name top-level program values (typically
procedures) that are used within the program body Ej.q,. The value expressions
of the definitions are evaluated in a mutually recursive context: the expression
in one definition may refer to any name defined by any other definition. The
program parameters and standard identifiers are visible within the definitions as
well as within the program body.

Consider the following sample FL program:

(f1 (a b) (pair (even? sum) (0dd? prod))

(def sum (+ a b))
(def prod (* a b))
(def (even? x) (if (= x 0) #t (odd? (- x 1))))
(def (odd? y) (if (= y 0) #f (even? (- y 1)))))

The program body expression (pair (even? sum) (odd? prod)) refers to the
values sum and prod and to the procedures even? and 0dd? introduced via def.
Note that even? and odd? have mutually recursive definitions. The fact that
standard identifiers are bound to appropriate procedures in the definitions and
program body means that =, -, +, and * can all be used without the prim tag or
@ sugar.

6.2.2 FL Syntactic Sugar 231

DS pgm : Progrr, — Progrri

DSP!]W[[<f1 (I;ngormal) EPQWBOdy (def [name, Edefnz)i?z_ll

(def (]procName I;rocFormal) EprocBody) D?:k:«kl”]

:DSpgmﬂ(fl (Il;kg’rnFm'mal) EpgmBody (def Inamei Edef"l)’]ic;ll

(def IPTOCName (abs (I;rocFormal) EPTOCBOdy)) D;}=k+1)]]

DS pgm [(£1 (I;ngormal) EpgmBody (def Iname, Edefn,)i-1)
= (flk (I;ngormal
DS[(letrec ((not (abs (x) (prim not x)))
(+ (abs (x y) (prim + x y)))
; ... other standard library bindings . ..
)
(Letrec ((Upame;, Fdefn,)ie1)

EpgmBody)]])

Figure 6.5 Desugaring FL programs into FLK programs.

The desugaring of an FL program into an FLK program is performed by
the function DSy, defined in Figure 6.5. The first clause is responsible for
desugaring each definition of the form (def (Iyocname I;mcpormal) EprocBody)
into one of the form (def I, ocname (abs (I;TOCFOTmal) EprocBody)). Once all
the appropriate procedure definitions have been desugared in this way, the second
clause transforms an FL program into an FLK program by wrapping the body
expression in (1) a letrec that introduces standard bindings (which may be
mutually recursive) and (2) a letrec that introduces the mutually recursive
definitions. Because the letrec for definitions is defined inside the letrec for
standard bindings, the definition expressions Egefn,, - - ., Eefn, can refer to the
standard bindings.

Note that if a program parameter name is the same as a standard bind-
ing name or a name introduced by def, it will be impossible to refer to the
parameter in the definition expressions or body because it will be “shadowed”
by the other name. It is also possible for the names introduced by standard
bindings to be shadowed within the definitions or body of a program. For in-
stance, the expression (+ 2 3) does not necessarily denote 5 within the body
or a definition of an FL program. Why? Because it might occur in a context
like (let ((+ (abs (x y) (@ x y))) 0O),in which case the name + stands for
a multiplication procedure and (+ 2 3) denotes 6. In order to unambiguously
specify addition in any context, it is necessary to use (prim + ...).

232 Chapter 6 FL: A Functional Language

Desugaring Contexts

DC € DesugaringContext

DC :=0O | (f1 (I;:)rmal) Ebody ngll DC D?:k;-‘,—l) | (f1k (Ift)rmal) DC
| (1f DC Ethen Eelse) ‘ (1f Etest DC Eelse) | (1f Etest Eth,en DC)
| (prim Oprimop EiZy DC E7_, 1)
| Qam Itormar DC) | (app DC Erana) | (app Erator DC)
| (pair DC FEy,q) | (pair Ep DC) | (rec Ingme DC)

Figure 6.6 Rewriting approach to desugaring FL into FLK, Part 1.

Exercise 6.8 In FL, definitions are allowed only within the £1 construct at “top level”;
yet a local form of definition within abs and let expressions would often be useful.
Generalize the idea of definitions by modifying FL to support local definitions. Design
a syntax for your change, and show how to express it in terms of a desugaring.

Rewriting-based Approach to Desugaring

Intuitively, desugaring is a program transformation in which sugar constructs are
rewritten to kernel constructs. The rewriting nature of desugaring is somewhat
obscured in the definition of the desugaring function DS in Figures 6.4 and 6.5.
Because of the recursive nature of the DS function, it rewrites an FL expression
to an FLK expression “all at once” rather than “one step at a time.”

Here we present an alternative specification of FL desugaring that describes
the desugaring process as a sequence of discrete desugaring steps. In this ap-
proach, based on rewriting, the recursive nature of the desugaring process will be
implicit rather than explicit. Since the rewriting-based approach to desugaring is
easier to specify than desugaring functions, we will often use the rewriting-based
approach in the remainder of this book.

Figure 6.7 presents one-step desugaring rules of the form S ~~4s S’, where S
and S’ are viewed as generic s-expressions rather than FL or FLK expressions,
definitions, or programs. These rules describe desugaring at the expression, def-
inition, and program level. These desugaring rules cannot be applied just any-
where, but only in the desugaring contexts described by the productions for DC
in Figure 6.6. These contexts allow the desugaring of FL program expressions,
definitions within an FL program, and FL sugar constructs appearing within an
FLK expression.

Restricting the context in which the desugaring rules can be applied is essen-
tial for prohibiting invalid desugarings. For example, without the restrictions,
the parameter list (I; I2) in an abs expression could be misinterpreted as a

6.2.2 FL Syntactic Sugar 233

Desugaring Reduction Rules (~45)
(@0primop E?:l) ~ds (Prim Oprimop E?Zl)

(abs () E) ~gqs (Qam Ifesp, E), where Ipegp is fresh
(abs () E) ~»4s (lam I E)
(abs (I; It,) E) ~gs (lam I; (abs (If,,) E))

(E) ~>gs (app E #u) (E; Eg) ~qs (app E; Eg)
(E; E, E:ést) ~qs ((app E; Eg) Er—'gst)

(list) ~=4s #u (list E; Elg) ~»as (pair E; (list EX.))

(quote #u) ~»4s #u (quote B) ~~g4s B (quote N) ~~45 N
(quote Y) ~»gs (sym Y)
(quote (SX7 1)) ~»4s (1ist (quote SX ;DI)

(cond (else Eyefouir)) ~ds Edefault
(Cond (Etest1 Ethenl) (Etestl Ethen,,)?ZQ (else Edefault))
~ds (1f Etest1 Ethen1 (COIld (Etest, Ethenz)?zz (else Edefault)))

(scand E*) ~~4s left as an exercise.

conjunct
* .
(scor B, iunct) ~ds left as an exercise.

(let ((I; ED™,) Epoay) ~as ((abs (I™)) Epogy) ET)

(letrec ((I; E;)iy) Epody)
Mds (aPP (rec]ChurchTuple
(1am Iselectar
(Iselector (IChurchTuple (abs (I;lzl) El))?:l)))
(abs (J7L{) Epoay)), where IchurchTuples Lselector are fresh.

(recur Ipyoe ((; E))Py) Epoay)
~>ds (letrec ((Iproc (abS (I:l:l) Ebody))) (Iproc E;nzl))

(def ([procName];TocFormal) EprocBody)

~Mds (def IprocName (abs (I;rocFm‘mul) EprocBody))

(f1 (I;ngormal) EpgmBody (def Inamei Edef”z)?:l)

s (f 1k (I;ngormal)

(letrec (... standard library bindings ...)
(Letrec ((Upame; Fdefn)iz1)

EpgmBody)))

Desugaring Transition Relation (=4;)
DC{S} =4s DC{S'} , where § ~»45 &’

Figure 6.7 Rewriting approach to desugaring FL into FLK, Part 2.

234 Chapter 6 FL: A Functional Language

procedure application and incorrectly be desugared to (app I; I2). Similarly, a
binding (I F) within an let or letrec could be misinterpreted as a procedure
application without the context restriction.

Desugaring contexts and desugaring rules combine to define desugaring tran-
sitions. If S ~»4s S’ then DC{S} =4, DC{S’} for all desugaring contexts DC
(including O). For example:

(abs (a b) (list (@+ a b) (@- a b)))

=45 (lam a (abs (b) (list (@+ a b) (@- a b))))

=4 (lam a (lam b (list (@+ a b) (@- a b))))

=g4s (lam a (lam b (pair (@+ a b) (list (G- a b)))))

=g4s (lam a (lam b (pair (prim + a b) (list (@ a b)))))

=4s (lam a (lam b (pair (prim + a b) (pair (@- a b) (1list)))))
=4s (lam a (lam b (pair (prim + a b) (pair (@- a b) #u))))
=45 (lam a (lam b (pair (prim + a b) (pair (prim - a b) #u))))

Because desugaring contexts DC allow desugarings to take place in an arbi-
trary subexpression of a prim, app, if, or pair expression, the transition relation
=4 1s not deterministic. However, it is possible to show that =4, is confluent
and terminating. So it is sensible to define desugaring functions as follows:

DS : Expp; — Exppre = AE. E', where E =4, E' %4,
DS pgm : Progp, — Progprx = AP. P', where P =45 P’ # 45

In fact, these are the same functions as those defined via the recursive function
approach.

Exercise 6.9
a. Prove that =4 is confluent.

b. Prove that =4 is terminating. That is, if S is an s-expression, then there is no infinite
transition path beginning with S.

c. Prove that if S is an s-expression for a valid FL expression and S =45 S’ #q4s , then
S’ is an s-expression for a valid FLK expression.

d. Prove that if S is an s-expression for a valid FL program and S =4, S’ %4, then
S’ is an s-expression for a valid FLK program.

e. Prove that the expression-desugaring function DS defined in terms of =4 is the same
as the desugaring function DS defined in Figure 6.4 on page 220.

f. Prove that the program-desugaring function DS, defined in terms of =4, is the
same as the desugaring function DS, defined in Figure 6.5 on page 231.

6.2.3 The FL Standard Library 235

6.2.3 The FL Standard Library

A standard library is a collection of named values (frequently procedural val-
ues) that may be used within a program. The library often consists of two parts:

1. a collection of built-in values (such as FLK’s #u, #t, #f, and O € Primop)

that often must be used in the context of special syntax (such as prim in
FLK);

2. a collection of top-level values that can be assumed to be defined in the
outermost scope of a program.

Typically, built-in operators cannot (or at least cannot easily or efficiently) be
defined by the programmer. These include operators for fundamental values like
booleans, characters, and numbers (floating point as well as integer) as well as
data structures like strings, arrays, and message-passing objects. In contrast,
top-level values are values that can be defined by the programmer, but it is more
convenient if the language provides these as “predefined” values.

The advantage of a standard library is that it allows many constants and
procedures to be factored out of the syntax of the language. For example, we can
easily extend FLK with such values as floating point numbers, characters, and
strings by adding (1) new literal expression forms for each kind of value and (2)
new primitive operators in Primop for manipulating these values. Such additions
are modular in the sense that no new kernel expressions (except for the literal
values) must be added to the language. It is even easier to extend FLK with
data structures like matrices, stacks, queues, lists, trees, and graphs, since these
can all be defined via top-level procedures that create and manipulate such data
structures.

Of course, it is still necessary to specify the components of the library some-
where in a language description. Typically the library is specified by listing all
elements in the library along with a description of the semantics of each one. We
have already seen such a listing for FLK’s primitive operators in Figure 6.2 on
page 213. For real-world languages like JAVA and C++-, such descriptions usually
come in the form of an Application Programming Interface (API), which
specifies the number and types of arguments for each function/procedure/method
along with an informal English description of its semantics.

We have seen in the FL program-desugaring function DSy, (defined in Fig-
ure 6.5 on page 231) that top-level standard library values can be specified via
a sequence of bindings of the form (I,gme Fyaie). SO another way of specifying
such top-level values is to list these bindings. Figures 6.8 and 6.9 show the top-

236 Chapter 6 FL: A Functional Language

(not (lam x (@not x)))

. Similar for other unary primitives.

(+ (abs (x y) (@+ x y)))

. Similar for other binary primitives.
(true #t)

(false #f)

(cons (abs (x xs) (pair x xs)))

(car (lam xs (@fst xs)))

(cdr (lam xs (@snd xs)))

(nil #u)

(null (abs () #u))

(null? (lam xs (Qunit? xs)))

(min (abs (x y) (if (€<= x y) x y)))
(max (abs (x y) (if (@= x y) x y)))

(list? (abs (val) (scor (null? val)
(scand (@pair? val) (1ist? (snd val))))))

(length (abs (xs)
(if (null? xs)
0
(6+ 1 (length (cdr xs))))))

(nth (abs (i xs)
(cond ((scor (null? xs) (@< i 1))
(error nth-index-out-of-bounds))
((e= i 1) (car xs))
(else (nth (@- i 1) (cdr xs))))))

Figure 6.8 FL standard library bindings, Part 1.

level bindings that we will assume for FL. There are several kinds of bindings in
the figure:

e There is one binding for each primitive operator in Primop, which binds the
name of the primitive to a procedure performing the primitive operation.
This allows writing (+ E; Ep) within the program instead of (@+ E; Ej)
or (prim + E; Ep).

6.2.3 The FL Standard Library 237

(reverse (abs (xs)
((rec loop
(abs (o0ld new)
(if (null? old) new
(Loop (cdr 0ld) (coms (car old) new))))))
xs nil)))
(append (abs (xs ys)
(if (null? xs)
ys
(cons (car xs) (append (cdr xs) ys)))))
(equal? (abs (x y)
(scor (scand (@Qunit? x) (Qunit? y))
(scand (@bool? x) (@bool? y) (@bool=7 x y))
(scand (@int? x) (@int? y) (@= x y))
(scand (@sym? x) (@sym? y) (@sym=? x y))
(scand (@pair? x) (@pair? y)
(equal? (@fst x) (@fst y))
(equal? (@snd x) (@snd y))))))

(member? (abs (elt 1st)
(scand (not (null? 1lst))
(scor (equal? elt (car 1st))
(member? elt (cdr 1lst))))))

: higher-order list procedures from Figure 6.11.

Figure 6.9 FL standard library bindings, Part 2.

e Synonyms are introduced for several constants and procedures. The names
true and false are synonyms for #t and #f. The names min and max are
given, respectively, to procedures that return the minimum or maximum of two
integers. The Lisp-inspired list-manipulation names cons, car, cdr, nil, null,
and null? are introduced as synonyms for manipulations on unit-terminated
chains of pairs. These functions highlight situations where pairs are being
viewed as lists rather than raw pairs.

e 1ist?, length, nth, reverse, append, equal?, and member? are recursive
list procedures frequently used in list-manipulation programs. For examples
involving these procedures, see Figure 6.10. There are many other recursive
list procedures that could be included in the standard library for FLK. The
fact that DS,y introduces standard bindings via letrec as opposed to let
means that the standard bindings may be mutually recursive. So no explicit

238 Chapter 6 FL: A Functional Language

(1ist? 17) > false
(1ist? (list 7 2 5)) > true
(1ist? (pair 3 (pair 4 5))) > false

(length (list)) > 0
(length (list 7 2 5)) & &
(length (list #u #t (sym foo) (pair 1 2) (list (sym a) (sym b)))) - &

(nth 1 (list 7 #t (sym foo0))) > 7

(nth 3 (list 7 #t (sym £00))) > 'foo’

(nth 0 (list 7 #t (sym foo))) -7 errornth-index-out-of-bounds
(nth 4 (list 7 #t (sym foo))) —p» errornth-index-out-of-bounds

(reverse (list 7 #t (sym foo))) > <'foo’, true, 7v
(reverse (list 7 (list 2 5))) - <=2, 6>, 7>
(reverse (list)) > <>

(append (list 7 #t (sym foo)) (list #f 4)) > <7, true, 'foo’, false, 4>
(append (1list) (list #f 4)) 4 <false, 4v
(append (list 7 #t (sym foo)) (1list)) —-p <7, true, 'foo'>

(equal? 1 #f) > false
(equal? 1 1) 47 true
(equal? #f #f) 1> true
(equal? (list 7 (pair #u (sym foo)) #f)
(1ist 7 (pair #u (sym foo)) #t)) wp false
(equal? (list 7 (pair #u (sym foo)) #f)
(pair 7 (pair (pair #u (sym foo)) (pair #f #u)))) o> true

(member? 2 (list 7 2 5)) 7 true
(member? 17 (list 7 2 5)) g false
(member? (sym *) (quote (+ - * /))) > true

Figure 6.10 Sample invocations of standard list procedures.

rec or letrec is necessary to define recursive procedures like length or nth,
and each of these definitions may refer to other standard bindings (such as
coms, car, cdr).

Desugaring a top-level program construct is only one way to include standard
bindings within a program. Some programming language implementations sup-
port a notion of linking program modules together before executing a program
(see Chapter 15). In such implementations, a program is linked with modules that
implement the standard library. In some languages, programmers may declare
extra libraries they wish to load in addition to the standard library.

6.2.4 Examples 239

The practical utility of a programming language depends in large part on
the libraries it supplies. FORTRAN and C became popular languages for number
crunching because of their extensive libraries for numerical methods. APL has
impressive libraries for matrix manipulation. The standard libraries for functional
languages (e.g., HASKELL, ML dialects, Lisp dialects) include many procedures
for processing lists and trees. Both JAvA and C++ have huge libraries of proce-
dures and data structures for many purposes (numerical manipulation, graphics,
network communication, cryptography, etc.).

6.2.4 Examples

Although FL is a toy language, it packs a fair bit of expressive punch. We
have already seen several list-processing examples in the context of the standard
library. Here we illustrate the expressive power of FL. with a few more examples.

Higher-Order List Procedures

In functional languages it is common to abstract over list-processing idioms by
supplying procedural arguments. Figure 6.11 presents some classic higher-order
list procedures written as FL definitions. Since these functions are so useful, we
will assume that they are included in the F'L. standard library. The map procedure
returns the list that results from performing a given procedure on every element
of a given list.

(map (abs (x) (* x x)) (list 7 2 5)) > <49, 4, 256>

(map not (list #t #f)) & <false, true>

(map (abs (y) (pair 3 y)) (list 7 #t (sym foo0)))

7 A8, 7), (3, true), (3, foo’)>

The filter procedure returns a list containing the elements of the given list that
satisfy the given predicate.

(filter (abs (x) (=1 (% x 2))) (list 7 25 3 4)) > <7, o, 8>

(filter sym? (list 7 #t (sym foo) (pair #u (sym bar)) (sym baz))

> <foo’, "baz'v

The forall? procedure determines whether all the elements of a list satisfy a
predicate. The exists? procedure determines whether at least one element of a
list satisfies a predicate.

(forall? (abs (x) (=1 (%

(forall? (abs (x) (=1 (%

(exists? (abs (x) (=1 (%

(exists? (abs (x) (=1 (%

2))) (list 7 3 5)) & true

2))) (list 7 3 2 5)) & false
2))) (list 7 3 2 5)) &> true
2))) (list 6 2 8 4)) +p false

240 Chapter 6 FL: A Functional Language

The foldr (short for “fold right”) procedure accumulates a result value from a
list by using binop to combine each element into the result starting with nullval
as the initial result.

(foldr + 0 (list 7 2 3)) > 12

(foldr * 1 (list 7 2 3)) —— 42
(foldr (abs (x bs) (cons (> x 2) bs))
nil

(list 7 2 3)) & <true, false, trued

Exercise 6.10 The foldr procedure abstracts over the general list-recursion idiom.
Demonstrate the generality of foldr by defining each of map, filter, forall?, and
exists? as nonrecursive procedures implemented in terms of foldr. E.g., the definition
of map should have the form

(def (map f xs) (foldr Ebi,nop Ernuwar x8))
This can be simplified further to
(def (map f) (fOldI’ Ebinop Enullval))

Merge Sort

Figure 6.12 presents a merge-sort procedure that uses the merge sort algorithm
to sort a list of elements according to a less-than-or-equal-to predicate, before?.
For example:

(merge-sort <= (list 7 2 4 15 4 3)) > <1,2,8,4,4,5,7>
(merge-sort >= (list 7 2 4 15 4 3)) wp <7,5,4,4,3,2,1>
(<= (

(merge-sort (abs (a b) had) Chb4d)))
(1ist 724 154 3)) = 9, 4,1,5,2,7,3>

The procedure is implemented in terms of three auxiliary procedures: merge,
alts, and ms. The merge procedure takes two lists xs and ys that are assumed
to be sorted according to the before? predicate and returns the sorted list con-
taining all the elements of both lists (including duplicates, if any). Note that
because merge is defined as a local recursive procedure inside merge-sort, it can
refer to the before? parameter of merge-sort without receiving it as an explicit
argument. The alts procedure returns a pair of (1) all the odd-indexed® elements
and (2) all the even-indexed elements of a given list, preserving the relative order
of elements in each sublist.

(alts (1ist)) > (<p, <p)

(alts (list 7)) > (97>, <p)

(alts (list 7 2)) & (97>, <92p)

(alts (list 7 24 514 3)) wp (17,4,1,3>,<2,5,4p)

8 Assume that list elements are indexed starting with 1.

6.2.4 Examples 241

(def (map f xs)
(if (null? xs) xs (cons (f (car xs)) (map f (cdr xs)))))
(def (filter pred xs)
(cond ((null? xs) xs)
((pred (car xs)) (cons (car xs) (filter pred (cdr xs))))
(else (filter pred (cdr xs)))))
(def (forall? pred xs)
(scor (null? xs)
(scand (pred (car xs)) (forall? pred (cdr xs)))))
(def (exists? pred xs)
(scand (not (null? xs))
(scor (pred (car xs)) (exists? pred (cdr xs)))))
(def (foldr binop nullval xs)
(if (null? xs)
nullval
(binop (car xs) (foldr binop nullval (cdr xs)))))

Figure 6.11 Some higher-order list procedures written in FL and included in the
standard library.

We could have written alts as a recursive procedure, but have instead chosen
to implement it in terms of foldr. The ms procedure implements the divide-
conquer-and-glue steps of the merge sort algorithm.

An ELM Interpreter

As a more interesting example of an FL program, in Figure 6.13 we use FL to
write an interpreter for the ELM subset of the EL language (Exercise 3.10 on
page 67). Recall that ELM is EL without conditional and boolean expressions.
The elm-eval procedure evaluates an ELLM expression relative to a list of num-
bers, args, which are the program inputs. ELM expressions are represented as
FL s-expressions. elm-eval is written as a dispatch on the type of expression,
which is determined by the syntax predicates 1it?, arg?, and arithop?. The
selectors 1it-num, arg-index, arithop-op, arithop-randl, arithop-rand2 ex-
tract components of s-expressions. The get-arg procedure returns the indexth
element of the given list nums (where indices are assumed to start at 1). The
op—>proc procedure converts a symbol (such as (sym +)) to a binary FL proce-
dure (such as the addition procedure +).

Both arguments to the ELM interpreter are expected to be s-expressions:
pgm is an s-expression representing the structure of the ELM program and args

242 Chapter 6 FL: A Functional Language

(def (merge-sort before? vs)
(letrec
((merge (abs (xs ys)
(cond ((null? xs) ys)
((null? ys) xs)
((before? (car xs) (car ys))
(cons (car xs) (merge (cdr xs) ys)))
(else (cons (car ys) (merge xs (cdr ys)))))))
(alts (abs (ws)
(foldr (abs (w listpair)
(pair (snd listpair) (cons (w (fst listpair)))))
(pair nil nil)
ws)))
(ms (abs (zs)
(if (scor (null? zs) (null? (cdr zs)))
zs
(let ((split (alts zs)))
(merge (ms (fst split)) (ms (snd split))))))))

(ms vs)))

Figure 6.12 A procedure that uses the merge sort algorithm to sort a list.

is an s-expression representing the program arguments, which must be a list of
integers. Suppose that Pgp,_cpar is the FL program in Figure 6.13. Then here
are some sample executions of Pejm-evai:”

[(quote (* (arg 1) (arg 1))), <5D]
Pelm—eval FL 25

[(quote (/ (+ (arg 1) (arg 2)) 2)), <6, 8b]
Petm-cval FL 7

[(quote (+ (arg 1) (arg 2))), <3p]
Pelm—eual FL

error:arg-index-out-of-bounds

Exercise 6.11 Extend the ELM interpreter to handle full EL.
Exercise 6.12 Write a POSTFIX interpreter in FL.
Exercise 6.13 Write an FL interpreter in FL. An interpreter that happens to be written

in the same programming language that is being interpreted is called a metacircular
interpreter.

"We have taken the liberty of writing the program argument in FL s-expression notation.
We assume that this stands for the desugared FL value s-expression constructed out of pairs
and literals.

6.2.4 Examples

243

(f1 (pgm args)
(cond ((not (elm-program? pgm)) (error ill-formed-program))
((not (scand (list? args) (forall? int? args)))
(error ill-formed-argument-1list))
((not (= (elm-nargs pgm) (length args)))
(error wrong-number-of-args))
(else (elm-eval (elm-body pgm) args)))

(def (elm-eval exp args)
(cond ((1it? exp) (lit-num exp))
((arg? exp) (get-arg (arg-index exp) args))
((arithop? exp) ((op->proc (arithop-op exp))
(elm-eval (arithop-randl exp) args)
(elm-eval (arithop-rand2 exp) args)))
(else (error illegal-expression))))

(def (get-arg index nums)
(cond ((scor (<= index 0) (null? nums))
(error arg-index-out-of-bounds))
((= index 1) (car nums))
(else (get-arg (- index 1) (cdr nums)))))

(def (op->proc s)

(cond ((sym=7 s (sym +)) +) ((sym=? s (sym -)) -)
((sym=7 s (sym *)) *) ((sym=7 s (sym /)) /)
((sym=? s (sym %)) %)

(else (error illegal-op))))

{Abstract syntax}
(def (elm-program? sexp)
(scand (1ist? sexp) (= (length sexp) 3)
(sym=7 (car exp) (sym elm))))
(def (elm-nargs sexp) (car (cdr sexp)))
(def (elm-body sexp) (car (cdr (cdr sexp))))
(def 1it? int?)
(def (lit-num 1it) 1it)
(def (arg? sexp)
(scand (1ist? sexp) (= (length sexp) 2)
(sym=7 (car sexp) (sym arg))))
(def (arg-index sexp) (car (cdr sexp)))
(def (arithop? sexp)
(scand (1ist? sexp) (= (length sexp) 3)
(member? (car exp) (quote (+ - * /)))))
(def (arithop-op sexp) (car sexp))
(def (arithop-randl sexp) (car (cdr sexp)))
(def (arithop-rand2 sexp) (car (cdr (cdr exp)))))

Figure 6.13 An interpreter for ELM, a subset of EL.

244 Chapter 6 FL: A Functional Language

6.3 Variables and Substitution

Intuitively, the meaning of an FLK abstraction (lam / FE) shouldn’t depend
on the particular name chosen for I, which is known as its formal parameter.
Just as we expect the meaning of an integral to be independent of the choice
of the variable of integration (so that f; fz)dz = f; f(y)dy), we expect the
meaning of an FLK abstraction to be invariant under a change to the name of
its variable. Thus, the identity abstraction (lam a a) should also be expressible
as (lam x x) or (lam square square). Furthermore, the variable references
named by a, x, and square are logically distinct from any variable references
coincidentally sharing the same name in other expressions.
This section formalizes this intuition about names in FLK expressions.

6.3.1 Terminology

Notations for mathematics and computation contain many binding constructs
that introduce syntactic placeholders ranging over some set of semantic entities.
Examples of binding constructs include FLK’s programs, abstractions, and recur-
sion expressions; the summation (}) and integration ([) notations in calculus;
and universal (V) and existential (3) quantifiers in logic.

We reserve the word variable for the conceptual placeholder introduced by
a binding construct and will use the word identifier to designate the name
that stands for a given variable. The identity abstraction discussed above has
a single variable, and the identifier that names it is arbitrary. In the expres-
sion (lam x (app x (lam x x))) there are two logically distinct variables in-
troduced by the two abstractions, but they happen to be named by the same
identifier.

An identifier naming a variable may be used in two different ways:

1. as a variable declaration that introduces the variable in a binding construct;
2. as a variable reference that refers to a previously declared variable.

For example, in the FLK expression (lam x (app x x)), the leftmost occur-
rence of x is a variable declaration and the other two occurrences are variable
references. In general, declarations and references are distinguished in the format
of expressions. For example, compare how variables are declared and referenced
in notations for FLK, integration, summation, union, and logical quantification
(in each case, the declaration of the variable x has been underlined):

(lam x x) fabx dz >0, 22 Ugear Va.f(z) = g(x)

6.3.1 Terminology 245

The region of a program phrase in which a particular variable may be refer-
enced is called the scope of that variable. For example:

e In (lam I Ejug), the scope of the variable declared by I is Eyoqy.

e In (let ((I; E;) Uy E3)) Ej3), the scope of both I; and I is E3. The
variables declared by I; and I» cannot be referenced in F; or Es.

e In (letrec ((I; E;) Iz Ez)) E3), the scope of both I; and Iy is all three
expressions F;, Fp and Fj.

Notations in which variables are represented by identifiers share the following
properties:

1. Ignoring certain restrictions (to be discussed shortly), it is possible to consis-
tently rename a variable within its scope without changing the meaning of the
entire expression. Thus, in each of the notations considered above, the x can
be changed to y without changing the meaning:

Qany y) [lydy Yo v Uyeay Vo) =9()

2. Within the scope S of a variable named I, the declaration of a new variable
with the same name I creates a new scope S’ in which the outer variable
cannot be referenced. The region S’ is called a hole in the scope of the
outer variable I. For example, any reference to x within the context O in
the following examples refers to the variable declared by the inner x, not the
outer x.

(lam x (app x (lam x 0))) f;x ([7 O dz) dx [05—)

Useal®:MNeep B Vo ((f(2) = g(2)) A F2.0)

If a binding construct declares a variable named I, we shall say that the
construct binds I and will sometimes use the term binding occurrence for the
occurrence of I that is the variable declaration. An occurrence of an identifier 1
in an expression is bound if it is a binding occurrence or it is a variable reference
in the scope of some binding construct that binds I; otherwise, that occurrence of
the identifier is said to be free. For example, in (lam a (lam b (app a c))),
the single occurrence of b and both occurrences of a are bound, while the single
occurrence of c is free.

246 Chapter 6 FL: A Functional Language

Whether an identifier is free or bound depends on the context in which the
identifier is viewed. Thus, in the previous example, the second occurrence of
a is free in (app a ¢) and in (lam b (app a c¢)) but not in the expression
(lam a (lam b (app a c¢))). It is possible in one expression to have some
occurrences of an identifier that are bound and other occurrences of the same
identifier that are free. In (app (lam a a) a) the first and second occurrences
of a are bound, while the third occurrence is free.

An identifier (as opposed to an occurrence of an identifier) is said to be a
free identifier (likewise, bound identifier) in an expression if at least one of
its occurrences is free (likewise, bound) in the expression. For instance, in the
expression (app b (lam a (lam b (app a c)))), a and b are bound identifiers
and b and c are free identifiers.

Similarly, we say that a variable is free (likewise, bound) in an expression
if the identifier occurrences referring to it are free (likewise, bound). Using our
terminology, an identifier may be both bound and free in an expression, but a
variable can be only one or the other. In the literature, the terms free variable
and bound variable are often used for what we call free and bound identifiers.

A phrase (expression, program, etc.) is closed if it contains no free identifiers
(or, equivalently, no free variables). Otherwise, it is said to be open.

Expressions with free variables often arise when considering subexpressions
of a given expression. For instance, in the subexpression (lam b (app b a)) of
the closed expression (lam a (lam b (app b a))), the identifier a names a free
variable.

Using definition by structural induction, it is straightforward to define func-
tions Frlds and BdIds that map FLK expressions to sets of their free and bound
identifiers, respectively. These functions are presented in Figure 6.14. Both func-
tions have the signature Exp — P(Ident), where P(Ident) is the powerset (set of
all subsets) of Ident. For example,

Frlds[(app b (lam a (lam b (app a ¢))))]={b,c}
BdIds[(app b (lam a (lam b (app a ¢))))]={a,b}

There is one subtlety in these definitions: An I that appears within double
brackets on the l